Overview
Original dataset page here and dataset available here.
Dataset curation
Added new column label
with encoded labels with the following mapping
{"entailment": 0, "neutral": 1, "contradiction": 2}
and the columns with parse information are dropped as they are not well formatted.
Also, the name of the file from which each instance comes is added in the column dtype
.
Code to create the dataset
import pandas as pd
from datasets import Dataset, ClassLabel, Value, Features, DatasetDict
import json
from pathlib import Path
# load data
ds = {}
path = Path("<path to folder>")
for i in path.rglob("*.jsonl"):
print(i)
name = str(i).split("/")[0].lower()
dtype = str(i).split("/")[1].lower()
# read data
with i.open("r") as fl:
df = pd.DataFrame([json.loads(line) for line in fl])
# select columns
df = df.loc[:, ["sentence1", "sentence2", "gold_label"]]
# add file name as column
df["dtype"] = dtype
# encode labels
df["label"] = df["gold_label"].map({"entailment": 0, "neutral": 1, "contradiction": 2})
ds[name] = df
# cast to dataset
features = Features(
{
"sentence1": Value(dtype="string"),
"sentence2": Value(dtype="string"),
"label": ClassLabel(num_classes=3, names=["entailment", "neutral", "contradiction"]),
"dtype": Value(dtype="string"),
"gold_label": Value(dtype="string"),
}
)
ds = DatasetDict({k: Dataset.from_pandas(v, features=features) for k, v in ds.items()})
ds.push_to_hub("pietrolesci/stress_tests_nli", token="<token>")
# check overlap between splits
from itertools import combinations
for i, j in combinations(ds.keys(), 2):
print(
f"{i} - {j}: ",
pd.merge(
ds[i].to_pandas(),
ds[j].to_pandas(),
on=["sentence1", "sentence2", "label"],
how="inner",
).shape[0],
)
#> numerical_reasoning - negation: 0
#> numerical_reasoning - length_mismatch: 0
#> numerical_reasoning - spelling_error: 0
#> numerical_reasoning - word_overlap: 0
#> numerical_reasoning - antonym: 0
#> negation - length_mismatch: 0
#> negation - spelling_error: 0
#> negation - word_overlap: 0
#> negation - antonym: 0
#> length_mismatch - spelling_error: 0
#> length_mismatch - word_overlap: 0
#> length_mismatch - antonym: 0
#> spelling_error - word_overlap: 0
#> spelling_error - antonym: 0
#> word_overlap - antonym: 0