metadata
language:
- en
license: apache-2.0
tags:
- text
pretty_name: Amazon ESCI dataset in nixietune format
size_categories:
- 100K<n<1M
source_datasets:
- Amazon ESCI
task_categories:
- sentence-similarity
dataset_info:
config_name: default
features:
- name: query
dtype: string
- name: doc
dtype: string
- name: neg
sequence: string
- name: negscore
sequence: float
splits:
- name: train
num_bytes: 2734101179
num_examples: 181819
- name: test
num_bytes: 1186871193
num_examples: 79708
- name: test_1k
num_bytes: 16656546
num_examples: 1000
train-eval-index:
- config: default
task: sentence-similarity
splits:
train_split: train
eval_split: test
configs:
- config_name: default
data_files:
- split: train
path: data/train/*
- split: test
path: data/test/*
- split: test_1k
path: data/test_1k/*
Amazon ESCI dataset
A dataset in a nixietune compatible format:
{
{
"query": "# cellist thats not a hashtag",
"pos": "Funny Cellists That's Not A Hashtag Music Sweatshirt",
"neg": [
"Feelin Good Tees My Opinion Offended You Adult Humor T Shirt XL Black",
"Christian Faith & Cross T-Shirt - Christian Faith T Shirts T-Shirt",
"PLUS PLUS - 240 Piece Basic Mix - Construction Building Stem/Steam Toy, Mini Puzzle Blocks for Kids",
"Caution I Learned to Drive Through Video Games - Funny Gamer T-Shirt",
"People Who Tolerate Me On A Daily Basis T Shirt L Black",
]
}
This is the expanded version of the Amazon ESCI small-en dataset:
- can be loaded with HF datasets directly.
Usage
from datasets import load_dataset
data = load_dataset('nixiesearch/amazon-esci', split="train")
License
Apache 2.0