date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~embeddings~javelin_ai_gateway.py
from __future__ import annotations from typing import Any, Iterator, List, Optional from langchain.pydantic_v1 import BaseModel from langchain.schema.embeddings import Embeddings def _chunk(texts: List[str], size: int) -> Iterator[List[str]]: for i in range(0, len(texts), size): yield texts[i : i + size] class JavelinAIGatewayEmbeddings(Embeddings, BaseModel): """ Wrapper around embeddings LLMs in the Javelin AI Gateway. To use, you should have the ``javelin_sdk`` python package installed. For more information, see https://docs.getjavelin.io Example: .. code-block:: python from langchain.embeddings import JavelinAIGatewayEmbeddings embeddings = JavelinAIGatewayEmbeddings( gateway_uri="<javelin-ai-gateway-uri>", route="<your-javelin-gateway-embeddings-route>" ) """ client: Any """javelin client.""" route: str """The route to use for the Javelin AI Gateway API.""" gateway_uri: Optional[str] = None """The URI for the Javelin AI Gateway API.""" javelin_api_key: Optional[str] = None """The API key for the Javelin AI Gateway API.""" def __init__(self, **kwargs: Any): try: from javelin_sdk import ( JavelinClient, UnauthorizedError, ) except ImportError: raise ImportError( "Could not import javelin_sdk python package. " "Please install it with `pip install javelin_sdk`." ) super().__init__(**kwargs) if self.gateway_uri: try: self.client = JavelinClient( base_url=self.gateway_uri, api_key=self.javelin_api_key ) except UnauthorizedError as e: raise ValueError("Javelin: Incorrect API Key.") from e def _query(self, texts: List[str]) -> List[List[float]]: embeddings = [] for txt in _chunk(texts, 20): try: resp = self.client.query_route(self.route, query_body={"input": txt}) resp_dict = resp.dict() embeddings_chunk = resp_dict.get("llm_response", {}).get("data", []) for item in embeddings_chunk: if "embedding" in item: embeddings.append(item["embedding"]) except ValueError as e: print("Failed to query route: " + str(e)) return embeddings async def _aquery(self, texts: List[str]) -> List[List[float]]: embeddings = [] for txt in _chunk(texts, 20): try: resp = await self.client.aquery_route( self.route, query_body={"input": txt} ) resp_dict = resp.dict() embeddings_chunk = resp_dict.get("llm_response", {}).get("data", []) for item in embeddings_chunk: if "embedding" in item: embeddings.append(item["embedding"]) except ValueError as e: print("Failed to query route: " + str(e)) return embeddings def embed_documents(self, texts: List[str]) -> List[List[float]]: return self._query(texts) def embed_query(self, text: str) -> List[float]: return self._query([text])[0] async def aembed_documents(self, texts: List[str]) -> List[List[float]]: return await self._aquery(texts) async def aembed_query(self, text: str) -> List[float]: result = await self._aquery([text]) return result[0]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~document_loaders~test_news.py
import random import pytest import requests from langchain.document_loaders import NewsURLLoader def get_random_news_url() -> str: from bs4 import BeautifulSoup response = requests.get("https://news.google.com") soup = BeautifulSoup(response.text, "html.parser") article_links = [ a["href"] for a in soup.find_all("a", href=True) if "/articles/" in a["href"] ] random_article_link = random.choice(article_links) return "https://news.google.com" + random_article_link def test_news_loader() -> None: loader = NewsURLLoader([get_random_news_url()]) docs = loader.load() assert docs[0] is not None assert hasattr(docs[0], "page_content") assert hasattr(docs[0], "metadata") metadata = docs[0].metadata assert "title" in metadata assert "link" in metadata assert "authors" in metadata assert "language" in metadata assert "description" in metadata assert "publish_date" in metadata def test_news_loader_with_nlp() -> None: loader = NewsURLLoader([get_random_news_url()], nlp=True) docs = loader.load() assert docs[0] is not None assert hasattr(docs[0], "page_content") assert hasattr(docs[0], "metadata") metadata = docs[0].metadata assert "title" in metadata assert "link" in metadata assert "authors" in metadata assert "language" in metadata assert "description" in metadata assert "publish_date" in metadata assert "keywords" in metadata assert "summary" in metadata def test_continue_on_failure_true() -> None: """Test exception is not raised when continue_on_failure=True.""" loader = NewsURLLoader(["badurl.foobar"]) loader.load() def test_continue_on_failure_false() -> None: """Test exception is raised when continue_on_failure=False.""" loader = NewsURLLoader(["badurl.foobar"], continue_on_failure=False) with pytest.raises(Exception): loader.load()
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chains~llm_checker~prompt.py
# flake8: noqa from langchain.prompts.prompt import PromptTemplate _CREATE_DRAFT_ANSWER_TEMPLATE = """{question}\n\n""" CREATE_DRAFT_ANSWER_PROMPT = PromptTemplate( input_variables=["question"], template=_CREATE_DRAFT_ANSWER_TEMPLATE ) _LIST_ASSERTIONS_TEMPLATE = """Вот утверждение: {statement} Составь список предположений, которые ты сделал, формулируя вышеуказанное утверждение.\n\n""" LIST_ASSERTIONS_PROMPT = PromptTemplate( input_variables=["statement"], template=_LIST_ASSERTIONS_TEMPLATE ) _CHECK_ASSERTIONS_TEMPLATE = """Вот список утверждений: {assertions} Для каждого утверждения определи, верно оно или нет. Если оно неверно, объясни почему.\n\n""" CHECK_ASSERTIONS_PROMPT = PromptTemplate( input_variables=["assertions"], template=_CHECK_ASSERTIONS_TEMPLATE ) _REVISED_ANSWER_TEMPLATE = """{checked_assertions} Question: Учитывая вышеуказанные утверждения и проверки, как бы ты ответил на вопрос '{question}'? Ответ:""" REVISED_ANSWER_PROMPT = PromptTemplate( input_variables=["checked_assertions", "question"], template=_REVISED_ANSWER_TEMPLATE, )
[ "{checked_assertions}\n\nQuestion: Учитывая вышеуказанные утверждения и проверки, как бы ты ответил на вопрос '{question}'?\n\nОтвет:", "question", "statement", "Вот список утверждений:\n{assertions}\nДля каждого утверждения определи, верно оно или нет. Если оно неверно, объясни почему.\n\n", "{question}\n\n", "checked_assertions", "assertions", "Вот утверждение:\n{statement}\nСоставь список предположений, которые ты сделал, формулируя вышеуказанное утверждение.\n\n", "{question}" ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chat_models~javelin_ai_gateway.py
import logging from typing import Any, Dict, List, Mapping, Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.pydantic_v1 import BaseModel, Extra from langchain.schema import ( ChatGeneration, ChatResult, ) from langchain.schema.messages import ( AIMessage, BaseMessage, ChatMessage, FunctionMessage, HumanMessage, SystemMessage, ) logger = logging.getLogger(__name__) # Ignoring type because below is valid pydantic code # Unexpected keyword argument "extra" for "__init_subclass__" of "object" [call-arg] class ChatParams(BaseModel, extra=Extra.allow): # type: ignore[call-arg] """Parameters for the `Javelin AI Gateway` LLM.""" temperature: float = 0.0 stop: Optional[List[str]] = None max_tokens: Optional[int] = None class ChatJavelinAIGateway(BaseChatModel): """`Javelin AI Gateway` chat models API. To use, you should have the ``javelin_sdk`` python package installed. For more information, see https://docs.getjavelin.io Example: .. code-block:: python from langchain.chat_models import ChatJavelinAIGateway chat = ChatJavelinAIGateway( gateway_uri="<javelin-ai-gateway-uri>", route="<javelin-ai-gateway-chat-route>", params={ "temperature": 0.1 } ) """ route: str """The route to use for the Javelin AI Gateway API.""" gateway_uri: Optional[str] = None """The URI for the Javelin AI Gateway API.""" params: Optional[ChatParams] = None """Parameters for the Javelin AI Gateway LLM.""" client: Any """javelin client.""" javelin_api_key: Optional[str] = None """The API key for the Javelin AI Gateway.""" def __init__(self, **kwargs: Any): try: from javelin_sdk import ( JavelinClient, UnauthorizedError, ) except ImportError: raise ImportError( "Could not import javelin_sdk python package. " "Please install it with `pip install javelin_sdk`." ) super().__init__(**kwargs) if self.gateway_uri: try: self.client = JavelinClient( base_url=self.gateway_uri, api_key=self.javelin_api_key ) except UnauthorizedError as e: raise ValueError("Javelin: Incorrect API Key.") from e @property def _default_params(self) -> Dict[str, Any]: params: Dict[str, Any] = { "gateway_uri": self.gateway_uri, "javelin_api_key": self.javelin_api_key, "route": self.route, **(self.params.dict() if self.params else {}), } return params def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts = [ ChatJavelinAIGateway._convert_message_to_dict(message) for message in messages ] data: Dict[str, Any] = { "messages": message_dicts, **(self.params.dict() if self.params else {}), } resp = self.client.query_route(self.route, query_body=data) return ChatJavelinAIGateway._create_chat_result(resp.dict()) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts = [ ChatJavelinAIGateway._convert_message_to_dict(message) for message in messages ] data: Dict[str, Any] = { "messages": message_dicts, **(self.params.dict() if self.params else {}), } resp = await self.client.aquery_route(self.route, query_body=data) return ChatJavelinAIGateway._create_chat_result(resp.dict()) @property def _identifying_params(self) -> Dict[str, Any]: return self._default_params def _get_invocation_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> Dict[str, Any]: """Get the parameters used to invoke the model FOR THE CALLBACKS.""" return { **self._default_params, **super()._get_invocation_params(stop=stop, **kwargs), } @property def _llm_type(self) -> str: """Return type of chat model.""" return "javelin-ai-gateway-chat" @staticmethod def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: role = _dict["role"] content = _dict["content"] if role == "user": return HumanMessage(content=content) elif role == "assistant": return AIMessage(content=content) elif role == "system": return SystemMessage(content=content) else: return ChatMessage(content=content, role=role) @staticmethod def _raise_functions_not_supported() -> None: raise ValueError( "Function messages are not supported by the Javelin AI Gateway. Please" " create a feature request at https://docs.getjavelin.io" ) @staticmethod def _convert_message_to_dict(message: BaseMessage) -> dict: if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} elif isinstance(message, FunctionMessage): raise ValueError( "Function messages are not supported by the Javelin AI Gateway. Please" " create a feature request at https://docs.getjavelin.io" ) else: raise ValueError(f"Got unknown message type: {message}") if "function_call" in message.additional_kwargs: ChatJavelinAIGateway._raise_functions_not_supported() if message.additional_kwargs: logger.warning( "Additional message arguments are unsupported by Javelin AI Gateway " " and will be ignored: %s", message.additional_kwargs, ) return message_dict @staticmethod def _create_chat_result(response: Mapping[str, Any]) -> ChatResult: generations = [] for candidate in response["llm_response"]["choices"]: message = ChatJavelinAIGateway._convert_dict_to_message( candidate["message"] ) message_metadata = candidate.get("metadata", {}) gen = ChatGeneration( message=message, generation_info=dict(message_metadata), ) generations.append(gen) response_metadata = response.get("metadata", {}) return ChatResult(generations=generations, llm_output=response_metadata)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~agents~agent_toolkits~vectorstore~toolkit.py
"""Toolkit for interacting with a vector store.""" from typing import List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.llms.openai import OpenAI from langchain.pydantic_v1 import BaseModel, Field from langchain.schema.language_model import BaseLanguageModel from langchain.schema.vectorstore import VectorStore from langchain.tools import BaseTool from langchain.tools.vectorstore.tool import ( VectorStoreQATool, VectorStoreQAWithSourcesTool, ) class VectorStoreInfo(BaseModel): """Information about a VectorStore.""" vectorstore: VectorStore = Field(exclude=True) name: str description: str class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True class VectorStoreToolkit(BaseToolkit): """Toolkit for interacting with a Vector Store.""" vectorstore_info: VectorStoreInfo = Field(exclude=True) llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0)) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" description = VectorStoreQATool.get_description( self.vectorstore_info.name, self.vectorstore_info.description ) qa_tool = VectorStoreQATool( name=self.vectorstore_info.name, description=description, vectorstore=self.vectorstore_info.vectorstore, llm=self.llm, ) description = VectorStoreQAWithSourcesTool.get_description( self.vectorstore_info.name, self.vectorstore_info.description ) qa_with_sources_tool = VectorStoreQAWithSourcesTool( name=f"{self.vectorstore_info.name}_with_sources", description=description, vectorstore=self.vectorstore_info.vectorstore, llm=self.llm, ) return [qa_tool, qa_with_sources_tool] class VectorStoreRouterToolkit(BaseToolkit): """Toolkit for routing between Vector Stores.""" vectorstores: List[VectorStoreInfo] = Field(exclude=True) llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0)) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" tools: List[BaseTool] = [] for vectorstore_info in self.vectorstores: description = VectorStoreQATool.get_description( vectorstore_info.name, vectorstore_info.description ) qa_tool = VectorStoreQATool( name=vectorstore_info.name, description=description, vectorstore=vectorstore_info.vectorstore, llm=self.llm, ) tools.append(qa_tool) return tools
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~embeddings~edenai.py
from typing import Dict, List, Optional from langchain.pydantic_v1 import BaseModel, Extra, Field, root_validator from langchain.schema.embeddings import Embeddings from langchain.utilities.requests import Requests from langchain.utils import get_from_dict_or_env class EdenAiEmbeddings(BaseModel, Embeddings): """EdenAI embedding. environment variable ``EDENAI_API_KEY`` set with your API key, or pass it as a named parameter. """ edenai_api_key: Optional[str] = Field(None, description="EdenAI API Token") provider: Optional[str] = "openai" """embedding provider to use (eg: openai,google etc.)""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" values["edenai_api_key"] = get_from_dict_or_env( values, "edenai_api_key", "EDENAI_API_KEY" ) return values def _generate_embeddings(self, texts: List[str]) -> List[List[float]]: """Compute embeddings using EdenAi api.""" url = "https://api.edenai.run/v2/text/embeddings" headers = { "accept": "application/json", "content-type": "application/json", "authorization": f"Bearer {self.edenai_api_key}", } payload = {"texts": texts, "providers": self.provider} request = Requests(headers=headers) response = request.post(url=url, data=payload) if response.status_code >= 500: raise Exception(f"EdenAI Server: Error {response.status_code}") elif response.status_code >= 400: raise ValueError(f"EdenAI received an invalid payload: {response.text}") elif response.status_code != 200: raise Exception( f"EdenAI returned an unexpected response with status " f"{response.status_code}: {response.text}" ) temp = response.json() embeddings = [] for embed_item in temp[self.provider]["items"]: embedding = embed_item["embedding"] embeddings.append(embedding) return embeddings def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed a list of documents using EdenAI. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ return self._generate_embeddings(texts) def embed_query(self, text: str) -> List[float]: """Embed a query using EdenAI. Args: text: The text to embed. Returns: Embeddings for the text. """ return self._generate_embeddings([text])[0]
[ "application/json" ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~llms~ai21.py
from typing import Any, Dict, List, Optional import requests from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.pydantic_v1 import BaseModel, Extra, root_validator from langchain.utils import get_from_dict_or_env class AI21PenaltyData(BaseModel): """Parameters for AI21 penalty data.""" scale: int = 0 applyToWhitespaces: bool = True applyToPunctuations: bool = True applyToNumbers: bool = True applyToStopwords: bool = True applyToEmojis: bool = True class AI21(LLM): """AI21 large language models. To use, you should have the environment variable ``AI21_API_KEY`` set with your API key. Example: .. code-block:: python from langchain.llms import AI21 ai21 = AI21(model="j2-jumbo-instruct") """ model: str = "j2-jumbo-instruct" """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" maxTokens: int = 256 """The maximum number of tokens to generate in the completion.""" minTokens: int = 0 """The minimum number of tokens to generate in the completion.""" topP: float = 1.0 """Total probability mass of tokens to consider at each step.""" presencePenalty: AI21PenaltyData = AI21PenaltyData() """Penalizes repeated tokens.""" countPenalty: AI21PenaltyData = AI21PenaltyData() """Penalizes repeated tokens according to count.""" frequencyPenalty: AI21PenaltyData = AI21PenaltyData() """Penalizes repeated tokens according to frequency.""" numResults: int = 1 """How many completions to generate for each prompt.""" logitBias: Optional[Dict[str, float]] = None """Adjust the probability of specific tokens being generated.""" ai21_api_key: Optional[str] = None stop: Optional[List[str]] = None base_url: Optional[str] = None """Base url to use, if None decides based on model name.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" ai21_api_key = get_from_dict_or_env(values, "ai21_api_key", "AI21_API_KEY") values["ai21_api_key"] = ai21_api_key return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling AI21 API.""" return { "temperature": self.temperature, "maxTokens": self.maxTokens, "minTokens": self.minTokens, "topP": self.topP, "presencePenalty": self.presencePenalty.dict(), "countPenalty": self.countPenalty.dict(), "frequencyPenalty": self.frequencyPenalty.dict(), "numResults": self.numResults, "logitBias": self.logitBias, } @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model": self.model}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "ai21" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to AI21's complete endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = ai21("Tell me a joke.") """ if self.stop is not None and stop is not None: raise ValueError("`stop` found in both the input and default params.") elif self.stop is not None: stop = self.stop elif stop is None: stop = [] if self.base_url is not None: base_url = self.base_url else: if self.model in ("j1-grande-instruct",): base_url = "https://api.ai21.com/studio/v1/experimental" else: base_url = "https://api.ai21.com/studio/v1" params = {**self._default_params, **kwargs} response = requests.post( url=f"{base_url}/{self.model}/complete", headers={"Authorization": f"Bearer {self.ai21_api_key}"}, json={"prompt": prompt, "stopSequences": stop, **params}, ) if response.status_code != 200: optional_detail = response.json().get("error") raise ValueError( f"AI21 /complete call failed with status code {response.status_code}." f" Details: {optional_detail}" ) response_json = response.json() return response_json["completions"][0]["data"]["text"]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~llms~koboldai.py
import logging from typing import Any, Dict, List, Optional import requests from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM logger = logging.getLogger(__name__) def clean_url(url: str) -> str: """Remove trailing slash and /api from url if present.""" if url.endswith("/api"): return url[:-4] elif url.endswith("/"): return url[:-1] else: return url class KoboldApiLLM(LLM): """Kobold API language model. It includes several fields that can be used to control the text generation process. To use this class, instantiate it with the required parameters and call it with a prompt to generate text. For example: kobold = KoboldApiLLM(endpoint="http://localhost:5000") result = kobold("Write a story about a dragon.") This will send a POST request to the Kobold API with the provided prompt and generate text. """ endpoint: str """The API endpoint to use for generating text.""" use_story: Optional[bool] = False """ Whether or not to use the story from the KoboldAI GUI when generating text. """ use_authors_note: Optional[bool] = False """Whether to use the author's note from the KoboldAI GUI when generating text. This has no effect unless use_story is also enabled. """ use_world_info: Optional[bool] = False """Whether to use the world info from the KoboldAI GUI when generating text.""" use_memory: Optional[bool] = False """Whether to use the memory from the KoboldAI GUI when generating text.""" max_context_length: Optional[int] = 1600 """Maximum number of tokens to send to the model. minimum: 1 """ max_length: Optional[int] = 80 """Number of tokens to generate. maximum: 512 minimum: 1 """ rep_pen: Optional[float] = 1.12 """Base repetition penalty value. minimum: 1 """ rep_pen_range: Optional[int] = 1024 """Repetition penalty range. minimum: 0 """ rep_pen_slope: Optional[float] = 0.9 """Repetition penalty slope. minimum: 0 """ temperature: Optional[float] = 0.6 """Temperature value. exclusiveMinimum: 0 """ tfs: Optional[float] = 0.9 """Tail free sampling value. maximum: 1 minimum: 0 """ top_a: Optional[float] = 0.9 """Top-a sampling value. minimum: 0 """ top_p: Optional[float] = 0.95 """Top-p sampling value. maximum: 1 minimum: 0 """ top_k: Optional[int] = 0 """Top-k sampling value. minimum: 0 """ typical: Optional[float] = 0.5 """Typical sampling value. maximum: 1 minimum: 0 """ @property def _llm_type(self) -> str: return "koboldai" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call the API and return the output. Args: prompt: The prompt to use for generation. stop: A list of strings to stop generation when encountered. Returns: The generated text. Example: .. code-block:: python from langchain.llms import KoboldApiLLM llm = KoboldApiLLM(endpoint="http://localhost:5000") llm("Write a story about dragons.") """ data: Dict[str, Any] = { "prompt": prompt, "use_story": self.use_story, "use_authors_note": self.use_authors_note, "use_world_info": self.use_world_info, "use_memory": self.use_memory, "max_context_length": self.max_context_length, "max_length": self.max_length, "rep_pen": self.rep_pen, "rep_pen_range": self.rep_pen_range, "rep_pen_slope": self.rep_pen_slope, "temperature": self.temperature, "tfs": self.tfs, "top_a": self.top_a, "top_p": self.top_p, "top_k": self.top_k, "typical": self.typical, } if stop is not None: data["stop_sequence"] = stop response = requests.post( f"{clean_url(self.endpoint)}/api/v1/generate", json=data ) response.raise_for_status() json_response = response.json() if ( "results" in json_response and len(json_response["results"]) > 0 and "text" in json_response["results"][0] ): text = json_response["results"][0]["text"].strip() if stop is not None: for sequence in stop: if text.endswith(sequence): text = text[: -len(sequence)].rstrip() return text else: raise ValueError( f"Unexpected response format from Kobold API: {json_response}" )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chat_loaders~telegram.py
import json import logging import os import tempfile import zipfile from pathlib import Path from typing import Iterator, List, Union from langchain.chat_loaders.base import BaseChatLoader from langchain.schema import AIMessage, BaseMessage, HumanMessage from langchain.schema.chat import ChatSession logger = logging.getLogger(__name__) class TelegramChatLoader(BaseChatLoader): """Load `telegram` conversations to LangChain chat messages. To export, use the Telegram Desktop app from https://desktop.telegram.org/, select a conversation, click the three dots in the top right corner, and select "Export chat history". Then select "Machine-readable JSON" (preferred) to export. Note: the 'lite' versions of the desktop app (like "Telegram for MacOS") do not support exporting chat history. """ def __init__( self, path: Union[str, Path], ): """Initialize the TelegramChatLoader. Args: path (Union[str, Path]): Path to the exported Telegram chat zip, directory, json, or HTML file. """ self.path = path if isinstance(path, str) else str(path) def _load_single_chat_session_html(self, file_path: str) -> ChatSession: """Load a single chat session from an HTML file. Args: file_path (str): Path to the HTML file. Returns: ChatSession: The loaded chat session. """ try: from bs4 import BeautifulSoup except ImportError: raise ImportError( "Please install the 'beautifulsoup4' package to load" " Telegram HTML files. You can do this by running" "'pip install beautifulsoup4' in your terminal." ) with open(file_path, "r", encoding="utf-8") as file: soup = BeautifulSoup(file, "html.parser") results: List[Union[HumanMessage, AIMessage]] = [] previous_sender = None for message in soup.select(".message.default"): timestamp = message.select_one(".pull_right.date.details")["title"] from_name_element = message.select_one(".from_name") if from_name_element is None and previous_sender is None: logger.debug("from_name not found in message") continue elif from_name_element is None: from_name = previous_sender else: from_name = from_name_element.text.strip() text = message.select_one(".text").text.strip() results.append( HumanMessage( content=text, additional_kwargs={ "sender": from_name, "events": [{"message_time": timestamp}], }, ) ) previous_sender = from_name return ChatSession(messages=results) def _load_single_chat_session_json(self, file_path: str) -> ChatSession: """Load a single chat session from a JSON file. Args: file_path (str): Path to the JSON file. Returns: ChatSession: The loaded chat session. """ with open(file_path, "r", encoding="utf-8") as file: data = json.load(file) messages = data.get("messages", []) results: List[BaseMessage] = [] for message in messages: text = message.get("text", "") timestamp = message.get("date", "") from_name = message.get("from", "") results.append( HumanMessage( content=text, additional_kwargs={ "sender": from_name, "events": [{"message_time": timestamp}], }, ) ) return ChatSession(messages=results) def _iterate_files(self, path: str) -> Iterator[str]: """Iterate over files in a directory or zip file. Args: path (str): Path to the directory or zip file. Yields: str: Path to each file. """ if os.path.isfile(path) and path.endswith((".html", ".json")): yield path elif os.path.isdir(path): for root, _, files in os.walk(path): for file in files: if file.endswith((".html", ".json")): yield os.path.join(root, file) elif zipfile.is_zipfile(path): with zipfile.ZipFile(path) as zip_file: for file in zip_file.namelist(): if file.endswith((".html", ".json")): with tempfile.TemporaryDirectory() as temp_dir: yield zip_file.extract(file, path=temp_dir) def lazy_load(self) -> Iterator[ChatSession]: """Lazy load the messages from the chat file and yield them in as chat sessions. Yields: ChatSession: The loaded chat session. """ for file_path in self._iterate_files(self.path): if file_path.endswith(".html"): yield self._load_single_chat_session_html(file_path) elif file_path.endswith(".json"): yield self._load_single_chat_session_json(file_path)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~open_city_data.py
from typing import Iterator, List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader class OpenCityDataLoader(BaseLoader): """Load from `Open City`.""" def __init__(self, city_id: str, dataset_id: str, limit: int): """Initialize with dataset_id. Example: https://dev.socrata.com/foundry/data.sfgov.org/vw6y-z8j6 e.g., city_id = data.sfgov.org e.g., dataset_id = vw6y-z8j6 Args: city_id: The Open City city identifier. dataset_id: The Open City dataset identifier. limit: The maximum number of documents to load. """ self.city_id = city_id self.dataset_id = dataset_id self.limit = limit def lazy_load(self) -> Iterator[Document]: """Lazy load records.""" from sodapy import Socrata client = Socrata(self.city_id, None) results = client.get(self.dataset_id, limit=self.limit) for record in results: yield Document( page_content=str(record), metadata={ "source": self.city_id + "_" + self.dataset_id, }, ) def load(self) -> List[Document]: """Load records.""" return list(self.lazy_load())
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~vectorstores~dingo.py
from __future__ import annotations import logging import uuid from typing import Any, Iterable, List, Optional, Tuple import numpy as np from langchain.docstore.document import Document from langchain.schema.embeddings import Embeddings from langchain.schema.vectorstore import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance logger = logging.getLogger(__name__) class Dingo(VectorStore): """`Dingo` vector store. To use, you should have the ``dingodb`` python package installed. Example: .. code-block:: python from langchain.vectorstores import Dingo from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() dingo = Dingo(embeddings, "text") """ def __init__( self, embedding: Embeddings, text_key: str, *, client: Any = None, index_name: Optional[str] = None, dimension: int = 1024, host: Optional[List[str]] = None, user: str = "root", password: str = "123123", self_id: bool = False, ): """Initialize with Dingo client.""" try: import dingodb except ImportError: raise ImportError( "Could not import dingo python package. " "Please install it with `pip install dingodb." ) host = host if host is not None else ["172.20.31.10:13000"] # collection if client is not None: dingo_client = client else: try: # connect to dingo db dingo_client = dingodb.DingoDB(user, password, host) except ValueError as e: raise ValueError(f"Dingo failed to connect: {e}") self._text_key = text_key self._client = dingo_client if index_name is not None and index_name not in dingo_client.get_index(): if self_id is True: dingo_client.create_index( index_name, dimension=dimension, auto_id=False ) else: dingo_client.create_index(index_name, dimension=dimension) self._index_name = index_name self._embedding = embedding @property def embeddings(self) -> Optional[Embeddings]: return self._embedding def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, text_key: str = "text", batch_size: int = 500, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of ids to associate with the texts. Returns: List of ids from adding the texts into the vectorstore. """ # Embed and create the documents ids = ids or [str(uuid.uuid1().int)[:13] for _ in texts] metadatas_list = [] texts = list(texts) embeds = self._embedding.embed_documents(texts) for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} metadata[self._text_key] = text metadatas_list.append(metadata) # upsert to Dingo for i in range(0, len(list(texts)), batch_size): j = i + batch_size add_res = self._client.vector_add( self._index_name, metadatas_list[i:j], embeds[i:j], ids[i:j] ) if not add_res: raise Exception("vector add fail") return ids def similarity_search( self, query: str, k: int = 4, search_params: Optional[dict] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> List[Document]: """Return Dingo documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. search_params: Dictionary of argument(s) to filter on metadata Returns: List of Documents most similar to the query and score for each """ docs_and_scores = self.similarity_search_with_score( query, k=k, search_params=search_params ) return [doc for doc, _ in docs_and_scores] def similarity_search_with_score( self, query: str, k: int = 4, search_params: Optional[dict] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return Dingo documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. search_params: Dictionary of argument(s) to filter on metadata Returns: List of Documents most similar to the query and score for each """ docs = [] query_obj = self._embedding.embed_query(query) results = self._client.vector_search( self._index_name, xq=query_obj, top_k=k, search_params=search_params ) if not results: return [] for res in results[0]["vectorWithDistances"]: metadatas = res["scalarData"] id = res["id"] score = res["distance"] text = metadatas[self._text_key]["fields"][0]["data"] metadata = {"id": id, "text": text, "score": score} docs.append((Document(page_content=text, metadata=metadata), score)) return docs def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, search_params: Optional[dict] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ results = self._client.vector_search( self._index_name, [embedding], search_params=search_params, top_k=k ) mmr_selected = maximal_marginal_relevance( np.array([embedding], dtype=np.float32), [ item["vector"]["floatValues"] for item in results[0]["vectorWithDistances"] ], k=k, lambda_mult=lambda_mult, ) selected = [] for i in mmr_selected: meta_data = {} for k, v in results[0]["vectorWithDistances"][i]["scalarData"].items(): meta_data.update({str(k): v["fields"][0]["data"]}) selected.append(meta_data) return [ Document(page_content=metadata.pop(self._text_key), metadata=metadata) for metadata in selected ] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, search_params: Optional[dict] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ embedding = self._embedding.embed_query(query) return self.max_marginal_relevance_search_by_vector( embedding, k, fetch_k, lambda_mult, search_params ) @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, text_key: str = "text", index_name: Optional[str] = None, dimension: int = 1024, client: Any = None, host: List[str] = ["172.20.31.10:13000"], user: str = "root", password: str = "123123", batch_size: int = 500, **kwargs: Any, ) -> Dingo: """Construct Dingo wrapper from raw documents. This is a user friendly interface that: 1. Embeds documents. 2. Adds the documents to a provided Dingo index This is intended to be a quick way to get started. Example: .. code-block:: python from langchain.vectorstores import Dingo from langchain.embeddings import OpenAIEmbeddings import dingodb sss embeddings = OpenAIEmbeddings() dingo = Dingo.from_texts( texts, embeddings, index_name="langchain-demo" ) """ try: import dingodb except ImportError: raise ImportError( "Could not import dingo python package. " "Please install it with `pip install dingodb`." ) if client is not None: dingo_client = client else: try: # connect to dingo db dingo_client = dingodb.DingoDB(user, password, host) except ValueError as e: raise ValueError(f"Dingo failed to connect: {e}") if kwargs is not None and kwargs.get("self_id") is True: if index_name not in dingo_client.get_index(): dingo_client.create_index( index_name, dimension=dimension, auto_id=False ) else: if index_name not in dingo_client.get_index(): dingo_client.create_index(index_name, dimension=dimension) # Embed and create the documents ids = ids or [str(uuid.uuid1().int)[:13] for _ in texts] metadatas_list = [] texts = list(texts) embeds = embedding.embed_documents(texts) for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} metadata[text_key] = text metadatas_list.append(metadata) # upsert to Dingo for i in range(0, len(list(texts)), batch_size): j = i + batch_size add_res = dingo_client.vector_add( index_name, metadatas_list[i:j], embeds[i:j], ids[i:j] ) if not add_res: raise Exception("vector add fail") return cls(embedding, text_key, client=dingo_client, index_name=index_name) def delete( self, ids: Optional[List[str]] = None, **kwargs: Any, ) -> Any: """Delete by vector IDs or filter. Args: ids: List of ids to delete. """ if ids is None: raise ValueError("No ids provided to delete.") return self._client.vector_delete(self._index_name, ids=ids)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~cube_semantic.py
import json import logging import time from typing import List import requests from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader logger = logging.getLogger(__name__) class CubeSemanticLoader(BaseLoader): """Load `Cube semantic layer` metadata. Args: cube_api_url: REST API endpoint. Use the REST API of your Cube's deployment. Please find out more information here: https://cube.dev/docs/http-api/rest#configuration-base-path cube_api_token: Cube API token. Authentication tokens are generated based on your Cube's API secret. Please find out more information here: https://cube.dev/docs/security#generating-json-web-tokens-jwt load_dimension_values: Whether to load dimension values for every string dimension or not. dimension_values_limit: Maximum number of dimension values to load. dimension_values_max_retries: Maximum number of retries to load dimension values. dimension_values_retry_delay: Delay between retries to load dimension values. """ def __init__( self, cube_api_url: str, cube_api_token: str, load_dimension_values: bool = True, dimension_values_limit: int = 10_000, dimension_values_max_retries: int = 10, dimension_values_retry_delay: int = 3, ): self.cube_api_url = cube_api_url self.cube_api_token = cube_api_token self.load_dimension_values = load_dimension_values self.dimension_values_limit = dimension_values_limit self.dimension_values_max_retries = dimension_values_max_retries self.dimension_values_retry_delay = dimension_values_retry_delay def _get_dimension_values(self, dimension_name: str) -> List[str]: """Makes a call to Cube's REST API load endpoint to retrieve values for dimensions. These values can be used to achieve a more accurate filtering. """ logger.info("Loading dimension values for: {dimension_name}...") headers = { "Content-Type": "application/json", "Authorization": self.cube_api_token, } query = { "query": { "dimensions": [dimension_name], "limit": self.dimension_values_limit, } } retries = 0 while retries < self.dimension_values_max_retries: response = requests.request( "POST", f"{self.cube_api_url}/load", headers=headers, data=json.dumps(query), ) if response.status_code == 200: response_data = response.json() if ( "error" in response_data and response_data["error"] == "Continue wait" ): logger.info("Retrying...") retries += 1 time.sleep(self.dimension_values_retry_delay) continue else: dimension_values = [ item[dimension_name] for item in response_data["data"] ] return dimension_values else: logger.error("Request failed with status code:", response.status_code) break if retries == self.dimension_values_max_retries: logger.info("Maximum retries reached.") return [] def load(self) -> List[Document]: """Makes a call to Cube's REST API metadata endpoint. Returns: A list of documents with attributes: - page_content=column_title + column_description - metadata - table_name - column_name - column_data_type - column_member_type - column_title - column_description - column_values - cube_data_obj_type """ headers = { "Content-Type": "application/json", "Authorization": self.cube_api_token, } logger.info(f"Loading metadata from {self.cube_api_url}...") response = requests.get(f"{self.cube_api_url}/meta", headers=headers) response.raise_for_status() raw_meta_json = response.json() cube_data_objects = raw_meta_json.get("cubes", []) logger.info(f"Found {len(cube_data_objects)} cube data objects in metadata.") if not cube_data_objects: raise ValueError("No cubes found in metadata.") docs = [] for cube_data_obj in cube_data_objects: cube_data_obj_name = cube_data_obj.get("name") cube_data_obj_type = cube_data_obj.get("type") cube_data_obj_is_public = cube_data_obj.get("public") measures = cube_data_obj.get("measures", []) dimensions = cube_data_obj.get("dimensions", []) logger.info(f"Processing {cube_data_obj_name}...") if not cube_data_obj_is_public: logger.info(f"Skipping {cube_data_obj_name} because it is not public.") continue for item in measures + dimensions: column_member_type = "measure" if item in measures else "dimension" dimension_values = [] item_name = str(item.get("name")) item_type = str(item.get("type")) if ( self.load_dimension_values and column_member_type == "dimension" and item_type == "string" ): dimension_values = self._get_dimension_values(item_name) metadata = dict( table_name=str(cube_data_obj_name), column_name=item_name, column_data_type=item_type, column_title=str(item.get("title")), column_description=str(item.get("description")), column_member_type=column_member_type, column_values=dimension_values, cube_data_obj_type=cube_data_obj_type, ) page_content = f"{str(item.get('title'))}, " page_content += f"{str(item.get('description'))}" docs.append(Document(page_content=page_content, metadata=metadata)) return docs
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~retrievers~chaindesk.py
from typing import Any, List, Optional import aiohttp import requests from langchain.callbacks.manager import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain.schema import BaseRetriever, Document class ChaindeskRetriever(BaseRetriever): """`Chaindesk API` retriever.""" datastore_url: str top_k: Optional[int] api_key: Optional[str] def __init__( self, datastore_url: str, top_k: Optional[int] = None, api_key: Optional[str] = None, ): self.datastore_url = datastore_url self.api_key = api_key self.top_k = top_k def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any, ) -> List[Document]: response = requests.post( self.datastore_url, json={ "query": query, **({"topK": self.top_k} if self.top_k is not None else {}), }, headers={ "Content-Type": "application/json", **( {"Authorization": f"Bearer {self.api_key}"} if self.api_key is not None else {} ), }, ) data = response.json() return [ Document( page_content=r["text"], metadata={"source": r["source"], "score": r["score"]}, ) for r in data["results"] ] async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, **kwargs: Any, ) -> List[Document]: async with aiohttp.ClientSession() as session: async with session.request( "POST", self.datastore_url, json={ "query": query, **({"topK": self.top_k} if self.top_k is not None else {}), }, headers={ "Content-Type": "application/json", **( {"Authorization": f"Bearer {self.api_key}"} if self.api_key is not None else {} ), }, ) as response: data = await response.json() return [ Document( page_content=r["text"], metadata={"source": r["source"], "score": r["score"]}, ) for r in data["results"] ]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~tools~amadeus~closest_airport.py
from typing import Optional, Type from langchain.callbacks.manager import CallbackManagerForToolRun from langchain.chains import LLMChain from langchain.chat_models import ChatOpenAI from langchain.pydantic_v1 import BaseModel, Field from langchain.tools.amadeus.base import AmadeusBaseTool class ClosestAirportSchema(BaseModel): """Schema for the AmadeusClosestAirport tool.""" location: str = Field( description=( " The location for which you would like to find the nearest airport " " along with optional details such as country, state, region, or " " province, allowing for easy processing and identification of " " the closest airport. Examples of the format are the following:\n" " Cali, Colombia\n " " Lincoln, Nebraska, United States\n" " New York, United States\n" " Sydney, New South Wales, Australia\n" " Rome, Lazio, Italy\n" " Toronto, Ontario, Canada\n" ) ) class AmadeusClosestAirport(AmadeusBaseTool): """Tool for finding the closest airport to a particular location.""" name: str = "closest_airport" description: str = ( "Use this tool to find the closest airport to a particular location." ) args_schema: Type[ClosestAirportSchema] = ClosestAirportSchema def _run( self, location: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: template = ( " Какой аэропорт ближе всего к {location}? Ответь, пожалуйста, с " " кодом аэропорта по международной ассоциации воздушного транспорта (IATA) " ' в следующем формате JSON. JSON: "iataCode": "Код местоположения IATA" ' ) llm = ChatOpenAI(temperature=0) llm_chain = LLMChain.from_string(llm=llm, template=template) output = llm_chain.run(location=location) return output
[ " Какой аэропорт ближе всего к {location}? Ответь, пожалуйста, с кодом аэропорта по международной ассоциации воздушного транспорта (IATA) в следующем формате JSON. JSON: \"iataCode\": \"Код местоположения IATA\" " ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~utilities~apify.py
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional from langchain.pydantic_v1 import BaseModel, root_validator from langchain.schema.document import Document from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: from langchain.document_loaders import ApifyDatasetLoader class ApifyWrapper(BaseModel): """Wrapper around Apify. To use, you should have the ``apify-client`` python package installed, and the environment variable ``APIFY_API_TOKEN`` set with your API key, or pass `apify_api_token` as a named parameter to the constructor. """ apify_client: Any apify_client_async: Any @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate environment. Validate that an Apify API token is set and the apify-client Python package exists in the current environment. """ apify_api_token = get_from_dict_or_env( values, "apify_api_token", "APIFY_API_TOKEN" ) try: from apify_client import ApifyClient, ApifyClientAsync values["apify_client"] = ApifyClient(apify_api_token) values["apify_client_async"] = ApifyClientAsync(apify_api_token) except ImportError: raise ImportError( "Could not import apify-client Python package. " "Please install it with `pip install apify-client`." ) return values def call_actor( self, actor_id: str, run_input: Dict, dataset_mapping_function: Callable[[Dict], Document], *, build: Optional[str] = None, memory_mbytes: Optional[int] = None, timeout_secs: Optional[int] = None, ) -> "ApifyDatasetLoader": """Run an Actor on the Apify platform and wait for results to be ready. Args: actor_id (str): The ID or name of the Actor on the Apify platform. run_input (Dict): The input object of the Actor that you're trying to run. dataset_mapping_function (Callable): A function that takes a single dictionary (an Apify dataset item) and converts it to an instance of the Document class. build (str, optional): Optionally specifies the actor build to run. It can be either a build tag or build number. memory_mbytes (int, optional): Optional memory limit for the run, in megabytes. timeout_secs (int, optional): Optional timeout for the run, in seconds. Returns: ApifyDatasetLoader: A loader that will fetch the records from the Actor run's default dataset. """ from langchain.document_loaders import ApifyDatasetLoader actor_call = self.apify_client.actor(actor_id).call( run_input=run_input, build=build, memory_mbytes=memory_mbytes, timeout_secs=timeout_secs, ) return ApifyDatasetLoader( dataset_id=actor_call["defaultDatasetId"], dataset_mapping_function=dataset_mapping_function, ) async def acall_actor( self, actor_id: str, run_input: Dict, dataset_mapping_function: Callable[[Dict], Document], *, build: Optional[str] = None, memory_mbytes: Optional[int] = None, timeout_secs: Optional[int] = None, ) -> "ApifyDatasetLoader": """Run an Actor on the Apify platform and wait for results to be ready. Args: actor_id (str): The ID or name of the Actor on the Apify platform. run_input (Dict): The input object of the Actor that you're trying to run. dataset_mapping_function (Callable): A function that takes a single dictionary (an Apify dataset item) and converts it to an instance of the Document class. build (str, optional): Optionally specifies the actor build to run. It can be either a build tag or build number. memory_mbytes (int, optional): Optional memory limit for the run, in megabytes. timeout_secs (int, optional): Optional timeout for the run, in seconds. Returns: ApifyDatasetLoader: A loader that will fetch the records from the Actor run's default dataset. """ from langchain.document_loaders import ApifyDatasetLoader actor_call = await self.apify_client_async.actor(actor_id).call( run_input=run_input, build=build, memory_mbytes=memory_mbytes, timeout_secs=timeout_secs, ) return ApifyDatasetLoader( dataset_id=actor_call["defaultDatasetId"], dataset_mapping_function=dataset_mapping_function, ) def call_actor_task( self, task_id: str, task_input: Dict, dataset_mapping_function: Callable[[Dict], Document], *, build: Optional[str] = None, memory_mbytes: Optional[int] = None, timeout_secs: Optional[int] = None, ) -> "ApifyDatasetLoader": """Run a saved Actor task on Apify and wait for results to be ready. Args: task_id (str): The ID or name of the task on the Apify platform. task_input (Dict): The input object of the task that you're trying to run. Overrides the task's saved input. dataset_mapping_function (Callable): A function that takes a single dictionary (an Apify dataset item) and converts it to an instance of the Document class. build (str, optional): Optionally specifies the actor build to run. It can be either a build tag or build number. memory_mbytes (int, optional): Optional memory limit for the run, in megabytes. timeout_secs (int, optional): Optional timeout for the run, in seconds. Returns: ApifyDatasetLoader: A loader that will fetch the records from the task run's default dataset. """ from langchain.document_loaders import ApifyDatasetLoader task_call = self.apify_client.task(task_id).call( task_input=task_input, build=build, memory_mbytes=memory_mbytes, timeout_secs=timeout_secs, ) return ApifyDatasetLoader( dataset_id=task_call["defaultDatasetId"], dataset_mapping_function=dataset_mapping_function, ) async def acall_actor_task( self, task_id: str, task_input: Dict, dataset_mapping_function: Callable[[Dict], Document], *, build: Optional[str] = None, memory_mbytes: Optional[int] = None, timeout_secs: Optional[int] = None, ) -> "ApifyDatasetLoader": """Run a saved Actor task on Apify and wait for results to be ready. Args: task_id (str): The ID or name of the task on the Apify platform. task_input (Dict): The input object of the task that you're trying to run. Overrides the task's saved input. dataset_mapping_function (Callable): A function that takes a single dictionary (an Apify dataset item) and converts it to an instance of the Document class. build (str, optional): Optionally specifies the actor build to run. It can be either a build tag or build number. memory_mbytes (int, optional): Optional memory limit for the run, in megabytes. timeout_secs (int, optional): Optional timeout for the run, in seconds. Returns: ApifyDatasetLoader: A loader that will fetch the records from the task run's default dataset. """ from langchain.document_loaders import ApifyDatasetLoader task_call = await self.apify_client_async.task(task_id).call( task_input=task_input, build=build, memory_mbytes=memory_mbytes, timeout_secs=timeout_secs, ) return ApifyDatasetLoader( dataset_id=task_call["defaultDatasetId"], dataset_mapping_function=dataset_mapping_function, )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~prompts~pipeline.py
from typing import Any, Dict, List, Tuple from langchain.prompts.chat import BaseChatPromptTemplate from langchain.pydantic_v1 import root_validator from langchain.schema import BasePromptTemplate, PromptValue def _get_inputs(inputs: dict, input_variables: List[str]) -> dict: return {k: inputs[k] for k in input_variables} class PipelinePromptTemplate(BasePromptTemplate): """A prompt template for composing multiple prompt templates together. This can be useful when you want to reuse parts of prompts. A PipelinePrompt consists of two main parts: - final_prompt: This is the final prompt that is returned - pipeline_prompts: This is a list of tuples, consisting of a string (`name`) and a Prompt Template. Each PromptTemplate will be formatted and then passed to future prompt templates as a variable with the same name as `name` """ final_prompt: BasePromptTemplate """The final prompt that is returned.""" pipeline_prompts: List[Tuple[str, BasePromptTemplate]] """A list of tuples, consisting of a string (`name`) and a Prompt Template.""" @root_validator(pre=True) def get_input_variables(cls, values: Dict) -> Dict: """Get input variables.""" created_variables = set() all_variables = set() for k, prompt in values["pipeline_prompts"]: created_variables.add(k) all_variables.update(prompt.input_variables) values["input_variables"] = list(all_variables.difference(created_variables)) return values def format_prompt(self, **kwargs: Any) -> PromptValue: for k, prompt in self.pipeline_prompts: _inputs = _get_inputs(kwargs, prompt.input_variables) if isinstance(prompt, BaseChatPromptTemplate): kwargs[k] = prompt.format_messages(**_inputs) else: kwargs[k] = prompt.format(**_inputs) _inputs = _get_inputs(kwargs, self.final_prompt.input_variables) return self.final_prompt.format_prompt(**_inputs) def format(self, **kwargs: Any) -> str: return self.format_prompt(**kwargs).to_string() @property def _prompt_type(self) -> str: raise ValueError
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~prompts~example_selector~ngram_overlap.py
"""Select and order examples based on ngram overlap score (sentence_bleu score). https://www.nltk.org/_modules/nltk/translate/bleu_score.html https://aclanthology.org/P02-1040.pdf """ from typing import Dict, List import numpy as np from langchain.prompts.example_selector.base import BaseExampleSelector from langchain.prompts.prompt import PromptTemplate from langchain.pydantic_v1 import BaseModel, root_validator def ngram_overlap_score(source: List[str], example: List[str]) -> float: """Compute ngram overlap score of source and example as sentence_bleu score. Use sentence_bleu with method1 smoothing function and auto reweighting. Return float value between 0.0 and 1.0 inclusive. https://www.nltk.org/_modules/nltk/translate/bleu_score.html https://aclanthology.org/P02-1040.pdf """ from nltk.translate.bleu_score import ( SmoothingFunction, # type: ignore sentence_bleu, ) hypotheses = source[0].split() references = [s.split() for s in example] return float( sentence_bleu( references, hypotheses, smoothing_function=SmoothingFunction().method1, auto_reweigh=True, ) ) class NGramOverlapExampleSelector(BaseExampleSelector, BaseModel): """Select and order examples based on ngram overlap score (sentence_bleu score). https://www.nltk.org/_modules/nltk/translate/bleu_score.html https://aclanthology.org/P02-1040.pdf """ examples: List[dict] """A list of the examples that the prompt template expects.""" example_prompt: PromptTemplate """Prompt template used to format the examples.""" threshold: float = -1.0 """Threshold at which algorithm stops. Set to -1.0 by default. For negative threshold: select_examples sorts examples by ngram_overlap_score, but excludes none. For threshold greater than 1.0: select_examples excludes all examples, and returns an empty list. For threshold equal to 0.0: select_examples sorts examples by ngram_overlap_score, and excludes examples with no ngram overlap with input. """ @root_validator(pre=True) def check_dependencies(cls, values: Dict) -> Dict: """Check that valid dependencies exist.""" try: from nltk.translate.bleu_score import ( # noqa: F401 SmoothingFunction, sentence_bleu, ) except ImportError as e: raise ImportError( "Not all the correct dependencies for this ExampleSelect exist." "Please install nltk with `pip install nltk`." ) from e return values def add_example(self, example: Dict[str, str]) -> None: """Add new example to list.""" self.examples.append(example) def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: """Return list of examples sorted by ngram_overlap_score with input. Descending order. Excludes any examples with ngram_overlap_score less than or equal to threshold. """ inputs = list(input_variables.values()) examples = [] k = len(self.examples) score = [0.0] * k first_prompt_template_key = self.example_prompt.input_variables[0] for i in range(k): score[i] = ngram_overlap_score( inputs, [self.examples[i][first_prompt_template_key]] ) while True: arg_max = np.argmax(score) if (score[arg_max] < self.threshold) or abs( score[arg_max] - self.threshold ) < 1e-9: break examples.append(self.examples[arg_max]) score[arg_max] = self.threshold - 1.0 return examples
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chains~question_answering~stuff_prompt.py
