text
stringlengths
1
4.74k
code
stringlengths
69
637k
Record with fitting coefficients taken from the Fast_Propane model. In this record, fitting coefficients are provided for the Helmholtz equation of state (EoS). For detailed information of the EoS as well as the fitting coefficients, please checkout <a href= \"modelica://AixLib.DataBase.Media.Refrigerants.HelmholtzEquationOfStateBaseDateDefinition\"> AixLib.DataBase.Media.Refrigerants.HelmholtzEquationOfStateBaseDateDefinition</a> . The fitting coefficients are used in a hybrid refrigerant model provided in <a href= \"modelica://AixLib.Media.Refrigerants\">AixLib.Media.Refrigerants</a>. For detailed information, please checkout <a href= \"modelica://AixLib.Media.Refrigerants.Interfaces.TemplateHybridTwoPhaseMediumRecord\"> AixLib.Media.Refrigerants.Interfaces.TemplateHybridTwoPhaseMediumRecord</a>.
within AixLib.DataBase.Media.Refrigerants.R290; record EoS_IIR_P05_30_T263_343 "Record with fitting coefficients taken from the Fast_Propane model" extends AixLib.DataBase.Media.Refrigerants.HelmholtzEquationOfStateBaseDateDefinition( name="Coefficients taken from Fast_Propane model developed by Sangi et al.", f_IdgNl=1, f_IdgL1={3}, f_IdgL2={1}, f_IdgNp=2, f_IdgP1={-4.970583,4.29352}, f_IdgP2={0,1}, f_IdgNe=4, f_IdgE1={3.043,5.874,9.337,7.922}, f_IdgE2={1.062478,3.344237,5.363757,11.762957}, f_ResNp=5, f_ResP1={0.042910051,1.7313671,-2.4516524,0.34157466,-0.46047898}, f_ResP2={4,1,1,2,2}, f_ResP3={1,0.33,0.8,0.43,0.9}, f_ResNb=6, f_ResB1={-0.66847295,0.20889705,0.19421381,-0.22917851, -0.60405866,0.066680654}, f_ResB2={1,3,6,6,2,3}, f_ResB3={2.46,2.09,0.88,1.09,3.25,4.62}, f_ResB4={1,1,1,1,2,2}, f_ResNG=7, f_ResG1={0.017534618,0.33874242,0.22228777,-0.23219062,-0.09220694, -0.47575718,-0.017486824}, f_ResG2={1,1,1,2,2,4,1}, f_ResG3={0.76,2.5,2.75,3.05,2.55,8.4,6.75}, f_ResG4={0.963,1.977,1.917,2.307,2.546,3.28,14.6}, f_ResG5={1.283,0.6936,0.788,0.473,0.8577,0.271,0.948}, f_ResG6={2.33,3.47,3.15,3.19,0.92,18.8,547.8}, f_ResG7={0.684,0.829,1.419,0.817,1.5,1.426,1.093}); end EoS_IIR_P05_30_T263_343;
Package provides records for R290
within AixLib.DataBase.Media.Refrigerants; package R290 "Package provides records for R290" extends Modelica.Icons.VariantsPackage; end R290;
Record with fitting coefficients taken from the Fast_Propane model. In this record, fitting coefficients are provided for thermodynamic properties calculated from two independent state variables. For detailed information of these thermodynamic properties as well as the fitting coefficients, please checkout <a href= \"modelica://AixLib.DataBase.Media.Refrigerants.ThermodynamicStatePropertiesBaseDataDefinition\"> AixLib.DataBase.Media.Refrigerants.ThermodynamicStatePropertiesBaseDataDefinition</a> . The fitting coefficients are used in a hybrid refrigerant model provided in <a href= \"modelica://AixLib.Media.Refrigerants\">AixLib.Media.Refrigerants</a> . For detailed information, please checkout <a href= \"modelica://AixLib.Media.Refrigerants.Interfaces.TemplateHybridTwoPhaseMediumRecord\"> AixLib.Media.Refrigerants.Interfaces.TemplateHybridTwoPhaseMediumRecord</a> .
within AixLib.DataBase.Media.Refrigerants.R290; record TSP_IIR_P05_30_T263_343 "Record with fitting coefficients taken from the Fast_Propane model" extends AixLib.DataBase.Media.Refrigerants.ThermodynamicStatePropertiesBaseDataDefinition( name="Coefficients taken from Fast_Propane model developed by Sangi et al.", T_phNt={5, 5, 21, 5, 5, 21}, Tl_phA={-0.0704729863184529, -0.00678884566695906, 0.000202836611783306, -9.71248676197528e-06, 7.98267274869292e-07}, Tl_phB={20.5578417380748, -0.770247506716285, -0.038647246926071, -0.00751600683912493, -0.0016300055996751}, Tl_phC={-1.12691051342428e-05, 0.000273729410002939, 0.000134930636679386, -0.0044760279738207, -0.00177519423682889, -0.000392485634748443, 0.136811720776647, 0.0309332207143316, 0.00767135438646387, 0.00140205757787774}, Tl_phD={291.384236041825}, Tv_phA={6.59039876392094, 0.0453108439023189, 0.00540769150996739, -0.000196566506959251, -4.64422678045603e-05}, Tv_phB={20.795024314138, -0.411365889418558, -0.00497446957449581, 0.0046513295424428, -0.000577281104194347}, Tv_phC={0.000787074643540945, -0.00847992074678385, 0.00281445602040784, -0.0188305448625778, 0.00660309588666398, -0.00176606807260317, -1.43969687581506, 0.255977908649908, -0.0432200997543392, 0.00590025752789791}, Tv_phD={308.060027778396}, T_phIO={1682457.5126701, 720642.233056887, 247137.397786416, 54003.5903158973, 0, 1, 382099.574228781, 403596.556578661, 639399.497939419, 37200.2691858212, 0, 1}, T_psNt={5, 5, 21, 5, 5, 21}, Tl_psA={0.490828546245446, 0.117871744016533, 0.0181671755438826, 0.00191602988674819, 0.00011497599662102}, Tl_psB={19.8608752914032, -0.040817223566116, -0.0857625427384498, -0.0124017661200968, -0.00192723964571896}, Tl_psC={0.000243666235393007, 0.0037715016370504, 0.000459514035453056, 0.0292848788419663, 0.00622225803519055, 0.00090717580273224, 0.130154107880201, 0.0324083687227166, 0.00799217399325639, 0.00127247920370296}, Tl_psD={290.574168937952}, Tv_psA={34.3546579581206, 0.95682930429454, 0.129780738468536, 0.0577060502424694, 0.0132124973316544}, Tv_psB={36.3220486736092, 0.702977715170277, -0.100508863694088, 0.0160903628800248, -0.00049456983306658}, Tv_psC={-0.00720862103838031, -0.0264862744961215, 0.00736011556482272, -0.30336257516708, 0.0826586807740864, -0.00773556171071259, 0.23922945375389, 0.00081428356388169, -0.00125351482775024, 0.0036583657279175}, Tv_psD={305.667994209752}, T_psIO={14.2251890031606,0.499169296800688, 1152.46506841802, 179.299713840403, 0, 1, 12.3876547448383, 0.961902709412239, 2715.6535956075, 207.473158311391, 0, 1}, d_pTNt={5, 5, 21, 5, 5, 21}, dl_pTA={1.8705425621798, -0.0351624357762205, 0.00126962771607607, 7.69903677841526e-06, 1.34663813731525e-05}, dl_pTB={-29.9062841232497, -2.21393734916457, -0.419234944193293, -0.104815271970145, -0.0227711391125435}, dl_pTC={1.90380071619604e-06, 0.00219916470789359, 0.00117322708291575, -0.0298496253585084, -0.0156164603769147, -0.00424731659901982, 0.693501535440458, 0.222243208624831, 0.0699901864638379, 0.0141806356166424}, dl_pTD={506.208387981876}, dv_pTA={7.85762798977443, 0.561456406237816, 0.0745135118619033, 0.0141066470211284, 0.00292620516208197}, dv_pTB={-0.618509525341628, 0.0644646531072409, -0.00894774750115025, 0.00116677386847406, -2.13433530006928e-05}, dv_pTC={-0.01655069884562, -0.0614336770277778, 0.0269207717408464, -0.227438027200113, 0.0715858695051831, -0.0137994983041971, -0.827135398454184, 0.113487112138254, -0.021065201099773, 0.00162333280148309}, dv_pTD={6.99012116216078}, d_pTIO={1682457.5126701, 720642.233056887, 290.645659315997, 19.9347318052857, 0, 1, 382099.574228781, 403596.556578661, 307.564799259815, 22.5879133275781, 0, 1}); end TSP_IIR_P05_30_T263_343;
Record with fitting coefficients calculated for first implementation. In this record, fitting coefficients are provided for thermodynamic properties at bubble and dew line. For detailed information of these thermodynamic properties as well as the fitting coefficients, please checkout <a href= \"modelica://AixLib.DataBase.Media.Refrigerants.BubbleDewStatePropertiesBaseDataDefinition\"> AixLib.DataBase.Media.Refrigerants.BubbleDewStatePropertiesBaseDataDefinition</a> . The fitting coefficients are used in a hybrid refrigerant model provided in <a href= \"modelica://AixLib.Media.Refrigerants\">AixLib.Media.Refrigerants</a> . For detailed information, please checkout <a href= \"modelica://AixLib.Media.Refrigerants.Interfaces.TemplateHybridTwoPhaseMediumRecord\"> AixLib.Media.Refrigerants.Interfaces.TemplateHybridTwoPhaseMediumRecord</a> .
within AixLib.DataBase.Media.Refrigerants.R410a; record BDSP_IIR_P1_48_T233_340 "Record with fitting coefficients calculated for first implementation" extends AixLib.DataBase.Media.Refrigerants.BubbleDewStatePropertiesBaseDataDefinition( name="Coefficients taken from Engelpracht", psat_Nt=6, psat_N={-5.42493213611446, 4.55984223535243, -5.63920263436646, -17.0179004677748, 16.6119518017247, -9.23457354191128}, psat_E={0.914568767900918, 0.84920213389611, 0.914588351221298, 5.60238999663603, 4.56148875806592, 3.77677091719265}, Tsat_Nt=20, Tsat_N={0.000212734358958718, -0.00274826770400574, 0.0139370674840602, -0.0315500773133433, 0.0121512184212727, 0.0856249369531822, -0.14074454381608, -0.0367634254282132, 0.254757708465645, -0.112689322533039, -0.182876490328916, 0.134350167076272, 0.0860242126577126, -0.100893270492692, 0.0309833589718576, -0.0529002490944326, 0.127140300183199, -0.277494430607753, 0.928326269698458, 0.315625855266007}, Tsat_IO={1690546.68662399, 1337345.61888569, 288.745128, 32.1667276731741}, dl_Nt=41, dl_N={-6.99578865762325, -6.7604174117019, 200.407961520649, 188.571236226921, -2652.94723562807, -2425.45498526778, 21528.66639571, 19078.45309768, -119801.207674824, -102626.361637478, 484499.198159567, 399940.695532179, -1472497.37440782, -1167021.96071837, 3430188.48017565, 2599053.22102125, -6191424.52123395, -4462494.4315702, 8696236.64921065, 5926540.10974656, -9493407.55362208, -6073193.59372745, 8003916.94227124, 4763589.89778695, -5150368.09268112, -2819821.21050958, 2483733.27900105, 1232954.81219775, -874144.249122246, -385938.163587198, 216126.678937935, 82629.6546432032, -35497.5732400153, -11300.2847533843, 3553.26510924274, 883.68895963431, -189.882928, -39.47055814, -18.62912585, -146.230018, 1103.300057}, dl_IO={288.8, 32.1728405128715, 0, 1}, dv_Nt=35, dv_N={6.58978478503912e-06, 8.61462899584184e-06, -6.20269693625927e-05, -7.37407932198282e-05, 0.000190760055223262, 0.000178769740095248, -0.000136388992345257, 4.36249648285315e-05, -0.000238334815888865, -0.000431298226628196, 3.80080621897099e-05, -0.000561479744368981, 0.000423297560316714, 0.0011568545426888, 0.000495543657457393, 0.00214762507546025, -5.92221614138573e-07, -0.00196695410352135, -0.000901075042193254, -0.00283896802944253, -0.00166768829541246, -0.00088860171586863, -0.00158538480741269, 0.00289539863035636, 0.00214921036271588, 0.00434299894514524, 0.0157317419040667, 0.0012382068787828, -0.0125489243448401, 0.0112261211991694, 0.0370242887570731, 0.0865129026480271, 0.262992182086301, 0.594247698000419, -0.38258005733403}, dv_IO={288.8, 32.1728405128715, 81.1402553535331, 81.8525665515266}, hl_Nt=26, hl_N={135.494256329739, -1944.58002467352, 10873.0680837202, -25735.7403798769, -2430.18903333571, 142145.874373996, -225871.839384057, -169961.413579647, 771955.520997377, -282765.448706001, -1164737.86099266, 1049080.17122333, 917249.096544049, -1352382.65503727, -343473.199502079, 952332.78180563, 11186.9638591466, -394215.457107193, 36248.009362927, 92213.8523639965, -8896.04419964822, -14352.0238351, 6700.78180055371, -10395.4314481771, 50536.1142524471, 242430.487439737}, hl_IO={1690546.68662399, 1337345.61888569, -1300, 1}, hv_Nt=26, hv_N={-0.000218029221261958, 0.0022323353175877, -0.00799014541436163, 0.00833845606213506, 0.0144702747235008, -0.0331179314189472, 0.000390283122980614, 0.0115258430193761, 0.0308964007853627, 0.0136472460889214, -0.0360136736458006, -0.0386765421186988, -0.0605463077241532, 0.0502647244559176, 0.095321629007505, 0.0755533366303853, 0.063900536295213, -0.298358086862518, -0.10365771583044, 0.163409334532178, 0.17524027979117, -0.215325369147047, 0.197032758310628, -0.777842402746969, 0.173961838358794, 0.983520185682028}, hv_IO={1690546.68662399, 1337345.61888569, 417945.765501892, 8545.487483279}, sl_Nt=24, sl_N={0.00033828165088767, -0.00370309827636681, 0.014209075443824, -0.0145766678299393, -0.0416403990009039, 0.101032460509914, 0.0336400125229364, -0.233747525374593, 0.0199708486352523, 0.290832433096577, -0.00660210880306234, -0.197892691158687, -0.12141201709424, 0.00592212772109565, 0.255290714023843, 0.0779323618368683, -0.184232949517685, -0.0976178186610381, 0.122020592620146, -0.0471292444744683, 0.113902422370081, -0.245671669378254, 0.888482458507174, 0.274891927776532}, sl_IO={1690546.68662399, 1337345.61888569, 1089.97331866083, 185.695651493037}, sv_Nt=24, sv_N={-0.000546560772734549, 0.00581168717069958, -0.0215691827119022, 0.0223518186558442, 0.0473507418719607, -0.0983005227940781, -0.0497700161113581, 0.0790325658994048, 0.256674014689244, 0.0817324388473164, -0.899619588503897, -0.161232661224616, 1.51293677931511, 0.15442682704994, -1.47492388142783, -0.122700813082128, 0.808894385214169, 0.136507017005217, -0.308151297008007, 0.0270489376466083, -0.0847856959955504, 0.132564781752192, -0.773757700736367, -0.150479610948503}, sv_IO={1690546.68662399, 1337345.61888569, 1772.34582896195, 79.2403170328169}); end BDSP_IIR_P1_48_T233_340;
Record with fitting coefficients calculated for first implementation. In this record, fitting coefficients are provided for the Helmholtz equation of state (EoS). For detailed information of the EoS as well as the fitting coefficients, please checkout <a href= \"modelica://AixLib.DataBase.Media.Refrigerants.HelmholtzEquationOfStateBaseDateDefinition\"> AixLib.DataBase.Media.Refrigerants.HelmholtzEquationOfStateBaseDateDefinition</a> . The fitting coefficients are used in a hybrid refrigerant model provided in <a href= \"modelica://AixLib.Media.Refrigerants\">AixLib.Media.Refrigerants</a> . For detailed information, please checkout <a href= \"modelica://AixLib.Media.Refrigerants.Interfaces.TemplateHybridTwoPhaseMediumRecord\"> AixLib.Media.Refrigerants.Interfaces.TemplateHybridTwoPhaseMediumRecord</a> .
