Datasets:

zip
stringlengths
19
109
filename
stringlengths
4
185
contents
stringlengths
0
30.1M
type_annotations
sequencelengths
0
1.97k
type_annotation_starts
sequencelengths
0
1.97k
type_annotation_ends
sequencelengths
0
1.97k
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_average.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import pytest import sockeye.average as average @pytest.mark.parametrize( "test_points, expected_top_n, size, maximize", [ ([(1.1, 3), (2.2, 2), (3.3, 1)], [(3.3, 1), (2.2, 2), (1.1, 3)], 3, True), ([(1.1, 3), (2.2, 2), (3.3, 1)], [(1.1, 3), (2.2, 2), (3.3, 1)], 3, False), ([(1.1, 4), (2.2, 3), (3.3, 2), (4.4, 1)], [(4.4, 1), (3.3, 2), (2.2, 3)], 3, True), ([(1.1, 4), (2.2, 3), (3.3, 2), (4.4, 1)], [(4.4, 1), (3.3, 2), (2.2, 3), (1.1, 4)], 5, True) ]) def test_strategy_best(test_points, expected_top_n, size, maximize): result = average._strategy_best(test_points, size, maximize) assert result == expected_top_n @pytest.mark.parametrize( "test_points, expected_top_n, size, maximize", [ ([(1.1, 3), (2.2, 2), (3.3, 1)], [(1.1, 3), (2.2, 2), (3.3, 1)], 3, True), ([(1.1, 3), (2.2, 2), (3.3, 1)], [(1.1, 3)], 3, False), ([(1.1, 4), (2.2, 3), (3.3, 2), (4.4, 1)], [(2.2, 3), (3.3, 2), (4.4, 1)], 3, True), ([(2.2, 4), (1.1, 3), (3.3, 2), (4.4, 1)], [(2.2, 4), (1.1, 3)], 3, False), ([(2.2, 4), (1.1, 3), (3.3, 2), (4.4, 1)], [(1.1, 3)], 1, False), ([(1.1, 4), (2.2, 3), (3.3, 2), (4.4, 1)], [(1.1, 4), (2.2, 3), (3.3, 2), (4.4, 1)], 5, True) ]) def test_strategy_last(test_points, expected_top_n, size, maximize): result = average._strategy_last(test_points, size, maximize) assert result == expected_top_n @pytest.mark.parametrize( "test_points, expected_top_n, size, maximize", [ ([(1.1, 3), (2.2, 2), (3.3, 1)], [[0, 3.3, 1], [0, 2.2, 2], [0, 1.1, 3]], 3, True), ([(1.1, 4), (2.2, 3), (3.3, 2), (4.4, 1)], [[0, 4.4, 1], [0, 3.3, 2], [0, 2.2, 3]], 3, True), ([(3.3, 3), (2.2, 2), (1.1, 1)], [[2, 3.3, 3], [0, 2.2, 2], [0, 1.1, 1]], 3, True), ([(3.3, 3), (2.2, 2), (1.1, 1)], [[0, 1.1, 1], [0, 2.2, 2], [0, 3.3, 3]], 3, False), ([(2.2, 4), (1.1, 3), (3.3, 2), (4.4, 1)], [[1, 2.2, 4], [0, 4.4, 1], [0, 3.3, 2]], 3, True), ([(2.2, 4), (1.1, 3), (3.3, 2), (4.4, 1)], [[2, 1.1, 3]], 1, False), ([(1.1, 4), (2.2, 3), (3.3, 2), (4.4, 1)], [[3, 1.1, 4], [0, 2.2, 3], [0, 3.3, 2], [0, 4.4, 1]], 5, False) ]) def test_strategy_lifespan(test_points, expected_top_n, size, maximize): result = average._strategy_lifespan(test_points, size, maximize) assert result == expected_top_n
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_bleu.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from collections import namedtuple import pytest from contrib import sacrebleu EPSILON = 1e-8 Statistics = namedtuple('Statistics', ['common', 'total']) test_cases = [(["this is a test", "another test"], ["ref1", "ref2"], 0.003799178428257963), (["this is a test"], ["this is a test"], 1.0), (["this is a fest"], ["this is a test"], 0.223606797749979)] test_case_offset = [("am I am a character sequence", "I am a symbol string sequence a a", 0.1555722182, 0)] # statistic structure: # - common counts # - total counts # - hyp_count # - ref_count test_case_statistics = [("am I am a character sequence", "I am a symbol string sequence a a", Statistics([4, 2, 1, 0], [6, 5, 4, 3]))] test_case_scoring = [((Statistics([9, 7, 5, 3], [10, 8, 6, 4]), 11, 11), 0.8375922397)] test_case_effective_order = [(["test"], ["a test"], 0.3678794411714425), (["a test"], ["a test"], 1.0), (["a little test"], ["a test"], 0.03218297948685433)] # testing that right score is returned for null statistics and different offsets # format: stat, offset, expected score test_case_degenerate_stats = [((Statistics([0, 0, 0, 0], [4, 4, 2, 1]), 0, 1), 0.0, 0.0), ((Statistics([0, 0, 0, 0], [10, 11, 12, 0]), 14, 10), 0.0, 0.0), ((Statistics([0, 0, 0, 0], [0, 0, 0, 0]), 0, 0), 0.0, 0.0), ((Statistics([6, 5, 4, 0], [6, 5, 4, 3]), 6, 6), 0.0, 0.0), ((Statistics([0, 0, 0, 0], [0, 0, 0, 0]), 0, 0), 0.1, 0.0), ((Statistics([0, 0, 0, 0], [0, 0, 0, 0]), 1, 5), 0.01, 0.0)] test_cases_uneven = [(["I am one sentence"], ["But I", "am two"]), (["And I", "am a number of sentences", "three actually"], ["Compared to just one reference"])] @pytest.mark.parametrize("hypotheses, references, expected_bleu", test_cases) def test_bleu(hypotheses, references, expected_bleu): bleu = sacrebleu.raw_corpus_bleu(hypotheses, [references], .01).score / 100 assert abs(bleu - expected_bleu) < EPSILON @pytest.mark.parametrize("hypotheses, references, expected_bleu", test_case_effective_order) def test_effective_order(hypotheses, references, expected_bleu): bleu = sacrebleu.raw_corpus_bleu(hypotheses, [references], .01).score / 100 assert abs(bleu - expected_bleu) < EPSILON @pytest.mark.parametrize("hypothesis, reference, expected_stat", test_case_statistics) def test_statistics(hypothesis, reference, expected_stat): result = sacrebleu.raw_corpus_bleu(hypothesis, reference, .01) stat = Statistics(result.counts, result.totals) assert stat == expected_stat @pytest.mark.parametrize("statistics, expected_score", test_case_scoring) def test_scoring(statistics, expected_score): score = sacrebleu.compute_bleu(statistics[0].common, statistics[0].total, statistics[1], statistics[2]).score / 100 assert abs(score - expected_score) < EPSILON @pytest.mark.parametrize("hypothesis, reference, expected_with_offset, expected_without_offset", test_case_offset) def test_offset(hypothesis, reference, expected_with_offset, expected_without_offset): score_without_offset = sacrebleu.raw_corpus_bleu(hypothesis, reference, 0.0).score / 100 assert abs(expected_without_offset - score_without_offset) < EPSILON score_with_offset = sacrebleu.raw_corpus_bleu(hypothesis, reference, 0.1).score / 100 assert abs(expected_with_offset - score_with_offset) < EPSILON @pytest.mark.parametrize("statistics, offset, expected_score", test_case_degenerate_stats) def test_degenerate_statistics(statistics, offset, expected_score): score = sacrebleu.compute_bleu(statistics[0].common, statistics[0].total, statistics[1], statistics[2], smooth='floor', smooth_floor=offset).score / 100 assert score == expected_score @pytest.mark.parametrize("hypotheses, references", test_cases_uneven) def test_degenerate_uneven(hypotheses, references): with pytest.raises(EOFError, match=r'.*stream.*'): sacrebleu.raw_corpus_bleu(hypotheses, references)
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_callback.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """ Tests sockeye.callback.TrainingMonitor optimization logic """ import os import tempfile import numpy as np import pytest from sockeye import callback from sockeye import constants as C from sockeye import utils test_constants = [('perplexity', np.inf, [{'perplexity': 100.0, '_': 42}, {'perplexity': 50.0}, {'perplexity': 60.0}, {'perplexity': 80.0}], [{'perplexity': 200.0}, {'perplexity': 100.0}, {'perplexity': 100.001}, {'perplexity': 99.99}], [True, True, False, True]), ('accuracy', 0.0, [{'accuracy': 100.0}, {'accuracy': 50.0}, {'accuracy': 60.0}, {'accuracy': 80.0}], [{'accuracy': 200.0}, {'accuracy': 100.0}, {'accuracy': 100.001}, {'accuracy': 99.99}], [True, False, False, False])] class DummyMetric: def __init__(self, metric_dict): self.metric_dict = metric_dict def get_name_value(self): for metric_name, value in self.metric_dict.items(): yield metric_name, value @pytest.mark.parametrize("optimized_metric, initial_best, train_metrics, eval_metrics, improved_seq", test_constants) def test_callback(optimized_metric, initial_best, train_metrics, eval_metrics, improved_seq): with tempfile.TemporaryDirectory() as tmpdir: batch_size = 32 monitor = callback.TrainingMonitor(batch_size=batch_size, output_folder=tmpdir, optimized_metric=optimized_metric) assert monitor.optimized_metric == optimized_metric assert monitor.get_best_validation_score() == initial_best metrics_fname = os.path.join(tmpdir, C.METRICS_NAME) for checkpoint, (train_metric, eval_metric, expected_improved) in enumerate( zip(train_metrics, eval_metrics, improved_seq), 1): monitor.checkpoint_callback(checkpoint, train_metric) assert len(monitor.metrics) == checkpoint assert monitor.metrics[-1] == {k + "-train": v for k, v in train_metric.items()} improved, best_checkpoint = monitor.eval_end_callback(checkpoint, DummyMetric(eval_metric)) assert {k + "-val" for k in eval_metric.keys()} <= monitor.metrics[-1].keys() assert improved == expected_improved assert os.path.exists(metrics_fname) metrics = utils.read_metrics_file(metrics_fname) _compare_metrics(metrics, monitor.metrics) def _compare_metrics(a, b): assert len(a) == len(b) for x, y in zip(a, b): assert len(x.items()) == len(y.items()) for (xk, xv), (yk, yv) in zip(sorted(x.items()), sorted(y.items())): assert xk == yk assert pytest.approx(xv, yv) def test_bleu_requires_checkpoint_decoder(): with pytest.raises(utils.SockeyeError) as e, tempfile.TemporaryDirectory() as tmpdir: callback.TrainingMonitor(batch_size=1, output_folder=tmpdir, optimized_metric='bleu', cp_decoder=None) assert "bleu requires CheckpointDecoder" == str(e.value)
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_chrf.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import pytest import numpy as np import sockeye.chrf as chrf @pytest.mark.parametrize("hypothesis, reference, expected_chrf", [("a b c", "a b c", 1.0), ("a b c", "abc", 1.0), ("", "c", 0.0)]) def test_sentence_chrf(hypothesis, reference, expected_chrf): value = chrf.sentence_chrf(hypothesis, reference) assert np.isclose(value, expected_chrf) @pytest.mark.parametrize("hypotheses, references, expected_chrf", [(["a b c"], ["a b c"], 1.0), (["a b c"], ["abc"], 1.0), ([""], ["c"], 0.0), (["a", "b"], ["a", "c"], 0.5)]) def test_corpus_chrf(hypotheses, references, expected_chrf): value = chrf.corpus_chrf(hypotheses, references) assert np.isclose(value, expected_chrf)
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_config.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import tempfile import os import pytest from sockeye import config class ConfigTest(config.Config): yaml_tag = "!ConfigTest" def __init__(self, param, config=None): super().__init__() self.param = param self.config = config def test_base_freeze(): c = config.Config() c.param = 1 assert c.param == 1 c.freeze() with pytest.raises(AttributeError) as e: c.param = 2 assert str(e.value) == "Cannot set 'param' in frozen config" def test_freeze(): c1 = ConfigTest(param=1) c2 = ConfigTest(param=3) c1.param = 2 assert c1.param == 2 c1.config = c2 assert c2 == c1.config c1.config.param = 2 assert c1.config.param == 2 c1.freeze() assert c1.config._frozen # pylint: disable= no-member assert c2._frozen # pylint: disable= no-member with pytest.raises(AttributeError) as e: c1.param = 3 assert str(e.value) == "Cannot set 'param' in frozen config" with pytest.raises(AttributeError) as e: c1.config.param = 3 assert str(e.value) == "Cannot set 'param' in frozen config" def test_config_repr(): c1 = ConfigTest(param=1, config=ConfigTest(param=3)) c1.config.freeze() assert str(c1) == "Config[_frozen=False, config=Config[_frozen=True, config=None, param=3], param=1]" def test_eq(): basic_c = config.Config() c1 = ConfigTest(param=1) c1_other = ConfigTest(param=1) c2 = ConfigTest(param=2) c_nested = ConfigTest(param=1, config=c1) c_nested_other = ConfigTest(param=1, config=c1_other) c_nested_c2 = ConfigTest(param=1, config=c2) assert c1 != "OTHER_TYPE" assert c1 != basic_c assert c1 == c1_other assert c1 != c2 assert c_nested == c_nested_other assert c_nested != c_nested_c2 def test_no_self_attribute(): c1 = ConfigTest(param=1) with pytest.raises(AttributeError) as e: c1.config = c1 assert str(e.value) == "Cannot set self as attribute" def test_serialization(): c1 = ConfigTest(param=1, config=ConfigTest(param=2)) expected_serialization = """!ConfigTest config: !ConfigTest config: null param: 2 param: 1 """ with tempfile.TemporaryDirectory() as tmp_dir: fname = os.path.join(tmp_dir, "config") c1.freeze() c1.save(fname) assert os.path.exists(fname) with open(fname) as f: assert f.read() == expected_serialization c2 = config.Config.load(fname) assert c2.param == c1.param assert c2.config.param == c1.config.param assert not c2._frozen def test_copy(): c1 = ConfigTest(param=1) copy_c1 = c1.copy() # should be a different object that is equal to the original object assert c1 is not copy_c1 assert c1 == copy_c1 # optionally you can modify attributes when copying: mod_c1 = ConfigTest(param=5) mod_copy_c1 = c1.copy(param=5) assert mod_c1 is not mod_copy_c1 assert mod_c1 == mod_copy_c1 assert c1 != mod_copy_c1 class ConfigWithMissingAttributes(config.Config): def __init__(self, existing_attribute, new_attribute="new_attribute"): super().__init__() self.existing_attribute = existing_attribute self.new_attribute = new_attribute def test_missing_attributes_filled_with_default(): # when we load a configuration object that does not contain all attributes as the current version of the # configuration object we expect the missing attributes to be filled with the default values taken from the # __init__ method. config_obj = config.Config.load("test/data/config_with_missing_attributes.yaml") assert config_obj.new_attribute == "new_attribute"
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_coverage.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from unittest.mock import patch import mxnet as mx import numpy as np import pytest import sockeye.coverage from test.common import gaussian_vector, integer_vector, uniform_vector activation_types = ["tanh", "sigmoid", "relu", "softrelu"] def setup_module(): # Store a reference to the original MXNet sequence mask function. _mask_with_one.original_sequence_mask = mx.sym.SequenceMask @pytest.mark.parametrize("act_type", activation_types) def test_activation_coverage(act_type): # Before running our test we patch MXNet's sequence mask function with a custom implementation. Our custom function # will call the built in masking operation, but ensure the masking value is the number one. This masking value # allows for clear test assertions. _patch_sequence_mask(lambda: _test_activation_coverage(act_type)) def test_gru_coverage(): # Before running our test we patch MXNet's sequence mask function with a custom implementation. Our custom function # will call the built in masking operation, but ensure the masking value is the number one. This masking value # allows for clear test assertions. _patch_sequence_mask(lambda: _test_gru_coverage()) def _test_activation_coverage(act_type): config_coverage = sockeye.coverage.CoverageConfig(type=act_type, num_hidden=2, layer_normalization=False) encoder_num_hidden, decoder_num_hidden, source_seq_len, batch_size = 5, 5, 10, 4 # source: (batch_size, source_seq_len, encoder_num_hidden) source = mx.sym.Variable("source") # source_length: (batch_size,) source_length = mx.sym.Variable("source_length") # prev_hidden: (batch_size, decoder_num_hidden) prev_hidden = mx.sym.Variable("prev_hidden") # prev_coverage: (batch_size, source_seq_len, coverage_num_hidden) prev_coverage = mx.sym.Variable("prev_coverage") # attention_scores: (batch_size, source_seq_len) attention_scores = mx.sym.Variable("attention_scores") source_shape = (batch_size, source_seq_len, encoder_num_hidden) source_length_shape = (batch_size,) prev_hidden_shape = (batch_size, decoder_num_hidden) attention_scores_shape = (batch_size, source_seq_len) prev_coverage_shape = (batch_size, source_seq_len, config_coverage.num_hidden) source_data = gaussian_vector(shape=source_shape) source_length_data = integer_vector(shape=source_length_shape, max_value=source_seq_len) prev_hidden_data = gaussian_vector(shape=prev_hidden_shape) prev_coverage_data = gaussian_vector(shape=prev_coverage_shape) attention_scores_data = uniform_vector(shape=attention_scores_shape) attention_scores_data = attention_scores_data / np.sum(attention_scores_data) coverage = sockeye.coverage.get_coverage(config_coverage) coverage_func = coverage.on(source, source_length, source_seq_len) updated_coverage = coverage_func(prev_hidden, attention_scores, prev_coverage) executor = updated_coverage.simple_bind(ctx=mx.cpu(), source=source_shape, source_length=source_length_shape, prev_hidden=prev_hidden_shape, prev_coverage=prev_coverage_shape, attention_scores=attention_scores_shape) executor.arg_dict["source"][:] = source_data executor.arg_dict["source_length"][:] = source_length_data executor.arg_dict["prev_hidden"][:] = prev_hidden_data executor.arg_dict["prev_coverage"][:] = prev_coverage_data executor.arg_dict["attention_scores"][:] = attention_scores_data result = executor.forward() # this is needed to modulate the 0 input. The output changes according to the activation type used. activation = mx.sym.Activation(name="activation", act_type=act_type) modulated = activation.eval(ctx=mx.cpu(), activation_data=mx.nd.zeros((1,1)))[0].asnumpy() new_coverage = result[0].asnumpy() assert new_coverage.shape == prev_coverage_shape assert (np.sum(np.sum(new_coverage == modulated, axis=2) != 0, axis=1) == source_length_data).all() def _test_gru_coverage(): config_coverage = sockeye.coverage.CoverageConfig(type="gru", num_hidden=2, layer_normalization=False) encoder_num_hidden, decoder_num_hidden, source_seq_len, batch_size = 5, 5, 10, 4 # source: (batch_size, source_seq_len, encoder_num_hidden) source = mx.sym.Variable("source") # source_length: (batch_size,) source_length = mx.sym.Variable("source_length") # prev_hidden: (batch_size, decoder_num_hidden) prev_hidden = mx.sym.Variable("prev_hidden") # prev_coverage: (batch_size, source_seq_len, coverage_num_hidden) prev_coverage = mx.sym.Variable("prev_coverage") # attention_scores: (batch_size, source_seq_len) attention_scores = mx.sym.Variable("attention_scores") source_shape = (batch_size, source_seq_len, encoder_num_hidden) source_length_shape = (batch_size,) prev_hidden_shape = (batch_size, decoder_num_hidden) attention_scores_shape = (batch_size, source_seq_len) prev_coverage_shape = (batch_size, source_seq_len, config_coverage.num_hidden) source_data = gaussian_vector(shape=source_shape) source_length_data = integer_vector(shape=source_length_shape, max_value=source_seq_len) prev_hidden_data = gaussian_vector(shape=prev_hidden_shape) prev_coverage_data = gaussian_vector(shape=prev_coverage_shape) attention_scores_data = uniform_vector(shape=attention_scores_shape) attention_scores_data = attention_scores_data / np.sum(attention_scores_data) coverage = sockeye.coverage.get_coverage(config_coverage) coverage_func = coverage.on(source, source_length, source_seq_len) updated_coverage = coverage_func(prev_hidden, attention_scores, prev_coverage) executor = updated_coverage.simple_bind(ctx=mx.cpu(), source=source_shape, source_length=source_length_shape, prev_hidden=prev_hidden_shape, prev_coverage=prev_coverage_shape, attention_scores=attention_scores_shape) executor.arg_dict["source"][:] = source_data executor.arg_dict["source_length"][:] = source_length_data executor.arg_dict["prev_hidden"][:] = prev_hidden_data executor.arg_dict["prev_coverage"][:] = prev_coverage_data executor.arg_dict["attention_scores"][:] = attention_scores_data result = executor.forward() new_coverage = result[0].asnumpy() assert new_coverage.shape == prev_coverage_shape assert (np.sum(np.sum(new_coverage != 1, axis=2) != 0, axis=1) == source_length_data).all() def _mask_with_one(data, use_sequence_length, sequence_length): return _mask_with_one.original_sequence_mask(data=data, use_sequence_length=use_sequence_length, sequence_length=sequence_length, value=1) def _patch_sequence_mask(test): # Wrap mx.sym to make it easily patchable. All un-patched methods will fall-back to their default implementation. with patch.object(mx, 'sym', wraps=mx.sym) as mxnet_mock: # Patch Sequence Mask to use ones for padding. mxnet_mock.SequenceMask = _mask_with_one test()