# flake8: noqa from langchain.chains.prompt_selector import ConditionalPromptSelector, is_chat_model from langchain.prompts import PromptTemplate from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) prompt_template = """Используй следующие части контекста, чтобы ответить на вопрос в конце. Если ты не знаешь ответа, просто скажи, что не знаешь, не пытайся придумать ответ. {context} Question: {question} Полезный ответ:""" PROMPT = PromptTemplate( template=prompt_template, input_variables=["context", "question"] ) system_template = """Используй следующие части контекста, чтобы ответить на вопрос пользователя. Если ты не знаешь ответа, просто скажи, что не знаешь, не пытайся придумать ответ. ---------------- {context}""" messages = [ SystemMessagePromptTemplate.from_template(system_template), HumanMessagePromptTemplate.from_template("{question}"), ] CHAT_PROMPT = ChatPromptTemplate.from_messages(messages) PROMPT_SELECTOR = ConditionalPromptSelector( default_prompt=PROMPT, conditionals=[(is_chat_model, CHAT_PROMPT)] )
[ "question", "Используй следующие части контекста, чтобы ответить на вопрос пользователя. \nЕсли ты не знаешь ответа, просто скажи, что не знаешь, не пытайся придумать ответ.\n----------------\n{context}", "context", "Используй следующие части контекста, чтобы ответить на вопрос в конце. Если ты не знаешь ответа, просто скажи, что не знаешь, не пытайся придумать ответ.\n\n{context}\n\nQuestion: {question}\nПолезный ответ:", "{question}" ]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~callbacks~test_wandb_tracer.py
"""Integration tests for the langchain tracer module.""" import asyncio import os import pytest from aiohttp import ClientSession from langchain.agents import AgentType, initialize_agent, load_tools from langchain.callbacks.manager import wandb_tracing_enabled from langchain.llms import OpenAI questions = [ ( "Who won the US Open men's final in 2019? " "What is his age raised to the 0.334 power?" ), ( "Who is Olivia Wilde's boyfriend? " "What is his current age raised to the 0.23 power?" ), ( "Who won the most recent formula 1 grand prix? " "What is their age raised to the 0.23 power?" ), ( "Who won the US Open women's final in 2019? " "What is her age raised to the 0.34 power?" ), ("Who is Beyonce's husband? " "What is his age raised to the 0.19 power?"), ] def test_tracing_sequential() -> None: os.environ["LANGCHAIN_WANDB_TRACING"] = "true" os.environ["WANDB_PROJECT"] = "langchain-tracing" for q in questions[:3]: llm = OpenAI(temperature=0) tools = load_tools( ["llm-math", "serpapi"], llm=llm, ) agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) agent.run(q) def test_tracing_session_env_var() -> None: os.environ["LANGCHAIN_WANDB_TRACING"] = "true" llm = OpenAI(temperature=0) tools = load_tools( ["llm-math", "serpapi"], llm=llm, ) agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) agent.run(questions[0]) @pytest.mark.asyncio async def test_tracing_concurrent() -> None: os.environ["LANGCHAIN_WANDB_TRACING"] = "true" aiosession = ClientSession() llm = OpenAI(temperature=0) async_tools = load_tools( ["llm-math", "serpapi"], llm=llm, aiosession=aiosession, ) agent = initialize_agent( async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) tasks = [agent.arun(q) for q in questions[:3]] await asyncio.gather(*tasks) await aiosession.close() def test_tracing_context_manager() -> None: llm = OpenAI(temperature=0) tools = load_tools( ["llm-math", "serpapi"], llm=llm, ) agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) if "LANGCHAIN_WANDB_TRACING" in os.environ: del os.environ["LANGCHAIN_WANDB_TRACING"] with wandb_tracing_enabled(): agent.run(questions[0]) # this should be traced agent.run(questions[0]) # this should not be traced @pytest.mark.asyncio async def test_tracing_context_manager_async() -> None: llm = OpenAI(temperature=0) async_tools = load_tools( ["llm-math", "serpapi"], llm=llm, ) agent = initialize_agent( async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) if "LANGCHAIN_WANDB_TRACING" in os.environ: del os.environ["LANGCHAIN_TRACING"] # start a background task task = asyncio.create_task(agent.arun(questions[0])) # this should not be traced with wandb_tracing_enabled(): tasks = [agent.arun(q) for q in questions[1:4]] # these should be traced await asyncio.gather(*tasks) await task
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~evaluation~agents~trajectory_eval_chain.py
"""A chain for evaluating ReAct style agents. This chain is used to evaluate ReAct style agents by reasoning about the sequence of actions taken and their outcomes. It uses a language model chain (LLMChain) to generate the reasoning and scores. """ import re from typing import ( Any, Dict, List, Optional, Sequence, Tuple, TypedDict, Union, cast, ) from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, Callbacks, ) from langchain.chains.llm import LLMChain from langchain.chat_models.base import BaseChatModel from langchain.evaluation.agents.trajectory_eval_prompt import ( EVAL_CHAT_PROMPT, TOOL_FREE_EVAL_CHAT_PROMPT, ) from langchain.evaluation.schema import AgentTrajectoryEvaluator, LLMEvalChain from langchain.pydantic_v1 import Extra, Field from langchain.schema import AgentAction, BaseOutputParser, OutputParserException from langchain.schema.language_model import BaseLanguageModel from langchain.tools.base import BaseTool class TrajectoryEval(TypedDict): """A named tuple containing the score and reasoning for a trajectory.""" score: float """The score for the trajectory, normalized from 0 to 1.""" reasoning: str """The reasoning for the score.""" class TrajectoryOutputParser(BaseOutputParser): """Trajectory output parser.""" @property def _type(self) -> str: return "agent_trajectory" def parse(self, text: str) -> TrajectoryEval: """Parse the output text and extract the score and reasoning. Args: text (str): The output text to parse. Returns: TrajectoryEval: A named tuple containing the normalized score and reasoning. Raises: OutputParserException: If the score is not found in the output text or if the LLM's score is not a digit in the range 1-5. """ if "Score:" not in text: raise OutputParserException( f"Could not find score in model eval output: {text}" ) reasoning, score_str = text.split("Score: ", maxsplit=1) reasoning, score_str = reasoning.strip(), score_str.strip() # Use regex to extract the score. # This will get the number in the string, even if it is a float or more than 10. # E.g. "Score: 1" will return 1, "Score: 3.5" will return 3.5, and # "Score: 10" will return 10. # The score should be an integer digit in the range 1-5. _score = re.search(r"(\d+(\.\d+)?)", score_str) # If the score is not found or is a float, raise an exception. if _score is None or "." in _score.group(1): raise OutputParserException( f"Score is not an integer digit in the range 1-5: {text}" ) score = int(_score.group(1)) # If the score is not in the range 1-5, raise an exception. if not 1 <= score <= 5: raise OutputParserException( f"Score is not a digit in the range 1-5: {text}" ) normalized_score = (score - 1) / 4 return TrajectoryEval(score=normalized_score, reasoning=reasoning) class TrajectoryEvalChain(AgentTrajectoryEvaluator, LLMEvalChain): """A chain for evaluating ReAct style agents. This chain is used to evaluate ReAct style agents by reasoning about the sequence of actions taken and their outcomes. Example: .. code-block:: python from langchain.agents import AgentType, initialize_agent from langchain.chat_models import ChatOpenAI from langchain.evaluation import TrajectoryEvalChain from langchain.tools import tool @tool def geography_answers(country: str, question: str) -> str: \"\"\"Very helpful answers to geography questions.\"\"\" return f"{country}? IDK - We may never know {question}." llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) agent = initialize_agent( tools=[geography_answers], llm=llm, agent=AgentType.OPENAI_FUNCTIONS, return_intermediate_steps=True, ) question = "How many dwell in the largest minor region in Argentina?" response = agent(question) eval_chain = TrajectoryEvalChain.from_llm( llm=llm, agent_tools=[geography_answers], return_reasoning=True ) result = eval_chain.evaluate_agent_trajectory( input=question, agent_trajectory=response["intermediate_steps"], prediction=response["output"], reference="Paris", ) print(result["score"]) # 0 """ # noqa: E501 agent_tools: Optional[List[BaseTool]] = None """A list of tools available to the agent.""" eval_chain: LLMChain """The language model chain used for evaluation.""" output_parser: TrajectoryOutputParser = Field( default_factory=TrajectoryOutputParser ) """The output parser used to parse the output.""" return_reasoning: bool = False # :meta private: """DEPRECATED. Reasoning always returned.""" class Config: """Configuration for the QAEvalChain.""" extra = Extra.ignore @property def requires_reference(self) -> bool: """Whether this evaluator requires a reference label.""" return False @property def _tools_description(self) -> str: """Get the description of the agent tools. Returns: str: The description of the agent tools. """ if self.agent_tools is None: return "" return "\n\n".join( [ f"""Tool {i}: {tool.name} Description: {tool.description}""" for i, tool in enumerate(self.agent_tools, 1) ] ) @staticmethod def get_agent_trajectory( steps: Union[str, Sequence[Tuple[AgentAction, str]]] ) -> str: """Get the agent trajectory as a formatted string. Args: steps (Union[str, List[Tuple[AgentAction, str]]]): The agent trajectory. Returns: str: The formatted agent trajectory. """ if isinstance(steps, str): return steps return "\n\n".join( [ f"""Step {i}: Tool used: {action.tool} Tool input: {action.tool_input} Tool output: {output}""" for i, (action, output) in enumerate(steps, 1) ] ) @staticmethod def _format_reference(reference: Optional[str]) -> str: """Format the reference text. Args: reference (str): The reference text. Returns: str: The formatted reference text. """ if not reference: return "" return f""" The following is the expected answer. Use this to measure correctness: [GROUND_TRUTH] {reference} [END_GROUND_TRUTH] """ @classmethod def from_llm( cls, llm: BaseLanguageModel, agent_tools: Optional[Sequence[BaseTool]] = None, output_parser: Optional[TrajectoryOutputParser] = None, **kwargs: Any, ) -> "TrajectoryEvalChain": """Create a TrajectoryEvalChain object from a language model chain. Args: llm (BaseChatModel): The language model chain. agent_tools (Optional[Sequence[BaseTool]]): A list of tools available to the agent. output_parser (Optional[TrajectoryOutputParser]): The output parser used to parse the chain output into a score. Returns: TrajectoryEvalChain: The TrajectoryEvalChain object. """ if not isinstance(llm, BaseChatModel): raise NotImplementedError( "Only chat models supported by the current trajectory eval" ) if agent_tools: prompt = EVAL_CHAT_PROMPT else: prompt = TOOL_FREE_EVAL_CHAT_PROMPT eval_chain = LLMChain(llm=llm, prompt=prompt) return cls( agent_tools=agent_tools, eval_chain=eval_chain, output_parser=output_parser or TrajectoryOutputParser(), **kwargs, ) @property def input_keys(self) -> List[str]: """Get the input keys for the chain. Returns: List[str]: The input keys. """ return ["question", "agent_trajectory", "answer", "reference"] @property def output_keys(self) -> List[str]: """Get the output keys for the chain. Returns: List[str]: The output keys. """ return ["score", "reasoning"] def prep_inputs(self, inputs: Union[Dict[str, Any], Any]) -> Dict[str, str]: """Validate and prep inputs.""" if "reference" not in inputs: inputs["reference"] = self._format_reference(inputs.get("reference")) return super().prep_inputs(inputs) def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run the chain and generate the output. Args: inputs (Dict[str, str]): The input values for the chain. run_manager (Optional[CallbackManagerForChainRun]): The callback manager for the chain run. Returns: Dict[str, Any]: The output values of the chain. """ chain_input = {**inputs} if self.agent_tools: chain_input["tool_descriptions"] = self._tools_description _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() raw_output = self.eval_chain.run( chain_input, callbacks=_run_manager.get_child() ) return cast(dict, self.output_parser.parse(raw_output)) async def _acall( self, inputs: Dict[str, str], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run the chain and generate the output. Args: inputs (Dict[str, str]): The input values for the chain. run_manager (Optional[CallbackManagerForChainRun]): The callback manager for the chain run. Returns: Dict[str, Any]: The output values of the chain. """ chain_input = {**inputs} if self.agent_tools: chain_input["tool_descriptions"] = self._tools_description _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() raw_output = await self.eval_chain.arun( chain_input, callbacks=_run_manager.get_child() ) return cast(dict, self.output_parser.parse(raw_output)) def _evaluate_agent_trajectory( self, *, prediction: str, input: str, agent_trajectory: Sequence[Tuple[AgentAction, str]], reference: Optional[str] = None, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """Evaluate a trajectory. Args: prediction (str): The final predicted response. input (str): The input to the agent. agent_trajectory (List[Tuple[AgentAction, str]]): The intermediate steps forming the agent trajectory. reference (Optional[str]): The reference answer. callbacks (Callbacks): Callbacks to use for this chain run. Returns: dict: The evaluation result, which includes the score and optionally the reasoning for reaching that. """ inputs = { "question": input, "agent_trajectory": self.get_agent_trajectory(agent_trajectory), "answer": prediction, "reference": reference, } return self.__call__( inputs=inputs, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, return_only_outputs=True, ) async def _aevaluate_agent_trajectory( self, *, prediction: str, input: str, agent_trajectory: Sequence[Tuple[AgentAction, str]], reference: Optional[str] = None, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """Asynchronously evaluate a trajectory. Args: prediction (str): The final predicted response. input (str): The input to the agent. agent_trajectory (List[Tuple[AgentAction, str]]): The intermediate steps forming the agent trajectory. reference (Optional[str]): The reference answer. callbacks (Callbacks): Callbacks to use for this chain run. Returns: dict: The evaluation result, which includes the score and optionally the reasoning for reaching that. """ inputs = { "question": input, "agent_trajectory": self.get_agent_trajectory(agent_trajectory), "answer": prediction, "reference": reference, } return await self.acall( inputs=inputs, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, return_only_outputs=True, )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chat_models~hunyuan.py
import base64 import hashlib import hmac import json import logging import time from typing import Any, Dict, Iterator, List, Mapping, Optional, Type, Union from urllib.parse import urlparse import requests from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.chat_models.base import BaseChatModel, _generate_from_stream from langchain.pydantic_v1 import Field, SecretStr, root_validator from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, HumanMessage, ) from langchain.schema.messages import ( AIMessageChunk, BaseMessageChunk, ChatMessageChunk, HumanMessageChunk, ) from langchain.schema.output import ChatGenerationChunk from langchain.utils import get_from_dict_or_env, get_pydantic_field_names logger = logging.getLogger(__name__) DEFAULT_API_BASE = "https://hunyuan.cloud.tencent.com" DEFAULT_PATH = "/hyllm/v1/chat/completions" def _convert_message_to_dict(message: BaseMessage) -> dict: message_dict: Dict[str, Any] if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} else: raise TypeError(f"Got unknown type {message}") return message_dict def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: role = _dict["role"] if role == "user": return HumanMessage(content=_dict["content"]) elif role == "assistant": return AIMessage(content=_dict.get("content", "") or "") else: return ChatMessage(content=_dict["content"], role=role) def _convert_delta_to_message_chunk( _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk] ) -> BaseMessageChunk: role = _dict.get("role") content = _dict.get("content") or "" if role == "user" or default_class == HumanMessageChunk: return HumanMessageChunk(content=content) elif role == "assistant" or default_class == AIMessageChunk: return AIMessageChunk(content=content) elif role or default_class == ChatMessageChunk: return ChatMessageChunk(content=content, role=role) else: return default_class(content=content) # signature generation # https://cloud.tencent.com/document/product/1729/97732#532252ce-e960-48a7-8821-940a9ce2ccf3 def _signature(secret_key: SecretStr, url: str, payload: Dict[str, Any]) -> str: sorted_keys = sorted(payload.keys()) url_info = urlparse(url) sign_str = url_info.netloc + url_info.path + "?" for key in sorted_keys: value = payload[key] if isinstance(value, list) or isinstance(value, dict): value = json.dumps(value, separators=(",", ":")) elif isinstance(value, float): value = "%g" % value sign_str = sign_str + key + "=" + str(value) + "&" sign_str = sign_str[:-1] hmacstr = hmac.new( key=secret_key.get_secret_value().encode("utf-8"), msg=sign_str.encode("utf-8"), digestmod=hashlib.sha1, ).digest() return base64.b64encode(hmacstr).decode("utf-8") def _create_chat_result(response: Mapping[str, Any]) -> ChatResult: generations = [] for choice in response["choices"]: message = _convert_dict_to_message(choice["messages"]) generations.append(ChatGeneration(message=message)) token_usage = response["usage"] llm_output = {"token_usage": token_usage} return ChatResult(generations=generations, llm_output=llm_output) def _to_secret(value: Union[SecretStr, str]) -> SecretStr: """Convert a string to a SecretStr if needed.""" if isinstance(value, SecretStr): return value return SecretStr(value) class ChatHunyuan(BaseChatModel): """Tencent Hunyuan chat models API by Tencent. For more information, see https://cloud.tencent.com/document/product/1729 """ @property def lc_secrets(self) -> Dict[str, str]: return { "hunyuan_app_id": "HUNYUAN_APP_ID", "hunyuan_secret_id": "HUNYUAN_SECRET_ID", "hunyuan_secret_key": "HUNYUAN_SECRET_KEY", } @property def lc_serializable(self) -> bool: return True hunyuan_api_base: str = Field(default=DEFAULT_API_BASE) """Hunyuan custom endpoints""" hunyuan_app_id: Optional[str] = None """Hunyuan App ID""" hunyuan_secret_id: Optional[str] = None """Hunyuan Secret ID""" hunyuan_secret_key: Optional[SecretStr] = None """Hunyuan Secret Key""" streaming: bool = False """Whether to stream the results or not.""" request_timeout: int = 60 """Timeout for requests to Hunyuan API. Default is 60 seconds.""" query_id: Optional[str] = None """Query id for troubleshooting""" temperature: float = 1.0 """What sampling temperature to use.""" top_p: float = 1.0 """What probability mass to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for API call not explicitly specified.""" class Config: """Configuration for this pydantic object.""" allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: values["hunyuan_api_base"] = get_from_dict_or_env( values, "hunyuan_api_base", "HUNYUAN_API_BASE", DEFAULT_API_BASE, ) values["hunyuan_app_id"] = get_from_dict_or_env( values, "hunyuan_app_id", "HUNYUAN_APP_ID", ) values["hunyuan_secret_id"] = get_from_dict_or_env( values, "hunyuan_secret_id", "HUNYUAN_SECRET_ID", ) values["hunyuan_secret_key"] = _to_secret( get_from_dict_or_env( values, "hunyuan_secret_key", "HUNYUAN_SECRET_KEY", ) ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Hunyuan API.""" normal_params = { "app_id": self.hunyuan_app_id, "secret_id": self.hunyuan_secret_id, "temperature": self.temperature, "top_p": self.top_p, } if self.query_id is not None: normal_params["query_id"] = self.query_id return {**normal_params, **self.model_kwargs} def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: stream_iter = self._stream( messages=messages, stop=stop, run_manager=run_manager, **kwargs ) return _generate_from_stream(stream_iter) res = self._chat(messages, **kwargs) response = res.json() if "error" in response: raise ValueError(f"Error from Hunyuan api response: {response}") return _create_chat_result(response) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: res = self._chat(messages, **kwargs) default_chunk_class = AIMessageChunk for chunk in res.iter_lines(): response = json.loads(chunk) if "error" in response: raise ValueError(f"Error from Hunyuan api response: {response}") for choice in response["choices"]: chunk = _convert_delta_to_message_chunk( choice["delta"], default_chunk_class ) default_chunk_class = chunk.__class__ yield ChatGenerationChunk(message=chunk) if run_manager: run_manager.on_llm_new_token(chunk.content) def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> requests.Response: if self.hunyuan_secret_key is None: raise ValueError("Hunyuan secret key is not set.") parameters = {**self._default_params, **kwargs} headers = parameters.pop("headers", {}) timestamp = parameters.pop("timestamp", int(time.time())) expired = parameters.pop("expired", timestamp + 24 * 60 * 60) payload = { "timestamp": timestamp, "expired": expired, "messages": [_convert_message_to_dict(m) for m in messages], **parameters, } if self.streaming: payload["stream"] = 1 url = self.hunyuan_api_base + DEFAULT_PATH res = requests.post( url=url, timeout=self.request_timeout, headers={ "Content-Type": "application/json", "Authorization": _signature( secret_key=self.hunyuan_secret_key, url=url, payload=payload ), **headers, }, json=payload, stream=self.streaming, ) return res @property def _llm_type(self) -> str: return "hunyuan-chat"
[ "content" ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~vectorstores~tencentvectordb.py
"""Wrapper around the Tencent vector database.""" from __future__ import annotations import json import logging import time from typing import Any, Dict, Iterable, List, Optional, Tuple import numpy as np from langchain.docstore.document import Document from langchain.schema.embeddings import Embeddings from langchain.schema.vectorstore import VectorStore from langchain.utils import guard_import from langchain.vectorstores.utils import maximal_marginal_relevance logger = logging.getLogger(__name__) class ConnectionParams: """Tencent vector DB Connection params. See the following documentation for details: https://cloud.tencent.com/document/product/1709/95820 Attribute: url (str) : The access address of the vector database server that the client needs to connect to. key (str): API key for client to access the vector database server, which is used for authentication. username (str) : Account for client to access the vector database server. timeout (int) : Request Timeout. """ def __init__(self, url: str, key: str, username: str = "root", timeout: int = 10): self.url = url self.key = key self.username = username self.timeout = timeout class IndexParams: """Tencent vector DB Index params. See the following documentation for details: https://cloud.tencent.com/document/product/1709/95826 """ def __init__( self, dimension: int, shard: int = 1, replicas: int = 2, index_type: str = "HNSW", metric_type: str = "L2", params: Optional[Dict] = None, ): self.dimension = dimension self.shard = shard self.replicas = replicas self.index_type = index_type self.metric_type = metric_type self.params = params class TencentVectorDB(VectorStore): """Initialize wrapper around the tencent vector database. In order to use this you need to have a database instance. See the following documentation for details: https://cloud.tencent.com/document/product/1709/94951 """ field_id: str = "id" field_vector: str = "vector" field_text: str = "text" field_metadata: str = "metadata" def __init__( self, embedding: Embeddings, connection_params: ConnectionParams, index_params: IndexParams = IndexParams(128), database_name: str = "LangChainDatabase", collection_name: str = "LangChainCollection", drop_old: Optional[bool] = False, ): self.document = guard_import("tcvectordb.model.document") tcvectordb = guard_import("tcvectordb") self.embedding_func = embedding self.index_params = index_params self.vdb_client = tcvectordb.VectorDBClient( url=connection_params.url, username=connection_params.username, key=connection_params.key, timeout=connection_params.timeout, ) db_list = self.vdb_client.list_databases() db_exist: bool = False for db in db_list: if database_name == db.database_name: db_exist = True break if db_exist: self.database = self.vdb_client.database(database_name) else: self.database = self.vdb_client.create_database(database_name) try: self.collection = self.database.describe_collection(collection_name) if drop_old: self.database.drop_collection(collection_name) self._create_collection(collection_name) except tcvectordb.exceptions.VectorDBException: self._create_collection(collection_name) def _create_collection(self, collection_name: str) -> None: enum = guard_import("tcvectordb.model.enum") vdb_index = guard_import("tcvectordb.model.index") index_type = None for k, v in enum.IndexType.__members__.items(): if k == self.index_params.index_type: index_type = v if index_type is None: raise ValueError("unsupported index_type") metric_type = None for k, v in enum.MetricType.__members__.items(): if k == self.index_params.metric_type: metric_type = v if metric_type is None: raise ValueError("unsupported metric_type") if self.index_params.params is None: params = vdb_index.HNSWParams(m=16, efconstruction=200) else: params = vdb_index.HNSWParams( m=self.index_params.params.get("M", 16), efconstruction=self.index_params.params.get("efConstruction", 200), ) index = vdb_index.Index( vdb_index.FilterIndex( self.field_id, enum.FieldType.String, enum.IndexType.PRIMARY_KEY ), vdb_index.VectorIndex( self.field_vector, self.index_params.dimension, index_type, metric_type, params, ), vdb_index.FilterIndex( self.field_text, enum.FieldType.String, enum.IndexType.FILTER ), vdb_index.FilterIndex( self.field_metadata, enum.FieldType.String, enum.IndexType.FILTER ), ) self.collection = self.database.create_collection( name=collection_name, shard=self.index_params.shard, replicas=self.index_params.replicas, description="Collection for LangChain", index=index, ) @property def embeddings(self) -> Embeddings: return self.embedding_func @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, connection_params: Optional[ConnectionParams] = None, index_params: Optional[IndexParams] = None, database_name: str = "LangChainDatabase", collection_name: str = "LangChainCollection", drop_old: Optional[bool] = False, **kwargs: Any, ) -> TencentVectorDB: """Create a collection, indexes it with HNSW, and insert data.""" if len(texts) == 0: raise ValueError("texts is empty") if connection_params is None: raise ValueError("connection_params is empty") try: embeddings = embedding.embed_documents(texts[0:1]) except NotImplementedError: embeddings = [embedding.embed_query(texts[0])] dimension = len(embeddings[0]) if index_params is None: index_params = IndexParams(dimension=dimension) else: index_params.dimension = dimension vector_db = cls( embedding=embedding, connection_params=connection_params, index_params=index_params, database_name=database_name, collection_name=collection_name, drop_old=drop_old, ) vector_db.add_texts(texts=texts, metadatas=metadatas) return vector_db def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, timeout: Optional[int] = None, batch_size: int = 1000, **kwargs: Any, ) -> List[str]: """Insert text data into TencentVectorDB.""" texts = list(texts) try: embeddings = self.embedding_func.embed_documents(texts) except NotImplementedError: embeddings = [self.embedding_func.embed_query(x) for x in texts] if len(embeddings) == 0: logger.debug("Nothing to insert, skipping.") return [] pks: list[str] = [] total_count = len(embeddings) for start in range(0, total_count, batch_size): # Grab end index docs = [] end = min(start + batch_size, total_count) for id in range(start, end, 1): metadata = "{}" if metadatas is not None: metadata = json.dumps(metadatas[id]) doc = self.document.Document( id="{}-{}-{}".format(time.time_ns(), hash(texts[id]), id), vector=embeddings[id], text=texts[id], metadata=metadata, ) docs.append(doc) pks.append(str(id)) self.collection.upsert(docs, timeout) return pks def similarity_search( self, query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> List[Document]: """Perform a similarity search against the query string.""" res = self.similarity_search_with_score( query=query, k=k, param=param, expr=expr, timeout=timeout, **kwargs ) return [doc for doc, _ in res] def similarity_search_with_score( self, query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Perform a search on a query string and return results with score.""" # Embed the query text. embedding = self.embedding_func.embed_query(query) res = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, param=param, expr=expr, timeout=timeout, **kwargs ) return res def similarity_search_by_vector( self, embedding: List[float], k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> List[Document]: """Perform a similarity search against the query string.""" res = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, param=param, expr=expr, timeout=timeout, **kwargs ) return [doc for doc, _ in res] def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Perform a search on a query string and return results with score.""" filter = None if expr is None else self.document.Filter(expr) ef = 10 if param is None else param.get("ef", 10) res: List[List[Dict]] = self.collection.search( vectors=[embedding], filter=filter, params=self.document.HNSWSearchParams(ef=ef), retrieve_vector=False, limit=k, timeout=timeout, ) # Organize results. ret: List[Tuple[Document, float]] = [] if res is None or len(res) == 0: return ret for result in res[0]: meta = result.get(self.field_metadata) if meta is not None: meta = json.loads(meta) doc = Document(page_content=result.get(self.field_text), metadata=meta) pair = (doc, result.get("score", 0.0)) ret.append(pair) return ret def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> List[Document]: """Perform a search and return results that are reordered by MMR.""" embedding = self.embedding_func.embed_query(query) return self.max_marginal_relevance_search_by_vector( embedding=embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, param=param, expr=expr, timeout=timeout, **kwargs, ) def max_marginal_relevance_search_by_vector( self, embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> List[Document]: """Perform a search and return results that are reordered by MMR.""" filter = None if expr is None else self.document.Filter(expr) ef = 10 if param is None else param.get("ef", 10) res: List[List[Dict]] = self.collection.search( vectors=[embedding], filter=filter, params=self.document.HNSWSearchParams(ef=ef), retrieve_vector=True, limit=fetch_k, timeout=timeout, ) # Organize results. documents = [] ordered_result_embeddings = [] for result in res[0]: meta = result.get(self.field_metadata) if meta is not None: meta = json.loads(meta) doc = Document(page_content=result.get(self.field_text), metadata=meta) documents.append(doc) ordered_result_embeddings.append(result.get(self.field_vector)) # Get the new order of results. new_ordering = maximal_marginal_relevance( np.array(embedding), ordered_result_embeddings, k=k, lambda_mult=lambda_mult ) # Reorder the values and return. ret = [] for x in new_ordering: # Function can return -1 index if x == -1: break else: ret.append(documents[x]) return ret
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~retrievers~test_wikipedia.py
"""Integration test for Wikipedia API Wrapper.""" from typing import List import pytest from langchain.retrievers import WikipediaRetriever from langchain.schema import Document @pytest.fixture def retriever() -> WikipediaRetriever: return WikipediaRetriever() def assert_docs(docs: List[Document], all_meta: bool = False) -> None: for doc in docs: assert doc.page_content assert doc.metadata main_meta = {"title", "summary"} assert set(doc.metadata).issuperset(main_meta) if all_meta: assert len(set(doc.metadata)) > len(main_meta) else: assert len(set(doc.metadata)) == len(main_meta) def test_load_success(retriever: WikipediaRetriever) -> None: docs = retriever.get_relevant_documents("HUNTER X HUNTER") assert len(docs) > 1 assert_docs(docs, all_meta=False) def test_load_success_all_meta(retriever: WikipediaRetriever) -> None: retriever.load_all_available_meta = True docs = retriever.get_relevant_documents("HUNTER X HUNTER") assert len(docs) > 1 assert_docs(docs, all_meta=True) def test_load_success_init_args() -> None: retriever = WikipediaRetriever( lang="en", top_k_results=1, load_all_available_meta=True ) docs = retriever.get_relevant_documents("HUNTER X HUNTER") assert len(docs) == 1 assert_docs(docs, all_meta=True) def test_load_no_result(retriever: WikipediaRetriever) -> None: docs = retriever.get_relevant_documents( "NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL" ) assert not docs
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~vectorstores~conftest.py
import os from typing import Generator, List, Union import pytest from vcr.request import Request from langchain.document_loaders import TextLoader from langchain.embeddings import OpenAIEmbeddings from langchain.schema import Document from langchain.text_splitter import CharacterTextSplitter # Those environment variables turn on Deep Lake pytest mode. # It significantly makes tests run much faster. # Need to run before `import deeplake` os.environ["BUGGER_OFF"] = "true" os.environ["DEEPLAKE_DOWNLOAD_PATH"] = "./testing/local_storage" os.environ["DEEPLAKE_PYTEST_ENABLED"] = "true" # This fixture returns a dictionary containing filter_headers options # for replacing certain headers with dummy values during cassette playback # Specifically, it replaces the authorization header with a dummy value to # prevent sensitive data from being recorded in the cassette. # It also filters request to certain hosts (specified in the `ignored_hosts` list) # to prevent data from being recorded in the cassette. @pytest.fixture(scope="module") def vcr_config() -> dict: skipped_host = ["pinecone.io"] def before_record_response(response: dict) -> Union[dict, None]: return response def before_record_request(request: Request) -> Union[Request, None]: for host in skipped_host: if request.host.startswith(host) or request.host.endswith(host): return None return request return { "before_record_request": before_record_request, "before_record_response": before_record_response, "filter_headers": [ ("authorization", "authorization-DUMMY"), ("X-OpenAI-Client-User-Agent", "X-OpenAI-Client-User-Agent-DUMMY"), ("Api-Key", "Api-Key-DUMMY"), ("User-Agent", "User-Agent-DUMMY"), ], "ignore_localhost": True, } # Define a fixture that yields a generator object returning a list of documents @pytest.fixture(scope="function") def documents() -> Generator[List[Document], None, None]: """Return a generator that yields a list of documents.""" # Create a CharacterTextSplitter object for splitting the documents into chunks text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) # Load the documents from a file located in the fixtures directory documents = TextLoader( os.path.join(os.path.dirname(__file__), "fixtures", "sharks.txt") ).load() # Yield the documents split into chunks yield text_splitter.split_documents(documents) @pytest.fixture(scope="function") def texts() -> Generator[List[str], None, None]: # Load the documents from a file located in the fixtures directory documents = TextLoader( os.path.join(os.path.dirname(__file__), "fixtures", "sharks.txt") ).load() yield [doc.page_content for doc in documents] @pytest.fixture(scope="module") def embedding_openai() -> OpenAIEmbeddings: return OpenAIEmbeddings()
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~vectorstores~fake_embeddings.py
"""Fake Embedding class for testing purposes.""" import math from typing import List from langchain.schema.embeddings import Embeddings fake_texts = ["foo", "bar", "baz"] class FakeEmbeddings(Embeddings): """Fake embeddings functionality for testing.""" def embed_documents(self, texts: List[str]) -> List[List[float]]: """Return simple embeddings. Embeddings encode each text as its index.""" return [[float(1.0)] * 9 + [float(i)] for i in range(len(texts))] async def aembed_documents(self, texts: List[str]) -> List[List[float]]: return self.embed_documents(texts) def embed_query(self, text: str) -> List[float]: """Return constant query embeddings. Embeddings are identical to embed_documents(texts)[0]. Distance to each text will be that text's index, as it was passed to embed_documents.""" return [float(1.0)] * 9 + [float(0.0)] async def aembed_query(self, text: str) -> List[float]: return self.embed_query(text) class ConsistentFakeEmbeddings(FakeEmbeddings): """Fake embeddings which remember all the texts seen so far to return consistent vectors for the same texts.""" def __init__(self, dimensionality: int = 10) -> None: self.known_texts: List[str] = [] self.dimensionality = dimensionality def embed_documents(self, texts: List[str]) -> List[List[float]]: """Return consistent embeddings for each text seen so far.""" out_vectors = [] for text in texts: if text not in self.known_texts: self.known_texts.append(text) vector = [float(1.0)] * (self.dimensionality - 1) + [ float(self.known_texts.index(text)) ] out_vectors.append(vector) return out_vectors def embed_query(self, text: str) -> List[float]: """Return consistent embeddings for the text, if seen before, or a constant one if the text is unknown.""" return self.embed_documents([text])[0] if text not in self.known_texts: return [float(1.0)] * (self.dimensionality - 1) + [float(0.0)] return [float(1.0)] * (self.dimensionality - 1) + [ float(self.known_texts.index(text)) ] class AngularTwoDimensionalEmbeddings(Embeddings): """ From angles (as strings in units of pi) to unit embedding vectors on a circle. """ def embed_documents(self, texts: List[str]) -> List[List[float]]: """ Make a list of texts into a list of embedding vectors. """ return [self.embed_query(text) for text in texts] def embed_query(self, text: str) -> List[float]: """ Convert input text to a 'vector' (list of floats). If the text is a number, use it as the angle for the unit vector in units of pi. Any other input text becomes the singular result [0, 0] ! """ try: angle = float(text) return [math.cos(angle * math.pi), math.sin(angle * math.pi)] except ValueError: # Assume: just test string, no attention is paid to values. return [0.0, 0.0]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~vectorstores~mongodb_atlas.py
from __future__ import annotations import logging from typing import ( TYPE_CHECKING, Any, Dict, Generator, Iterable, List, Optional, Tuple, TypeVar, Union, ) import numpy as np from langchain.docstore.document import Document from langchain.schema.embeddings import Embeddings from langchain.schema.vectorstore import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance if TYPE_CHECKING: from pymongo.collection import Collection MongoDBDocumentType = TypeVar("MongoDBDocumentType", bound=Dict[str, Any]) logger = logging.getLogger(__name__) DEFAULT_INSERT_BATCH_SIZE = 100 class MongoDBAtlasVectorSearch(VectorStore): """`MongoDB Atlas Vector Search` vector store. To use, you should have both: - the ``pymongo`` python package installed - a connection string associated with a MongoDB Atlas Cluster having deployed an Atlas Search index Example: .. code-block:: python from langchain.vectorstores import MongoDBAtlasVectorSearch from langchain.embeddings.openai import OpenAIEmbeddings from pymongo import MongoClient mongo_client = MongoClient("<YOUR-CONNECTION-STRING>") collection = mongo_client["<db_name>"]["<collection_name>"] embeddings = OpenAIEmbeddings() vectorstore = MongoDBAtlasVectorSearch(collection, embeddings) """ def __init__( self, collection: Collection[MongoDBDocumentType], embedding: Embeddings, *, index_name: str = "default", text_key: str = "text", embedding_key: str = "embedding", ): """ Args: collection: MongoDB collection to add the texts to. embedding: Text embedding model to use. text_key: MongoDB field that will contain the text for each document. embedding_key: MongoDB field that will contain the embedding for each document. index_name: Name of the Atlas Search index. """ self._collection = collection self._embedding = embedding self._index_name = index_name self._text_key = text_key self._embedding_key = embedding_key @property def embeddings(self) -> Embeddings: return self._embedding @classmethod def from_connection_string( cls, connection_string: str, namespace: str, embedding: Embeddings, **kwargs: Any, ) -> MongoDBAtlasVectorSearch: """Construct a `MongoDB Atlas Vector Search` vector store from a MongoDB connection URI. Args: connection_string: A valid MongoDB connection URI. namespace: A valid MongoDB namespace (database and collection). embedding: The text embedding model to use for the vector store. Returns: A new MongoDBAtlasVectorSearch instance. """ try: from pymongo import MongoClient except ImportError: raise ImportError( "Could not import pymongo, please install it with " "`pip install pymongo`." ) client: MongoClient = MongoClient(connection_string) db_name, collection_name = namespace.split(".") collection = client[db_name][collection_name] return cls(collection, embedding, **kwargs) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[Dict[str, Any]]] = None, **kwargs: Any, ) -> List: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ batch_size = kwargs.get("batch_size", DEFAULT_INSERT_BATCH_SIZE) _metadatas: Union[List, Generator] = metadatas or ({} for _ in texts) texts_batch = [] metadatas_batch = [] result_ids = [] for i, (text, metadata) in enumerate(zip(texts, _metadatas)): texts_batch.append(text) metadatas_batch.append(metadata) if (i + 1) % batch_size == 0: result_ids.extend(self._insert_texts(texts_batch, metadatas_batch)) texts_batch = [] metadatas_batch = [] if texts_batch: result_ids.extend(self._insert_texts(texts_batch, metadatas_batch)) return result_ids def _insert_texts(self, texts: List[str], metadatas: List[Dict[str, Any]]) -> List: if not texts: return [] # Embed and create the documents embeddings = self._embedding.embed_documents(texts) to_insert = [ {self._text_key: t, self._embedding_key: embedding, **m} for t, m, embedding in zip(texts, metadatas, embeddings) ] # insert the documents in MongoDB Atlas insert_result = self._collection.insert_many(to_insert) # type: ignore return insert_result.inserted_ids def _similarity_search_with_score( self, embedding: List[float], k: int = 4, pre_filter: Optional[Dict] = None, post_filter_pipeline: Optional[List[Dict]] = None, ) -> List[Tuple[Document, float]]: params = { "queryVector": embedding, "path": self._embedding_key, "numCandidates": k * 10, "limit": k, "index": self._index_name, } if pre_filter: params["filter"] = pre_filter query = {"$vectorSearch": params} pipeline = [ query, {"$set": {"score": {"$meta": "vectorSearchScore"}}}, ] if post_filter_pipeline is not None: pipeline.extend(post_filter_pipeline) cursor = self._collection.aggregate(pipeline) # type: ignore[arg-type] docs = [] for res in cursor: text = res.pop(self._text_key) score = res.pop("score") docs.append((Document(page_content=text, metadata=res), score)) return docs def similarity_search_with_score( self, query: str, *, k: int = 4, pre_filter: Optional[Dict] = None, post_filter_pipeline: Optional[List[Dict]] = None, ) -> List[Tuple[Document, float]]: """Return MongoDB documents most similar to the given query and their scores. Uses the knnBeta Operator available in MongoDB Atlas Search. This feature is in early access and available only for evaluation purposes, to validate functionality, and to gather feedback from a small closed group of early access users. It is not recommended for production deployments as we may introduce breaking changes. For more: https://www.mongodb.com/docs/atlas/atlas-search/knn-beta Args: query: Text to look up documents similar to. k: (Optional) number of documents to return. Defaults to 4. pre_filter: (Optional) dictionary of argument(s) to prefilter document fields on. post_filter_pipeline: (Optional) Pipeline of MongoDB aggregation stages following the knnBeta vector search. Returns: List of documents most similar to the query and their scores. """ embedding = self._embedding.embed_query(query) docs = self._similarity_search_with_score( embedding, k=k, pre_filter=pre_filter, post_filter_pipeline=post_filter_pipeline, ) return docs def similarity_search( self, query: str, k: int = 4, pre_filter: Optional[Dict] = None, post_filter_pipeline: Optional[List[Dict]] = None, **kwargs: Any, ) -> List[Document]: """Return MongoDB documents most similar to the given query. Uses the knnBeta Operator available in MongoDB Atlas Search. This feature is in early access and available only for evaluation purposes, to validate functionality, and to gather feedback from a small closed group of early access users. It is not recommended for production deployments as we may introduce breaking changes. For more: https://www.mongodb.com/docs/atlas/atlas-search/knn-beta Args: query: Text to look up documents similar to. k: (Optional) number of documents to return. Defaults to 4. pre_filter: (Optional) dictionary of argument(s) to prefilter document fields on. post_filter_pipeline: (Optional) Pipeline of MongoDB aggregation stages following the knnBeta vector search. Returns: List of documents most similar to the query and their scores. """ docs_and_scores = self.similarity_search_with_score( query, k=k, pre_filter=pre_filter, post_filter_pipeline=post_filter_pipeline, ) return [doc for doc, _ in docs_and_scores] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, pre_filter: Optional[Dict] = None, post_filter_pipeline: Optional[List[Dict]] = None, **kwargs: Any, ) -> List[Document]: """Return documents selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: (Optional) number of documents to return. Defaults to 4. fetch_k: (Optional) number of documents to fetch before passing to MMR algorithm. Defaults to 20. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. pre_filter: (Optional) dictionary of argument(s) to prefilter on document fields. post_filter_pipeline: (Optional) pipeline of MongoDB aggregation stages following the knnBeta vector search. Returns: List of documents selected by maximal marginal relevance. """ query_embedding = self._embedding.embed_query(query) docs = self._similarity_search_with_score( query_embedding, k=fetch_k, pre_filter=pre_filter, post_filter_pipeline=post_filter_pipeline, ) mmr_doc_indexes = maximal_marginal_relevance( np.array(query_embedding), [doc.metadata[self._embedding_key] for doc, _ in docs], k=k, lambda_mult=lambda_mult, ) mmr_docs = [docs[i][0] for i in mmr_doc_indexes] return mmr_docs @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[Dict]] = None, collection: Optional[Collection[MongoDBDocumentType]] = None, **kwargs: Any, ) -> MongoDBAtlasVectorSearch: """Construct a `MongoDB Atlas Vector Search` vector store from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Adds the documents to a provided MongoDB Atlas Vector Search index (Lucene) This is intended to be a quick way to get started. Example: .. code-block:: python from pymongo import MongoClient from langchain.vectorstores import MongoDBAtlasVectorSearch from langchain.embeddings import OpenAIEmbeddings mongo_client = MongoClient("<YOUR-CONNECTION-STRING>") collection = mongo_client["<db_name>"]["<collection_name>"] embeddings = OpenAIEmbeddings() vectorstore = MongoDBAtlasVectorSearch.from_texts( texts, embeddings, metadatas=metadatas, collection=collection ) """ if collection is None: raise ValueError("Must provide 'collection' named parameter.") vectorstore = cls(collection, embedding, **kwargs) vectorstore.add_texts(texts, metadatas=metadatas) return vectorstore
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chains~combine_documents~map_rerank.py
"""Combining documents by mapping a chain over them first, then reranking results.""" from __future__ import annotations from typing import Any, Dict, List, Optional, Sequence, Tuple, Type, Union, cast from langchain.callbacks.manager import Callbacks from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.llm import LLMChain from langchain.docstore.document import Document from langchain.output_parsers.regex import RegexParser from langchain.pydantic_v1 import BaseModel, Extra, create_model, root_validator from langchain.schema.runnable.config import RunnableConfig class MapRerankDocumentsChain(BaseCombineDocumentsChain): """Combining documents by mapping a chain over them, then reranking results. This algorithm calls an LLMChain on each input document. The LLMChain is expected to have an OutputParser that parses the result into both an answer (`answer_key`) and a score (`rank_key`). The answer with the highest score is then returned. Example: .. code-block:: python from langchain.chains import StuffDocumentsChain, LLMChain from langchain.prompts import PromptTemplate from langchain.llms import OpenAI from langchain.output_parsers.regex import RegexParser document_variable_name = "context" llm = OpenAI() # The prompt here should take as an input variable the # `document_variable_name` # The actual prompt will need to be a lot more complex, this is just # an example. prompt_template = ( "Use the following context to tell me the chemical formula " "for water. Output both your answer and a score of how confident " "you are. Context: {content}" ) output_parser = RegexParser( regex=r"(.*?)\nScore: (.*)", output_keys=["answer", "score"], ) prompt = PromptTemplate( template=prompt_template, input_variables=["context"], output_parser=output_parser, ) llm_chain = LLMChain(llm=llm, prompt=prompt) chain = MapRerankDocumentsChain( llm_chain=llm_chain, document_variable_name=document_variable_name, rank_key="score", answer_key="answer", ) """ llm_chain: LLMChain """Chain to apply to each document individually.""" document_variable_name: str """The variable name in the llm_chain to put the documents in. If only one variable in the llm_chain, this need not be provided.""" rank_key: str """Key in output of llm_chain to rank on.""" answer_key: str """Key in output of llm_chain to return as answer.""" metadata_keys: Optional[List[str]] = None """Additional metadata from the chosen document to return.""" return_intermediate_steps: bool = False """Return intermediate steps. Intermediate steps include the results of calling llm_chain on each document.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True def get_output_schema( self, config: Optional[RunnableConfig] = None ) -> Type[BaseModel]: schema: Dict[str, Any] = { self.output_key: (str, None), } if self.return_intermediate_steps: schema["intermediate_steps"] = (List[str], None) if self.metadata_keys: schema.update({key: (Any, None) for key in self.metadata_keys}) return create_model("MapRerankOutput", **schema) @property def output_keys(self) -> List[str]: """Expect input key. :meta private: """ _output_keys = super().output_keys if self.return_intermediate_steps: _output_keys = _output_keys + ["intermediate_steps"] if self.metadata_keys is not None: _output_keys += self.metadata_keys return _output_keys @root_validator() def validate_llm_output(cls, values: Dict) -> Dict: """Validate that the combine chain outputs a dictionary.""" output_parser = values["llm_chain"].prompt.output_parser if not isinstance(output_parser, RegexParser): raise ValueError( "Output parser of llm_chain should be a RegexParser," f" got {output_parser}" ) output_keys = output_parser.output_keys if values["rank_key"] not in output_keys: raise ValueError( f"Got {values['rank_key']} as key to rank on, but did not find " f"it in the llm_chain output keys ({output_keys})" ) if values["answer_key"] not in output_keys: raise ValueError( f"Got {values['answer_key']} as key to return, but did not find " f"it in the llm_chain output keys ({output_keys})" ) return values @root_validator(pre=True) def get_default_document_variable_name(cls, values: Dict) -> Dict: """Get default document variable name, if not provided.""" if "document_variable_name" not in values: llm_chain_variables = values["llm_chain"].prompt.input_variables if len(llm_chain_variables) == 1: values["document_variable_name"] = llm_chain_variables[0] else: raise ValueError( "document_variable_name must be provided if there are " "multiple llm_chain input_variables" ) else: llm_chain_variables = values["llm_chain"].prompt.input_variables if values["document_variable_name"] not in llm_chain_variables: raise ValueError( f"document_variable_name {values['document_variable_name']} was " f"not found in llm_chain input_variables: {llm_chain_variables}" ) return values def combine_docs( self, docs: List[Document], callbacks: Callbacks = None, **kwargs: Any ) -> Tuple[str, dict]: """Combine documents in a map rerank manner. Combine by mapping first chain over all documents, then reranking the results. Args: docs: List of documents to combine callbacks: Callbacks to be passed through **kwargs: additional parameters to be passed to LLM calls (like other input variables besides the documents) Returns: The first element returned is the single string output. The second element returned is a dictionary of other keys to return. """ results = self.llm_chain.apply_and_parse( # FYI - this is parallelized and so it is fast. [{**{self.document_variable_name: d.page_content}, **kwargs} for d in docs], callbacks=callbacks, ) return self._process_results(docs, results) async def acombine_docs( self, docs: List[Document], callbacks: Callbacks = None, **kwargs: Any ) -> Tuple[str, dict]: """Combine documents in a map rerank manner. Combine by mapping first chain over all documents, then reranking the results. Args: docs: List of documents to combine callbacks: Callbacks to be passed through **kwargs: additional parameters to be passed to LLM calls (like other input variables besides the documents) Returns: The first element returned is the single string output. The second element returned is a dictionary of other keys to return. """ results = await self.llm_chain.aapply_and_parse( # FYI - this is parallelized and so it is fast. [{**{self.document_variable_name: d.page_content}, **kwargs} for d in docs], callbacks=callbacks, ) return self._process_results(docs, results) def _process_results( self, docs: List[Document], results: Sequence[Union[str, List[str], Dict[str, str]]], ) -> Tuple[str, dict]: typed_results = cast(List[dict], results) sorted_res = sorted( zip(typed_results, docs), key=lambda x: -int(x[0][self.rank_key]) ) output, document = sorted_res[0] extra_info = {} if self.metadata_keys is not None: for key in self.metadata_keys: extra_info[key] = document.metadata[key] if self.return_intermediate_steps: extra_info["intermediate_steps"] = results return output[self.answer_key], extra_info @property def _chain_type(self) -> str: return "map_rerank_documents_chain"
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~unit_tests~tools~test_json.py
"""Test functionality of JSON tools.""" from pathlib import Path from langchain.tools.json.tool import JsonSpec def test_json_spec_from_file(tmp_path: Path) -> None: """Test JsonSpec can be constructed from a file.""" path = tmp_path / "test.json" path.write_text('{"foo": "bar"}') spec = JsonSpec.from_file(path) assert spec.dict_ == {"foo": "bar"} def test_json_spec_keys() -> None: """Test JsonSpec can return keys of a dict at given path.""" spec = JsonSpec(dict_={"foo": "bar", "baz": {"test": {"foo": [1, 2, 3]}}}) assert spec.keys("data") == "['foo', 'baz']" assert "ValueError" in spec.keys('data["foo"]') assert spec.keys('data["baz"]') == "['test']" assert spec.keys('data["baz"]["test"]') == "['foo']" assert "ValueError" in spec.keys('data["baz"]["test"]["foo"]') def test_json_spec_value() -> None: """Test JsonSpec can return value of a dict at given path.""" spec = JsonSpec(dict_={"foo": "bar", "baz": {"test": {"foo": [1, 2, 3]}}}) assert spec.value("data") == "{'foo': 'bar', 'baz': {'test': {'foo': [1, 2, 3]}}}" assert spec.value('data["foo"]') == "bar" assert spec.value('data["baz"]') == "{'test': {'foo': [1, 2, 3]}}" assert spec.value('data["baz"]["test"]') == "{'foo': [1, 2, 3]}" assert spec.value('data["baz"]["test"]["foo"]') == "[1, 2, 3]" assert spec.value("data['foo']") == "bar" assert spec.value("data['baz']") == "{'test': {'foo': [1, 2, 3]}}" assert spec.value("data['baz']['test']") == "{'foo': [1, 2, 3]}" assert spec.value("data['baz']['test']['foo']") == "[1, 2, 3]" def test_json_spec_value_max_length() -> None: """Test JsonSpec can return value of a dict at given path.""" spec = JsonSpec( dict_={"foo": "bar", "baz": {"test": {"foo": [1, 2, 3]}}}, max_value_length=5 ) assert spec.value('data["foo"]') == "bar" assert ( spec.value('data["baz"]') == "Value is a large dictionary, should explore its keys directly" ) assert ( spec.value('data["baz"]["test"]') == "Value is a large dictionary, should explore its keys directly" ) assert spec.value('data["baz"]["test"]["foo"]') == "[1, 2..."
