simon-arc-image-v67 / README.md
neoneye's picture
Update README.md
0a6af74 verified
metadata
license: mit
task_categories:
  - image-to-text
  - text-to-image
language:
  - en
pretty_name: simons ARC (abstraction & reasoning corpus) image version 67
size_categories:
  - 10K<n<100K
configs:
  - config_name: default
    data_files:
      - split: train
        path: data.jsonl

Version 1

Have dataset items that are somewhat evenly of each type. The LLM learned some of the types fine. However rotated images are causing problems. The image sizes are between 1 and 10 pixels.

Version 2

Here the majority of dataset items are rotated images. Since this is what my LLM is struggling with. Smaller images. Here the image sizes are between 1 and 5 pixels. This helped a lot on the validation loss.

Version 3

Main focus is now on count_same_color_as_center_with_8neighbors_nowrap and image size 1-6. Which the LLM has struggeld with in the past, maybe due to too big image sizes. Struggles somewhat with the count_same_color_as_center_with_8neighbors_nowrap.

Version 4

I'm trying smaller images again. Here the image sizes are between 1 and 5 pixels. Added same_color_inside_3x3_area_nowrap that checks if all surrounding pixels agree on the same color, maybe that have some synergy with the count_same_color_as_center_with_8neighbors_nowrap. It helped a little, but it's still not as good at counting neighbors as I would like.

Version 5

I have added a pixels_with_k_matching_neighbors with a k parameter between 1-8. This may help improve on counting the number of neighboring pixels. The image size 1-6. This did indeed help on counting the number of surrounding pixels.

Version 6

Same weight to all the transformations. Image size 1-11.

Version 7

Focus on histogram and k-nearest neighbors. image size 1-12. It seems like the LLM has gotten the hang of it.

Version 8

Focus on histogram and k-nearest neighbors. image size 5-20.

Version 9

Focus on histogram and k-nearest neighbors. image size 10-30.

Version 10

Same weight to all the transformations. image width 10-30. image height 2-5.

Version 11

Same weight to all the transformations. image width 2-5. image height 10-30.

Version 12

Focus on k-nearest neighbors. image width 2-5. image height 10-30.

Version 13

Focus on compres_x, compres_y, compres_xy. image size is 1-10.

Version 14

Focus on histograms and k-nearest-neighbors. image size 5-20.

Version 15

Focus on histograms and k-nearest-neighbors. image size 10-30.

Version 16

Focus on k-nearest-neighbors. image size 10-25.

Version 17

Disabled k-nearest-neighbors, I suspect this is the reason why it converges so slowly. image size 15-30.

Version 18

Disabled k-nearest-neighbors, and compression. image size 15-25.

Version 19

Translate x/y by plus/minus 1. Disabled rotation and transpose. image size 22-30.

Version 20

Focus on k-nearest-neighbors. image size 5-15.

Version 21

Focus on k-nearest-neighbors. image size 8-18.

Version 22

Same weight to all the transformations. image size 8-20.

Version 23

Same weight to all the transformations. image size 5-30.

The LLM is struggling learning this. I'm going to try with small images.

Version 24

Focus on rotate cw, rotate ccw, transpose. image size 2-10.

The LLM is struggling learning this. Despite being small images. I'm going to try with even small images.

Version 25

Focus on rotate cw, rotate ccw, transpose. image size 2-5.

The LLM is struggling learning this. Despite being small images. I'm going to try with even small images.

Version 26

Focus on rotate cw, rotate ccw, transpose, k-nearest-neighbors. image size 1-3.

The LLM is struggling learning this. Despite being small images.

Version 27

Focus on rotate cw, rotate ccw, transpose. image size 1-4.

The LLM is struggling learning this. Despite being small images.

Version 28

Focus on rotate cw, rotate ccw, transpose. image size 1-5.

Version 29

Focus on rotate cw, rotate ccw, transpose. image size 1-6.

Version 30

Focus on rotate cw, rotate ccw, transpose. image size 1-8.

Version 31

Focus on rotate cw, rotate ccw, transpose. image size 1-10.

Version 32

Focus on rotate cw, rotate ccw, transpose. image size 1-12.

Version 33

Focus on rotate cw, rotate ccw, transpose. image size 1-14. The serialize items were using fewer names to identify the dataset, now uses the same names as deserialize.

Version 34

Focus only on rotate cw. All other operations have been disabled. image size 1-30.

Version 35

Focus only on rotate ccw. All other operations have been disabled. image size 1-30.

Version 36

Focus only on rotate cw and rotate ccw. All other operations have been disabled. image size 1-30.

Version 37

Focus only on rotate cw and rotate ccw. All other operations have been disabled. image size 1-30. Using the same image and apply both rotate cw and rotate ccw. My hypothesis is that it will learn better to distinguish between the two rotation types.

Version 38

Argh, the validation loss was seriously bad on this one.

I guess what happened is that rotate cw always was followed by rotate ccw, causing the model to be biased, always expecting the opposite transformation. Now I have suffled the entire dataset. So there are still 50% of each operation, in random order.