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_data_io.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import os import random from tempfile import TemporaryDirectory from typing import Optional, List, Tuple import mxnet as mx import numpy as np import pytest from sockeye import constants as C from sockeye import data_io from sockeye import vocab from sockeye.utils import SockeyeError, get_tokens, seedRNGs from test.common import tmp_digits_dataset seedRNGs(12) define_bucket_tests = [(50, 10, [10, 20, 30, 40, 50]), (50, 20, [20, 40, 50]), (50, 50, [50]), (5, 10, [5]), (11, 5, [5, 10, 11]), (19, 10, [10, 19])] @pytest.mark.parametrize("max_seq_len, step, expected_buckets", define_bucket_tests) def test_define_buckets(max_seq_len, step, expected_buckets): buckets = data_io.define_buckets(max_seq_len, step=step) assert buckets == expected_buckets define_parallel_bucket_tests = [(50, 50, 10, 1.0, [(10, 10), (20, 20), (30, 30), (40, 40), (50, 50)]), (50, 50, 10, 0.5, [(10, 5), (20, 10), (30, 15), (40, 20), (50, 25), (50, 30), (50, 35), (50, 40), (50, 45), (50, 50)]), (10, 10, 10, 0.1, [(10, 2), (10, 3), (10, 4), (10, 5), (10, 6), (10, 7), (10, 8), (10, 9), (10, 10)]), (10, 5, 10, 0.01, [(10, 2), (10, 3), (10, 4), (10, 5)]), (50, 50, 10, 2.0, [(5, 10), (10, 20), (15, 30), (20, 40), (25, 50), (30, 50), (35, 50), (40, 50), (45, 50), (50, 50)]), (5, 10, 10, 10.0, [(2, 10), (3, 10), (4, 10), (5, 10)]), (5, 10, 10, 11.0, [(2, 10), (3, 10), (4, 10), (5, 10)]), (50, 50, 50, 0.5, [(50, 25), (50, 50)]), (50, 50, 50, 1.5, [(33, 50), (50, 50)]), (75, 75, 50, 1.5, [(33, 50), (66, 75), (75, 75)])] @pytest.mark.parametrize("max_seq_len_source, max_seq_len_target, bucket_width, length_ratio, expected_buckets", define_parallel_bucket_tests) def test_define_parallel_buckets(max_seq_len_source, max_seq_len_target, bucket_width, length_ratio, expected_buckets): buckets = data_io.define_parallel_buckets(max_seq_len_source, max_seq_len_target, bucket_width=bucket_width, length_ratio=length_ratio) assert buckets == expected_buckets get_bucket_tests = [([10, 20, 30, 40, 50], 50, 50), ([10, 20, 30, 40, 50], 11, 20), ([10, 20, 30, 40, 50], 9, 10), ([10, 20, 30, 40, 50], 51, None), ([10, 20, 30, 40, 50], 1, 10), ([10, 20, 30, 40, 50], 0, 10), ([], 50, None)] @pytest.mark.parametrize("buckets, length, expected_bucket", get_bucket_tests) def test_get_bucket(buckets, length, expected_bucket): bucket = data_io.get_bucket(length, buckets) assert bucket == expected_bucket tokens2ids_tests = [(["a", "b", "c"], {"a": 1, "b": 0, "c": 300, C.UNK_SYMBOL: 12}, [1, 0, 300]), (["a", "x", "c"], {"a": 1, "b": 0, "c": 300, C.UNK_SYMBOL: 12}, [1, 12, 300])] @pytest.mark.parametrize("tokens, vocab, expected_ids", tokens2ids_tests) def test_tokens2ids(tokens, vocab, expected_ids): ids = data_io.tokens2ids(tokens, vocab) assert ids == expected_ids @pytest.mark.parametrize("tokens, expected_ids", [(["1", "2", "3", "0"], [1, 2, 3, 0]), ([], [])]) def test_strids2ids(tokens, expected_ids): ids = data_io.strids2ids(tokens) assert ids == expected_ids @pytest.mark.parametrize("ids, expected_string", [([1, 2, 3, 0], "1 2 3 0"), ([], "")]) def test_ids2strids(ids, expected_string): string = data_io.ids2strids(ids) assert string == expected_string sequence_reader_tests = [(["1 2 3", "2", "14", "2 2 2"], False, False), (["a b c", "c"], True, False), (["a b c", "c"], True, True)] @pytest.mark.parametrize("sequences, use_vocab, add_bos", sequence_reader_tests) def test_sequence_reader(sequences, use_vocab, add_bos): with TemporaryDirectory() as work_dir: path = os.path.join(work_dir, 'input') with open(path, 'w') as f: for sequence in sequences: f.write(sequence + "\n") vocabulary = vocab.build_vocab(sequences) if use_vocab else None reader = data_io.SequenceReader(path, vocab=vocabulary, add_bos=add_bos) read_sequences = [s for s in reader] assert reader.is_done() assert len(read_sequences) == reader.count if vocabulary is None: with pytest.raises(SockeyeError) as e: _ = data_io.SequenceReader(path, vocab=vocabulary, add_bos=True) assert str(e.value) == "Adding a BOS symbol requires a vocabulary" expected_sequences = [data_io.strids2ids(get_tokens(s)) for s in sequences] assert read_sequences == expected_sequences else: expected_sequences = [data_io.tokens2ids(get_tokens(s), vocabulary) for s in sequences] if add_bos: expected_sequences = [[vocabulary[C.BOS_SYMBOL]] + s for s in expected_sequences] assert read_sequences == expected_sequences # check raise for multiple concurrent iters _ = iter(reader) with pytest.raises(SockeyeError) as e: iter(reader) assert str(e.value) == "Can not iterate multiple times simultaneously." def test_sample_based_define_bucket_batch_sizes(): batch_by_words = False batch_size = 32 max_seq_len = 100 buckets = data_io.define_parallel_buckets(max_seq_len, max_seq_len, 10, 1.5) bucket_batch_sizes = data_io.define_bucket_batch_sizes(buckets=buckets, batch_size=batch_size, batch_by_words=batch_by_words, batch_num_devices=1, data_target_average_len=[None] * len(buckets)) for bbs in bucket_batch_sizes: assert bbs.batch_size == batch_size assert bbs.average_words_per_batch == bbs.bucket[1] * batch_size def test_word_based_define_bucket_batch_sizes(): batch_by_words = True batch_num_devices = 1 batch_size = 200 max_seq_len = 100 buckets = data_io.define_parallel_buckets(max_seq_len, max_seq_len, 10, 1.5) bucket_batch_sizes = data_io.define_bucket_batch_sizes(buckets=buckets, batch_size=batch_size, batch_by_words=batch_by_words, batch_num_devices=batch_num_devices, data_target_average_len=[None] * len(buckets)) # last bucket batch size is different for bbs in bucket_batch_sizes[:-1]: expected_batch_size = round((batch_size / bbs.bucket[1]) / batch_num_devices) assert bbs.batch_size == expected_batch_size expected_average_words_per_batch = expected_batch_size * bbs.bucket[1] assert bbs.average_words_per_batch == expected_average_words_per_batch def _get_random_bucketed_data(buckets: List[Tuple[int, int]], min_count: int, max_count: int, bucket_counts: Optional[List[Optional[int]]] = None): """ Get random bucket data. :param buckets: The list of buckets. :param min_count: The minimum number of samples that will be sampled if no exact count is given. :param max_count: The maximum number of samples that will be sampled if no exact count is given. :param bucket_counts: For each bucket an optional exact example count can be given. If it is not given it will be sampled. :return: The random source, target and label arrays. """ if bucket_counts is None: bucket_counts = [None for _ in buckets] bucket_counts = [random.randint(min_count, max_count) if given_count is None else given_count for given_count in bucket_counts] source = [mx.nd.array(np.random.randint(0, 10, (count, random.randint(1, bucket[0])))) for count, bucket in zip(bucket_counts, buckets)] target = [mx.nd.array(np.random.randint(0, 10, (count, random.randint(1, bucket[1])))) for count, bucket in zip(bucket_counts, buckets)] label = target return source, target, label def test_parallel_data_set(): buckets = data_io.define_parallel_buckets(100, 100, 10, 1.0) source, target, label = _get_random_bucketed_data(buckets, min_count=0, max_count=5) def check_equal(arrays1, arrays2): assert len(arrays1) == len(arrays2) for a1, a2 in zip(arrays1, arrays2): assert np.array_equal(a1.asnumpy(), a2.asnumpy()) with TemporaryDirectory() as work_dir: dataset = data_io.ParallelDataSet(source, target, label) fname = os.path.join(work_dir, 'dataset') dataset.save(fname) dataset_loaded = data_io.ParallelDataSet.load(fname) check_equal(dataset.source, dataset_loaded.source) check_equal(dataset.target, dataset_loaded.target) check_equal(dataset.label, dataset_loaded.label) def test_parallel_data_set_fill_up(): batch_size = 32 buckets = data_io.define_parallel_buckets(100, 100, 10, 1.0) bucket_batch_sizes = data_io.define_bucket_batch_sizes(buckets, batch_size, batch_by_words=False, batch_num_devices=1, data_target_average_len=[None] * len(buckets)) dataset = data_io.ParallelDataSet(*_get_random_bucketed_data(buckets, min_count=1, max_count=5)) dataset_filled_up = dataset.fill_up(bucket_batch_sizes, 'replicate') assert len(dataset_filled_up.source) == len(dataset.source) assert len(dataset_filled_up.target) == len(dataset.target) assert len(dataset_filled_up.label) == len(dataset.label) for bidx in range(len(dataset)): bucket_batch_size = bucket_batch_sizes[bidx].batch_size assert dataset_filled_up.source[bidx].shape[0] == bucket_batch_size assert dataset_filled_up.target[bidx].shape[0] == bucket_batch_size assert dataset_filled_up.label[bidx].shape[0] == bucket_batch_size def test_get_permutations(): data = [list(range(3)), list(range(1)), list(range(7)), []] bucket_counts = [len(d) for d in data] permutation, inverse_permutation = data_io.get_permutations(bucket_counts) assert len(permutation) == len(inverse_permutation) == len(bucket_counts) == len(data) for d, p, pi in zip(data, permutation, inverse_permutation): p = p.asnumpy().astype(np.int) pi = pi.asnumpy().astype(np.int) p_set = set(p) pi_set = set(pi) assert len(p_set) == len(p) assert len(pi_set) == len(pi) assert p_set - pi_set == set() if d: d = np.array(d) assert (d[p][pi] == d).all() else: assert len(p_set) == 1 def test_parallel_data_set_permute(): batch_size = 5 buckets = data_io.define_parallel_buckets(100, 100, 10, 1.0) bucket_batch_sizes = data_io.define_bucket_batch_sizes(buckets, batch_size, batch_by_words=False, batch_num_devices=1, data_target_average_len=[None] * len(buckets)) dataset = data_io.ParallelDataSet(*_get_random_bucketed_data(buckets, min_count=0, max_count=5)).fill_up( bucket_batch_sizes, 'replicate') permutations, inverse_permutations = data_io.get_permutations(dataset.get_bucket_counts()) assert len(permutations) == len(inverse_permutations) == len(dataset) dataset_restored = dataset.permute(permutations).permute(inverse_permutations) assert len(dataset) == len(dataset_restored) for buck_idx in range(len(dataset)): num_samples = dataset.source[buck_idx].shape[0] if num_samples: assert (dataset.source[buck_idx] == dataset_restored.source[buck_idx]).asnumpy().all() assert (dataset.target[buck_idx] == dataset_restored.target[buck_idx]).asnumpy().all() assert (dataset.label[buck_idx] == dataset_restored.label[buck_idx]).asnumpy().all() else: assert not dataset_restored.source[buck_idx] assert not dataset_restored.target[buck_idx] assert not dataset_restored.label[buck_idx] def test_get_batch_indices(): max_bucket_size = 50 batch_size = 10 buckets = data_io.define_parallel_buckets(100, 100, 10, 1.0) bucket_batch_sizes = data_io.define_bucket_batch_sizes(buckets, batch_size, batch_by_words=False, batch_num_devices=1, data_target_average_len=[None] * len(buckets)) dataset = data_io.ParallelDataSet(*_get_random_bucketed_data(buckets=buckets, min_count=1, max_count=max_bucket_size)) indices = data_io.get_batch_indices(dataset, bucket_batch_sizes=bucket_batch_sizes) # check for valid indices for buck_idx, start_pos in indices: assert 0 <= buck_idx < len(dataset) assert 0 <= start_pos < len(dataset.source[buck_idx]) - batch_size + 1 # check that all indices are used for a filled-up dataset dataset = dataset.fill_up(bucket_batch_sizes, fill_up='replicate') indices = data_io.get_batch_indices(dataset, bucket_batch_sizes=bucket_batch_sizes) all_bucket_indices = set(list(range(len(dataset)))) computed_bucket_indices = set([i for i, j in indices]) assert not all_bucket_indices - computed_bucket_indices @pytest.mark.parametrize("buckets, expected_default_bucket_key", [([(10, 10), (20, 20), (30, 30), (40, 40), (50, 50)], (50, 50)), ([(5, 10), (10, 20), (15, 30), (25, 50), (20, 40)], (25, 50))]) def test_get_default_bucket_key(buckets, expected_default_bucket_key): default_bucket_key = data_io.get_default_bucket_key(buckets) assert default_bucket_key == expected_default_bucket_key get_parallel_bucket_tests = [([(10, 10), (20, 20), (30, 30), (40, 40), (50, 50)], 50, 50, 4, (50, 50)), ([(10, 10), (20, 20), (30, 30), (40, 40), (50, 50)], 50, 10, 4, (50, 50)), ([(10, 10), (20, 20), (30, 30), (40, 40), (50, 50)], 20, 10, 1, (20, 20)), ([(10, 10)], 20, 10, None, None), ([], 20, 10, None, None), ([(10, 11)], 11, 10, None, None), ([(11, 10)], 11, 10, 0, (11, 10))] @pytest.mark.parametrize("buckets, source_length, target_length, expected_bucket_index, expected_bucket", get_parallel_bucket_tests) def test_get_parallel_bucket(buckets, source_length, target_length, expected_bucket_index, expected_bucket): bucket_index, bucket = data_io.get_parallel_bucket(buckets, source_length, target_length) assert bucket_index == expected_bucket_index assert bucket == expected_bucket @pytest.mark.parametrize("source, target, expected_num_sents, expected_mean, expected_std", [([[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[1, 1, 1], [2, 2, 2], [3, 3, 3]], 3, 1.0, 0.0), ([[1, 1], [2, 2], [3, 3]], [[1, 1, 1], [2, 2, 2], [3, 3, 3]], 3, 1.5, 0.0), ([[1, 1, 1], [2, 2], [3, 3, 3, 3, 3, 3, 3]], [[1, 1, 1], [2], [3, 3, 3]], 2, 0.75, 0.25)]) def test_calculate_length_statistics(source, target, expected_num_sents, expected_mean, expected_std): length_statistics = data_io.calculate_length_statistics(source, target, 5, 5) assert len(source) == len(target) assert length_statistics.num_sents == expected_num_sents assert np.isclose(length_statistics.length_ratio_mean, expected_mean) assert np.isclose(length_statistics.length_ratio_std, expected_std) def test_get_training_data_iters(): train_line_count = 100 train_max_length = 30 dev_line_count = 20 dev_max_length = 30 expected_mean = 1.0 expected_std = 0.0 test_line_count = 20 test_line_count_empty = 0 test_max_length = 30 batch_size = 5 with tmp_digits_dataset("tmp_corpus", train_line_count, train_max_length, dev_line_count, dev_max_length, test_line_count, test_line_count_empty, test_max_length) as data: # tmp common vocab vcb = vocab.build_from_paths([data['source'], data['target']]) train_iter, val_iter, config_data = data_io.get_training_data_iters(data['source'], data['target'], data['validation_source'], data['validation_target'], vocab_source=vcb, vocab_target=vcb, vocab_source_path=None, vocab_target_path=None, shared_vocab=True, batch_size=batch_size, batch_by_words=False, batch_num_devices=1, fill_up="replicate", max_seq_len_source=train_max_length, max_seq_len_target=train_max_length, bucketing=True, bucket_width=10) assert isinstance(train_iter, data_io.ParallelSampleIter) assert isinstance(val_iter, data_io.ParallelSampleIter) assert isinstance(config_data, data_io.DataConfig) assert config_data.source == data['source'] assert config_data.target == data['target'] assert config_data.vocab_source is None assert config_data.vocab_target is None assert config_data.data_statistics.max_observed_len_source == train_max_length - 1 assert config_data.data_statistics.max_observed_len_target == train_max_length assert np.isclose(config_data.data_statistics.length_ratio_mean, expected_mean) assert np.isclose(config_data.data_statistics.length_ratio_std, expected_std) assert train_iter.batch_size == batch_size assert val_iter.batch_size == batch_size assert train_iter.default_bucket_key == (train_max_length, train_max_length) assert val_iter.default_bucket_key == (dev_max_length, dev_max_length) assert train_iter.dtype == 'float32' # test some batches bos_id = vcb[C.BOS_SYMBOL] expected_first_target_symbols = np.full((batch_size,), bos_id, dtype='float32') for epoch in range(2): while train_iter.iter_next(): batch = train_iter.next() assert len(batch.data) == 2 assert len(batch.label) == 1 assert batch.bucket_key in train_iter.buckets source = batch.data[0].asnumpy() target = batch.data[1].asnumpy() label = batch.label[0].asnumpy() assert source.shape[0] == target.shape[0] == label.shape[0] == batch_size # target first symbol should be BOS assert np.array_equal(target[:, 0], expected_first_target_symbols) # label first symbol should be 2nd target symbol assert np.array_equal(label[:, 0], target[:, 1]) # each label sequence contains one EOS symbol assert np.sum(label == vcb[C.EOS_SYMBOL]) == batch_size train_iter.reset() def _data_batches_equal(db1, db2): # We just compare the data, should probably be enough equal = True for data1, data2 in zip(db1.data, db2.data): equal = equal and np.allclose(data1.asnumpy(), data2.asnumpy()) return equal def test_parallel_sample_iter(): batch_size = 2 buckets = data_io.define_parallel_buckets(100, 100, 10, 1.0) # The first bucket is going to be empty: bucket_counts = [0] + [None] * (len(buckets) - 1) bucket_batch_sizes = data_io.define_bucket_batch_sizes(buckets, batch_size, batch_by_words=False, batch_num_devices=1, data_target_average_len=[None] * len(buckets)) dataset = data_io.ParallelDataSet(*_get_random_bucketed_data(buckets, min_count=0, max_count=5, bucket_counts=bucket_counts)) it = data_io.ParallelSampleIter(dataset, buckets, batch_size, bucket_batch_sizes) with TemporaryDirectory() as work_dir: # Test 1 it.next() expected_batch = it.next() fname = os.path.join(work_dir, "saved_iter") it.save_state(fname) it_loaded = data_io.ParallelSampleIter(dataset, buckets, batch_size, bucket_batch_sizes) it_loaded.reset() it_loaded.load_state(fname) loaded_batch = it_loaded.next() assert _data_batches_equal(expected_batch, loaded_batch) # Test 2 it.reset() expected_batch = it.next() it.save_state(fname) it_loaded = data_io.ParallelSampleIter(dataset, buckets, batch_size, bucket_batch_sizes) it_loaded.reset() it_loaded.load_state(fname) loaded_batch = it_loaded.next() assert _data_batches_equal(expected_batch, loaded_batch) # Test 3 it.reset() expected_batch = it.next() it.save_state(fname) it_loaded = data_io.ParallelSampleIter(dataset, buckets, batch_size, bucket_batch_sizes) it_loaded.reset() it_loaded.load_state(fname) loaded_batch = it_loaded.next() assert _data_batches_equal(expected_batch, loaded_batch) while it.iter_next(): it.next() it_loaded.next() assert not it_loaded.iter_next() def test_sharded_parallel_sample_iter(): batch_size = 2 buckets = data_io.define_parallel_buckets(100, 100, 10, 1.0) # The first bucket is going to be empty: bucket_counts = [0] + [None] * (len(buckets) - 1) bucket_batch_sizes = data_io.define_bucket_batch_sizes(buckets, batch_size, batch_by_words=False, batch_num_devices=1, data_target_average_len=[None] * len(buckets)) dataset1 = data_io.ParallelDataSet(*_get_random_bucketed_data(buckets, min_count=0, max_count=5, bucket_counts=bucket_counts)) dataset2 = data_io.ParallelDataSet(*_get_random_bucketed_data(buckets, min_count=0, max_count=5, bucket_counts=bucket_counts)) with TemporaryDirectory() as work_dir: shard1_fname = os.path.join(work_dir, 'shard1') shard2_fname = os.path.join(work_dir, 'shard2') dataset1.save(shard1_fname) dataset2.save(shard2_fname) shard_fnames = [shard1_fname, shard2_fname] it = data_io.ShardedParallelSampleIter(shard_fnames, buckets, batch_size, bucket_batch_sizes, 'replicate') with TemporaryDirectory() as work_dir: # Test 1 it.next() expected_batch = it.next() fname = os.path.join(work_dir, "saved_iter") it.save_state(fname) it_loaded = data_io.ShardedParallelSampleIter(shard_fnames, buckets, batch_size, bucket_batch_sizes, 'replicate') it_loaded.reset() it_loaded.load_state(fname) loaded_batch = it_loaded.next() assert _data_batches_equal(expected_batch, loaded_batch) # Test 2 it.reset() expected_batch = it.next() it.save_state(fname) it_loaded = data_io.ShardedParallelSampleIter(shard_fnames, buckets, batch_size, bucket_batch_sizes, 'replicate') it_loaded.reset() it_loaded.load_state(fname) loaded_batch = it_loaded.next() assert _data_batches_equal(expected_batch, loaded_batch) # Test 3 it.reset() expected_batch = it.next() it.save_state(fname) it_loaded = data_io.ShardedParallelSampleIter(shard_fnames, buckets, batch_size, bucket_batch_sizes, 'replicate') it_loaded.reset() it_loaded.load_state(fname) loaded_batch = it_loaded.next() assert _data_batches_equal(expected_batch, loaded_batch) while it.iter_next(): it.next() it_loaded.next() assert not it_loaded.iter_next() def test_sharded_parallel_sample_iter_num_batches(): num_shards = 2 batch_size = 2 num_batches_per_bucket = 10 buckets = data_io.define_parallel_buckets(100, 100, 10, 1.0) bucket_counts = [batch_size * num_batches_per_bucket for _ in buckets] num_batches_per_shard = num_batches_per_bucket * len(buckets) num_batches = num_shards * num_batches_per_shard bucket_batch_sizes = data_io.define_bucket_batch_sizes(buckets, batch_size, batch_by_words=False, batch_num_devices=1, data_target_average_len=[None] * len(buckets)) dataset1 = data_io.ParallelDataSet(*_get_random_bucketed_data(buckets, min_count=0, max_count=5, bucket_counts=bucket_counts)) dataset2 = data_io.ParallelDataSet(*_get_random_bucketed_data(buckets, min_count=0, max_count=5, bucket_counts=bucket_counts)) with TemporaryDirectory() as work_dir: shard1_fname = os.path.join(work_dir, 'shard1') shard2_fname = os.path.join(work_dir, 'shard2') dataset1.save(shard1_fname) dataset2.save(shard2_fname) shard_fnames = [shard1_fname, shard2_fname] it = data_io.ShardedParallelSampleIter(shard_fnames, buckets, batch_size, bucket_batch_sizes, 'replicate') num_batches_seen = 0 while it.iter_next(): it.next() num_batches_seen += 1 assert num_batches_seen == num_batches def test_sharded_and_parallel_iter_same_num_batches(): """ Tests that a sharded data iterator with just a single shard produces as many shards as an iterator directly using the same dataset. """ batch_size = 2 num_batches_per_bucket = 10 buckets = data_io.define_parallel_buckets(100, 100, 10, 1.0) bucket_counts = [batch_size * num_batches_per_bucket for _ in buckets] num_batches = num_batches_per_bucket * len(buckets) bucket_batch_sizes = data_io.define_bucket_batch_sizes(buckets, batch_size, batch_by_words=False, batch_num_devices=1, data_target_average_len=[None] * len(buckets)) dataset = data_io.ParallelDataSet(*_get_random_bucketed_data(buckets, min_count=0, max_count=5, bucket_counts=bucket_counts)) with TemporaryDirectory() as work_dir: shard_fname = os.path.join(work_dir, 'shard1') dataset.save(shard_fname) shard_fnames = [shard_fname] it_sharded = data_io.ShardedParallelSampleIter(shard_fnames, buckets, batch_size, bucket_batch_sizes, 'replicate') it_parallel = data_io.ParallelSampleIter(dataset, buckets, batch_size, bucket_batch_sizes) num_batches_seen = 0 while it_parallel.iter_next(): assert it_sharded.iter_next() it_parallel.next() it_sharded.next() num_batches_seen += 1 assert num_batches_seen == num_batches print("Resetting...") it_sharded.reset() it_parallel.reset() num_batches_seen = 0 while it_parallel.iter_next(): assert it_sharded.iter_next() it_parallel.next() it_sharded.next() num_batches_seen += 1 assert num_batches_seen == num_batches
[ "List[Tuple[int, int]]", "int", "int" ]
[ 8196, 8260, 8306 ]
[ 8217, 8263, 8309 ]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_decoder.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import mxnet as mx import pytest import sockeye.rnn_attention import sockeye.rnn import sockeye.constants as C import sockeye.coverage import sockeye.decoder from test.common import gaussian_vector, integer_vector step_tests = [(C.GRU_TYPE, True), (C.LSTM_TYPE, False)] @pytest.mark.parametrize("cell_type, context_gating", step_tests) def test_step(cell_type, context_gating, num_embed=2, encoder_num_hidden=5, decoder_num_hidden=5): vocab_size, batch_size, source_seq_len = 10, 10, 7, # (batch_size, source_seq_len, encoder_num_hidden) source = mx.sym.Variable("source") source_shape = (batch_size, source_seq_len, encoder_num_hidden) # (batch_size,) source_length = mx.sym.Variable("source_length") source_length_shape = (batch_size,) # (batch_size, num_embed) word_vec_prev = mx.sym.Variable("word_vec_prev") word_vec_prev_shape = (batch_size, num_embed) # (batch_size, decoder_num_hidden) hidden_prev = mx.sym.Variable("hidden_prev") hidden_prev_shape = (batch_size, decoder_num_hidden) # List(mx.sym.Symbol(batch_size, decoder_num_hidden) states_shape = (batch_size, decoder_num_hidden) config_coverage = sockeye.coverage.CoverageConfig(type="tanh", num_hidden=2, layer_normalization=False) config_attention = sockeye.rnn_attention.AttentionConfig(type="coverage", num_hidden=2, input_previous_word=False, source_num_hidden=decoder_num_hidden, query_num_hidden=decoder_num_hidden, layer_normalization=False, config_coverage=config_coverage) attention = sockeye.rnn_attention.get_attention(config_attention, max_seq_len=source_seq_len) attention_state = attention.get_initial_state(source_length, source_seq_len) attention_func = attention.on(source, source_length, source_seq_len) config_rnn = sockeye.rnn.RNNConfig(cell_type=cell_type, num_hidden=decoder_num_hidden, num_layers=1, dropout_inputs=0., dropout_states=0., residual=False, forget_bias=0.) config_decoder = sockeye.decoder.RecurrentDecoderConfig(max_seq_len_source=source_seq_len, rnn_config=config_rnn, attention_config=config_attention, context_gating=context_gating) decoder = sockeye.decoder.RecurrentDecoder(config=config_decoder) if cell_type == C.GRU_TYPE: layer_states = [gaussian_vector(shape=states_shape, return_symbol=True) for _ in range(config_rnn.num_layers)] elif cell_type == C.LSTM_TYPE: layer_states = [gaussian_vector(shape=states_shape, return_symbol=True) for _ in range(config_rnn.num_layers*2)] else: raise ValueError state, attention_state = decoder._step(word_vec_prev=word_vec_prev, state=sockeye.decoder.RecurrentDecoderState(hidden_prev, layer_states), attention_func=attention_func, attention_state=attention_state) sym = mx.sym.Group([state.hidden, attention_state.probs, attention_state.dynamic_source]) executor = sym.simple_bind(ctx=mx.cpu(), source=source_shape, source_length=source_length_shape, word_vec_prev=word_vec_prev_shape, hidden_prev=hidden_prev_shape) executor.arg_dict["source"][:] = gaussian_vector(source_shape) executor.arg_dict["source_length"][:] = integer_vector(source_length_shape, source_seq_len) executor.arg_dict["word_vec_prev"][:] = gaussian_vector(word_vec_prev_shape) executor.arg_dict["hidden_prev"][:] = gaussian_vector(hidden_prev_shape) executor.arg_dict["states"] = layer_states hidden_result, attention_probs_result, attention_dynamic_source_result = executor.forward() assert hidden_result.shape == hidden_prev_shape assert attention_probs_result.shape == (batch_size, source_seq_len) assert attention_dynamic_source_result.shape == (batch_size, source_seq_len, config_coverage.num_hidden)
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_encoder.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import pytest import mxnet as mx import numpy as np import sockeye.encoder _BATCH_SIZE = 8 _SEQ_LEN = 10 _NUM_EMBED = 8 _DATA_LENGTH_ND = mx.nd.array([1, 2, 3, 4, 5, 6, 7, 8]) @pytest.mark.parametrize("config, out_data_shape, out_data_length, out_seq_len", [ (sockeye.encoder.ConvolutionalEmbeddingConfig(num_embed=_NUM_EMBED, output_dim=None, max_filter_width=3, num_filters=[8, 16, 16], pool_stride=4, num_highway_layers=2, dropout=0, add_positional_encoding=False), (8, 3, 40), [1, 1, 1, 1, 2, 2, 2, 2], 3), (sockeye.encoder.ConvolutionalEmbeddingConfig(num_embed=_NUM_EMBED, output_dim=32, max_filter_width=2, num_filters=[8, 16], pool_stride=3, num_highway_layers=0, dropout=0.1, add_positional_encoding=True), (8, 4, 32), [1, 1, 1, 2, 2, 2, 3, 3], 4), ]) def test_convolutional_embedding_encoder(config, out_data_shape, out_data_length, out_seq_len): conv_embed = sockeye.encoder.ConvolutionalEmbeddingEncoder(config) data_nd = mx.nd.random_normal(shape=(_BATCH_SIZE, _SEQ_LEN, _NUM_EMBED)) data = mx.sym.Variable("data", shape=data_nd.shape) data_length = mx.sym.Variable("data_length", shape=_DATA_LENGTH_ND.shape) (encoded_data, encoded_data_length, encoded_seq_len) = conv_embed.encode(data=data, data_length=data_length, seq_len=_SEQ_LEN) exe = encoded_data.simple_bind(mx.cpu(), data=data_nd.shape) exe.forward(data=data_nd) assert exe.outputs[0].shape == out_data_shape exe = encoded_data_length.simple_bind(mx.cpu(), data_length=_DATA_LENGTH_ND.shape) exe.forward(data_length=_DATA_LENGTH_ND) assert np.equal(exe.outputs[0].asnumpy(), np.asarray(out_data_length)).all() assert encoded_seq_len == out_seq_len def test_sincos_positional_embeddings(): # Test that .encode() and .encode_positions() return the same values: data = mx.sym.Variable("data") positions = mx.sym.Variable("positions") pos_encoder = sockeye.encoder.AddSinCosPositionalEmbeddings(num_embed=_NUM_EMBED, scale_up_input=False, scale_down_positions=False, prefix="test") encoded, _, __ = pos_encoder.encode(data, None, _SEQ_LEN) nd_encoded = encoded.eval(data=mx.nd.zeros((_BATCH_SIZE, _SEQ_LEN, _NUM_EMBED)))[0] # Take the first element in the batch to get (seq_len, num_embed) nd_encoded = nd_encoded[0] encoded_positions = pos_encoder.encode_positions(positions, data) # Explicitly encode all positions from 0 to _SEQ_LEN nd_encoded_positions = encoded_positions.eval(positions=mx.nd.arange(0, _SEQ_LEN), data=mx.nd.zeros((_SEQ_LEN, _NUM_EMBED)))[0] assert np.isclose(nd_encoded.asnumpy(), nd_encoded_positions.asnumpy()).all()
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_inference.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import mxnet as mx import numpy as np import pytest import sockeye.inference _BOS = 0 _EOS = -1 def test_concat_translations(): expected_target_ids = [0, 1, 2, 8, 9, 3, 4, 5, -1] NUM_SRC = 7 def length_penalty(length): return 1. / length expected_score = (1 + 2 + 3) / length_penalty(len(expected_target_ids)) translations = [sockeye.inference.Translation([0, 1, 2, -1], np.zeros((4, NUM_SRC)), 1.0 / length_penalty(4)), # Translation without EOS sockeye.inference.Translation([0, 8, 9], np.zeros((3, NUM_SRC)), 2.0 / length_penalty(3)), sockeye.inference.Translation([0, 3, 4, 5, -1], np.zeros((5, NUM_SRC)), 3.0 / length_penalty(5))] combined = sockeye.inference._concat_translations(translations, start_id=_BOS, stop_ids={_EOS}, length_penalty=length_penalty) assert combined.target_ids == expected_target_ids assert combined.attention_matrix.shape == (len(expected_target_ids), len(translations) * NUM_SRC) assert np.isclose(combined.score, expected_score) def test_length_penalty_default(): lengths = mx.nd.array([[1], [2], [3]]) length_penalty = sockeye.inference.LengthPenalty(1.0, 0.0) expected_lp = np.array([[1.0], [2.], [3.]]) assert np.isclose(length_penalty(lengths).asnumpy(), expected_lp).all() def test_length_penalty(): lengths = mx.nd.array([[1], [2], [3]]) length_penalty = sockeye.inference.LengthPenalty(.2, 5.0) expected_lp = np.array([[6 ** 0.2 / 6 ** 0.2], [7 ** 0.2 / 6 ** 0.2], [8 ** 0.2 / 6 ** 0.2]]) assert np.isclose(length_penalty(lengths).asnumpy(), expected_lp).all() def test_length_penalty_int_input(): length = 1 length_penalty = sockeye.inference.LengthPenalty(.2, 5.0) expected_lp = [6 ** 0.2 / 6 ** 0.2] assert np.isclose(np.asarray([length_penalty(length)]), np.asarray(expected_lp)).all() @pytest.mark.parametrize("supported_max_seq_len_source, supported_max_seq_len_target, training_max_seq_len_source, " "forced_max_input_len, length_ratio_mean, length_ratio_std, " "expected_max_input_len, expected_max_output_len", [ (100, 100, 100, None, 0.9, 0.2, 89, 100), (100, 100, 100, None, 1.1, 0.2, 75, 100), # No source length constraints. (None, 100, 100, None, 0.9, 0.1, 98, 100), # No target length constraints. (80, None, 100, None, 1.1, 0.4, 80, 122), # No source/target length constraints. Source is max observed during training and target # based on length ratios. (None, None, 100, None, 1.0, 0.1, 100, 113), # Force a maximum input length. (100, 100, 100, 50, 1.1, 0.2, 50, 67), ]) def test_get_max_input_output_length( supported_max_seq_len_source, supported_max_seq_len_target, training_max_seq_len_source, forced_max_input_len, length_ratio_mean, length_ratio_std, expected_max_input_len, expected_max_output_len): max_input_len, get_max_output_len = sockeye.inference.get_max_input_output_length( supported_max_seq_len_source=supported_max_seq_len_source, supported_max_seq_len_target=supported_max_seq_len_target, training_max_seq_len_source=training_max_seq_len_source, forced_max_input_len=forced_max_input_len, length_ratio_mean=length_ratio_mean, length_ratio_std=length_ratio_std, num_stds=1) max_output_len = get_max_output_len(max_input_len) if supported_max_seq_len_source is not None: assert max_input_len <= supported_max_seq_len_source if supported_max_seq_len_target is not None: assert max_output_len <= supported_max_seq_len_target if expected_max_input_len is not None: assert max_input_len == expected_max_input_len if expected_max_output_len is not None: assert max_output_len == expected_max_output_len
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_init_embedding.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import pytest import numpy as np import mxnet as mx import sockeye.init_embedding as init_embedding @pytest.mark.parametrize( "embed, vocab_in, vocab_out, expected_embed_init", [ (np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]), {'w1': 0, 'w2': 1, 'w3': 2}, {'w2': 0, 'w3': 1, 'w4': 2, 'w5': 3}, mx.nd.array([[2, 2, 2], [3, 3, 3], [0, 0, 0], [0, 0, 0]])) ]) def test_init_embedding(embed, vocab_in, vocab_out, expected_embed_init): embed_init = init_embedding.init_embedding(embed, vocab_in, vocab_out) assert (embed_init == expected_embed_init).asnumpy().all()
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_layers.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import mxnet as mx import numpy as np import sockeye.layers import sockeye.rnn def test_layer_normalization(): batch_size = 32 other_dim = 10 num_hidden = 64 x = mx.sym.Variable('x') x_nd = mx.nd.uniform(0, 10, (batch_size, other_dim, num_hidden)) x_np = x_nd.asnumpy() ln = sockeye.layers.LayerNormalization(num_hidden, prefix="") # test moments sym = mx.sym.Group(ln.moments(x)) mean, var = sym.eval(x=x_nd) expected_mean = np.mean(x_np, axis=-1, keepdims=True) expected_var = np.var(x_np, axis=-1, keepdims=True) assert np.isclose(mean.asnumpy(), expected_mean).all() assert np.isclose(var.asnumpy(), expected_var).all() sym = ln.normalize(x) norm = sym.eval(x=x_nd, _gamma=mx.nd.ones((num_hidden,)), _beta=mx.nd.zeros((num_hidden,)))[0] expected_norm = (x_np - expected_mean) / np.sqrt(expected_var) assert np.isclose(norm.asnumpy(), expected_norm, atol=1.e-6).all() def test_weight_normalization(): # The norm after the operation should be equal to the scale factor. expected_norm = np.asarray([1., 2.]) scale_factor = mx.nd.array([[1.], [2.]]) weight = mx.sym.Variable("weight") weight_norm = sockeye.layers.WeightNormalization(weight, num_hidden=2) norm_weight = weight_norm() nd_norm_weight = norm_weight.eval(weight=mx.nd.array([[1., 2.], [3., 4.]]), wn_scale=scale_factor) assert np.isclose(np.linalg.norm(nd_norm_weight[0].asnumpy(), axis=1), expected_norm).all()
