argmicro / argmicro.py
ArneBinder's picture
don't create "joint" relations [DONT MERGE]
5cad4cf verified
raw
history blame
10.6 kB
import copy
import dataclasses
import logging
from collections import defaultdict
from itertools import combinations
from typing import Any, Dict, List, Optional, Set, Tuple
import datasets
from pytorch_ie.annotations import BinaryRelation, Label, LabeledSpan, Span
from pytorch_ie.core import Annotation, AnnotationList, annotation_field
from pytorch_ie.documents import (
TextBasedDocument,
TextDocumentWithLabeledSpansAndBinaryRelations,
)
from pie_datasets import GeneratorBasedBuilder
log = logging.getLogger(__name__)
def dl2ld(dict_of_lists):
return [dict(zip(dict_of_lists, t)) for t in zip(*dict_of_lists.values())]
def ld2dl(list_of_dicts, keys: Optional[List[str]] = None):
return {k: [d[k] for d in list_of_dicts] for k in keys}
@dataclasses.dataclass(frozen=True)
class LabeledAnnotationCollection(Annotation):
annotations: Tuple[Annotation, ...]
label: str
@dataclasses.dataclass(frozen=True)
class MultiRelation(Annotation):
heads: Tuple[Annotation, ...] # sources == heads
tails: Tuple[Annotation, ...] # targets == tails
label: str
@dataclasses.dataclass
class ArgMicroDocument(TextBasedDocument):
topic_id: Optional[str] = None
stance: AnnotationList[Label] = annotation_field()
edus: AnnotationList[Span] = annotation_field(target="text")
adus: AnnotationList[LabeledAnnotationCollection] = annotation_field(target="edus")
relations: AnnotationList[MultiRelation] = annotation_field(target="adus")
def example_to_document(
example: Dict[str, Any],
adu_type_label: datasets.ClassLabel,
edge_type_label: datasets.ClassLabel,
stance_label: datasets.ClassLabel,
) -> ArgMicroDocument:
stance = stance_label.int2str(example["stance"])
document = ArgMicroDocument(
id=example["id"],
text=example["text"],
topic_id=example["topic_id"] if example["topic_id"] != "UNDEFINED" else None,
)
if stance != "UNDEFINED":
document.stance.append(Label(label=stance))
# build EDUs
edus_dict = {
edu["id"]: Span(start=edu["start"], end=edu["end"]) for edu in dl2ld(example["edus"])
}
# build ADUs
adu_id2edus = defaultdict(list)
edges_multi_source = defaultdict(dict)
for edge in dl2ld(example["edges"]):
edge_type = edge_type_label.int2str(edge["type"])
if edge_type == "seg":
adu_id2edus[edge["trg"]].append(edus_dict[edge["src"]])
elif edge_type == "add":
if "src" not in edges_multi_source[edge["trg"]]:
edges_multi_source[edge["trg"]]["src"] = []
edges_multi_source[edge["trg"]]["src"].append(edge["src"])
else:
edges_multi_source[edge["id"]]["type"] = edge_type
edges_multi_source[edge["id"]]["trg"] = edge["trg"]
if "src" not in edges_multi_source[edge["id"]]:
edges_multi_source[edge["id"]]["src"] = []
edges_multi_source[edge["id"]]["src"].append(edge["src"])
adus_dict = {}
for adu in dl2ld(example["adus"]):
adu_type = adu_type_label.int2str(adu["type"])
adu_edus = adu_id2edus[adu["id"]]
adus_dict[adu["id"]] = LabeledAnnotationCollection(
annotations=tuple(adu_edus), label=adu_type
)
# build relations
rels_dict = {}
for edge_id, edge in edges_multi_source.items():
edge_target = edge["trg"]
if edge_target in edges_multi_source:
targets = edges_multi_source[edge_target]["src"]
else:
targets = [edge_target]
if any(target in edges_multi_source for target in targets):
raise Exception("Multi-hop relations are not supported")
rel = MultiRelation(
heads=tuple(adus_dict[source] for source in edge["src"]),
tails=tuple(adus_dict[target] for target in targets),
label=edge["type"],
)
rels_dict[edge_id] = rel
document.edus.extend(edus_dict.values())
document.adus.extend(adus_dict.values())
document.relations.extend(rels_dict.values())
document.metadata["edu_ids"] = list(edus_dict.keys())
document.metadata["adu_ids"] = list(adus_dict.keys())
document.metadata["rel_ids"] = list(rels_dict.keys())
document.metadata["rel_seg_ids"] = {
edge["src"]: edge["id"]
for edge in dl2ld(example["edges"])
if edge_type_label.int2str(edge["type"]) == "seg"
}
document.metadata["rel_add_ids"] = {
edge["src"]: edge["id"]
for edge in dl2ld(example["edges"])
if edge_type_label.int2str(edge["type"]) == "add"
}
return document
def document_to_example(
document: ArgMicroDocument,
adu_type_label: datasets.ClassLabel,
edge_type_label: datasets.ClassLabel,
stance_label: datasets.ClassLabel,
) -> Dict[str, Any]:
stance = document.stance[0].label if len(document.stance) else "UNDEFINED"
result = {
"id": document.id,
"text": document.text,