within AixLib.DataBase.Media.Refrigerants.R410a; record EoS_IIR_P1_48_T233_340 "Record with fitting coefficients calculated for first implementation" extends AixLib.DataBase.Media.Refrigerants.HelmholtzEquationOfStateBaseDateDefinition( name="Coefficients taken from Lemmon, Pseudo-Pure Fluid Equations of State for the Refrigerant Blends R-410A, R-404A, R-507A, and R-407C", f_IdgNl=1, f_IdgL1={-1}, f_IdgL2={1}, f_IdgNp=3, f_IdgP1={36.8871,7.15807,-46.87575}, f_IdgP2={0,1,-0.1}, f_IdgNe=3, f_IdgE1={2.0623,5.9751,1.5612}, f_IdgE2={2.02326,5.00154,11.2484}, f_ResNp=5, f_ResP1={0.987252,-1.03017,1.17666,-0.138991,0.00302373}, f_ResP2={1,1,1,2,5}, f_ResP3={0.44,1.2,2.97,2.95,0.2}, f_ResNb=16, f_ResB1={-2.53639,-1.9668,-0.83048,0.172477,-0.261116,-0.0745473, 0.679757,-0.652431,0.0553849,-0.071097,-0.000875332, 0.020076,-0.0139761,-0.018511,0.0171939,-0.00482049}, f_ResB2={1,2,3,5,5,5,1,1,4,4,9,2,2,4,5,6}, f_ResB3={1.93,1.78,3,0.2,0.74,3,2.1,4.3,0.25,7,4.7,13,16,25,17,7.4}, f_ResB4={1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3}, f_ResNG=0, f_ResG1={0}, f_ResG2={0}, f_ResG3={0}, f_ResG4={0}, f_ResG5={0}, f_ResG6={0}, f_ResG7={0}); end EoS_IIR_P1_48_T233_340;
Package provides records for R410a
within AixLib.DataBase.Media.Refrigerants; package R410a "Package provides records for R410a" extends Modelica.Icons.VariantsPackage; end R410a;
Record with fitting coefficients calculated for first implementation. In this record, fitting coefficients are provided for thermodynamic properties calculated from two independent state variables. For detailed information of these thermodynamic properties as well as the fitting coefficients, please checkout <a href= \"modelica://AixLib.DataBase.Media.Refrigerants.ThermodynamicStatePropertiesBaseDataDefinition\"> AixLib.DataBase.Media.Refrigerants.ThermodynamicStatePropertiesBaseDataDefinition</a> . The fitting coefficients are used in a hybrid refrigerant model provided in <a href= \"modelica://AixLib.Media.Refrigerants\">AixLib.Media.Refrigerants</a> . For detailed information, please checkout <a href= \"modelica://AixLib.Media.Refrigerants.Interfaces.TemplateHybridTwoPhaseMediumRecord\"> AixLib.Media.Refrigerants.Interfaces.TemplateHybridTwoPhaseMediumRecord</a> .
within AixLib.DataBase.Media.Refrigerants.R410a; record TSP_IIR_P1_48_T233_340 "Record with fitting coefficients calculated for first implementation" extends AixLib.DataBase.Media.Refrigerants.ThermodynamicStatePropertiesBaseDataDefinition( name="Coefficients taken from Engelpracht", T_phNt={4, 10, 45, 5, 10, 51}, Tl_phA={0.0784539758046494, -0.0139499454480583, 0.0014409474800833, -0.00847904392329953}, Tl_phB={53.34763090261, -5.88862734169674, -2.04065167066883, -0.431165279279122, 0.176294552751571, -0.370648789311289, -0.872911774900146, -0.297748052935782, 0.171784244137346, 0.0864117831531705}, Tl_phC={-0.0754087777872457, -0.113732590174603, 0.0174851132885221, 0.348152824991852, -0.0060899049206074, 0.0279225582194194, 0.793238216844397, -0.180427599342632, 0.0913740201046021, -0.0201076646974901, 0.328350703575568, -0.269409245572516, 0.0811142564076022, -0.0586819391563395, -0.070776597639706, -0.0997281511935187, -0.00805504114050181, -0.0302212183613812, 0.304572997097524, -0.015533863828046, -0.0236752632712486, 0.0433631502561081, 0.669171917292208, -0.0638071155038644, 0.0123678914525845, 0.0337585408958696, 0.786295970183816, -0.0457611197544299, 0.011937105968086, -0.00956248998345363}, Tl_phD={287.021664392518}, Tv_phA={18.9181570336269, -1.4460957111986, 0.128879370267952, -0.0378180176318431, 0.00571427728154803}, Tv_phB={48.7849078146379, 1.59922925673916, -1.30007177175693, 0.373024232467583, -0.0468655416614089, 0.0305368941798241, -0.0318835866306795, 0.0140533923437734, -0.0040237368844822, 0.000664861068806102}, Tv_phC={0.000468436089337861, -0.00398289557684647, -0.00632335505692255, 0.0457897081241502, 0.0447110011535857, -0.0272344003138221, -0.133688844832315, -0.0432943953851347, 0.114342018012712, -0.0273374878631007, 0.055161676993571, -0.121948064385487, -0.0987734536871835, 0.0992382178078569, -0.0111860675691328, 0.228460205670602, 0.0584811624438732, -0.0574573938569313, -0.091975243010589, 0.0295616887105625, -0.680869863314376, 0.50926697462963, -0.0638816419306195, 0.0306063416218453, -0.0281126961811652, 2.70679496102607, -1.04932002479848, 0.328793925176839, -0.104611635551803, 0.0291925169706824, -8.72511614453892, 1.4613603371237, -0.303189728394237, 0.127239121598212, -0.0253808809174481}, Tv_phD={355.510911331556}, T_phIO={3386089.75740898,1327435.5559674, 2.225030101956707e+05-1100, 8.333408900667726e+04, 0, 1, 1828440.07440206, 1651068.26737977, 4.912932696824134e+05-1300, 52280.2024068182, 0, 1}, T_psNt={4, 10, 45, 5, 10, 51}, Tl_psA={1.02968381585158, 0.275193128445195, 0.043941556562575, 0.00203028958902996}, Tl_psB={39.25784184622, -0.538203800364751, -1.35891209361109, -0.37547776638412, 0.103684161622761, -0.0674005888547959, -0.287988292846959, -0.115330088394623, 0.0316726651980843, 0.0176359573966827}, Tl_psC={-0.0164121223780564, -0.021049391159093, 0.00964207302480855, 0.160836146227042, 0.00446666151932734, 0.000448400580450467, 0.407078466782749, -0.136779662319749, 0.0237831303795189, -0.00184914832370402, 0.232664909912497, -0.331019995172275, 0.113054265723455, -0.0155224543284392, -0.0570300608606503, -0.226383454966623, 0.202926583202097, -0.0489805912413537, 0.118289457566212, 0.0619867405719159, 0.156042986921594, -0.0744032871840306, 0.444334054359482, 0.159824750585592, 0.0432588380531332, -0.0560518828539283, 0.712211978720827, 0.181304075574015, 0.0174579733698449, -0.0169796856907351}, Tl_psD={285.694699667815}, Tv_psA={53.4524886207332, 3.46209163015464, 0.444680383304694, 0.0553158085523391, -0.0022349731521148}, Tv_psB={63.6083149561675, 5.49531435397497, -1.01356267291782, 0.222438139282022, -0.0146570062631716, 0.0246783900765901, -0.0147428202029603, 0.00448954787158712, -0.00741437901373733, 0.00310380139642257}, Tv_psC={0.0194055969657806, -0.0495407606347934, 0.0444292560081583, 0.0182958707394186, -0.108929463221465, 0.0515888927719554, 0.00783052006384202, 0.026192048061914, -0.124013449981662, 0.0317260816164067, 0.0244430826926872, 0.0578445265137205, 0.0286564869346609, -0.0757790985121584, 0.0102448430800938, -0.0135671197103399, 0.021117616150203, 0.0836942132317105, 0.0165057054764454, -0.0321874526720959, 0.023140444373838, -0.0746327014360172, -0.0451392647684845, 0.0413756294930583, 0.0266983160352966, 0.377843086012363, 0.301141558843086, 0.0245140368245663, -0.00918454208336028, -0.00255059969916032, 1.34811712218406, -0.992980687409664, -0.0925350619257881, 0.00577747037367436, 0.00482444147971987}, Tv_psD={353.111903524476}, T_psIO={14.8682464548966,0.572967793317542, 1.133256902616489e+03-71, 214.725037980704, 0, 1, 13.9079664294572, 1.05962819040279, 2.089844878394273e+03-70.6, 177.775161517312, 0, 1}, d_pTNt={4, 10, 45, 12, 4, 55}, dl_pTA={7.87960605987028, -0.257941704085539, 0.0359536256629997, 0.00468405676173685}, dl_pTB={-133.244855967764, -23.0011865132665, 2.65009519098121, 7.41012261893865, -18.6737509725287, -13.42480950003, 11.9194637097639, 7.18763169338531, -3.14754559007914, -1.72623019772007}, dl_pTC={1.34539694151813, 3.89985990853728, -0.477663643528785, -1.01963032819307, -1.58757914444201, 0.0535260150930145, -9.82580093531666, -0.688688832277525, 0.238676850832625, -0.0128186939933804, -1.63106702729664, 1.9888439943296, 0.340643562102322, -0.00246289257004601, 10.360113896152, 1.02660482095755, 0.0543199338072468, 0.0558666269760638, 5.26843887978288, -1.40297227072936, -0.221168110890005, 0.00360942200618328, 0.881530520864514, -0.930022610155721, -0.0481483280978479, -0.0835073418715788, 4.79216519948661, -0.284394146008372, 0.10599088619427, -0.0311912243742686}, dl_pTD={1128.29342170365}, dv_pTA={67.6100707083323, 18.8214831219552, 7.88742448104687, 4.84880513849624, 5.26283636517838, 3.02091398421476, -0.704366042615507, -0.760435798997538, 0.914800113049461, 0.963585468711737, 0.274216301297376, 0.017261709321129}, dv_pTB={-16.9606407389203, 6.77158339360549, -4.11016853249533, 1.38727891703213}, dv_pTC={-0.248878323514509, -2.3845382310834, 1.21239256484831, -6.84683212512403, 7.907146451594, -2.26093972663603, -6.02383816032881, 17.9959884739015, -11.6557332748761, 1.34734913070178, 2.4805263727, 13.3565194267492, -20.3703200914964, 6.43947650667893, 1.07942630583476, -4.46379459562203, -10.5583543972069, 9.30964627311458, -14.4835385246543, 2.4057682137968, 3.91570074600322, 0.929959359240351, -24.1103495016718, 31.8063400583554, -5.10339352652816, -5.7446593077267, -23.8187899707303, 40.208541359721, -23.4724075893299, 2.33153900957907, -24.2592217972724, 28.8800649919003, -25.5769665769935, 9.19536897161365, -26.4413770963882, 17.8897180948262, -14.6913315929263, 5.73661907561273}, dv_pTD={84.139999758958}, d_pTIO={3230978.96987517,1215430.51013093, 286.37703960126, 30.2813023973015, 0, 1, 2450527.84438656, 1412272.92887283, 335.125102884223, 26.6939958044661, 0, 1}); end TSP_IIR_P1_48_T233_340;
<html>PE-X (Crosslinked polyethylene) pipes </html>
within AixLib.DataBase.Pipes; package PE_X extends Modelica.Icons.Package; end PE_X;
Set water temperature of swimming pool.
within AixLib.DataBase.Pools; record IndoorSwimmingPoolBaseDataDefinition extends Modelica.Icons.Record; parameter Modelica.Units.SI.Temperature TPool "Set water temperature of swimming pool"; parameter Modelica.Units.SI.Volume VPool "Volume of pool water"; parameter Modelica.Units.SI.Area APool(min=0) "Area of water surface of swimming pool"; parameter Modelica.Units.SI.Length depthPool(min=0) "Average depth of swimming pool"; parameter Modelica.Units.SI.Volume VSto "Usable Volume of water storage, DIN 19643-1"; // parameter for pool water circulation parameter Modelica.Units.SI.VolumeFlowRate V_flow_nominal(min=0.001) "Circulation volume flow rate"; parameter Modelica.Units.SI.VolumeFlowRate V_flow_par(min=0) "In the case of partial load: circulation volume flow rate during non-opening hours, DIN 19643-1"; parameter Boolean use_parLoa=false "Partial load operation implemented for non opening hours?"; parameter Modelica.Units.SI.PressureDifference dpHeaExcPool "Pressure drop of heat exchanger, should be zero for an indeal heated pool"; parameter Boolean use_ideHeaExc=true "Include an ideal heat exchanger into the circulation system"; parameter Real KHeat "Gain of controller for ideal heater"; parameter Modelica.Units.SI.Time timeHea "Time constant of Integrator block for ideal heater"; parameter Real QMaxHeat "Upper limit of output for ideal heater"; parameter Real QMinHeat "Lower limit of output for ideal heater"; // parameter for evaporation parameter Real betaInUse(unit="m/s") "Water transfer coefficient during opening hours if pool is used, VDI 2089"; parameter Boolean use_poolCov=false "Pool covered during non opening hours"; // parameter for fresh water parameter Boolean use_watRec= false "Recycled water used for refilling pool water?"; parameter Real x_rec(min=0) "Percentage of refilling water provided by recycled pool water, DIN 19643-1: <= 0,8"; parameter Modelica.Units.SI.MassFlowRate m_flow_out(min=0.0001) "Waterexchange due to people in the pool, DIN 19643-1"; parameter Boolean use_HRS=false "Is a heat recovery system physically integrated?"; parameter Modelica.Units.SI.Efficiency etaHRS "Effieciency of heat recovery system"; // Wave mode parameter Boolean use_wavPool=false "Is there a wave machine installed?"; parameter Modelica.Units.SI.Length heiWav "Height of generated wave"; parameter Modelica.Units.SI.Length widWav "Width of generated wave/ width of wave machineoutlet"; parameter Modelica.Units.SI.Time timeWavPul_start "Start time of first wave cycle"; parameter Modelica.Units.SI.Time perWavPul "Time of cycling period"; parameter Real widWavPul "Fraction of time of wave generation within cycling period"; // Pool Walls parameter Modelica.Units.SI.Area AWalInt "Area of pool walls which is connected to inner rooms (inner pool walls)"; parameter Modelica.Units.SI.Area AWalExt "Area of pool walls which is connected to the ground (pool wall with earth contact)"; parameter Modelica.Units.SI.Area AFloInt "Area of pool floors which is connected to inner rooms (inner pool floor)"; parameter Modelica.Units.SI.Area AFloExt "Area of pool floors which is connected to teh ground (pool floor with earth contact)"; parameter Modelica.Units.SI.CoefficientOfHeatTransfer hConWatHor "Mean value for the heat transfer coefficient of free convection on horizontal pool floors"; parameter Modelica.Units.SI.CoefficientOfHeatTransfer hConWatVer "Mean value for the heat transfer coefficient of free convection on vertical pool walls"; end IndoorSwimmingPoolBaseDataDefinition;
Profiles for ventilation, set temperatures, internal gains
within AixLib.DataBase; package Profiles "Profiles for ventilation, set temperatures, internal gains" extends Modelica.Icons.Package; end Profiles;
Base definition and parameter set for pumps
within AixLib.DataBase; package Pumps "Base definition and parameter set for pumps" extends Modelica.Icons.Package; end Pumps;
Configuration data for pump model in Fluid.Movers.PumpPolynomialBased package
within AixLib.DataBase.Pumps; package PumpPolynomialBased "Configuration data for pump model in Fluid.Movers.PumpPolynomialBased package" end PumpPolynomialBased;
Definition of pump data.