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_lexicon.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import os from tempfile import TemporaryDirectory import numpy as np import sockeye.constants as C import sockeye.lexicon def test_topk_lexicon(): lexicon = ["a\ta\t-0.6931471805599453", "a\tb\t-1.2039728043259361", "a\tc\t-1.6094379124341003", "b\tb\t0.0"] vocab_list = ["a", "b", "c"] vocab = dict((y, x) for (x, y) in enumerate(C.VOCAB_SYMBOLS + vocab_list)) k = 2 lex = sockeye.lexicon.TopKLexicon(vocab, vocab) # Create from known lexicon with TemporaryDirectory(prefix="test_topk_lexicon.") as work_dir: # Write fast_align format lex table input_lex_path = os.path.join(work_dir, "input.lex") with open(input_lex_path, "w") as out: for line in lexicon: print(line, file=out) # Use fast_align lex table to build top-k lexicon lex.create(input_lex_path, k) # Test against known lexicon expected = np.zeros((len(C.VOCAB_SYMBOLS) + len(vocab_list), k), dtype=np.int) # a -> special + a b expected[len(C.VOCAB_SYMBOLS),:2] = [len(C.VOCAB_SYMBOLS), len(C.VOCAB_SYMBOLS) + 1] # b -> special + b expected[len(C.VOCAB_SYMBOLS) + 1,:1] = [len(C.VOCAB_SYMBOLS) + 1] assert np.all(lex.lex == expected) # Test save/load json_lex_path = os.path.join(work_dir, "lex.json") lex.save(json_lex_path) lex.load(json_lex_path) assert np.all(lex.lex == expected) # Test lookup trg_ids = lex.get_trg_ids(np.array([[vocab["a"], vocab["c"]]], dtype=np.int)) expected = np.array([vocab[symbol] for symbol in C.VOCAB_SYMBOLS + ["a", "b"]], dtype=np.int) assert np.all(trg_ids == expected) trg_ids = lex.get_trg_ids(np.array([[vocab["b"]]], dtype=np.int)) expected = np.array([vocab[symbol] for symbol in C.VOCAB_SYMBOLS + ["b"]], dtype=np.int) assert np.all(trg_ids == expected) trg_ids = lex.get_trg_ids(np.array([[vocab["c"]]], dtype=np.int)) expected = np.array([vocab[symbol] for symbol in C.VOCAB_SYMBOLS], dtype=np.int) assert np.all(trg_ids == expected)
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_loss.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import mxnet as mx import numpy as np import pytest import sockeye.constants as C import sockeye.loss import sockeye.model def test_cross_entropy_loss(): config = sockeye.loss.LossConfig(name=C.CROSS_ENTROPY, vocab_size=4, normalization_type=C.LOSS_NORM_BATCH) loss = sockeye.loss.get_loss(config) assert isinstance(loss, sockeye.loss.CrossEntropyLoss) logits = mx.sym.Variable("logits") labels = mx.sym.Variable("labels") sym = mx.sym.Group(loss.get_loss(logits, labels)) assert sym.list_arguments() == ['logits', 'labels'] assert sym.list_outputs() == [C.SOFTMAX_NAME + "_output"] logits_np = mx.nd.array([[1, 2, 3, 4], [4, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]]) labels_np = mx.nd.array([1, 0, 2, 3]) # C.PAD_ID == 0 expected_softmax = np.asarray([[0.0320586, 0.08714432, 0.23688284, 0.64391428], [0.71123451, 0.09625512, 0.09625512, 0.09625512], [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25]]) expected_grads = np.asarray([[0.0320586, -0.91285568, 0.23688284, 0.64391428], [0., 0., 0., 0.], [0.25, 0.25, -0.75, 0.25], [0.25, 0.25, 0.25, -0.75]]) _, out_shapes, _ = (sym.infer_shape(logits=logits_np.shape, labels=labels_np.shape)) assert out_shapes[0] == logits_np.shape executor = sym.simple_bind(ctx=mx.cpu(), logits=logits_np.shape, labels=labels_np.shape) executor.arg_dict["logits"][:] = logits_np executor.arg_dict["labels"][:] = labels_np softmax = executor.forward(is_train=True)[0].asnumpy() assert np.isclose(softmax, expected_softmax).all() executor.backward() grads = executor.grad_dict["logits"].asnumpy() assert np.isclose(grads, expected_grads).all() label_grad_sum = executor.grad_dict["labels"].asnumpy().sum() assert label_grad_sum == 0 def test_smoothed_cross_entropy_loss(): config = sockeye.loss.LossConfig(name=C.CROSS_ENTROPY, vocab_size=4, normalization_type=C.LOSS_NORM_BATCH, label_smoothing=0.5) loss = sockeye.loss.get_loss(config) assert isinstance(loss, sockeye.loss.CrossEntropyLoss) logits = mx.sym.Variable("logits") labels = mx.sym.Variable("labels") sym = mx.sym.Group(loss.get_loss(logits, labels)) assert sym.list_arguments() == ['logits', 'labels'] assert sym.list_outputs() == [C.SOFTMAX_NAME + "_output"] logits_np = mx.nd.array([[1, 2, 3, 4], [4, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]]) labels_np = mx.nd.array([1, 0, 2, 3]) # C.PAD_ID == 0 expected_softmax = np.asarray([[0.0320586, 0.08714432, 0.23688284, 0.64391428], [0.71123451, 0.09625512, 0.09625512, 0.09625512], [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25]]) expected_grads = np.asarray([[-0.13460806, -0.41285568, 0.07021617, 0.4772476], [0., 0., 0., 0.], [0.08333333, 0.08333333, -0.25, 0.08333333], [0.08333333, 0.08333333, 0.08333333, -0.25]]) _, out_shapes, _ = (sym.infer_shape(logits=logits_np.shape, labels=labels_np.shape)) assert out_shapes[0] == logits_np.shape executor = sym.simple_bind(ctx=mx.cpu(), logits=logits_np.shape, labels=labels_np.shape) executor.arg_dict["logits"][:] = logits_np executor.arg_dict["labels"][:] = labels_np outputs = executor.forward(is_train=True) softmax = outputs[0].asnumpy() assert np.isclose(softmax, expected_softmax).all() executor.backward() grads = executor.grad_dict["logits"].asnumpy() assert np.isclose(grads, expected_grads).all() label_grad_sum = executor.grad_dict["labels"].asnumpy().sum() assert label_grad_sum == 0 @pytest.mark.parametrize("preds, labels, normalization_type, label_smoothing, expected_value", [(mx.nd.array([[0.0, 0.2, 0.8], [0.0, 1.0, 0.0]]), mx.nd.array([[2], [0]]), 'valid', 0.0, -np.log(0.8 + 1e-8) / 1.0), (mx.nd.array([[0.0, 0.2, 0.8], [0.0, 1.0, 0.0]]), mx.nd.array([[2], [0]]), 'batch', 0.0, -np.log(0.8 + 1e-8) / 2.0)] ) def test_cross_entropy_metric(preds, labels, normalization_type, label_smoothing, expected_value): config = sockeye.loss.LossConfig(name=C.CROSS_ENTROPY, vocab_size=preds.shape[1], normalization_type=normalization_type, label_smoothing=label_smoothing) metric = sockeye.loss.CrossEntropyMetric(config) metric.update([labels], [preds]) name, value = metric.get() assert name == 'cross-entropy' assert np.isclose(value, expected_value) def test_cross_entropy_internal(): config = sockeye.loss.LossConfig(name=C.CROSS_ENTROPY, vocab_size=3, normalization_type='valid', label_smoothing=0.0) metric = sockeye.loss.CrossEntropyMetric(config) pred = mx.nd.array([0.0, 0.2, 0.8]) label = mx.nd.array([2]) expected_cross_entropy = -np.log(0.8 + 1e-8) / 1.0 cross_entropy = metric.cross_entropy(pred, label, ignore=(label == C.PAD_ID)).sum() cross_entropy_smoothed = metric.cross_entropy_smoothed(pred, label, ignore=(label == C.PAD_ID)).sum() assert np.isclose(cross_entropy.asnumpy(), expected_cross_entropy) assert np.isclose(cross_entropy_smoothed.asnumpy(), expected_cross_entropy)
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_lr_scheduler.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import pytest from sockeye import lr_scheduler from sockeye.lr_scheduler import LearningRateSchedulerFixedStep, LearningRateSchedulerInvSqrtT, LearningRateSchedulerInvT def test_lr_scheduler(): updates_per_checkpoint = 13 half_life_num_checkpoints = 3 schedulers = [LearningRateSchedulerInvT(updates_per_checkpoint, half_life_num_checkpoints), LearningRateSchedulerInvSqrtT(updates_per_checkpoint, half_life_num_checkpoints)] for scheduler in schedulers: scheduler.base_lr = 1.0 # test correct half-life: assert scheduler(updates_per_checkpoint * half_life_num_checkpoints) == pytest.approx(0.5) def test_fixed_step_lr_scheduler(): # Parse schedule string schedule_str = "0.5:16,0.25:8" schedule = LearningRateSchedulerFixedStep.parse_schedule_str(schedule_str) assert schedule == [(0.5, 16), (0.25, 8)] # Check learning rate steps updates_per_checkpoint = 2 scheduler = LearningRateSchedulerFixedStep(schedule, updates_per_checkpoint) t = 0 for _ in range(16): t += 1 assert scheduler(t) == 0.5 if t % 2 == 0: scheduler.new_evaluation_result(False) assert scheduler(t) == 0.25 for _ in range(8): t += 1 assert scheduler(t) == 0.25 if t % 2 == 0: scheduler.new_evaluation_result(False) @pytest.mark.parametrize("scheduler_type, reduce_factor, expected_instance", [("fixed-rate-inv-sqrt-t", 1.0, lr_scheduler.LearningRateSchedulerInvSqrtT), ("fixed-rate-inv-t", 1.0, lr_scheduler.LearningRateSchedulerInvT), ("plateau-reduce", 0.5, lr_scheduler.LearningRateSchedulerPlateauReduce)]) def test_get_lr_scheduler(scheduler_type, reduce_factor, expected_instance): scheduler = lr_scheduler.get_lr_scheduler(scheduler_type, updates_per_checkpoint=4, learning_rate_half_life=2, learning_rate_reduce_factor=reduce_factor, learning_rate_reduce_num_not_improved=16) assert isinstance(scheduler, expected_instance) def test_get_lr_scheduler_no_reduce(): scheduler = lr_scheduler.get_lr_scheduler("plateau-reduce", updates_per_checkpoint=4, learning_rate_half_life=2, learning_rate_reduce_factor=1.0, learning_rate_reduce_num_not_improved=16) assert scheduler is None
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_optimizers.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from random import random import mxnet.ndarray as nd import pytest from mxnet import optimizer as opt import sockeye.constants as C from sockeye.optimizers import BatchState, CheckpointState, SockeyeOptimizer @pytest.mark.parametrize("optimizer, optimizer_params", ((C.OPTIMIZER_ADAM, {}), (C.OPTIMIZER_EVE, {}), (C.OPTIMIZER_EVE, {"use_batch_objective": True, "use_checkpoint_objective": True}), )) def test_optimizer(optimizer, optimizer_params): # Weights index = 0 weight = nd.zeros(shape=(8,)) # Optimizer from registry optimizer = opt.create(optimizer, **optimizer_params) state = optimizer.create_state(index, weight) # Run a few updates for i in range(1, 13): grad = nd.random_normal(shape=(8,)) if isinstance(optimizer, SockeyeOptimizer): batch_state = BatchState(metric_val=random()) optimizer.pre_update_batch(batch_state) optimizer.update(index, weight, grad, state) # Checkpoint if i % 3 == 0: if isinstance(optimizer, SockeyeOptimizer): checkpoint_state = CheckpointState(checkpoint=(i % 3 + 1), metric_val=random()) optimizer.pre_update_checkpoint(checkpoint_state)
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_output_handler.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import io import pytest import numpy as np from sockeye.inference import TranslatorInput, TranslatorOutput import sockeye.output_handler stream_handler_tests = [(sockeye.output_handler.StringOutputHandler(io.StringIO()), TranslatorInput(id=0, sentence="a test", tokens=None), TranslatorOutput(id=0, translation="ein Test", tokens=None, attention_matrix=None, score=0.), 0., "ein Test\n"), (sockeye.output_handler.StringOutputHandler(io.StringIO()), TranslatorInput(id=0, sentence="", tokens=None), TranslatorOutput(id=0, translation="", tokens=None, attention_matrix=None, score=0.), 0., "\n"), (sockeye.output_handler.StringWithAlignmentsOutputHandler(io.StringIO(), threshold=0.5), TranslatorInput(id=0, sentence="a test", tokens=None), TranslatorOutput(id=0, translation="ein Test", tokens=None, attention_matrix=np.asarray([[1, 0], [0, 1]]), score=0.), 0., "ein Test\t0-0 1-1\n"), (sockeye.output_handler.StringWithAlignmentsOutputHandler(io.StringIO(), threshold=0.5), TranslatorInput(id=0, sentence="a test", tokens=None), TranslatorOutput(id=0, translation="ein Test !", tokens=None, attention_matrix=np.asarray([[0.4, 0.6], [0.8, 0.2], [0.5, 0.5]]), score=0.), 0., "ein Test !\t0-1 1-0\n"), (sockeye.output_handler.BenchmarkOutputHandler(io.StringIO()), TranslatorInput(id=0, sentence="a test", tokens=["a", "test"]), TranslatorOutput(id=0, translation="ein Test", tokens=["ein", "Test"], attention_matrix=None, score=0.), 0.5, "input=a test\toutput=ein Test\tinput_tokens=2\toutput_tokens=2\ttranslation_time=0.5000\n"), ] @pytest.mark.parametrize("handler, translation_input, translation_output, translation_walltime, expected_string", stream_handler_tests) def test_stream_output_handler(handler, translation_input, translation_output, translation_walltime, expected_string): handler.handle(translation_input, translation_output, translation_walltime) assert handler.stream.getvalue() == expected_string
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_params.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import itertools import glob import os.path import tempfile import sockeye.training import sockeye.constants as C def test_cleanup_param_files(): with tempfile.TemporaryDirectory() as tmpDir: for n in itertools.chain(range(1, 20, 2), range(21, 41)): # Create empty files open(os.path.join(tmpDir, C.PARAMS_NAME % n), "w").close() sockeye.training.cleanup_params_files(tmpDir, 5, 40, 17) expectedSurviving = set([os.path.join(tmpDir, C.PARAMS_NAME % n) for n in [17, 36, 37, 38, 39, 40]]) # 17 must survive because it is the best one assert set(glob.glob(os.path.join(tmpDir, C.PARAMS_PREFIX + "*"))) == expectedSurviving
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_rnn.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import mxnet as mx import numpy as np import pytest from sockeye import constants as C from sockeye import rnn cell_test_cases = [ (rnn.LayerNormLSTMCell(100, prefix='rnn_', forget_bias=1.0), sorted(['rnn_c_scale', 'rnn_c_shift', 'rnn_h2h_bias', 'rnn_h2h_scale', 'rnn_h2h_shift', 'rnn_h2h_weight', 'rnn_i2h_bias', 'rnn_i2h_scale', 'rnn_i2h_shift', 'rnn_i2h_weight'])), (rnn.LayerNormPerGateLSTMCell(100, prefix='rnn_', forget_bias=1.0), sorted(['rnn_c_scale', 'rnn_c_shift', 'rnn_f_scale', 'rnn_f_shift', 'rnn_h2h_bias', 'rnn_h2h_weight', 'rnn_i2h_bias', 'rnn_i2h_weight', 'rnn_i_scale', 'rnn_i_shift', 'rnn_o_scale', 'rnn_o_shift', 'rnn_s_scale', 'rnn_s_shift'])), (rnn.LayerNormGRUCell(100, prefix='rnn_'), sorted(['rnn_h2h_bias', 'rnn_h2h_scale', 'rnn_h2h_shift', 'rnn_h2h_weight', 'rnn_i2h_bias', 'rnn_i2h_scale', 'rnn_i2h_shift', 'rnn_i2h_weight'])), (rnn.LayerNormPerGateGRUCell(100, prefix='rnn_'), sorted(['rnn_h2h_bias', 'rnn_h2h_weight', 'rnn_i2h_bias', 'rnn_i2h_weight', 'rnn_o_scale', 'rnn_o_shift', 'rnn_r_scale', 'rnn_r_shift', 'rnn_z_scale', 'rnn_z_shift'])) ] @pytest.mark.parametrize("cell, expected_param_keys", cell_test_cases) def test_ln_cell(cell, expected_param_keys): inputs = [mx.sym.Variable('rnn_t%d_data' % i) for i in range(3)] outputs, _ = cell.unroll(3, inputs) outputs = mx.sym.Group(outputs) print(sorted(cell.params._params.keys())) assert sorted(cell.params._params.keys()) == expected_param_keys assert outputs.list_outputs() == ['rnn_t0_out_output', 'rnn_t1_out_output', 'rnn_t2_out_output'] args, outs, auxs = outputs.infer_shape(rnn_t0_data=(10, 50), rnn_t1_data=(10, 50), rnn_t2_data=(10, 50)) assert outs == [(10, 100), (10, 100), (10, 100)] get_rnn_test_cases = [ (rnn.RNNConfig(cell_type=C.LSTM_TYPE, num_hidden=100, num_layers=2, dropout_inputs=0.5, dropout_states=0.5, residual=False, forget_bias=0.0), mx.rnn.LSTMCell), (rnn.RNNConfig(cell_type=C.LSTM_TYPE, num_hidden=100, num_layers=2, dropout_inputs=0.0, dropout_states=0.0, dropout_recurrent=0.5, residual=False, forget_bias=0.0), rnn.RecurrentDropoutLSTMCell), (rnn.RNNConfig(cell_type=C.LNLSTM_TYPE, num_hidden=12, num_layers=2, dropout_inputs=0.5, dropout_states=0.5, residual=False, forget_bias=1.0), rnn.LayerNormLSTMCell), (rnn.RNNConfig(cell_type=C.LNGLSTM_TYPE, num_hidden=55, num_layers=2, dropout_inputs=0.5, dropout_states=0.5, residual=False, forget_bias=0.0), rnn.LayerNormPerGateLSTMCell), (rnn.RNNConfig(cell_type=C.GRU_TYPE, num_hidden=200, num_layers=2, dropout_inputs=0.9, dropout_states=0.9, residual=False, forget_bias=0.0), mx.rnn.GRUCell), (rnn.RNNConfig(cell_type=C.LNGRU_TYPE, num_hidden=100, num_layers=2, dropout_inputs=0.0, dropout_states=0.5, residual=False, forget_bias=0.0), rnn.LayerNormGRUCell), (rnn.RNNConfig(cell_type=C.LNGGRU_TYPE, num_hidden=2, num_layers=2, dropout_inputs=0.0, dropout_states=0.0, residual=True, forget_bias=0.0), rnn.LayerNormPerGateGRUCell), (rnn.RNNConfig(cell_type=C.LSTM_TYPE, num_hidden=2, num_layers=3, dropout_inputs=0.0, dropout_states=0.0, residual=True, forget_bias=0.0), mx.rnn.LSTMCell)] @pytest.mark.parametrize("config, expected_cell", get_rnn_test_cases) def test_get_stacked_rnn(config, expected_cell): cell = rnn.get_stacked_rnn(config, prefix=config.cell_type) assert isinstance(cell, mx.rnn.SequentialRNNCell) cell = cell._cells[-1] # last cell if config.residual: assert isinstance(cell, mx.rnn.ResidualCell) cell = cell.base_cell if config.dropout_inputs > 0 or config.dropout_states > 0: assert isinstance(cell, rnn.VariationalDropoutCell) cell = cell.base_cell assert isinstance(cell, expected_cell) assert cell._num_hidden, config.num_hidden def test_cell_parallel_input(): num_hidden = 128 batch_size = 256 parallel_size = 64 input_shape = (batch_size, num_hidden) states_shape = (batch_size, num_hidden) parallel_shape = (batch_size, parallel_size) inp = mx.sym.Variable("input") parallel_input = mx.sym.Variable("parallel") params = mx.rnn.RNNParams("params_") states = mx.sym.Variable("states") default_cell = mx.rnn.RNNCell(num_hidden, params=params) default_cell_output, _ = default_cell(mx.sym.concat(inp, parallel_input), states) inner_rnn_cell = mx.rnn.RNNCell(num_hidden, params=params) parallel_cell = rnn.ParallelInputCell(inner_rnn_cell) parallel_cell_output, _ = parallel_cell(inp, parallel_input, states) input_nd = mx.nd.random_uniform(shape=input_shape) states_nd = mx.nd.random_uniform(shape=states_shape) parallel_nd = mx.nd.random_uniform(shape=parallel_shape) arg_shapes, _, _ = default_cell_output.infer_shape(input=input_shape, states=states_shape, parallel=parallel_shape) params_with_shapes = filter(lambda a: a[0].startswith("params_"), [x for x in zip(default_cell_output.list_arguments(), arg_shapes)] ) params_nd = {} for name, shape in params_with_shapes: params_nd[name] = mx.nd.random_uniform(shape=shape) out_default_residual = default_cell_output.eval(input=input_nd, states=states_nd, parallel=parallel_nd, **params_nd)[0] out_parallel = parallel_cell_output.eval(input=input_nd, states=states_nd, parallel=parallel_nd, **params_nd)[0] assert np.isclose(out_default_residual.asnumpy(), out_parallel.asnumpy()).all() def test_residual_cell_parallel_input(): num_hidden = 128 batch_size = 256 parallel_size = 64 input_shape = (batch_size, num_hidden) states_shape = (batch_size, num_hidden) parallel_shape = (batch_size, parallel_size) inp = mx.sym.Variable("input") parallel_input = mx.sym.Variable("parallel") params = mx.rnn.RNNParams("params_") states = mx.sym.Variable("states") default_cell = mx.rnn.RNNCell(num_hidden, params=params) default_cell_output, _ = default_cell(mx.sym.concat(inp, parallel_input), states) default_residual_output = mx.sym.elemwise_add(default_cell_output, inp) inner_rnn_cell = mx.rnn.RNNCell(num_hidden, params=params) parallel_cell = rnn.ResidualCellParallelInput(inner_rnn_cell) parallel_cell_output, _ = parallel_cell(inp, parallel_input, states) input_nd = mx.nd.random_uniform(shape=input_shape) states_nd = mx.nd.random_uniform(shape=states_shape) parallel_nd = mx.nd.random_uniform(shape=parallel_shape) arg_shapes, _, _ = default_residual_output.infer_shape(input=input_shape, states=states_shape, parallel=parallel_shape) params_with_shapes = filter(lambda a: a[0].startswith("params_"), [x for x in zip(default_residual_output.list_arguments(), arg_shapes)] ) params_nd = {} for name, shape in params_with_shapes: params_nd[name] = mx.nd.random_uniform(shape=shape) out_default_residual = default_residual_output.eval(input=input_nd, states=states_nd, parallel=parallel_nd, **params_nd)[0] out_parallel = parallel_cell_output.eval(input=input_nd, states=states_nd, parallel=parallel_nd, **params_nd)[0] assert np.isclose(out_default_residual.asnumpy(), out_parallel.asnumpy()).all() def test_sequential_rnn_cell_parallel_input(): num_hidden = 128 batch_size = 256 parallel_size = 64 n_layers = 3 input_shape = (batch_size, num_hidden) states_shape = (batch_size, num_hidden) parallel_shape = (batch_size, parallel_size) input = mx.sym.Variable("input") parallel_input = mx.sym.Variable("parallel") params = mx.rnn.RNNParams("params_") # To simplify, we will share the parameters across all layers states = mx.sym.Variable("states") # ...and also the previous states last_output = input for _ in range(n_layers): cell = mx.rnn.RNNCell(num_hidden, params=params) last_output, _ = cell(mx.sym.concat(last_output, parallel_input), states) manual_stacking_output = last_output sequential_cell = rnn.SequentialRNNCellParallelInput() for _ in range(n_layers): cell = mx.rnn.RNNCell(num_hidden, params=params) cell = rnn.ParallelInputCell(cell) sequential_cell.add(cell) sequential_output, _ = sequential_cell(input, parallel_input, [states]*n_layers) input_nd = mx.nd.random_uniform(shape=input_shape) states_nd = mx.nd.random_uniform(shape=states_shape) parallel_nd = mx.nd.random_uniform(shape=parallel_shape) arg_shapes, _, _ = manual_stacking_output.infer_shape(input=input_shape, states=states_shape, parallel=parallel_shape) params_with_shapes = filter(lambda a: a[0].startswith("params_"), [x for x in zip(manual_stacking_output.list_arguments(), arg_shapes)] ) params_nd = {} for name, shape in params_with_shapes: params_nd[name] = mx.nd.random_uniform(shape=shape) out_manual = manual_stacking_output.eval(input=input_nd, states=states_nd, parallel=parallel_nd, **params_nd)[0] out_sequential = sequential_output.eval(input=input_nd, states=states_nd, parallel=parallel_nd, **params_nd)[0] assert np.isclose(out_manual.asnumpy(), out_sequential.asnumpy()).all()
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_translate.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import io import unittest import unittest.mock import pytest import sockeye.inference import sockeye.output_handler import sockeye.translate TEST_DATA = "Test file line 1\n" \ "Test file line 2\n" @pytest.fixture def mock_translator(): return unittest.mock.Mock(spec=sockeye.inference.Translator) @pytest.fixture def mock_output_handler(): return unittest.mock.Mock(spec=sockeye.output_handler.OutputHandler) def mock_open(*args, **kargs): f_open = unittest.mock.mock_open(*args, **kargs) f_open.return_value.__iter__ = lambda self: iter(self.readline, '') return f_open @unittest.mock.patch("builtins.open", new_callable=mock_open, read_data=TEST_DATA) def test_translate_by_file(mock_file, mock_translator, mock_output_handler): mock_translator.translate.return_value = ['', ''] mock_translator.batch_size = 1 mock_file.return_value = TEST_DATA.splitlines() sockeye.translate.read_and_translate(translator=mock_translator, output_handler=mock_output_handler, chunk_size=2, source='/dev/null') # Ensure that our translator has the correct input passed to it. mock_translator.make_input.assert_any_call(1, "Test file line 1") mock_translator.make_input.assert_any_call(2, "Test file line 2") # Ensure translate gets called once. Input here will be a dummy mocked result, so we'll ignore it. assert mock_translator.translate.call_count == 1 @unittest.mock.patch("sys.stdin", io.StringIO(TEST_DATA)) def test_translate_by_stdin_chunk2(mock_translator, mock_output_handler): mock_translator.translate.return_value = ['', ''] mock_translator.batch_size = 1 sockeye.translate.read_and_translate(translator=mock_translator, output_handler=mock_output_handler, chunk_size=2) # Ensure that our translator has the correct input passed to it. mock_translator.make_input.assert_any_call(1, "Test file line 1\n") mock_translator.make_input.assert_any_call(2, "Test file line 2\n") # Ensure translate gets called once. Input here will be a dummy mocked result, so we'll ignore it. assert mock_translator.translate.call_count == 1
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_utils.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import os import tempfile import math import mxnet as mx import numpy as np import pytest from sockeye import __version__ from sockeye import utils @pytest.mark.parametrize("some_list, expected", [ ([1, 2, 3, 4, 5, 6, 7, 8], [[1, 2, 3], [4, 5, 6], [7, 8]]), ([1, 2], [[1, 2]]), ([1, 2, 3], [[1, 2, 3]]), ([1, 2, 3, 4], [[1, 2, 3], [4]]), ]) def test_chunks(some_list, expected): chunk_size = 3 chunked_list = list(utils.chunks(some_list, chunk_size)) assert chunked_list == expected def test_get_alignments(): attention_matrix = np.asarray([[0.1, 0.4, 0.5], [0.2, 0.8, 0.0], [0.4, 0.4, 0.2]]) test_cases = [(0.5, [(1, 1)]), (0.8, []), (0.1, [(0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2)])] for threshold, expected_alignment in test_cases: alignment = list(utils.get_alignments(attention_matrix, threshold=threshold)) assert alignment == expected_alignment device_params = [([-4, 3, 5], 6, [0, 1, 2, 3, 4, 5]), ([-2, 3, -2, 5], 6, [0, 1, 2, 3, 4, 5]), ([-1], 1, [0]), ([1], 1, [1])] @pytest.mark.parametrize("requested_device_ids, num_gpus_available, expected", device_params) def test_expand_requested_device_ids(requested_device_ids, num_gpus_available, expected): assert set(utils._expand_requested_device_ids(requested_device_ids, num_gpus_available)) == set(expected) @pytest.mark.parametrize("requested_device_ids, num_gpus_available, expected", device_params) def test_aquire_gpus(tmpdir, requested_device_ids, num_gpus_available, expected): with utils.acquire_gpus(requested_device_ids, lock_dir=str(tmpdir), num_gpus_available=num_gpus_available) as acquired_gpus: assert set(acquired_gpus) == set(expected) # We expect the following settings to raise a ValueError device_params_expected_exception = [ # requesting the same gpu twice ([-4, 3, 3, 5], 5), # too few GPUs available ([-4, 3, 5], 5), ([3, 5], 1), ([-2], 1), ([-1, -1], 1)] @pytest.mark.parametrize("requested_device_ids, num_gpus_available", device_params_expected_exception) def test_expand_requested_device_ids_exception(requested_device_ids, num_gpus_available): with pytest.raises(ValueError): utils._expand_requested_device_ids(requested_device_ids, num_gpus_available) @pytest.mark.parametrize("requested_device_ids, num_gpus_available", device_params_expected_exception) def test_aquire_gpus_exception(tmpdir, requested_device_ids, num_gpus_available): with pytest.raises(ValueError): with utils.acquire_gpus(requested_device_ids, lock_dir=str(tmpdir), num_gpus_available=num_gpus_available) as _: pass # Let's assume GPU 1 is locked already device_params_1_locked = [([-4, 3, 5], 7, [0, 2, 3, 4, 5, 6]), ([-2, 3, -2, 5], 7, [0, 2, 3, 4, 5, 6])] @pytest.mark.parametrize("requested_device_ids, num_gpus_available, expected", device_params_1_locked) def test_aquire_gpus_1_locked(tmpdir, requested_device_ids, num_gpus_available, expected): gpu_1 = 1 with utils.GpuFileLock([gpu_1], str(tmpdir)) as lock: with utils.acquire_gpus(requested_device_ids, lock_dir=str(tmpdir), num_gpus_available=num_gpus_available) as acquired_gpus: assert set(acquired_gpus) == set(expected) def test_acquire_gpus_exception_propagation(tmpdir): raised_exception = RuntimeError("This exception should be propagated properly.") caught_exception = None try: with utils.acquire_gpus([-1, 4, -1], lock_dir=str(tmpdir), num_gpus_available=12) as _: raise raised_exception except Exception as e: caught_exception = e assert caught_exception is raised_exception def test_gpu_file_lock_cleanup(tmpdir): gpu_id = 0 candidates = [gpu_id] # Test that the lock files get created and clean up with utils.GpuFileLock(candidates, str(tmpdir)) as lock: assert lock == gpu_id assert tmpdir.join("sockeye.gpu0.lock").check(), "Lock file did not exist." assert not tmpdir.join("sockeye.gpu1.lock").check(), "Unrelated lock file did exist" assert not tmpdir.join("sockeye.gpu0.lock").check(), "Lock file was not cleaned up." def test_gpu_file_lock_exception_propagation(tmpdir): gpu_ids = [0] # Test that exceptions are properly propagated raised_exception = RuntimeError("This exception should be propagated properly.") caught_exception = None try: with utils.GpuFileLock(gpu_ids, str(tmpdir)) as lock: raise raised_exception except Exception as e: caught_exception = e assert caught_exception is raised_exception def test_gpu_file_lock_locking(tmpdir): # the second time we try to acquire a lock for the same device we should not succeed gpu_id = 0 candidates = [gpu_id] with utils.GpuFileLock(candidates, str(tmpdir)) as lock_inner: assert lock_inner == 0 with utils.GpuFileLock(candidates, str(tmpdir)) as lock_outer: assert lock_outer is None def test_gpu_file_lock_permission_exception(tmpdir): with pytest.raises(PermissionError): tmpdir = tmpdir.mkdir("sub") # remove permissions tmpdir.chmod(0) with utils.GpuFileLock([0], str(tmpdir)) as lock: assert False, "We expect to raise an exception when aquiring the lock and never reach this code." def test_check_condition_true(): utils.check_condition(1 == 1, "Nice") def test_check_condition_false(): with pytest.raises(utils.SockeyeError) as e: utils.check_condition(1 == 2, "Wrong") assert "Wrong" == str(e.value) @pytest.mark.parametrize("version_string,expected_version", [("1.0.3", ("1", "0", "3")), ("1.0.2.3", ("1", "0", "2.3"))]) def test_parse_version(version_string, expected_version): assert expected_version == utils.parse_version(version_string) def test_check_version_disregards_minor(): release, major, minor = utils.parse_version(__version__) other_minor_version = "%s.%s.%d" % (release, major, int(minor) + 1) utils.check_version(other_minor_version) def _get_later_major_version(): release, major, minor = utils.parse_version(__version__) return "%s.%d.%s" % (release, int(major) + 1, minor) def test_check_version_checks_major(): version = _get_later_major_version() with pytest.raises(utils.SockeyeError) as e: utils.check_version(version) assert "Given major version (%s) does not match major code version (%s)" % (version, __version__) == str(e.value) @pytest.mark.parametrize("samples,expected_mean, expected_variance", [ ([1, 2], 1.5, 0.25), ([4., 100., 12., -3, 1000, 1., -200], 130.57142857142858, 132975.38775510204), ]) def test_online_mean_and_variance(samples, expected_mean, expected_variance): mean_and_variance = utils.OnlineMeanAndVariance() for sample in samples: mean_and_variance.update(sample) assert np.isclose(mean_and_variance.mean, expected_mean) assert np.isclose(mean_and_variance.variance, expected_variance) @pytest.mark.parametrize("samples,expected_mean", [ ([], 0.), ([5.], 5.), ]) def test_online_mean_and_variance_nan(samples, expected_mean): mean_and_variance = utils.OnlineMeanAndVariance() for sample in samples: mean_and_variance.update(sample) assert np.isclose(mean_and_variance.mean, expected_mean) assert math.isnan(mean_and_variance.variance) get_tokens_tests = [("this is a line \n", ["this", "is", "a", "line"]), (" a \tb \r \n", ["a", "b"])] @pytest.mark.parametrize("line, expected_tokens", get_tokens_tests) def test_get_tokens(line, expected_tokens): tokens = list(utils.get_tokens(line)) assert tokens == expected_tokens def test_average_arrays(): n = 4 shape = (12, 14) arrays = [np.random.uniform(0, 1, (12, 14)) for _ in range(n)] expected_average = np.zeros(shape) for array in arrays: expected_average += array expected_average /= 4 mx_arrays = [mx.nd.array(a) for a in arrays] assert np.isclose(utils.average_arrays(mx_arrays).asnumpy(), expected_average).all() with pytest.raises(utils.SockeyeError) as e: other_shape = (12, 13) utils.average_arrays(mx_arrays + [mx.nd.zeros(other_shape)]) assert "nd array shapes do not match" == str(e.value) def test_save_and_load_params(): array = mx.nd.uniform(0, 1, (10, 12)) arg_params = {"array": array} aux_params = {"array": array} with tempfile.TemporaryDirectory() as tmpdir: path = os.path.join(tmpdir, "params") utils.save_params(arg_params, path, aux_params=aux_params) params = mx.nd.load(path) assert len(params.keys()) == 2 assert "arg:array" in params.keys() assert "aux:array" in params.keys() loaded_arg_params, loaded_aux_params = utils.load_params(path) assert "array" in loaded_arg_params assert "array" in loaded_aux_params assert np.isclose(loaded_arg_params['array'].asnumpy(), array.asnumpy()).all() assert np.isclose(loaded_aux_params['array'].asnumpy(), array.asnumpy()).all() def test_print_value(): data = mx.sym.Variable("data") weights = mx.sym.Variable("weights") softmax_label = mx.sym.Variable("softmax_label") fc = mx.sym.FullyConnected(data=data, num_hidden=128, weight=weights, no_bias=True) out = mx.sym.SoftmaxOutput(data=fc, label=softmax_label, name="softmax") fc_print = mx.sym.Custom(op_type="PrintValue", data=fc, print_name="FullyConnected") out_print = mx.sym.SoftmaxOutput(data=fc_print, label=softmax_label, name="softmax") data_np = np.random.rand(1, 256) weights_np = np.random.rand(128, 256) label_np = np.random.rand(1, 128) executor_base = out.simple_bind(mx.cpu(), data=(1, 256), softmax_label=(1, 128), weights=(128, 256)) executor_base.arg_dict["data"][:] = data_np executor_base.arg_dict["weights"][:] = weights_np executor_base.arg_dict["softmax_label"][:] = label_np executor_print = out_print.simple_bind(mx.cpu(), data=(1, 256), softmax_label=(1, 128), weights=(128, 256)) executor_print.arg_dict["data"][:] = data_np executor_print.arg_dict["weights"][:] = weights_np executor_print.arg_dict["softmax_label"][:] = label_np output_base = executor_base.forward(is_train=True)[0] output_print = executor_print.forward(is_train=True)[0] assert np.isclose(output_base.asnumpy(), output_print.asnumpy()).all() executor_base.backward() executor_print.backward() assert np.isclose(executor_base.grad_arrays[1].asnumpy(), executor_print.grad_arrays[1].asnumpy()).all()
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/test/unit/test_vocab.py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import pytest import sockeye.constants as C from sockeye.vocab import build_vocab test_vocab = [ # Example 1 (["one two three", "one two three"], 3, 1, {"<pad>": 0, "<unk>": 1, "<s>": 2, "</s>": 3, "two": 4, "three": 5, "one": 6}), (["one two three", "one two three"], 3, 2, {"<pad>": 0, "<unk>": 1, "<s>": 2, "</s>": 3, "two": 4, "three": 5, "one": 6}), (["one two three", "one two three"], 2, 2, {"<pad>": 0, "<unk>": 1, "<s>": 2, "</s>": 3, "two": 4, "three": 5}), # Example 2 (["one one two three ", "one two three"], 3, 1, {"<pad>": 0, "<unk>": 1, "<s>": 2, "</s>": 3, "one": 4, "two": 5, "three": 6}), (["one one two three ", "one two three"], 3, 2, {"<pad>": 0, "<unk>": 1, "<s>": 2, "</s>": 3, "one": 4, "two": 5, "three": 6}), (["one one two three ", "one two three"], 3, 3, {"<pad>": 0, "<unk>": 1, "<s>": 2, "</s>": 3, "one": 4}), (["one one two three ", "one two three"], 2, 1, {"<pad>": 0, "<unk>": 1, "<s>": 2, "</s>": 3, "one": 4, "two": 5}), ] @pytest.mark.parametrize("data,size,min_count,expected", test_vocab) def test_build_vocab(data, size, min_count, expected): vocab = build_vocab(data, size, min_count) assert vocab == expected test_constants = [ # Example 1 (["one two three", "one two three"], 3, 1, C.VOCAB_SYMBOLS), (["one two three", "one two three"], 3, 2, C.VOCAB_SYMBOLS), (["one two three", "one two three"], 2, 2, C.VOCAB_SYMBOLS), # Example 2 (["one one two three ", "one two three"], 3, 1, C.VOCAB_SYMBOLS), (["one one two three ", "one two three"], 3, 2, C.VOCAB_SYMBOLS), (["one one two three ", "one two three"], 3, 3, C.VOCAB_SYMBOLS), (["one one two three ", "one two three"], 2, 1, C.VOCAB_SYMBOLS), ] @pytest.mark.parametrize("data,size,min_count,constants", test_constants) def test_constants_in_vocab(data, size, min_count, constants): vocab = build_vocab(data, size, min_count) for const in constants: assert const in vocab
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:sockeye亚马逊翻译模型(2017业内最佳)/sockeye-master/tutorials/seqcopy/genseqcopy.py
import random random.seed(12) num_samples = 100000 num_dev = 1000 min_seq_len = 10 max_seq_len = 30 vocab_size = 10 samples = set() for i in range(0, num_samples): seq_len = random.randint(min_seq_len, max_seq_len) samples.add(" ".join(str(random.randint(0, vocab_size)) for j in range(0, seq_len))) samples = list(samples) train_samples = samples[:num_samples-num_dev] dev_samples = samples[num_samples-num_dev:] with open("train.source", "w") as source, open("train.target", "w") as target: for sample in train_samples: source.write(sample + "\n") target.write(sample + "\n") with open("dev.source", "w") as source, open("dev.target", "w") as target: for sample in dev_samples: source.write(sample + "\n") target.write(sample + "\n")
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:机器阅读理解里程碑/code/attentive-reader-tensorflow-master/data_utils.py