Using the same image and apply both rotate cw and rotate ccw. I still think my hypothesis is sound, that it will learn better to distinguish between the two rotation types when it's the same image.

Focus only on rotate cw and rotate ccw. All other operations have been disabled. image size 1-30.

Version 39

The validation loss is not improving.

I'm going back to small image sizes.

Focus only on rotate cw and rotate ccw. All other operations have been disabled. image size 1-10.

This helped on the validation loss. Yay.

Version 40

Focus only on rotate cw and rotate ccw. All other operations have been disabled. image size 1-13.

Version 41

Focus only on rotate cw and rotate ccw. All other operations have been disabled. image size 1-16.

Version 42

Focus only on rotate cw and rotate ccw. All other operations have been disabled. image size 1-19.

Jumping to image size 19 was a bit too optimistic, causing a terrible validation loss. So I have to go with a lower image size.

Version 43

Focus only on rotate cw and rotate ccw. All other operations have been disabled. image size 1-17.

Version 44

Focus only on rotate cw and rotate ccw. All other operations have been disabled. image size 1-18.

Version 45

Focus only on rotate cw and rotate ccw. All other operations have been disabled. image size 1-19.

Version 46

Focus only on rotate cw and rotate ccw. All other operations have been disabled. image size 1-20. This is something that the LLM struggles with. I'm going to make a dataset with another random seed, with the same size 1-20, to see if it improves or worsens.

Version 47

Focus only on rotate cw and rotate ccw. All other operations have been disabled. image size 1-20. Same size as in previous version.

Version 48

Focus only on rotate cw and rotate ccw. All other operations have been disabled. image size 1-21. This is something that the LLM struggles with. I'm going to make a dataset with another random seed, with the same size 1-21, to see if it improves or worsens.

Version 49

Focus only on rotate cw and rotate ccw. All other operations have been disabled. image size 1-21. Same size as in previous version. This is something that the LLM struggles with. Not improving.

Version 50

Focus only on get_row_as_list and get_column_as_list. All other operations have been disabled. The get_column_as_list is related to rotating the image. image size 1-21. This was first time the LLM tried this, so terrible validation loss. I'm going to try smaller images.

Version 51

Focus only on get_row_as_list and get_column_as_list. All other operations have been disabled. The get_column_as_list is related to rotating the image. image size 1-5. Excellent validation loss.

Version 52

Focus only on get_row_as_list and get_column_as_list and rotate cw and rotate ccw. All other operations have been disabled. image size 1-10. No problems for the LLM to learn that. I'm not going to train it to the end.

Version 53

Focus only on get_row_as_list and get_column_as_list and rotate cw and rotate ccw. All other operations have been disabled. image size 1-15.

Version 54

Focus only on get_row_as_list and get_column_as_list and rotate cw and rotate ccw. All other operations have been disabled. image size 1-20.

Version 55

Focus only on rotate cw and rotate ccw and get_column_as_list. All other operations have been disabled. The get_column_as_list is related to rotating the image. image size 1-22.

Version 56

Focus only on rotate cw and rotate ccw and get_column_as_list. All other operations have been disabled. The get_column_as_list is related to rotating the image. image size 1-23. This is something that the LLM struggles with. Not improving.

Version 57

Focus only on rotate cw and rotate ccw and get_column_as_list. All other operations have been disabled. The get_column_as_list is related to rotating the image. image size 1-24. This is something that the LLM struggles with. Not improving.

Version 58

Focus only on rotate cw and rotate ccw and get_column_as_list. All other operations have been disabled. The get_column_as_list is related to rotating the image. image size 1-30. This is something that the LLM struggles with. Not improving.

Version 59

Focus only on rotate cw and rotate ccw and get_column_as_list. All other operations have been disabled. The get_column_as_list is related to rotating the image. image size 1-25.

Version 60

Focus only on rotate cw and rotate ccw and get_column_as_list. All other operations have been disabled. The get_column_as_list is related to rotating the image. image size 1-20. The model is good at this. I'm going to try with a bigger size.

Version 61

Focus only on rotate cw and rotate ccw and get_column_as_list. All other operations have been disabled. The get_column_as_list is related to rotating the image. image size 1-22.

Version 62

Focus only on rotate cw and rotate ccw and get_column_as_list. All other operations have been disabled. The get_column_as_list is related to rotating the image. image size 1-22. Training on same size again.

Version 63

Focus only on rotate cw and rotate ccw and get_column_as_list. All other operations have been disabled. The get_column_as_list is related to rotating the image. image size 1-22. Training on same size again. Slowly improving the validation loss.

Version 64

Focus only on rotate cw and rotate ccw and get_column_as_list. All other operations have been disabled. The get_column_as_list is related to rotating the image. image size 1-21.

Version 65

Focus only on rotate cw and rotate ccw and get_column_as_list. All other operations have been disabled. The get_column_as_list is related to rotating the image. image size 1-21. Using different images.

Version 66

Same weight to all the transformations. image size 1-21.

Version 67

Focus only on rotate cw and rotate ccw and get_column_as_list. All other operations have been disabled. The get_column_as_list is related to rotating the image. image size 1-21. Using different images.