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~embeddings~ernie.py
import asyncio import logging import threading from functools import partial from typing import Dict, List, Optional import requests from langchain.pydantic_v1 import BaseModel, root_validator from langchain.schema.embeddings import Embeddings from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) class ErnieEmbeddings(BaseModel, Embeddings): """`Ernie Embeddings V1` embedding models.""" ernie_api_base: Optional[str] = None ernie_client_id: Optional[str] = None ernie_client_secret: Optional[str] = None access_token: Optional[str] = None chunk_size: int = 16 model_name = "ErnieBot-Embedding-V1" _lock = threading.Lock() @root_validator() def validate_environment(cls, values: Dict) -> Dict: values["ernie_api_base"] = get_from_dict_or_env( values, "ernie_api_base", "ERNIE_API_BASE", "https://aip.baidubce.com" ) values["ernie_client_id"] = get_from_dict_or_env( values, "ernie_client_id", "ERNIE_CLIENT_ID", ) values["ernie_client_secret"] = get_from_dict_or_env( values, "ernie_client_secret", "ERNIE_CLIENT_SECRET", ) return values def _embedding(self, json: object) -> dict: base_url = ( f"{self.ernie_api_base}/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings" ) resp = requests.post( f"{base_url}/embedding-v1", headers={ "Content-Type": "application/json", }, params={"access_token": self.access_token}, json=json, ) return resp.json() def _refresh_access_token_with_lock(self) -> None: with self._lock: logger.debug("Refreshing access token") base_url: str = f"{self.ernie_api_base}/oauth/2.0/token" resp = requests.post( base_url, headers={ "Content-Type": "application/json", "Accept": "application/json", }, params={ "grant_type": "client_credentials", "client_id": self.ernie_client_id, "client_secret": self.ernie_client_secret, }, ) self.access_token = str(resp.json().get("access_token")) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed search docs. Args: texts: The list of texts to embed Returns: List[List[float]]: List of embeddings, one for each text. """ if not self.access_token: self._refresh_access_token_with_lock() text_in_chunks = [ texts[i : i + self.chunk_size] for i in range(0, len(texts), self.chunk_size) ] lst = [] for chunk in text_in_chunks: resp = self._embedding({"input": [text for text in chunk]}) if resp.get("error_code"): if resp.get("error_code") == 111: self._refresh_access_token_with_lock() resp = self._embedding({"input": [text for text in chunk]}) else: raise ValueError(f"Error from Ernie: {resp}") lst.extend([i["embedding"] for i in resp["data"]]) return lst def embed_query(self, text: str) -> List[float]: """Embed query text. Args: text: The text to embed. Returns: List[float]: Embeddings for the text. """ if not self.access_token: self._refresh_access_token_with_lock() resp = self._embedding({"input": [text]}) if resp.get("error_code"): if resp.get("error_code") == 111: self._refresh_access_token_with_lock() resp = self._embedding({"input": [text]}) else: raise ValueError(f"Error from Ernie: {resp}") return resp["data"][0]["embedding"] async def aembed_query(self, text: str) -> List[float]: """Asynchronous Embed query text. Args: text: The text to embed. Returns: List[float]: Embeddings for the text. """ return await asyncio.get_running_loop().run_in_executor( None, partial(self.embed_query, text) ) async def aembed_documents(self, texts: List[str]) -> List[List[float]]: """Asynchronous Embed search docs. Args: texts: The list of texts to embed Returns: List[List[float]]: List of embeddings, one for each text. """ result = await asyncio.gather(*[self.aembed_query(text) for text in texts]) return list(result)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~llms~edenai.py
"""Wrapper around EdenAI's Generation API.""" import logging from typing import Any, Dict, List, Literal, Optional from aiohttp import ClientSession from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.pydantic_v1 import Extra, Field, root_validator from langchain.utilities.requests import Requests from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) class EdenAI(LLM): """Wrapper around edenai models. To use, you should have the environment variable ``EDENAI_API_KEY`` set with your API token. You can find your token here: https://app.edenai.run/admin/account/settings `feature` and `subfeature` are required, but any other model parameters can also be passed in with the format params={model_param: value, ...} for api reference check edenai documentation: http://docs.edenai.co. """ base_url: str = "https://api.edenai.run/v2" edenai_api_key: Optional[str] = None feature: Literal["text", "image"] = "text" """Which generative feature to use, use text by default""" subfeature: Literal["generation"] = "generation" """Subfeature of above feature, use generation by default""" provider: str """Geneerative provider to use (eg: openai,stabilityai,cohere,google etc.)""" params: Dict[str, Any] """ Parameters to pass to above subfeature (excluding 'providers' & 'text') ref text: https://docs.edenai.co/reference/text_generation_create ref image: https://docs.edenai.co/reference/text_generation_create """ model_kwargs: Dict[str, Any] = Field(default_factory=dict) """extra parameters""" stop_sequences: Optional[List[str]] = None """Stop sequences to use.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" values["edenai_api_key"] = get_from_dict_or_env( values, "edenai_api_key", "EDENAI_API_KEY" ) return values @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @property def _llm_type(self) -> str: """Return type of model.""" return "edenai" def _format_output(self, output: dict) -> str: if self.feature == "text": return output[self.provider]["generated_text"] else: return output[self.provider]["items"][0]["image"] def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to EdenAI's text generation endpoint. Args: prompt: The prompt to pass into the model. Returns: json formatted str response. """ stops = None if self.stop_sequences is not None and stop is not None: raise ValueError( "stop sequences found in both the input and default params." ) elif self.stop_sequences is not None: stops = self.stop_sequences else: stops = stop url = f"{self.base_url}/{self.feature}/{self.subfeature}" headers = {"Authorization": f"Bearer {self.edenai_api_key}"} payload = { **self.params, "providers": self.provider, "num_images": 1, # always limit to 1 (ignored for text) "text": prompt, **kwargs, } request = Requests(headers=headers) response = request.post(url=url, data=payload) if response.status_code >= 500: raise Exception(f"EdenAI Server: Error {response.status_code}") elif response.status_code >= 400: raise ValueError(f"EdenAI received an invalid payload: {response.text}") elif response.status_code != 200: raise Exception( f"EdenAI returned an unexpected response with status " f"{response.status_code}: {response.text}" ) output = self._format_output(response.json()) if stops is not None: output = enforce_stop_tokens(output, stops) return output async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call EdenAi model to get predictions based on the prompt. Args: prompt: The prompt to pass into the model. stop: A list of stop words (optional). run_manager: A callback manager for async interaction with LLMs. Returns: The string generated by the model. """ stops = None if self.stop_sequences is not None and stop is not None: raise ValueError( "stop sequences found in both the input and default params." ) elif self.stop_sequences is not None: stops = self.stop_sequences else: stops = stop print("Running the acall") url = f"{self.base_url}/{self.feature}/{self.subfeature}" headers = {"Authorization": f"Bearer {self.edenai_api_key}"} payload = { **self.params, "providers": self.provider, "num_images": 1, # always limit to 1 (ignored for text) "text": prompt, **kwargs, } async with ClientSession() as session: print("Requesting") async with session.post(url, json=payload, headers=headers) as response: if response.status >= 500: raise Exception(f"EdenAI Server: Error {response.status}") elif response.status >= 400: raise ValueError( f"EdenAI received an invalid payload: {response.text}" ) elif response.status != 200: raise Exception( f"EdenAI returned an unexpected response with status " f"{response.status}: {response.text}" ) response_json = await response.json() output = self._format_output(response_json) if stops is not None: output = enforce_stop_tokens(output, stops) return output
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~airtable.py
from typing import Iterator, List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader class AirtableLoader(BaseLoader): """Load the `Airtable` tables.""" def __init__(self, api_token: str, table_id: str, base_id: str): """Initialize with API token and the IDs for table and base""" self.api_token = api_token """Airtable API token.""" self.table_id = table_id """Airtable table ID.""" self.base_id = base_id """Airtable base ID.""" def lazy_load(self) -> Iterator[Document]: """Lazy load Documents from table.""" from pyairtable import Table table = Table(self.api_token, self.base_id, self.table_id) records = table.all() for record in records: # Need to convert record from dict to str yield Document( page_content=str(record), metadata={ "source": self.base_id + "_" + self.table_id, "base_id": self.base_id, "table_id": self.table_id, }, ) def load(self) -> List[Document]: """Load Documents from table.""" return list(self.lazy_load())
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~vectorstores~sklearn.py
""" Wrapper around scikit-learn NearestNeighbors implementation. The vector store can be persisted in json, bson or parquet format. """ import json import math import os from abc import ABC, abstractmethod from typing import Any, Dict, Iterable, List, Literal, Optional, Tuple, Type from uuid import uuid4 from langchain.docstore.document import Document from langchain.schema.embeddings import Embeddings from langchain.schema.vectorstore import VectorStore from langchain.utils import guard_import from langchain.vectorstores.utils import maximal_marginal_relevance DEFAULT_K = 4 # Number of Documents to return. DEFAULT_FETCH_K = 20 # Number of Documents to initially fetch during MMR search. class BaseSerializer(ABC): """Base class for serializing data.""" def __init__(self, persist_path: str) -> None: self.persist_path = persist_path @classmethod @abstractmethod def extension(cls) -> str: """The file extension suggested by this serializer (without dot).""" @abstractmethod def save(self, data: Any) -> None: """Saves the data to the persist_path""" @abstractmethod def load(self) -> Any: """Loads the data from the persist_path""" class JsonSerializer(BaseSerializer): """Serializes data in json using the json package from python standard library.""" @classmethod def extension(cls) -> str: return "json" def save(self, data: Any) -> None: with open(self.persist_path, "w") as fp: json.dump(data, fp) def load(self) -> Any: with open(self.persist_path, "r") as fp: return json.load(fp) class BsonSerializer(BaseSerializer): """Serializes data in binary json using the `bson` python package.""" def __init__(self, persist_path: str) -> None: super().__init__(persist_path) self.bson = guard_import("bson") @classmethod def extension(cls) -> str: return "bson" def save(self, data: Any) -> None: with open(self.persist_path, "wb") as fp: fp.write(self.bson.dumps(data)) def load(self) -> Any: with open(self.persist_path, "rb") as fp: return self.bson.loads(fp.read()) class ParquetSerializer(BaseSerializer): """Serializes data in `Apache Parquet` format using the `pyarrow` package.""" def __init__(self, persist_path: str) -> None: super().__init__(persist_path) self.pd = guard_import("pandas") self.pa = guard_import("pyarrow") self.pq = guard_import("pyarrow.parquet") @classmethod def extension(cls) -> str: return "parquet" def save(self, data: Any) -> None: df = self.pd.DataFrame(data) table = self.pa.Table.from_pandas(df) if os.path.exists(self.persist_path): backup_path = str(self.persist_path) + "-backup" os.rename(self.persist_path, backup_path) try: self.pq.write_table(table, self.persist_path) except Exception as exc: os.rename(backup_path, self.persist_path) raise exc else: os.remove(backup_path) else: self.pq.write_table(table, self.persist_path) def load(self) -> Any: table = self.pq.read_table(self.persist_path) df = table.to_pandas() return {col: series.tolist() for col, series in df.items()} SERIALIZER_MAP: Dict[str, Type[BaseSerializer]] = { "json": JsonSerializer, "bson": BsonSerializer, "parquet": ParquetSerializer, } class SKLearnVectorStoreException(RuntimeError): """Exception raised by SKLearnVectorStore.""" pass class SKLearnVectorStore(VectorStore): """Simple in-memory vector store based on the `scikit-learn` library `NearestNeighbors` implementation.""" def __init__( self, embedding: Embeddings, *, persist_path: Optional[str] = None, serializer: Literal["json", "bson", "parquet"] = "json", metric: str = "cosine", **kwargs: Any, ) -> None: np = guard_import("numpy") sklearn_neighbors = guard_import("sklearn.neighbors", pip_name="scikit-learn") # non-persistent properties self._np = np self._neighbors = sklearn_neighbors.NearestNeighbors(metric=metric, **kwargs) self._neighbors_fitted = False self._embedding_function = embedding self._persist_path = persist_path self._serializer: Optional[BaseSerializer] = None if self._persist_path is not None: serializer_cls = SERIALIZER_MAP[serializer] self._serializer = serializer_cls(persist_path=self._persist_path) # data properties self._embeddings: List[List[float]] = [] self._texts: List[str] = [] self._metadatas: List[dict] = [] self._ids: List[str] = [] # cache properties self._embeddings_np: Any = np.asarray([]) if self._persist_path is not None and os.path.isfile(self._persist_path): self._load() @property def embeddings(self) -> Embeddings: return self._embedding_function def persist(self) -> None: if self._serializer is None: raise SKLearnVectorStoreException( "You must specify a persist_path on creation to persist the " "collection." ) data = { "ids": self._ids, "texts": self._texts, "metadatas": self._metadatas, "embeddings": self._embeddings, } self._serializer.save(data) def _load(self) -> None: if self._serializer is None: raise SKLearnVectorStoreException( "You must specify a persist_path on creation to load the " "collection." ) data = self._serializer.load() self._embeddings = data["embeddings"] self._texts = data["texts"] self._metadatas = data["metadatas"] self._ids = data["ids"] self._update_neighbors() def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: _texts = list(texts) _ids = ids or [str(uuid4()) for _ in _texts] self._texts.extend(_texts) self._embeddings.extend(self._embedding_function.embed_documents(_texts)) self._metadatas.extend(metadatas or ([{}] * len(_texts))) self._ids.extend(_ids) self._update_neighbors() return _ids def _update_neighbors(self) -> None: if len(self._embeddings) == 0: raise SKLearnVectorStoreException( "No data was added to SKLearnVectorStore." ) self._embeddings_np = self._np.asarray(self._embeddings) self._neighbors.fit(self._embeddings_np) self._neighbors_fitted = True def _similarity_index_search_with_score( self, query_embedding: List[float], *, k: int = DEFAULT_K, **kwargs: Any ) -> List[Tuple[int, float]]: """Search k embeddings similar to the query embedding. Returns a list of (index, distance) tuples.""" if not self._neighbors_fitted: raise SKLearnVectorStoreException( "No data was added to SKLearnVectorStore." ) neigh_dists, neigh_idxs = self._neighbors.kneighbors( [query_embedding], n_neighbors=k ) return list(zip(neigh_idxs[0], neigh_dists[0])) def similarity_search_with_score( self, query: str, *, k: int = DEFAULT_K, **kwargs: Any ) -> List[Tuple[Document, float]]: query_embedding = self._embedding_function.embed_query(query) indices_dists = self._similarity_index_search_with_score( query_embedding, k=k, **kwargs ) return [ ( Document( page_content=self._texts[idx], metadata={"id": self._ids[idx], **self._metadatas[idx]}, ), dist, ) for idx, dist in indices_dists ] def similarity_search( self, query: str, k: int = DEFAULT_K, **kwargs: Any ) -> List[Document]: docs_scores = self.similarity_search_with_score(query, k=k, **kwargs) return [doc for doc, _ in docs_scores] def _similarity_search_with_relevance_scores( self, query: str, k: int = DEFAULT_K, **kwargs: Any ) -> List[Tuple[Document, float]]: docs_dists = self.similarity_search_with_score(query, k=k, **kwargs) docs, dists = zip(*docs_dists) scores = [1 / math.exp(dist) for dist in dists] return list(zip(list(docs), scores)) def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = DEFAULT_K, fetch_k: int = DEFAULT_FETCH_K, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ indices_dists = self._similarity_index_search_with_score( embedding, k=fetch_k, **kwargs ) indices, _ = zip(*indices_dists) result_embeddings = self._embeddings_np[indices,] mmr_selected = maximal_marginal_relevance( self._np.array(embedding, dtype=self._np.float32), result_embeddings, k=k, lambda_mult=lambda_mult, ) mmr_indices = [indices[i] for i in mmr_selected] return [ Document( page_content=self._texts[idx], metadata={"id": self._ids[idx], **self._metadatas[idx]}, ) for idx in mmr_indices ] def max_marginal_relevance_search( self, query: str, k: int = DEFAULT_K, fetch_k: int = DEFAULT_FETCH_K, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ if self._embedding_function is None: raise ValueError( "For MMR search, you must specify an embedding function on creation." ) embedding = self._embedding_function.embed_query(query) docs = self.max_marginal_relevance_search_by_vector( embedding, k, fetch_k, lambda_mul=lambda_mult ) return docs @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, persist_path: Optional[str] = None, **kwargs: Any, ) -> "SKLearnVectorStore": vs = SKLearnVectorStore(embedding, persist_path=persist_path, **kwargs) vs.add_texts(texts, metadatas=metadatas, ids=ids) return vs
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~unit_tests~document_loaders~test_youtube.py
import pytest from langchain.document_loaders import YoutubeLoader @pytest.mark.parametrize( "youtube_url, expected_video_id", [ ("http://www.youtube.com/watch?v=-wtIMTCHWuI", "-wtIMTCHWuI"), ("http://youtube.com/watch?v=-wtIMTCHWuI", "-wtIMTCHWuI"), ("http://m.youtube.com/watch?v=-wtIMTCHWuI", "-wtIMTCHWuI"), ("http://youtu.be/-wtIMTCHWuI", "-wtIMTCHWuI"), ("https://youtu.be/-wtIMTCHWuI", "-wtIMTCHWuI"), ("https://www.youtube.com/watch?v=lalOy8Mbfdc", "lalOy8Mbfdc"), ("https://m.youtube.com/watch?v=lalOy8Mbfdc", "lalOy8Mbfdc"), ("https://youtube.com/watch?v=lalOy8Mbfdc", "lalOy8Mbfdc"), ("http://youtu.be/lalOy8Mbfdc?t=1", "lalOy8Mbfdc"), ("http://youtu.be/lalOy8Mbfdc?t=1s", "lalOy8Mbfdc"), ("https://youtu.be/lalOy8Mbfdc?t=1", "lalOy8Mbfdc"), ("http://www.youtube-nocookie.com/embed/lalOy8Mbfdc?rel=0", "lalOy8Mbfdc"), ("https://youtu.be/lalOy8Mbfdc?t=1s", "lalOy8Mbfdc"), ("https://www.youtube.com/shorts/cd0Fy92_w_s", "cd0Fy92_w_s"), ], ) def test_video_id_extraction(youtube_url: str, expected_video_id: str) -> None: """Test that the video id is extracted from a youtube url""" assert YoutubeLoader.extract_video_id(youtube_url) == expected_video_id
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~tools~file_management~write.py
from typing import Optional, Type from langchain.callbacks.manager import CallbackManagerForToolRun from langchain.pydantic_v1 import BaseModel, Field from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class WriteFileInput(BaseModel): """Input for WriteFileTool.""" file_path: str = Field(..., description="name of file") text: str = Field(..., description="text to write to file") append: bool = Field( default=False, description="Whether to append to an existing file." ) class WriteFileTool(BaseFileToolMixin, BaseTool): """Tool that writes a file to disk.""" name: str = "write_file" args_schema: Type[BaseModel] = WriteFileInput description: str = "Write file to disk" def _run( self, file_path: str, text: str, append: bool = False, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: write_path = self.get_relative_path(file_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name="file_path", value=file_path) try: write_path.parent.mkdir(exist_ok=True, parents=False) mode = "a" if append else "w" with write_path.open(mode, encoding="utf-8") as f: f.write(text) return f"File written successfully to {file_path}." except Exception as e: return "Error: " + str(e) # TODO: Add aiofiles method
[ "Write file to disk" ]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~document_loaders~test_whatsapp_chat.py
from pathlib import Path from langchain.document_loaders import WhatsAppChatLoader def test_whatsapp_chat_loader() -> None: """Test WhatsAppChatLoader.""" file_path = Path(__file__).parent.parent / "examples" / "whatsapp_chat.txt" loader = WhatsAppChatLoader(str(file_path)) docs = loader.load() assert len(docs) == 1 assert docs[0].metadata["source"] == str(file_path) assert docs[0].page_content == ( "James on 05.05.23, 15:48:11: Hi here\n\n" "User name on 11/8/21, 9:41:32 AM: Message 123\n\n" "User 2 on 1/23/23, 3:19 AM: Bye!\n\n" "User 1 on 1/23/23, 3:22_AM: And let me know if anything changes\n\n" "~ User name 2 on 1/24/21, 12:41:03 PM: Of course!\n\n" "~ User 2 on 2023/5/4, 16:13:23: See you!\n\n" "User 1 on 7/19/22, 11:32 PM: Hello\n\n" "User 2 on 7/20/22, 11:32 am: Goodbye\n\n" )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~vectorstores~neo4j_vector.py
from __future__ import annotations import enum import logging import os import uuid from typing import ( Any, Callable, Dict, Iterable, List, Optional, Tuple, Type, ) from langchain.docstore.document import Document from langchain.schema.embeddings import Embeddings from langchain.schema.vectorstore import VectorStore from langchain.utils import get_from_env from langchain.vectorstores.utils import DistanceStrategy DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.COSINE DISTANCE_MAPPING = { DistanceStrategy.EUCLIDEAN_DISTANCE: "euclidean", DistanceStrategy.COSINE: "cosine", } class SearchType(str, enum.Enum): """Enumerator of the Distance strategies.""" VECTOR = "vector" HYBRID = "hybrid" DEFAULT_SEARCH_TYPE = SearchType.VECTOR def _get_search_index_query(search_type: SearchType) -> str: type_to_query_map = { SearchType.VECTOR: ( "CALL db.index.vector.queryNodes($index, $k, $embedding) YIELD node, score " ), SearchType.HYBRID: ( "CALL { " "CALL db.index.vector.queryNodes($index, $k, $embedding) " "YIELD node, score " "RETURN node, score UNION " "CALL db.index.fulltext.queryNodes($keyword_index, $query, {limit: $k}) " "YIELD node, score " "WITH collect({node:node, score:score}) AS nodes, max(score) AS max " "UNWIND nodes AS n " "RETURN n.node AS node, (n.score / max) AS score " # We use 0 as min "} " "WITH node, max(score) AS score ORDER BY score DESC LIMIT $k " # dedup ), } return type_to_query_map[search_type] def check_if_not_null(props: List[str], values: List[Any]) -> None: """Check if the values are not None or empty string""" for prop, value in zip(props, values): if not value: raise ValueError(f"Parameter `{prop}` must not be None or empty string") def sort_by_index_name( lst: List[Dict[str, Any]], index_name: str ) -> List[Dict[str, Any]]: """Sort first element to match the index_name if exists""" return sorted(lst, key=lambda x: x.get("index_name") != index_name) class Neo4jVector(VectorStore): """`Neo4j` vector index. To use, you should have the ``neo4j`` python package installed. Args: url: Neo4j connection url username: Neo4j username. password: Neo4j password database: Optionally provide Neo4j database Defaults to "neo4j" embedding: Any embedding function implementing `langchain.embeddings.base.Embeddings` interface. distance_strategy: The distance strategy to use. (default: COSINE) pre_delete_collection: If True, will delete existing data if it exists. (default: False). Useful for testing. Example: .. code-block:: python from langchain.vectorstores.neo4j_vector import Neo4jVector from langchain.embeddings.openai import OpenAIEmbeddings url="bolt://localhost:7687" username="neo4j" password="pleaseletmein" embeddings = OpenAIEmbeddings() vectorestore = Neo4jVector.from_documents( embedding=embeddings, documents=docs, url=url username=username, password=password, ) """ def __init__( self, embedding: Embeddings, *, search_type: SearchType = SearchType.VECTOR, username: Optional[str] = None, password: Optional[str] = None, url: Optional[str] = None, keyword_index_name: Optional[str] = "keyword", database: str = "neo4j", index_name: str = "vector", node_label: str = "Chunk", embedding_node_property: str = "embedding", text_node_property: str = "text", distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, logger: Optional[logging.Logger] = None, pre_delete_collection: bool = False, retrieval_query: str = "", relevance_score_fn: Optional[Callable[[float], float]] = None, ) -> None: try: import neo4j except ImportError: raise ImportError( "Could not import neo4j python package. " "Please install it with `pip install neo4j`." ) # Allow only cosine and euclidean distance strategies if distance_strategy not in [ DistanceStrategy.EUCLIDEAN_DISTANCE, DistanceStrategy.COSINE, ]: raise ValueError( "distance_strategy must be either 'EUCLIDEAN_DISTANCE' or 'COSINE'" ) # Handle if the credentials are environment variables # Support URL for backwards compatibility url = os.environ.get("NEO4J_URL", url) url = get_from_env("url", "NEO4J_URI", url) username = get_from_env("username", "NEO4J_USERNAME", username) password = get_from_env("password", "NEO4J_PASSWORD", password) database = get_from_env("database", "NEO4J_DATABASE", database) self._driver = neo4j.GraphDatabase.driver(url, auth=(username, password)) self._database = database self.schema = "" # Verify connection try: self._driver.verify_connectivity() except neo4j.exceptions.ServiceUnavailable: raise ValueError( "Could not connect to Neo4j database. " "Please ensure that the url is correct" ) except neo4j.exceptions.AuthError: raise ValueError( "Could not connect to Neo4j database. " "Please ensure that the username and password are correct" ) # Verify if the version support vector index self.verify_version() # Verify that required values are not null check_if_not_null( [ "index_name", "node_label", "embedding_node_property", "text_node_property", ], [index_name, node_label, embedding_node_property, text_node_property], ) self.embedding = embedding self._distance_strategy = distance_strategy self.index_name = index_name self.keyword_index_name = keyword_index_name self.node_label = node_label self.embedding_node_property = embedding_node_property self.text_node_property = text_node_property self.logger = logger or logging.getLogger(__name__) self.override_relevance_score_fn = relevance_score_fn self.retrieval_query = retrieval_query self.search_type = search_type # Calculate embedding dimension self.embedding_dimension = len(embedding.embed_query("foo")) # Delete existing data if flagged if pre_delete_collection: from neo4j.exceptions import DatabaseError self.query( f"MATCH (n:`{self.node_label}`) " "CALL { WITH n DETACH DELETE n } " "IN TRANSACTIONS OF 10000 ROWS;" ) # Delete index try: self.query(f"DROP INDEX {self.index_name}") except DatabaseError: # Index didn't exist yet pass def query( self, query: str, *, params: Optional[dict] = None ) -> List[Dict[str, Any]]: """ This method sends a Cypher query to the connected Neo4j database and returns the results as a list of dictionaries. Args: query (str): The Cypher query to execute. params (dict, optional): Dictionary of query parameters. Defaults to {}. Returns: List[Dict[str, Any]]: List of dictionaries containing the query results. """ from neo4j.exceptions import CypherSyntaxError params = params or {} with self._driver.session(database=self._database) as session: try: data = session.run(query, params) return [r.data() for r in data] except CypherSyntaxError as e: raise ValueError(f"Cypher Statement is not valid\n{e}") def verify_version(self) -> None: """ Check if the connected Neo4j database version supports vector indexing. Queries the Neo4j database to retrieve its version and compares it against a target version (5.11.0) that is known to support vector indexing. Raises a ValueError if the connected Neo4j version is not supported. """ version = self.query("CALL dbms.components()")[0]["versions"][0] if "aura" in version: version_tuple = tuple(map(int, version.split("-")[0].split("."))) + (0,) else: version_tuple = tuple(map(int, version.split("."))) target_version = (5, 11, 0) if version_tuple < target_version: raise ValueError( "Version index is only supported in Neo4j version 5.11 or greater" ) def retrieve_existing_index(self) -> Optional[int]: """ Check if the vector index exists in the Neo4j database and returns its embedding dimension. This method queries the Neo4j database for existing indexes and attempts to retrieve the dimension of the vector index with the specified name. If the index exists, its dimension is returned. If the index doesn't exist, `None` is returned. Returns: int or None: The embedding dimension of the existing index if found. """ index_information = self.query( "SHOW INDEXES YIELD name, type, labelsOrTypes, properties, options " "WHERE type = 'VECTOR' AND (name = $index_name " "OR (labelsOrTypes[0] = $node_label AND " "properties[0] = $embedding_node_property)) " "RETURN name, labelsOrTypes, properties, options ", params={ "index_name": self.index_name, "node_label": self.node_label, "embedding_node_property": self.embedding_node_property, }, ) # sort by index_name index_information = sort_by_index_name(index_information, self.index_name) try: self.index_name = index_information[0]["name"] self.node_label = index_information[0]["labelsOrTypes"][0] self.embedding_node_property = index_information[0]["properties"][0] embedding_dimension = index_information[0]["options"]["indexConfig"][ "vector.dimensions" ] return embedding_dimension except IndexError: return None def retrieve_existing_fts_index( self, text_node_properties: List[str] = [] ) -> Optional[str]: """ Check if the fulltext index exists in the Neo4j database This method queries the Neo4j database for existing fts indexes with the specified name. Returns: (Tuple): keyword index information """ index_information = self.query( "SHOW INDEXES YIELD name, type, labelsOrTypes, properties, options " "WHERE type = 'FULLTEXT' AND (name = $keyword_index_name " "OR (labelsOrTypes = [$node_label] AND " "properties = $text_node_property)) " "RETURN name, labelsOrTypes, properties, options ", params={ "keyword_index_name": self.keyword_index_name, "node_label": self.node_label, "text_node_property": text_node_properties or [self.text_node_property], }, ) # sort by index_name index_information = sort_by_index_name(index_information, self.index_name) try: self.keyword_index_name = index_information[0]["name"] self.text_node_property = index_information[0]["properties"][0] node_label = index_information[0]["labelsOrTypes"][0] return node_label except IndexError: return None def create_new_index(self) -> None: """ This method constructs a Cypher query and executes it to create a new vector index in Neo4j. """ index_query = ( "CALL db.index.vector.createNodeIndex(" "$index_name," "$node_label," "$embedding_node_property," "toInteger($embedding_dimension)," "$similarity_metric )" ) parameters = { "index_name": self.index_name, "node_label": self.node_label, "embedding_node_property": self.embedding_node_property, "embedding_dimension": self.embedding_dimension, "similarity_metric": DISTANCE_MAPPING[self._distance_strategy], } self.query(index_query, params=parameters) def create_new_keyword_index(self, text_node_properties: List[str] = []) -> None: """ This method constructs a Cypher query and executes it to create a new full text index in Neo4j. """ node_props = text_node_properties or [self.text_node_property] fts_index_query = ( f"CREATE FULLTEXT INDEX {self.keyword_index_name} " f"FOR (n:`{self.node_label}`) ON EACH " f"[{', '.join(['n.`' + el + '`' for el in node_props])}]" ) self.query(fts_index_query) @property def embeddings(self) -> Embeddings: return self.embedding @classmethod def __from( cls, texts: List[str], embeddings: List[List[float]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, create_id_index: bool = True, search_type: SearchType = SearchType.VECTOR, **kwargs: Any, ) -> Neo4jVector: if ids is None: ids = [str(uuid.uuid1()) for _ in texts] if not metadatas: metadatas = [{} for _ in texts] store = cls( embedding=embedding, search_type=search_type, **kwargs, ) # Check if the vector index already exists embedding_dimension = store.retrieve_existing_index() # If the vector index doesn't exist yet if not embedding_dimension: store.create_new_index() # If the index already exists, check if embedding dimensions match elif not store.embedding_dimension == embedding_dimension: raise ValueError( f"Index with name {store.index_name} already exists." "The provided embedding function and vector index " "dimensions do not match.\n" f"Embedding function dimension: {store.embedding_dimension}\n" f"Vector index dimension: {embedding_dimension}" ) if search_type == SearchType.HYBRID: fts_node_label = store.retrieve_existing_fts_index() # If the FTS index doesn't exist yet if not fts_node_label: store.create_new_keyword_index() else: # Validate that FTS and Vector index use the same information if not fts_node_label == store.node_label: raise ValueError( "Vector and keyword index don't index the same node label" ) # Create unique constraint for faster import if create_id_index: store.query( "CREATE CONSTRAINT IF NOT EXISTS " f"FOR (n:`{store.node_label}`) REQUIRE n.id IS UNIQUE;" ) store.add_embeddings( texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs ) return store def add_embeddings( self, texts: Iterable[str], embeddings: List[List[float]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Add embeddings to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. embeddings: List of list of embedding vectors. metadatas: List of metadatas associated with the texts. kwargs: vectorstore specific parameters """ if ids is None: ids = [str(uuid.uuid1()) for _ in texts] if not metadatas: metadatas = [{} for _ in texts] import_query = ( "UNWIND $data AS row " "CALL { WITH row " f"MERGE (c:`{self.node_label}` {{id: row.id}}) " "WITH c, row " f"CALL db.create.setVectorProperty(c, " f"'{self.embedding_node_property}', row.embedding) " "YIELD node " f"SET c.`{self.text_node_property}` = row.text " "SET c += row.metadata } IN TRANSACTIONS OF 1000 ROWS" ) parameters = { "data": [ {"text": text, "metadata": metadata, "embedding": embedding, "id": id} for text, metadata, embedding, id in zip( texts, metadatas, embeddings, ids ) ] } self.query(import_query, params=parameters) return ids def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ embeddings = self.embedding.embed_documents(list(texts)) return self.add_embeddings( texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs ) def similarity_search( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Document]: """Run similarity search with Neo4jVector. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. Returns: List of Documents most similar to the query. """ embedding = self.embedding.embed_query(text=query) return self.similarity_search_by_vector( embedding=embedding, k=k, query=query, ) def similarity_search_with_score( self, query: str, k: int = 4 ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query and score for each """ embedding = self.embedding.embed_query(query) docs = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, query=query ) return docs def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Tuple[Document, float]]: """ Perform a similarity search in the Neo4j database using a given vector and return the top k similar documents with their scores. This method uses a Cypher query to find the top k documents that are most similar to a given embedding. The similarity is measured using a vector index in the Neo4j database. The results are returned as a list of tuples, each containing a Document object and its similarity score. Args: embedding (List[float]): The embedding vector to compare against. k (int, optional): The number of top similar documents to retrieve. Returns: List[Tuple[Document, float]]: A list of tuples, each containing a Document object and its similarity score. """ default_retrieval = ( f"RETURN node.`{self.text_node_property}` AS text, score, " f"node {{.*, `{self.text_node_property}`: Null, " f"`{self.embedding_node_property}`: Null, id: Null }} AS metadata" ) retrieval_query = ( self.retrieval_query if self.retrieval_query else default_retrieval ) read_query = _get_search_index_query(self.search_type) + retrieval_query parameters = { "index": self.index_name, "k": k, "embedding": embedding, "keyword_index": self.keyword_index_name, "query": kwargs["query"], } results = self.query(read_query, params=parameters) docs = [ ( Document( page_content=result["text"], metadata={ k: v for k, v in result["metadata"].items() if v is not None }, ), result["score"], ) for result in results ] return docs def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query vector. """ docs_and_scores = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, **kwargs ) return [doc for doc, _ in docs_and_scores] @classmethod def from_texts( cls: Type[Neo4jVector], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, ids: Optional[List[str]] = None, **kwargs: Any, ) -> Neo4jVector: """ Return Neo4jVector initialized from texts and embeddings. Neo4j credentials are required in the form of `url`, `username`, and `password` and optional `database` parameters. """ embeddings = embedding.embed_documents(list(texts)) return cls.__from( texts, embeddings, embedding, metadatas=metadatas, ids=ids, distance_strategy=distance_strategy, **kwargs, ) @classmethod def from_embeddings( cls, text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> Neo4jVector: """Construct Neo4jVector wrapper from raw documents and pre- generated embeddings. Return Neo4jVector initialized from documents and embeddings. Neo4j credentials are required in the form of `url`, `username`, and `password` and optional `database` parameters. Example: .. code-block:: python from langchain.vectorstores.neo4j_vector import Neo4jVector from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) vectorstore = Neo4jVector.from_embeddings( text_embedding_pairs, embeddings) """ texts = [t[0] for t in text_embeddings] embeddings = [t[1] for t in text_embeddings] return cls.__from( texts, embeddings, embedding, metadatas=metadatas, ids=ids, distance_strategy=distance_strategy, pre_delete_collection=pre_delete_collection, **kwargs, ) @classmethod def from_existing_index( cls: Type[Neo4jVector], embedding: Embeddings, index_name: str, search_type: SearchType = DEFAULT_SEARCH_TYPE, keyword_index_name: Optional[str] = None, **kwargs: Any, ) -> Neo4jVector: """ Get instance of an existing Neo4j vector index. This method will return the instance of the store without inserting any new embeddings. Neo4j credentials are required in the form of `url`, `username`, and `password` and optional `database` parameters along with the `index_name` definition. """ if search_type == SearchType.HYBRID and not keyword_index_name: raise ValueError( "keyword_index name has to be specified " "when using hybrid search option" ) store = cls( embedding=embedding, index_name=index_name, keyword_index_name=keyword_index_name, search_type=search_type, **kwargs, ) embedding_dimension = store.retrieve_existing_index() if not embedding_dimension: raise ValueError( "The specified vector index name does not exist. " "Make sure to check if you spelled it correctly" ) # Check if embedding function and vector index dimensions match if not store.embedding_dimension == embedding_dimension: raise ValueError( "The provided embedding function and vector index " "dimensions do not match.\n" f"Embedding function dimension: {store.embedding_dimension}\n" f"Vector index dimension: {embedding_dimension}" ) if search_type == SearchType.HYBRID: fts_node_label = store.retrieve_existing_fts_index() # If the FTS index doesn't exist yet if not fts_node_label: raise ValueError( "The specified keyword index name does not exist. " "Make sure to check if you spelled it correctly" ) else: # Validate that FTS and Vector index use the same information if not fts_node_label == store.node_label: raise ValueError( "Vector and keyword index don't index the same node label" ) return store @classmethod def from_documents( cls: Type[Neo4jVector], documents: List[Document], embedding: Embeddings, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, ids: Optional[List[str]] = None, **kwargs: Any, ) -> Neo4jVector: """ Return Neo4jVector initialized from documents and embeddings. Neo4j credentials are required in the form of `url`, `username`, and `password` and optional `database` parameters. """ texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] return cls.from_texts( texts=texts, embedding=embedding, distance_strategy=distance_strategy, metadatas=metadatas, ids=ids, **kwargs, ) @classmethod def from_existing_graph( cls: Type[Neo4jVector], embedding: Embeddings, node_label: str, embedding_node_property: str, text_node_properties: List[str], *, keyword_index_name: Optional[str] = "keyword", index_name: str = "vector", search_type: SearchType = DEFAULT_SEARCH_TYPE, retrieval_query: str = "", **kwargs: Any, ) -> Neo4jVector: """ Initialize and return a Neo4jVector instance from an existing graph. This method initializes a Neo4jVector instance using the provided parameters and the existing graph. It validates the existence of the indices and creates new ones if they don't exist. Returns: Neo4jVector: An instance of Neo4jVector initialized with the provided parameters and existing graph. Example: >>> neo4j_vector = Neo4jVector.from_existing_graph( ... embedding=my_embedding, ... node_label="Document", ... embedding_node_property="embedding", ... text_node_properties=["title", "content"] ... ) Note: Neo4j credentials are required in the form of `url`, `username`, and `password`, and optional `database` parameters passed as additional keyword arguments. """ # Validate the list is not empty if not text_node_properties: raise ValueError( "Parameter `text_node_properties` must not be an empty list" ) # Prefer retrieval query from params, otherwise construct it if not retrieval_query: retrieval_query = ( f"RETURN reduce(str='', k IN {text_node_properties} |" " str + '\\n' + k + ': ' + coalesce(node[k], '')) AS text, " "node {.*, `" + embedding_node_property + "`: Null, id: Null, " + ", ".join([f"`{prop}`: Null" for prop in text_node_properties]) + "} AS metadata, score" ) store = cls( embedding=embedding, index_name=index_name, keyword_index_name=keyword_index_name, search_type=search_type, retrieval_query=retrieval_query, node_label=node_label, embedding_node_property=embedding_node_property, **kwargs, ) # Check if the vector index already exists embedding_dimension = store.retrieve_existing_index() # If the vector index doesn't exist yet if not embedding_dimension: store.create_new_index() # If the index already exists, check if embedding dimensions match elif not store.embedding_dimension == embedding_dimension: raise ValueError( f"Index with name {store.index_name} already exists." "The provided embedding function and vector index " "dimensions do not match.\n" f"Embedding function dimension: {store.embedding_dimension}\n" f"Vector index dimension: {embedding_dimension}" ) # FTS index for Hybrid search if search_type == SearchType.HYBRID: fts_node_label = store.retrieve_existing_fts_index(text_node_properties) # If the FTS index doesn't exist yet if not fts_node_label: store.create_new_keyword_index(text_node_properties) else: # Validate that FTS and Vector index use the same information if not fts_node_label == store.node_label: raise ValueError( "Vector and keyword index don't index the same node label" ) # Populate embeddings while True: fetch_query = ( f"MATCH (n:`{node_label}`) " f"WHERE n.{embedding_node_property} IS null " "AND any(k in $props WHERE n[k] IS NOT null) " f"RETURN elementId(n) AS id, reduce(str=''," "k IN $props | str + '\\n' + k + ':' + coalesce(n[k], '')) AS text " "LIMIT 1000" ) data = store.query(fetch_query, params={"props": text_node_properties}) text_embeddings = embedding.embed_documents([el["text"] for el in data]) params = { "data": [ {"id": el["id"], "embedding": embedding} for el, embedding in zip(data, text_embeddings) ] } store.query( "UNWIND $data AS row " f"MATCH (n:`{node_label}`) " "WHERE elementId(n) = row.id " f"CALL db.create.setVectorProperty(n, " f"'{embedding_node_property}', row.embedding) " "YIELD node RETURN count(*)", params=params, ) # If embedding calculation should be stopped if len(data) < 1000: break return store def _select_relevance_score_fn(self) -> Callable[[float], float]: """ The 'correct' relevance function may differ depending on a few things, including: - the distance / similarity metric used by the VectorStore - the scale of your embeddings (OpenAI's are unit normed. Many others are not!) - embedding dimensionality - etc. """ if self.override_relevance_score_fn is not None: return self.override_relevance_score_fn # Default strategy is to rely on distance strategy provided # in vectorstore constructor if self._distance_strategy == DistanceStrategy.COSINE: return lambda x: x elif self._distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE: return lambda x: x else: raise ValueError( "No supported normalization function" f" for distance_strategy of {self._distance_strategy}." "Consider providing relevance_score_fn to PGVector constructor." )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chat_models~azureml_endpoint.py