# Modification of https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/models/rnn/translate/data_utils.py # # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for downloading data from WMT, tokenizing, vocabularies.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import re import sys import gzip import time import tarfile from tqdm import * from glob import glob from collections import defaultdict from gensim import corpora from nltk.corpus import stopwords from nltk.tokenize import RegexpTokenizer tokenizer = RegexpTokenizer(r'\w+') from tensorflow.python.platform import gfile # Regular expressions used to tokenize. _WORD_SPLIT = re.compile("([.,!?\"':;)(])") _DIGIT_RE = re.compile(r"(^| )\d+") _ENTITY = "@entity" _BAR = "_BAR" _UNK = "_UNK" BAR_ID = 0 UNK_ID = 1 _START_VOCAB = [_BAR, _UNK] tokenizer = RegexpTokenizer(r'@?\w+') cachedStopWords = stopwords.words("english") def basic_tokenizer(sentence): """Very basic tokenizer: split the sentence into a list of tokens.""" words = tokenizer.tokenize(sentence) return [w for w in words if w not in stopwords.words("english")] def create_vocabulary(vocabulary_path, context, max_vocabulary_size, tokenizer=None, normalize_digits=True): """Create vocabulary file (if it does not exist yet) from data file. Data file is assumed to contain one sentence per line. Each sentence is tokenized and digits are normalized (if normalize_digits is set). Vocabulary contains the most-frequent tokens up to max_vocabulary_size. We write it to vocabulary_path in a one-token-per-line format, so that later token in the first line gets id=0, second line gets id=1, and so on. Args: vocabulary_path: path where the vocabulary will be created. data_path: data file that will be used to create vocabulary. max_vocabulary_size: limit on the size of the created vocabulary. tokenizer: a function to use to tokenize each data sentence; if None, basic_tokenizer will be used. normalize_digits: Boolean; if true, all digits are replaced by 0s. """ if not gfile.Exists(vocabulary_path): t0 = time.time() print("Creating vocabulary %s" % (vocabulary_path)) texts = [word for word in context.lower().split() if word not in cachedStopWords] dictionary = corpora.Dictionary([texts], prune_at=max_vocabulary_size) print("Tokenize : %.4fs" % (t0 - time.time())) dictionary.save(vocabulary_path) def initialize_vocabulary(vocabulary_path): """Initialize vocabulary from file. We assume the vocabulary is stored one-item-per-line, so a file: dog cat will result in a vocabulary {"dog": 0, "cat": 1}, and this function will also return the reversed-vocabulary ["dog", "cat"]. Args: vocabulary_path: path to the file containing the vocabulary. Returns: a pair: the vocabulary (a dictionary mapping string to integers), and the reversed vocabulary (a list, which reverses the vocabulary mapping). Raises: ValueError: if the provided vocabulary_path does not exist. """ if gfile.Exists(vocabulary_path): vocab = corpora.Dictionary.load(vocabulary_path) return vocab.token2id, vocab.token2id.keys() else: raise ValueError("Vocabulary file %s not found.", vocabulary_path) def sentence_to_token_ids(sentence, vocabulary, tokenizer=None, normalize_digits=True): """Convert a string to list of integers representing token-ids. For example, a sentence "I have a dog" may become tokenized into ["I", "have", "a", "dog"] and with vocabulary {"I": 1, "have": 2, "a": 4, "dog": 7"} this function will return [1, 2, 4, 7]. Args: sentence: a string, the sentence to convert to token-ids. vocabulary: a dictionary mapping tokens to integers. tokenizer: a function to use to tokenize each sentence; if None, basic_tokenizer will be used. normalize_digits: Boolean; if true, all digits are replaced by 0s. Returns: a list of integers, the token-ids for the sentence. """ if tokenizer: words = tokenizer(sentence) else: words = basic_tokenizer(sentence) if not normalize_digits: return [vocabulary.get(w, UNK_ID) for w in words] # Normalize digits by 0 before looking words up in the vocabulary. return [vocabulary.get(re.sub(_DIGIT_RE, " ", w), UNK_ID) for w in words] def data_to_token_ids(data_path, target_path, vocab, tokenizer=None, normalize_digits=True): """Tokenize data file and turn into token-ids using given vocabulary file. This function loads data line-by-line from data_path, calls the above sentence_to_token_ids, and saves the result to target_path. See comment for sentence_to_token_ids on the details of token-ids format. Args: data_path: path to the data file in one-sentence-per-line format. target_path: path where the file with token-ids will be created. vocabulary_path: path to the vocabulary file. tokenizer: a function to use to tokenize each sentence; if None, basic_tokenizer will be used. normalize_digits: Boolean; if true, all digits are replaced by 0s. """ #if not gfile.Exists(target_path): if True: with gfile.GFile(data_path, mode="r") as data_file: counter = 0 results = [] for line in data_file: if counter == 0: results.append(line) elif counter == 4: entity, ans = line.split(":", 1) try: results.append("%s:%s" % (vocab[entity[:]], ans)) except: continue else: token_ids = sentence_to_token_ids(line, vocab, tokenizer, normalize_digits) results.append(" ".join([str(tok) for tok in token_ids]) + "\n") if line == "\n": counter += 1 try: len_d, len_q = len(results[2].split()), len(results[4].split()) except: return with gfile.GFile("%s_%s" % (target_path, len_d + len_q), mode="w") as tokens_file: tokens_file.writelines(results) def get_all_context(dir_name, context_fname): context = "" for fname in tqdm(glob(os.path.join(dir_name, "*.question"))): with open(fname) as f: try: lines = f.read().split("\n\n") context += lines[1] + " " context += lines[4].replace(":"," ") + " " except: print(" [!] Error occured for %s" % fname) print(" [*] Writing %s ..." % context_fname) with open(context_fname, 'wb') as f: f.write(context) return context def questions_to_token_ids(data_path, vocab_fname, vocab_size): vocab, _ = initialize_vocabulary(vocab_fname) for fname in tqdm(glob(os.path.join(data_path, "*.question"))): data_to_token_ids(fname, fname + ".ids%s" % vocab_size, vocab) def prepare_data(data_dir, dataset_name, vocab_size): train_path = os.path.join(data_dir, dataset_name, 'questions', 'training') context_fname = os.path.join(data_dir, dataset_name, '%s.context' % dataset_name) vocab_fname = os.path.join(data_dir, dataset_name, '%s.vocab%s' % (dataset_name, vocab_size)) if not os.path.exists(context_fname): print(" [*] Combining all contexts for %s in %s ..." % (dataset_name, train_path)) context = get_all_context(train_path, context_fname) else: context = gfile.GFile(context_fname, mode="r").read() print(" [*] Skip combining all contexts") if not os.path.exists(vocab_fname): print(" [*] Create vocab from %s to %s ..." % (context_fname, vocab_fname)) create_vocabulary(vocab_fname, context, vocab_size) else: print(" [*] Skip creating vocab") print(" [*] Convert data in %s into vocab indicies..." % (train_path)) questions_to_token_ids(train_path, vocab_fname, vocab_size) def load_vocab(data_dir, dataset_name, vocab_size): vocab_fname = os.path.join(data_dir, dataset_name, "%s.vocab%s" % (dataset_name, vocab_size)) print(" [*] Loading vocab from %s ..." % vocab_fname) return initialize_vocabulary(vocab_fname) def load_dataset(data_dir, dataset_name, vocab_size): train_files = glob(os.path.join(data_dir, dataset_name, "questions", "training", "*.question.ids%s_*" % (vocab_size))) max_idx = len(train_files) for idx, fname in enumerate(train_files): with open(fname) as f: yield f.read().split("\n\n"), idx, max_idx if __name__ == '__main__': if len(sys.argv) < 3: print(" [*] usage: python data_utils.py DATA_DIR DATASET_NAME VOCAB_SIZE") else: data_dir = sys.argv[1] dataset_name = sys.argv[2] if len(sys.argv) > 3: vocab_size = sys.argv[3] else: vocab_size = 100000 prepare_data(data_dir, dataset_name, int(vocab_size))
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:机器阅读理解里程碑/code/attentive-reader-tensorflow-master/main.py
import os import numpy as np import tensorflow as tf from model import DeepLSTM, DeepBiLSTM, AttentiveReader from utils import pp flags = tf.app.flags flags.DEFINE_integer("epoch", 25, "Epoch to train [25]") flags.DEFINE_integer("vocab_size", 10000, "The size of vocabulary [10000]") flags.DEFINE_integer("batch_size", 32, "The size of batch images [32]") flags.DEFINE_float("learning_rate", 5e-5, "Learning rate [0.00005]") flags.DEFINE_float("momentum", 0.9, "Momentum of RMSProp [0.9]") flags.DEFINE_float("decay", 0.95, "Decay of RMSProp [0.95]") flags.DEFINE_string("model", "LSTM", "The type of model to train and test [LSTM, BiLSTM, Attentive, Impatient]") flags.DEFINE_string("data_dir", "data", "The name of data directory [data]") flags.DEFINE_string("dataset", "cnn", "The name of dataset [cnn, dailymail]") flags.DEFINE_string("checkpoint_dir", "checkpoint", "Directory name to save the checkpoints [checkpoint]") flags.DEFINE_boolean("forward_only", False, "True for forward only, False for training [False]") FLAGS = flags.FLAGS model_dict = { 'LSTM': DeepLSTM, 'BiLSTM': DeepBiLSTM, 'Attentive': AttentiveReader, 'Impatient': None, } def main(_): pp.pprint(flags.FLAGS.__flags) if not os.path.exists(FLAGS.checkpoint_dir): print(" [*] Creating checkpoint directory...") os.makedirs(FLAGS.checkpoint_dir) with tf.device('/cpu:0'), tf.Session() as sess: model = model_dict[FLAGS.model](batch_size=FLAGS.batch_size, checkpoint_dir=FLAGS.checkpoint_dir, forward_only=FLAGS.forward_only) if not FLAGS.forward_only: model.train(sess, FLAGS.vocab_size, FLAGS.epoch, FLAGS.learning_rate, FLAGS.momentum, FLAGS.decay, FLAGS.data_dir, FLAGS.dataset) else: model.load(sess, FLAGS.checkpoint_dir, FLAGS.dataset) if __name__ == '__main__': tf.app.run()
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:机器阅读理解里程碑/code/attentive-reader-tensorflow-master/model/__init__.py
from base_model import Model from deep_lstm import DeepLSTM from deep_bi_lstm import DeepBiLSTM from attentive import AttentiveReader
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:机器阅读理解里程碑/code/attentive-reader-tensorflow-master/model/attentive.py
import tensorflow as tf import tensorflow as tf from tensorflow.models.rnn import rnn, rnn_cell from base_model import Model class AttentiveReader(Model): """Attentive Reader.""" def __init__(self, vocab_size, size=256, learning_rate=1e-4, batch_size=32, dropout=0.1, max_time_unit=100): """Initialize the parameters for an Attentive Reader model. Args: vocab_size: int, The dimensionality of the input vocab size: int, The dimensionality of the inputs into the Deep LSTM cell [32, 64, 256] learning_rate: float, [1e-3, 5e-4, 1e-4, 5e-5] batch_size: int, The size of a batch [16, 32] dropout: unit Tensor or float between 0 and 1 [0.0, 0.1, 0.2] max_time_unit: int, The max time unit [100] """ super(DeepLSTM, self).__init__() self.vocab_size = vocab_size self.size = size self.learning_rate = learning_rate self.batch_size = batch_size self.dropout = dropout self.max_time_unit = max_time_unit self.inputs = [] for idx in xrange(max_time_unit): self.inputs.append(tf.placeholder(tf.float32, [batch_size, vocab_size]))
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:机器阅读理解里程碑/code/attentive-reader-tensorflow-master/model/base_model.py
import os from glob import glob import tensorflow as tf class Model(object): """Abstract object representing an Reader model.""" def __init__(self): self.vocab = None self.data = None def save(self, sess, checkpoint_dir, dataset_name, global_step=None): self.saver = tf.train.Saver() print(" [*] Saving checkpoints...") model_name = type(self).__name__ or "Reader" if self.batch_size: model_dir = "%s_%s_%s" % (model_name, dataset_name, self.batch_size) else: model_dir = dataset_name checkpoint_dir = os.path.join(checkpoint_dir, model_dir) if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) self.saver.save(sess, os.path.join(checkpoint_dir, model_name), global_step=global_step) def load(self, sess, checkpoint_dir, dataset_name): model_name = type(self).__name__ or "Reader" self.saver = tf.train.Saver() print(" [*] Loading checkpoints...") if self.batch_size: model_dir = "%s_%s_%s" % (model_name, dataset_name, self.batch_size) else: model_dir = dataset_name checkpoint_dir = os.path.join(checkpoint_dir, model_dir) ckpt = tf.train.get_checkpoint_state(checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: ckpt_name = os.path.basename(ckpt.model_checkpoint_path) self.saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name)) return True else: return False
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:机器阅读理解里程碑/code/attentive-reader-tensorflow-master/model/cells.py
import tensorflow as tf from tensorflow.models.rnn.rnn_cell import RNNCell, linear class LSTMCell(RNNCell): """Almost same with tf.models.rnn.rnn_cell.BasicLSTMCell except adding c to inputs and h to calculating gates, adding a skip connection from the input of current time t, and returning only h not concat of c and h. """ def __init__(self, num_units, forget_bias=1.0): self._num_units = num_units self._forget_bias = forget_bias self.c = None @property def input_size(self): return self._num_units @property def output_size(self): return self._num_units @property def state_size(self): return self._num_units def __call__(self, inputs, state, scope=None): """Long short-term memory cell (LSTM).""" with tf.variable_scope("BasicLSTMCell"): h = state if self.c == None: self.c = tf.reshape(tf.zeros_like(h), [-1, self._num_units]) concat = linear([inputs, h, self.c], 4 * self._num_units, True) i, j, f, o = tf.split(1, 4, concat) self.c = self.c * tf.sigmoid(f + self._forget_bias) + tf.sigmoid(i) * tf.tanh(j) new_h = tf.tanh(self.c) * tf.sigmoid(o) softmax_w = tf.get_variable("softmax_w", [self._num_units, self._num_units]) softmax_b = tf.get_variable("softmax_b", [self._num_units]) new_y = tf.nn.xw_plus_b(new_h, softmax_w, softmax_b) return new_y, new_y class MultiRNNCellWithSkipConn(RNNCell): """Almost same with tf.models.rnn.rnn_cell.MultiRnnCell adding a skip connection from the input of current time t and using _num_units not state size because LSTMCell returns only [h] not [c, h]. """ def __init__(self, cells): """Create a RNN cell composed sequentially of a number of RNNCells. Args: cells: list of RNNCells that will be composed in this order. Raises: ValueError: if cells is empty (not allowed) or if their sizes don't match. """ if not cells: raise ValueError("Must specify at least one cell for MultiRNNCell.") for i in xrange(len(cells) - 1): if cells[i + 1].input_size != cells[i].output_size: raise ValueError("In MultiRNNCell, the input size of each next" " cell must match the output size of the previous one." " Mismatched output size in cell %d." % i) self._cells = cells @property def input_size(self): return self._cells[0].input_size @property def output_size(self): return self._cells[-1].output_size @property def state_size(self): return sum([cell.state_size for cell in self._cells]) def __call__(self, inputs, state, scope=None): """Run this multi-layer cell on inputs, starting from state.""" with tf.variable_scope("MultiRNNCellWithConn"): cur_state_pos = 0 first_layer_input = cur_inp = inputs new_states = [] for i, cell in enumerate(self._cells): with tf.variable_scope("Cell%d" % i): cur_state = tf.slice( state, [0, cur_state_pos], [-1, cell.state_size]) cur_state_pos += cell.state_size # Add skip connection from the input of current time t. if i != 0: first_layer_input = first_layer_input else: first_layer_input = tf.zeros_like(first_layer_input) cur_inp, new_state = cell(tf.concat(1, [inputs, first_layer_input]), cur_state) new_states.append(new_state) return cur_inp, tf.concat(1, new_states)
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:机器阅读理解里程碑/code/attentive-reader-tensorflow-master/model/deep_bi_lstm.py
import tensorflow as tf from tensorflow.models.rnn import rnn, rnn_cell from base_model import Model from data_utils import load_vocab, load_dataset class DeepBiLSTM(Model): """Deep Bidirectional LSTM model.""" def __init__(self, vocab_size, size=256, depth=2, learning_rate=1e-4, batch_size=32, keep_prob=0.1, num_steps=100, checkpoint_dir="checkpoint", forward_only=False): """Initialize the parameters for an Deep Bidirectional LSTM model. Args: vocab_size: int, The dimensionality of the input vocab size: int, The dimensionality of the inputs into the Deep LSTM cell [32, 64, 256] learning_rate: float, [1e-3, 5e-4, 1e-4, 5e-5] batch_size: int, The size of a batch [16, 32] keep_prob: unit Tensor or float between 0 and 1 [0.0, 0.1, 0.2] num_steps: int, The max time unit [100] """ super(DeepBiLSTM, self).__init__() self.vocab_size = int(vocab_size) self.size = int(size) self.depth = int(depth) self.learning_rate = float(learning_rate) self.batch_size = int(batch_size) self.keep_prob = float(keep_prob) self.num_steps = int(seq_length) self.inputs = tf.placeholder(tf.int32, [self.batch_size, self.num_steps]) self.input_lengths = tf.placeholder(tf.int64, [self.batch_size]) with tf.device("/cpu:0"): self.emb = tf.Variable(tf.truncated_normal( [self.vocab_size, self.size], -0.1, 0.1), name='emb') import ipdb; ipdb.set_trace() self.embed_inputs = tf.nn.embedding_lookup(self.emb, tf.transpose(self.inputs)) self.cell = rnn_cell.BasicLSTMCell(size, forget_bias=0.0) self.stacked_cell = rnn_cell.MultiRNNCell([self.cell] * depth) self.initial_state = self.stacked_cell.zero_state(batch_size, tf.float32) if not forward_only and self.keep_prob < 1: lstm_cell = rnn_cell.DropoutWrapper( lstm_cell, output_keep_prob=keep_prob) self.outputs, self.states = rnn.rnn(self.stacked_cell, tf.unpack(self.embed_inputs), dtype=tf.float32, sequence_length=self.input_lengths, initial_state=self.initial_state) output = tf.reduce_sum(tf.pack(self.output), 0) def train(self, epoch=25, batch_size=1, learning_rate=0.0002, momentum=0.9, decay=0.95, data_dir="data", dataset_name="cnn", vocab_size=1000000): if not self.vocab: self.vocab, self.rev_vocab = load_vocab(data_dir, dataset_name, vocab_size) self.opt = tf.train.RMSPropOptimizer(learning_rate, decay=decay, momentum=momentum) for epoch_idx in xrange(epoch): data_loader = load_dataset(data_dir, dataset_name, vocab_size) contexts, questions, answers = [], [], [] for batch_idx in xrange(batch_size): _, context, question, answer, _ = data_loader.next() contexts.append(context) questions.append(question) answers.append(answers) #self.model.