within AixLib.DataBase.Pumps.PumpPolynomialBased; record PumpBaseRecord "Definition of pump data" extends Modelica.Icons.Record; // ***************************************************** // pumpTableFlowHeadCharacteristicRecord (paramFlowHead) // ***************************************************** parameter Real[:, :] maxMinHeight=[ -1, 16, 1; 0, 16, 1; 5, 12, 0.75; 10, 0.5, 0.5] "maximum and minimum boundaries of pump (Q [m3/h], Hmax [m], Hmin [m])"; parameter Modelica.Units.NonSI.AngularVelocity_rpm[:,:] maxMinSpeedCurves=[-1, nMax,nMin; 0,nMax,nMin; 5,0.5*nMax,nMin; 10,nMin,nMin] "maximum and minimum boundaries of pump speed (Q [m3/h], nMax [rev/min], nMin [rev/min])"; parameter Modelica.Units.NonSI.AngularVelocity_rpm nMin=0 "minimum pump speed"; parameter Modelica.Units.NonSI.AngularVelocity_rpm nMax=0 "maximum pump speed"; // ***************************************************** // Coefficients for headFlowRpm function (HeadFlowRpmCharacteristic) // ***************************************************** parameter Real[:, :] cHQN=[ 0, 0, 0; 0, 0, 0; 0, 0, 0] "coefficients for H = f(Q,n) = sum_ij(cHQN[i,j] * Q^i * N^j)"; // ***************************************************** // Coefficients for powerCharacteristic function // ***************************************************** parameter Real[:, :] cPQN=[ 0, 0, 0; 0, 0, 0; 0, 0, 0] "coefficients for P = f(Q,H) = sum_ij(cPQN[i,j] * Q^i * N^j) Wilo coefficients: c4, c5, c6, c7, c8; 0, 0, c1, 0, 0; 0, c2, 0, 0, 0; c3, 0, 0, 0, 0"; // ***************************************************** // Reference data from measurements // ***************************************************** parameter Real[:, 5] referenceDataQHPN=[ 0, 0, 0, 0, 0; 0, 0, 0, 0, 0; 0, 0, 0, 0, 0] "Table with measurement and calculated data for reference. 1. Q in m3/h, 2. H in m, 3. P in W, 4. N in rev/min (power limited pump speed), 5. N in rev/min (set point for pump speed)"; end PumpBaseRecord;
Contains tests to check the parameters of the records.
within AixLib.DataBase.Pumps.PumpPolynomialBased; package Examples "Contains tests to check the parameters of the records." extends Modelica.Icons.ExamplesPackage; end Examples;
Testing the max and min height curves from that table.. This test can be used to display the maximum and minimum pump curves as defined in the maxMinHeight parameter matrix.
within AixLib.DataBase.Pumps.PumpPolynomialBased.Examples; model testMaxMinHeightTable "Testing the max and min height curves from that table." extends Modelica.Icons.Example; parameter AixLib.DataBase.Pumps.PumpPolynomialBased.PumpBaseRecord param= AixLib.DataBase.Pumps.PumpPolynomialBased.Pump_DN30_H1_12_V13() "select the parameter record that you want to check here"; parameter Real maxQ(unit="m3/h", displayUnit="m3/h") = param.maxMinHeight[ size(param.maxMinHeight, 1), 1]; Modelica.Blocks.Sources.Ramp Q( height=maxQ, duration=1, offset=0, startTime=0) "volume flow rate" Modelica.Blocks.Interfaces.RealOutput HmaxCurve Modelica.Blocks.Interfaces.RealOutput HminCurve Modelica.Blocks.Tables.CombiTable1Dv maxMinTable( columns={2,3}, tableName="NoName", tableOnFile=false, table=param.maxMinHeight) "Outputs static head (H). Maximum, minimum and freely selectable pump curve" initial equation assert( (sum(abs(param.maxMinHeight)) > 0), "In a pump model parameter record parameter matrix 'maxMinHeight' was all zero.", level=AssertionLevel.error); equation connect(Q.y, maxMinTable.u[1]) connect(maxMinTable.y[1], HmaxCurve) connect(maxMinTable.y[2], HminCurve) connect(Q.y, maxMinTable.u[2]) end testMaxMinHeightTable;
Calculates pump head from volume flow rate and pump speed.. simulate and plot script
within AixLib.DataBase.Pumps.PumpPolynomialBased.Examples; model testPumpHeadCalculation "Calculates pump head from volume flow rate and pump speed." extends Modelica.Icons.Example; // ************************************************** // Select pump record here: // parameter AixLib.DataBase.Pumps.PumpPolynomialBased.PumpBaseRecord param= AixLib.DataBase.Pumps.PumpPolynomialBased.Pump_DN25_H1_6_V4() "new pump record with coefficients."; // // ************************************************** function headFlowSpeedFuncNew = AixLib.Fluid.Movers.PumpsPolynomialBased.BaseClasses.polynomial2D "polynomial evaluator using new aproach with coefficient matrix"; function headFlowSpeedFuncNewABC = AixLib.Fluid.Movers.PumpsPolynomialBased.BaseClasses.polynomialABC "polynomial evaluator using new aproach with coefficient matrix"; parameter Real maxQ(unit="m3/h", displayUnit="m3/h") = param.maxMinHeight[ size(param.maxMinHeight, 1), 1]; Modelica.Blocks.Sources.TimeTable speedTable(table=[ 0.00, param.nMin + (param.nMax - param.nMin)*0; 0.99, param.nMin + (param.nMax - param.nMin)*0; 1.00, param.nMin + (param.nMax - param.nMin)*0.25; 1.99, param.nMin + (param.nMax - param.nMin)*0.25; 2.00, param.nMin + (param.nMax - param.nMin)*0.5; 2.99, param.nMin + (param.nMax - param.nMin)*0.5; 3.00, param.nMin + (param.nMax - param.nMin)*0.75; 3.99, param.nMin + (param.nMax - param.nMin)*0.75; 4.00, param.nMin + (param.nMax - param.nMin)*1.0; 4.99, param.nMin + (param.nMax - param.nMin)*1.0]) "selects different pump speeds" Modelica.Blocks.Sources.TimeTable volumeFlowTable(table=[ 0.0, 0.0; 0.99, maxQ; 1, 0.0; 1.99, maxQ; 2, 0.0; 2.99, maxQ; 3, 0.0; 3.99, maxQ; 4, 0.0; 4.99, maxQ]) "selects different pump speeds" Modelica.Blocks.Sources.RealExpression headNew(y=headFlowSpeedFuncNew( param.cHQN, volumeFlowTable.y, speedTable.y)) if sum(abs(param.cHQN)) > 0 Modelica.Blocks.Sources.RealExpression headNewABC(y=headFlowSpeedFuncNewABC( {param.cHQN[3,1], param.cHQN[2,2], param.cHQN[1,3]}, volumeFlowTable.y, speedTable.y)) if sum(abs({param.cHQN[3,1], param.cHQN[2,2], param.cHQN[1,3]})) > 0 end testPumpHeadCalculation;
Calculates pump power from volume flow rate and pump speed.. simulate and plot script
within AixLib.DataBase.Pumps.PumpPolynomialBased.Examples; model testPumpPowerCalculation "Calculates pump power from volume flow rate and pump speed." extends Modelica.Icons.Example; // ************************************************** // Select pump record here: // parameter AixLib.DataBase.Pumps.PumpPolynomialBased.PumpBaseRecord param= AixLib.DataBase.Pumps.PumpPolynomialBased.Pump_DN25_H1_6_V4() "new pump record with coefficients."; // // ************************************************** function headFlowSpeedFuncNew = AixLib.Fluid.Movers.PumpsPolynomialBased.BaseClasses.polynomial2D "polynomial evaluator using new aproach with coefficient matrix"; parameter Real maxQ(unit="m3/h", displayUnit="m3/h") = param.maxMinHeight[ size(param.maxMinHeight, 1), 1]; Modelica.Blocks.Sources.TimeTable speedTable(table=[ 0.00, param.nMin + (param.nMax - param.nMin)*0; 0.99, param.nMin + (param.nMax - param.nMin)*0; 1.00, param.nMin + (param.nMax - param.nMin)*0.25; 1.99, param.nMin + (param.nMax - param.nMin)*0.25; 2.00, param.nMin + (param.nMax - param.nMin)*0.5; 2.99, param.nMin + (param.nMax - param.nMin)*0.5; 3.00, param.nMin + (param.nMax - param.nMin)*0.75; 3.99, param.nMin + (param.nMax - param.nMin)*0.75; 4.00, param.nMin + (param.nMax - param.nMin)*1.0; 4.99, param.nMin + (param.nMax - param.nMin)*1.0]) "selects different pump speeds" Modelica.Blocks.Sources.TimeTable volumeFlowTable(table=[ 0.0, 0.0; 0.99, maxQ; 1, 0.0; 1.99, maxQ; 2, 0.0; 2.99, maxQ; 3, 0.0; 3.99, maxQ; 4, 0.0; 4.99, maxQ]) "selects different pump speeds" Modelica.Blocks.Sources.RealExpression power(y=headFlowSpeedFuncNew( param.cPQN, volumeFlowTable.y, speedTable.y)) if sum(abs(param.cPQN)) > 0 end testPumpPowerCalculation;
test the functions to calculate pump speed from volume flow rate and pump head.. simulate and plot script
within AixLib.DataBase.Pumps.PumpPolynomialBased.Examples; model testPumpSpeedCalculation "test the functions to calculate pump speed from volume flow rate and pump head." extends Modelica.Icons.Example; // ************************************************** // Select pump record here: // parameter AixLib.DataBase.Pumps.PumpPolynomialBased.PumpBaseRecord param= AixLib.DataBase.Pumps.PumpPolynomialBased.Pump_DN25_H1_6_V4() "New pump record with coefficients."; // // ************************************************** function speedFlowHeadFunc = AixLib.Fluid.Movers.PumpsPolynomialBased.BaseClasses.polynomial2D "polynomial evaluator using new aproach with coefficient matrix"; function speedFlowHeadFuncABC = AixLib.Fluid.Movers.PumpsPolynomialBased.BaseClasses.polynomialABCinverse "polynomial evaluator using new aproach with coefficient matrix"; parameter Real maxQ(unit="m3/h", displayUnit="m3/h") = param.maxMinHeight[ size(param.maxMinHeight, 1), 1]; parameter Modelica.Units.SI.Length maxHead=max(param.maxMinHeight[:, 2]) "maximum static head of the pump"; parameter Modelica.Units.SI.Length minHead=max(param.maxMinHeight[:, 3]) "aprox. minimum static head of the pump"; Modelica.Blocks.Sources.TimeTable headTable(table=[ 0.0, minHead+(maxHead-minHead)*0.0; 0.99, minHead+(maxHead-minHead)*0.0; 1, minHead+(maxHead-minHead)*0.25; 1.99, minHead+(maxHead-minHead)*0.25; 2, minHead+(maxHead-minHead)*0.5; 2.99, minHead+(maxHead-minHead)*0.5; 3, minHead+(maxHead-minHead)*0.75; 3.99, minHead+(maxHead-minHead)*0.75; 4, minHead+(maxHead-minHead)*1.0; 4.99, minHead+(maxHead-minHead)*1.0]) "selects different pump speeds" Modelica.Blocks.Sources.TimeTable volumeFlowTable(table=[ 0.0, 0.0; 0.99, maxQ; 1, 0; 1.99, maxQ; 2, 0; 2.99, maxQ; 3, 0; 3.99, maxQ; 4, 0; 4.99, maxQ]) "selects different volume flows" // Modelica.Blocks.Sources.RealExpression speed(y=speedFlowHeadFunc( // param.cNQH, // volumeFlowTable.y, // headTable.y)) if sum(abs(param.cNQH)) > 0 // Modelica.Blocks.Sources.RealExpression speedABC(y=speedFlowHeadFuncABC( {param.cHQN[3,1], param.cHQN[2,2], param.cHQN[1,3]}, volumeFlowTable.y, headTable.y)) if sum(abs({param.cHQN[3,1], param.cHQN[2,2], param.cHQN[1,3]})) > 0 end testPumpSpeedCalculation;
Base record definition of radiators and some ready-to-use parameter sets
within AixLib.DataBase; package Radiators "Base record definition of radiators and some ready-to-use parameter sets" extends Modelica.Icons.VariantsPackage; end Radiators;
<html><p> Just one Appartmen, in the first floor, the middle antracne, which means adiabatic conditions on all walls towards neighbouring rooms, with the exception of the staircase. </p> </html>
within AixLib.DataBase.Radiators; package Standard_MFD_WSchV1984_OneAppartment extends Modelica.Icons.VariantsPackage; end Standard_MFD_WSchV1984_OneAppartment;
Properties of different solar thermal collectors
within AixLib.DataBase; package SolarThermal "Properties of different solar thermal collectors" extends Modelica.Icons.Package; end SolarThermal;
Outside surfaces of walls
within AixLib.DataBase; package Surfaces "Outside surfaces of walls" extends Modelica.Icons.Package; end Surfaces;
Roughness coefficents for heat transfer
within AixLib.DataBase.Surfaces; package RoughnessForHT "Roughness coefficents for heat transfer" extends Modelica.Icons.Package; end RoughnessForHT;
Package with records for reduced order thermal zone models
within AixLib.DataBase; package ThermalZones "Package with records for reduced order thermal zone models" extends Modelica.Icons.VariantsPackage; end ThermalZones;
Contains records for an office as passive house
within AixLib.DataBase.ThermalZones; package OfficePassiveHouse "Contains records for an office as passive house" extends Modelica.Icons.MaterialPropertiesPackage; end OfficePassiveHouse;
Database for different types of walls
within AixLib.DataBase; package Walls "Database for different types of walls" extends Modelica.Icons.Package; end Walls;
Walls records
within AixLib.DataBase.Walls; package ASHRAE140 "Walls records" end ASHRAE140;
Collections with multiple wall types
within AixLib.DataBase.Walls; package Collections "Collections with multiple wall types" end Collections;
Records describing weather conditions
within AixLib.DataBase; package Weather "Records describing weather conditions" extends Modelica.Icons.Package; end Weather;
Collection of surface orientation data
within AixLib.DataBase.Weather; package SurfaceOrientation "Collection of surface orientation data" extends Modelica.Icons.Package; end SurfaceOrientation;
Windows and doors definition package
within AixLib.DataBase; package WindowsDoors "Windows and doors definition package" extends Modelica.Icons.Package; end WindowsDoors;
Window base definition. <b><span style=\"color: #008000;\">Overview</span></b>
within AixLib.DataBase.WindowsDoors.Simple; record OWBaseDataDefinition_Simple "Window base definition" extends Modelica.Icons.Record; parameter Modelica.Units.SI.CoefficientOfHeatTransfer Uw "Thermal transmission coefficient of whole window: glass + frame"; parameter Real frameFraction(min=0.0, max=1.0) = 0.2 "frame fraction from total fenestration area"; parameter Real g = 0.7 "coefficient of solar energy transmission"; end OWBaseDataDefinition_Simple;
Collection of simple window records
within AixLib.DataBase.WindowsDoors; package Simple "Collection of simple window records" extends Modelica.Icons.Package; end Simple;
Package with models for electrical systems
within AixLib; package Electrical "Package with models for electrical systems" extends Modelica.Icons.Package; end Electrical;
Electrical package user's guide
within AixLib.Electrical; package UsersGuide "Electrical package user's guide" extends Modelica.Icons.Information; end UsersGuide;
Package for electrical systems in which the frequency is modeled as quasi-stationary
within AixLib.Electrical; package AC "Package for electrical systems in which the frequency is modeled as quasi-stationary" extends Modelica.Icons.Package; package UsersGuide "User's Guide" extends Modelica.Icons.Information; end UsersGuide; end AC;
Package that contains some useful interfaces
within AixLib.Electrical.AC; package Interfaces "Package that contains some useful interfaces" extends Modelica.Icons.InterfacesPackage; end Interfaces;
One phase AC systems
within AixLib.Electrical.AC; package OnePhase "One phase AC systems" extends Modelica.Icons.VariantsPackage; end OnePhase;