import json from typing import Any, Dict, List, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.chat_models.base import SimpleChatModel from langchain.llms.azureml_endpoint import AzureMLEndpointClient, ContentFormatterBase from langchain.pydantic_v1 import validator from langchain.schema.messages import ( AIMessage, BaseMessage, ChatMessage, HumanMessage, SystemMessage, ) from langchain.utils import get_from_dict_or_env class LlamaContentFormatter(ContentFormatterBase): """Content formatter for `LLaMA`.""" SUPPORTED_ROLES: List[str] = ["user", "assistant", "system"] @staticmethod def _convert_message_to_dict(message: BaseMessage) -> Dict: """Converts message to a dict according to role""" if isinstance(message, HumanMessage): return { "role": "user", "content": ContentFormatterBase.escape_special_characters( message.content ), } elif isinstance(message, AIMessage): return { "role": "assistant", "content": ContentFormatterBase.escape_special_characters( message.content ), } elif isinstance(message, SystemMessage): return { "role": "system", "content": ContentFormatterBase.escape_special_characters( message.content ), } elif ( isinstance(message, ChatMessage) and message.role in LlamaContentFormatter.SUPPORTED_ROLES ): return { "role": message.role, "content": ContentFormatterBase.escape_special_characters( message.content ), } else: supported = ",".join( [role for role in LlamaContentFormatter.SUPPORTED_ROLES] ) raise ValueError( f"""Received unsupported role. Supported roles for the LLaMa Foundation Model: {supported}""" ) def _format_request_payload( self, messages: List[BaseMessage], model_kwargs: Dict ) -> bytes: chat_messages = [ LlamaContentFormatter._convert_message_to_dict(message) for message in messages ] prompt = json.dumps( {"input_data": {"input_string": chat_messages, "parameters": model_kwargs}} ) return self.format_request_payload(prompt=prompt, model_kwargs=model_kwargs) def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes: """Formats the request according to the chosen api""" return str.encode(prompt) def format_response_payload(self, output: bytes) -> str: """Formats response""" return json.loads(output)["output"] class AzureMLChatOnlineEndpoint(SimpleChatModel): """`AzureML` Chat models API. Example: .. code-block:: python azure_chat = AzureMLChatOnlineEndpoint( endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score", endpoint_api_key="my-api-key", content_formatter=content_formatter, ) """ endpoint_url: str = "" """URL of pre-existing Endpoint. Should be passed to constructor or specified as env var `AZUREML_ENDPOINT_URL`.""" endpoint_api_key: str = "" """Authentication Key for Endpoint. Should be passed to constructor or specified as env var `AZUREML_ENDPOINT_API_KEY`.""" http_client: Any = None #: :meta private: content_formatter: Any = None """The content formatter that provides an input and output transform function to handle formats between the LLM and the endpoint""" model_kwargs: Optional[dict] = None """Keyword arguments to pass to the model.""" @validator("http_client", always=True, allow_reuse=True) @classmethod def validate_client(cls, field_value: Any, values: Dict) -> AzureMLEndpointClient: """Validate that api key and python package exist in environment.""" endpoint_key = get_from_dict_or_env( values, "endpoint_api_key", "AZUREML_ENDPOINT_API_KEY" ) endpoint_url = get_from_dict_or_env( values, "endpoint_url", "AZUREML_ENDPOINT_URL" ) http_client = AzureMLEndpointClient(endpoint_url, endpoint_key) return http_client @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "azureml_chat_endpoint" def _call( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to an AzureML Managed Online endpoint. Args: messages: The messages in the conversation with the chat model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = azureml_model("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} request_payload = self.content_formatter._format_request_payload( messages, _model_kwargs ) response_payload = self.http_client.call(request_payload, **kwargs) generated_text = self.content_formatter.format_response_payload( response_payload ) return generated_text
[ "input_string", "parameters", "input_data" ]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~llms~test_qianfan_endpoint.py
"""Test Baidu Qianfan LLM Endpoint.""" from typing import Generator import pytest from langchain.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint from langchain.schema import LLMResult def test_call() -> None: """Test valid call to qianfan.""" llm = QianfanLLMEndpoint() output = llm("write a joke") assert isinstance(output, str) def test_generate() -> None: """Test valid call to qianfan.""" llm = QianfanLLMEndpoint() output = llm.generate(["write a joke"]) assert isinstance(output, LLMResult) assert isinstance(output.generations, list) def test_generate_stream() -> None: """Test valid call to qianfan.""" llm = QianfanLLMEndpoint() output = llm.stream("write a joke") assert isinstance(output, Generator) @pytest.mark.asyncio async def test_qianfan_aio() -> None: llm = QianfanLLMEndpoint(streaming=True) async for token in llm.astream("hi qianfan."): assert isinstance(token, str)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~utilities~duckduckgo_search.py
"""Util that calls DuckDuckGo Search. No setup required. Free. https://pypi.org/project/duckduckgo-search/ """ from typing import Dict, List, Optional from langchain.pydantic_v1 import BaseModel, Extra, root_validator class DuckDuckGoSearchAPIWrapper(BaseModel): """Wrapper for DuckDuckGo Search API. Free and does not require any setup. """ region: Optional[str] = "wt-wt" safesearch: str = "moderate" time: Optional[str] = "y" max_results: int = 5 class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that python package exists in environment.""" try: from duckduckgo_search import DDGS # noqa: F401 except ImportError: raise ImportError( "Could not import duckduckgo-search python package. " "Please install it with `pip install duckduckgo-search`." ) return values def get_snippets(self, query: str) -> List[str]: """Run query through DuckDuckGo and return concatenated results.""" from duckduckgo_search import DDGS with DDGS() as ddgs: results = ddgs.text( query, region=self.region, safesearch=self.safesearch, timelimit=self.time, ) if results is None: return ["No good DuckDuckGo Search Result was found"] snippets = [] for i, res in enumerate(results, 1): if res is not None: snippets.append(res["body"]) if len(snippets) == self.max_results: break return snippets def run(self, query: str) -> str: snippets = self.get_snippets(query) return " ".join(snippets) def results( self, query: str, num_results: int, backend: str = "api" ) -> List[Dict[str, str]]: """Run query through DuckDuckGo and return metadata. Args: query: The query to search for. num_results: The number of results to return. Returns: A list of dictionaries with the following keys: snippet - The description of the result. title - The title of the result. link - The link to the result. """ from duckduckgo_search import DDGS with DDGS() as ddgs: results = ddgs.text( query, region=self.region, safesearch=self.safesearch, timelimit=self.time, backend=backend, ) if results is None: return [{"Result": "No good DuckDuckGo Search Result was found"}] def to_metadata(result: Dict) -> Dict[str, str]: if backend == "news": return { "date": result["date"], "title": result["title"], "snippet": result["body"], "source": result["source"], "link": result["url"], } return { "snippet": result["body"], "title": result["title"], "link": result["href"], } formatted_results = [] for i, res in enumerate(results, 1): if res is not None: formatted_results.append(to_metadata(res)) if len(formatted_results) == num_results: break return formatted_results
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~tencent_cos_file.py
import os import tempfile from typing import Any, Iterator, List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.document_loaders.unstructured import UnstructuredFileLoader class TencentCOSFileLoader(BaseLoader): """Load from `Tencent Cloud COS` file.""" def __init__(self, conf: Any, bucket: str, key: str): """Initialize with COS config, bucket and key name. :param conf(CosConfig): COS config. :param bucket(str): COS bucket. :param key(str): COS file key. """ self.conf = conf self.bucket = bucket self.key = key def load(self) -> List[Document]: return list(self.lazy_load()) def lazy_load(self) -> Iterator[Document]: """Load documents.""" try: from qcloud_cos import CosS3Client except ImportError: raise ImportError( "Could not import cos-python-sdk-v5 python package. " "Please install it with `pip install cos-python-sdk-v5`." ) # Initialise a client client = CosS3Client(self.conf) with tempfile.TemporaryDirectory() as temp_dir: file_path = f"{temp_dir}/{self.bucket}/{self.key}" os.makedirs(os.path.dirname(file_path), exist_ok=True) # Download the file to a destination client.download_file( Bucket=self.bucket, Key=self.key, DestFilePath=file_path ) loader = UnstructuredFileLoader(file_path) # UnstructuredFileLoader not implement lazy_load yet return iter(loader.load())
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~callbacks~argilla_callback.py
import os import warnings from typing import Any, Dict, List, Optional from packaging.version import parse from langchain.callbacks.base import BaseCallbackHandler from langchain.schema import AgentAction, AgentFinish, LLMResult class ArgillaCallbackHandler(BaseCallbackHandler): """Callback Handler that logs into Argilla. Args: dataset_name: name of the `FeedbackDataset` in Argilla. Note that it must exist in advance. If you need help on how to create a `FeedbackDataset` in Argilla, please visit https://docs.argilla.io/en/latest/guides/llms/practical_guides/use_argilla_callback_in_langchain.html. workspace_name: name of the workspace in Argilla where the specified `FeedbackDataset` lives in. Defaults to `None`, which means that the default workspace will be used. api_url: URL of the Argilla Server that we want to use, and where the `FeedbackDataset` lives in. Defaults to `None`, which means that either `ARGILLA_API_URL` environment variable or the default will be used. api_key: API Key to connect to the Argilla Server. Defaults to `None`, which means that either `ARGILLA_API_KEY` environment variable or the default will be used. Raises: ImportError: if the `argilla` package is not installed. ConnectionError: if the connection to Argilla fails. FileNotFoundError: if the `FeedbackDataset` retrieval from Argilla fails. Examples: >>> from langchain.llms import OpenAI >>> from langchain.callbacks import ArgillaCallbackHandler >>> argilla_callback = ArgillaCallbackHandler( ... dataset_name="my-dataset", ... workspace_name="my-workspace", ... api_url="http://localhost:6900", ... api_key="argilla.apikey", ... ) >>> llm = OpenAI( ... temperature=0, ... callbacks=[argilla_callback], ... verbose=True, ... openai_api_key="API_KEY_HERE", ... ) >>> llm.generate([ ... "What is the best NLP-annotation tool out there? (no bias at all)", ... ]) "Argilla, no doubt about it." """ REPO_URL: str = "https://github.com/argilla-io/argilla" ISSUES_URL: str = f"{REPO_URL}/issues" BLOG_URL: str = "https://docs.argilla.io/en/latest/guides/llms/practical_guides/use_argilla_callback_in_langchain.html" # noqa: E501 DEFAULT_API_URL: str = "http://localhost:6900" def __init__( self, dataset_name: str, workspace_name: Optional[str] = None, api_url: Optional[str] = None, api_key: Optional[str] = None, ) -> None: """Initializes the `ArgillaCallbackHandler`. Args: dataset_name: name of the `FeedbackDataset` in Argilla. Note that it must exist in advance. If you need help on how to create a `FeedbackDataset` in Argilla, please visit https://docs.argilla.io/en/latest/guides/llms/practical_guides/use_argilla_callback_in_langchain.html. workspace_name: name of the workspace in Argilla where the specified `FeedbackDataset` lives in. Defaults to `None`, which means that the default workspace will be used. api_url: URL of the Argilla Server that we want to use, and where the `FeedbackDataset` lives in. Defaults to `None`, which means that either `ARGILLA_API_URL` environment variable or the default will be used. api_key: API Key to connect to the Argilla Server. Defaults to `None`, which means that either `ARGILLA_API_KEY` environment variable or the default will be used. Raises: ImportError: if the `argilla` package is not installed. ConnectionError: if the connection to Argilla fails. FileNotFoundError: if the `FeedbackDataset` retrieval from Argilla fails. """ super().__init__() # Import Argilla (not via `import_argilla` to keep hints in IDEs) try: import argilla as rg # noqa: F401 self.ARGILLA_VERSION = rg.__version__ except ImportError: raise ImportError( "To use the Argilla callback manager you need to have the `argilla` " "Python package installed. Please install it with `pip install argilla`" ) # Check whether the Argilla version is compatible if parse(self.ARGILLA_VERSION) < parse("1.8.0"): raise ImportError( f"The installed `argilla` version is {self.ARGILLA_VERSION} but " "`ArgillaCallbackHandler` requires at least version 1.8.0. Please " "upgrade `argilla` with `pip install --upgrade argilla`." ) # Show a warning message if Argilla will assume the default values will be used if api_url is None and os.getenv("ARGILLA_API_URL") is None: warnings.warn( ( "Since `api_url` is None, and the env var `ARGILLA_API_URL` is not" f" set, it will default to `{self.DEFAULT_API_URL}`, which is the" " default API URL in Argilla Quickstart." ), ) api_url = self.DEFAULT_API_URL if api_key is None and os.getenv("ARGILLA_API_KEY") is None: self.DEFAULT_API_KEY = ( "admin.apikey" if parse(self.ARGILLA_VERSION) < parse("1.11.0") else "owner.apikey" ) warnings.warn( ( "Since `api_key` is None, and the env var `ARGILLA_API_KEY` is not" f" set, it will default to `{self.DEFAULT_API_KEY}`, which is the" " default API key in Argilla Quickstart." ), ) api_url = self.DEFAULT_API_URL # Connect to Argilla with the provided credentials, if applicable try: rg.init(api_key=api_key, api_url=api_url) except Exception as e: raise ConnectionError( f"Could not connect to Argilla with exception: '{e}'.\n" "Please check your `api_key` and `api_url`, and make sure that " "the Argilla server is up and running. If the problem persists " f"please report it to {self.ISSUES_URL} as an `integration` issue." ) from e # Set the Argilla variables self.dataset_name = dataset_name self.workspace_name = workspace_name or rg.get_workspace() # Retrieve the `FeedbackDataset` from Argilla (without existing records) try: extra_args = {} if parse(self.ARGILLA_VERSION) < parse("1.14.0"): warnings.warn( f"You have Argilla {self.ARGILLA_VERSION}, but Argilla 1.14.0 or" " higher is recommended.", UserWarning, ) extra_args = {"with_records": False} self.dataset = rg.FeedbackDataset.from_argilla( name=self.dataset_name, workspace=self.workspace_name, **extra_args, ) except Exception as e: raise FileNotFoundError( f"`FeedbackDataset` retrieval from Argilla failed with exception `{e}`." f"\nPlease check that the dataset with name={self.dataset_name} in the" f" workspace={self.workspace_name} exists in advance. If you need help" " on how to create a `langchain`-compatible `FeedbackDataset` in" f" Argilla, please visit {self.BLOG_URL}. If the problem persists" f" please report it to {self.ISSUES_URL} as an `integration` issue." ) from e supported_fields = ["prompt", "response"] if supported_fields != [field.name for field in self.dataset.fields]: raise ValueError( f"`FeedbackDataset` with name={self.dataset_name} in the workspace=" f"{self.workspace_name} had fields that are not supported yet for the" f"`langchain` integration. Supported fields are: {supported_fields}," f" and the current `FeedbackDataset` fields are {[field.name for field in self.dataset.fields]}." # noqa: E501 " For more information on how to create a `langchain`-compatible" f" `FeedbackDataset` in Argilla, please visit {self.BLOG_URL}." ) self.prompts: Dict[str, List[str]] = {} warnings.warn( ( "The `ArgillaCallbackHandler` is currently in beta and is subject to" " change based on updates to `langchain`. Please report any issues to" f" {self.ISSUES_URL} as an `integration` issue." ), ) def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: """Save the prompts in memory when an LLM starts.""" self.prompts.update({str(kwargs["parent_run_id"] or kwargs["run_id"]): prompts}) def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Do nothing when a new token is generated.""" pass def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Log records to Argilla when an LLM ends.""" # Do nothing if there's a parent_run_id, since we will log the records when # the chain ends if kwargs["parent_run_id"]: return # Creates the records and adds them to the `FeedbackDataset` prompts = self.prompts[str(kwargs["run_id"])] for prompt, generations in zip(prompts, response.generations): self.dataset.add_records( records=[ { "fields": { "prompt": prompt, "response": generation.text.strip(), }, } for generation in generations ] ) # Pop current run from `self.runs` self.prompts.pop(str(kwargs["run_id"])) if parse(self.ARGILLA_VERSION) < parse("1.14.0"): # Push the records to Argilla self.dataset.push_to_argilla() def on_llm_error(self, error: BaseException, **kwargs: Any) -> None: """Do nothing when LLM outputs an error.""" pass def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: """If the key `input` is in `inputs`, then save it in `self.prompts` using either the `parent_run_id` or the `run_id` as the key. This is done so that we don't log the same input prompt twice, once when the LLM starts and once when the chain starts. """ if "input" in inputs: self.prompts.update( { str(kwargs["parent_run_id"] or kwargs["run_id"]): ( inputs["input"] if isinstance(inputs["input"], list) else [inputs["input"]] ) } ) def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """If either the `parent_run_id` or the `run_id` is in `self.prompts`, then log the outputs to Argilla, and pop the run from `self.prompts`. The behavior differs if the output is a list or not. """ if not any( key in self.prompts for key in [str(kwargs["parent_run_id"]), str(kwargs["run_id"])] ): return prompts = self.prompts.get(str(kwargs["parent_run_id"])) or self.prompts.get( str(kwargs["run_id"]) ) for chain_output_key, chain_output_val in outputs.items(): if isinstance(chain_output_val, list): # Creates the records and adds them to the `FeedbackDataset` self.dataset.add_records( records=[ { "fields": { "prompt": prompt, "response": output["text"].strip(), }, } for prompt, output in zip( prompts, chain_output_val # type: ignore ) ] ) else: # Creates the records and adds them to the `FeedbackDataset` self.dataset.add_records( records=[ { "fields": { "prompt": " ".join(prompts), # type: ignore "response": chain_output_val.strip(), }, } ] ) # Pop current run from `self.runs` if str(kwargs["parent_run_id"]) in self.prompts: self.prompts.pop(str(kwargs["parent_run_id"])) if str(kwargs["run_id"]) in self.prompts: self.prompts.pop(str(kwargs["run_id"])) if parse(self.ARGILLA_VERSION) < parse("1.14.0"): # Push the records to Argilla self.dataset.push_to_argilla() def on_chain_error(self, error: BaseException, **kwargs: Any) -> None: """Do nothing when LLM chain outputs an error.""" pass def on_tool_start( self, serialized: Dict[str, Any], input_str: str, **kwargs: Any, ) -> None: """Do nothing when tool starts.""" pass def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Do nothing when agent takes a specific action.""" pass def on_tool_end( self, output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: """Do nothing when tool ends.""" pass def on_tool_error(self, error: BaseException, **kwargs: Any) -> None: """Do nothing when tool outputs an error.""" pass def on_text(self, text: str, **kwargs: Any) -> None: """Do nothing""" pass def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None: """Do nothing""" pass
[ "run_id", "parent_run_id" ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~utilities~clickup.py
"""Util that calls clickup.""" import json import warnings from dataclasses import asdict, dataclass, fields from typing import Any, Dict, List, Mapping, Optional, Tuple, Type, Union import requests from langchain.pydantic_v1 import BaseModel, Extra, root_validator from langchain.utils import get_from_dict_or_env DEFAULT_URL = "https://api.clickup.com/api/v2" @dataclass class Component: """Base class for all components.""" @classmethod def from_data(cls, data: Dict[str, Any]) -> "Component": raise NotImplementedError() @dataclass class Task(Component): """Class for a task.""" id: int name: str text_content: str description: str status: str creator_id: int creator_username: str creator_email: str assignees: List[Dict[str, Any]] watchers: List[Dict[str, Any]] priority: Optional[str] due_date: Optional[str] start_date: Optional[str] points: int team_id: int project_id: int @classmethod def from_data(cls, data: Dict[str, Any]) -> "Task": priority = None if data["priority"] is None else data["priority"]["priority"] return cls( id=data["id"], name=data["name"], text_content=data["text_content"], description=data["description"], status=data["status"]["status"], creator_id=data["creator"]["id"], creator_username=data["creator"]["username"], creator_email=data["creator"]["email"], assignees=data["assignees"], watchers=data["watchers"], priority=priority, due_date=data["due_date"], start_date=data["start_date"], points=data["points"], team_id=data["team_id"], project_id=data["project"]["id"], ) @dataclass class CUList(Component): """Component class for a list.""" folder_id: float name: str content: Optional[str] = None due_date: Optional[int] = None due_date_time: Optional[bool] = None priority: Optional[int] = None assignee: Optional[int] = None status: Optional[str] = None @classmethod def from_data(cls, data: dict) -> "CUList": return cls( folder_id=data["folder_id"], name=data["name"], content=data.get("content"), due_date=data.get("due_date"), due_date_time=data.get("due_date_time"), priority=data.get("priority"), assignee=data.get("assignee"), status=data.get("status"), ) @dataclass class Member(Component): """Component class for a member.""" id: int username: str email: str initials: str @classmethod def from_data(cls, data: Dict) -> "Member": return cls( id=data["user"]["id"], username=data["user"]["username"], email=data["user"]["email"], initials=data["user"]["initials"], ) @dataclass class Team(Component): """Component class for a team.""" id: int name: str members: List[Member] @classmethod def from_data(cls, data: Dict) -> "Team": members = [Member.from_data(member_data) for member_data in data["members"]] return cls(id=data["id"], name=data["name"], members=members) @dataclass class Space(Component): """Component class for a space.""" id: int name: str private: bool enabled_features: Dict[str, Any] @classmethod def from_data(cls, data: Dict[str, Any]) -> "Space": space_data = data["spaces"][0] enabled_features = { feature: value for feature, value in space_data["features"].items() if value["enabled"] } return cls( id=space_data["id"], name=space_data["name"], private=space_data["private"], enabled_features=enabled_features, ) def parse_dict_through_component( data: dict, component: Type[Component], fault_tolerant: bool = False ) -> Dict: """Parse a dictionary by creating a component and then turning it back into a dictionary. This helps with two things 1. Extract and format data from a dictionary according to schema 2. Provide a central place to do this in a fault-tolerant way """ try: return asdict(component.from_data(data)) except Exception as e: if fault_tolerant: warning_str = f"""Error encountered while trying to parse {str(data)}: {str(e)}\n Falling back to returning input data.""" warnings.warn(warning_str) return data else: raise e def extract_dict_elements_from_component_fields( data: dict, component: Type[Component] ) -> dict: """Extract elements from a dictionary. Args: data: The dictionary to extract elements from. component: The component to extract elements from. Returns: A dictionary containing the elements from the input dictionary that are also in the component. """ output = {} for attribute in fields(component): if attribute.name in data: output[attribute.name] = data[attribute.name] return output def load_query( query: str, fault_tolerant: bool = False ) -> Tuple[Optional[Dict], Optional[str]]: """Attempts to parse a JSON string and return the parsed object. If parsing fails, returns an error message. :param query: The JSON string to parse. :return: A tuple containing the parsed object or None and an error message or None. """ try: return json.loads(query), None except json.JSONDecodeError as e: if fault_tolerant: return ( None, f"""Input must be a valid JSON. Got the following error: {str(e)}. "Please reformat and try again.""", ) else: raise e def fetch_first_id(data: dict, key: str) -> Optional[int]: """Fetch the first id from a dictionary.""" if key in data and len(data[key]) > 0: if len(data[key]) > 1: warnings.warn(f"Found multiple {key}: {data[key]}. Defaulting to first.") return data[key][0]["id"] return None def fetch_data(url: str, access_token: str, query: Optional[dict] = None) -> dict: """Fetch data from a URL.""" headers = {"Authorization": access_token} response = requests.get(url, headers=headers, params=query) response.raise_for_status() return response.json() def fetch_team_id(access_token: str) -> Optional[int]: """Fetch the team id.""" url = f"{DEFAULT_URL}/team" data = fetch_data(url, access_token) return fetch_first_id(data, "teams") def fetch_space_id(team_id: int, access_token: str) -> Optional[int]: """Fetch the space id.""" url = f"{DEFAULT_URL}/team/{team_id}/space" data = fetch_data(url, access_token, query={"archived": "false"}) return fetch_first_id(data, "spaces") def fetch_folder_id(space_id: int, access_token: str) -> Optional[int]: """Fetch the folder id.""" url = f"{DEFAULT_URL}/space/{space_id}/folder" data = fetch_data(url, access_token, query={"archived": "false"}) return fetch_first_id(data, "folders") def fetch_list_id(space_id: int, folder_id: int, access_token: str) -> Optional[int]: """Fetch the list id.""" if folder_id: url = f"{DEFAULT_URL}/folder/{folder_id}/list" else: url = f"{DEFAULT_URL}/space/{space_id}/list" data = fetch_data(url, access_token, query={"archived": "false"}) # The structure to fetch list id differs based if its folderless if folder_id and "id" in data: return data["id"] else: return fetch_first_id(data, "lists") class ClickupAPIWrapper(BaseModel): """Wrapper for Clickup API.""" access_token: Optional[str] = None team_id: Optional[str] = None space_id: Optional[str] = None folder_id: Optional[str] = None list_id: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @classmethod def get_access_code_url( cls, oauth_client_id: str, redirect_uri: str = "https://google.com" ) -> str: """Get the URL to get an access code.""" url = f"https://app.clickup.com/api?client_id={oauth_client_id}" return f"{url}&redirect_uri={redirect_uri}" @classmethod def get_access_token( cls, oauth_client_id: str, oauth_client_secret: str, code: str ) -> Optional[str]: """Get the access token.""" url = f"{DEFAULT_URL}/oauth/token" params = { "client_id": oauth_client_id, "client_secret": oauth_client_secret, "code": code, } response = requests.post(url, params=params) data = response.json() if "access_token" not in data: print(f"Error: {data}") if "ECODE" in data and data["ECODE"] == "OAUTH_014": url = ClickupAPIWrapper.get_access_code_url(oauth_client_id) print( "You already used this code once. Generate a new one.", f"Our best guess for the url to get a new code is:\n{url}", ) return None return data["access_token"] @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["access_token"] = get_from_dict_or_env( values, "access_token", "CLICKUP_ACCESS_TOKEN" ) values["team_id"] = fetch_team_id(values["access_token"]) values["space_id"] = fetch_space_id(values["team_id"], values["access_token"]) values["folder_id"] = fetch_folder_id( values["space_id"], values["access_token"] ) values["list_id"] = fetch_list_id( values["space_id"], values["folder_id"], values["access_token"] ) return values def attempt_parse_teams(self, input_dict: dict) -> Dict[str, List[dict]]: """Parse appropriate content from the list of teams.""" parsed_teams: Dict[str, List[dict]] = {"teams": []} for team in input_dict["teams"]: try: team = parse_dict_through_component(team, Team, fault_tolerant=False) parsed_teams["teams"].append(team) except Exception as e: warnings.warn(f"Error parsing a team {e}") return parsed_teams def get_headers( self, ) -> Mapping[str, Union[str, bytes]]: """Get the headers for the request.""" if not isinstance(self.access_token, str): raise TypeError(f"Access Token: {self.access_token}, must be str.") headers = { "Authorization": str(self.access_token), "Content-Type": "application/json", } return headers def get_default_params(self) -> Dict: return {"archived": "false"} def get_authorized_teams(self) -> Dict[Any, Any]: """Get all teams for the user.""" url = f"{DEFAULT_URL}/team" response = requests.get(url, headers=self.get_headers()) data = response.json() parsed_teams = self.attempt_parse_teams(data) return parsed_teams def get_folders(self) -> Dict: """ Get all the folders for the team. """ url = f"{DEFAULT_URL}/team/" + str(self.team_id) + "/space" params = self.get_default_params() response = requests.get(url, headers=self.get_headers(), params=params) return {"response": response} def get_task(self, query: str, fault_tolerant: bool = True) -> Dict: """ Retrieve a specific task. """ params, error = load_query(query, fault_tolerant=True) if params is None: return {"Error": error} url = f"{DEFAULT_URL}/task/{params['task_id']}" params = { "custom_task_ids": "true", "team_id": self.team_id, "include_subtasks": "true", } response = requests.get(url, headers=self.get_headers(), params=params) data = response.json() parsed_task = parse_dict_through_component( data, Task, fault_tolerant=fault_tolerant ) return parsed_task def get_lists(self) -> Dict: """ Get all available lists. """ url = f"{DEFAULT_URL}/folder/{self.folder_id}/list" params = self.get_default_params() response = requests.get(url, headers=self.get_headers(), params=params) return {"response": response} def query_tasks(self, query: str) -> Dict: """ Query tasks that match certain fields """ params, error = load_query(query, fault_tolerant=True) if params is None: return {"Error": error} url = f"{DEFAULT_URL}/list/{params['list_id']}/task" params = self.get_default_params() response = requests.get(url, headers=self.get_headers(), params=params) return {"response": response} def get_spaces(self) -> Dict: """ Get all spaces for the team. """ url = f"{DEFAULT_URL}/team/{self.team_id}/space" response = requests.get( url, headers=self.get_headers(), params=self.get_default_params() ) data = response.json() parsed_spaces = parse_dict_through_component(data, Space, fault_tolerant=True) return parsed_spaces def get_task_attribute(self, query: str) -> Dict: """ Update an attribute of a specified task. """ task = self.get_task(query, fault_tolerant=True) params, error = load_query(query, fault_tolerant=True) if not isinstance(params, dict): return {"Error": error} if params["attribute_name"] not in task: return { "Error": f"""attribute_name = {params['attribute_name']} was not found in task keys {task.keys()}. Please call again with one of the key names.""" } return {params["attribute_name"]: task[params["attribute_name"]]} def update_task(self, query: str) -> Dict: """ Update an attribute of a specified task. """ query_dict, error = load_query(query, fault_tolerant=True) if query_dict is None: return {"Error": error} url = f"{DEFAULT_URL}/task/{query_dict['task_id']}" params = { "custom_task_ids": "true", "team_id": self.team_id, "include_subtasks": "true", } headers = self.get_headers() payload = {query_dict["attribute_name"]: query_dict["value"]} response = requests.put(url, headers=headers, params=params, json=payload) return {"response": response} def update_task_assignees(self, query: str) -> Dict: """ Add or remove assignees of a specified task. """ query_dict, error = load_query(query, fault_tolerant=True) if query_dict is None: return {"Error": error} for user in query_dict["users"]: if not isinstance(user, int): return { "Error": f"""All users must be integers, not strings! "Got user {user} if type {type(user)}""" } url = f"{DEFAULT_URL}/task/{query_dict['task_id']}" headers = self.get_headers() if query_dict["operation"] == "add": assigne_payload = {"add": query_dict["users"], "rem": []} elif query_dict["operation"] == "rem": assigne_payload = {"add": [], "rem": query_dict["users"]} else: raise ValueError( f"Invalid operation ({query_dict['operation']}). ", "Valid options ['add', 'rem'].", ) params = { "custom_task_ids": "true", "team_id": self.team_id, "include_subtasks": "true", } payload = {"assignees": assigne_payload} response = requests.put(url, headers=headers, params=params, json=payload) return {"response": response} def create_task(self, query: str) -> Dict: """ Creates a new task. """ query_dict, error = load_query(query, fault_tolerant=True) if query_dict is None: return {"Error": error} list_id = self.list_id url = f"{DEFAULT_URL}/list/{list_id}/task" params = {"custom_task_ids": "true", "team_id": self.team_id} payload = extract_dict_elements_from_component_fields(query_dict, Task) headers = self.get_headers() response = requests.post(url, json=payload, headers=headers, params=params) data: Dict = response.json() return parse_dict_through_component(data, Task, fault_tolerant=True) def create_list(self, query: str) -> Dict: """ Creates a new list. """ query_dict, error = load_query(query, fault_tolerant=True) if query_dict is None: return {"Error": error} # Default to using folder as location if it exists. # If not, fall back to using the space. location = self.folder_id if self.folder_id else self.space_id url = f"{DEFAULT_URL}/folder/{location}/list" payload = extract_dict_elements_from_component_fields(query_dict, Task) headers = self.get_headers() response = requests.post(url, json=payload, headers=headers) data = response.json() parsed_list = parse_dict_through_component(data, CUList, fault_tolerant=True) # set list id to new list if "id" in parsed_list: self.list_id = parsed_list["id"] return parsed_list def create_folder(self, query: str) -> Dict: """ Creates a new folder. """ query_dict, error = load_query(query, fault_tolerant=True) if query_dict is None: return {"Error": error} space_id = self.space_id url = f"{DEFAULT_URL}/space/{space_id}/folder" payload = { "name": query_dict["name"], } headers = self.get_headers() response = requests.post(url, json=payload, headers=headers) data = response.json() if "id" in data: self.list_id = data["id"] return data def run(self, mode: str, query: str) -> str: """Run the API.""" if mode == "get_task": output = self.get_task(query) elif mode == "get_task_attribute": output = self.get_task_attribute(query) elif mode == "get_teams": output = self.get_authorized_teams() elif mode == "create_task": output = self.create_task(query) elif mode == "create_list": output = self.create_list(query) elif mode == "create_folder": output = self.create_folder(query) elif mode == "get_lists": output = self.get_lists() elif mode == "get_folders": output = self.get_folders() elif mode == "get_spaces": output = self.get_spaces() elif mode == "update_task": output = self.update_task(query) elif mode == "update_task_assignees": output = self.update_task_assignees(query) else: output = {"ModeError": f"Got unexpected mode {mode}."} try: return json.dumps(output) except Exception: return str(output)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~hn.py
from typing import Any, List from langchain.docstore.document import Document from langchain.document_loaders.web_base import WebBaseLoader class HNLoader(WebBaseLoader): """Load `Hacker News` data. It loads data from either main page results or the comments page.""" def load(self) -> List[Document]: """Get important HN webpage information. HN webpage components are: - title - content - source url, - time of post - author of the post - number of comments - rank of the post """ soup_info = self.scrape() if "item" in self.web_path: return self.load_comments(soup_info) else: return self.load_results(soup_info) def load_comments(self, soup_info: Any) -> List[Document]: """Load comments from a HN post.""" comments = soup_info.select("tr[class='athing comtr']") title = soup_info.select_one("tr[id='pagespace']").get("title") return [ Document( page_content=comment.text.strip(), metadata={"source": self.web_path, "title": title}, ) for comment in comments ] def load_results(self, soup: Any) -> List[Document]: """Load items from an HN page.""" items = soup.select("tr[class='athing']") documents = [] for lineItem in items: ranking = lineItem.select_one("span[class='rank']").text link = lineItem.find("span", {"class": "titleline"}).find("a").get("href") title = lineItem.find("span", {"class": "titleline"}).text.strip() metadata = { "source": self.web_path, "title": title, "link": link, "ranking": ranking, } documents.append( Document( page_content=title, link=link, ranking=ranking, metadata=metadata ) ) return documents
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~utilities~twilio.py
"""Util that calls Twilio.""" from typing import Any, Dict, Optional from langchain.pydantic_v1 import BaseModel, Extra, root_validator from langchain.utils import get_from_dict_or_env class TwilioAPIWrapper(BaseModel): """Messaging Client using Twilio. To use, you should have the ``twilio`` python package installed, and the environment variables ``TWILIO_ACCOUNT_SID``, ``TWILIO_AUTH_TOKEN``, and ``TWILIO_FROM_NUMBER``, or pass `account_sid`, `auth_token`, and `from_number` as named parameters to the constructor. Example: .. code-block:: python from langchain.utilities.twilio import TwilioAPIWrapper twilio = TwilioAPIWrapper( account_sid="ACxxx", auth_token="xxx", from_number="+10123456789" ) twilio.run('test', '+12484345508') """ client: Any #: :meta private: account_sid: Optional[str] = None """Twilio account string identifier.""" auth_token: Optional[str] = None """Twilio auth token.""" from_number: Optional[str] = None """A Twilio phone number in [E.164](https://www.twilio.com/docs/glossary/what-e164) format, an [alphanumeric sender ID](https://www.twilio.com/docs/sms/send-messages#use-an-alphanumeric-sender-id), or a [Channel Endpoint address](https://www.twilio.com/docs/sms/channels#channel-addresses) that is enabled for the type of message you want to send. Phone numbers or [short codes](https://www.twilio.com/docs/sms/api/short-code) purchased from Twilio also work here. You cannot, for example, spoof messages from a private cell phone number. If you are using `messaging_service_sid`, this parameter must be empty. """ # noqa: E501 class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = False @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" try: from twilio.rest import Client except ImportError: raise ImportError( "Could not import twilio python package. " "Please install it with `pip install twilio`." ) account_sid = get_from_dict_or_env(values, "account_sid", "TWILIO_ACCOUNT_SID") auth_token = get_from_dict_or_env(values, "auth_token", "TWILIO_AUTH_TOKEN") values["from_number"] = get_from_dict_or_env( values, "from_number", "TWILIO_FROM_NUMBER" ) values["client"] = Client(account_sid, auth_token) return values def run(self, body: str, to: str) -> str: """Run body through Twilio and respond with message sid. Args: body: The text of the message you want to send. Can be up to 1,600 characters in length. to: The destination phone number in [E.164](https://www.twilio.com/docs/glossary/what-e164) format for SMS/MMS or [Channel user address](https://www.twilio.com/docs/sms/channels#channel-addresses) for other 3rd-party channels. """ # noqa: E501 message = self.client.messages.create(to, from_=self.from_number, body=body) return message.sid
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~utilities~arxiv.py
"""Util that calls Arxiv.""" import logging import os import re from typing import Any, Dict, List, Optional from langchain.pydantic_v1 import BaseModel, root_validator from langchain.schema import Document logger = logging.getLogger(__name__) class ArxivAPIWrapper(BaseModel): """Wrapper around ArxivAPI. To use, you should have the ``arxiv`` python package installed. https://lukasschwab.me/arxiv.py/index.html This wrapper will use the Arxiv API to conduct searches and fetch document summaries. By default, it will return the document summaries of the top-k results. If the query is in the form of arxiv identifier (see https://info.arxiv.org/help/find/index.html), it will return the paper corresponding to the arxiv identifier. It limits the Document content by doc_content_chars_max. Set doc_content_chars_max=None if you don't want to limit the content size. Attributes: top_k_results: number of the top-scored document used for the arxiv tool ARXIV_MAX_QUERY_LENGTH: the cut limit on the query used for the arxiv tool. load_max_docs: a limit to the number of loaded documents load_all_available_meta: if True: the `metadata` of the loaded Documents contains all available meta info (see https://lukasschwab.me/arxiv.py/index.html#Result), if False: the `metadata` contains only the published date, title, authors and summary. doc_content_chars_max: an optional cut limit for the length of a document's content Example: .. code-block:: python from langchain.utilities.arxiv import ArxivAPIWrapper arxiv = ArxivAPIWrapper( top_k_results = 3, ARXIV_MAX_QUERY_LENGTH = 300, load_max_docs = 3, load_all_available_meta = False, doc_content_chars_max = 40000 ) arxiv.run("tree of thought llm) """ arxiv_search: Any #: :meta private: arxiv_exceptions: Any # :meta private: top_k_results: int = 3 ARXIV_MAX_QUERY_LENGTH: int = 300 load_max_docs: int = 100 load_all_available_meta: bool = False doc_content_chars_max: Optional[int] = 4000 def is_arxiv_identifier(self, query: str) -> bool: """Check if a query is an arxiv identifier.""" arxiv_identifier_pattern = r"\d{2}(0[1-9]|1[0-2])\.\d{4,5}(v\d+|)|\d{7}.*" for query_item in query[: self.ARXIV_MAX_QUERY_LENGTH].split(): match_result = re.match(arxiv_identifier_pattern, query_item) if not match_result: return False assert match_result is not None if not match_result.group(0) == query_item: return False return True @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in environment.""" try: import arxiv values["arxiv_search"] = arxiv.Search values["arxiv_exceptions"] = ( arxiv.ArxivError, arxiv.UnexpectedEmptyPageError, arxiv.HTTPError, ) values["arxiv_result"] = arxiv.Result except ImportError: raise ImportError( "Could not import arxiv python package. " "Please install it with `pip install arxiv`." ) return values def run(self, query: str) -> str: """ Performs an arxiv search and A single string with the publish date, title, authors, and summary for each article separated by two newlines. If an error occurs or no documents found, error text is returned instead. Wrapper for https://lukasschwab.me/arxiv.py/index.html#Search Args: query: a plaintext search query """ # noqa: E501 try: if self.is_arxiv_identifier(query): results = self.arxiv_search( id_list=query.split(), max_results=self.top_k_results, ).results() else: results = self.arxiv_search( # type: ignore query[: self.ARXIV_MAX_QUERY_LENGTH], max_results=self.top_k_results ).results() except self.arxiv_exceptions as ex: return f"Arxiv exception: {ex}" docs = [ f"Published: {result.updated.date()}\n" f"Title: {result.title}\n" f"Authors: {', '.join(a.name for a in result.authors)}\n" f"Summary: {result.summary}" for result in results ] if docs: return "\n\n".join(docs)[: self.doc_content_chars_max] else: return "No good Arxiv Result was found" def load(self, query: str) -> List[Document]: """ Run Arxiv search and get the article texts plus the article meta information. See https://lukasschwab.me/arxiv.py/index.html#Search Returns: a list of documents with the document.page_content in text format Performs an arxiv search, downloads the top k results as PDFs, loads them as Documents, and returns them in a List. Args: query: a plaintext search query """ # noqa: E501 try: import fitz except ImportError: raise ImportError( "PyMuPDF package not found, please install it with " "`pip install pymupdf`" ) try: # Remove the ":" and "-" from the query, as they can cause search problems query = query.replace(":", "").replace("-", "") if self.is_arxiv_identifier(query): results = self.arxiv_search( id_list=query[: self.ARXIV_MAX_QUERY_LENGTH].split(), max_results=self.load_max_docs, ).results() else: results = self.arxiv_search( # type: ignore query[: self.ARXIV_MAX_QUERY_LENGTH], max_results=self.load_max_docs ).results() except self.arxiv_exceptions as ex: logger.debug("Error on arxiv: %s", ex) return [] docs: List[Document] = [] for result in results: try: doc_file_name: str = result.download_pdf() with fitz.open(doc_file_name) as doc_file: text: str = "".join(page.get_text() for page in doc_file) except (FileNotFoundError, fitz.fitz.FileDataError) as f_ex: logger.debug(f_ex) continue if self.load_all_available_meta: extra_metadata = { "entry_id": result.entry_id, "published_first_time": str(result.published.date()), "comment": result.comment, "journal_ref": result.journal_ref, "doi": result.doi, "primary_category": result.primary_category, "categories": result.categories, "links": [link.href for link in result.links], } else: extra_metadata = {} metadata = { "Published": str(result.updated.date()), "Title": result.title, "Authors": ", ".join(a.name for a in result.authors), "Summary": result.summary, **extra_metadata, } doc = Document( page_content=text[: self.doc_content_chars_max], metadata=metadata ) docs.append(doc) os.remove(doc_file_name) return docs
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~utilities~test_jira_api.py
"""Integration test for JIRA API Wrapper.""" from langchain.utilities.jira import JiraAPIWrapper def test_search() -> None: """Test for Searching issues on JIRA""" jql = "project = TP" jira = JiraAPIWrapper() output = jira.run("jql", jql) assert "issues" in output def test_getprojects() -> None: """Test for getting projects on JIRA""" jira = JiraAPIWrapper() output = jira.run("get_projects", "") assert "projects" in output def test_create_ticket() -> None: """Test the Create Ticket Call that Creates a Issue/Ticket on JIRA.""" issue_string = ( '{"summary": "Test Summary", "description": "Test Description",' ' "issuetype": {"name": "Bug"}, "project": {"key": "TP"}}' ) jira = JiraAPIWrapper() output = jira.run("create_issue", issue_string) assert "id" in output assert "key" in output def test_create_confluence_page() -> None: """Test for getting projects on JIRA""" jira = JiraAPIWrapper() create_page_dict = ( '{"space": "ROC", "title":"This is the title",' '"body":"This is the body. You can use ' '<strong>HTML tags</strong>!"}' ) output = jira.run("create_page", create_page_dict) assert "type" in output assert "page" in output def test_other() -> None: """Non-exhaustive test for accessing other JIRA API methods""" jira = JiraAPIWrapper() issue_create_dict = """ { "function":"issue_create", "kwargs": { "fields": { "summary": "Test Summary", "description": "Test Description", "issuetype": {"name": "Bug"}, "project": {"key": "TP"} } } } """ output = jira.run("other", issue_create_dict) assert "id" in output assert "key" in output
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~tools~file_management~copy.py
import shutil from typing import Optional, Type from langchain.callbacks.manager import CallbackManagerForToolRun from langchain.pydantic_v1 import BaseModel, Field from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class FileCopyInput(BaseModel): """Input for CopyFileTool.""" source_path: str = Field(..., description="Path of the file to copy") destination_path: str = Field(..., description="Path to save the copied file") class CopyFileTool(BaseFileToolMixin, BaseTool): """Tool that copies a file.""" name: str = "copy_file" args_schema: Type[BaseModel] = FileCopyInput description: str = "Create a copy of a file in a specified location" def _run( self, source_path: str, destination_path: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: source_path_ = self.get_relative_path(source_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format( arg_name="source_path", value=source_path ) try: destination_path_ = self.get_relative_path(destination_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format( arg_name="destination_path", value=destination_path ) try: shutil.copy2(source_path_, destination_path_, follow_symlinks=False) return f"File copied successfully from {source_path} to {destination_path}." except Exception as e: return "Error: " + str(e) # TODO: Add aiofiles method
[ "Create a copy of a file in a specified location" ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~llms~xinference.py