"topic_id": document.topic_id or "UNDEFINED",
"stance": stance_label.str2int(stance),
}
# construct EDUs
edus = {
edu: {"id": edu_id, "start": edu.start, "end": edu.end}
for edu_id, edu in zip(document.metadata["edu_ids"], document.edus)
}
result["edus"] = ld2dl(
sorted(edus.values(), key=lambda x: x["id"]), keys=["id", "start", "end"]
)
# construct ADUs
adus = {
adu: {"id": adu_id, "type": adu_type_label.str2int(adu.label)}
for adu_id, adu in zip(document.metadata["adu_ids"], document.adus)
}
result["adus"] = ld2dl(sorted(adus.values(), key=lambda x: x["id"]), keys=["id", "type"])
# construct edges
rels_dict: Dict[str, MultiRelation] = {
rel_id: rel for rel_id, rel in zip(document.metadata["rel_ids"], document.relations)
}
heads2rel_id = {
rel.heads: red_id for red_id, rel in zip(document.metadata["rel_ids"], document.relations)
}
edges = []
for rel_id, rel in rels_dict.items():
# if it is an undercut attack, we need to change the target to the relation that connects the target
if rel.label == "und":
target_id = heads2rel_id[rel.tails]
else:
if len(rel.tails) > 1:
raise Exception("Multi-target relations are not supported")
target_id = adus[rel.tails[0]]["id"]
source_id = adus[rel.heads[0]]["id"]
edge = {
"id": rel_id,
"src": source_id,
"trg": target_id,
"type": edge_type_label.str2int(rel.label),
}
edges.append(edge)
# if it is an additional support, we need to change the source to the relation that connects the source
for head in rel.heads[1:]:
source_id = adus[head]["id"]
edge_id = document.metadata["rel_add_ids"][source_id]
edge = {
"id": edge_id,
"src": source_id,
"trg": rel_id,
"type": edge_type_label.str2int("add"),
}
edges.append(edge)
for adu_id, adu in zip(document.metadata["adu_ids"], document.adus):
for edu in adu.annotations:
source_id = edus[edu]["id"]
target_id = adus[adu]["id"]
edge_id = document.metadata["rel_seg_ids"][source_id]
edge = {
"id": edge_id,
"src": source_id,
"trg": target_id,
"type": edge_type_label.str2int("seg"),
}
edges.append(edge)
result["edges"] = ld2dl(
sorted(edges, key=lambda x: x["id"]), keys=["id", "src", "trg", "type"]
)
return result
def convert_to_text_document_with_labeled_spans_and_binary_relations(
doc: ArgMicroDocument,
) -> TextDocumentWithLabeledSpansAndBinaryRelations:
# convert adus to entities
entities = []
adu2entity: Dict[LabeledAnnotationCollection, Span] = {}
for adu in doc.adus:
edus: Set[Span] = set(adu.annotations)
start = min(edu.start for edu in edus)
end = max(edu.end for edu in edus)
# assert there are no edus overlapping with the adu, but not part of it
for edu in doc.edus:
if (start <= edu.start < end or start < edu.end <= end) and edu not in edus:
raise Exception(f"edu {edu} is overlapping with adu {adu}, but is not part of it")
entity = LabeledSpan(start=start, end=end, label=adu.label)
entities.append(entity)
adu2entity[adu] = entity
relations = []
for relation in doc.relations:
# add all possible combinations of heads and tails
for head in relation.heads:
for tail in relation.tails:
rel = BinaryRelation(
label=relation.label, head=adu2entity[head], tail=adu2entity[tail]
)
relations.append(rel)
# also add the relations between the heads themselves
#for head1, head2 in combinations(relation.heads, 2):
# rel = BinaryRelation(label="joint", head=adu2entity[head1], tail=adu2entity[head2])
# relations.append(rel)
# # also add the reverse relation
# rel = BinaryRelation(label="joint", head=adu2entity[head2], tail=adu2entity[head1])
# relations.append(rel)
metadata = copy.deepcopy(doc.metadata)
if len(doc.stance) > 0:
metadata["stance"] = doc.stance[0].label
metadata["topic"] = doc.topic_id
result = TextDocumentWithLabeledSpansAndBinaryRelations(
text=doc.text, id=doc.id, metadata=doc.metadata
)
result.labeled_spans.extend(entities)
result.binary_relations.extend(relations)
return result
class ArgMicro(GeneratorBasedBuilder):
DOCUMENT_TYPE = ArgMicroDocument
DOCUMENT_CONVERTERS = {
TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations
}
BASE_DATASET_PATH = "DFKI-SLT/argmicro"
BASE_DATASET_REVISION = "282733d6d57243f2a202d81143c4e31bb250e663"
BUILDER_CONFIGS = [datasets.BuilderConfig(name="en"), datasets.BuilderConfig(name="de")]
def _generate_document_kwargs(self, dataset):
return {
"adu_type_label": dataset.features["adus"].feature["type"],
"edge_type_label": dataset.features["edges"].feature["type"],
"stance_label": dataset.features["stance"],
}
def _generate_document(self, example, **kwargs):
return example_to_document(example, **kwargs)