|
"""SciLay Dataset.""" |
|
|
|
import gzip |
|
import json |
|
import os |
|
import random |
|
import string |
|
|
|
import datasets |
|
|
|
_HOMEPAGE = "" |
|
|
|
_CITATION = """ |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
SCILAY comprises 43,790 instances, each representing a scientific article in the biomedical domain. |
|
Each instance in the dataset includes the following components: |
|
- plain_text: Containing a plain language summary of the scientific article. This section is written in a simple and accessible language, and is intended to be understandable by a wide audience. |
|
- technical_text: This section contains the abstract of the scientific article. It provides a detailed and technical description of the research conducted in the article. |
|
- full_text: This section contains the complete article of the scientific research. |
|
In addition to the textual content, each instance is associated with the following metadata: |
|
- Keywords: Keywords that capture the main topics and themes addressed in the article. |
|
- Journal: The journal in which the article is published, providing context about the source of the research. |
|
- DOI (Digital Object Identifier): A unique identifier for the article, facilitating easy referencing. |
|
The main objective of the SCILAY dataset is to support the development and evaluation of text summarization models that can effectively simplify complex scientific language while retaining the essential information. |
|
""" |
|
|
|
_LICENSE = "Creative Commons Attribution 4.0 International" |
|
|
|
_SPLIT_NAMES = {datasets.Split.TRAIN: "train", datasets.Split.VALIDATION: "validation", datasets.Split.TEST: "test"} |
|
_URL = "data/{version}/{split_name}.zip" |
|
|
|
_DOI = "doi" |
|
_PMCID = "pmcid" |
|
_SUMMARY = "plain_text" |
|
_ABSTRACT = "technical_text" |
|
_FULL_TEXT = "full_text" |
|
_JOURNAL = "journal" |
|
_TOPICS = "topics" |
|
_KEYWORDS = "keywords" |
|
|
|
_JOURNALS = { |
|
"NC": "nature communications", |
|
"A": "animals : an open access journal from mdpi", |
|
"PLGEN": "plos genetics", |
|
"PLPAT": "plos pathogens", |
|
"PLCB": "plos computational biology", |
|
"PLNTD": "plos neglected tropical diseases", |
|
"B": "biology", |
|
"I": "insects", |
|
"PLB": "plos biology", |
|
"CB": "communications biology", |
|
"SD": "scientific data", |
|
"MBIO": "mbio", |
|
"C": "cancers", |
|
"OTHER": "others" |
|
} |
|
|
|
|
|
|
|
|
|
_VERSION = "1.0.0" |
|
|
|
class SciLayConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for SciLay.""" |
|
|
|
def __init__(self, journals="all", version=_VERSION, **kwargs): |
|
"""BuilderConfig for SciLay. |
|
Args: |
|
journals (str or list, default 'all'): List of journal names. Either 'all' or a combination |
|
of {'NC', 'A', 'PLGEN', 'PLPAT', 'PLCB', 'PLNTD', 'B', 'I', 'PLB', 'CB', 'SD', 'MBIO', 'C', 'OTHER'}. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
if isinstance(journals, str): |
|
journals = [journals] |
|
name = "+".join(journals) |
|
if name == "all": |
|
journals = list(_JOURNALS) |
|
if version != _VERSION: |
|
name = f"{name}-{version}" |
|
super().__init__(name=name, version=version, **kwargs) |
|
self.journals = journals |
|
|
|
class SciLay(datasets.GeneratorBasedBuilder): |
|
"""SciLay datasets.""" |
|
|
|
BUILDER_CONFIG_CLASS = SciLayConfig |
|
BUILDER_CONFIGS = [ |
|
SciLayConfig( |
|
journals="all", |
|
description="Articles from all journals.", |
|
), |
|
] + [ |
|
SciLayConfig( |
|
journals=k, |
|
description=f"Articles from journals {k}: {v}", |
|
) |
|
for k, v in sorted(_JOURNALS.items()) |
|
] |
|
DEFAULT_CONFIG_NAME = "all" |
|
VERSION = _VERSION |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
_DOI: datasets.Value("string"), |
|
_PMCID: datasets.Value("string"), |
|
_SUMMARY: datasets.Value("string"), |
|
_ABSTRACT: datasets.Value("string"), |
|
_FULL_TEXT: datasets.Value("string"), |
|
_JOURNAL: datasets.Value("string"), |
|
_TOPICS: datasets.Sequence(datasets.Value("string")), |
|
_KEYWORDS: datasets.Sequence(datasets.Value("string")) |
|
}), |
|
supervised_keys=(_FULL_TEXT, _SUMMARY), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls = { |
|
split: _URL.format(version=self.config.version, split_name=split_name) |
|
for split, split_name in _SPLIT_NAMES.items() |
|
} |
|
dl_paths = dl_manager.download_and_extract(urls) |
|
paths = { |
|
split: [ |
|
dl_manager.iter_files(os.path.join(dl_paths[split], split_name, code)) for code in self.config.journals |
|
] |
|
for split, split_name in _SPLIT_NAMES.items() |
|
} |
|
return [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={"paths": paths[split]}, |
|
) |
|
for split in _SPLIT_NAMES |
|
] |
|
|
|
def _generate_examples(self, paths=None): |
|
"""Yields examples.""" |
|
for paths_per_journal in paths: |
|
for path in paths_per_journal: |
|
with open(path, "rb") as fin: |
|
for row in fin: |
|
json_obj = json.loads(row) |
|
yield json_obj[_DOI], { |
|
_DOI: json_obj[_DOI], |
|
_PMCID: json_obj[_PMCID], |
|
_SUMMARY: json_obj[_SUMMARY], |
|
_ABSTRACT: json_obj[_ABSTRACT], |
|
_FULL_TEXT: json_obj[_FULL_TEXT], |
|
_JOURNAL: json_obj[_JOURNAL], |
|
_TOPICS: json_obj[_TOPICS], |
|
_KEYWORDS: json_obj[_KEYWORDS] |
|
} |
|
|