[Bug Fix] Resolved load error due to difference in num_examples between configs
194d2b4
import datasets | |
import textwrap | |
from sklearn.datasets import fetch_20newsgroups | |
from sklearn.model_selection import train_test_split | |
import pandas as pd | |
_NEWSGROUPS = [ | |
"alt.atheism", | |
"comp.graphics", | |
"comp.os.ms-windows.misc", | |
"comp.sys.ibm.pc.hardware", | |
"comp.sys.mac.hardware", | |
"comp.windows.x", | |
"misc.forsale", | |
"rec.autos", | |
"rec.motorcycles", | |
"rec.sport.baseball", | |
"rec.sport.hockey", | |
"sci.crypt", | |
"sci.electronics", | |
"sci.med", | |
"sci.space", | |
"soc.religion.christian", | |
"talk.politics.guns", | |
"talk.politics.mideast", | |
"talk.politics.misc", | |
"talk.religion.misc", | |
] | |
_DESCRIPTION = textwrap.dedent( | |
"""\ | |
The bydate version of the 20-newsgroup dataset fetched from scikit_learn and | |
split in stratified manner into train, validation and test sets. With and | |
without metadata is made available as individual config names. The test set | |
from the original 20 newsgroup dataset is retained while the original train | |
set is split 80:20 into train and validation sets in stratified manner based | |
on the newsgroup. The 20 different newsgroup are provided as the labels | |
instead of config names as specified in the official huggingface dataset. | |
Newsgroups are specified as labels to provide a simplified setup for text | |
classification task. The 20 different newsgroup functioning as labels are: | |
""" | |
) | |
_DESCRIPTION += "\n".join(f"({i+1}) {j}" for i, j in enumerate(_NEWSGROUPS)) | |
_HOMEPAGE = "http://qwone.com/~jason/20Newsgroups/" | |
_CITATION = """ | |
@inproceedings{Lang95, | |
author = {Ken Lang}, | |
title = {Newsweeder: Learning to filter netnews} | |
year = {1995} | |
booktitle = {Proceedings of the Twelfth International Conference on Machine Learning} | |
pages = {331-339} | |
} | |
""" | |
_VERSION = datasets.utils.Version("2.0.0") | |
class NewsgroupsConfig(datasets.BuilderConfig): | |
def __init__(self, **kwargs): | |
super(NewsgroupsConfig, self).__init__(version=_VERSION, **kwargs) | |
class Newsgroups(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
NewsgroupsConfig( | |
name="with_metadata", | |
description=textwrap.dedent( | |
"""\ | |
The original complete bydate 20-Newsgroups dataset with the headers, | |
footers, and quotes metadata as intact and just the continuous | |
whitespaces (including new-line) replaced by single whitespace | |
characters.""" | |
), | |
), | |
NewsgroupsConfig( | |
name="without_metadata", | |
description=textwrap.dedent( | |
"""\ | |
The bydate 20-Newsgroups dataset without the headers, footers, | |
and quotes metadata as well as the continuous whitespaces | |
(including new-line) replaced by single whitespace characters.""" | |
), | |
), | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"text": datasets.Value("large_string"), | |
"labels": datasets.features.ClassLabel(names=_NEWSGROUPS), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
if self.config.name == "with_metadata": | |
train_data = fetch_20newsgroups(subset="train", random_state=42) | |
test_data = fetch_20newsgroups(subset="test", random_state=42) | |
else: | |
train_data = fetch_20newsgroups( | |
subset="train", random_state=42, remove=("headers", "footers", "quotes") | |
) | |
test_data = fetch_20newsgroups( | |
subset="test", random_state=42, remove=("headers", "footers", "quotes") | |
) | |
empty_data_idcs = set( | |
[i for i, j in enumerate(train_data.data) if j.strip() == ""] | |
) | |
train_data.data = [ | |
j for i, j in enumerate(train_data.data) if i not in empty_data_idcs | |
] | |
train_data.target = [ | |
j for i, j in enumerate(train_data.target) if i not in empty_data_idcs | |
] | |
empty_data_idcs = set( | |
[i for i, j in enumerate(test_data.data) if j.strip() == ""] | |
) | |
test_data.data = [ | |
j for i, j in enumerate(test_data.data) if i not in empty_data_idcs | |
] | |
test_data.target = [ | |
j for i, j in enumerate(test_data.target) if i not in empty_data_idcs | |
] | |
train_labels = [train_data.target_names[i] for i in train_data.target] | |
test_labels = [test_data.target_names[i] for i in test_data.target] | |
train_df = pd.DataFrame({"text": train_data.data, "labels": train_labels}) | |
test_df = pd.DataFrame({"text": test_data.data, "labels": test_labels}) | |
train_df["text"] = train_df["text"].str.replace("\s+", " ", regex=True) | |
test_df["text"] = test_df["text"].str.replace("\s+", " ", regex=True) | |
# train_df = train_df[train_df["text"].str.strip()!=""] | |
# test_df = test_df[test_df["text"].str.strip()!=""] | |
train_df, val_df = train_test_split( | |
train_df, test_size=0.2, random_state=42, stratify=train_df["labels"] | |
) | |
train_df = train_df.reset_index(drop=True) | |
val_df = val_df.reset_index(drop=True) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, gen_kwargs={"df": train_df} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, gen_kwargs={"df": val_df} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, gen_kwargs={"df": test_df} | |
), | |
] | |
def _generate_examples(self, df): | |
for idx, row in df.iterrows(): | |
yield idx, row.to_dict() | |