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:机器阅读理解里程碑/code/attentive-reader-tensorflow-master/model/deep_lstm.py
import time import numpy as np import tensorflow as tf from tensorflow.models.rnn import rnn, rnn_cell from utils import array_pad from base_model import Model from cells import LSTMCell, MultiRNNCellWithSkipConn from data_utils import load_vocab, load_dataset class DeepLSTM(Model): """Deep LSTM model.""" def __init__(self, size=256, depth=3, batch_size=32, keep_prob=0.1, max_nsteps=1000, checkpoint_dir="checkpoint", forward_only=False): """Initialize the parameters for an Deep LSTM model. Args: size: int, The dimensionality of the inputs into the Deep LSTM cell [32, 64, 256] learning_rate: float, [1e-3, 5e-4, 1e-4, 5e-5] batch_size: int, The size of a batch [16, 32] keep_prob: unit Tensor or float between 0 and 1 [0.0, 0.1, 0.2] max_nsteps: int, The max time unit [1000] """ super(DeepLSTM, self).__init__() self.size = int(size) self.depth = int(depth) self.batch_size = int(batch_size) self.output_size = self.depth * self.size self.keep_prob = float(keep_prob) self.max_nsteps = int(max_nsteps) self.checkpoint_dir = checkpoint_dir start = time.clock() print(" [*] Building Deep LSTM...") self.cell = LSTMCell(size, forget_bias=0.0) if not forward_only and self.keep_prob < 1: self.cell = rnn_cell.DropoutWrapper(self.cell, output_keep_prob=keep_prob) self.stacked_cell = MultiRNNCellWithSkipConn([self.cell] * depth) self.initial_state = self.stacked_cell.zero_state(batch_size, tf.float32) def prepare_model(self, data_dir, dataset_name, vocab_size): if not self.vocab: self.vocab, self.rev_vocab = load_vocab(data_dir, dataset_name, vocab_size) print(" [*] Loading vocab finished.") self.vocab_size = len(self.vocab) self.emb = tf.get_variable("emb", [self.vocab_size, self.size]) # inputs self.inputs = tf.placeholder(tf.int32, [self.batch_size, self.max_nsteps]) embed_inputs = tf.nn.embedding_lookup(self.emb, tf.transpose(self.inputs)) tf.histogram_summary("embed", self.emb) # output states _, states = rnn.rnn(self.stacked_cell, tf.unpack(embed_inputs), dtype=tf.float32, initial_state=self.initial_state) self.batch_states = tf.pack(states) self.nstarts = tf.placeholder(tf.int32, [self.batch_size, 3]) outputs = tf.pack([tf.slice(self.batch_states, nstarts, [1, 1, self.output_size]) for idx, nstarts in enumerate(tf.unpack(self.nstarts))]) self.outputs = tf.reshape(outputs, [self.batch_size, self.output_size]) self.W = tf.get_variable("W", [self.vocab_size, self.output_size]) tf.histogram_summary("weights", self.W) tf.histogram_summary("output", outputs) self.y = tf.placeholder(tf.float32, [self.batch_size, self.vocab_size]) self.y_ = tf.matmul(self.outputs, self.W, transpose_b=True) self.loss = tf.nn.softmax_cross_entropy_with_logits(self.y_, self.y) tf.scalar_summary("loss", tf.reduce_mean(self.loss)) correct_prediction = tf.equal(tf.argmax(self.y, 1), tf.argmax(self.y_, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) tf.scalar_summary("accuracy", self.accuracy) print(" [*] Preparing model finished.") def train(self, sess, vocab_size, epoch=25, learning_rate=0.0002, momentum=0.9, decay=0.95, data_dir="data", dataset_name="cnn"): self.prepare_model(data_dir, dataset_name, vocab_size) start = time.clock() print(" [*] Calculating gradient and loss...") self.optim = tf.train.AdamOptimizer(learning_rate, 0.9).minimize(self.loss) print(" [*] Calculating gradient and loss finished. Take %.2fs" % (time.clock() - start)) # Could not use RMSPropOptimizer because the sparse update of RMSPropOptimizer # is not implemented yet (2016.01.24). # self.optim = tf.train.RMSPropOptimizer(learning_rate, # decay=decay, # momentum=momentum).minimize(self.loss) sess.run(tf.initialize_all_variables()) if self.load(sess, self.checkpoint_dir, dataset_name): print(" [*] Deep LSTM checkpoint is loaded.") else: print(" [*] There is no checkpoint for this model.") y = np.zeros([self.batch_size, self.vocab_size]) merged = tf.merge_all_summaries() writer = tf.train.SummaryWriter("/tmp/deep", sess.graph_def) counter = 0 start_time = time.time() for epoch_idx in xrange(epoch): data_loader = load_dataset(data_dir, dataset_name, vocab_size) batch_stop = False while True: y.fill(0) inputs, nstarts, answers = [], [], [] batch_idx = 0 while True: try: (_, document, question, answer, _), data_idx, data_max_idx = data_loader.next() except StopIteration: batch_stop = True break # [0] means splitter between d and q data = [int(d) for d in document.split()] + [0] + \ [int(q) for q in question.split() for q in question.split()] if len(data) > self.max_nsteps: continue inputs.append(data) nstarts.append(len(inputs[-1]) - 1) y[batch_idx][int(answer)] = 1 batch_idx += 1 if batch_idx == self.batch_size: break if batch_stop: break FORCE=False if FORCE: inputs = array_pad(inputs, self.max_nsteps, pad=-1, force=FORCE) nstarts = np.where(inputs==-1)[1] inputs[inputs==-1]=0 else: inputs = array_pad(inputs, self.max_nsteps, pad=0) nstarts = [[nstart, idx, 0] for idx, nstart in enumerate(nstarts)] _, summary_str, cost, accuracy = sess.run([self.optim, merged, self.loss, self.accuracy], feed_dict={self.inputs: inputs, self.nstarts: nstarts, self.y: y}) if counter % 10 == 0: writer.add_summary(summary_str, counter) print("Epoch: [%2d] [%4d/%4d] time: %4.4f, loss: %.8f, accuracy: %.8f" \ % (epoch_idx, data_idx, data_max_idx, time.time() - start_time, np.mean(cost), accuracy)) counter += 1 self.save(sess, self.checkpoint_dir, dataset_name) def test(self, voab_size): self.prepare_model(data_dir, dataset_name, vocab_size)
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:机器阅读理解里程碑/code/attentive-reader-tensorflow-master/utils.py
import pprint import numpy as np pp = pprint.PrettyPrinter() def array_pad(array, width, pad=-1, force=False): max_length = max(map(len, array)) if max_length > width and force != True: raise Exception(" [!] Max length of array %s is bigger than given %s" % (max_length, width)) result = np.full([len(array), width], pad, dtype=np.int64) for i, row in enumerate(array): for j, val in enumerate(row[:width-1]): result[i][j] = val return result
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:谷歌神经翻译模型/attention_is_all_you_need-master/net.py
# encoding: utf-8 import numpy as np import chainer from chainer import cuda import chainer.functions as F import chainer.links as L from chainer import reporter from train import source_pad_concat_convert # linear_init = chainer.initializers.GlorotNormal() linear_init = chainer.initializers.LeCunUniform() def sentence_block_embed(embed, x): """ Change implicitly embed_id function's target to ndim=2 Apply embed_id for array of ndim 2, shape (batchsize, sentence_length), instead for array of ndim 1. """ batch, length = x.shape _, units = embed.W.shape e = embed(x.reshape((batch * length, ))) assert(e.shape == (batch * length, units)) e = F.transpose(F.stack(F.split_axis(e, batch, axis=0), axis=0), (0, 2, 1)) assert(e.shape == (batch, units, length)) return e def seq_func(func, x, reconstruct_shape=True): """ Change implicitly function's target to ndim=3 Apply a given function for array of ndim 3, shape (batchsize, dimension, sentence_length), instead for array of ndim 2. """ batch, units, length = x.shape e = F.transpose(x, (0, 2, 1)).reshape(batch * length, units) e = func(e) if not reconstruct_shape: return e out_units = e.shape[1] e = F.transpose(e.reshape((batch, length, out_units)), (0, 2, 1)) assert(e.shape == (batch, out_units, length)) return e class LayerNormalizationSentence(L.LayerNormalization): """ Position-wise Linear Layer for Sentence Block Position-wise layer-normalization layer for array of shape (batchsize, dimension, sentence_length). """ def __init__(self, *args, **kwargs): super(LayerNormalizationSentence, self).__init__(*args, **kwargs) def __call__(self, x): y = seq_func(super(LayerNormalizationSentence, self).__call__, x) return y class ConvolutionSentence(L.Convolution2D): """ Position-wise Linear Layer for Sentence Block Position-wise linear layer for array of shape (batchsize, dimension, sentence_length) can be implemented a convolution layer. """ def __init__(self, in_channels, out_channels, ksize=1, stride=1, pad=0, nobias=False, initialW=None, initial_bias=None): super(ConvolutionSentence, self).__init__( in_channels, out_channels, ksize, stride, pad, nobias, initialW, initial_bias) def __call__(self, x): """Applies the linear layer. Args: x (~chainer.Variable): Batch of input vector block. Its shape is (batchsize, in_channels, sentence_length). Returns: ~chainer.Variable: Output of the linear layer. Its shape is (batchsize, out_channels, sentence_length). """ x = F.expand_dims(x, axis=3) y = super(ConvolutionSentence, self).__call__(x) y = F.squeeze(y, axis=3) return y class MultiHeadAttention(chainer.Chain): """ Multi Head Attention Layer for Sentence Blocks For batch computation efficiency, dot product to calculate query-key scores is performed all heads together. """ def __init__(self, n_units, h=8, dropout=0.1, self_attention=True): super(MultiHeadAttention, self).__init__() with self.init_scope(): if self_attention: self.W_QKV = ConvolutionSentence( n_units, n_units * 3, nobias=True, initialW=linear_init) else: self.W_Q = ConvolutionSentence( n_units, n_units, nobias=True, initialW=linear_init) self.W_KV = ConvolutionSentence( n_units, n_units * 2, nobias=True, initialW=linear_init) self.finishing_linear_layer = ConvolutionSentence( n_units, n_units, nobias=True, initialW=linear_init) self.h = h self.scale_score = 1. / (n_units // h) ** 0.5 self.dropout = dropout self.is_self_attention = self_attention def __call__(self, x, z=None, mask=None): xp = self.xp h = self.h if self.is_self_attention: Q, K, V = F.split_axis(self.W_QKV(x), 3, axis=1) else: Q = self.W_Q(x) K, V = F.split_axis(self.W_KV(z), 2, axis=1) batch, n_units, n_querys = Q.shape _, _, n_keys = K.shape # Calculate Attention Scores with Mask for Zero-padded Areas # Perform Multi-head Attention using pseudo batching # all together at once for efficiency batch_Q = F.concat(F.split_axis(Q, h, axis=1), axis=0) batch_K = F.concat(F.split_axis(K, h, axis=1), axis=0) batch_V = F.concat(F.split_axis(V, h, axis=1), axis=0) assert(batch_Q.shape == (batch * h, n_units // h, n_querys)) assert(batch_K.shape == (batch * h, n_units // h, n_keys)) assert(batch_V.shape == (batch * h, n_units // h, n_keys)) mask = xp.concatenate([mask] * h, axis=0) batch_A = F.batch_matmul(batch_Q, batch_K, transa=True) \ * self.scale_score batch_A = F.where(mask, batch_A, xp.full(batch_A.shape, -np.inf, 'f')) batch_A = F.softmax(batch_A, axis=2) batch_A = F.where( xp.isnan(batch_A.data), xp.zeros(batch_A.shape, 'f'), batch_A) assert(batch_A.shape == (batch * h, n_querys, n_keys)) # Calculate Weighted Sum batch_A, batch_V = F.broadcast( batch_A[:, None], batch_V[:, :, None]) batch_C = F.sum(batch_A * batch_V, axis=3) assert(batch_C.shape == (batch * h, n_units // h, n_querys)) C = F.concat(F.split_axis(batch_C, h, axis=0), axis=1) assert(C.shape == (batch, n_units, n_querys)) C = self.finishing_linear_layer(C) return C class FeedForwardLayer(chainer.Chain): def __init__(self, n_units): super(FeedForwardLayer, self).__init__() n_inner_units = n_units * 4 with self.init_scope(): self.W_1 = ConvolutionSentence(n_units, n_inner_units, initialW=linear_init) self.W_2 = ConvolutionSentence(n_inner_units, n_units, initialW=linear_init) # self.act = F.relu self.act = F.leaky_relu def __call__(self, e): e = self.W_1(e) e = self.act(e) e = self.W_2(e) return e class EncoderLayer(chainer.Chain): def __init__(self, n_units, h=8, dropout=0.1): super(EncoderLayer, self).__init__() with self.init_scope(): self.self_attention = MultiHeadAttention(n_units, h) self.feed_forward = FeedForwardLayer(n_units) self.ln_1 = LayerNormalizationSentence(n_units, eps=1e-6) self.ln_2 = LayerNormalizationSentence(n_units, eps=1e-6) self.dropout = dropout def __call__(self, e, xx_mask): sub = self.self_attention(e, e, xx_mask) e = e + F.dropout(sub, self.dropout) e = self.ln_1(e) sub = self.feed_forward(e) e = e + F.dropout(sub, self.dropout) e = self.ln_2(e) return e class DecoderLayer(chainer.Chain): def __init__(self, n_units, h=8, dropout=0.1): super(DecoderLayer, self).__init__() with self.init_scope(): self.self_attention = MultiHeadAttention(n_units, h) self.source_attention = MultiHeadAttention( n_units, h, self_attention=False) self.feed_forward = FeedForwardLayer(n_units) self.ln_1 = LayerNormalizationSentence(n_units, eps=1e-6) self.ln_2 = LayerNormalizationSentence(n_units, eps=1e-6) self.ln_3 = LayerNormalizationSentence(n_units, eps=1e-6) self.dropout = dropout def __call__(self, e, s, xy_mask, yy_mask): sub = self.self_attention(e, e, yy_mask) e = e + F.dropout(sub, self.dropout) e = self.ln_1(e) sub = self.source_attention(e, s, xy_mask) e = e + F.dropout(sub, self.dropout) e = self.ln_2(e) sub = self.feed_forward(e) e = e + F.dropout(sub, self.dropout) e = self.ln_3(e) return e class Encoder(chainer.Chain): def __init__(self, n_layers, n_units, h=8, dropout=0.1): super(Encoder, self).__init__() self.layer_names = [] for i in range(1, n_layers + 1): name = 'l{}'.format(i) layer = EncoderLayer(n_units, h, dropout) self.add_link(name, layer) self.layer_names.append(name) def __call__(self, e, xx_mask): for name in self.layer_names: e = getattr(self, name)(e, xx_mask) return e class Decoder(chainer.Chain): def __init__(self, n_layers, n_units, h=8, dropout=0.1): super(Decoder, self).__init__() self.layer_names = [] for i in range(1, n_layers + 1): name = 'l{}'.format(i) layer = DecoderLayer(n_units, h, dropout) self.add_link(name, layer) self.layer_names.append(name) def __call__(self, e, source, xy_mask, yy_mask): for name in self.layer_names: e = getattr(self, name)(e, source, xy_mask, yy_mask) return e class Transformer(chainer.Chain): def __init__(self, n_layers, n_source_vocab, n_target_vocab, n_units, h=8, dropout=0.1, max_length=500, use_label_smoothing=False, embed_position=False): super(Transformer, self).__init__() with self.init_scope(): self.embed_x = L.EmbedID(n_source_vocab, n_units, ignore_label=-1, initialW=linear_init) self.embed_y = L.EmbedID(n_target_vocab, n_units, ignore_label=-1, initialW=linear_init) self.encoder = Encoder(n_layers, n_units, h, dropout) self.decoder = Decoder(n_layers, n_units, h, dropout) if embed_position: self.embed_pos = L.EmbedID(max_length, n_units, ignore_label=-1) self.n_layers = n_layers self.n_units = n_units self.n_target_vocab = n_target_vocab self.dropout = dropout self.use_label_smoothing = use_label_smoothing self.initialize_position_encoding(max_length, n_units) self.scale_emb = self.n_units ** 0.5 def initialize_position_encoding(self, length, n_units): xp = self.xp """ # Implementation described in the paper start = 1 # index starts from 1 or 0 posi_block = xp.arange( start, length + start, dtype='f')[None, None, :] unit_block = xp.arange( start, n_units // 2 + start, dtype='f')[None, :, None] rad_block = posi_block / 10000. ** (unit_block / (n_units // 2)) sin_block = xp.sin(rad_block) cos_block = xp.cos(rad_block) self.position_encoding_block = xp.empty((1, n_units, length), 'f') self.position_encoding_block[:, ::2, :] = sin_block self.position_encoding_block[:, 1::2, :] = cos_block """ # Implementation in the Google tensor2tensor repo channels = n_units position = xp.arange(length, dtype='f') num_timescales = channels // 2 log_timescale_increment = ( xp.log(10000. / 1.) / (float(num_timescales) - 1)) inv_timescales = 1. * xp.exp( xp.arange(num_timescales).astype('f') * -log_timescale_increment) scaled_time = \ xp.expand_dims(position, 1) * \ xp.expand_dims(inv_timescales, 0) signal = xp.concatenate( [xp.sin(scaled_time), xp.cos(scaled_time)], axis=1) signal = xp.reshape(signal, [1, length, channels]) self.position_encoding_block = xp.transpose(signal, (0, 2, 1)) def make_input_embedding(self, embed, block): batch, length = block.shape emb_block = sentence_block_embed(embed, block) * self.scale_emb emb_block += self.xp.array(self.position_encoding_block[:, :, :length]) if hasattr(self, 'embed_pos'): emb_block += sentence_block_embed( self.embed_pos, self.xp.broadcast_to( self.xp.arange(length).astype('i')[None, :], block.shape)) emb_block = F.dropout(emb_block, self.dropout) return emb_block def make_attention_mask(self, source_block, target_block): mask = (target_block[:, None, :] >= 0) * \ (source_block[:, :, None] >= 0) # (batch, source_length, target_length) return mask def make_history_mask(self, block): batch, length = block.shape arange = self.xp.arange(length) history_mask = (arange[None, ] <= arange[:, None])[None, ] history_mask = self.xp.broadcast_to( history_mask, (batch, length, length)) return history_mask def output(self, h): return F.linear(h, self.embed_y.W) def output_and_loss(self, h_block, t_block): batch, units, length = h_block.shape # Output (all together at once for efficiency) concat_logit_block = seq_func(self.output, h_block, reconstruct_shape=False) rebatch, _ = concat_logit_block.shape # Make target concat_t_block = t_block.reshape((rebatch)) ignore_mask = (concat_t_block >= 0) n_token = ignore_mask.sum() normalizer = n_token # n_token or batch or 1 # normalizer = 1 if not self.use_label_smoothing: loss = F.softmax_cross_entropy(concat_logit_block, concat_t_block) loss = loss * n_token / normalizer else: log_prob = F.log_softmax(concat_logit_block) broad_ignore_mask = self.xp.broadcast_to( ignore_mask[:, None], concat_logit_block.shape) pre_loss = ignore_mask * \ log_prob[self.xp.arange(rebatch), concat_t_block] loss = - F.sum(pre_loss) / normalizer accuracy = F.accuracy( concat_logit_block, concat_t_block, ignore_label=-1) perp = self.xp.exp(loss.data * normalizer / n_token) # Report the Values reporter.report({'loss': loss.data * normalizer / n_token, 'acc': accuracy.data, 'perp': perp}, self) if self.use_label_smoothing: label_smoothing = broad_ignore_mask * \ - 1. / self.n_target_vocab * log_prob label_smoothing = F.sum(label_smoothing) / normalizer loss = 0.9 * loss + 0.1 * label_smoothing return loss def __call__(self, x_block, y_in_block, y_out_block, get_prediction=False): batch, x_length = x_block.shape batch, y_length = y_in_block.shape # Make Embedding ex_block = self.make_input_embedding(self.embed_x, x_block) ey_block = self.make_input_embedding(self.embed_y, y_in_block) # Make Masks xx_mask = self.make_attention_mask(x_block, x_block) xy_mask = self.make_attention_mask(y_in_block, x_block) yy_mask = self.make_attention_mask(y_in_block, y_in_block) yy_mask *= self.make_history_mask(y_in_block) # Encode Sources z_blocks = self.encoder(ex_block, xx_mask) # [(batch, n_units, x_length), ...] # Encode Targets with Sources (Decode without Output) h_block = self.decoder(ey_block, z_blocks, xy_mask, yy_mask) # (batch, n_units, y_length) if get_prediction: return self.output(h_block[:, :, -1]) else: return self.output_and_loss(h_block, y_out_block) def translate(self, x_block, max_length=50, beam=5): if beam: return self.translate_beam(x_block, max_length, beam) # TODO: efficient inference by re-using result with chainer.no_backprop_mode(): with chainer.using_config('train', False): x_block = source_pad_concat_convert( x_block, device=None) batch, x_length = x_block.shape # y_block = self.xp.zeros((batch, 1), dtype=x_block.dtype) y_block = self.xp.full( (batch, 1), 2, dtype=x_block.dtype) # bos eos_flags = self.xp.zeros((batch, ), dtype=x_block.dtype) result = [] for i in range(max_length): log_prob_tail = self(x_block, y_block, y_block, get_prediction=True) ys = self.xp.argmax(log_prob_tail.data, axis=1).astype('i') result.append(ys) y_block = F.concat([y_block, ys[:, None]], axis=1).data eos_flags += (ys == 0) if self.xp.all(eos_flags): break result = cuda.to_cpu(self.xp.stack(result).T) # Remove EOS taggs outs = [] for y in result: inds = np.argwhere(y == 0) if len(inds) > 0: y = y[:inds[0, 0]] if len(y) == 0: y = np.array([1], 'i') outs.append(y) return outs def translate_beam(self, x_block, max_length=50, beam=5): # TODO: efficient inference by re-using result # TODO: batch processing with chainer.no_backprop_mode(): with chainer.using_config('train', False): x_block = source_pad_concat_convert( x_block, device=None) batch, x_length = x_block.shape assert batch == 1, 'Batch processing is not supported now.' y_block = self.xp.full( (batch, 1), 2, dtype=x_block.dtype) # bos eos_flags = self.xp.zeros( (batch * beam, ), dtype=x_block.dtype) sum_scores = self.xp.zeros(1, 'f') result = [[2]] * batch * beam for i in range(max_length): log_prob_tail = self(x_block, y_block, y_block, get_prediction=True) ys_list, ws_list = get_topk( log_prob_tail.data, beam, axis=1) ys_concat = self.xp.concatenate(ys_list, axis=0) sum_ws_list = [ws + sum_scores for ws in ws_list] sum_ws_concat = self.xp.concatenate(sum_ws_list, axis=0) # Get top-k from total candidates idx_list, sum_w_list = get_topk( sum_ws_concat, beam, axis=0) idx_concat = self.xp.stack(idx_list, axis=0) ys = ys_concat[idx_concat] sum_scores = self.xp.stack(sum_w_list, axis=0) if i != 0: old_idx_list = (idx_concat % beam).tolist() else: old_idx_list = [0] * beam result = [result[idx] + [y] for idx, y in zip(old_idx_list, ys.tolist())] y_block = self.xp.array(result).astype('i') if x_block.shape[0] != y_block.shape[0]: x_block = self.xp.broadcast_to( x_block, (y_block.shape[0], x_block.shape[1])) eos_flags += (ys == 0) if self.xp.all(eos_flags): break outs = [[wi for wi in sent if wi not in [2, 0]] for sent in result] outs = [sent if sent else [0] for sent in outs] return outs def get_topk(x, k=5, axis=1): ids_list = [] scores_list = [] xp = cuda.get_array_module(x) for i in range(k): ids = xp.argmax(x, axis=axis).astype('i') if axis == 0: scores = x[ids] x[ids] = - float('inf') else: scores = x[xp.arange(ids.shape[0]), ids] x[xp.arange(ids.shape[0]), ids] = - float('inf') ids_list.append(ids) scores_list.append(scores) return ids_list, scores_list
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:谷歌神经翻译模型/attention_is_all_you_need-master/preprocess.py
from __future__ import unicode_literals import collections import io import re import numpy import progressbar split_pattern = re.compile(r'([.,!?"\':;)(])') digit_pattern = re.compile(r'\d') def split_sentence(s): s = s.lower() s = s.replace('\u2019', "'") s = digit_pattern.sub('0', s) words = [] for word in s.strip().split(): words.extend(split_pattern.split(word)) words = [w for w in words if w] return words def open_file(path): return io.open(path, encoding='utf-8', errors='ignore') def count_lines(path): with open_file(path) as f: return sum([1 for _ in f]) def read_file(path): n_lines = count_lines(path) bar = progressbar.ProgressBar() with open_file(path) as f: for line in bar(f, max_value=n_lines): words = split_sentence(line) yield words def count_words(path, max_vocab_size=40000): counts = collections.Counter() for words in read_file(path): for word in words: counts[word] += 1 vocab = [word for (word, _) in counts.most_common(max_vocab_size)] return vocab def make_dataset(path, vocab): word_id = {word: index for index, word in enumerate(vocab)} dataset = [] token_count = 0 unknown_count = 0 for words in read_file(path): array = make_array(word_id, words) dataset.append(array) token_count += array.size unknown_count += (array == 1).sum() print('# of tokens: %d' % token_count) print('# of unknown: %d (%.2f %%)' % (unknown_count, 100. * unknown_count / token_count)) return dataset def make_array(word_id, words): ids = [word_id.get(word, 1) for word in words] return numpy.array(ids, 'i')
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:谷歌神经翻译模型/attention_is_all_you_need-master/subfuncs.py
from __future__ import division from chainer.training import extension class VaswaniRule(extension.Extension): """Trainer extension to shift an optimizer attribute magically by Vaswani. Args: attr (str): Name of the attribute to shift. rate (float): Rate of the exponential shift. This value is multiplied to the attribute at each call. init (float): Initial value of the attribute. If it is ``None``, the extension extracts the attribute at the first call and uses it as the initial value. target (float): Target value of the attribute. If the attribute reaches this value, the shift stops. optimizer (~chainer.Optimizer): Target optimizer to adjust the attribute. If it is ``None``, the main optimizer of the updater is used. """ def __init__(self, attr, d, warmup_steps=4000, init=None, target=None, optimizer=None, scale=1.): self._attr = attr self._d_inv05 = d ** (-0.5) * scale self._warmup_steps_inv15 = warmup_steps ** (-1.5) self._init = init self._target = target self._optimizer = optimizer self._t = 0 self._last_value = None def initialize(self, trainer): optimizer = self._get_optimizer(trainer) # ensure that _init is set if self._init is None: # self._init = getattr(optimizer, self._attr) self._init = self._d_inv05 * (1. * self._warmup_steps_inv15) if self._last_value is not None: # resuming from a snapshot self._update_value(optimizer, self._last_value) else: self._update_value(optimizer, self._init) def __call__(self, trainer): self._t += 1 optimizer = self._get_optimizer(trainer) value = self._d_inv05 * \ min(self._t ** (-0.5), self._t * self._warmup_steps_inv15) self._update_value(optimizer, value) def serialize(self, serializer): self._t = serializer('_t', self._t) self._last_value = serializer('_last_value', self._last_value) def _get_optimizer(self, trainer): return self._optimizer or trainer.updater.get_optimizer('main') def _update_value(self, optimizer, value): setattr(optimizer, self._attr, value) self._last_value = value
[]
[]
[]
archives/zz1559152814_my-notebook.zip
paper:谷歌神经翻译模型/attention_is_all_you_need-master/train.py
# encoding: utf-8 import argparse import json import os.path from nltk.translate import bleu_score import numpy import six import chainer from chainer import cuda from chainer.dataset import convert from chainer import reporter from chainer import training from chainer.training import extensions import preprocess import net from subfuncs import VaswaniRule def seq2seq_pad_concat_convert(xy_batch, device, eos_id=0, bos_id=2): """ Args: xy_batch (list of tuple of two numpy.ndarray-s or cupy.ndarray-s): xy_batch[i][0] is an array of token ids of i-th input sentence in a minibatch. xy_batch[i][1] is an array of token ids of i-th target sentence in a minibatch. The shape of each array is `(sentence length, )`. device (int or None): Device ID to which an array is sent. If it is negative value, an array is sent to CPU. If it is positive, an array is sent to GPU with the given ID. If it is ``None``, an array is left in the original device. Returns: Tuple of Converted array. (input_sent_batch_array, target_sent_batch_input_array, target_sent_batch_output_array). The shape of each array is `(batchsize, max_sentence_length)`. All sentences are padded with -1 to reach max_sentence_length. """ x_seqs, y_seqs = zip(*xy_batch) x_block = convert.concat_examples(x_seqs, device, padding=-1) y_block = convert.concat_examples(y_seqs, device, padding=-1) xp = cuda.get_array_module(x_block) # The paper did not mention eos # add eos x_block = xp.pad(x_block, ((0, 0), (0, 1)), 'constant', constant_values=-1) for i_batch, seq in enumerate(x_seqs): x_block[i_batch, len(seq)] = eos_id x_block = xp.pad(x_block, ((0, 0), (1, 0)), 'constant', constant_values=bos_id) y_out_block = xp.pad(y_block, ((0, 0), (0, 1)), 'constant', constant_values=-1) for i_batch, seq in enumerate(y_seqs): y_out_block[i_batch, len(seq)] = eos_id y_in_block = xp.pad(y_block, ((0, 0), (1, 0)), 'constant', constant_values=bos_id) return (x_block, y_in_block, y_out_block) def source_pad_concat_convert(x_seqs, device, eos_id=0, bos_id=2): x_block = convert.concat_examples(x_seqs, device, padding=-1) xp = cuda.get_array_module(x_block) # add eos x_block = xp.pad(x_block, ((0, 0), (0, 1)), 'constant', constant_values=-1) for i_batch, seq in enumerate(x_seqs): x_block[i_batch, len(seq)] = eos_id x_block = xp.pad(x_block, ((0, 0), (1, 0)), 'constant', constant_values=bos_id) return x_block class CalculateBleu(chainer.training.Extension): trigger = 1, 'epoch' priority = chainer.training.PRIORITY_WRITER def __init__( self, model, test_data, key, batch=50, device=-1, max_length=50): self.model = model self.test_data = test_data self.key = key self.batch = batch self.device = device self.max_length = max_length def __call__(self, trainer): print('## Calculate BLEU') with chainer.no_backprop_mode(): with chainer.using_config('train', False): references = [] hypotheses = [] for i in range(0, len(self.test_data), self.batch): sources, targets = zip(*self.test_data[i:i + self.batch]) references.extend([[t.tolist()] for t in targets]) sources = [ chainer.dataset.to_device(self.device, x) for x in sources] ys = [y.tolist() for y in self.model.translate( sources, self.max_length, beam=False)] # greedy generation for efficiency hypotheses.extend(ys) bleu = bleu_score.corpus_bleu( references, hypotheses, smoothing_function=bleu_score.SmoothingFunction().method1) * 100 print('BLEU:', bleu) reporter.report({self.key: bleu}) def main(): parser = argparse.ArgumentParser( description='Chainer example: convolutional seq2seq') parser.add_argument('--batchsize', '-b', type=int, default=48, help='Number of images in each mini-batch') parser.add_argument('--epoch', '-e', type=int, default=100, help='Number of sweeps over the dataset to train') parser.add_argument('--gpu', '-g', type=int, default=-1, help='GPU ID (negative value indicates CPU)') parser.add_argument('--unit', '-u', type=int, default=512, help='Number of units') parser.add_argument('--layer', '-l', type=int, default=6, help='Number of layers') parser.add_argument('--head', type=int, default=8, help='Number of heads in attention mechanism') parser.add_argument('--dropout', '-d', type=float, default=0.1, help='Dropout rate') parser.add_argument('--input', '-i', type=str, default='./', help='Input directory') parser.add_argument('--source', '-s', type=str, default='europarl-v7.fr-en.en', help='Filename of train data for source language') parser.add_argument('--target', '-t', type=str, default='europarl-v7.fr-en.fr', help='Filename of train data for target language') parser.add_argument('--source-valid', '-svalid', type=str, default='dev/newstest2013.en', help='Filename of validation data for source language') parser.add_argument('--target-valid', '-tvalid', type=str, default='dev/newstest2013.fr', help='Filename of validation data for target language') parser.add_argument('--out', '-o', default='result', help='Directory to output the result') parser.add_argument('--source-vocab', type=int, default=40000, help='Vocabulary size of source language') parser.add_argument('--target-vocab', type=int, default=40000, help='Vocabulary size of target language') parser.add_argument('--no-bleu', '-no-bleu', action='store_true', help='Skip BLEU calculation') parser.add_argument('--use-label-smoothing', action='store_true', help='Use label smoothing for cross entropy') parser.add_argument('--embed-position', action='store_true', help='Use position embedding rather than sinusoid') parser.add_argument('--use-fixed-lr', action='store_true', help='Use fixed learning rate rather than the ' + 'annealing proposed in the paper') args = parser.parse_args() print(json.dumps(args.__dict__, indent=4)) # Check file en_path = os.path.join(args.input, args.source) source_vocab = ['<eos>', '<unk>', '<bos>'] + \ preprocess.count_words(en_path, args.source_vocab) source_data = preprocess.make_dataset(en_path, source_vocab) fr_path = os.path.join(args.input, args.target) target_vocab = ['<eos>', '<unk>', '<bos>'] + \ preprocess.count_words(fr_path, args.target_vocab) target_data = preprocess.make_dataset(fr_path, target_vocab) assert len(source_data) == len(target_data) print('Original training data size: %d' % len(source_data)) train_data = [(s, t) for s, t in six.moves.zip(source_data, target_data) if 0 < len(s) < 50 and 0 < len(t) < 50] print('Filtered training data size: %d' % len(train_data)) en_path = os.path.join(args.input, args.source_valid) source_data = preprocess.make_dataset(en_path, source_vocab) fr_path = os.path.join(args.input, args.target_valid) target_data = preprocess.make_dataset(fr_path, target_vocab) assert len(source_data) == len(target_data) test_data = [(s, t) for s, t in six.moves.zip(source_data, target_data) if 0 < len(s) and 0 < len(t)] source_ids = {word: index for index, word in enumerate(source_vocab)} target_ids = {word: index for index, word in enumerate(target_vocab)} target_words = {i: w for w, i in target_ids.items()} source_words = {i: w for w, i in source_ids.items()} # Define Model model = net.Transformer( args.layer, min(len(source_ids), len(source_words)), min(len(target_ids), len(target_words)), args.unit, h=args.head, dropout=args.dropout, max_length=500, use_label_smoothing=args.use_label_smoothing, embed_position=args.embed_position) if args.gpu >= 0: chainer.cuda.get_device(args.gpu).use() model.to_gpu(args.gpu) # Setup Optimizer optimizer = chainer.optimizers.Adam( alpha=5e-5, beta1=0.9, beta2=0.98, eps=1e-9 ) optimizer.setup(model) # Setup Trainer train_iter = chainer.iterators.SerialIterator(train_data, args.batchsize) test_iter = chainer.iterators.SerialIterator(test_data, args.batchsize, repeat=False, shuffle=False) iter_per_epoch = len(train_data) // args.batchsize print('Number of iter/epoch =', iter_per_epoch) updater = training.StandardUpdater( train_iter, optimizer, converter=seq2seq_pad_concat_convert, device=args.gpu) trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out) # If you want to change a logging interval, change this number log_trigger = (min(200, iter_per_epoch // 2), 'iteration') def floor_step(trigger): floored = trigger[0] - trigger[0] % log_trigger[0] if floored <= 0: floored = trigger[0] return (floored, trigger[1]) # Validation every half epoch eval_trigger = floor_step((iter_per_epoch // 2, 'iteration')) record_trigger = training.triggers.MinValueTrigger( 'val/main/perp', eval_trigger) evaluator = extensions.Evaluator( test_iter, model, converter=seq2seq_pad_concat_convert, device=args.gpu) evaluator.default_name = 'val' trainer.extend(evaluator, trigger=eval_trigger) # Use Vaswan's magical rule of learning rate(Eq. 3 in the paper) # But, the hyperparamter in the paper seems to work well # only with a large batchsize. # If you run on popular setup (e.g. size=48 on 1 GPU), # you may have to change the hyperparamter. # I scaled learning rate by 0.5 consistently. # ("scale" is always multiplied to learning rate.) # If you use a shallow layer network (<=2), # you may not have to change it from the paper setting. if not args.use_fixed_lr: trainer.extend( # VaswaniRule('alpha', d=args.unit, warmup_steps=4000, scale=1.), # VaswaniRule('alpha', d=args.unit, warmup_steps=32000, scale=1.), # VaswaniRule('alpha', d=args.unit, warmup_steps=4000, scale=0.5), # VaswaniRule('alpha', d=args.unit, warmup_steps=16000, scale=1.), VaswaniRule('alpha', d=args.unit, warmup_steps=64000, scale=1.), trigger=(1, 'iteration')) observe_alpha = extensions.observe_value( 'alpha', lambda trainer: trainer.updater.get_optimizer('main').alpha) trainer.extend( observe_alpha, trigger=(1, 'iteration')) # Only if a model gets best validation score, # save (overwrite) the model trainer.extend(extensions.snapshot_object( model, 'best_model.npz'), trigger=record_trigger) def translate_one(source, target): words = preprocess.split_sentence(source) print('# source : ' + ' '.join(words)) x = model.xp.array( [source_ids.get(w, 1) for w in words], 'i') ys = model.translate([x], beam=5)[0] words = [target_words[y] for y in ys] print('# result : ' + ' '.join(words)) print('# expect : ' + target) @chainer.training.make_extension(trigger=(200, 'iteration')) def translate(trainer): translate_one( 'Who are we ?', 'Qui sommes-nous?') translate_one( 'And it often costs over a hundred dollars ' + 'to obtain the required identity card .', 'Or, il en coûte souvent plus de cent dollars ' + 'pour obtenir la carte d\'identité requise.') source, target = test_data[numpy.random.choice(len(test_data))] source = ' '.join([source_words[i] for i in source]) target = ' '.join([target_words[i] for i in target]) translate_one(source, target) # Gereneration Test trainer.extend( translate, trigger=(min(200, iter_per_epoch), 'iteration')) # Calculate BLEU every half epoch if not args.no_bleu: trainer.extend( CalculateBleu( model, test_data, 'val/main/bleu', device=args.gpu, batch=args.batchsize // 4), trigger=floor_step((iter_per_epoch // 2, 'iteration'))) # Log trainer.extend(extensions.LogReport(trigger=log_trigger), trigger=log_trigger) trainer.extend(extensions.PrintReport( ['epoch', 'iteration', 'main/loss', 'val/main/loss', 'main/perp', 'val/main/perp', 'main/acc', 'val/main/acc', 'val/main/bleu', 'alpha', 'elapsed_time']), trigger=log_trigger) print('start training') trainer.run() if __name__ == '__main__': main()
[]
[]
[]