Ground connection
within AixLib.Electrical.AC.OnePhase.Basics; model Ground "Ground connection" extends AixLib.Electrical.Interfaces.Ground( redeclare package PhaseSystem = PhaseSystems.OnePhase, redeclare Interfaces.Terminal_n terminal); end Ground;
Package with basic models
within AixLib.Electrical.AC.OnePhase; package Basics "Package with basic models" extends Modelica.Icons.BasesPackage; end Basics;
AC AC converter single phase systems
within AixLib.Electrical.AC.OnePhase.Conversion; model ACACConverter "AC AC converter single phase systems" extends AixLib.Electrical.Icons.RefAngleConversion; extends AixLib.Electrical.Interfaces.PartialConversion( redeclare package PhaseSystem_p = PhaseSystems.OnePhase, redeclare package PhaseSystem_n = PhaseSystems.OnePhase, redeclare replaceable Interfaces.Terminal_n terminal_n constrainedby Interfaces.Terminal_n( i(start = zeros(PhaseSystem_n.n), each stateSelect = StateSelect.prefer)), redeclare replaceable Interfaces.Terminal_p terminal_p constrainedby Interfaces.Terminal_p( i(start = zeros(PhaseSystem_p.n), each stateSelect = StateSelect.prefer))); parameter Real conversionFactor(min = Modelica.Constants.eps) "Ratio of QS rms voltage on side 2 / QS rms voltage on side 1"; parameter Real eta(min=0, max=1) "Converter efficiency, pLoss = (1-eta) * Ptr"; parameter Boolean ground_1 = false "If true, connect side 1 of converter to ground" parameter Boolean ground_2 = true "If true, connect side 2 of converter to ground" Modelica.Units.SI.Power LossPower[2] "Loss power"; protected Modelica.Units.SI.Power P_p[2]=PhaseSystem_p.phasePowers_vi(terminal_p.v, terminal_p.i) "Power transmitted at pin p"; Modelica.Units.SI.Power P_n[2]=PhaseSystem_n.phasePowers_vi(terminal_n.v, terminal_n.i) "Power transmitted at pin n"; equation // Ideal transformation terminal_p.v = conversionFactor*terminal_n.v; // Power loss term terminal_p.i[1] = terminal_n.i[1]/conversionFactor* AixLib.Utilities.Math.Functions.spliceFunction(eta-2, 1/(eta-2), P_p[1], deltax=0.1); terminal_p.i[2] = terminal_n.i[2]/conversionFactor* AixLib.Utilities.Math.Functions.spliceFunction(eta-2, 1/(eta-2), P_p[1], deltax=0.1); LossPower = P_p + P_n; // The two sides have the same reference angle terminal_p.theta = terminal_n.theta; if ground_1 then Connections.potentialRoot(terminal_n.theta); end if; if ground_2 then Connections.root(terminal_p.theta); end if; end ACACConverter;
AC AC transformer simplified equivalent circuit
within AixLib.Electrical.AC.OnePhase.Conversion; model ACACTransformer "AC AC transformer simplified equivalent circuit" extends AixLib.Electrical.Icons.RefAngleConversion; extends AixLib.Electrical.Interfaces.PartialConversion( redeclare package PhaseSystem_p = PhaseSystems.OnePhase, redeclare package PhaseSystem_n = PhaseSystems.OnePhase, redeclare replaceable Interfaces.Terminal_n terminal_n constrainedby Interfaces.Terminal_n( i(start = zeros(PhaseSystem_n.n), each stateSelect = StateSelect.prefer)), redeclare replaceable Interfaces.Terminal_p terminal_p constrainedby Interfaces.Terminal_p( i(start = zeros(PhaseSystem_p.n), each stateSelect = StateSelect.prefer))); parameter Modelica.Units.SI.Voltage VHigh "Rms voltage on side 1 of the transformer (primary side)"; parameter Modelica.Units.SI.Voltage VLow "Rms voltage on side 2 of the transformer (secondary side)"; parameter Modelica.Units.SI.ApparentPower VABase "Nominal power of the transformer"; parameter Real XoverR "Ratio between the complex and real components of the impedance (XL/R)"; parameter Real Zperc "Short circuit impedance"; parameter Boolean ground_1 = false "If true, connect side 1 of converter to ground" parameter Boolean ground_2 = true "If true, connect side 2 of converter to ground" parameter Modelica.Units.SI.Angle phi_1=0 "Angle of the voltage side 1 at initialization" parameter Modelica.Units.SI.Angle phi_2=phi_1 "Angle of the voltage side 2 at initialization" Modelica.Units.SI.Efficiency eta "Efficiency"; Modelica.Units.SI.Power PLoss[2] "Loss power"; Modelica.Units.SI.Voltage V1[2](start=PhaseSystem_n.phaseVoltages(VHigh, phi_1)) "Voltage at the winding - primary side"; Modelica.Units.SI.Voltage V2[2](start=PhaseSystem_p.phaseVoltages(VLow, phi_2)) "Voltage at the winding - secondary side"; protected Real N = VHigh/VLow "Winding ratio"; Modelica.Units.SI.Current IHigh=VABase/VHigh "Nominal current on primary side"; Modelica.Units.SI.Current ILow=VABase/VLow "Nominal current on secondary side"; Modelica.Units.SI.Current IscHigh=IHigh/Zperc "Short circuit current on primary side"; Modelica.Units.SI.Current IscLow=ILow/Zperc "Short circuit current on secondary side"; Modelica.Units.SI.Impedance Zp=VHigh/IscHigh "Impedance of the primary side (module)"; Modelica.Units.SI.Impedance Z1[2]={Zp*cos(atan(XoverR)),Zp*sin(atan(XoverR))} "Impedance of the primary side of the transformer"; Modelica.Units.SI.Impedance Zs=VLow/IscLow "Impedance of the secondary side (module)"; Modelica.Units.SI.Impedance Z2[2]={Zs*cos(atan(XoverR)),Zs*sin(atan(XoverR))} "Impedance of the secondary side of the transformer"; Modelica.Units.SI.Power P_p[2]=PhaseSystem_p.phasePowers_vi(terminal_p.v, terminal_p.i) "Power transmitted at pin p (secondary)"; Modelica.Units.SI.Power P_n[2]=PhaseSystem_n.phasePowers_vi(terminal_n.v, terminal_n.i) "Power transmitted at pin n (primary)"; Modelica.Units.SI.Power S_p=Modelica.Fluid.Utilities.regRoot(P_p[1]^2 + P_p[2] ^2, delta=0.1) "Apparent power at terminal p"; Modelica.Units.SI.Power S_n=Modelica.Fluid.Utilities.regRoot(P_n[1]^2 + P_n[2] ^2, delta=0.1) "Apparent power at terminal n"; equation // Efficiency eta = AixLib.Utilities.Math.Functions.smoothMin( x1= Modelica.Fluid.Utilities.regRoot(P_p[1]^2 + P_p[2]^2, delta=0.01)/ Modelica.Fluid.Utilities.regRoot(P_n[1]^2 + P_n[2]^2 + 1e-6, delta=0.01), x2= Modelica.Fluid.Utilities.regRoot(P_n[1]^2 + P_n[2]^2, delta=0.01)/ Modelica.Fluid.Utilities.regRoot(P_p[1]^2 + P_p[2]^2 + 1e-6, delta=0.01), deltaX = 0.01); // Ideal transformation V2 = V1/N; terminal_p.i[1] + terminal_n.i[1]*N = 0; terminal_p.i[2] + terminal_n.i[2]*N = 0; // Losses due to the impedance terminal_n.v = V1 + AixLib.Electrical.PhaseSystems.OnePhase.product( terminal_n.i, Z1); V2 = terminal_p.v; // Loss of power PLoss = P_p + P_n; // The two sides have the same reference angle terminal_p.theta = terminal_n.theta; if ground_1 then Connections.potentialRoot(terminal_n.theta); end if; if ground_2 then Connections.root(terminal_p.theta); end if; end ACACTransformer;
AC AC transformer with detailed equivalent circuit
within AixLib.Electrical.AC.OnePhase.Conversion; model ACACTransformerFull "AC AC transformer with detailed equivalent circuit" extends AixLib.Electrical.Icons.RefAngleConversion; extends AixLib.Electrical.Interfaces.PartialConversion( redeclare package PhaseSystem_p = PhaseSystems.OnePhase, redeclare package PhaseSystem_n = PhaseSystems.OnePhase, redeclare replaceable Interfaces.Terminal_n terminal_n constrainedby Interfaces.Terminal_n( i(start = zeros(PhaseSystem_n.n), each stateSelect = StateSelect.prefer)), redeclare replaceable Interfaces.Terminal_p terminal_p constrainedby Interfaces.Terminal_p( i(start = zeros(PhaseSystem_p.n), each stateSelect = StateSelect.prefer))); parameter Modelica.Units.SI.Voltage VHigh "RMS voltage on side 1 of the transformer (primary side)"; parameter Modelica.Units.SI.Voltage VLow "RMS voltage on side 2 of the transformer (secondary side)"; parameter Modelica.Units.SI.ApparentPower VABase "Nominal power of the transformer"; parameter Modelica.Units.SI.Frequency f(start=60) "Nominal frequency"; parameter AixLib.Electrical.Types.PerUnit R1(min=0) "Resistance on side 1 of the transformer (pu)"; parameter AixLib.Electrical.Types.PerUnit L1(min=0) "Inductance on side 1 of the transformer (pu)"; parameter AixLib.Electrical.Types.PerUnit R2(min=0) "Resistance on side 2 of the transformer (pu)"; parameter AixLib.Electrical.Types.PerUnit L2(min=0) "Inductance on side 2 of the transformer (pu)"; parameter Boolean magEffects = false "If true, introduce magnetization effects" parameter AixLib.Electrical.Types.PerUnit Rm(min=0) "Magnetization resistance (pu)" parameter AixLib.Electrical.Types.PerUnit Lm(min=0) "Magnetization inductance (pu)" parameter Boolean ground_1 = false "Connect side 1 of converter to ground" parameter Boolean ground_2 = true "Connect side 2 of converter to ground" parameter Modelica.Units.SI.Angle phi_1=0 "Angle of the voltage side 1 at initialization" parameter Modelica.Units.SI.Angle phi_2=phi_1 "Angle of the voltage side 2 at initialization" Modelica.Units.SI.Efficiency eta "Efficiency"; Modelica.Units.SI.Power PLoss[2] "Loss power"; Modelica.Units.SI.Voltage V1[2](start=PhaseSystem_n.phaseVoltages(VHigh, phi_1)) "Voltage at the winding - primary side"; Modelica.Units.SI.Voltage V2[2](start=PhaseSystem_n.phaseVoltages(VLow, phi_2)) "Voltage at the winding - secondary side"; protected parameter Modelica.Units.SI.AngularVelocity omega_n=2*Modelica.Constants.pi*f; parameter Real N = VHigh/VLow "Winding ratio"; parameter Modelica.Units.SI.Resistance RBaseHigh=VHigh^2/VABase "Base impedance of the primary side"; parameter Modelica.Units.SI.Resistance RBaseLow=VLow^2/VABase "Base impedance of the secondary side"; Modelica.Units.SI.Impedance Z1[2]={RBaseHigh*R1,omega*L1*RBaseHigh/omega_n} "Impedance of the primary side of the transformer"; Modelica.Units.SI.Impedance Z2[2]={RBaseLow*R2,omega*L2*RBaseLow/omega_n} "Impedance of the secondary side of the transformer"; Modelica.Units.SI.Impedance Zrm[2]={RBaseHigh*Rm,0} "Magnetization impedance - resistance"; Modelica.Units.SI.Impedance Zlm[2]={0,omega*Lm*RBaseHigh/omega_n} "Magnetization impedance - impedence"; Modelica.Units.SI.Power P_p[2]=PhaseSystem_p.phasePowers_vi(terminal_p.v, terminal_p.i) "Power transmitted at pin p (secondary)"; Modelica.Units.SI.Power P_n[2]=PhaseSystem_n.phasePowers_vi(terminal_n.v, terminal_n.i) "Power transmitted at pin n (primary)"; Modelica.Units.SI.Power S_p=Modelica.Fluid.Utilities.regRoot(P_p[1]^2 + P_p[2] ^2, delta=0.1) "Apparent power at terminal p"; Modelica.Units.SI.Power S_n=Modelica.Fluid.Utilities.regRoot(P_n[1]^2 + P_n[2] ^2, delta=0.1) "Apparent power at terminal n"; Modelica.Units.SI.AngularVelocity omega "Angular velocity"; Modelica.Units.SI.Current Im[2] "Magnetization current"; Modelica.Units.SI.Angle theRef "Absolute angle of rotating reference system"; equation assert(sqrt(P_p[1]^2 + P_p[2]^2) <= VABase*1.01, "The load power of the transformer is higher than VABase"); // Angular velocity theRef = PhaseSystem_p.thetaRef(terminal_p.theta); omega = der(theRef); // Efficiency eta = AixLib.Utilities.Math.Functions.smoothMin( x1= Modelica.Fluid.Utilities.regRoot(P_p[1]^2 + P_p[2]^2, delta=0.01)/ Modelica.Fluid.Utilities.regRoot(P_n[1]^2 + P_n[2]^2 + 1e-6, delta=0.01), x2= Modelica.Fluid.Utilities.regRoot(P_n[1]^2 + P_n[2]^2, delta=0.01)/ Modelica.Fluid.Utilities.regRoot(P_p[1]^2 + P_p[2]^2 + 1e-6, delta=0.01), deltaX = 0.01); // Ideal transformation V2 = V1/N; terminal_p.i[1] + (terminal_n.i[1] - Im[1])*N = 0; terminal_p.i[2] + (terminal_n.i[2] - Im[2])*N = 0; // Magnetization current if magEffects then Im = AixLib.Electrical.PhaseSystems.OnePhase.divide(V1, Zrm) + AixLib.Electrical.PhaseSystems.OnePhase.divide(V1, Zlm); else Im = zeros(2); end if; // Losses due to the impedance - primary side terminal_n.v = V1 + AixLib.Electrical.PhaseSystems.OnePhase.product( terminal_n.i, Z1); // Losses due to the impedance - secondary side terminal_p.v = V2 + AixLib.Electrical.PhaseSystems.OnePhase.product( terminal_p.i, Z2); // Loss of power PLoss = P_p + P_n; // The two sides have the same reference angle terminal_p.theta = terminal_n.theta; if ground_1 then Connections.potentialRoot(terminal_n.theta); end if; if ground_2 then Connections.root(terminal_p.theta); end if; end ACACTransformerFull;
AC DC converter
within AixLib.Electrical.AC.OnePhase.Conversion; model ACDCConverter "AC DC converter" extends AixLib.Electrical.Interfaces.PartialConversion( redeclare package PhaseSystem_p = PhaseSystems.TwoConductor, redeclare package PhaseSystem_n = PhaseSystems.OnePhase, redeclare replaceable Interfaces.Terminal_n terminal_n constrainedby Interfaces.Terminal_n( i(start = zeros(PhaseSystem_n.n), each stateSelect = StateSelect.prefer)), redeclare DC.Interfaces.Terminal_p terminal_p( i(start = zeros(PhaseSystem_p.n), each stateSelect = StateSelect.prefer))); parameter Real conversionFactor(min = Modelica.Constants.eps) "Ratio of DC voltage / AC RMS voltage"; parameter Real eta(min=0, max=1) "Converter efficiency, pLoss = (1-eta) * Ptr"; Modelica.Units.SI.Power PLoss "Loss power"; parameter Boolean ground_AC = false "Connect AC side of converter to ground" parameter Boolean ground_DC = true "Connect DC side of converter to ground" protected PhaseSystem_p.Current i_dc "DC current"; PhaseSystem_p.Voltage v_dc "DC voltage"; Modelica.Units.SI.Power P_p[2]=PhaseSystem_p.phasePowers_vi(terminal_p.v, terminal_p.i) "Power transmitted at pin p (secondary)"; Modelica.Units.SI.Power P_n[2](each start=0) = PhaseSystem_n.phasePowers_vi( terminal_n.v, terminal_n.i) "Power transmitted at pin n (primary)"; equation //voltage relation v_p = v_n*conversionFactor; // Power losses PLoss = (1-eta)* AixLib.Utilities.Math.Functions.spliceFunction(P_p[1], P_n[1], i_p, deltax=0.1); P_n + P_p = {PLoss, 0}; if ground_AC then Connections.potentialRoot(terminal_n.theta); end if; if ground_DC then v_dc = 0; Connections.root(terminal_p.theta); else i_dc = 0; Connections.potentialRoot(terminal_p.theta); end if; v_dc = terminal_p.v[2]; sum(terminal_p.i) + i_dc = 0; end ACDCConverter;
Package with models for AC/AC and AC/DC conversion
within AixLib.Electrical.AC.OnePhase; package Conversion "Package with models for AC/AC and AC/DC conversion" extends Modelica.Icons.Package; end Conversion;
This example illustrates how to use the AC/AC converter model. This example illustrates the use of a model that converts AC voltage to AC voltage. The transformer model assumes a linear loss when transmitting the power.