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Mapping, Optional, Union from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM if TYPE_CHECKING: from xinference.client import RESTfulChatModelHandle, RESTfulGenerateModelHandle from xinference.model.llm.core import LlamaCppGenerateConfig class Xinference(LLM): """Wrapper for accessing Xinference's large-scale model inference service. To use, you should have the xinference library installed: .. code-block:: bash pip install "xinference[all]" Check out: https://github.com/xorbitsai/inference To run, you need to start a Xinference supervisor on one server and Xinference workers on the other servers Example: To start a local instance of Xinference, run .. code-block:: bash $ xinference You can also deploy Xinference in a distributed cluster. Here are the steps: Starting the supervisor: .. code-block:: bash $ xinference-supervisor Starting the worker: .. code-block:: bash $ xinference-worker Then, launch a model using command line interface (CLI). Example: .. code-block:: bash $ xinference launch -n orca -s 3 -q q4_0 It will return a model UID. Then, you can use Xinference with LangChain. Example: .. code-block:: python from langchain.llms import Xinference llm = Xinference( server_url="http://0.0.0.0:9997", model_uid = {model_uid} # replace model_uid with the model UID return from launching the model ) llm( prompt="Q: where can we visit in the capital of France? A:", generate_config={"max_tokens": 1024, "stream": True}, ) To view all the supported builtin models, run: .. code-block:: bash $ xinference list --all """ # noqa: E501 client: Any server_url: Optional[str] """URL of the xinference server""" model_uid: Optional[str] """UID of the launched model""" model_kwargs: Dict[str, Any] """Keyword arguments to be passed to xinference.LLM""" def __init__( self, server_url: Optional[str] = None, model_uid: Optional[str] = None, **model_kwargs: Any, ): try: from xinference.client import RESTfulClient except ImportError as e: raise ImportError( "Could not import RESTfulClient from xinference. Please install it" " with `pip install xinference`." ) from e model_kwargs = model_kwargs or {} super().__init__( **{ "server_url": server_url, "model_uid": model_uid, "model_kwargs": model_kwargs, } ) if self.server_url is None: raise ValueError("Please provide server URL") if self.model_uid is None: raise ValueError("Please provide the model UID") self.client = RESTfulClient(server_url) @property def _llm_type(self) -> str: """Return type of llm.""" return "xinference" @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"server_url": self.server_url}, **{"model_uid": self.model_uid}, **{"model_kwargs": self.model_kwargs}, } def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call the xinference model and return the output. Args: prompt: The prompt to use for generation. stop: Optional list of stop words to use when generating. generate_config: Optional dictionary for the configuration used for generation. Returns: The generated string by the model. """ model = self.client.get_model(self.model_uid) generate_config: "LlamaCppGenerateConfig" = kwargs.get("generate_config", {}) generate_config = {**self.model_kwargs, **generate_config} if stop: generate_config["stop"] = stop if generate_config and generate_config.get("stream"): combined_text_output = "" for token in self._stream_generate( model=model, prompt=prompt, run_manager=run_manager, generate_config=generate_config, ): combined_text_output += token return combined_text_output else: completion = model.generate(prompt=prompt, generate_config=generate_config) return completion["choices"][0]["text"] def _stream_generate( self, model: Union["RESTfulGenerateModelHandle", "RESTfulChatModelHandle"], prompt: str, run_manager: Optional[CallbackManagerForLLMRun] = None, generate_config: Optional["LlamaCppGenerateConfig"] = None, ) -> Generator[str, None, None]: """ Args: prompt: The prompt to use for generation. model: The model used for generation. stop: Optional list of stop words to use when generating. generate_config: Optional dictionary for the configuration used for generation. Yields: A string token. """ streaming_response = model.generate( prompt=prompt, generate_config=generate_config ) for chunk in streaming_response: if isinstance(chunk, dict): choices = chunk.get("choices", []) if choices: choice = choices[0] if isinstance(choice, dict): token = choice.get("text", "") log_probs = choice.get("logprobs") if run_manager: run_manager.on_llm_new_token( token=token, verbose=self.verbose, log_probs=log_probs ) yield token
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~mediawikidump.py
import logging from pathlib import Path from typing import List, Optional, Sequence, Union from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader logger = logging.getLogger(__name__) class MWDumpLoader(BaseLoader): """Load `MediaWiki` dump from an `XML` file. Example: .. code-block:: python from langchain.document_loaders import MWDumpLoader loader = MWDumpLoader( file_path="myWiki.xml", encoding="utf8" ) docs = loader.load() from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=0 ) texts = text_splitter.split_documents(docs) :param file_path: XML local file path :type file_path: str :param encoding: Charset encoding, defaults to "utf8" :type encoding: str, optional :param namespaces: The namespace of pages you want to parse. See https://www.mediawiki.org/wiki/Help:Namespaces#Localisation for a list of all common namespaces :type namespaces: List[int],optional :param skip_redirects: TR=rue to skip pages that redirect to other pages, False to keep them. False by default :type skip_redirects: bool, optional :param stop_on_error: False to skip over pages that cause parsing errors, True to stop. True by default :type stop_on_error: bool, optional """ def __init__( self, file_path: Union[str, Path], encoding: Optional[str] = "utf8", namespaces: Optional[Sequence[int]] = None, skip_redirects: Optional[bool] = False, stop_on_error: Optional[bool] = True, ): self.file_path = file_path if isinstance(file_path, str) else str(file_path) self.encoding = encoding # Namespaces range from -2 to 15, inclusive. self.namespaces = namespaces or list(range(-2, 16)) self.skip_redirects = skip_redirects self.stop_on_error = stop_on_error def load(self) -> List[Document]: """Load from a file path.""" try: import mwparserfromhell import mwxml except ImportError as e: raise ImportError( "Unable to import 'mwparserfromhell' or 'mwxml'. Please install with" " `pip install mwparserfromhell mwxml`." ) from e dump = mwxml.Dump.from_file(open(self.file_path, encoding=self.encoding)) docs = [] for page in dump.pages: if self.skip_redirects and page.redirect: continue if page.namespace not in self.namespaces: continue try: for revision in page: code = mwparserfromhell.parse(revision.text) text = code.strip_code( normalize=True, collapse=True, keep_template_params=False ) metadata = {"source": page.title} docs.append(Document(page_content=text, metadata=metadata)) except Exception as e: logger.error("Parsing error: {}".format(e)) if self.stop_on_error: raise e else: continue return docs
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~odt.py
from typing import Any, List from langchain.document_loaders.unstructured import ( UnstructuredFileLoader, validate_unstructured_version, ) class UnstructuredODTLoader(UnstructuredFileLoader): """Load `OpenOffice ODT` files using `Unstructured`. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples -------- from langchain.document_loaders import UnstructuredODTLoader loader = UnstructuredODTLoader( "example.odt", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://unstructured-io.github.io/unstructured/bricks.html#partition-odt """ def __init__( self, file_path: str, mode: str = "single", **unstructured_kwargs: Any ): """ Args: file_path: The path to the file to load. mode: The mode to use when loading the file. Can be one of "single", "multi", or "all". Default is "single". **unstructured_kwargs: Any kwargs to pass to the unstructured. """ validate_unstructured_version(min_unstructured_version="0.6.3") super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.partition.odt import partition_odt return partition_odt(filename=self.file_path, **self.unstructured_kwargs)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~formatting.py
"""DEPRECATED: Kept for backwards compatibility.""" from langchain.utils.formatting import StrictFormatter, formatter __all__ = ["StrictFormatter", "formatter"]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~embeddings~jina.py
import os from typing import Any, Dict, List, Optional import requests from langchain.pydantic_v1 import BaseModel, root_validator from langchain.schema.embeddings import Embeddings from langchain.utils import get_from_dict_or_env class JinaEmbeddings(BaseModel, Embeddings): """Jina embedding models.""" client: Any #: :meta private: model_name: str = "ViT-B-32::openai" """Model name to use.""" jina_auth_token: Optional[str] = None jina_api_url: str = "https://api.clip.jina.ai/api/v1/models/" request_headers: Optional[dict] = None @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that auth token exists in environment.""" # Set Auth jina_auth_token = get_from_dict_or_env( values, "jina_auth_token", "JINA_AUTH_TOKEN" ) values["jina_auth_token"] = jina_auth_token values["request_headers"] = (("authorization", jina_auth_token),) # Test that package is installed try: import jina except ImportError: raise ImportError( "Could not import `jina` python package. " "Please install it with `pip install jina`." ) # Setup client jina_api_url = os.environ.get("JINA_API_URL", values["jina_api_url"]) model_name = values["model_name"] try: resp = requests.get( jina_api_url + f"?model_name={model_name}", headers={"Authorization": jina_auth_token}, ) if resp.status_code == 401: raise ValueError( "The given Jina auth token is invalid. " "Please check your Jina auth token." ) elif resp.status_code == 404: raise ValueError( f"The given model name `{model_name}` is not valid. " f"Please go to https://cloud.jina.ai/user/inference " f"and create a model with the given model name." ) resp.raise_for_status() endpoint = resp.json()["endpoints"]["grpc"] values["client"] = jina.Client(host=endpoint) except requests.exceptions.HTTPError as err: raise ValueError(f"Error: {err!r}") return values def _post(self, docs: List[Any], **kwargs: Any) -> Any: payload = dict(inputs=docs, metadata=self.request_headers, **kwargs) return self.client.post(on="/encode", **payload) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Jina's embedding endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ from docarray import Document, DocumentArray embeddings = self._post( docs=DocumentArray([Document(text=t) for t in texts]) ).embeddings return [list(map(float, e)) for e in embeddings] def embed_query(self, text: str) -> List[float]: """Call out to Jina's embedding endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ from docarray import Document, DocumentArray embedding = self._post(docs=DocumentArray([Document(text=text)])).embeddings[0] return list(map(float, embedding))
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~unit_tests~retrievers~test_you.py
import json import os from unittest import mock from requests import Response from langchain.retrievers.you import YouRetriever from langchain.schema import Document class TestYouRetriever: def test_get_relevant_documents(self) -> None: os.environ["YDC_API_KEY"] = "MOCK KEY!" retriever = YouRetriever() with mock.patch("requests.get") as mock_get: fixture = {"hits": [{"snippets": ["yo"]}, {"snippets": ["bird up"]}]} response = Response() response._content = bytes(json.dumps(fixture).encode("utf-8")) mock_get.return_value = response actual = retriever.get_relevant_documents("test") assert actual == [ Document(page_content="yo"), Document(page_content="bird up"), ]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~callbacks~whylabs_callback.py
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Optional from langchain.callbacks.base import BaseCallbackHandler from langchain.utils import get_from_env if TYPE_CHECKING: from whylogs.api.logger.logger import Logger diagnostic_logger = logging.getLogger(__name__) def import_langkit( sentiment: bool = False, toxicity: bool = False, themes: bool = False, ) -> Any: """Import the langkit python package and raise an error if it is not installed. Args: sentiment: Whether to import the langkit.sentiment module. Defaults to False. toxicity: Whether to import the langkit.toxicity module. Defaults to False. themes: Whether to import the langkit.themes module. Defaults to False. Returns: The imported langkit module. """ try: import langkit # noqa: F401 import langkit.regexes # noqa: F401 import langkit.textstat # noqa: F401 if sentiment: import langkit.sentiment # noqa: F401 if toxicity: import langkit.toxicity # noqa: F401 if themes: import langkit.themes # noqa: F401 except ImportError: raise ImportError( "To use the whylabs callback manager you need to have the `langkit` python " "package installed. Please install it with `pip install langkit`." ) return langkit class WhyLabsCallbackHandler(BaseCallbackHandler): """ Callback Handler for logging to WhyLabs. This callback handler utilizes `langkit` to extract features from the prompts & responses when interacting with an LLM. These features can be used to guardrail, evaluate, and observe interactions over time to detect issues relating to hallucinations, prompt engineering, or output validation. LangKit is an LLM monitoring toolkit developed by WhyLabs. Here are some examples of what can be monitored with LangKit: * Text Quality - readability score - complexity and grade scores * Text Relevance - Similarity scores between prompt/responses - Similarity scores against user-defined themes - Topic classification * Security and Privacy - patterns - count of strings matching a user-defined regex pattern group - jailbreaks - similarity scores with respect to known jailbreak attempts - prompt injection - similarity scores with respect to known prompt attacks - refusals - similarity scores with respect to known LLM refusal responses * Sentiment and Toxicity - sentiment analysis - toxicity analysis For more information, see https://docs.whylabs.ai/docs/language-model-monitoring or check out the LangKit repo here: https://github.com/whylabs/langkit --- Args: api_key (Optional[str]): WhyLabs API key. Optional because the preferred way to specify the API key is with environment variable WHYLABS_API_KEY. org_id (Optional[str]): WhyLabs organization id to write profiles to. Optional because the preferred way to specify the organization id is with environment variable WHYLABS_DEFAULT_ORG_ID. dataset_id (Optional[str]): WhyLabs dataset id to write profiles to. Optional because the preferred way to specify the dataset id is with environment variable WHYLABS_DEFAULT_DATASET_ID. sentiment (bool): Whether to enable sentiment analysis. Defaults to False. toxicity (bool): Whether to enable toxicity analysis. Defaults to False. themes (bool): Whether to enable theme analysis. Defaults to False. """ def __init__(self, logger: Logger, handler: Any): """Initiate the rolling logger.""" super().__init__() if hasattr(handler, "init"): handler.init(self) if hasattr(handler, "_get_callbacks"): self._callbacks = handler._get_callbacks() else: self._callbacks = dict() diagnostic_logger.warning("initialized handler without callbacks.") self._logger = logger def flush(self) -> None: """Explicitly write current profile if using a rolling logger.""" if self._logger and hasattr(self._logger, "_do_rollover"): self._logger._do_rollover() diagnostic_logger.info("Flushing WhyLabs logger, writing profile...") def close(self) -> None: """Close any loggers to allow writing out of any profiles before exiting.""" if self._logger and hasattr(self._logger, "close"): self._logger.close() diagnostic_logger.info("Closing WhyLabs logger, see you next time!") def __enter__(self) -> WhyLabsCallbackHandler: return self def __exit__( self, exception_type: Any, exception_value: Any, traceback: Any ) -> None: self.close() @classmethod def from_params( cls, *, api_key: Optional[str] = None, org_id: Optional[str] = None, dataset_id: Optional[str] = None, sentiment: bool = False, toxicity: bool = False, themes: bool = False, logger: Optional[Logger] = None, ) -> WhyLabsCallbackHandler: """Instantiate whylogs Logger from params. Args: api_key (Optional[str]): WhyLabs API key. Optional because the preferred way to specify the API key is with environment variable WHYLABS_API_KEY. org_id (Optional[str]): WhyLabs organization id to write profiles to. If not set must be specified in environment variable WHYLABS_DEFAULT_ORG_ID. dataset_id (Optional[str]): The model or dataset this callback is gathering telemetry for. If not set must be specified in environment variable WHYLABS_DEFAULT_DATASET_ID. sentiment (bool): If True will initialize a model to perform sentiment analysis compound score. Defaults to False and will not gather this metric. toxicity (bool): If True will initialize a model to score toxicity. Defaults to False and will not gather this metric. themes (bool): If True will initialize a model to calculate distance to configured themes. Defaults to None and will not gather this metric. logger (Optional[Logger]): If specified will bind the configured logger as the telemetry gathering agent. Defaults to LangKit schema with periodic WhyLabs writer. """ # langkit library will import necessary whylogs libraries import_langkit(sentiment=sentiment, toxicity=toxicity, themes=themes) import whylogs as why from langkit.callback_handler import get_callback_instance from whylogs.api.writer.whylabs import WhyLabsWriter from whylogs.experimental.core.udf_schema import udf_schema if logger is None: api_key = api_key or get_from_env("api_key", "WHYLABS_API_KEY") org_id = org_id or get_from_env("org_id", "WHYLABS_DEFAULT_ORG_ID") dataset_id = dataset_id or get_from_env( "dataset_id", "WHYLABS_DEFAULT_DATASET_ID" ) whylabs_writer = WhyLabsWriter( api_key=api_key, org_id=org_id, dataset_id=dataset_id ) whylabs_logger = why.logger( mode="rolling", interval=5, when="M", schema=udf_schema() ) whylabs_logger.append_writer(writer=whylabs_writer) else: diagnostic_logger.info("Using passed in whylogs logger {logger}") whylabs_logger = logger callback_handler_cls = get_callback_instance(logger=whylabs_logger, impl=cls) diagnostic_logger.info( "Started whylogs Logger with WhyLabsWriter and initialized LangKit. 📝" ) return callback_handler_cls
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~tools~render.py
"""Different methods for rendering Tools to be passed to LLMs. Depending on the LLM you are using and the prompting strategy you are using, you may want Tools to be rendered in a different way. This module contains various ways to render tools. """ from typing import List from langchain.tools.base import BaseTool from langchain.utils.openai_functions import ( FunctionDescription, convert_pydantic_to_openai_function, ) def render_text_description(tools: List[BaseTool]) -> str: """Render the tool name and description in plain text. Output will be in the format of: .. code-block:: markdown search: This tool is used for search calculator: This tool is used for math """ return "\n".join([f"{tool.name}: {tool.description}" for tool in tools]) def render_text_description_and_args(tools: List[BaseTool]) -> str: """Render the tool name, description, and args in plain text. Output will be in the format of: .. code-block:: markdown search: This tool is used for search, args: {"query": {"type": "string"}} calculator: This tool is used for math, \ args: {"expression": {"type": "string"}} """ tool_strings = [] for tool in tools: args_schema = str(tool.args) tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}") return "\n".join(tool_strings) def format_tool_to_openai_function(tool: BaseTool) -> FunctionDescription: """Format tool into the OpenAI function API.""" if tool.args_schema: return convert_pydantic_to_openai_function( tool.args_schema, name=tool.name, description=tool.description ) else: return { "name": tool.name, "description": tool.description, "parameters": { # This is a hack to get around the fact that some tools # do not expose an args_schema, and expect an argument # which is a string. # And Open AI does not support an array type for the # parameters. "properties": { "__arg1": {"title": "__arg1", "type": "string"}, }, "required": ["__arg1"], "type": "object", }, }
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~agents~__init__.py
""" **Agent** is a class that uses an LLM to choose a sequence of actions to take. In Chains, a sequence of actions is hardcoded. In Agents, a language model is used as a reasoning engine to determine which actions to take and in which order. Agents select and use **Tools** and **Toolkits** for actions. **Class hierarchy:** .. code-block:: BaseSingleActionAgent --> LLMSingleActionAgent OpenAIFunctionsAgent XMLAgent Agent --> <name>Agent # Examples: ZeroShotAgent, ChatAgent BaseMultiActionAgent --> OpenAIMultiFunctionsAgent **Main helpers:** .. code-block:: AgentType, AgentExecutor, AgentOutputParser, AgentExecutorIterator, AgentAction, AgentFinish """ # noqa: E501 from langchain.agents.agent import ( Agent, AgentExecutor, AgentOutputParser, BaseMultiActionAgent, BaseSingleActionAgent, LLMSingleActionAgent, ) from langchain.agents.agent_iterator import AgentExecutorIterator from langchain.agents.agent_toolkits import ( create_csv_agent, create_json_agent, create_openapi_agent, create_pandas_dataframe_agent, create_pbi_agent, create_pbi_chat_agent, create_spark_dataframe_agent, create_spark_sql_agent, create_sql_agent, create_vectorstore_agent, create_vectorstore_router_agent, create_xorbits_agent, ) from langchain.agents.agent_types import AgentType from langchain.agents.conversational.base import ConversationalAgent from langchain.agents.conversational_chat.base import ConversationalChatAgent from langchain.agents.conversational_context_chat.base import ( ConversationalChatContextAgent, ) from langchain.agents.initialize import initialize_agent from langchain.agents.load_tools import ( get_all_tool_names, load_huggingface_tool, load_tools, ) from langchain.agents.loading import load_agent from langchain.agents.mrkl.base import MRKLChain, ZeroShotAgent from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent from langchain.agents.openai_functions_multi_agent.base import OpenAIMultiFunctionsAgent from langchain.agents.react.base import ReActChain, ReActTextWorldAgent from langchain.agents.self_ask_with_search.base import SelfAskWithSearchChain from langchain.agents.structured_chat.base import StructuredChatAgent from langchain.agents.tools import Tool, tool from langchain.agents.xml.base import XMLAgent __all__ = [ "Agent", "AgentExecutor", "AgentExecutorIterator", "AgentOutputParser", "AgentType", "BaseMultiActionAgent", "BaseSingleActionAgent", "ConversationalAgent", "ConversationalChatAgent", "ConversationalChatContextAgent", "LLMSingleActionAgent", "MRKLChain", "OpenAIFunctionsAgent", "OpenAIMultiFunctionsAgent", "ReActChain", "ReActTextWorldAgent", "SelfAskWithSearchChain", "StructuredChatAgent", "Tool", "ZeroShotAgent", "create_csv_agent", "create_json_agent", "create_openapi_agent", "create_pandas_dataframe_agent", "create_pbi_agent", "create_pbi_chat_agent", "create_spark_dataframe_agent", "create_spark_sql_agent", "create_sql_agent", "create_vectorstore_agent", "create_vectorstore_router_agent", "get_all_tool_names", "initialize_agent", "load_agent", "load_huggingface_tool", "load_tools", "tool", "create_xorbits_agent", "XMLAgent", ]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~tsv.py
from typing import Any, List from langchain.document_loaders.unstructured import ( UnstructuredFileLoader, validate_unstructured_version, ) class UnstructuredTSVLoader(UnstructuredFileLoader): """Load `TSV` files using `Unstructured`. Like other Unstructured loaders, UnstructuredTSVLoader can be used in both "single" and "elements" mode. If you use the loader in "elements" mode, the TSV file will be a single Unstructured Table element. If you use the loader in "elements" mode, an HTML representation of the table will be available in the "text_as_html" key in the document metadata. Examples -------- from langchain.document_loaders.tsv import UnstructuredTSVLoader loader = UnstructuredTSVLoader("stanley-cups.tsv", mode="elements") docs = loader.load() """ def __init__( self, file_path: str, mode: str = "single", **unstructured_kwargs: Any ): validate_unstructured_version(min_unstructured_version="0.7.6") super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.partition.tsv import partition_tsv return partition_tsv(filename=self.file_path, **self.unstructured_kwargs)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~callbacks~human.py
from typing import Any, Callable, Dict, Optional from uuid import UUID from langchain.callbacks.base import BaseCallbackHandler def _default_approve(_input: str) -> bool: msg = ( "Do you approve of the following input? " "Anything except 'Y'/'Yes' (case-insensitive) will be treated as a no." ) msg += "\n\n" + _input + "\n" resp = input(msg) return resp.lower() in ("yes", "y") def _default_true(_: Dict[str, Any]) -> bool: return True class HumanRejectedException(Exception): """Exception to raise when a person manually review and rejects a value.""" class HumanApprovalCallbackHandler(BaseCallbackHandler): """Callback for manually validating values.""" raise_error: bool = True def __init__( self, approve: Callable[[Any], bool] = _default_approve, should_check: Callable[[Dict[str, Any]], bool] = _default_true, ): self._approve = approve self._should_check = should_check def on_tool_start( self, serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: if self._should_check(serialized) and not self._approve(input_str): raise HumanRejectedException( f"Inputs {input_str} to tool {serialized} were rejected." )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~embeddings~deepinfra.py
from typing import Any, Dict, List, Mapping, Optional import requests from langchain.pydantic_v1 import BaseModel, Extra, root_validator from langchain.schema.embeddings import Embeddings from langchain.utils import get_from_dict_or_env DEFAULT_MODEL_ID = "sentence-transformers/clip-ViT-B-32" class DeepInfraEmbeddings(BaseModel, Embeddings): """Deep Infra's embedding inference service. To use, you should have the environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. There are multiple embeddings models available, see https://deepinfra.com/models?type=embeddings. Example: .. code-block:: python from langchain.embeddings import DeepInfraEmbeddings deepinfra_emb = DeepInfraEmbeddings( model_id="sentence-transformers/clip-ViT-B-32", deepinfra_api_token="my-api-key" ) r1 = deepinfra_emb.embed_documents( [ "Alpha is the first letter of Greek alphabet", "Beta is the second letter of Greek alphabet", ] ) r2 = deepinfra_emb.embed_query( "What is the second letter of Greek alphabet" ) """ model_id: str = DEFAULT_MODEL_ID """Embeddings model to use.""" normalize: bool = False """whether to normalize the computed embeddings""" embed_instruction: str = "passage: " """Instruction used to embed documents.""" query_instruction: str = "query: " """Instruction used to embed the query.""" model_kwargs: Optional[dict] = None """Other model keyword args""" deepinfra_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" deepinfra_api_token = get_from_dict_or_env( values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN" ) values["deepinfra_api_token"] = deepinfra_api_token return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {"model_id": self.model_id} def _embed(self, input: List[str]) -> List[List[float]]: _model_kwargs = self.model_kwargs or {} # HTTP headers for authorization headers = { "Authorization": f"bearer {self.deepinfra_api_token}", "Content-Type": "application/json", } # send request try: res = requests.post( f"https://api.deepinfra.com/v1/inference/{self.model_id}", headers=headers, json={"inputs": input, "normalize": self.normalize, **_model_kwargs}, ) except requests.exceptions.RequestException as e: raise ValueError(f"Error raised by inference endpoint: {e}") if res.status_code != 200: raise ValueError( "Error raised by inference API HTTP code: %s, %s" % (res.status_code, res.text) ) try: t = res.json() embeddings = t["embeddings"] except requests.exceptions.JSONDecodeError as e: raise ValueError( f"Error raised by inference API: {e}.\nResponse: {res.text}" ) return embeddings def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed documents using a Deep Infra deployed embedding model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [f"{self.query_instruction}{text}" for text in texts] embeddings = self._embed(instruction_pairs) return embeddings def embed_query(self, text: str) -> List[float]: """Embed a query using a Deep Infra deployed embedding model. Args: text: The text to embed. Returns: Embeddings for the text. """ instruction_pair = f"{self.query_instruction}{text}" embedding = self._embed([instruction_pair])[0] return embedding
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chat_models~konko.py
"""KonkoAI chat wrapper.""" from __future__ import annotations import logging import os from typing import ( Any, Dict, Iterator, List, Mapping, Optional, Set, Tuple, Union, ) import requests from langchain.adapters.openai import convert_dict_to_message, convert_message_to_dict from langchain.callbacks.manager import ( CallbackManagerForLLMRun, ) from langchain.chat_models.base import _generate_from_stream from langchain.chat_models.openai import ChatOpenAI, _convert_delta_to_message_chunk from langchain.pydantic_v1 import Field, root_validator from langchain.schema import ChatGeneration, ChatResult from langchain.schema.messages import AIMessageChunk, BaseMessage from langchain.schema.output import ChatGenerationChunk from langchain.utils import get_from_dict_or_env DEFAULT_API_BASE = "https://api.konko.ai/v1" DEFAULT_MODEL = "meta-llama/Llama-2-13b-chat-hf" logger = logging.getLogger(__name__) class ChatKonko(ChatOpenAI): """`ChatKonko` Chat large language models API. To use, you should have the ``konko`` python package installed, and the environment variable ``KONKO_API_KEY`` and ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the konko.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chat_models import ChatKonko llm = ChatKonko(model="meta-llama/Llama-2-13b-chat-hf") """ @property def lc_secrets(self) -> Dict[str, str]: return {"konko_api_key": "KONKO_API_KEY", "openai_api_key": "OPENAI_API_KEY"} @classmethod def is_lc_serializable(cls) -> bool: """Return whether this model can be serialized by Langchain.""" return True client: Any = None #: :meta private: model: str = Field(default=DEFAULT_MODEL, alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" openai_api_key: Optional[str] = None konko_api_key: Optional[str] = None request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout for requests to Konko completion API.""" max_retries: int = 6 """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" n: int = 1 """Number of chat completions to generate for each prompt.""" max_tokens: int = 20 """Maximum number of tokens to generate.""" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["konko_api_key"] = get_from_dict_or_env( values, "konko_api_key", "KONKO_API_KEY" ) try: import konko except ImportError: raise ValueError( "Could not import konko python package. " "Please install it with `pip install konko`." ) try: values["client"] = konko.ChatCompletion except AttributeError: raise ValueError( "`konko` has no `ChatCompletion` attribute, this is likely " "due to an old version of the konko package. Try upgrading it " "with `pip install --upgrade konko`." ) if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Konko API.""" return { "model": self.model, "request_timeout": self.request_timeout, "max_tokens": self.max_tokens, "stream": self.streaming, "n": self.n, "temperature": self.temperature, **self.model_kwargs, } @staticmethod def get_available_models( konko_api_key: Optional[str] = None, openai_api_key: Optional[str] = None, konko_api_base: str = DEFAULT_API_BASE, ) -> Set[str]: """Get available models from Konko API.""" # Try to retrieve the OpenAI API key if it's not passed as an argument if not openai_api_key: try: openai_api_key = os.environ["OPENAI_API_KEY"] except KeyError: pass # It's okay if it's not set, we just won't use it # Try to retrieve the Konko API key if it's not passed as an argument if not konko_api_key: try: konko_api_key = os.environ["KONKO_API_KEY"] except KeyError: raise ValueError( "Konko API key must be passed as keyword argument or " "set in environment variable KONKO_API_KEY." ) models_url = f"{konko_api_base}/models" headers = { "Authorization": f"Bearer {konko_api_key}", } if openai_api_key: headers["X-OpenAI-Api-Key"] = openai_api_key models_response = requests.get(models_url, headers=headers) if models_response.status_code != 200: raise ValueError( f"Error getting models from {models_url}: " f"{models_response.status_code}" ) return {model["id"] for model in models_response.json()["data"]} def completion_with_retry( self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any ) -> Any: def _completion_with_retry(**kwargs: Any) -> Any: return self.client.create(**kwargs) return _completion_with_retry(**kwargs) def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: overall_token_usage: dict = {} for output in llm_outputs: if output is None: # Happens in streaming continue token_usage = output["token_usage"] for k, v in token_usage.items(): if k in overall_token_usage: overall_token_usage[k] += v else: overall_token_usage[k] = v return {"token_usage": overall_token_usage, "model_name": self.model} def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs, "stream": True} default_chunk_class = AIMessageChunk for chunk in self.completion_with_retry( messages=message_dicts, run_manager=run_manager, **params ): if len(chunk["choices"]) == 0: continue choice = chunk["choices"][0] chunk = _convert_delta_to_message_chunk( choice["delta"], default_chunk_class ) finish_reason = choice.get("finish_reason") generation_info = ( dict(finish_reason=finish_reason) if finish_reason is not None else None ) default_chunk_class = chunk.__class__ yield ChatGenerationChunk(message=chunk, generation_info=generation_info) if run_manager: run_manager.on_llm_new_token(chunk.content, chunk=chunk) def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, stream: Optional[bool] = None, **kwargs: Any, ) -> ChatResult: should_stream = stream if stream is not None else self.streaming if should_stream: stream_iter = self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return _generate_from_stream(stream_iter) message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs} response = self.completion_with_retry( messages=message_dicts, run_manager=run_manager, **params ) return self._create_chat_result(response) def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = self._client_params if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop message_dicts = [convert_message_to_dict(m) for m in messages] return message_dicts, params def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: generations = [] for res in response["choices"]: message = convert_dict_to_message(res["message"]) gen = ChatGeneration( message=message, generation_info=dict(finish_reason=res.get("finish_reason")), ) generations.append(gen) token_usage = response.get("usage", {}) llm_output = {"token_usage": token_usage, "model_name": self.model} return ChatResult(generations=generations, llm_output=llm_output) @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model}, **self._default_params} @property def _client_params(self) -> Dict[str, Any]: """Get the parameters used for the konko client.""" return {**self._default_params} def _get_invocation_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> Dict[str, Any]: """Get the parameters used to invoke the model.""" return { "model": self.model, **super()._get_invocation_params(stop=stop), **self._default_params, **kwargs, } @property def _llm_type(self) -> str: """Return type of chat model.""" return "konko-chat"
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~vectorstores~momento_vector_index.py
from typing import ( TYPE_CHECKING, Any, Iterable, List, Optional, Tuple, Type, TypeVar, cast, ) from uuid import uuid4 from langchain.docstore.document import Document from langchain.schema.embeddings import Embeddings from langchain.schema.vectorstore import VectorStore from langchain.utils import get_from_env from langchain.vectorstores.utils import DistanceStrategy VST = TypeVar("VST", bound="VectorStore") if TYPE_CHECKING: from momento import PreviewVectorIndexClient class MomentoVectorIndex(VectorStore): """`Momento Vector Index` (MVI) vector store. Momento Vector Index is a serverless vector index that can be used to store and search vectors. To use you should have the ``momento`` python package installed. Example: .. code-block:: python from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import MomentoVectorIndex from momento import ( CredentialProvider, PreviewVectorIndexClient, VectorIndexConfigurations, ) vectorstore = MomentoVectorIndex( embedding=OpenAIEmbeddings(), client=PreviewVectorIndexClient( VectorIndexConfigurations.Default.latest(), credential_provider=CredentialProvider.from_environment_variable( "MOMENTO_API_KEY" ), ), index_name="my-index", ) """ def __init__( self, embedding: Embeddings, client: "PreviewVectorIndexClient", index_name: str = "default", distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, text_field: str = "text", ensure_index_exists: bool = True, **kwargs: Any, ): """Initialize a Vector Store backed by Momento Vector Index. Args: embedding (Embeddings): The embedding function to use. configuration (VectorIndexConfiguration): The configuration to initialize the Vector Index with. credential_provider (CredentialProvider): The credential provider to authenticate the Vector Index with. index_name (str, optional): The name of the index to store the documents in. Defaults to "default". distance_strategy (DistanceStrategy, optional): The distance strategy to use. Defaults to DistanceStrategy.COSINE. If you select DistanceStrategy.EUCLIDEAN_DISTANCE, Momento uses the squared Euclidean distance. text_field (str, optional): The name of the metadata field to store the original text in. Defaults to "text". ensure_index_exists (bool, optional): Whether to ensure that the index exists before adding documents to it. Defaults to True. """ try: from momento import PreviewVectorIndexClient except ImportError: raise ImportError( "Could not import momento python package. " "Please install it with `pip install momento`." ) self._client: PreviewVectorIndexClient = client self._embedding = embedding self.index_name = index_name self.__validate_distance_strategy(distance_strategy) self.distance_strategy = distance_strategy self.text_field = text_field self._ensure_index_exists = ensure_index_exists @staticmethod def __validate_distance_strategy(distance_strategy: DistanceStrategy) -> None: if distance_strategy not in [ DistanceStrategy.COSINE, DistanceStrategy.MAX_INNER_PRODUCT, DistanceStrategy.MAX_INNER_PRODUCT, ]: raise ValueError(f"Distance strategy {distance_strategy} not implemented.") @property def embeddings(self) -> Embeddings: return self._embedding def _create_index_if_not_exists(self, num_dimensions: int) -> bool: """Create index if it does not exist.""" from momento.requests.vector_index import SimilarityMetric from momento.responses.vector_index import CreateIndex similarity_metric = None if self.distance_strategy == DistanceStrategy.COSINE: similarity_metric = SimilarityMetric.COSINE_SIMILARITY elif self.distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT: similarity_metric = SimilarityMetric.INNER_PRODUCT elif self.distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE: similarity_metric = SimilarityMetric.EUCLIDEAN_SIMILARITY else: raise ValueError( f"Distance strategy {self.distance_strategy} not implemented." ) response = self._client.create_index( self.index_name, num_dimensions, similarity_metric ) if isinstance(response, CreateIndex.Success): return True elif isinstance(response, CreateIndex.IndexAlreadyExists): return False elif isinstance(response, CreateIndex.Error): raise response.inner_exception else: raise Exception(f"Unexpected response: {response}") def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Iterable of strings to add to the vectorstore. metadatas (Optional[List[dict]]): Optional list of metadatas associated with the texts. kwargs (Any): Other optional parameters. Specifically: - ids (List[str], optional): List of ids to use for the texts. Defaults to None, in which case uuids are generated. Returns: List[str]: List of ids from adding the texts into the vectorstore. """ from momento.requests.vector_index import Item from momento.responses.vector_index import UpsertItemBatch texts = list(texts) if len(texts) == 0: return [] if metadatas is not None: for metadata, text in zip(metadatas, texts): metadata[self.text_field] = text else: metadatas = [{self.text_field: text} for text in texts] try: embeddings = self._embedding.embed_documents(texts) except NotImplementedError: embeddings = [self._embedding.embed_query(x) for x in texts] # Create index if it does not exist. # We assume that if it does exist, then it was created with the desired number # of dimensions and similarity metric. if self._ensure_index_exists: self._create_index_if_not_exists(len(embeddings[0])) if "ids" in kwargs: ids = kwargs["ids"] if len(ids) != len(embeddings): raise ValueError("Number of ids must match number of texts") else: ids = [str(uuid4()) for _ in range(len(embeddings))] batch_size = 128 for i in range(0, len(embeddings), batch_size): start = i end = min(i + batch_size, len(embeddings)) items = [ Item(id=id, vector=vector, metadata=metadata) for id, vector, metadata in zip( ids[start:end], embeddings[start:end], metadatas[start:end], ) ] response = self._client.upsert_item_batch(self.index_name, items) if isinstance(response, UpsertItemBatch.Success): pass elif isinstance(response, UpsertItemBatch.Error): raise response.inner_exception else: raise Exception(f"Unexpected response: {response}") return ids def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]: """Delete by vector ID. Args: ids (List[str]): List of ids to delete. kwargs (Any): Other optional parameters (unused) Returns: Optional[bool]: True if deletion is successful, False otherwise, None if not implemented. """ from momento.responses.vector_index import DeleteItemBatch if ids is None: return True response = self._client.delete_item_batch(self.index_name, ids) return isinstance(response, DeleteItemBatch.Success) def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Search for similar documents to the query string. Args: query (str): The query string to search for. k (int, optional): The number of results to return. Defaults to 4. Returns: List[Document]: A list of documents that are similar to the query. """ res = self.similarity_search_with_score(query=query, k=k, **kwargs) return [doc for doc, _ in res] def similarity_search_with_score( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Search for similar documents to the query string. Args: query (str): The query string to search for. k (int, optional): The number of results to return. Defaults to 4. kwargs (Any): Vector Store specific search parameters. The following are forwarded to the Momento Vector Index: - top_k (int, optional): The number of results to return. Returns: List[Tuple[Document, float]]: A list of tuples of the form (Document, score). """ embedding = self._embedding.embed_query(query) results = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, **kwargs ) return results def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Search for similar documents to the query vector. Args: embedding (List[float]): The query vector to search for. k (int, optional): The number of results to return. Defaults to 4. kwargs (Any): Vector Store specific search parameters. The following are forwarded to the Momento Vector Index: - top_k (int, optional): The number of results to return. Returns: List[Tuple[Document, float]]: A list of tuples of the form (Document, score). """ from momento.requests.vector_index import ALL_METADATA from momento.responses.vector_index import Search if "top_k" in kwargs: k = kwargs["k"] response = self._client.search( self.index_name, embedding, top_k=k, metadata_fields=ALL_METADATA ) if not isinstance(response, Search.Success): return [] results = [] for hit in response.hits: text = cast(str, hit.metadata.pop(self.text_field)) doc = Document(page_content=text, metadata=hit.metadata) pair = (doc, hit.distance) results.append(pair) return results def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Search for similar documents to the query vector. Args: embedding (List[float]): The query vector to search for. k (int, optional): The number of results to return. Defaults to 4. Returns: List[Document]: A list of documents that are similar to the query. """ results = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, **kwargs ) return [doc for doc, _ in results] @classmethod def from_texts( cls: Type[VST], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> VST: """Return the Vector Store initialized from texts and embeddings. Args: cls (Type[VST]): The Vector Store class to use to initialize the Vector Store. texts (List[str]): The texts to initialize the Vector Store with. embedding (Embeddings): The embedding function to use. metadatas (Optional[List[dict]], optional): The metadata associated with the texts. Defaults to None. kwargs (Any): Vector Store specific parameters. The following are forwarded to the Vector Store constructor and required: - index_name (str, optional): The name of the index to store the documents in. Defaults to "default". - text_field (str, optional): The name of the metadata field to store the original text in. Defaults to "text". - distance_strategy (DistanceStrategy, optional): The distance strategy to use. Defaults to DistanceStrategy.COSINE. If you select DistanceStrategy.EUCLIDEAN_DISTANCE, Momento uses the squared Euclidean distance. - ensure_index_exists (bool, optional): Whether to ensure that the index exists before adding documents to it. Defaults to True. Additionally you can either pass in a client or an API key - client (PreviewVectorIndexClient): The Momento Vector Index client to use. - api_key (Optional[str]): The configuration to use to initialize the Vector Index with. Defaults to None. If None, the configuration is initialized from the environment variable `MOMENTO_API_KEY`. Returns: VST: Momento Vector Index vector store initialized from texts and embeddings. """ from momento import ( CredentialProvider, PreviewVectorIndexClient, VectorIndexConfigurations, ) if "client" in kwargs: client = kwargs.pop("client") else: supplied_api_key = kwargs.pop("api_key", None) api_key = supplied_api_key or get_from_env("api_key", "MOMENTO_API_KEY") client = PreviewVectorIndexClient( configuration=VectorIndexConfigurations.Default.latest(), credential_provider=CredentialProvider.from_string(api_key), ) vector_db = cls(embedding=embedding, client=client, **kwargs) # type: ignore vector_db.add_texts(texts=texts, metadatas=metadatas, **kwargs) return vector_db