within AixLib.Electrical.AC.OnePhase.Conversion.Examples; model ACACConverter "This example illustrates how to use the AC/AC converter model" extends Modelica.Icons.Example; AixLib.Electrical.AC.OnePhase.Conversion.ACACConverter conACAC(eta=0.9, conversionFactor=60/120) "ACAC transformer" AixLib.Electrical.AC.OnePhase.Sources.FixedVoltage sou( definiteReference=true, f=60, V=120) "Voltage source" AixLib.Electrical.AC.OnePhase.Loads.Inductive load( mode=AixLib.Electrical.Types.Load.VariableZ_P_input, V_nominal=60) "Load model" Modelica.Blocks.Sources.Ramp ramp( duration=0.5, startTime=0.3, height=2000, offset=-1000) "Power consumed by the model" equation connect(sou.terminal, conACAC.terminal_n) connect(conACAC.terminal_p, load.terminal) connect(ramp.y, load.Pow) end ACACConverter;
This example illustrates how to use the AC/AC simplified transformer model. This example illustrates the use of a the AC/AC transformer model. The example shows three different configurations:
within AixLib.Electrical.AC.OnePhase.Conversion.Examples; model ACACTransformer "This example illustrates how to use the AC/AC simplified transformer model" extends Modelica.Icons.Example; AixLib.Electrical.AC.OnePhase.Conversion.ACACTransformer tra_load( Zperc=0.03, VABase=4000, XoverR=8, VHigh=120, VLow=60) "Transformer with load" AixLib.Electrical.AC.OnePhase.Sources.FixedVoltage sou( definiteReference=true, f=60, V=120) "Voltage source" AixLib.Electrical.AC.OnePhase.Loads.Inductive load( mode=AixLib.Electrical.Types.Load.VariableZ_P_input, pf=0.8, V_nominal=60) "Load model" Modelica.Blocks.Sources.Ramp ramp( duration=0.5, startTime=0.3, offset=0, height=-4000*0.8) "Load power consumption profile" AixLib.Electrical.AC.OnePhase.Conversion.ACACTransformer tra_cc( XoverR=8, Zperc=0.03, VABase=4000, VHigh=120, VLow=60) "Transformer with short circuit" AixLib.Electrical.AC.OnePhase.Loads.Impedance shortCircuit(R=1e-8) "Short circuit" AixLib.Electrical.AC.OnePhase.Conversion.ACACTransformer tra_void( XoverR=8, Zperc=0.03, VABase=4000, VHigh=120, VLow=60) "Transformer with secondary not connected" AixLib.Electrical.AC.OnePhase.Sources.FixedVoltage sou1( definiteReference=true, f=60, V=120) "Voltage source for open and short circuit tests" equation connect(sou.terminal, tra_load.terminal_n) connect(tra_load.terminal_p, load.terminal) connect(ramp.y, load.Pow) connect(tra_cc.terminal_p, shortCircuit.terminal) connect(sou1.terminal, tra_cc.terminal_n) connect(sou1.terminal, tra_void.terminal_n) end ACACTransformer;
This example illustrates how to use the AC/AC transformer model. This example illustrates the use of the AC/AC transformer model that includes losses at the primary and secondary side and magnetization effects. The example shows three different configurations:
within AixLib.Electrical.AC.OnePhase.Conversion.Examples; model ACACTransformerFull "This example illustrates how to use the AC/AC transformer model" extends Modelica.Icons.Example; AixLib.Electrical.AC.OnePhase.Conversion.ACACTransformerFull tra_load( R1=0.0001, L1=0.0001, R2=0.0001, L2=0.0001, VABase=4000, magEffects=true, Rm=10, Lm=10, VHigh=120, VLow=60, f=60) "Transformer with load" AixLib.Electrical.AC.OnePhase.Sources.FixedVoltage sou( definiteReference=true, f=60, V=120) "Voltage source" AixLib.Electrical.AC.OnePhase.Loads.Inductive load( mode=AixLib.Electrical.Types.Load.VariableZ_P_input, pf=0.8, V_nominal=60) "Load model" Modelica.Blocks.Sources.Ramp ramp( duration=0.5, startTime=0.3, offset=0, height=-4000*0.8) "Load power consumption profile" AixLib.Electrical.AC.OnePhase.Conversion.ACACTransformerFull tra_cc( VABase=4000, R1=0.01, L1=0.01, R2=0.01, L2=0.01, magEffects=false, Rm=100, Lm=100, VHigh=120, VLow=60, f=60) "Transformer with short circuit connection" AixLib.Electrical.AC.OnePhase.Loads.Impedance shortCircuit(R=1e-8) "Short circuit" AixLib.Electrical.AC.OnePhase.Conversion.ACACTransformerFull tra_void( VABase=4000, R1=0.01, L1=0.01, R2=0.01, L2=0.01, magEffects=false, Rm=100, Lm=100, VHigh=120, VLow=60, f=60) "Transformer with open connection" AixLib.Electrical.AC.OnePhase.Sources.FixedVoltage sou1( definiteReference=true, f=60, V=120) "Voltage source for short circuit and open tests " equation connect(sou.terminal, tra_load.terminal_n) connect(tra_load.terminal_p, load.terminal) connect(ramp.y, load.Pow) connect(tra_cc.terminal_p, shortCircuit.terminal) connect(sou1.terminal, tra_cc.terminal_n) connect(sou1.terminal, tra_void.terminal_n) end ACACTransformerFull;
This example illustrates how to use the AC/DC converter model. This example illustrates the use of a model that converts AC voltage to DC voltage. The transformer model assumes a linear loss when transmitting the power.
within AixLib.Electrical.AC.OnePhase.Conversion.Examples; model ACDCConverter "This example illustrates how to use the AC/DC converter model" extends Modelica.Icons.Example; AixLib.Electrical.DC.Loads.Resistor res(R=1, V_nominal=60) "Resistive load" AixLib.Electrical.AC.OnePhase.Conversion.ACDCConverter conversion( eta=0.9, ground_AC=false, ground_DC=true, conversionFactor=60/120) "AC/DC transformer" AixLib.Electrical.AC.OnePhase.Sources.FixedVoltage sou( definiteReference=true, f=60, V=120) "Voltage source" AixLib.Electrical.DC.Loads.Conductor load(mode=AixLib.Electrical.Types.Load.VariableZ_P_input, V_nominal=60) "Variable resistive load" Modelica.Blocks.Sources.Ramp pow( duration=0.5, startTime=0.2, offset=-200, height=5200) "Variable load profile" equation connect(sou.terminal, conversion.terminal_n) connect(conversion.terminal_p, res.terminal) connect(conversion.terminal_p, load.terminal) connect(pow.y, load.Pow) end ACDCConverter;
Package with example models
within AixLib.Electrical.AC.OnePhase.Conversion; package Examples "Package with example models" extends Modelica.Icons.ExamplesPackage; end Examples;
Generator with a load and grid connection. This model illustrates a generator, an inductive load and a grid connection. The power output of the generator is equal to its input signal, which is a ramp function. The output <code>grid.P</code> shows the actual and apparent power, the power factor and the phase angle.
within AixLib.Electrical.AC.OnePhase.Examples; model GeneratorLoadGrid "Generator with a load and grid connection" extends Modelica.Icons.Example; Sources.Grid grid( f=60, V=120, phiSou=0.5235987755983) "Electrical grid" Sources.Generator sou(f=60, phiGen(displayUnit="rad")) "Gas turbine" AixLib.Electrical.AC.OnePhase.Loads.Inductive res( mode=AixLib.Electrical.Types.Load.FixedZ_steady_state, P_nominal=-5e3, V_nominal=120, pf=1) "Inductive load" Modelica.Blocks.Sources.Ramp ramp( height=1e4, duration=0.6, startTime=0.1, offset=0) equation connect(ramp.y, sou.P) connect(sou.terminal, grid.terminal) connect(res.terminal, grid.terminal) end GeneratorLoadGrid;
Model of a DC load connected to the grid. This model illustrates the use of a model for inductive load. The circuit on the left hand side uses an inductive load, whereas the circuit on the right hand side uses a resistor and inductance in series. The parameters of the inductor and resistor are such that the real power and the phase angle are identical (up to the numerical precision of the parameters) for the two systems.
within AixLib.Electrical.AC.OnePhase.Examples; model GridDCLoad "Model of a DC load connected to the grid" extends Modelica.Icons.Example; AixLib.Electrical.AC.OnePhase.Sources.Grid grid( f=60, phiSou=0, V=120) AixLib.Electrical.AC.OnePhase.Conversion.ACDCConverter idealACDCConverter1( eta=0.9, ground_AC=false, conversionFactor=12/120) AixLib.Electrical.DC.Loads.Resistor resistor(R=1, V_nominal=12) equation connect(grid.terminal, idealACDCConverter1.terminal_n) connect(idealACDCConverter1.terminal_p, resistor.terminal) end GridDCLoad;
Package with example models
within AixLib.Electrical.AC.OnePhase; package Examples "Package with example models" extends Modelica.Icons.ExamplesPackage; end Examples;
Package with interfaces for one phase AC systems
within AixLib.Electrical.AC.OnePhase; package Interfaces "Package with interfaces for one phase AC systems" extends Modelica.Icons.InterfacesPackage; end Interfaces;
Terminal n for AC one phase systems
within AixLib.Electrical.AC.OnePhase.Interfaces; connector Terminal_n "Terminal n for AC one phase systems" extends AixLib.Electrical.Interfaces.Terminal( redeclare replaceable package PhaseSystem = AixLib.Electrical.PhaseSystems.OnePhase); end Terminal_n;
Terminal p for AC one phase systems
within AixLib.Electrical.AC.OnePhase.Interfaces; connector Terminal_p "Terminal p for AC one phase systems" extends AixLib.Electrical.Interfaces.Terminal( redeclare replaceable package PhaseSystem = AixLib.Electrical.PhaseSystems.OnePhase); end Terminal_p;
Model of an electrical line
within AixLib.Electrical.AC.OnePhase.Lines; model Line "Model of an electrical line" extends AixLib.Electrical.Transmission.BaseClasses.PartialLine( V_nominal(start = 110), redeclare package PhaseSystem_p = PhaseSystems.OnePhase, redeclare package PhaseSystem_n = PhaseSystems.OnePhase, redeclare replaceable Interfaces.Terminal_n terminal_n, redeclare replaceable Interfaces.Terminal_p terminal_p, commercialCable = AixLib.Electrical.Transmission.Functions.selectCable_low(P_nominal, V_nominal)); protected replaceable TwoPortRL line( R=R/3, L=L/3, mode=modelMode) constrainedby AixLib.Electrical.Transmission.BaseClasses.PartialTwoPortRLC( useHeatPort=true, M=M, T_ref=T_ref) "Model of the line" equation connect(cableTemp.port, line.heatPort) connect(line.terminal_n, terminal_n) connect(terminal_p, line.terminal_p) end Line;
Single phase AC network. This model represents a generalized electrical AC single phase network.
within AixLib.Electrical.AC.OnePhase.Lines; model Network "Single phase AC network" extends AixLib.Electrical.Transmission.BaseClasses.PartialNetwork( V_nominal(start = 110), redeclare Interfaces.Terminal_p terminal, redeclare replaceable Transmission.Grids.TestGrid2Nodes grid, redeclare Line lines( commercialCable=grid.cables, each use_C=use_C, each modelMode=modelMode)); parameter Boolean use_C = false "If true, model the cable capacity" parameter AixLib.Electrical.Types.Load modelMode=Types.Load.FixedZ_steady_state "Select between steady state and dynamic model" Modelica.Units.SI.Voltage VAbs[grid.nNodes] "RMS voltage of the grid nodes"; equation for i in 1:grid.nLinks loop connect(lines[i].terminal_p, terminal[grid.fromTo[i,1]]); connect(lines[i].terminal_n, terminal[grid.fromTo[i,2]]); end for; for i in 1:grid.nNodes loop VAbs[i] = AixLib.Electrical.PhaseSystems.OnePhase.systemVoltage(terminal[i].v); end for; end Network;
Package with models for AC electrical lines
within AixLib.Electrical.AC.OnePhase; package Lines "Package with models for AC electrical lines" extends Modelica.Icons.Package; end Lines;
Model of an inductive element with two electrical ports
within AixLib.Electrical.AC.OnePhase.Lines; model TwoPortInductance "Model of an inductive element with two electrical ports" extends AixLib.Electrical.Transmission.BaseClasses.PartialTwoPortInductance( redeclare package PhaseSystem_p = PhaseSystems.OnePhase, redeclare package PhaseSystem_n = PhaseSystems.OnePhase, redeclare replaceable Interfaces.Terminal_n terminal_n, redeclare replaceable Interfaces.Terminal_p terminal_p); parameter AixLib.Electrical.Types.Load mode( min=AixLib.Electrical.Types.Load.FixedZ_steady_state, max=AixLib.Electrical.Types.Load.VariableZ_y_input)= AixLib.Electrical.Types.Load.FixedZ_steady_state "Type of model (e.g., steady state, dynamic, prescribed power consumption, etc.)" protected Modelica.Units.SI.AngularVelocity omega "Frequency of the quasi-stationary sine waves"; Modelica.Units.SI.Angle theRef "Absolute angle of rotating reference system"; equation theRef = PhaseSystem_p.thetaRef(terminal_p.theta); omega = der(theRef); if mode==AixLib.Electrical.Types.Load.FixedZ_dynamic then // Dynamics of the system der(L*terminal_p.i) + L*omega*PhaseSystem_p.j(terminal_p.i) = terminal_p.v - terminal_n.v; else // Steady state relationship L*omega*PhaseSystem_p.j(terminal_p.i) = terminal_p.v - terminal_n.v; end if; end TwoPortInductance;
Model of a resistance with two electrical ports
within AixLib.Electrical.AC.OnePhase.Lines; model TwoPortResistance "Model of a resistance with two electrical ports" extends AixLib.Electrical.Transmission.BaseClasses.PartialTwoPortResistance( redeclare package PhaseSystem_p = PhaseSystems.OnePhase, redeclare package PhaseSystem_n = PhaseSystems.OnePhase, redeclare replaceable Interfaces.Terminal_n terminal_n, redeclare replaceable Interfaces.Terminal_p terminal_p); equation terminal_p.v - terminal_n.v = terminal_p.i*diagonal(ones(PhaseSystem_p.n)*R_actual); // Joule losses LossPower = R_actual*(terminal_p.i[1]^2 + terminal_p.i[2]^2); end TwoPortResistance;
Model of a resistive-inductive element with two electrical ports
within AixLib.Electrical.AC.OnePhase.Lines; model TwoPortRL "Model of a resistive-inductive element with two electrical ports" extends AixLib.Electrical.Transmission.BaseClasses.PartialTwoPortRLC( final V_nominal=0, redeclare package PhaseSystem_p = PhaseSystems.OnePhase, redeclare package PhaseSystem_n = PhaseSystems.OnePhase, redeclare replaceable Interfaces.Terminal_n terminal_n, redeclare replaceable Interfaces.Terminal_p terminal_p, final C=0); parameter Modelica.Units.SI.Current i_start[PhaseSystem_p.n]=zeros( PhaseSystem_p.n) "Initial current phasor of the line (positive if entering from terminal p)" parameter AixLib.Electrical.Types.Load mode( min=AixLib.Electrical.Types.Load.FixedZ_steady_state, max=AixLib.Electrical.Types.Load.FixedZ_dynamic)= AixLib.Electrical.Types.Load.FixedZ_steady_state "Type of model (e.g., steady state, dynamic, prescribed power consumption, etc.)" protected Modelica.Units.SI.Current i_p[2](start=i_start, each stateSelect=StateSelect.prefer) "Current phasor at terminal p"; Modelica.Units.SI.AngularVelocity omega "Frequency of the quasi-stationary sine waves"; Modelica.Units.SI.Angle theRef "Absolute angle of rotating reference system"; initial equation if mode==AixLib.Electrical.Types.Load.FixedZ_dynamic then i_p = i_start; end if; equation theRef = PhaseSystem_p.thetaRef(terminal_p.theta); omega = der(theRef); terminal_p.i = - terminal_n.i; i_p = terminal_p.i; if mode==AixLib.Electrical.Types.Load.FixedZ_dynamic then // Dynamics of the system der(L*i_p) + L*omega*PhaseSystem_p.j(i_p) + i_p*diagonal(ones(PhaseSystem_p.n)*R_actual) = terminal_p.v - terminal_n.v; else // steady state relationship L*omega*PhaseSystem_p.j(i_p) + i_p*diagonal(ones(PhaseSystem_p.n)*R_actual) = terminal_p.v - terminal_n.v; end if; // Joule losses LossPower = R_actual*(i_p[1]^2 + i_p[2]^2); end TwoPortRL;
Model of an RLC element with two electrical ports
within AixLib.Electrical.AC.OnePhase.Lines; model TwoPortRLC "Model of an RLC element with two electrical ports" extends AixLib.Electrical.Transmission.BaseClasses.PartialTwoPortRLC( V_nominal(start = 110), redeclare package PhaseSystem_p = PhaseSystems.OnePhase, redeclare package PhaseSystem_n = PhaseSystems.OnePhase, redeclare replaceable Interfaces.Terminal_n terminal_n( redeclare package PhaseSystem = PhaseSystem_n), redeclare replaceable Interfaces.Terminal_p terminal_p( redeclare package PhaseSystem = PhaseSystem_p)); parameter Modelica.Units.SI.Voltage Vc_start[2]={V_nominal,0} "Initial voltage phasor of the capacitance located in the middle of the line" parameter AixLib.Electrical.Types.Load mode( min=AixLib.Electrical.Types.Load.FixedZ_steady_state, max=AixLib.Electrical.Types.Load.FixedZ_dynamic)= AixLib.Electrical.Types.Load.FixedZ_steady_state "Type of model (e.g., steady state, dynamic, prescribed power consumption, etc.)" protected Modelica.Units.SI.Voltage Vc[2](start=Vc_start, each stateSelect=StateSelect.prefer) "Voltage of the Capacitance located in the middle of the line"; Modelica.Units.SI.Current Ic[2] "Currenbt of the capacitance located in the middle of the line"; Modelica.Units.SI.AngularVelocity omega "Frequency of the quasi-stationary sine waves"; Modelica.Units.SI.Angle theRef "Absolute angle of rotating reference system"; initial equation if C > 0 and mode == AixLib.Electrical.Types.Load.FixedZ_dynamic then Vc = Vc_start; end if; equation theRef = PhaseSystem_p.thetaRef(terminal_p.theta); omega = der(theRef); terminal_p.i + terminal_n.i = Ic; L/2*omega*AixLib.Electrical.PhaseSystems.OnePhase.j(terminal_p.i) + terminal_p.i*diagonal(ones(PhaseSystem_p.n)*R_actual/2) = terminal_p.v - Vc; L/2*omega*AixLib.Electrical.PhaseSystems.OnePhase.j(terminal_n.i) + terminal_n.i*diagonal(ones(PhaseSystem_n.n)*R_actual/2) = terminal_n.v - Vc; if C > 0 then if mode == AixLib.Electrical.Types.Load.FixedZ_dynamic then // Dynamics of the system C*der(Vc) + omega*C*AixLib.Electrical.PhaseSystems.OnePhase.j(Vc) = Ic; else // steady state relationship omega*C*AixLib.Electrical.PhaseSystems.OnePhase.j(Vc) = Ic; end if; else // No capacitive effect, the voltage in the middle of the line is the linear // interpolation of the two phasors Vc = (terminal_p.v + terminal_n.v)/2; end if; // Joule losses LossPower = R_actual/2*(terminal_p.i[1]^2 + terminal_p.i[2]^2) + R_actual/2*(terminal_n.i[1]^2 + terminal_n.i[2]^2); end TwoPortRLC;
Test model for a single phase line that uses commercial cable information. This example demonstrates how to use a line model to connect a source to a load that uses commercial cable information.
within AixLib.Electrical.AC.OnePhase.Lines.Examples; model ACLine "Test model for a single phase line that uses commercial cable information" extends Modelica.Icons.Example; Sources.FixedVoltage E( definiteReference=true, f=60, V=120) "Voltage source" Loads.Impedance R1(R=10) "Resistive load 1" Line line_1( P_nominal=5000, l=2000, mode=Types.CableMode.commercial, commercialCable=Transmission.LowVoltageCables.Cu50(), V_nominal=120) "Resistive line that connects to load 1" Line line_2a( P_nominal=5000, mode=Types.CableMode.commercial, commercialCable=Transmission.LowVoltageCables.Cu50(), l=1000, V_nominal=120) "Resistive line that connects to load 2" Loads.Impedance R2( R=10) "Resistive load 2" Line line_2b( P_nominal=5000, mode=Types.CableMode.commercial, commercialCable=Transmission.LowVoltageCables.Cu50(), l=1000, V_nominal=120) "Resistive line that connects to load 2" Line line_3a( P_nominal=5000, mode=Types.CableMode.commercial, commercialCable=Transmission.LowVoltageCables.Cu50(), l=4000, V_nominal=120) "Resistive line that connects to load 3" Line line_3b( P_nominal=5000, mode=Types.CableMode.commercial, commercialCable=Transmission.LowVoltageCables.Cu50(), l=4000, V_nominal=120) "Resistive line that connects to load 3" Loads.Impedance R3( R=10) "Resistive load 3" Line line_sc( P_nominal=5000, l=2000, mode=Types.CableMode.commercial, commercialCable=Transmission.LowVoltageCables.Cu50(), V_nominal=120) "Line that connects the source and the short circuit" Loads.Impedance load_sc(R=0) "Short circuit" equation connect(line_1.terminal_p, R1.terminal) connect(E.terminal, line_1.terminal_n) connect(E.terminal, line_2a.terminal_n) connect(line_2a.terminal_p, line_2b.terminal_n) connect(line_2b.terminal_p, R2.terminal) connect(line_3a.terminal_p, R3.terminal) connect(line_3b.terminal_p, R3.terminal) connect(E.terminal, line_3a.terminal_n) connect(E.terminal, line_3b.terminal_n) connect(line_sc.terminal_p, load_sc.terminal) connect(E.terminal, line_sc.terminal_n) end ACLine;
Test model for a single phase inductive line. This example demonstrates how to use a purely inductive line model to connect a source to a load.
within AixLib.Electrical.AC.OnePhase.Lines.Examples; model ACLine_L "Test model for a single phase inductive line" extends Modelica.Icons.Example; parameter Modelica.Units.SI.Inductance Lbase=10/2/Modelica.Constants.pi/60 "Base value for the line inductances"; Sources.FixedVoltage E( definiteReference=true, f=60, V=120) "Voltage source" Loads.Impedance R1(R=10) "Resistive load 1" Loads.Impedance R2( R=10) "Resistive load 2" Loads.Impedance R3( R=10) "Resistive load 3" Loads.Impedance load_sc(R=0) "Short circuit" TwoPortInductance Lline_sc(L=Lbase) "Inductive line connected to the short circuit" TwoPortInductance Lline_1(L=Lbase) "Inductive line connected to load 1" TwoPortInductance Lline_2a(L=0.5*Lbase) "Inductive line connected to load 2" TwoPortInductance Lline_2b(L=0.5*Lbase) "Inductive line connected to load 2" TwoPortInductance Lline_3(L=2*Lbase) "Inductive line connected to load 3" TwoPortInductance Lline_3b(L=2*Lbase) "Inductive line connected to load 3" equation connect(E.terminal, Lline_sc.terminal_n) connect(Lline_sc.terminal_p, load_sc.terminal) connect(E.terminal, Lline_1.terminal_n) connect(Lline_1.terminal_p, R1.terminal) connect(E.terminal, Lline_2a.terminal_n) connect(Lline_2a.terminal_p, Lline_2b.terminal_n) connect(Lline_2b.terminal_p, R2.terminal) connect(E.terminal, Lline_3.terminal_n) connect(E.terminal, Lline_3b.terminal_n) connect(Lline_3.terminal_p, R3.terminal) connect(Lline_3b.terminal_p, R3.terminal) end ACLine_L;
Test model for a single phase resistive line. This example demonstrates how to use a resistive line model to connect a source to a load.
within AixLib.Electrical.AC.OnePhase.Lines.Examples; model ACLine_R "Test model for a single phase resistive line" extends Modelica.Icons.Example; Sources.FixedVoltage E(definiteReference=true, f=60, V=120) "Voltage source" Loads.Impedance R1(R=10) "Resistive load 1" Loads.Impedance R2( R=10) "Resistive load 2" Loads.Impedance R3( R=10) "Resistive load 3" Loads.Impedance sc_load(R=0) "Short circuit load" TwoPortResistance Rline_sc(R=10, useHeatPort=false) "Resistive line that connects to the short circuit" TwoPortResistance Rline_1(R=10) "Resistive line that connects to load 1" TwoPortResistance Rline_2a(R=5) "Resistive line that connects to load 2" TwoPortResistance Rline_2b(R=5) "Resistive line that connects to load 2" TwoPortResistance Rline_3a(R=20) "Resistive line that connects to load 3" TwoPortResistance Rline_3b(R=20) "Resistive line that connects to load 3" equation connect(E.terminal, Rline_sc.terminal_n) connect(Rline_sc.terminal_p, sc_load.terminal) connect(E.terminal, Rline_1.terminal_n) connect(Rline_1.terminal_p, R1.terminal) connect(E.terminal, Rline_2a.terminal_n) connect(Rline_2a.terminal_p, Rline_2b.terminal_n) connect(Rline_2b.terminal_p, R2.terminal) connect(E.terminal, Rline_3a.terminal_n) connect(E.terminal, Rline_3b.terminal_n) connect(Rline_3a.terminal_p, R3.terminal) connect(Rline_3b.terminal_p, R3.terminal) end ACLine_R;
Test model for a single phase inductive-resistive line. This example demonstrates how to use a resistive-inductive line model to connect a source to a load.
within AixLib.Electrical.AC.OnePhase.Lines.Examples; model ACLine_RL "Test model for a single phase inductive-resistive line" extends Modelica.Icons.Example; parameter Modelica.Units.SI.Resistance Rbase=10 "Base value for the line resistance"; parameter Modelica.Units.SI.Inductance Lbase=Rbase/2/Modelica.Constants.pi/60 "Base value for the line inductance"; Sources.FixedVoltage E( definiteReference=true, f=60, V=120) "Voltage source" Loads.Impedance load_sc_1(R=0) "Short circuit 1" Loads.Impedance load_sc_2(R=0) "Short circuit 2" TwoPortRL RL_2(R=Rbase, L=Lbase) "Resistive-Inductive line connected to short circuit 2" TwoPortResistance R_1(R=Rbase) "Resistance line connected to short circuit 1" TwoPortInductance L_1(L=Lbase) "Inductance line connected to short circuit 1" TwoPortRL RL_3( R=Rbase, L=Lbase, mode=AixLib.Electrical.Types.Load.FixedZ_dynamic, i_start={0,0}) "Dynamic resistive-inductive line connected to short circuit 3" Loads.Impedance load_sc_3(R=0) "Short circuit 3" equation connect(E.terminal, R_1.terminal_n) connect(R_1.terminal_p, L_1.terminal_n) connect(L_1.terminal_p, load_sc_1.terminal) connect(E.terminal, RL_2.terminal_n) connect(RL_2.terminal_p, load_sc_2.terminal) connect(E.terminal, RL_3.terminal_n) connect(RL_3.terminal_p, load_sc_3.terminal) end ACLine_RL;
Test model for a network model. This example demonstrates how to use a network model to connect a source to a load. In this simple case the network has two nodes that are connected by a commercial line cable.