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~vectorstores~clickhouse.py
from __future__ import annotations import json import logging from hashlib import sha1 from threading import Thread from typing import Any, Dict, Iterable, List, Optional, Tuple, Union from langchain.docstore.document import Document from langchain.pydantic_v1 import BaseSettings from langchain.schema.embeddings import Embeddings from langchain.schema.vectorstore import VectorStore logger = logging.getLogger() def has_mul_sub_str(s: str, *args: Any) -> bool: """ Check if a string contains multiple substrings. Args: s: string to check. *args: substrings to check. Returns: True if all substrings are in the string, False otherwise. """ for a in args: if a not in s: return False return True class ClickhouseSettings(BaseSettings): """`ClickHouse` client configuration. Attribute: host (str) : An URL to connect to MyScale backend. Defaults to 'localhost'. port (int) : URL port to connect with HTTP. Defaults to 8443. username (str) : Username to login. Defaults to None. password (str) : Password to login. Defaults to None. index_type (str): index type string. index_param (list): index build parameter. index_query_params(dict): index query parameters. database (str) : Database name to find the table. Defaults to 'default'. table (str) : Table name to operate on. Defaults to 'vector_table'. metric (str) : Metric to compute distance, supported are ('angular', 'euclidean', 'manhattan', 'hamming', 'dot'). Defaults to 'angular'. https://github.com/spotify/annoy/blob/main/src/annoymodule.cc#L149-L169 column_map (Dict) : Column type map to project column name onto langchain semantics. Must have keys: `text`, `id`, `vector`, must be same size to number of columns. For example: .. code-block:: python { 'id': 'text_id', 'uuid': 'global_unique_id' 'embedding': 'text_embedding', 'document': 'text_plain', 'metadata': 'metadata_dictionary_in_json', } Defaults to identity map. """ host: str = "localhost" port: int = 8123 username: Optional[str] = None password: Optional[str] = None index_type: str = "annoy" # Annoy supports L2Distance and cosineDistance. index_param: Optional[Union[List, Dict]] = ["'L2Distance'", 100] index_query_params: Dict[str, str] = {} column_map: Dict[str, str] = { "id": "id", "uuid": "uuid", "document": "document", "embedding": "embedding", "metadata": "metadata", } database: str = "default" table: str = "langchain" metric: str = "angular" def __getitem__(self, item: str) -> Any: return getattr(self, item) class Config: env_file = ".env" env_prefix = "clickhouse_" env_file_encoding = "utf-8" class Clickhouse(VectorStore): """`ClickHouse VectorSearch` vector store. You need a `clickhouse-connect` python package, and a valid account to connect to ClickHouse. ClickHouse can not only search with simple vector indexes, it also supports complex query with multiple conditions, constraints and even sub-queries. For more information, please visit [ClickHouse official site](https://clickhouse.com/clickhouse) """ def __init__( self, embedding: Embeddings, config: Optional[ClickhouseSettings] = None, **kwargs: Any, ) -> None: """ClickHouse Wrapper to LangChain embedding_function (Embeddings): config (ClickHouseSettings): Configuration to ClickHouse Client Other keyword arguments will pass into [clickhouse-connect](https://docs.clickhouse.com/) """ try: from clickhouse_connect import get_client except ImportError: raise ImportError( "Could not import clickhouse connect python package. " "Please install it with `pip install clickhouse-connect`." ) try: from tqdm import tqdm self.pgbar = tqdm except ImportError: # Just in case if tqdm is not installed self.pgbar = lambda x, **kwargs: x super().__init__() if config is not None: self.config = config else: self.config = ClickhouseSettings() assert self.config assert self.config.host and self.config.port assert ( self.config.column_map and self.config.database and self.config.table and self.config.metric ) for k in ["id", "embedding", "document", "metadata", "uuid"]: assert k in self.config.column_map assert self.config.metric in [ "angular", "euclidean", "manhattan", "hamming", "dot", ] # initialize the schema dim = len(embedding.embed_query("test")) index_params = ( ( ",".join([f"'{k}={v}'" for k, v in self.config.index_param.items()]) if self.config.index_param else "" ) if isinstance(self.config.index_param, Dict) else ",".join([str(p) for p in self.config.index_param]) if isinstance(self.config.index_param, List) else self.config.index_param ) self.schema = f"""\ CREATE TABLE IF NOT EXISTS {self.config.database}.{self.config.table}( {self.config.column_map['id']} Nullable(String), {self.config.column_map['document']} Nullable(String), {self.config.column_map['embedding']} Array(Float32), {self.config.column_map['metadata']} JSON, {self.config.column_map['uuid']} UUID DEFAULT generateUUIDv4(), CONSTRAINT cons_vec_len CHECK length({self.config.column_map['embedding']}) = {dim}, INDEX vec_idx {self.config.column_map['embedding']} TYPE \ {self.config.index_type}({index_params}) GRANULARITY 1000 ) ENGINE = MergeTree ORDER BY uuid SETTINGS index_granularity = 8192\ """ self.dim = dim self.BS = "\\" self.must_escape = ("\\", "'") self.embedding_function = embedding self.dist_order = "ASC" # Only support ConsingDistance and L2Distance # Create a connection to clickhouse self.client = get_client( host=self.config.host, port=self.config.port, username=self.config.username, password=self.config.password, **kwargs, ) # Enable JSON type self.client.command("SET allow_experimental_object_type=1") # Enable Annoy index self.client.command("SET allow_experimental_annoy_index=1") self.client.command(self.schema) @property def embeddings(self) -> Embeddings: return self.embedding_function def escape_str(self, value: str) -> str: return "".join(f"{self.BS}{c}" if c in self.must_escape else c for c in value) def _build_insert_sql(self, transac: Iterable, column_names: Iterable[str]) -> str: ks = ",".join(column_names) _data = [] for n in transac: n = ",".join([f"'{self.escape_str(str(_n))}'" for _n in n]) _data.append(f"({n})") i_str = f""" INSERT INTO TABLE {self.config.database}.{self.config.table}({ks}) VALUES {','.join(_data)} """ return i_str def _insert(self, transac: Iterable, column_names: Iterable[str]) -> None: _insert_query = self._build_insert_sql(transac, column_names) self.client.command(_insert_query) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, batch_size: int = 32, ids: Optional[Iterable[str]] = None, **kwargs: Any, ) -> List[str]: """Insert more texts through the embeddings and add to the VectorStore. Args: texts: Iterable of strings to add to the VectorStore. ids: Optional list of ids to associate with the texts. batch_size: Batch size of insertion metadata: Optional column data to be inserted Returns: List of ids from adding the texts into the VectorStore. """ # Embed and create the documents ids = ids or [sha1(t.encode("utf-8")).hexdigest() for t in texts] colmap_ = self.config.column_map transac = [] column_names = { colmap_["id"]: ids, colmap_["document"]: texts, colmap_["embedding"]: self.embedding_function.embed_documents(list(texts)), } metadatas = metadatas or [{} for _ in texts] column_names[colmap_["metadata"]] = map(json.dumps, metadatas) assert len(set(colmap_) - set(column_names)) >= 0 keys, values = zip(*column_names.items()) try: t = None for v in self.pgbar( zip(*values), desc="Inserting data...", total=len(metadatas) ): assert ( len(v[keys.index(self.config.column_map["embedding"])]) == self.dim ) transac.append(v) if len(transac) == batch_size: if t: t.join() t = Thread(target=self._insert, args=[transac, keys]) t.start() transac = [] if len(transac) > 0: if t: t.join() self._insert(transac, keys) return [i for i in ids] except Exception as e: logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") return [] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[Dict[Any, Any]]] = None, config: Optional[ClickhouseSettings] = None, text_ids: Optional[Iterable[str]] = None, batch_size: int = 32, **kwargs: Any, ) -> Clickhouse: """Create ClickHouse wrapper with existing texts Args: embedding_function (Embeddings): Function to extract text embedding texts (Iterable[str]): List or tuple of strings to be added config (ClickHouseSettings, Optional): ClickHouse configuration text_ids (Optional[Iterable], optional): IDs for the texts. Defaults to None. batch_size (int, optional): Batchsize when transmitting data to ClickHouse. Defaults to 32. metadata (List[dict], optional): metadata to texts. Defaults to None. Other keyword arguments will pass into [clickhouse-connect](https://clickhouse.com/docs/en/integrations/python#clickhouse-connect-driver-api) Returns: ClickHouse Index """ ctx = cls(embedding, config, **kwargs) ctx.add_texts(texts, ids=text_ids, batch_size=batch_size, metadatas=metadatas) return ctx def __repr__(self) -> str: """Text representation for ClickHouse Vector Store, prints backends, username and schemas. Easy to use with `str(ClickHouse())` Returns: repr: string to show connection info and data schema """ _repr = f"\033[92m\033[1m{self.config.database}.{self.config.table} @ " _repr += f"{self.config.host}:{self.config.port}\033[0m\n\n" _repr += f"\033[1musername: {self.config.username}\033[0m\n\nTable Schema:\n" _repr += "-" * 51 + "\n" for r in self.client.query( f"DESC {self.config.database}.{self.config.table}" ).named_results(): _repr += ( f"|\033[94m{r['name']:24s}\033[0m|\033[96m{r['type']:24s}\033[0m|\n" ) _repr += "-" * 51 + "\n" return _repr def _build_query_sql( self, q_emb: List[float], topk: int, where_str: Optional[str] = None ) -> str: q_emb_str = ",".join(map(str, q_emb)) if where_str: where_str = f"PREWHERE {where_str}" else: where_str = "" settings_strs = [] if self.config.index_query_params: for k in self.config.index_query_params: settings_strs.append(f"SETTING {k}={self.config.index_query_params[k]}") q_str = f""" SELECT {self.config.column_map['document']}, {self.config.column_map['metadata']}, dist FROM {self.config.database}.{self.config.table} {where_str} ORDER BY L2Distance({self.config.column_map['embedding']}, [{q_emb_str}]) AS dist {self.dist_order} LIMIT {topk} {' '.join(settings_strs)} """ return q_str def similarity_search( self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any ) -> List[Document]: """Perform a similarity search with ClickHouse Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of Documents """ return self.similarity_search_by_vector( self.embedding_function.embed_query(query), k, where_str, **kwargs ) def similarity_search_by_vector( self, embedding: List[float], k: int = 4, where_str: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Perform a similarity search with ClickHouse by vectors Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of documents """ q_str = self._build_query_sql(embedding, k, where_str) try: return [ Document( page_content=r[self.config.column_map["document"]], metadata=r[self.config.column_map["metadata"]], ) for r in self.client.query(q_str).named_results() ] except Exception as e: logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") return [] def similarity_search_with_relevance_scores( self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any ) -> List[Tuple[Document, float]]: """Perform a similarity search with ClickHouse Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of (Document, similarity) """ q_str = self._build_query_sql( self.embedding_function.embed_query(query), k, where_str ) try: return [ ( Document( page_content=r[self.config.column_map["document"]], metadata=r[self.config.column_map["metadata"]], ), r["dist"], ) for r in self.client.query(q_str).named_results() ] except Exception as e: logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") return [] def drop(self) -> None: """ Helper function: Drop data """ self.client.command( f"DROP TABLE IF EXISTS {self.config.database}.{self.config.table}" ) @property def metadata_column(self) -> str: return self.config.column_map["metadata"]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~llms~ollama.py
import json from typing import Any, Dict, Iterator, List, Mapping, Optional import requests from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import BaseLLM from langchain.pydantic_v1 import Extra from langchain.schema import LLMResult from langchain.schema.language_model import BaseLanguageModel from langchain.schema.output import GenerationChunk def _stream_response_to_generation_chunk( stream_response: str, ) -> GenerationChunk: """Convert a stream response to a generation chunk.""" parsed_response = json.loads(stream_response) generation_info = parsed_response if parsed_response.get("done") is True else None return GenerationChunk( text=parsed_response.get("response", ""), generation_info=generation_info ) class _OllamaCommon(BaseLanguageModel): base_url: str = "http://localhost:11434" """Base url the model is hosted under.""" model: str = "llama2" """Model name to use.""" mirostat: Optional[int] """Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)""" mirostat_eta: Optional[float] """Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1)""" mirostat_tau: Optional[float] """Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0)""" num_ctx: Optional[int] """Sets the size of the context window used to generate the next token. (Default: 2048) """ num_gpu: Optional[int] """The number of GPUs to use. On macOS it defaults to 1 to enable metal support, 0 to disable.""" num_thread: Optional[int] """Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores).""" repeat_last_n: Optional[int] """Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx)""" repeat_penalty: Optional[float] """Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)""" temperature: Optional[float] """The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8)""" stop: Optional[List[str]] """Sets the stop tokens to use.""" tfs_z: Optional[float] """Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1)""" top_k: Optional[int] """Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)""" top_p: Optional[int] """Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)""" @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Ollama.""" return { "model": self.model, "options": { "mirostat": self.mirostat, "mirostat_eta": self.mirostat_eta, "mirostat_tau": self.mirostat_tau, "num_ctx": self.num_ctx, "num_gpu": self.num_gpu, "num_thread": self.num_thread, "repeat_last_n": self.repeat_last_n, "repeat_penalty": self.repeat_penalty, "temperature": self.temperature, "stop": self.stop, "tfs_z": self.tfs_z, "top_k": self.top_k, "top_p": self.top_p, }, } @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model": self.model}, **self._default_params} def _create_stream( self, prompt: str, stop: Optional[List[str]] = None, **kwargs: Any, ) -> Iterator[str]: if self.stop is not None and stop is not None: raise ValueError("`stop` found in both the input and default params.") elif self.stop is not None: stop = self.stop elif stop is None: stop = [] params = {**self._default_params, "stop": stop, **kwargs} response = requests.post( url=f"{self.base_url}/api/generate/", headers={"Content-Type": "application/json"}, json={"prompt": prompt, **params}, stream=True, ) response.encoding = "utf-8" if response.status_code != 200: optional_detail = response.json().get("error") raise ValueError( f"Ollama call failed with status code {response.status_code}." f" Details: {optional_detail}" ) return response.iter_lines(decode_unicode=True) def _stream_with_aggregation( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, verbose: bool = False, **kwargs: Any, ) -> GenerationChunk: final_chunk: Optional[GenerationChunk] = None for stream_resp in self._create_stream(prompt, stop, **kwargs): if stream_resp: chunk = _stream_response_to_generation_chunk(stream_resp) if final_chunk is None: final_chunk = chunk else: final_chunk += chunk if run_manager: run_manager.on_llm_new_token( chunk.text, verbose=verbose, ) if final_chunk is None: raise ValueError("No data received from Ollama stream.") return final_chunk class Ollama(BaseLLM, _OllamaCommon): """Ollama locally runs large language models. To use, follow the instructions at https://ollama.ai/. Example: .. code-block:: python from langchain.llms import Ollama ollama = Ollama(model="llama2") """ class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @property def _llm_type(self) -> str: """Return type of llm.""" return "ollama-llm" def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call out to Ollama's generate endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = ollama("Tell me a joke.") """ # TODO: add caching here. generations = [] for prompt in prompts: final_chunk = super()._stream_with_aggregation( prompt, stop=stop, run_manager=run_manager, verbose=self.verbose, **kwargs, ) generations.append([final_chunk]) return LLMResult(generations=generations) def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: for stream_resp in self._create_stream(prompt, stop, **kwargs): if stream_resp: chunk = _stream_response_to_generation_chunk(stream_resp) yield chunk if run_manager: run_manager.on_llm_new_token( chunk.text, verbose=self.verbose, )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~arcgis_loader.py
"""Document Loader for ArcGIS FeatureLayers.""" from __future__ import annotations import json import re import warnings from datetime import datetime, timezone from typing import TYPE_CHECKING, Any, Iterator, List, Optional, Union from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader if TYPE_CHECKING: import arcgis _NOT_PROVIDED = "(Not Provided)" class ArcGISLoader(BaseLoader): """Load records from an ArcGIS FeatureLayer.""" def __init__( self, layer: Union[str, arcgis.features.FeatureLayer], gis: Optional[arcgis.gis.GIS] = None, where: str = "1=1", out_fields: Optional[Union[List[str], str]] = None, return_geometry: bool = False, result_record_count: Optional[int] = None, lyr_desc: Optional[str] = None, **kwargs: Any, ): try: import arcgis except ImportError as e: raise ImportError( "arcgis is required to use the ArcGIS Loader. " "Install it with pip or conda." ) from e try: from bs4 import BeautifulSoup # type: ignore self.BEAUTIFULSOUP = BeautifulSoup except ImportError: warnings.warn("BeautifulSoup not found. HTML will not be parsed.") self.BEAUTIFULSOUP = None self.gis = gis or arcgis.gis.GIS() if isinstance(layer, str): self.url = layer self.layer = arcgis.features.FeatureLayer(layer, gis=gis) else: self.url = layer.url self.layer = layer self.layer_properties = self._get_layer_properties(lyr_desc) self.where = where if isinstance(out_fields, str): self.out_fields = out_fields elif out_fields is None: self.out_fields = "*" else: self.out_fields = ",".join(out_fields) self.return_geometry = return_geometry self.result_record_count = result_record_count self.return_all_records = not isinstance(result_record_count, int) query_params = dict( where=self.where, out_fields=self.out_fields, return_geometry=self.return_geometry, return_all_records=self.return_all_records, result_record_count=self.result_record_count, ) query_params.update(kwargs) self.query_params = query_params def _get_layer_properties(self, lyr_desc: Optional[str] = None) -> dict: """Get the layer properties from the FeatureLayer.""" import arcgis layer_number_pattern = re.compile(r"/\d+$") props = self.layer.properties if lyr_desc is None: # retrieve description from the FeatureLayer if not provided try: if self.BEAUTIFULSOUP: lyr_desc = self.BEAUTIFULSOUP(props["description"]).text else: lyr_desc = props["description"] lyr_desc = lyr_desc or _NOT_PROVIDED except KeyError: lyr_desc = _NOT_PROVIDED try: item_id = props["serviceItemId"] item = self.gis.content.get(item_id) or arcgis.features.FeatureLayer( re.sub(layer_number_pattern, "", self.url), ) try: raw_desc = item.description except AttributeError: raw_desc = item.properties.description if self.BEAUTIFULSOUP: item_desc = self.BEAUTIFULSOUP(raw_desc).text else: item_desc = raw_desc item_desc = item_desc or _NOT_PROVIDED except KeyError: item_desc = _NOT_PROVIDED return { "layer_description": lyr_desc, "item_description": item_desc, "layer_properties": props, } def lazy_load(self) -> Iterator[Document]: """Lazy load records from FeatureLayer.""" query_response = self.layer.query(**self.query_params) features = (feature.as_dict for feature in query_response) for feature in features: attributes = feature["attributes"] page_content = json.dumps(attributes) metadata = { "accessed": f"{datetime.now(timezone.utc).isoformat()}Z", "name": self.layer_properties["layer_properties"]["name"], "url": self.url, "layer_description": self.layer_properties["layer_description"], "item_description": self.layer_properties["item_description"], "layer_properties": self.layer_properties["layer_properties"], } if self.return_geometry: try: metadata["geometry"] = feature["geometry"] except KeyError: warnings.warn( "Geometry could not be retrieved from the feature layer." ) yield Document(page_content=page_content, metadata=metadata) def load(self) -> List[Document]: """Load all records from FeatureLayer.""" return list(self.lazy_load())
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~llms~gooseai.py
import logging from typing import Any, Dict, List, Mapping, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.pydantic_v1 import Extra, Field, root_validator from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) class GooseAI(LLM): """GooseAI large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``GOOSEAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import GooseAI gooseai = GooseAI(model_name="gpt-neo-20b") """ client: Any model_name: str = "gpt-neo-20b" """Model name to use""" temperature: float = 0.7 """What sampling temperature to use""" max_tokens: int = 256 """The maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the models maximal context size.""" top_p: float = 1 """Total probability mass of tokens to consider at each step.""" min_tokens: int = 1 """The minimum number of tokens to generate in the completion.""" frequency_penalty: float = 0 """Penalizes repeated tokens according to frequency.""" presence_penalty: float = 0 """Penalizes repeated tokens.""" n: int = 1 """How many completions to generate for each prompt.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict) """Adjust the probability of specific tokens being generated.""" gooseai_api_key: Optional[str] = None class Config: """Configuration for this pydantic config.""" extra = Extra.ignore @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" gooseai_api_key = get_from_dict_or_env( values, "gooseai_api_key", "GOOSEAI_API_KEY" ) try: import openai openai.api_key = gooseai_api_key openai.api_base = "https://api.goose.ai/v1" values["client"] = openai.Completion except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling GooseAI API.""" normal_params = { "temperature": self.temperature, "max_tokens": self.max_tokens, "top_p": self.top_p, "min_tokens": self.min_tokens, "frequency_penalty": self.frequency_penalty, "presence_penalty": self.presence_penalty, "n": self.n, "logit_bias": self.logit_bias, } return {**normal_params, **self.model_kwargs} @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "gooseai" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call the GooseAI API.""" params = self._default_params if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop params = {**params, **kwargs} response = self.client.create(engine=self.model_name, prompt=prompt, **params) text = response.choices[0].text return text
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~retrievers~zilliz.py
import warnings from typing import Any, Dict, List, Optional from langchain.callbacks.manager import CallbackManagerForRetrieverRun from langchain.pydantic_v1 import root_validator from langchain.schema import BaseRetriever, Document from langchain.schema.embeddings import Embeddings from langchain.vectorstores.zilliz import Zilliz # TODO: Update to ZillizClient + Hybrid Search when available class ZillizRetriever(BaseRetriever): """`Zilliz API` retriever.""" embedding_function: Embeddings """The underlying embedding function from which documents will be retrieved.""" collection_name: str = "LangChainCollection" """The name of the collection in Zilliz.""" connection_args: Optional[Dict[str, Any]] = None """The connection arguments for the Zilliz client.""" consistency_level: str = "Session" """The consistency level for the Zilliz client.""" search_params: Optional[dict] = None """The search parameters for the Zilliz client.""" store: Zilliz """The underlying Zilliz store.""" retriever: BaseRetriever """The underlying retriever.""" @root_validator(pre=True) def create_client(cls, values: dict) -> dict: values["store"] = Zilliz( values["embedding_function"], values["collection_name"], values["connection_args"], values["consistency_level"], ) values["retriever"] = values["store"].as_retriever( search_kwargs={"param": values["search_params"]} ) return values def add_texts( self, texts: List[str], metadatas: Optional[List[dict]] = None ) -> None: """Add text to the Zilliz store Args: texts (List[str]): The text metadatas (List[dict]): Metadata dicts, must line up with existing store """ self.store.add_texts(texts, metadatas) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any, ) -> List[Document]: return self.retriever.get_relevant_documents( query, run_manager=run_manager.get_child(), **kwargs ) def ZillizRetreiver(*args: Any, **kwargs: Any) -> ZillizRetriever: """Deprecated ZillizRetreiver. Please use ZillizRetriever ('i' before 'e') instead. Args: *args: **kwargs: Returns: ZillizRetriever """ warnings.warn( "ZillizRetreiver will be deprecated in the future. " "Please use ZillizRetriever ('i' before 'e') instead.", DeprecationWarning, ) return ZillizRetriever(*args, **kwargs)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~schema~runnable~passthrough.py
"""Implementation of the RunnablePassthrough.""" from __future__ import annotations import asyncio import inspect import threading from typing import ( Any, AsyncIterator, Awaitable, Callable, Dict, Iterator, List, Mapping, Optional, Sequence, Type, Union, cast, ) from langchain.pydantic_v1 import BaseModel, create_model from langchain.schema.runnable.base import ( Other, Runnable, RunnableParallel, RunnableSerializable, ) from langchain.schema.runnable.config import ( RunnableConfig, acall_func_with_variable_args, call_func_with_variable_args, get_executor_for_config, ) from langchain.schema.runnable.utils import AddableDict, ConfigurableFieldSpec from langchain.utils.aiter import atee, py_anext from langchain.utils.iter import safetee def identity(x: Other) -> Other: """An identity function""" return x async def aidentity(x: Other) -> Other: """An async identity function""" return x class RunnablePassthrough(RunnableSerializable[Other, Other]): """A runnable to passthrough inputs unchanged or with additional keys. This runnable behaves almost like the identity function, except that it can be configured to add additional keys to the output, if the input is a dict. The examples below demonstrate this runnable works using a few simple chains. The chains rely on simple lambdas to make the examples easy to execute and experiment with. Examples: .. code-block:: python from langchain.schema.runnable import RunnablePassthrough, RunnableParallel runnable = RunnableParallel( origin=RunnablePassthrough(), modified=lambda x: x+1 ) runnable.invoke(1) # {'origin': 1, 'modified': 2} def fake_llm(prompt: str) -> str: # Fake LLM for the example return "completion" chain = RunnableLambda(fake_llm) | { 'original': RunnablePassthrough(), # Original LLM output 'parsed': lambda text: text[::-1] # Parsing logic } chain.invoke('hello') # {'original': 'completion', 'parsed': 'noitelpmoc'} In some cases, it may be useful to pass the input through while adding some keys to the output. In this case, you can use the `assign` method: .. code-block:: python from langchain.schema.runnable import RunnablePassthrough, RunnableParallel def fake_llm(prompt: str) -> str: # Fake LLM for the example return "completion" runnable = { 'llm1': fake_llm, 'llm2': fake_llm, } | RunnablePassthrough.assign( total_chars=lambda inputs: len(inputs['llm1'] + inputs['llm2']) ) runnable.invoke('hello') # {'llm1': 'completion', 'llm2': 'completion', 'total_chars': 20} """ input_type: Optional[Type[Other]] = None func: Optional[ Union[Callable[[Other], None], Callable[[Other, RunnableConfig], None]] ] = None afunc: Optional[ Union[ Callable[[Other], Awaitable[None]], Callable[[Other, RunnableConfig], Awaitable[None]], ] ] = None def __init__( self, func: Optional[ Union[ Union[Callable[[Other], None], Callable[[Other, RunnableConfig], None]], Union[ Callable[[Other], Awaitable[None]], Callable[[Other, RunnableConfig], Awaitable[None]], ], ] ] = None, afunc: Optional[ Union[ Callable[[Other], Awaitable[None]], Callable[[Other, RunnableConfig], Awaitable[None]], ] ] = None, *, input_type: Optional[Type[Other]] = None, **kwargs: Any, ) -> None: if inspect.iscoroutinefunction(func): afunc = func func = None super().__init__(func=func, afunc=afunc, input_type=input_type, **kwargs) @classmethod def is_lc_serializable(cls) -> bool: return True @classmethod def get_lc_namespace(cls) -> List[str]: return cls.__module__.split(".")[:-1] @property def InputType(self) -> Any: return self.input_type or Any @property def OutputType(self) -> Any: return self.input_type or Any @classmethod def assign( cls, **kwargs: Union[ Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[ str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]], ], ], ) -> RunnableAssign: """Merge the Dict input with the output produced by the mapping argument. Args: mapping: A mapping from keys to runnables or callables. Returns: A runnable that merges the Dict input with the output produced by the mapping argument. """ return RunnableAssign(RunnableParallel(kwargs)) def invoke( self, input: Other, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Other: if self.func is not None: call_func_with_variable_args(self.func, input, config or {}, **kwargs) return self._call_with_config(identity, input, config) async def ainvoke( self, input: Other, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> Other: if self.afunc is not None: await acall_func_with_variable_args( self.afunc, input, config or {}, **kwargs ) elif self.func is not None: call_func_with_variable_args(self.func, input, config or {}, **kwargs) return await self._acall_with_config(aidentity, input, config) def transform( self, input: Iterator[Other], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> Iterator[Other]: if self.func is None: for chunk in self._transform_stream_with_config(input, identity, config): yield chunk else: final = None for chunk in self._transform_stream_with_config(input, identity, config): yield chunk if final is None: final = chunk else: final = final + chunk if final is not None: call_func_with_variable_args(self.func, final, config or {}, **kwargs) async def atransform( self, input: AsyncIterator[Other], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> AsyncIterator[Other]: if self.afunc is None and self.func is None: async for chunk in self._atransform_stream_with_config( input, identity, config ): yield chunk else: final = None async for chunk in self._atransform_stream_with_config( input, identity, config ): yield chunk if final is None: final = chunk else: final = final + chunk if final is not None: config = config or {} if self.afunc is not None: await acall_func_with_variable_args( self.afunc, final, config, **kwargs ) elif self.func is not None: call_func_with_variable_args(self.func, final, config, **kwargs) def stream( self, input: Other, config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> Iterator[Other]: return self.transform(iter([input]), config, **kwargs) async def astream( self, input: Other, config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> AsyncIterator[Other]: async def input_aiter() -> AsyncIterator[Other]: yield input async for chunk in self.atransform(input_aiter(), config, **kwargs): yield chunk class RunnableAssign(RunnableSerializable[Dict[str, Any], Dict[str, Any]]): """ A runnable that assigns key-value pairs to Dict[str, Any] inputs. """ mapper: RunnableParallel[Dict[str, Any]] def __init__(self, mapper: RunnableParallel[Dict[str, Any]], **kwargs: Any) -> None: super().__init__(mapper=mapper, **kwargs) @classmethod def is_lc_serializable(cls) -> bool: return True @classmethod def get_lc_namespace(cls) -> List[str]: return cls.__module__.split(".")[:-1] def get_input_schema( self, config: Optional[RunnableConfig] = None ) -> Type[BaseModel]: map_input_schema = self.mapper.get_input_schema(config) if not map_input_schema.__custom_root_type__: # ie. it's a dict return map_input_schema return super().get_input_schema(config) def get_output_schema( self, config: Optional[RunnableConfig] = None ) -> Type[BaseModel]: map_input_schema = self.mapper.get_input_schema(config) map_output_schema = self.mapper.get_output_schema(config) if ( not map_input_schema.__custom_root_type__ and not map_output_schema.__custom_root_type__ ): # ie. both are dicts return create_model( # type: ignore[call-overload] "RunnableAssignOutput", **{ k: (v.type_, v.default) for s in (map_input_schema, map_output_schema) for k, v in s.__fields__.items() }, ) return super().get_output_schema(config) @property def config_specs(self) -> Sequence[ConfigurableFieldSpec]: return self.mapper.config_specs def invoke( self, input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> Dict[str, Any]: assert isinstance( input, dict ), "The input to RunnablePassthrough.assign() must be a dict." return { **input, **self.mapper.invoke(input, config, **kwargs), } async def ainvoke( self, input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> Dict[str, Any]: assert isinstance( input, dict ), "The input to RunnablePassthrough.assign() must be a dict." return { **input, **await self.mapper.ainvoke(input, config, **kwargs), } def transform( self, input: Iterator[Dict[str, Any]], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> Iterator[Dict[str, Any]]: # collect mapper keys mapper_keys = set(self.mapper.steps.keys()) # create two streams, one for the map and one for the passthrough for_passthrough, for_map = safetee(input, 2, lock=threading.Lock()) # create map output stream map_output = self.mapper.transform(for_map, config, **kwargs) # get executor to start map output stream in background with get_executor_for_config(config or {}) as executor: # start map output stream first_map_chunk_future = executor.submit( next, map_output, # type: ignore None, ) # consume passthrough stream for chunk in for_passthrough: assert isinstance( chunk, dict ), "The input to RunnablePassthrough.assign() must be a dict." # remove mapper keys from passthrough chunk, to be overwritten by map filtered = AddableDict( {k: v for k, v in chunk.items() if k not in mapper_keys} ) if filtered: yield filtered # yield map output yield cast(Dict[str, Any], first_map_chunk_future.result()) for chunk in map_output: yield chunk async def atransform( self, input: AsyncIterator[Dict[str, Any]], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> AsyncIterator[Dict[str, Any]]: # collect mapper keys mapper_keys = set(self.mapper.steps.keys()) # create two streams, one for the map and one for the passthrough for_passthrough, for_map = atee(input, 2, lock=asyncio.Lock()) # create map output stream map_output = self.mapper.atransform(for_map, config, **kwargs) # start map output stream first_map_chunk_task: asyncio.Task = asyncio.create_task( py_anext(map_output, None), # type: ignore[arg-type] ) # consume passthrough stream async for chunk in for_passthrough: assert isinstance( chunk, dict ), "The input to RunnablePassthrough.assign() must be a dict." # remove mapper keys from passthrough chunk, to be overwritten by map output filtered = AddableDict( {k: v for k, v in chunk.items() if k not in mapper_keys} ) if filtered: yield filtered # yield map output yield await first_map_chunk_task async for chunk in map_output: yield chunk def stream( self, input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> Iterator[Dict[str, Any]]: return self.transform(iter([input]), config, **kwargs) async def astream( self, input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> AsyncIterator[Dict[str, Any]]: async def input_aiter() -> AsyncIterator[Dict[str, Any]]: yield input async for chunk in self.atransform(input_aiter(), config, **kwargs): yield chunk
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~embeddings~llm_rails.py
""" This file is for LLMRails Embedding """ import logging import os from typing import List, Optional import requests from langchain.pydantic_v1 import BaseModel, Extra from langchain.schema.embeddings import Embeddings class LLMRailsEmbeddings(BaseModel, Embeddings): """LLMRails embedding models. To use, you should have the environment variable ``LLM_RAILS_API_KEY`` set with your API key or pass it as a named parameter to the constructor. Model can be one of ["embedding-english-v1","embedding-multi-v1"] Example: .. code-block:: python from langchain.embeddings import LLMRailsEmbeddings cohere = LLMRailsEmbeddings( model="embedding-english-v1", api_key="my-api-key" ) """ model: str = "embedding-english-v1" """Model name to use.""" api_key: Optional[str] = None """LLMRails API key.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Cohere's embedding endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ api_key = self.api_key or os.environ.get("LLM_RAILS_API_KEY") if api_key is None: logging.warning("Can't find LLMRails credentials in environment.") raise ValueError("LLM_RAILS_API_KEY is not set") response = requests.post( "https://api.llmrails.com/v1/embeddings", headers={"X-API-KEY": api_key}, json={"input": texts, "model": self.model}, timeout=60, ) return [item["embedding"] for item in response.json()["data"]] def embed_query(self, text: str) -> List[float]: """Call out to Cohere's embedding endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ return self.embed_documents([text])[0]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chains~combine_documents~map_reduce.py
"""Combining documents by mapping a chain over them first, then combining results.""" from __future__ import annotations from typing import Any, Dict, List, Optional, Tuple, Type from langchain.callbacks.manager import Callbacks from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.reduce import ReduceDocumentsChain from langchain.chains.llm import LLMChain from langchain.docstore.document import Document from langchain.pydantic_v1 import BaseModel, Extra, create_model, root_validator from langchain.schema.runnable.config import RunnableConfig class MapReduceDocumentsChain(BaseCombineDocumentsChain): """Combining documents by mapping a chain over them, then combining results. We first call `llm_chain` on each document individually, passing in the `page_content` and any other kwargs. This is the `map` step. We then process the results of that `map` step in a `reduce` step. This should likely be a ReduceDocumentsChain. Example: .. code-block:: python from langchain.chains import ( StuffDocumentsChain, LLMChain, ReduceDocumentsChain, MapReduceDocumentsChain, ) from langchain.prompts import PromptTemplate from langchain.llms import OpenAI # This controls how each document will be formatted. Specifically, # it will be passed to `format_document` - see that function for more # details. document_prompt = PromptTemplate( input_variables=["page_content"], template="{page_content}" ) document_variable_name = "context" llm = OpenAI() # The prompt here should take as an input variable the # `document_variable_name` prompt = PromptTemplate.from_template( "Summarize this content: {context}" ) llm_chain = LLMChain(llm=llm, prompt=prompt) # We now define how to combine these summaries reduce_prompt = PromptTemplate.from_template( "Combine these summaries: {context}" ) reduce_llm_chain = LLMChain(llm=llm, prompt=reduce_prompt) combine_documents_chain = StuffDocumentsChain( llm_chain=reduce_llm_chain, document_prompt=document_prompt, document_variable_name=document_variable_name ) reduce_documents_chain = ReduceDocumentsChain( combine_documents_chain=combine_documents_chain, ) chain = MapReduceDocumentsChain( llm_chain=llm_chain, reduce_documents_chain=reduce_documents_chain, ) # If we wanted to, we could also pass in collapse_documents_chain # which is specifically aimed at collapsing documents BEFORE # the final call. prompt = PromptTemplate.from_template( "Collapse this content: {context}" ) llm_chain = LLMChain(llm=llm, prompt=prompt) collapse_documents_chain = StuffDocumentsChain( llm_chain=llm_chain, document_prompt=document_prompt, document_variable_name=document_variable_name ) reduce_documents_chain = ReduceDocumentsChain( combine_documents_chain=combine_documents_chain, collapse_documents_chain=collapse_documents_chain, ) chain = MapReduceDocumentsChain( llm_chain=llm_chain, reduce_documents_chain=reduce_documents_chain, ) """ llm_chain: LLMChain """Chain to apply to each document individually.""" reduce_documents_chain: BaseCombineDocumentsChain """Chain to use to reduce the results of applying `llm_chain` to each doc. This typically either a ReduceDocumentChain or StuffDocumentChain.""" document_variable_name: str """The variable name in the llm_chain to put the documents in. If only one variable in the llm_chain, this need not be provided.""" return_intermediate_steps: bool = False """Return the results of the map steps in the output.""" def get_output_schema( self, config: Optional[RunnableConfig] = None ) -> Type[BaseModel]: if self.return_intermediate_steps: return create_model( "MapReduceDocumentsOutput", **{ self.output_key: (str, None), "intermediate_steps": (List[str], None), }, # type: ignore[call-overload] ) return super().get_output_schema(config) @property def output_keys(self) -> List[str]: """Expect input key. :meta private: """ _output_keys = super().output_keys if self.return_intermediate_steps: _output_keys = _output_keys + ["intermediate_steps"] return _output_keys class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def get_reduce_chain(cls, values: Dict) -> Dict: """For backwards compatibility.""" if "combine_document_chain" in values: if "reduce_documents_chain" in values: raise ValueError( "Both `reduce_documents_chain` and `combine_document_chain` " "cannot be provided at the same time. `combine_document_chain` " "is deprecated, please only provide `reduce_documents_chain`" ) combine_chain = values["combine_document_chain"] collapse_chain = values.get("collapse_document_chain") reduce_chain = ReduceDocumentsChain( combine_documents_chain=combine_chain, collapse_documents_chain=collapse_chain, ) values["reduce_documents_chain"] = reduce_chain del values["combine_document_chain"] if "collapse_document_chain" in values: del values["collapse_document_chain"] return values @root_validator(pre=True) def get_return_intermediate_steps(cls, values: Dict) -> Dict: """For backwards compatibility.""" if "return_map_steps" in values: values["return_intermediate_steps"] = values["return_map_steps"] del values["return_map_steps"] return values @root_validator(pre=True) def get_default_document_variable_name(cls, values: Dict) -> Dict: """Get default document variable name, if not provided.""" if "document_variable_name" not in values: llm_chain_variables = values["llm_chain"].prompt.input_variables if len(llm_chain_variables) == 1: values["document_variable_name"] = llm_chain_variables[0] else: raise ValueError( "document_variable_name must be provided if there are " "multiple llm_chain input_variables" ) else: llm_chain_variables = values["llm_chain"].prompt.input_variables if values["document_variable_name"] not in llm_chain_variables: raise ValueError( f"document_variable_name {values['document_variable_name']} was " f"not found in llm_chain input_variables: {llm_chain_variables}" ) return values @property def collapse_document_chain(self) -> BaseCombineDocumentsChain: """Kept for backward compatibility.""" if isinstance(self.reduce_documents_chain, ReduceDocumentsChain): if self.reduce_documents_chain.collapse_documents_chain: return self.reduce_documents_chain.collapse_documents_chain else: return self.reduce_documents_chain.combine_documents_chain else: raise ValueError( f"`reduce_documents_chain` is of type " f"{type(self.reduce_documents_chain)} so it does not have " f"this attribute." ) @property def combine_document_chain(self) -> BaseCombineDocumentsChain: """Kept for backward compatibility.""" if isinstance(self.reduce_documents_chain, ReduceDocumentsChain): return self.reduce_documents_chain.combine_documents_chain else: raise ValueError( f"`reduce_documents_chain` is of type " f"{type(self.reduce_documents_chain)} so it does not have " f"this attribute." ) def combine_docs( self, docs: List[Document], token_max: Optional[int] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> Tuple[str, dict]: """Combine documents in a map reduce manner. Combine by mapping first chain over all documents, then reducing the results. This reducing can be done recursively if needed (if there are many documents). """ map_results = self.llm_chain.apply( # FYI - this is parallelized and so it is fast. [{self.document_variable_name: d.page_content, **kwargs} for d in docs], callbacks=callbacks, ) question_result_key = self.llm_chain.output_key result_docs = [ Document(page_content=r[question_result_key], metadata=docs[i].metadata) # This uses metadata from the docs, and the textual results from `results` for i, r in enumerate(map_results) ] result, extra_return_dict = self.reduce_documents_chain.combine_docs( result_docs, token_max=token_max, callbacks=callbacks, **kwargs ) if self.return_intermediate_steps: intermediate_steps = [r[question_result_key] for r in map_results] extra_return_dict["intermediate_steps"] = intermediate_steps return result, extra_return_dict async def acombine_docs( self, docs: List[Document], token_max: Optional[int] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> Tuple[str, dict]: """Combine documents in a map reduce manner. Combine by mapping first chain over all documents, then reducing the results. This reducing can be done recursively if needed (if there are many documents). """ map_results = await self.llm_chain.aapply( # FYI - this is parallelized and so it is fast. [{**{self.document_variable_name: d.page_content}, **kwargs} for d in docs], callbacks=callbacks, ) question_result_key = self.llm_chain.output_key result_docs = [ Document(page_content=r[question_result_key], metadata=docs[i].metadata) # This uses metadata from the docs, and the textual results from `results` for i, r in enumerate(map_results) ] result, extra_return_dict = await self.reduce_documents_chain.acombine_docs( result_docs, token_max=token_max, callbacks=callbacks, **kwargs ) if self.return_intermediate_steps: intermediate_steps = [r[question_result_key] for r in map_results] extra_return_dict["intermediate_steps"] = intermediate_steps return result, extra_return_dict @property def _chain_type(self) -> str: return "map_reduce_documents_chain"
[]
2024-01-10
ai-forever/gigachain
libs~experimental~langchain_experimental~comprehend_moderation~pii.py