within AixLib.Electrical.AC.OnePhase.Lines.Examples; model ACSimpleGrid "Test model for a network model" extends Modelica.Icons.Example; Network network( redeclare AixLib.Electrical.Transmission.Grids.TestGrid2Nodes grid, V_nominal=120) "Network model that represents the connection between the source and the load" Loads.Inductive load( mode=Types.Load.VariableZ_P_input, V_nominal=120) "Load connected to the network" Sources.FixedVoltage E(f=60, V=120) "Voltage source" Modelica.Blocks.Sources.Ramp load_inputs( height=5000, duration=2, offset=-2000, startTime=0.5) "Input signal for the power consumption of the loads" equation connect(load.terminal, network.terminal[2]) connect(E.terminal, network.terminal[1]) connect(load_inputs.y, load.Pow) end ACSimpleGrid;
Package with example models
within AixLib.Electrical.AC.OnePhase.Lines; package Examples "Package with example models" extends Modelica.Icons.ExamplesPackage; end Examples;
Model of a capacitive and resistive load
within AixLib.Electrical.AC.OnePhase.Loads; model Capacitive "Model of a capacitive and resistive load" extends AixLib.Electrical.Interfaces.CapacitiveLoad( redeclare package PhaseSystem = PhaseSystems.OnePhase, redeclare replaceable Interfaces.Terminal_n terminal, V_nominal(start = 110)); protected Modelica.Units.SI.Angle theRef "Absolute angle of rotating reference system"; initial equation if mode == AixLib.Electrical.Types.Load.FixedZ_dynamic then // q = Y[2]*{V_nominal, 0}/omega; // Steady state initialization der(q) = zeros(PhaseSystem.n); end if; equation theRef = PhaseSystem.thetaRef(terminal.theta); omega = der(theRef); if mode == AixLib.Electrical.Types.Load.FixedZ_dynamic then // Use the dynamic phasorial representation Y[1] = -(P_nominal/pf)*pf/V_nominal^2; Y[2] = -(P_nominal/pf)*Modelica.Fluid.Utilities.regRoot(1 - pf^2, delta=0.001)/V_nominal^2; // Electric charge q = Y[2]*{v[1], v[2]}/omega; // Dynamics of the system der(q) + omega*j(q) + Y[1]*v = i; else // Use the power specified by the parameter or inputs if linearized then i[1] = -homotopy(actual= (v[2]*Q + v[1]*P)/(V_nominal^2), simplified= v[1]*Modelica.Constants.eps*1e3); i[2] = -homotopy(actual= (v[2]*P - v[1]*Q)/(V_nominal^2), simplified= v[2]*Modelica.Constants.eps*1e3); else if initMode == AixLib.Electrical.Types.InitMode.zero_current then i[1] = -homotopy(actual=(v[2]*Q + v[1]*P)/(v[1]^2 + v[2]^2), simplified=0.0); i[2] = -homotopy(actual=(v[2]*P - v[1]*Q)/(v[1]^2 + v[2]^2), simplified=0.0); else i[1] = -homotopy(actual=(v[2]*Q + v[1]*P)/(v[1]^2 + v[2]^2), simplified=(v[2]*Q + v[1]*P)/(V_nominal^2)); i[2] = -homotopy(actual=(v[2]*P - v[1]*Q)/(v[1]^2 + v[2]^2), simplified=(v[2]*P - v[1]*Q)/(V_nominal^2)); end if; end if; Y = {0, 0}; q = {0, 0}; end if; end Capacitive;
Model of a generic impedance
within AixLib.Electrical.AC.OnePhase.Loads; model Impedance "Model of a generic impedance" extends AixLib.Electrical.Interfaces.Impedance( redeclare replaceable package PhaseSystem = PhaseSystems.OnePhase, redeclare replaceable Interfaces.Terminal_n terminal); protected Modelica.Units.SI.Angle theRef "Absolute angle of rotating reference system"; Modelica.Units.SI.AngularVelocity omega "Frequency of the quasi-stationary sine waves"; Modelica.Units.SI.Reactance X(start=1) "Complex component of the impedance"; equation theRef = PhaseSystem.thetaRef(terminal.theta); omega = der(theRef); if inductive then X = omega*L_internal; else X = -1/(omega*C_internal); end if; terminal.v = {{R_internal,-X}*terminal.i, {X,R_internal}*terminal.i}; end Impedance;
Model of an inductive and resistive load
within AixLib.Electrical.AC.OnePhase.Loads; model Inductive "Model of an inductive and resistive load" extends AixLib.Electrical.Interfaces.InductiveLoad( redeclare package PhaseSystem = PhaseSystems.OnePhase, redeclare replaceable Interfaces.Terminal_n terminal, V_nominal(start = 110)); protected Modelica.Units.SI.Angle theRef "Absolute angle of rotating reference system"; initial equation if mode == AixLib.Electrical.Types.Load.FixedZ_dynamic then // psi = Z[2]*{P_nominal/V_nominal, 0}/omega; // Steady state initialization der(psi) = zeros(PhaseSystem.n); end if; equation theRef = PhaseSystem.thetaRef(terminal.theta); omega = der(theRef); if mode == AixLib.Electrical.Types.Load.FixedZ_dynamic then // Use the dynamic phasorial representation Z[1] = -pf*(V_nominal^2)/(P_nominal/pf); Z[2] = -Modelica.Fluid.Utilities.regRoot(1-pf^2, delta=0.001)*(V_nominal^2)/(P_nominal/pf); // Dynamics of the system der(psi) + omega*j(psi) + Z[1]*i = v; // Magnetic flux psi = Z[2]*{i[1], i[2]}/omega; else // Use the power specified by the parameter or inputs if linearized then i[1] = -homotopy(actual= (v[2]*Q + v[1]*P)/(V_nominal^2), simplified= v[1]*Modelica.Constants.eps*1e3); i[2] = -homotopy(actual= (v[2]*P - v[1]*Q)/(V_nominal^2), simplified= v[2]*Modelica.Constants.eps*1e3); else //PhaseSystem.phasePowers_vi(terminal.v, terminal.i) = PhaseSystem.phasePowers(P, Q); if initMode == AixLib.Electrical.Types.InitMode.zero_current then i[1] = -homotopy(actual = (v[2]*Q + v[1]*P)/(v[1]^2 + v[2]^2), simplified= 0.0); i[2] = -homotopy(actual = (v[2]*P - v[1]*Q)/(v[1]^2 + v[2]^2), simplified= 0.0); else i[1] = -homotopy(actual = (v[2]*Q + v[1]*P)/(v[1]^2 + v[2]^2), simplified= (v[2]*Q + v[1]*P)/(V_nominal^2)); i[2] = -homotopy(actual = (v[2]*P - v[1]*Q)/(v[1]^2 + v[2]^2), simplified= (v[2]*P - v[1]*Q)/(V_nominal^2)); end if; end if; Z = {0,0}; psi = {0,0}; end if; end Inductive;
Package with load models for one phase AC systems
within AixLib.Electrical.AC.OnePhase; package Loads "Package with load models for one phase AC systems" extends Modelica.Icons.VariantsPackage; end Loads;
Model of a resistive load
within AixLib.Electrical.AC.OnePhase.Loads; model Resistive "Model of a resistive load" extends AixLib.Electrical.Interfaces.ResistiveLoad( redeclare package PhaseSystem = PhaseSystems.OnePhase, redeclare replaceable Interfaces.Terminal_n terminal, V_nominal(start = 110)); equation if linearized then i[1] = -homotopy(actual = v[1]*P/V_nominal^2, simplified = v[1]*Modelica.Constants.eps*1e3); i[2] = -homotopy(actual = v[2]*P/V_nominal^2, simplified = v[2]*Modelica.Constants.eps*1e3); else if initMode == AixLib.Electrical.Types.InitMode.zero_current then i[1] = -homotopy(actual= v[1]*P/(v[1]^2 + v[2]^2), simplified= 0.0); i[2] = -homotopy(actual= v[2]*P/(v[1]^2 + v[2]^2), simplified= 0.0); else i[1] = -homotopy(actual= v[1]*P/(v[1]^2 + v[2]^2), simplified= v[1]*P/V_nominal^2); i[2] = -homotopy(actual= v[2]*P/(v[1]^2 + v[2]^2), simplified= v[2]*P/V_nominal^2); end if; end if; end Resistive;
Example that illustrates the use of dynamic loads. This model compares two dynamic load models that use the dynamic phasors.
within AixLib.Electrical.AC.OnePhase.Loads.Examples; model DynamicLoads "Example that illustrates the use of dynamic loads" extends Modelica.Icons.Example; AixLib.Electrical.AC.OnePhase.Sources.FixedVoltage source( f=60, V=120) "Voltage source" AixLib.Electrical.AC.OnePhase.Loads.Capacitive dynRC( pf=0.8, mode=AixLib.Electrical.Types.Load.FixedZ_dynamic, P_nominal=-1200, V_nominal=120) "Dynamic RC load" AixLib.Electrical.AC.OnePhase.Lines.TwoPortResistance line(R=0.1) "Line resistance" AixLib.Electrical.AC.OnePhase.Loads.Inductive dynRL( pf=0.8, mode=AixLib.Electrical.Types.Load.FixedZ_dynamic, P_nominal=-1200, V_nominal=120) "Dynamic RL load" equation connect(source.terminal, line.terminal_n) connect(line.terminal_p, dynRC.terminal) connect(dynRL.terminal, line.terminal_p) end DynamicLoads;
Package with example models
within AixLib.Electrical.AC.OnePhase.Loads; package Examples "Package with example models" extends Modelica.Icons.ExamplesPackage; end Examples;
Example that illustrates the use of the load models at constant voltage. This model illustrates the use of the load models. The first two lines are inductive loads, followed by two capacitive loads and a resistive load. The inductive load <code>varRL</code> and the capacitive load <code>varRC</code> have a variable load specified by the inputs <code>Pow</code> and <code>y</code> respectively. All the loads have a nominal power of 1kW, and <code>varRL</code> is the only one that at <i>t=0</i> produces power 1kW and as the time increases it start to consume up to 1kW.
within AixLib.Electrical.AC.OnePhase.Loads.Examples; model ParallelLoads "Example that illustrates the use of the load models at constant voltage" extends Modelica.Icons.Example; AixLib.Electrical.AC.OnePhase.Loads.Inductive varRL( mode=AixLib.Electrical.Types.Load.VariableZ_P_input, linearized=false, V_nominal=120) "Variable inductor and resistor" AixLib.Electrical.AC.OnePhase.Sources.FixedVoltage source(f=60, V=120) "Voltage source" Modelica.Blocks.Sources.Ramp load_y(duration=0.5, startTime=0.2) "Input signal for RC load" AixLib.Electrical.AC.OnePhase.Loads.Inductive RL( P_nominal=-1e3, linearized=false, V_nominal=120) "Constant inductor and resistor" AixLib.Electrical.AC.OnePhase.Loads.Capacitive varRC(mode=AixLib.Electrical.Types.Load.VariableZ_y_input, P_nominal=-1e3, linearized=false, V_nominal=120) "Variable conductor and resistor" AixLib.Electrical.AC.OnePhase.Loads.Capacitive RC(mode=AixLib.Electrical.Types.Load.FixedZ_steady_state, P_nominal=-1e3, linearized=false, V_nominal=120) "Constant conductor and resistor" AixLib.Electrical.AC.OnePhase.Loads.Resistive R( P_nominal=-1e3, mode=AixLib.Electrical.Types.Load.FixedZ_steady_state, linearized=false, V_nominal=120) "Resistive load" Modelica.Blocks.Sources.Ramp load_P( startTime=0.2, duration=0.5, height=-2000, offset=1000) "Power signal for load varRL" equation connect(source.terminal, varRL.terminal) connect(source.terminal, RL.terminal) connect(source.terminal, varRC.terminal) connect(source.terminal, R.terminal) connect(RC.terminal, R.terminal) connect(load_y.y, varRC.y) connect(load_P.y, varRL.Pow) end ParallelLoads;
Example that illustrates the use of the load models at constant voltage. This model compares two resistive loads. Model <code>R</code> consumes or produces a variable amount of power, while model <code>R1</code> consumes a fixed power.
within AixLib.Electrical.AC.OnePhase.Loads.Examples; model ParallelResistors "Example that illustrates the use of the load models at constant voltage" extends Modelica.Icons.Example; AixLib.Electrical.AC.OnePhase.Sources.FixedVoltage source(f=60, V=120) "Voltage source" Modelica.Blocks.Sources.Ramp load(duration=0.5, startTime=0.2, height=2400, offset=-1200) "Power signal for load R" AixLib.Electrical.AC.OnePhase.Loads.Resistive R( mode=AixLib.Electrical.Types.Load.VariableZ_P_input, V_nominal=120) "Variable resistive load" AixLib.Electrical.AC.OnePhase.Loads.Resistive R1( mode=AixLib.Electrical.Types.Load.FixedZ_steady_state, P_nominal=-1.2e3, V_nominal=120) "Fixed resistive load" equation connect(source.terminal, R.terminal) connect(load.y, R.Pow) connect(source.terminal, R1.terminal) end ParallelResistors;
Example that illustrates the use of the impedances. This model shows how to use the impedance model in different configurations:
within AixLib.Electrical.AC.OnePhase.Loads.Examples; model TestImpedance "Example that illustrates the use of the impedances" extends Modelica.Icons.Example; AixLib.Electrical.AC.OnePhase.Sources.FixedVoltage V(f=60, V=120) AixLib.Electrical.AC.OnePhase.Loads.Impedance Z1(R=0, inductive=true, L=1/(2*Modelica.Constants.pi*60)) "Inductive impedance" AixLib.Electrical.AC.OnePhase.Loads.Impedance Z2(R=0, inductive=false, C=1/(2*Modelica.Constants.pi*60)) "Capacitive impedance" AixLib.Electrical.AC.OnePhase.Loads.Impedance Z3(R=1) "Resistive impedance" AixLib.Electrical.AC.OnePhase.Loads.Impedance Z4( R=1, L=1/(2*Modelica.Constants.pi*60)) "Inductive-resistive impedance" AixLib.Electrical.AC.OnePhase.Loads.Impedance Z5( R=1, inductive=false, C=1/(2*Modelica.Constants.pi*60)) "Capacitive-resistive impedance" equation connect(V.terminal, Z1.terminal) connect(V.terminal, Z2.terminal) connect(V.terminal, Z3.terminal) connect(V.terminal, Z4.terminal) connect(V.terminal, Z5.terminal) end TestImpedance;
Examples that illustrates how to replicate a three-phase balanced system. This model shows how a balanced three phase system can be represented with three independent single phase circuits.
within AixLib.Electrical.AC.OnePhase.Loads.Examples; model ThreePhases "Examples that illustrates how to replicate a three-phase balanced system" extends Modelica.Icons.Example; AixLib.Electrical.AC.OnePhase.Sources.FixedVoltage Va( definiteReference=true, f=60, V=120) "Source phase A" AixLib.Electrical.AC.OnePhase.Loads.Impedance Za( inductive=true, L=1/(2*Modelica.Constants.pi*60), R=12) "Impedance phase A" AixLib.Electrical.AC.OnePhase.Sources.FixedVoltage Vb( definiteReference=true, phiSou=-2.0943951023932, f=60, V=120) "Source phase B" AixLib.Electrical.AC.OnePhase.Loads.Impedance Zb( inductive=true, L=1/(2*Modelica.Constants.pi*60), R=12) "Impedance phase B" AixLib.Electrical.AC.OnePhase.Sources.FixedVoltage Vc( definiteReference=true, phiSou=2.0943951023932, f=60, V=120) "Source phase C" AixLib.Electrical.AC.OnePhase.Loads.Impedance Zc( inductive=true, L=1/(2*Modelica.Constants.pi*60), R=12) "Impedance phase C" equation connect(Va.terminal, Za.terminal) connect(Vb.terminal, Zb.terminal) connect(Vc.terminal, Zc.terminal) end ThreePhases;
Example that illustrates how using variable impedances. This model shows how to vary the resistance, capacitance or inductance of an impedance model.
within AixLib.Electrical.AC.OnePhase.Loads.Examples; model VariableImpedance "Example that illustrates how using variable impedances" extends Modelica.Icons.Example; AixLib.Electrical.AC.OnePhase.Sources.FixedVoltage V(f=60, V=120) "Voltage source" AixLib.Electrical.AC.OnePhase.Loads.Impedance Z_L( R=0, inductive=true, L=1/(2*Modelica.Constants.pi*60), use_L_in=true, LMin=1/(2*Modelica.Constants.pi*60), LMax=2/(2*Modelica.Constants.pi*60)) "Impedance with variable L" AixLib.Electrical.AC.OnePhase.Loads.Impedance Z_C( R=0, inductive=false, C=1/(2*Modelica.Constants.pi*60), use_C_in=true, CMin=1/(2*Modelica.Constants.pi*60), CMax=2/(2*Modelica.Constants.pi*60)) "Impedance with variable C" AixLib.Electrical.AC.OnePhase.Loads.Impedance Z_R( R=1, RMin=1, RMax=2, use_R_in=true, L=0) "Impedance with variable R" Modelica.Blocks.Sources.Ramp load(duration=0.5, startTime=0.2, height=1, offset=0) "Input signal for the loads" equation connect(V.terminal, Z_L.terminal) connect(V.terminal, Z_C.terminal) connect(V.terminal, Z_R.terminal) connect(load.y, Z_R.y_R) connect(load.y, Z_C.y_C) connect(load.y, Z_L.y_L) end VariableImpedance;
Sensor for power, voltage and current
within AixLib.Electrical.AC.OnePhase.Sensors; model GeneralizedSensor "Sensor for power, voltage and current" extends AixLib.Electrical.Icons.GeneralizedSensor; extends AixLib.Electrical.Interfaces.PartialTwoPort( redeclare package PhaseSystem_p = PhaseSystems.OnePhase, redeclare package PhaseSystem_n = PhaseSystems.OnePhase, redeclare Interfaces.Terminal_n terminal_n, redeclare Interfaces.Terminal_p terminal_p); Modelica.Blocks.Interfaces.RealOutput V(final quantity="ElectricPotential", final unit="V")= AixLib.Electrical.PhaseSystems.OnePhase.systemVoltage(terminal_n.v) "Voltage" Modelica.Blocks.Interfaces.RealOutput I(final quantity="ElectricCurrent", final unit="A")= AixLib.Electrical.PhaseSystems.OnePhase.systemCurrent(terminal_n.i) "Current" Modelica.Blocks.Interfaces.RealOutput S[PhaseSystems.OnePhase.n]( each final quantity="Power", each final unit="W")= AixLib.Electrical.PhaseSystems.OnePhase.phasePowers_vi(v=terminal_n.v, i=terminal_n.i) "Phase powers" equation connect(terminal_n, terminal_p) end GeneralizedSensor;
Package with sensors for AC electrical systems
within AixLib.Electrical.AC.OnePhase; package Sensors "Package with sensors for AC electrical systems" extends Modelica.Icons.SensorsPackage; end Sensors;
Model of a probe that measures RMS voltage and angle. This model represents a probe that measures the RMS voltage and the angle of the voltage phasor at a given point.
within AixLib.Electrical.AC.OnePhase.Sensors; model Probe "Model of a probe that measures RMS voltage and angle" extends Icons.GeneralizedProbe; parameter Modelica.Units.SI.Voltage V_nominal(min=0, start=110) "Nominal voltage (V_nominal >= 0)"; parameter Boolean perUnit = true "If true, display voltage in p.u."; replaceable Interfaces.Terminal_n term "Electrical connector" Modelica.Blocks.Interfaces.RealOutput V(unit=if perUnit then "1" else "V") "Voltage phasor magnitude" Modelica.Blocks.Interfaces.RealOutput theta(unit="rad", displayUnit="deg") "Voltage phasor angle" equation theta = AixLib.Electrical.PhaseSystems.OnePhase.phase(term.v); if perUnit then V = AixLib.Electrical.PhaseSystems.OnePhase.systemVoltage(term.v)/V_nominal; else V = AixLib.Electrical.PhaseSystems.OnePhase.systemVoltage(term.v); end if; term.i = zeros(AixLib.Electrical.PhaseSystems.OnePhase.n); end Probe;
This example illustrates how to use the generalized sensor model. This example illustrates the use of the generalized sensor.
within AixLib.Electrical.AC.OnePhase.Sensors.Examples; model GeneralizedSensor "This example illustrates how to use the generalized sensor model" extends Modelica.Icons.Example; AixLib.Electrical.AC.OnePhase.Sensors.GeneralizedSensor sen "Sensor that measures V, I, and S" AixLib.Electrical.AC.OnePhase.Loads.Capacitive loa( mode=AixLib.Electrical.Types.Load.FixedZ_dynamic, P_nominal=-100, V_nominal=120) "Constant load" AixLib.Electrical.AC.OnePhase.Sources.FixedVoltage sou(f=60, V=120) "Voltage source" AixLib.Electrical.AC.OnePhase.Lines.TwoPortResistance res(R=0.05) "Line resistance" equation connect(sen.terminal_p, loa.terminal) connect(sou.terminal, res.terminal_n) connect(res.terminal_p, sen.terminal_n) end GeneralizedSensor;
Package with example models
within AixLib.Electrical.AC.OnePhase.Sensors; package Examples "Package with example models" extends Modelica.Icons.ExamplesPackage; end Examples;
This example illustrates how to use the probe model. This example illustrates the use of the probe model.
within AixLib.Electrical.AC.OnePhase.Sensors.Examples; model Probe "This example illustrates how to use the probe model" extends Modelica.Icons.Example; AixLib.Electrical.AC.OnePhase.Loads.Capacitive loaRC( mode=AixLib.Electrical.Types.Load.FixedZ_steady_state, P_nominal=-10000, V_nominal=120) "Constant load" AixLib.Electrical.AC.OnePhase.Sources.FixedVoltage sou(f=60, V=120) "Voltage source" AixLib.Electrical.AC.OnePhase.Lines.TwoPortResistance res1(R=0.1) "First line resistance" AixLib.Electrical.AC.OnePhase.Sensors.Probe probe_source(V_nominal=120) "Probe that measures at the voltage source" AixLib.Electrical.AC.OnePhase.Sensors.Probe probe_loadRC(V_nominal=120) "Probe that measures at the RC load" AixLib.Electrical.AC.OnePhase.Lines.TwoPortResistance res2(R=0.1) "Second line resistance" AixLib.Electrical.AC.OnePhase.Loads.Inductive loaRL( mode=AixLib.Electrical.Types.Load.FixedZ_steady_state, P_nominal=-10000, V_nominal=120) "Constant load" AixLib.Electrical.AC.OnePhase.Sensors.Probe probe_loadRL(V_nominal=120) "Probe that measures at the RL load" equation connect(sou.terminal, res1.terminal_n) connect(res1.terminal_p, loaRC.terminal) connect(sou.terminal, probe_source.term) connect(loaRC.terminal, probe_loadRC.term) connect(sou.terminal, res2.terminal_n) connect(res2.terminal_p, loaRL.terminal) connect(loaRL.terminal, probe_loadRL.term) end Probe;
Fixed single phase AC voltage source
within AixLib.Electrical.AC.OnePhase.Sources; model FixedVoltage "Fixed single phase AC voltage source" extends AixLib.Electrical.Interfaces.Source( redeclare package PhaseSystem = PhaseSystems.OnePhase, redeclare replaceable Interfaces.Terminal_p terminal); parameter Modelica.Units.SI.Frequency f(start=60) "Frequency of the source"; parameter Modelica.Units.SI.Voltage V(start=110) "RMS voltage of the source"; parameter Modelica.Units.SI.Angle phiSou=0 "Phase shift of the source"; protected Modelica.Units.SI.Angle thetaRel "Absolute angle of rotating system as offset to thetaRef"; equation if Connections.isRoot(terminal.theta) then PhaseSystem.thetaRef(terminal.theta) = 2*Modelica.Constants.pi*f*time; end if; thetaRel = PhaseSystem.thetaRel(terminal.theta); terminal.v = PhaseSystem.phaseVoltages(V, thetaRel + phiSou); end FixedVoltage;
Model of a generator
within AixLib.Electrical.AC.OnePhase.Sources; model Generator "Model of a generator" extends AixLib.Electrical.Interfaces.Source( redeclare package PhaseSystem = PhaseSystems.OnePhase, redeclare replaceable Interfaces.Terminal_p terminal); parameter Modelica.Units.SI.Frequency f(start=60) "Frequency of the source"; parameter Modelica.Units.SI.Angle phiGen(displayUnit="deg") = 0 "Phase shift of the source"; Modelica.Units.SI.Current I "value of current"; Modelica.Blocks.Interfaces.RealInput P "Variable power generated by the source" protected Modelica.Units.SI.Angle thetaRel "Absolute angle of rotating system as offset to thetaRef"; equation if Connections.isRoot(terminal.theta) then PhaseSystem.thetaRef(terminal.theta) = 2*Modelica.Constants.pi*f*time; end if; thetaRel = PhaseSystem.thetaRel(terminal.theta); terminal.i = PhaseSystem.phaseCurrents(I, thetaRel+phiGen); 0 = PhaseSystem.activePower(terminal.v, terminal.i) + P; end Generator;
Electrical grid. Model that can be used to represent the electrical grid supply.
within AixLib.Electrical.AC.OnePhase.Sources; model Grid "Electrical grid" replaceable AixLib.Electrical.AC.OnePhase.Interfaces.Terminal_p terminal parameter Modelica.Units.SI.Frequency f(start=60) "Frequency of the source"; parameter Modelica.Units.SI.Voltage V(start=110) "RMS voltage of the source"; parameter Modelica.Units.SI.Angle phiSou=0 "Phase shift angle of the source"; AixLib.Electrical.AC.Interfaces.PowerOutput P "Power consumed from grid if positive, or fed to grid if negative" replaceable AixLib.Electrical.AC.OnePhase.Sources.FixedVoltage sou( potentialReference=true, definiteReference=true, final f=f, final V=V, final phiSou=phiSou) "Voltage source" equation P.real = -sou.S[1]; P.apparent = Modelica.Fluid.Utilities.regRoot(sou.S[2]^2 + sou.S[1]^2, delta = 0.01); P.phi = sou.phi; P.cosPhi = cos(sou.phi); connect(sou.terminal, terminal) end Grid;
Package with sources models for one phase AC systems
within AixLib.Electrical.AC.OnePhase; package Sources "Package with sources models for one phase AC systems" extends Modelica.Icons.SourcesPackage; end Sources;
Simple wind turbine model
within AixLib.Electrical.AC.OnePhase.Sources; model WindTurbine "Simple wind turbine model" extends AixLib.Electrical.BaseClasses.WindTurbine.PartialWindTurbine( redeclare package PhaseSystem = AixLib.Electrical.PhaseSystems.OnePhase, redeclare replaceable Interfaces.Terminal_p terminal, V_nominal(start = 110)); parameter Real pf(min=0, max=1) = 0.9 "Power factor" parameter Real eta_DCAC(min=0, max=1) = 0.9 "Efficiency of DC/AC conversion" replaceable AixLib.Electrical.AC.OnePhase.Loads.Capacitive load( final mode=AixLib.Electrical.Types.Load.VariableZ_P_input, final pf=pf, final P_nominal=0, final V_nominal=V_nominal) "Load model" protected Modelica.Blocks.Math.Gain gain_DCAC(final k=eta_DCAC) equation connect(load.terminal, terminal) connect(gain_DCAC.y, load.Pow) connect(gain.y, gain_DCAC.u) end WindTurbine;
This example illustrates how using a fixed voltage source. This example shows how to use a fixed voltage generator model.
within AixLib.Electrical.AC.OnePhase.Sources.Examples; model FixedVoltageSource "This example illustrates how using a fixed voltage source" extends Modelica.Icons.Example; AixLib.Electrical.AC.OnePhase.Loads.Inductive RL( P_nominal=-300, mode=AixLib.Electrical.Types.Load.FixedZ_steady_state, V_nominal=120) "Load model" FixedVoltage grid( f=60, V=120, phiSou=0.34906585039887) "AC one phase electrical grid" Sensors.Probe sen(V_nominal=120) "Probe that measures the voltage at the load" equation connect(grid.terminal, RL.terminal) connect(grid.terminal, sen.term) end FixedVoltageSource;
Package with example models
within AixLib.Electrical.AC.OnePhase.Sources; package Examples "Package with example models" extends Modelica.Icons.ExamplesPackage; end Examples;
This example illustrates how using a variable power source. This example shows how to use a variable generator model. The model has to be used together with a voltage source generator.
within AixLib.Electrical.AC.OnePhase.Sources.Examples; model VariablePowerSource "This example illustrates how using a variable power source" extends Modelica.Icons.Example; AixLib.Electrical.AC.OnePhase.Sources.Generator generator(phiGen(displayUnit="deg") = 0.26179938779915, f=60) "AC generator model" Modelica.Blocks.Sources.Sine generation( offset=200, startTime=1, amplitude=100, f=0.05) "Generated power" AixLib.Electrical.AC.OnePhase.Loads.Inductive RL(mode=Types.Load.VariableZ_y_input, P_nominal=-300, V_nominal=120) "Load model" AixLib.Electrical.AC.OnePhase.Sources.Grid grid(f=60, V=120) "AC one phase electrical grid" Modelica.Blocks.Sources.Trapezoid load( rising=2, width=3, falling=3, period=10, startTime=1, amplitude=0.8, offset=0.2) "Power consumption profile" equation connect(generation.y, generator.P) connect(generator.terminal, RL.terminal) connect(grid.terminal, RL.terminal) connect(load.y, RL.y) end VariablePowerSource;
Example for the WindTurbine AC model. This model illustrates the use of the wind turbine model which is connected to a AC voltage source and a resistance. This voltage source can represent the grid to which the circuit is connected. Wind data for San Francisco, CA, are used. The turbine cut-in wind speed is <i>3.5</i> m/s, and hence it is off in the first day when the wind speed is low.
within AixLib.Electrical.AC.OnePhase.Sources.Examples; model WindTurbine "Example for the WindTurbine AC model" extends Modelica.Icons.Example; AixLib.Electrical.AC.OnePhase.Sources.WindTurbine tur( table=[3.5, 0; 5.5, 100; 12, 900; 14, 1000; 25, 1000], h=10, scale=10, V_nominal=120) "Wind turbine" AixLib.BoundaryConditions.WeatherData.ReaderTMY3 weaDat( computeWetBulbTemperature=false, filNam=Modelica.Utilities.Files.loadResource("modelica://AixLib/Resources/weatherdata/USA_CA_San.Francisco.Intl.AP.724940_TMY3.mos")) "Weather data" AixLib.BoundaryConditions.WeatherData.Bus weaBus "Weather bus" AixLib.Electrical.AC.OnePhase.Loads.Resistive res(P_nominal=-500, V_nominal=120) "Resistive line" AixLib.Electrical.AC.OnePhase.Sources.Grid sou(f=60, V=120) "Voltage source" AixLib.Electrical.AC.OnePhase.Lines.TwoPortResistance lin(R=0.1) "Transmission line" AixLib.Electrical.AC.OnePhase.Sensors.GeneralizedSensor sen "Generalized sensor" equation connect(weaDat.weaBus,weaBus) connect(weaBus.winSpe,tur. vWin) connect(sou.terminal, lin.terminal_n) connect(sou.terminal, res.terminal) connect(lin.terminal_p, sen.terminal_n) connect(sen.terminal_p, tur.terminal) end WindTurbine;
Three phases balanced AC systems
within AixLib.Electrical.AC; package ThreePhasesBalanced "Three phases balanced AC systems" extends Modelica.Icons.VariantsPackage; end ThreePhasesBalanced;
AC AC converter three phase balanced systems. This model represents a simplified conversion between two AC three-phase balanced systems. The conversion losses are represented by a constant efficiency <i>&eta;</i>.
within AixLib.Electrical.AC.ThreePhasesBalanced.Conversion; model ACACConverter "AC AC converter three phase balanced systems" extends AixLib.Electrical.AC.OnePhase.Conversion.ACACConverter( redeclare Interfaces.Terminal_n terminal_n, redeclare Interfaces.Terminal_p terminal_p); end ACACConverter;
AC AC transformer three phase balanced systems. Simple transformer model for three-phase balanced AC systems. The model does not include core and magnetic losses.
within AixLib.Electrical.AC.ThreePhasesBalanced.Conversion; model ACACTransformer "AC AC transformer three phase balanced systems" extends AixLib.Electrical.AC.OnePhase.Conversion.ACACTransformer( redeclare Interfaces.Terminal_n terminal_n, redeclare Interfaces.Terminal_p terminal_p); end ACACTransformer;
AC AC transformer full model for three phase balanced systems. Model of a transformer for three-phase balanced AC systems. The model includes core and magnetic losses.
within AixLib.Electrical.AC.ThreePhasesBalanced.Conversion; model ACACTransformerFull "AC AC transformer full model for three phase balanced systems" extends AixLib.Electrical.AC.OnePhase.Conversion.ACACTransformerFull( redeclare Interfaces.Terminal_n terminal_n, redeclare Interfaces.Terminal_p terminal_p); end ACACTransformerFull;