import asyncio from typing import Any, Dict, Optional from langchain_experimental.comprehend_moderation.base_moderation_exceptions import ( ModerationPiiError, ) class ComprehendPII: def __init__( self, client: Any, callback: Optional[Any] = None, unique_id: Optional[str] = None, chain_id: Optional[str] = None, ) -> None: self.client = client self.moderation_beacon = { "moderation_chain_id": chain_id, "moderation_type": "PII", "moderation_status": "LABELS_NOT_FOUND", } self.callback = callback self.unique_id = unique_id def validate( self, prompt_value: str, config: Optional[Dict[str, Any]] = None ) -> str: from langchain_experimental.comprehend_moderation.base_moderation_enums import ( BaseModerationActions, ) if config: action = config.get("action", BaseModerationActions.STOP) if action not in [BaseModerationActions.STOP, BaseModerationActions.ALLOW]: raise ValueError("Action can either be stop or allow") return ( self._contains_pii(prompt_value=prompt_value, config=config) if action == BaseModerationActions.STOP else self._detect_pii(prompt_value=prompt_value, config=config) ) else: return self._contains_pii(prompt_value=prompt_value) def _contains_pii( self, prompt_value: str, config: Optional[Dict[str, Any]] = None ) -> str: """ Checks for Personally Identifiable Information (PII) labels above a specified threshold. Args: prompt_value (str): The input text to be checked for PII labels. config (Dict[str, Any]): Configuration for PII check and actions. Returns: str: the original prompt Note: - The provided client should be initialized with valid AWS credentials. """ pii_identified = self.client.contains_pii_entities( Text=prompt_value, LanguageCode="en" ) if self.callback and self.callback.pii_callback: self.moderation_beacon["moderation_input"] = prompt_value self.moderation_beacon["moderation_output"] = pii_identified threshold = config.get("threshold", 0.5) if config else 0.5 pii_labels = config.get("labels", []) if config else [] pii_found = False for entity in pii_identified["Labels"]: if (entity["Score"] >= threshold and entity["Name"] in pii_labels) or ( entity["Score"] >= threshold and not pii_labels ): pii_found = True break if self.callback and self.callback.pii_callback: if pii_found: self.moderation_beacon["moderation_status"] = "LABELS_FOUND" asyncio.create_task( self.callback.on_after_pii(self.moderation_beacon, self.unique_id) ) if pii_found: raise ModerationPiiError return prompt_value def _detect_pii(self, prompt_value: str, config: Optional[Dict[str, Any]]) -> str: """ Detects and handles Personally Identifiable Information (PII) entities in the given prompt text using Amazon Comprehend's detect_pii_entities API. The function provides options to redact or stop processing based on the identified PII entities and a provided configuration. Args: prompt_value (str): The input text to be checked for PII entities. config (Dict[str, Any]): A configuration specifying how to handle PII entities. Returns: str: The processed prompt text with redacted PII entities or raised exceptions. Raises: ValueError: If the prompt contains configured PII entities for stopping processing. Note: - If PII is not found in the prompt, the original prompt is returned. - The client should be initialized with valid AWS credentials. """ pii_identified = self.client.detect_pii_entities( Text=prompt_value, LanguageCode="en" ) if self.callback and self.callback.pii_callback: self.moderation_beacon["moderation_input"] = prompt_value self.moderation_beacon["moderation_output"] = pii_identified if (pii_identified["Entities"]) == []: if self.callback and self.callback.pii_callback: asyncio.create_task( self.callback.on_after_pii(self.moderation_beacon, self.unique_id) ) return prompt_value pii_found = False if not config and pii_identified["Entities"]: for entity in pii_identified["Entities"]: if entity["Score"] >= 0.5: pii_found = True break if self.callback and self.callback.pii_callback: if pii_found: self.moderation_beacon["moderation_status"] = "LABELS_FOUND" asyncio.create_task( self.callback.on_after_pii(self.moderation_beacon, self.unique_id) ) if pii_found: raise ModerationPiiError else: threshold = config.get("threshold", 0.5) # type: ignore pii_labels = config.get("labels", []) # type: ignore mask_marker = config.get("mask_character", "*") # type: ignore pii_found = False for entity in pii_identified["Entities"]: if ( pii_labels and entity["Type"] in pii_labels and entity["Score"] >= threshold ) or (not pii_labels and entity["Score"] >= threshold): pii_found = True char_offset_begin = entity["BeginOffset"] char_offset_end = entity["EndOffset"] prompt_value = ( prompt_value[:char_offset_begin] + mask_marker * (char_offset_end - char_offset_begin) + prompt_value[char_offset_end:] ) if self.callback and self.callback.pii_callback: if pii_found: self.moderation_beacon["moderation_status"] = "LABELS_FOUND" asyncio.create_task( self.callback.on_after_pii(self.moderation_beacon, self.unique_id) ) return prompt_value
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~indexes~graph.py
"""Graph Index Creator.""" from typing import Optional, Type from langchain.chains.llm import LLMChain from langchain.graphs.networkx_graph import NetworkxEntityGraph, parse_triples from langchain.indexes.prompts.knowledge_triplet_extraction import ( KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT, ) from langchain.pydantic_v1 import BaseModel from langchain.schema.language_model import BaseLanguageModel from langchain.schema.prompt_template import BasePromptTemplate class GraphIndexCreator(BaseModel): """Functionality to create graph index.""" llm: Optional[BaseLanguageModel] = None graph_type: Type[NetworkxEntityGraph] = NetworkxEntityGraph def from_text( self, text: str, prompt: BasePromptTemplate = KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT ) -> NetworkxEntityGraph: """Create graph index from text.""" if self.llm is None: raise ValueError("llm should not be None") graph = self.graph_type() chain = LLMChain(llm=self.llm, prompt=prompt) output = chain.predict(text=text) knowledge = parse_triples(output) for triple in knowledge: graph.add_triple(triple) return graph async def afrom_text( self, text: str, prompt: BasePromptTemplate = KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT ) -> NetworkxEntityGraph: """Create graph index from text asynchronously.""" if self.llm is None: raise ValueError("llm should not be None") graph = self.graph_type() chain = LLMChain(llm=self.llm, prompt=prompt) output = await chain.apredict(text=text) knowledge = parse_triples(output) for triple in knowledge: graph.add_triple(triple) return graph
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~agents~output_parsers~react_json_single_input.py
import json import re from typing import Union from langchain.agents.agent import AgentOutputParser from langchain.agents.chat.prompt import FORMAT_INSTRUCTIONS from langchain.schema import AgentAction, AgentFinish, OutputParserException FINAL_ANSWER_ACTION = "Final Answer:" class ReActJsonSingleInputOutputParser(AgentOutputParser): """Parses ReAct-style LLM calls that have a single tool input in json format. Expects output to be in one of two formats. If the output signals that an action should be taken, should be in the below format. This will result in an AgentAction being returned. ``` Thought: agent thought here Action: ``` { "action": "search", "action_input": "what is the temperature in SF" } ``` ``` If the output signals that a final answer should be given, should be in the below format. This will result in an AgentFinish being returned. ``` Thought: agent thought here Final Answer: The temperature is 100 degrees ``` """ pattern = re.compile(r"^.*?`{3}(?:json)?\n(.*?)`{3}.*?$", re.DOTALL) """Regex pattern to parse the output.""" def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: includes_answer = FINAL_ANSWER_ACTION in text try: found = self.pattern.search(text) if not found: # Fast fail to parse Final Answer. raise ValueError("action not found") action = found.group(1) response = json.loads(action.strip()) includes_action = "action" in response if includes_answer and includes_action: raise OutputParserException( "Parsing LLM output produced a final answer " f"and a parse-able action: {text}" ) return AgentAction( response["action"], response.get("action_input", {}), text ) except Exception: if not includes_answer: raise OutputParserException(f"Could not parse LLM output: {text}") output = text.split(FINAL_ANSWER_ACTION)[-1].strip() return AgentFinish({"output": output}, text) @property def _type(self) -> str: return "react-json-single-input"
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chat_models~anyscale.py
"""Anyscale Endpoints chat wrapper. Relies heavily on ChatOpenAI.""" from __future__ import annotations import logging import os import sys from typing import TYPE_CHECKING, Dict, Optional, Set import requests from langchain.adapters.openai import convert_message_to_dict from langchain.chat_models.openai import ( ChatOpenAI, _import_tiktoken, ) from langchain.pydantic_v1 import Field, root_validator from langchain.schema.messages import BaseMessage from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: import tiktoken logger = logging.getLogger(__name__) DEFAULT_API_BASE = "https://api.endpoints.anyscale.com/v1" DEFAULT_MODEL = "meta-llama/Llama-2-7b-chat-hf" class ChatAnyscale(ChatOpenAI): """`Anyscale` Chat large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``ANYSCALE_API_KEY`` set with your API key. Alternatively, you can use the anyscale_api_key keyword argument. Any parameters that are valid to be passed to the `openai.create` call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chat_models import ChatAnyscale chat = ChatAnyscale(model_name="meta-llama/Llama-2-7b-chat-hf") """ @property def _llm_type(self) -> str: """Return type of chat model.""" return "anyscale-chat" @property def lc_secrets(self) -> Dict[str, str]: return {"anyscale_api_key": "ANYSCALE_API_KEY"} anyscale_api_key: Optional[str] = None """AnyScale Endpoints API keys.""" model_name: str = Field(default=DEFAULT_MODEL, alias="model") """Model name to use.""" anyscale_api_base: str = Field(default=DEFAULT_API_BASE) """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" anyscale_proxy: Optional[str] = None """To support explicit proxy for Anyscale.""" available_models: Optional[Set[str]] = None """Available models from Anyscale API.""" @staticmethod def get_available_models( anyscale_api_key: Optional[str] = None, anyscale_api_base: str = DEFAULT_API_BASE, ) -> Set[str]: """Get available models from Anyscale API.""" try: anyscale_api_key = anyscale_api_key or os.environ["ANYSCALE_API_KEY"] except KeyError as e: raise ValueError( "Anyscale API key must be passed as keyword argument or " "set in environment variable ANYSCALE_API_KEY.", ) from e models_url = f"{anyscale_api_base}/models" models_response = requests.get( models_url, headers={ "Authorization": f"Bearer {anyscale_api_key}", }, ) if models_response.status_code != 200: raise ValueError( f"Error getting models from {models_url}: " f"{models_response.status_code}", ) return {model["id"] for model in models_response.json()["data"]} @root_validator(pre=True) def validate_environment_override(cls, values: dict) -> dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "anyscale_api_key", "ANYSCALE_API_KEY", ) values["openai_api_base"] = get_from_dict_or_env( values, "anyscale_api_base", "ANYSCALE_API_BASE", default=DEFAULT_API_BASE, ) values["openai_proxy"] = get_from_dict_or_env( values, "anyscale_proxy", "ANYSCALE_PROXY", default="", ) try: import openai except ImportError as e: raise ValueError( "Could not import openai python package. " "Please install it with `pip install openai`.", ) from e try: values["client"] = openai.ChatCompletion except AttributeError as exc: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`.", ) from exc if "model_name" not in values.keys(): values["model_name"] = DEFAULT_MODEL model_name = values["model_name"] available_models = cls.get_available_models( values["openai_api_key"], values["openai_api_base"], ) if model_name not in available_models: raise ValueError( f"Model name {model_name} not found in available models: " f"{available_models}.", ) values["available_models"] = available_models return values def _get_encoding_model(self) -> tuple[str, tiktoken.Encoding]: tiktoken_ = _import_tiktoken() if self.tiktoken_model_name is not None: model = self.tiktoken_model_name else: model = self.model_name # Returns the number of tokens used by a list of messages. try: encoding = tiktoken_.encoding_for_model("gpt-3.5-turbo-0301") except KeyError: logger.warning("Warning: model not found. Using cl100k_base encoding.") model = "cl100k_base" encoding = tiktoken_.get_encoding(model) return model, encoding def get_num_tokens_from_messages(self, messages: list[BaseMessage]) -> int: """Calculate num tokens with tiktoken package. Official documentation: https://github.com/openai/openai-cookbook/blob/ main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb""" if sys.version_info[1] <= 7: return super().get_num_tokens_from_messages(messages) model, encoding = self._get_encoding_model() tokens_per_message = 3 tokens_per_name = 1 num_tokens = 0 messages_dict = [convert_message_to_dict(m) for m in messages] for message in messages_dict: num_tokens += tokens_per_message for key, value in message.items(): # Cast str(value) in case the message value is not a string # This occurs with function messages num_tokens += len(encoding.encode(str(value))) if key == "name": num_tokens += tokens_per_name # every reply is primed with <im_start>assistant num_tokens += 3 return num_tokens
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~agents~format_scratchpad~xml.py
from typing import List, Tuple from langchain.schema.agent import AgentAction def format_xml( intermediate_steps: List[Tuple[AgentAction, str]], ) -> str: """Format the intermediate steps as XML. Args: intermediate_steps: The intermediate steps. Returns: The intermediate steps as XML. """ log = "" for action, observation in intermediate_steps: log += ( f"<tool>{action.tool}</tool><tool_input>{action.tool_input}" f"</tool_input><observation>{observation}</observation>" ) return log
[]
2024-01-10
ai-forever/gigachain
libs~experimental~langchain_experimental~autonomous_agents~baby_agi~task_prioritization.py
from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.schema.language_model import BaseLanguageModel class TaskPrioritizationChain(LLMChain): """Chain to prioritize tasks.""" @classmethod def from_llm(cls, llm: BaseLanguageModel, verbose: bool = True) -> LLMChain: """Get the response parser.""" task_prioritization_template = ( "Ты - AI, задача которого - привести в порядок" " и переприоритизировать следующие задачи: {task_names}." " Учти конечную цель твоей команды: {objective}." " Не удаляй ни одну из задач. Верни" " результат в виде нумерованного списка, например:" " #. Первая задача" " #. Вторая задача" " Начни список задач с номера {next_task_id}." ) prompt = PromptTemplate( template=task_prioritization_template, input_variables=["task_names", "next_task_id", "objective"], ) return cls(prompt=prompt, llm=llm, verbose=verbose)
[ "next_task_id", "Ты - AI, задача которого - привести в порядок и переприоритизировать следующие задачи: {task_names}. Учти конечную цель твоей команды: {objective}. Не удаляй ни одну из задач. Верни результат в виде нумерованного списка, например: #. Первая задача #. Вторая задача Начни список задач с номера {next_task_id}.", "task_names" ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~docstore~in_memory.py
"""Simple in memory docstore in the form of a dict.""" from typing import Dict, List, Optional, Union from langchain.docstore.base import AddableMixin, Docstore from langchain.docstore.document import Document class InMemoryDocstore(Docstore, AddableMixin): """Simple in memory docstore in the form of a dict.""" def __init__(self, _dict: Optional[Dict[str, Document]] = None): """Initialize with dict.""" self._dict = _dict if _dict is not None else {} def add(self, texts: Dict[str, Document]) -> None: """Add texts to in memory dictionary. Args: texts: dictionary of id -> document. Returns: None """ overlapping = set(texts).intersection(self._dict) if overlapping: raise ValueError(f"Tried to add ids that already exist: {overlapping}") self._dict = {**self._dict, **texts} def delete(self, ids: List) -> None: """Deleting IDs from in memory dictionary.""" overlapping = set(ids).intersection(self._dict) if not overlapping: raise ValueError(f"Tried to delete ids that does not exist: {ids}") for _id in ids: self._dict.pop(_id) def search(self, search: str) -> Union[str, Document]: """Search via direct lookup. Args: search: id of a document to search for. Returns: Document if found, else error message. """ if search not in self._dict: return f"ID {search} not found." else: return self._dict[search]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~storage~in_memory.py
"""In memory store that is not thread safe and has no eviction policy. This is a simple implementation of the BaseStore using a dictionary that is useful primarily for unit testing purposes. """ from typing import Any, Dict, Iterator, List, Optional, Sequence, Tuple from langchain.schema import BaseStore class InMemoryStore(BaseStore[str, Any]): """In-memory implementation of the BaseStore using a dictionary. Attributes: store (Dict[str, Any]): The underlying dictionary that stores the key-value pairs. Examples: .. code-block:: python from langchain.storage import InMemoryStore store = InMemoryStore() store.mset([('key1', 'value1'), ('key2', 'value2')]) store.mget(['key1', 'key2']) # ['value1', 'value2'] store.mdelete(['key1']) list(store.yield_keys()) # ['key2'] list(store.yield_keys(prefix='k')) # ['key2'] """ def __init__(self) -> None: """Initialize an empty store.""" self.store: Dict[str, Any] = {} def mget(self, keys: Sequence[str]) -> List[Optional[Any]]: """Get the values associated with the given keys. Args: keys (Sequence[str]): A sequence of keys. Returns: A sequence of optional values associated with the keys. If a key is not found, the corresponding value will be None. """ return [self.store.get(key) for key in keys] def mset(self, key_value_pairs: Sequence[Tuple[str, Any]]) -> None: """Set the values for the given keys. Args: key_value_pairs (Sequence[Tuple[str, V]]): A sequence of key-value pairs. Returns: None """ for key, value in key_value_pairs: self.store[key] = value def mdelete(self, keys: Sequence[str]) -> None: """Delete the given keys and their associated values. Args: keys (Sequence[str]): A sequence of keys to delete. """ for key in keys: self.store.pop(key, None) def yield_keys(self, prefix: Optional[str] = None) -> Iterator[str]: """Get an iterator over keys that match the given prefix. Args: prefix (str, optional): The prefix to match. Defaults to None. Returns: Iterator[str]: An iterator over keys that match the given prefix. """ if prefix is None: yield from self.store.keys() else: for key in self.store.keys(): if key.startswith(prefix): yield key
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~agents~load_tools.py
# flake8: noqa """Tools provide access to various resources and services. LangChain has a large ecosystem of integrations with various external resources like local and remote file systems, APIs and databases. These integrations allow developers to create versatile applications that combine the power of LLMs with the ability to access, interact with and manipulate external resources. When developing an application, developers should inspect the capabilities and permissions of the tools that underlie the given agent toolkit, and determine whether permissions of the given toolkit are appropriate for the application. See [Security](https://python.langchain.com/docs/security) for more information. """ import warnings from typing import Any, Dict, List, Optional, Callable, Tuple from mypy_extensions import Arg, KwArg from langchain.agents.tools import Tool from langchain.schema.language_model import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.manager import Callbacks from langchain.chains.api import news_docs, open_meteo_docs, podcast_docs, tmdb_docs from langchain.chains.api.base import APIChain from langchain.chains.llm_math.base import LLMMathChain from langchain.utilities.dalle_image_generator import DallEAPIWrapper from langchain.utilities.requests import TextRequestsWrapper from langchain.tools.arxiv.tool import ArxivQueryRun from langchain.tools.golden_query.tool import GoldenQueryRun from langchain.tools.pubmed.tool import PubmedQueryRun from langchain.tools.base import BaseTool from langchain.tools.bing_search.tool import BingSearchRun from langchain.tools.ddg_search.tool import DuckDuckGoSearchRun from langchain.tools.google_search.tool import GoogleSearchResults, GoogleSearchRun from langchain.tools.google_scholar.tool import GoogleScholarQueryRun from langchain.tools.metaphor_search.tool import MetaphorSearchResults from langchain.tools.google_serper.tool import GoogleSerperResults, GoogleSerperRun from langchain.tools.searchapi.tool import SearchAPIResults, SearchAPIRun from langchain.tools.graphql.tool import BaseGraphQLTool from langchain.tools.human.tool import HumanInputRun from langchain.tools.python.tool import PythonREPLTool from langchain.tools.requests.tool import ( RequestsDeleteTool, RequestsGetTool, RequestsPatchTool, RequestsPostTool, RequestsPutTool, ) from langchain.tools.eleven_labs.text2speech import ElevenLabsText2SpeechTool from langchain.tools.scenexplain.tool import SceneXplainTool from langchain.tools.searx_search.tool import SearxSearchResults, SearxSearchRun from langchain.tools.shell.tool import ShellTool from langchain.tools.sleep.tool import SleepTool from langchain.tools.wikipedia.tool import WikipediaQueryRun from langchain.tools.wolfram_alpha.tool import WolframAlphaQueryRun from langchain.tools.openweathermap.tool import OpenWeatherMapQueryRun from langchain.tools.dataforseo_api_search import DataForSeoAPISearchRun from langchain.tools.dataforseo_api_search import DataForSeoAPISearchResults from langchain.utilities.arxiv import ArxivAPIWrapper from langchain.utilities.golden_query import GoldenQueryAPIWrapper from langchain.utilities.pubmed import PubMedAPIWrapper from langchain.utilities.bing_search import BingSearchAPIWrapper from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper from langchain.utilities.google_search import GoogleSearchAPIWrapper from langchain.utilities.google_serper import GoogleSerperAPIWrapper from langchain.utilities.google_scholar import GoogleScholarAPIWrapper from langchain.utilities.metaphor_search import MetaphorSearchAPIWrapper from langchain.utilities.awslambda import LambdaWrapper from langchain.utilities.graphql import GraphQLAPIWrapper from langchain.utilities.searchapi import SearchApiAPIWrapper from langchain.utilities.searx_search import SearxSearchWrapper from langchain.utilities.serpapi import SerpAPIWrapper from langchain.utilities.twilio import TwilioAPIWrapper from langchain.utilities.wikipedia import WikipediaAPIWrapper from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper from langchain.utilities.openweathermap import OpenWeatherMapAPIWrapper from langchain.utilities.dataforseo_api_search import DataForSeoAPIWrapper def _get_python_repl() -> BaseTool: return PythonREPLTool() def _get_tools_requests_get() -> BaseTool: return RequestsGetTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_post() -> BaseTool: return RequestsPostTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_patch() -> BaseTool: return RequestsPatchTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_put() -> BaseTool: return RequestsPutTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_delete() -> BaseTool: return RequestsDeleteTool(requests_wrapper=TextRequestsWrapper()) def _get_terminal() -> BaseTool: return ShellTool() def _get_sleep() -> BaseTool: return SleepTool() _BASE_TOOLS: Dict[str, Callable[[], BaseTool]] = { "python_repl": _get_python_repl, "requests": _get_tools_requests_get, # preserved for backwards compatibility "requests_get": _get_tools_requests_get, "requests_post": _get_tools_requests_post, "requests_patch": _get_tools_requests_patch, "requests_put": _get_tools_requests_put, "requests_delete": _get_tools_requests_delete, "terminal": _get_terminal, "sleep": _get_sleep, } def _get_llm_math(llm: BaseLanguageModel) -> BaseTool: return Tool( name="Calculator", description="Useful for when you need to answer questions about math.", func=LLMMathChain.from_llm(llm=llm).run, coroutine=LLMMathChain.from_llm(llm=llm).arun, ) def _get_open_meteo_api(llm: BaseLanguageModel) -> BaseTool: chain = APIChain.from_llm_and_api_docs(llm, open_meteo_docs.OPEN_METEO_DOCS) return Tool( name="Open-Meteo-API", description="Useful for when you want to get weather information from the OpenMeteo API. The input should be a question in natural language that this API can answer.", func=chain.run, ) _LLM_TOOLS: Dict[str, Callable[[BaseLanguageModel], BaseTool]] = { "llm-math": _get_llm_math, "open-meteo-api": _get_open_meteo_api, } def _get_news_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool: news_api_key = kwargs["news_api_key"] chain = APIChain.from_llm_and_api_docs( llm, news_docs.NEWS_DOCS, headers={"X-Api-Key": news_api_key} ) return Tool( name="News-API", description="Use this when you want to get information about the top headlines of current news stories. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_tmdb_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool: tmdb_bearer_token = kwargs["tmdb_bearer_token"] chain = APIChain.from_llm_and_api_docs( llm, tmdb_docs.TMDB_DOCS, headers={"Authorization": f"Bearer {tmdb_bearer_token}"}, ) return Tool( name="TMDB-API", description="Useful for when you want to get information from The Movie Database. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_podcast_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool: listen_api_key = kwargs["listen_api_key"] chain = APIChain.from_llm_and_api_docs( llm, podcast_docs.PODCAST_DOCS, headers={"X-ListenAPI-Key": listen_api_key}, ) return Tool( name="Podcast-API", description="Use the Listen Notes Podcast API to search all podcasts or episodes. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_lambda_api(**kwargs: Any) -> BaseTool: return Tool( name=kwargs["awslambda_tool_name"], description=kwargs["awslambda_tool_description"], func=LambdaWrapper(**kwargs).run, ) def _get_wolfram_alpha(**kwargs: Any) -> BaseTool: return WolframAlphaQueryRun(api_wrapper=WolframAlphaAPIWrapper(**kwargs)) def _get_google_search(**kwargs: Any) -> BaseTool: return GoogleSearchRun(api_wrapper=GoogleSearchAPIWrapper(**kwargs)) def _get_wikipedia(**kwargs: Any) -> BaseTool: return WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(**kwargs)) def _get_arxiv(**kwargs: Any) -> BaseTool: return ArxivQueryRun(api_wrapper=ArxivAPIWrapper(**kwargs)) def _get_golden_query(**kwargs: Any) -> BaseTool: return GoldenQueryRun(api_wrapper=GoldenQueryAPIWrapper(**kwargs)) def _get_pubmed(**kwargs: Any) -> BaseTool: return PubmedQueryRun(api_wrapper=PubMedAPIWrapper(**kwargs)) def _get_google_serper(**kwargs: Any) -> BaseTool: return GoogleSerperRun(api_wrapper=GoogleSerperAPIWrapper(**kwargs)) def _get_google_scholar(**kwargs: Any) -> BaseTool: return GoogleScholarQueryRun(api_wrapper=GoogleScholarAPIWrapper(**kwargs)) def _get_google_serper_results_json(**kwargs: Any) -> BaseTool: return GoogleSerperResults(api_wrapper=GoogleSerperAPIWrapper(**kwargs)) def _get_google_search_results_json(**kwargs: Any) -> BaseTool: return GoogleSearchResults(api_wrapper=GoogleSearchAPIWrapper(**kwargs)) def _get_searchapi(**kwargs: Any) -> BaseTool: return SearchAPIRun(api_wrapper=SearchApiAPIWrapper(**kwargs)) def _get_searchapi_results_json(**kwargs: Any) -> BaseTool: return SearchAPIResults(api_wrapper=SearchApiAPIWrapper(**kwargs)) def _get_serpapi(**kwargs: Any) -> BaseTool: return Tool( name="Search", description="A search engine. Useful for when you need to answer questions about current events. Input should be a search query.", func=SerpAPIWrapper(**kwargs).run, coroutine=SerpAPIWrapper(**kwargs).arun, ) def _get_dalle_image_generator(**kwargs: Any) -> Tool: return Tool( "Dall-E-Image-Generator", DallEAPIWrapper(**kwargs).run, "A wrapper around OpenAI DALL-E API. Useful for when you need to generate images from a text description. Input should be an image description.", ) def _get_twilio(**kwargs: Any) -> BaseTool: return Tool( name="Text-Message", description="Useful for when you need to send a text message to a provided phone number.", func=TwilioAPIWrapper(**kwargs).run, ) def _get_searx_search(**kwargs: Any) -> BaseTool: return SearxSearchRun(wrapper=SearxSearchWrapper(**kwargs)) def _get_searx_search_results_json(**kwargs: Any) -> BaseTool: wrapper_kwargs = {k: v for k, v in kwargs.items() if k != "num_results"} return SearxSearchResults(wrapper=SearxSearchWrapper(**wrapper_kwargs), **kwargs) def _get_bing_search(**kwargs: Any) -> BaseTool: return BingSearchRun(api_wrapper=BingSearchAPIWrapper(**kwargs)) def _get_metaphor_search(**kwargs: Any) -> BaseTool: return MetaphorSearchResults(api_wrapper=MetaphorSearchAPIWrapper(**kwargs)) def _get_ddg_search(**kwargs: Any) -> BaseTool: return DuckDuckGoSearchRun(api_wrapper=DuckDuckGoSearchAPIWrapper(**kwargs)) def _get_human_tool(**kwargs: Any) -> BaseTool: return HumanInputRun(**kwargs) def _get_scenexplain(**kwargs: Any) -> BaseTool: return SceneXplainTool(**kwargs) def _get_graphql_tool(**kwargs: Any) -> BaseTool: graphql_endpoint = kwargs["graphql_endpoint"] wrapper = GraphQLAPIWrapper(graphql_endpoint=graphql_endpoint) return BaseGraphQLTool(graphql_wrapper=wrapper) def _get_openweathermap(**kwargs: Any) -> BaseTool: return OpenWeatherMapQueryRun(api_wrapper=OpenWeatherMapAPIWrapper(**kwargs)) def _get_dataforseo_api_search(**kwargs: Any) -> BaseTool: return DataForSeoAPISearchRun(api_wrapper=DataForSeoAPIWrapper(**kwargs)) def _get_dataforseo_api_search_json(**kwargs: Any) -> BaseTool: return DataForSeoAPISearchResults(api_wrapper=DataForSeoAPIWrapper(**kwargs)) def _get_eleven_labs_text2speech(**kwargs: Any) -> BaseTool: return ElevenLabsText2SpeechTool(**kwargs) _EXTRA_LLM_TOOLS: Dict[ str, Tuple[Callable[[Arg(BaseLanguageModel, "llm"), KwArg(Any)], BaseTool], List[str]], ] = { "news-api": (_get_news_api, ["news_api_key"]), "tmdb-api": (_get_tmdb_api, ["tmdb_bearer_token"]), "podcast-api": (_get_podcast_api, ["listen_api_key"]), } _EXTRA_OPTIONAL_TOOLS: Dict[str, Tuple[Callable[[KwArg(Any)], BaseTool], List[str]]] = { "wolfram-alpha": (_get_wolfram_alpha, ["wolfram_alpha_appid"]), "google-search": (_get_google_search, ["google_api_key", "google_cse_id"]), "google-search-results-json": ( _get_google_search_results_json, ["google_api_key", "google_cse_id", "num_results"], ), "searx-search-results-json": ( _get_searx_search_results_json, ["searx_host", "engines", "num_results", "aiosession"], ), "bing-search": (_get_bing_search, ["bing_subscription_key", "bing_search_url"]), "metaphor-search": (_get_metaphor_search, ["metaphor_api_key"]), "ddg-search": (_get_ddg_search, []), "google-serper": (_get_google_serper, ["serper_api_key", "aiosession"]), "google-scholar": ( _get_google_scholar, ["top_k_results", "hl", "lr", "serp_api_key"], ), "google-serper-results-json": ( _get_google_serper_results_json, ["serper_api_key", "aiosession"], ), "searchapi": (_get_searchapi, ["searchapi_api_key", "aiosession"]), "searchapi-results-json": ( _get_searchapi_results_json, ["searchapi_api_key", "aiosession"], ), "serpapi": (_get_serpapi, ["serpapi_api_key", "aiosession"]), "dalle-image-generator": (_get_dalle_image_generator, ["openai_api_key"]), "twilio": (_get_twilio, ["account_sid", "auth_token", "from_number"]), "searx-search": (_get_searx_search, ["searx_host", "engines", "aiosession"]), "wikipedia": (_get_wikipedia, ["top_k_results", "lang"]), "arxiv": ( _get_arxiv, ["top_k_results", "load_max_docs", "load_all_available_meta"], ), "golden-query": (_get_golden_query, ["golden_api_key"]), "pubmed": (_get_pubmed, ["top_k_results"]), "human": (_get_human_tool, ["prompt_func", "input_func"]), "awslambda": ( _get_lambda_api, ["awslambda_tool_name", "awslambda_tool_description", "function_name"], ), "sceneXplain": (_get_scenexplain, []), "graphql": (_get_graphql_tool, ["graphql_endpoint"]), "openweathermap-api": (_get_openweathermap, ["openweathermap_api_key"]), "dataforseo-api-search": ( _get_dataforseo_api_search, ["api_login", "api_password", "aiosession"], ), "dataforseo-api-search-json": ( _get_dataforseo_api_search_json, ["api_login", "api_password", "aiosession"], ), "eleven_labs_text2speech": (_get_eleven_labs_text2speech, ["eleven_api_key"]), } def _handle_callbacks( callback_manager: Optional[BaseCallbackManager], callbacks: Callbacks ) -> Callbacks: if callback_manager is not None: warnings.warn( "callback_manager is deprecated. Please use callbacks instead.", DeprecationWarning, ) if callbacks is not None: raise ValueError( "Cannot specify both callback_manager and callbacks arguments." ) return callback_manager return callbacks def load_huggingface_tool( task_or_repo_id: str, model_repo_id: Optional[str] = None, token: Optional[str] = None, remote: bool = False, **kwargs: Any, ) -> BaseTool: """Loads a tool from the HuggingFace Hub. Args: task_or_repo_id: Task or model repo id. model_repo_id: Optional model repo id. token: Optional token. remote: Optional remote. Defaults to False. **kwargs: Returns: A tool. """ try: from transformers import load_tool except ImportError: raise ImportError( "HuggingFace tools require the libraries `transformers>=4.29.0`" " and `huggingface_hub>=0.14.1` to be installed." " Please install it with" " `pip install --upgrade transformers huggingface_hub`." ) hf_tool = load_tool( task_or_repo_id, model_repo_id=model_repo_id, token=token, remote=remote, **kwargs, ) outputs = hf_tool.outputs if set(outputs) != {"text"}: raise NotImplementedError("Multimodal outputs not supported yet.") inputs = hf_tool.inputs if set(inputs) != {"text"}: raise NotImplementedError("Multimodal inputs not supported yet.") return Tool.from_function( hf_tool.__call__, name=hf_tool.name, description=hf_tool.description ) def load_tools( tool_names: List[str], llm: Optional[BaseLanguageModel] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> List[BaseTool]: """Load tools based on their name. Tools allow agents to interact with various resources and services like APIs, databases, file systems, etc. Please scope the permissions of each tools to the minimum required for the application. For example, if an application only needs to read from a database, the database tool should not be given write permissions. Moreover consider scoping the permissions to only allow accessing specific tables and impose user-level quota for limiting resource usage. Please read the APIs of the individual tools to determine which configuration they support. See [Security](https://python.langchain.com/docs/security) for more information. Args: tool_names: name of tools to load. llm: An optional language model, may be needed to initialize certain tools. callbacks: Optional callback manager or list of callback handlers. If not provided, default global callback manager will be used. Returns: List of tools. """ tools = [] callbacks = _handle_callbacks( callback_manager=kwargs.get("callback_manager"), callbacks=callbacks ) for name in tool_names: if name == "requests": warnings.warn( "tool name `requests` is deprecated - " "please use `requests_all` or specify the requests method" ) if name == "requests_all": # expand requests into various methods requests_method_tools = [ _tool for _tool in _BASE_TOOLS if _tool.startswith("requests_") ] tool_names.extend(requests_method_tools) elif name in _BASE_TOOLS: tools.append(_BASE_TOOLS[name]()) elif name in _LLM_TOOLS: if llm is None: raise ValueError(f"Tool {name} requires an LLM to be provided") tool = _LLM_TOOLS[name](llm) tools.append(tool) elif name in _EXTRA_LLM_TOOLS: if llm is None: raise ValueError(f"Tool {name} requires an LLM to be provided") _get_llm_tool_func, extra_keys = _EXTRA_LLM_TOOLS[name] missing_keys = set(extra_keys).difference(kwargs) if missing_keys: raise ValueError( f"Tool {name} requires some parameters that were not " f"provided: {missing_keys}" ) sub_kwargs = {k: kwargs[k] for k in extra_keys} tool = _get_llm_tool_func(llm=llm, **sub_kwargs) tools.append(tool) elif name in _EXTRA_OPTIONAL_TOOLS: _get_tool_func, extra_keys = _EXTRA_OPTIONAL_TOOLS[name] sub_kwargs = {k: kwargs[k] for k in extra_keys if k in kwargs} tool = _get_tool_func(**sub_kwargs) tools.append(tool) else: raise ValueError(f"Got unknown tool {name}") if callbacks is not None: for tool in tools: tool.callbacks = callbacks return tools def get_all_tool_names() -> List[str]: """Get a list of all possible tool names.""" return ( list(_BASE_TOOLS) + list(_EXTRA_OPTIONAL_TOOLS) + list(_EXTRA_LLM_TOOLS) + list(_LLM_TOOLS) )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chains~moderation.py
"""Pass input through a moderation endpoint.""" from typing import Any, Dict, List, Optional from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.pydantic_v1 import root_validator from langchain.utils import get_from_dict_or_env class OpenAIModerationChain(Chain): """Pass input through a moderation endpoint. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chains import OpenAIModerationChain moderation = OpenAIModerationChain() """ client: Any #: :meta private: model_name: Optional[str] = None """Moderation model name to use.""" error: bool = False """Whether or not to error if bad content was found.""" input_key: str = "input" #: :meta private: output_key: str = "output" #: :meta private: openai_api_key: Optional[str] = None openai_organization: Optional[str] = None @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) openai_organization = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai openai.api_key = openai_api_key if openai_organization: openai.organization = openai_organization values["client"] = openai.Moderation except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) return values @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ return [self.output_key] def _moderate(self, text: str, results: dict) -> str: if results["flagged"]: error_str = "Text was found that violates OpenAI's content policy." if self.error: raise ValueError(error_str) else: return error_str return text def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: text = inputs[self.input_key] results = self.client.create(text) output = self._moderate(text, results["results"][0]) return {self.output_key: output}
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~callbacks~comet_ml_callback.py
import tempfile from copy import deepcopy from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Sequence import langchain from langchain.callbacks.base import BaseCallbackHandler from langchain.callbacks.utils import ( BaseMetadataCallbackHandler, flatten_dict, import_pandas, import_spacy, import_textstat, ) from langchain.schema import AgentAction, AgentFinish, Generation, LLMResult LANGCHAIN_MODEL_NAME = "langchain-model" def import_comet_ml() -> Any: """Import comet_ml and raise an error if it is not installed.""" try: import comet_ml # noqa: F401 except ImportError: raise ImportError( "To use the comet_ml callback manager you need to have the " "`comet_ml` python package installed. Please install it with" " `pip install comet_ml`" ) return comet_ml def _get_experiment( workspace: Optional[str] = None, project_name: Optional[str] = None ) -> Any: comet_ml = import_comet_ml() experiment = comet_ml.Experiment( # type: ignore workspace=workspace, project_name=project_name, ) return experiment def _fetch_text_complexity_metrics(text: str) -> dict: textstat = import_textstat() text_complexity_metrics = { "flesch_reading_ease": textstat.flesch_reading_ease(text), "flesch_kincaid_grade": textstat.flesch_kincaid_grade(text), "smog_index": textstat.smog_index(text), "coleman_liau_index": textstat.coleman_liau_index(text), "automated_readability_index": textstat.automated_readability_index(text), "dale_chall_readability_score": textstat.dale_chall_readability_score(text), "difficult_words": textstat.difficult_words(text), "linsear_write_formula": textstat.linsear_write_formula(text), "gunning_fog": textstat.gunning_fog(text), "text_standard": textstat.text_standard(text), "fernandez_huerta": textstat.fernandez_huerta(text), "szigriszt_pazos": textstat.szigriszt_pazos(text), "gutierrez_polini": textstat.gutierrez_polini(text), "crawford": textstat.crawford(text), "gulpease_index": textstat.gulpease_index(text), "osman": textstat.osman(text), } return text_complexity_metrics def _summarize_metrics_for_generated_outputs(metrics: Sequence) -> dict: pd = import_pandas() metrics_df = pd.DataFrame(metrics) metrics_summary = metrics_df.describe() return metrics_summary.to_dict() class CometCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler): """Callback Handler that logs to Comet. Parameters: job_type (str): The type of comet_ml task such as "inference", "testing" or "qc" project_name (str): The comet_ml project name tags (list): Tags to add to the task task_name (str): Name of the comet_ml task visualize (bool): Whether to visualize the run. complexity_metrics (bool): Whether to log complexity metrics stream_logs (bool): Whether to stream callback actions to Comet This handler will utilize the associated callback method and formats the input of each callback function with metadata regarding the state of LLM run, and adds the response to the list of records for both the {method}_records and action. It then logs the response to Comet. """ def __init__( self, task_type: Optional[str] = "inference", workspace: Optional[str] = None, project_name: Optional[str] = None, tags: Optional[Sequence] = None, name: Optional[str] = None, visualizations: Optional[List[str]] = None, complexity_metrics: bool = False, custom_metrics: Optional[Callable] = None, stream_logs: bool = True, ) -> None: """Initialize callback handler.""" self.comet_ml = import_comet_ml() super().__init__() self.task_type = task_type self.workspace = workspace self.project_name = project_name self.tags = tags self.visualizations = visualizations self.complexity_metrics = complexity_metrics self.custom_metrics = custom_metrics self.stream_logs = stream_logs self.temp_dir = tempfile.TemporaryDirectory() self.experiment = _get_experiment(workspace, project_name) self.experiment.log_other("Created from", "langchain") if tags: self.experiment.add_tags(tags) self.name = name if self.name: self.experiment.set_name(self.name) warning = ( "The comet_ml callback is currently in beta and is subject to change " "based on updates to `langchain`. Please report any issues to " "https://github.com/comet-ml/issue-tracking/issues with the tag " "`langchain`." ) self.comet_ml.LOGGER.warning(warning) self.callback_columns: list = [] self.action_records: list = [] self.complexity_metrics = complexity_metrics if self.visualizations: spacy = import_spacy() self.nlp = spacy.load("en_core_web_sm") else: self.nlp = None def _init_resp(self) -> Dict: return {k: None for k in self.callback_columns} def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: """Run when LLM starts.""" self.step += 1 self.llm_starts += 1 self.starts += 1 metadata = self._init_resp() metadata.update({"action": "on_llm_start"}) metadata.update(flatten_dict(serialized)) metadata.update(self.get_custom_callback_meta()) for prompt in prompts: prompt_resp = deepcopy(metadata) prompt_resp["prompts"] = prompt self.on_llm_start_records.append(prompt_resp) self.action_records.append(prompt_resp) if self.stream_logs: self._log_stream(prompt, metadata, self.step) def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Run when LLM generates a new token.""" self.step += 1 self.llm_streams += 1 resp = self._init_resp() resp.update({"action": "on_llm_new_token", "token": token}) resp.update(self.get_custom_callback_meta()) self.action_records.append(resp) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends running.""" self.step += 1 self.llm_ends += 1 self.ends += 1 metadata = self._init_resp() metadata.update({"action": "on_llm_end"}) metadata.update(flatten_dict(response.llm_output or {})) metadata.update(self.get_custom_callback_meta()) output_complexity_metrics = [] output_custom_metrics = [] for prompt_idx, generations in enumerate(response.generations): for gen_idx, generation in enumerate(generations): text = generation.text generation_resp = deepcopy(metadata) generation_resp.update(flatten_dict(generation.dict())) complexity_metrics = self._get_complexity_metrics(text) if complexity_metrics: output_complexity_metrics.append(complexity_metrics) generation_resp.update(complexity_metrics) custom_metrics = self._get_custom_metrics( generation, prompt_idx, gen_idx ) if custom_metrics: output_custom_metrics.append(custom_metrics) generation_resp.update(custom_metrics) if self.stream_logs: self._log_stream(text, metadata, self.step) self.action_records.append(generation_resp) self.on_llm_end_records.append(generation_resp) self._log_text_metrics(output_complexity_metrics, step=self.step) self._log_text_metrics(output_custom_metrics, step=self.step) def on_llm_error(self, error: BaseException, **kwargs: Any) -> None: """Run when LLM errors.""" self.step += 1 self.errors += 1 def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: """Run when chain starts running.""" self.step += 1 self.chain_starts += 1 self.starts += 1 resp = self._init_resp() resp.update({"action": "on_chain_start"}) resp.update(flatten_dict(serialized)) resp.update(self.get_custom_callback_meta()) for chain_input_key, chain_input_val in inputs.items(): if isinstance(chain_input_val, str): input_resp = deepcopy(resp) if self.stream_logs: self._log_stream(chain_input_val, resp, self.step) input_resp.update({chain_input_key: chain_input_val}) self.action_records.append(input_resp) else: self.comet_ml.LOGGER.warning( f"Unexpected data format provided! " f"Input Value for {chain_input_key} will not be logged" ) def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """Run when chain ends running.""" self.step += 1 self.chain_ends += 1 self.ends += 1 resp = self._init_resp() resp.update({"action": "on_chain_end"}) resp.update(self.get_custom_callback_meta()) for chain_output_key, chain_output_val in outputs.items(): if isinstance(chain_output_val, str): output_resp = deepcopy(resp) if self.stream_logs: self._log_stream(chain_output_val, resp, self.step) output_resp.update({chain_output_key: chain_output_val}) self.action_records.append(output_resp) else: self.comet_ml.LOGGER.warning( f"Unexpected data format provided! " f"Output Value for {chain_output_key} will not be logged" ) def on_chain_error(self, error: BaseException, **kwargs: Any) -> None: """Run when chain errors.""" self.step += 1 self.errors += 1 def on_tool_start( self, serialized: Dict[str, Any], input_str: str, **kwargs: Any ) -> None: """Run when tool starts running.""" self.step += 1 self.tool_starts += 1 self.starts += 1 resp = self._init_resp() resp.update({"action": "on_tool_start"}) resp.update(flatten_dict(serialized)) resp.update(self.get_custom_callback_meta()) if self.stream_logs: self._log_stream(input_str, resp, self.step) resp.update({"input_str": input_str}) self.action_records.append(resp) def on_tool_end(self, output: str, **kwargs: Any) -> None: """Run when tool ends running.""" self.step += 1 self.tool_ends += 1 self.ends += 1 resp = self._init_resp() resp.update({"action": "on_tool_end"}) resp.update(self.get_custom_callback_meta()) if self.stream_logs: self._log_stream(output, resp, self.step) resp.update({"output": output}) self.action_records.append(resp) def on_tool_error(self, error: BaseException, **kwargs: Any) -> None: """Run when tool errors.""" self.step += 1 self.errors += 1 def on_text(self, text: str, **kwargs: Any) -> None: """ Run when agent is ending. """ self.step += 1 self.text_ctr += 1 resp = self._init_resp() resp.update({"action": "on_text"}) resp.update(self.get_custom_callback_meta()) if self.stream_logs: self._log_stream(text, resp, self.step) resp.update({"text": text}) self.action_records.append(resp) def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None: """Run when agent ends running.""" self.step += 1 self.agent_ends += 1 self.ends += 1 resp = self._init_resp() output = finish.return_values["output"] log = finish.log resp.update({"action": "on_agent_finish", "log": log}) resp.update(self.get_custom_callback_meta()) if self.stream_logs: self._log_stream(output, resp, self.step) resp.update({"output": output}) self.action_records.append(resp) def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Run on agent action.""" self.step += 1 self.tool_starts += 1 self.starts += 1 tool = action.tool tool_input = str(action.tool_input) log = action.log resp = self._init_resp() resp.update({"action": "on_agent_action", "log": log, "tool": tool}) resp.update(self.get_custom_callback_meta()) if self.stream_logs: self._log_stream(tool_input, resp, self.step) resp.update({"tool_input": tool_input}) self.action_records.append(resp) def _get_complexity_metrics(self, text: str) -> dict: """Compute text complexity metrics using textstat. Parameters: text (str): The text to analyze. Returns: (dict): A dictionary containing the complexity metrics. """ resp = {} if self.complexity_metrics: text_complexity_metrics = _fetch_text_complexity_metrics(text) resp.update(text_complexity_metrics) return resp def _get_custom_metrics( self, generation: Generation, prompt_idx: int, gen_idx: int ) -> dict: """Compute Custom Metrics for an LLM Generated Output Args: generation (LLMResult): Output generation from an LLM prompt_idx (int): List index of the input prompt gen_idx (int): List index of the generated output Returns: dict: A dictionary containing the custom metrics. """ resp = {} if self.custom_metrics: custom_metrics = self.custom_metrics(generation, prompt_idx, gen_idx) resp.update(custom_metrics) return resp def flush_tracker( self, langchain_asset: Any = None, task_type: Optional[str] = "inference", workspace: Optional[str] = None, project_name: Optional[str] = "comet-langchain-demo", tags: Optional[Sequence] = None, name: Optional[str] = None, visualizations: Optional[List[str]] = None, complexity_metrics: bool = False, custom_metrics: Optional[Callable] = None, finish: bool = False, reset: bool = False, ) -> None: """Flush the tracker and setup the session. Everything after this will be a new table. Args: name: Name of the performed session so far so it is identifiable langchain_asset: The langchain asset to save. finish: Whether to finish the run. Returns: None """ self._log_session(langchain_asset) if langchain_asset: try: self._log_model(langchain_asset) except Exception: self.comet_ml.LOGGER.error( "Failed to export agent or LLM to Comet", exc_info=True, extra={"show_traceback": True}, ) if finish: self.experiment.end() if reset: self._reset( task_type, workspace, project_name, tags, name, visualizations, complexity_metrics, custom_metrics, ) def _log_stream(self, prompt: str, metadata: dict, step: int) -> None: self.experiment.log_text(prompt, metadata=metadata, step=step) def _log_model(self, langchain_asset: Any) -> None: model_parameters = self._get_llm_parameters(langchain_asset) self.experiment.log_parameters(model_parameters, prefix="model") langchain_asset_path = Path(self.temp_dir.name, "model.json") model_name = self.name if self.name else LANGCHAIN_MODEL_NAME try: if hasattr(langchain_asset, "save"): langchain_asset.save(langchain_asset_path) self.experiment.log_model(model_name, str(langchain_asset_path)) except (ValueError, AttributeError, NotImplementedError) as e: if hasattr(langchain_asset, "save_agent"): langchain_asset.save_agent(langchain_asset_path) self.experiment.log_model(model_name, str(langchain_asset_path)) else: self.comet_ml.LOGGER.error( f"{e}" " Could not save Langchain Asset " f"for {langchain_asset.__class__.__name__}" ) def _log_session(self, langchain_asset: Optional[Any] = None) -> None: try: llm_session_df = self._create_session_analysis_dataframe(langchain_asset) # Log the cleaned dataframe as a table self.experiment.log_table("langchain-llm-session.csv", llm_session_df) except Exception: self.comet_ml.LOGGER.warning( "Failed to log session data to Comet", exc_info=True, extra={"show_traceback": True}, ) try: metadata = {"gigachain_version": str(langchain.__version__)} # Log the langchain low-level records as a JSON file directly self.experiment.log_asset_data( self.action_records, "langchain-action_records.json", metadata=metadata ) except Exception: self.comet_ml.LOGGER.warning( "Failed to log session data to Comet", exc_info=True, extra={"show_traceback": True}, ) try: self._log_visualizations(llm_session_df) except Exception: self.comet_ml.LOGGER.warning( "Failed to log visualizations to Comet", exc_info=True, extra={"show_traceback": True}, ) def _log_text_metrics(self, metrics: Sequence[dict], step: int) -> None: if not metrics: return metrics_summary = _summarize_metrics_for_generated_outputs(metrics) for key, value in metrics_summary.items(): self.experiment.log_metrics(value, prefix=key, step=step) def _log_visualizations(self, session_df: Any) -> None: if not (self.visualizations and self.nlp): return spacy = import_spacy() prompts = session_df["prompts"].tolist() outputs = session_df["text"].tolist() for idx, (prompt, output) in enumerate(zip(prompts, outputs)): doc = self.nlp(output) sentence_spans = list(doc.sents) for visualization in self.visualizations: try: html = spacy.displacy.render( sentence_spans, style=visualization, options={"compact": True}, jupyter=False, page=True, ) self.experiment.log_asset_data( html, name=f"langchain-viz-{visualization}-{idx}.html", metadata={"prompt": prompt}, step=idx, ) except Exception as e: self.comet_ml.LOGGER.warning( e, exc_info=True, extra={"show_traceback": True} ) return def _reset( self, task_type: Optional[str] = None, workspace: Optional[str] = None, project_name: Optional[str] = None, tags: Optional[Sequence] = None, name: Optional[str] = None, visualizations: Optional[List[str]] = None, complexity_metrics: bool = False, custom_metrics: Optional[Callable] = None, ) -> None: _task_type = task_type if task_type else self.task_type _workspace = workspace if workspace else self.workspace _project_name = project_name if project_name else self.project_name _tags = tags if tags else self.tags _name = name if name else self.name _visualizations = visualizations if visualizations else self.visualizations _complexity_metrics = ( complexity_metrics if complexity_metrics else self.complexity_metrics ) _custom_metrics = custom_metrics if custom_metrics else self.custom_metrics self.__init__( # type: ignore task_type=_task_type, workspace=_workspace, project_name=_project_name, tags=_tags, name=_name, visualizations=_visualizations, complexity_metrics=_complexity_metrics, custom_metrics=_custom_metrics, ) self.reset_callback_meta() self.temp_dir = tempfile.TemporaryDirectory() def _create_session_analysis_dataframe(self, langchain_asset: Any = None) -> dict: pd = import_pandas() llm_parameters = self._get_llm_parameters(langchain_asset) num_generations_per_prompt = llm_parameters.get("n", 1) llm_start_records_df = pd.DataFrame(self.on_llm_start_records) # Repeat each input row based on the number of outputs generated per prompt llm_start_records_df = llm_start_records_df.loc[ llm_start_records_df.index.repeat(num_generations_per_prompt) ].reset_index(drop=True) llm_end_records_df = pd.DataFrame(self.on_llm_end_records) llm_session_df = pd.merge( llm_start_records_df, llm_end_records_df, left_index=True, right_index=True, suffixes=["_llm_start", "_llm_end"], ) return llm_session_df def _get_llm_parameters(self, langchain_asset: Any = None) -> dict: if not langchain_asset: return {} try: if hasattr(langchain_asset, "agent"): llm_parameters = langchain_asset.agent.llm_chain.llm.dict() elif hasattr(langchain_asset, "llm_chain"): llm_parameters = langchain_asset.llm_chain.llm.dict() elif hasattr(langchain_asset, "llm"): llm_parameters = langchain_asset.llm.dict() else: llm_parameters = langchain_asset.dict() except Exception: return {} return llm_parameters
[ "n" ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~retrievers~arcee.py
from typing import Any, Dict, List, Optional from langchain.callbacks.manager import CallbackManagerForRetrieverRun from langchain.docstore.document import Document from langchain.pydantic_v1 import Extra, root_validator from langchain.schema import BaseRetriever from langchain.utilities.arcee import ArceeWrapper, DALMFilter from langchain.utils import get_from_dict_or_env class ArceeRetriever(BaseRetriever): """Document retriever for Arcee's Domain Adapted Language Models (DALMs). To use, set the ``ARCEE_API_KEY`` environment variable with your Arcee API key, or pass ``arcee_api_key`` as a named parameter. Example: .. code-block:: python from langchain.retrievers import ArceeRetriever retriever = ArceeRetriever( model="DALM-PubMed", arcee_api_key="ARCEE-API-KEY" ) documents = retriever.get_relevant_documents("AI-driven music therapy") """ _client: Optional[ArceeWrapper] = None #: :meta private: """Arcee client.""" arcee_api_key: str = "" """Arcee API Key""" model: str """Arcee DALM name""" arcee_api_url: str = "https://api.arcee.ai" """Arcee API URL""" arcee_api_version: str = "v2" """Arcee API Version""" arcee_app_url: str = "https://app.arcee.ai" """Arcee App URL""" model_kwargs: Optional[Dict[str, Any]] = None """Keyword arguments to pass to the model.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid underscore_attrs_are_private = True def __init__(self, **data: Any) -> None: """Initializes private fields.""" super().__init__(**data) self._client = ArceeWrapper( arcee_api_key=self.arcee_api_key, arcee_api_url=self.arcee_api_url, arcee_api_version=self.arcee_api_version, model_kwargs=self.model_kwargs, model_name=self.model, ) self._client.validate_model_training_status() @root_validator() def validate_environments(cls, values: Dict) -> Dict: """Validate Arcee environment variables.""" # validate env vars values["arcee_api_key"] = get_from_dict_or_env( values, "arcee_api_key", "ARCEE_API_KEY", ) values["arcee_api_url"] = get_from_dict_or_env( values, "arcee_api_url", "ARCEE_API_URL", ) values["arcee_app_url"] = get_from_dict_or_env( values, "arcee_app_url", "ARCEE_APP_URL", ) values["arcee_api_version"] = get_from_dict_or_env( values, "arcee_api_version", "ARCEE_API_VERSION", ) # validate model kwargs if values["model_kwargs"]: kw = values["model_kwargs"] # validate size if kw.get("size") is not None: if not kw.get("size") >= 0: raise ValueError("`size` must not be negative.") # validate filters if kw.get("filters") is not None: if not isinstance(kw.get("filters"), List): raise ValueError("`filters` must be a list.") for f in kw.get("filters"): DALMFilter(**f) return values def _get_relevant_documents( self, query: str, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any ) -> List[Document]: """Retrieve {size} contexts with your retriever for a given query Args: query: Query to submit to the model size: The max number of context results to retrieve. Defaults to 3. (Can be less if filters are provided). filters: Filters to apply to the context dataset. """ try: if not self._client: raise ValueError("Client is not initialized.") return self._client.retrieve(query=query, **kwargs) except Exception as e: raise ValueError(f"Error while retrieving documents: {e}") from e
[]
2024-01-10
ai-forever/gigachain
libs~experimental~langchain_experimental~pal_chain~colored_object_prompt.py
# flake8: noqa from langchain.prompts.prompt import PromptTemplate template = ( """ # Генерация кода Python3 для решения задач # Q: На тумбочке находятся красный карандаш, фиолетовая кружка, бордовый брелок, розовый мишка, черная тарелка и синий мяч для снятия стресса. Какого цвета мяч для снятия стресса? # Поместим объекты в словарь для быстрого поиска objects = dict() objects['pencil'] = 'red' objects['mug'] = 'purple' objects['keychain'] = 'burgundy' objects['teddy bear'] = 'fuchsia' objects['plate'] = 'black' objects['stress ball'] = 'blue' # Найдем цвет мяча для снятия стресса stress_ball_color = objects['stress ball'] answer = stress_ball_color # Q: На столе вы видите ряд объектов: фиолетовую скрепку, розовый мяч для снятия стресса, коричневый брелок, зеленый зарядный кабель, малиновый спиннер и бордовую ручку. Какого цвета объект сразу справа от мяча для снятия стресса? # Поместим объекты в список для сохранения порядка objects = [] objects += [('paperclip', 'purple')] * 1 objects += [('stress ball', 'pink')] * 1 objects += [('keychain', 'brown')] * 1 objects += [('scrunchiephone charger', 'green')] * 1 objects += [('fidget spinner', 'mauve')] * 1 objects += [('pen', 'burgundy')] * 1 # Найдем индекс мяча для снятия стресса stress_ball_idx = None for i, object in enumerate(objects): if object[0] == 'stress ball': stress_ball_idx = i break # Найдем объект сразу справа direct_right = objects[i+1] # Проверим цвет объекта справа direct_right_color = direct_right[1] answer = direct_right_color # Q: На тумбочке вы видите следующие предметы, расположенные в ряд: бирюзовую тарелку, бордовый брелок, желтый зарядный кабель, оранжевую кружку, розовую тетрадь и серую чашку. Сколько неоранжевых предметов вы видите слева от бирюзового предмета? # Поместим объекты в список для сохранения порядка objects = [] objects += [('plate', 'teal')] * 1 objects += [('keychain', 'burgundy')] * 1 objects += [('scrunchiephone charger', 'yellow')] * 1 objects += [('mug', 'orange')] * 1 objects += [('notebook', 'pink')] * 1 objects += [('cup', 'grey')] * 1 # Найдем индекс бирюзового предмета teal_idx = None for i, object in enumerate(objects): if object[1] == 'teal': teal_idx = i break # Найдем неоранжевые предметы слева от бирюзового предмета non_orange = [object for object in objects[:i] if object[1] != 'orange'] # Подсчитаем количество неоранжевых предметов num_non_orange = len(non_orange) answer = num_non_orange # Q: {question} """.strip() + "\n" ) COLORED_OBJECT_PROMPT = PromptTemplate(input_variables=["question"], template=template)
[ "question", "# Генерация кода Python3 для решения задач\n# Q: На тумбочке находятся красный карандаш, фиолетовая кружка, бордовый брелок, розовый мишка, черная тарелка и синий мяч для снятия стресса. Какого цвета мяч для снятия стресса?\n# Поместим объекты в словарь для быстрого поиска\nobjects = dict()\nobjects['pencil'] = 'red'\nobjects['mug'] = 'purple'\nobjects['keychain'] = 'burgundy'\nobjects['teddy bear'] = 'fuchsia'\nobjects['plate'] = 'black'\nobjects['stress ball'] = 'blue'\n\n# Найдем цвет мяча для снятия стресса\nstress_ball_color = objects['stress ball']\nanswer = stress_ball_color\n\n\n# Q: На столе вы видите ряд объектов: фиолетовую скрепку, розовый мяч для снятия стресса, коричневый брелок, зеленый зарядный кабель, малиновый спиннер и бордовую ручку. Какого цвета объект сразу справа от мяча для снятия стресса?\n# Поместим объекты в список для сохранения порядка\nobjects = []\nobjects += [('paperclip', 'purple')] * 1\nobjects += [('stress ball', 'pink')] * 1\nobjects += [('keychain', 'brown')] * 1\nobjects += [('scrunchiephone charger', 'green')] * 1\nobjects += [('fidget spinner', 'mauve')] * 1\nobjects += [('pen', 'burgundy')] * 1\n\n# Найдем индекс мяча для снятия стресса\nstress_ball_idx = None\nfor i, object in enumerate(objects):\n if object[0] == 'stress ball':\n stress_ball_idx = i\n break\n\n# Найдем объект сразу справа\ndirect_right = objects[i+1]\n\n# Проверим цвет объекта справа\ndirect_right_color = direct_right[1]\nanswer = direct_right_color\n\n\n# Q: На тумбочке вы видите следующие предметы, расположенные в ряд: бирюзовую тарелку, бордовый брелок, желтый зарядный кабель, оранжевую кружку, розовую тетрадь и серую чашку. Сколько неоранжевых предметов вы видите слева от бирюзового предмета?\n# Поместим объекты в список для сохранения порядка\nobjects = []\nobjects += [('plate', 'teal')] * 1\nobjects += [('keychain', 'burgundy')] * 1\nobjects += [('scrunchiephone charger', 'yellow')] * 1\nobjects += [('mug', 'orange')] * 1\nobjects += [('notebook', 'pink')] * 1\nobjects += [('cup', 'grey')] * 1\n\n# Найдем индекс бирюзового предмета\nteal_idx = None\nfor i, object in enumerate(objects):\n if object[1] == 'teal':\n teal_idx = i\n break\n\n# Найдем неоранжевые предметы слева от бирюзового предмета\nnon_orange = [object for object in objects[:i] if object[1] != 'orange']\n\n# Подсчитаем количество неоранжевых предметов\nnum_non_orange = len(non_orange)\nanswer = num_non_orange\n\n\n# Q: {question}\n" ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~utilities~searx_search.py
"""Utility for using SearxNG meta search API. SearxNG is a privacy-friendly free metasearch engine that aggregates results from `multiple search engines <https://docs.searxng.org/admin/engines/configured_engines.html>`_ and databases and supports the `OpenSearch <https://github.com/dewitt/opensearch/blob/master/opensearch-1-1-draft-6.md>`_ specification. More details on the installation instructions `here. <../../integrations/searx.html>`_ For the search API refer to https://docs.searxng.org/dev/search_api.html Quick Start ----------- In order to use this utility you need to provide the searx host. This can be done by passing the named parameter :attr:`searx_host <SearxSearchWrapper.searx_host>` or exporting the environment variable SEARX_HOST. Note: this is the only required parameter. Then create a searx search instance like this: .. code-block:: python from langchain.utilities import SearxSearchWrapper # when the host starts with `http` SSL is disabled and the connection # is assumed to be on a private network searx_host='http://self.hosted' search = SearxSearchWrapper(searx_host=searx_host) You can now use the ``search`` instance to query the searx API. Searching --------- Use the :meth:`run() <SearxSearchWrapper.run>` and :meth:`results() <SearxSearchWrapper.results>` methods to query the searx API. Other methods are available for convenience. :class:`SearxResults` is a convenience wrapper around the raw json result. Example usage of the ``run`` method to make a search: .. code-block:: python s.run(query="what is the best search engine?") Engine Parameters ----------------- You can pass any `accepted searx search API <https://docs.searxng.org/dev/search_api.html>`_ parameters to the :py:class:`SearxSearchWrapper` instance. In the following example we are using the :attr:`engines <SearxSearchWrapper.engines>` and the ``language`` parameters: .. code-block:: python # assuming the searx host is set as above or exported as an env variable s = SearxSearchWrapper(engines=['google', 'bing'], language='es') Search Tips ----------- Searx offers a special `search syntax <https://docs.searxng.org/user/index.html#search-syntax>`_ that can also be used instead of passing engine parameters. For example the following query: .. code-block:: python s = SearxSearchWrapper("langchain library", engines=['github']) # can also be written as: s = SearxSearchWrapper("langchain library !github") # or even: s = SearxSearchWrapper("langchain library !gh") In some situations you might want to pass an extra string to the search query. For example when the `run()` method is called by an agent. The search suffix can also be used as a way to pass extra parameters to searx or the underlying search engines. .. code-block:: python # select the github engine and pass the search suffix s = SearchWrapper("langchain library", query_suffix="!gh") s = SearchWrapper("langchain library") # select github the conventional google search syntax s.run("large language models", query_suffix="site:github.com") *NOTE*: A search suffix can be defined on both the instance and the method level. The resulting query will be the concatenation of the two with the former taking precedence. See `SearxNG Configured Engines <https://docs.searxng.org/admin/engines/configured_engines.html>`_ and `SearxNG Search Syntax <https://docs.searxng.org/user/index.html#id1>`_ for more details. Notes ----- This wrapper is based on the SearxNG fork https://github.com/searxng/searxng which is better maintained than the original Searx project and offers more features. Public searxNG instances often use a rate limiter for API usage, so you might want to use a self hosted instance and disable the rate limiter. If you are self-hosting an instance you can customize the rate limiter for your own network as described `here <https://docs.searxng.org/src/searx.botdetection.html#limiter-src>`_. For a list of public SearxNG instances see https://searx.space/ """ import json from typing import Any, Dict, List, Optional import aiohttp import requests from langchain.pydantic_v1 import ( BaseModel, Extra, Field, PrivateAttr, root_validator, validator, ) from langchain.utils import get_from_dict_or_env def _get_default_params() -> dict: return {"language": "en", "format": "json"} class SearxResults(dict): """Dict like wrapper around search api results.""" _data: str = "" def __init__(self, data: str): """Take a raw result from Searx and make it into a dict like object.""" json_data = json.loads(data) super().__init__(json_data) self.__dict__ = self def __str__(self) -> str: """Text representation of searx result.""" return self._data @property def results(self) -> Any: """Silence mypy for accessing this field. :meta private: """ return self.get("results") @property def answers(self) -> Any: """Helper accessor on the json result.""" return self.get("answers") class SearxSearchWrapper(BaseModel): """Wrapper for Searx API. To use you need to provide the searx host by passing the named parameter ``searx_host`` or exporting the environment variable ``SEARX_HOST``. In some situations you might want to disable SSL verification, for example if you are running searx locally. You can do this by passing the named parameter ``unsecure``. You can also pass the host url scheme as ``http`` to disable SSL. Example: .. code-block:: python from langchain.utilities import SearxSearchWrapper searx = SearxSearchWrapper(searx_host="http://localhost:8888") Example with SSL disabled: .. code-block:: python from langchain.utilities import SearxSearchWrapper # note the unsecure parameter is not needed if you pass the url scheme as # http searx = SearxSearchWrapper(searx_host="http://localhost:8888", unsecure=True) """ _result: SearxResults = PrivateAttr() searx_host: str = "" unsecure: bool = False params: dict = Field(default_factory=_get_default_params) headers: Optional[dict] = None engines: Optional[List[str]] = [] categories: Optional[List[str]] = [] query_suffix: Optional[str] = "" k: int = 10 aiosession: Optional[Any] = None @validator("unsecure") def disable_ssl_warnings(cls, v: bool) -> bool: """Disable SSL warnings.""" if v: # requests.urllib3.disable_warnings() try: import urllib3 urllib3.disable_warnings() except ImportError as e: print(e) return v @root_validator() def validate_params(cls, values: Dict) -> Dict: """Validate that custom searx params are merged with default ones.""" user_params = values["params"] default = _get_default_params() values["params"] = {**default, **user_params} engines = values.get("engines") if engines: values["params"]["engines"] = ",".join(engines) categories = values.get("categories") if categories: values["params"]["categories"] = ",".join(categories) searx_host = get_from_dict_or_env(values, "searx_host", "SEARX_HOST") if not searx_host.startswith("http"): print( f"Warning: missing the url scheme on host \ ! assuming secure https://{searx_host} " ) searx_host = "https://" + searx_host elif searx_host.startswith("http://"): values["unsecure"] = True cls.disable_ssl_warnings(True) values["searx_host"] = searx_host return values class Config: """Configuration for this pydantic object.""" extra = Extra.forbid def _searx_api_query(self, params: dict) -> SearxResults: """Actual request to searx API.""" raw_result = requests.get( self.searx_host, headers=self.headers, params=params, verify=not self.unsecure, ) # test if http result is ok if not raw_result.ok: raise ValueError("Searx API returned an error: ", raw_result.text) res = SearxResults(raw_result.text) self._result = res return res async def _asearx_api_query(self, params: dict) -> SearxResults: if not self.aiosession: async with aiohttp.ClientSession() as session: async with session.get( self.searx_host, headers=self.headers, params=params, ssl=(lambda: False if self.unsecure else None)(), ) as response: if not response.ok: raise ValueError("Searx API returned an error: ", response.text) result = SearxResults(await response.text()) self._result = result else: async with self.aiosession.get( self.searx_host, headers=self.headers, params=params, verify=not self.unsecure, ) as response: if not response.ok: raise ValueError("Searx API returned an error: ", response.text) result = SearxResults(await response.text()) self._result = result return result def run( self, query: str, engines: Optional[List[str]] = None, categories: Optional[List[str]] = None, query_suffix: Optional[str] = "", **kwargs: Any, ) -> str: """Run query through Searx API and parse results. You can pass any other params to the searx query API. Args: query: The query to search for. query_suffix: Extra suffix appended to the query. engines: List of engines to use for the query. categories: List of categories to use for the query. **kwargs: extra parameters to pass to the searx API. Returns: str: The result of the query. Raises: ValueError: If an error occurred with the query. Example: This will make a query to the qwant engine: .. code-block:: python from langchain.utilities import SearxSearchWrapper searx = SearxSearchWrapper(searx_host="http://my.searx.host") searx.run("what is the weather in France ?", engine="qwant") # the same result can be achieved using the `!` syntax of searx # to select the engine using `query_suffix` searx.run("what is the weather in France ?", query_suffix="!qwant") """ _params = { "q": query, } params = {**self.params, **_params, **kwargs} if self.query_suffix and len(self.query_suffix) > 0: params["q"] += " " + self.query_suffix if isinstance(query_suffix, str) and len(query_suffix) > 0: params["q"] += " " + query_suffix if isinstance(engines, list) and len(engines) > 0: params["engines"] = ",".join(engines) if isinstance(categories, list) and len(categories) > 0: params["categories"] = ",".join(categories) res = self._searx_api_query(params) if len(res.answers) > 0: toret = res.answers[0] # only return the content of the results list elif len(res.results) > 0: toret = "\n\n".join([r.get("content", "") for r in res.results[: self.k]]) else: toret = "No good search result found" return toret async def arun( self, query: str, engines: Optional[List[str]] = None, query_suffix: Optional[str] = "", **kwargs: Any, ) -> str: """Asynchronously version of `run`.""" _params = { "q": query, } params = {**self.params, **_params, **kwargs} if self.query_suffix and len(self.query_suffix) > 0: params["q"] += " " + self.query_suffix if isinstance(query_suffix, str) and len(query_suffix) > 0: params["q"] += " " + query_suffix if isinstance(engines, list) and len(engines) > 0: params["engines"] = ",".join(engines) res = await self._asearx_api_query(params) if len(res.answers) > 0: toret = res.answers[0] # only return the content of the results list elif len(res.results) > 0: toret = "\n\n".join([r.get("content", "") for r in res.results[: self.k]]) else: toret = "No good search result found" return toret def results( self, query: str, num_results: int, engines: Optional[List[str]] = None, categories: Optional[List[str]] = None, query_suffix: Optional[str] = "", **kwargs: Any, ) -> List[Dict]: """Run query through Searx API and returns the results with metadata. Args: query: The query to search for. query_suffix: Extra suffix appended to the query. num_results: Limit the number of results to return. engines: List of engines to use for the query. categories: List of categories to use for the query. **kwargs: extra parameters to pass to the searx API. Returns: Dict with the following keys: { snippet: The description of the result. title: The title of the result. link: The link to the result. engines: The engines used for the result. category: Searx category of the result. } """ _params = { "q": query, } params = {**self.params, **_params, **kwargs} if self.query_suffix and len(self.query_suffix) > 0: params["q"] += " " + self.query_suffix if isinstance(query_suffix, str) and len(query_suffix) > 0: params["q"] += " " + query_suffix if isinstance(engines, list) and len(engines) > 0: params["engines"] = ",".join(engines) if isinstance(categories, list) and len(categories) > 0: params["categories"] = ",".join(categories) results = self._searx_api_query(params).results[:num_results] if len(results) == 0: return [{"Result": "No good Search Result was found"}] return [ { "snippet": result.get("content", ""), "title": result["title"], "link": result["url"], "engines": result["engines"], "category": result["category"], } for result in results ] async def aresults( self, query: str, num_results: int, engines: Optional[List[str]] = None, query_suffix: Optional[str] = "", **kwargs: Any, ) -> List[Dict]: """Asynchronously query with json results. Uses aiohttp. See `results` for more info. """ _params = { "q": query, } params = {**self.params, **_params, **kwargs} if self.query_suffix and len(self.query_suffix) > 0: params["q"] += " " + self.query_suffix if isinstance(query_suffix, str) and len(query_suffix) > 0: params["q"] += " " + query_suffix if isinstance(engines, list) and len(engines) > 0: params["engines"] = ",".join(engines) results = (await self._asearx_api_query(params)).results[:num_results] if len(results) == 0: return [{"Result": "No good Search Result was found"}] return [ { "snippet": result.get("content", ""), "title": result["title"], "link": result["url"], "engines": result["engines"], "category": result["category"], } for result in results ]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chat_models~minimax.py
"""Wrapper around Minimax chat models.""" import logging from typing import Any, Dict, List, Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.llms.minimax import MinimaxCommon from langchain.llms.utils import enforce_stop_tokens from langchain.schema import ( AIMessage, BaseMessage, ChatResult, HumanMessage, ) logger = logging.getLogger(__name__) def _parse_message(msg_type: str, text: str) -> Dict: return {"sender_type": msg_type, "text": text} def _parse_chat_history(history: List[BaseMessage]) -> List: """Parse a sequence of messages into history.""" chat_history = [] for message in history: if isinstance(message, HumanMessage): chat_history.append(_parse_message("USER", message.content)) if isinstance(message, AIMessage): chat_history.append(_parse_message("BOT", message.content)) return chat_history class MiniMaxChat(MinimaxCommon, BaseChatModel): """Wrapper around Minimax large language models. To use, you should have the environment variable ``MINIMAX_GROUP_ID`` and ``MINIMAX_API_KEY`` set with your API token, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.chat_models import MiniMaxChat llm = MiniMaxChat(model_name="abab5-chat") """ def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: """Generate next turn in the conversation. Args: messages: The history of the conversation as a list of messages. Code chat does not support context. stop: The list of stop words (optional). run_manager: The CallbackManager for LLM run, it's not used at the moment. Returns: The ChatResult that contains outputs generated by the model. Raises: ValueError: if the last message in the list is not from human. """ if not messages: raise ValueError( "You should provide at least one message to start the chat!" ) history = _parse_chat_history(messages) payload = self._default_params payload["messages"] = history text = self._client.post(payload) # This is required since the stop are not enforced by the model parameters return text if stop is None else enforce_stop_tokens(text, stop) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: raise NotImplementedError( """Minimax AI doesn't support async requests at the moment.""" )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~llms~replicate.py
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Dict, Iterator, List, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.pydantic_v1 import Extra, Field, root_validator from langchain.schema.output import GenerationChunk from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: from replicate.prediction import Prediction logger = logging.getLogger(__name__) class Replicate(LLM): """Replicate models. To use, you should have the ``replicate`` python package installed, and the environment variable ``REPLICATE_API_TOKEN`` set with your API token. You can find your token here: https://replicate.com/account The model param is required, but any other model parameters can also be passed in with the format model_kwargs={model_param: value, ...} Example: .. code-block:: python from langchain.llms import Replicate replicate = Replicate( model=( "stability-ai/stable-diffusion: " "27b93a2413e7f36cd83da926f3656280b2931564ff050bf9575f1fdf9bcd7478", ), model_kwargs={"image_dimensions": "512x512"} ) """ model: str model_kwargs: Dict[str, Any] = Field(default_factory=dict, alias="input") replicate_api_token: Optional[str] = None prompt_key: Optional[str] = None version_obj: Any = Field(default=None, exclude=True) """Optionally pass in the model version object during initialization to avoid having to make an extra API call to retrieve it during streaming. NOTE: not serializable, is excluded from serialization. """ streaming: bool = False """Whether to stream the results.""" stop: List[str] = Field(default_factory=list) """Stop sequences to early-terminate generation.""" class Config: """Configuration for this pydantic config.""" allow_population_by_field_name = True extra = Extra.forbid @property def lc_secrets(self) -> Dict[str, str]: return {"replicate_api_token": "REPLICATE_API_TOKEN"} @classmethod def is_lc_serializable(cls) -> bool: return True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} input = values.pop("input", {}) if input: logger.warning( "Init param `input` is deprecated, please use `model_kwargs` instead." ) extra = {**values.pop("model_kwargs", {}), **input} for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" replicate_api_token = get_from_dict_or_env( values, "replicate_api_token", "REPLICATE_API_TOKEN" ) values["replicate_api_token"] = replicate_api_token return values @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { "model": self.model, "model_kwargs": self.model_kwargs, } @property def _llm_type(self) -> str: """Return type of model.""" return "replicate" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call to replicate endpoint.""" if self.streaming: completion: Optional[str] = None for chunk in self._stream( prompt, stop=stop, run_manager=run_manager, **kwargs ): if completion is None: completion = chunk.text else: completion += chunk.text else: prediction = self._create_prediction(prompt, **kwargs) prediction.wait() if prediction.status == "failed": raise RuntimeError(prediction.error) if isinstance(prediction.output, str): completion = prediction.output else: completion = "".join(prediction.output) assert completion is not None stop_conditions = stop or self.stop for s in stop_conditions: if s in completion: completion = completion[: completion.find(s)] return completion def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: prediction = self._create_prediction(prompt, **kwargs) stop_conditions = stop or self.stop stop_condition_reached = False current_completion: str = "" for output in prediction.output_iterator(): current_completion += output # test for stop conditions, if specified for s in stop_conditions: if s in current_completion: prediction.cancel() stop_condition_reached = True # Potentially some tokens that should still be yielded before ending # stream. stop_index = max(output.find(s), 0) output = output[:stop_index] if not output: break if output: yield GenerationChunk(text=output) if run_manager: run_manager.on_llm_new_token( output, verbose=self.verbose, ) if stop_condition_reached: break def _create_prediction(self, prompt: str, **kwargs: Any) -> Prediction: try: import replicate as replicate_python except ImportError: raise ImportError( "Could not import replicate python package. " "Please install it with `pip install replicate`." ) # get the model and version if self.version_obj is None: model_str, version_str = self.model.split(":") model = replicate_python.models.get(model_str) self.version_obj = model.versions.get(version_str) if self.prompt_key is None: # sort through the openapi schema to get the name of the first input input_properties = sorted( self.version_obj.openapi_schema["components"]["schemas"]["Input"][ "properties" ].items(), key=lambda item: item[1].get("x-order", 0), ) self.prompt_key = input_properties[0][0] input_: Dict = { self.prompt_key: prompt, **self.model_kwargs, **kwargs, } return replicate_python.predictions.create( version=self.version_obj, input=input_ )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~tools~edenai~audio_speech_to_text.py
from __future__ import annotations import json import logging import time from typing import List, Optional import requests from langchain.callbacks.manager import CallbackManagerForToolRun from langchain.pydantic_v1 import validator from langchain.tools.edenai.edenai_base_tool import EdenaiTool logger = logging.getLogger(__name__) class EdenAiSpeechToTextTool(EdenaiTool): """Tool that queries the Eden AI Speech To Text API. for api reference check edenai documentation: https://app.edenai.run/bricks/speech/asynchronous-speech-to-text. To use, you should have the environment variable ``EDENAI_API_KEY`` set with your API token. You can find your token here: https://app.edenai.run/admin/account/settings """ edenai_api_key: Optional[str] = None name = "edenai_speech_to_text" description = ( "A wrapper around edenai Services speech to text " "Useful for when you have to convert audio to text." "Input should be a url to an audio file." ) is_async = True language: Optional[str] = "en" speakers: Optional[int] profanity_filter: bool = False custom_vocabulary: Optional[List[str]] feature: str = "audio" subfeature: str = "speech_to_text_async" base_url = "https://api.edenai.run/v2/audio/speech_to_text_async/" @validator("providers") def check_only_one_provider_selected(cls, v: List[str]) -> List[str]: """ This tool has no feature to combine providers results. Therefore we only allow one provider """ if len(v) > 1: raise ValueError( "Please select only one provider. " "The feature to combine providers results is not available " "for this tool." ) return v def _wait_processing(self, url: str) -> requests.Response: for _ in range(10): time.sleep(1) audio_analysis_result = self._get_edenai(url) temp = audio_analysis_result.json() if temp["status"] == "finished": if temp["results"][self.providers[0]]["error"] is not None: raise Exception( f"""EdenAI returned an unexpected response {temp['results'][self.providers[0]]['error']}""" ) else: return audio_analysis_result raise Exception("Edenai speech to text job id processing Timed out") def _parse_response(self, response: dict) -> str: return response["public_id"] def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" all_params = { "file_url": query, "language": self.language, "speakers": self.speakers, "profanity_filter": self.profanity_filter, "custom_vocabulary": self.custom_vocabulary, } # filter so we don't send val to api when val is `None query_params = {k: v for k, v in all_params.items() if v is not None} job_id = self._call_eden_ai(query_params) url = self.base_url + job_id audio_analysis_result = self._wait_processing(url) result = audio_analysis_result.text formatted_text = json.loads(result) return formatted_text["results"][self.providers[0]]["text"]
[]
2024-01-10
ai-forever/gigachain
libs~experimental~langchain_experimental~comprehend_moderation~base_moderation.py
import uuid from typing import Any, Callable, Dict, Optional from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.prompts.base import StringPromptValue from langchain.prompts.chat import ChatPromptValue from langchain.schema import AIMessage, HumanMessage from langchain_experimental.comprehend_moderation.intent import ComprehendIntent from langchain_experimental.comprehend_moderation.pii import ComprehendPII from langchain_experimental.comprehend_moderation.toxicity import ComprehendToxicity class BaseModeration: def __init__( self, client: Any, config: Optional[Dict[str, Any]] = None, moderation_callback: Optional[Any] = None, unique_id: Optional[str] = None, run_manager: Optional[CallbackManagerForChainRun] = None, ): self.client = client self.config = config self.moderation_callback = moderation_callback self.unique_id = unique_id self.chat_message_index = 0 self.run_manager = run_manager self.chain_id = str(uuid.uuid4()) def _convert_prompt_to_text(self, prompt: Any) -> str: input_text = str() if isinstance(prompt, StringPromptValue): input_text = prompt.text elif isinstance(prompt, str): input_text = prompt elif isinstance(prompt, ChatPromptValue): """ We will just check the last message in the message Chain of a ChatPromptTemplate. The typical chronology is SystemMessage > HumanMessage > AIMessage and so on. However assuming that with every chat the chain is invoked we will only check the last message. This is assuming that all previous messages have been checked already. Only HumanMessage and AIMessage will be checked. We can perhaps loop through and take advantage of the additional_kwargs property in the HumanMessage and AIMessage schema to mark messages that have been moderated. However that means that this class could generate multiple text chunks and moderate() logics would need to be updated. This also means some complexity in re-constructing the prompt while keeping the messages in sequence. """ message = prompt.messages[-1] self.chat_message_index = len(prompt.messages) - 1 if isinstance(message, HumanMessage): input_text = message.content if isinstance(message, AIMessage): input_text = message.content else: raise ValueError( f"Invalid input type {type(input)}. " "Must be a PromptValue, str, or list of BaseMessages." ) return input_text def _convert_text_to_prompt(self, prompt: Any, text: str) -> Any: if isinstance(prompt, StringPromptValue): return StringPromptValue(text=text) elif isinstance(prompt, str): return text elif isinstance(prompt, ChatPromptValue): # Copy the messages because we may need to mutate them. # We don't want to mutate data we don't own. messages = list(prompt.messages) message = messages[self.chat_message_index] if isinstance(message, HumanMessage): messages[self.chat_message_index] = HumanMessage( content=text, example=message.example, additional_kwargs=message.additional_kwargs, ) if isinstance(message, AIMessage): messages[self.chat_message_index] = AIMessage( content=text, example=message.example, additional_kwargs=message.additional_kwargs, ) return ChatPromptValue(messages=messages) else: raise ValueError( f"Invalid input type {type(input)}. " "Must be a PromptValue, str, or list of BaseMessages." ) def _moderation_class(self, moderation_class: Any) -> Callable: return moderation_class( client=self.client, callback=self.moderation_callback, unique_id=self.unique_id, chain_id=self.chain_id, ).validate def _log_message_for_verbose(self, message: str) -> None: if self.run_manager: self.run_manager.on_text(message) def moderate(self, prompt: Any) -> str: from langchain_experimental.comprehend_moderation.base_moderation_exceptions import ( # noqa: E501 ModerationIntentionError, ModerationPiiError, ModerationToxicityError, ) try: # convert prompt to text input_text = self._convert_prompt_to_text(prompt=prompt) output_text = str() # perform moderation if self.config is None: # In absence of config Action will default to STOP only self._log_message_for_verbose("Running pii validation...\n") pii_validate = self._moderation_class(moderation_class=ComprehendPII) output_text = pii_validate(prompt_value=input_text) self._log_message_for_verbose("Running toxicity validation...\n") toxicity_validate = self._moderation_class( moderation_class=ComprehendToxicity ) output_text = toxicity_validate(prompt_value=output_text) self._log_message_for_verbose("Running intent validation...\n") intent_validate = self._moderation_class( moderation_class=ComprehendIntent ) output_text = intent_validate(prompt_value=output_text) else: filter_functions = { "pii": ComprehendPII, "toxicity": ComprehendToxicity, "intent": ComprehendIntent, } filters = self.config["filters"] for _filter in filters: filter_name = f"{_filter}" if filter_name in filter_functions: self._log_message_for_verbose( f"Running {filter_name} Validation...\n" ) validation_fn = self._moderation_class( moderation_class=filter_functions[filter_name] ) input_text = input_text if not output_text else output_text output_text = validation_fn( prompt_value=input_text, config=self.config[filter_name] if filter_name in self.config else None, ) # convert text to prompt and return return self._convert_text_to_prompt(prompt=prompt, text=output_text) except ModerationPiiError as e: self._log_message_for_verbose(f"Found PII content..stopping..\n{str(e)}\n") raise e except ModerationToxicityError as e: self._log_message_for_verbose( f"Found Toxic content..stopping..\n{str(e)}\n" ) raise e except ModerationIntentionError as e: self._log_message_for_verbose( f"Found Harmful intention..stopping..\n{str(e)}\n" ) raise e except Exception as e: raise e
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~retrievers~time_weighted_retriever.py
import datetime from copy import deepcopy from typing import Any, Dict, List, Optional, Tuple from langchain.callbacks.manager import CallbackManagerForRetrieverRun from langchain.pydantic_v1 import Field from langchain.schema import BaseRetriever, Document from langchain.schema.vectorstore import VectorStore def _get_hours_passed(time: datetime.datetime, ref_time: datetime.datetime) -> float: """Get the hours passed between two datetimes.""" return (time - ref_time).total_seconds() / 3600 class TimeWeightedVectorStoreRetriever(BaseRetriever): """Retriever that combines embedding similarity with recency in retrieving values.""" vectorstore: VectorStore """The vectorstore to store documents and determine salience.""" search_kwargs: dict = Field(default_factory=lambda: dict(k=100)) """Keyword arguments to pass to the vectorstore similarity search.""" # TODO: abstract as a queue memory_stream: List[Document] = Field(default_factory=list) """The memory_stream of documents to search through.""" decay_rate: float = Field(default=0.01) """The exponential decay factor used as (1.0-decay_rate)**(hrs_passed).""" k: int = 4 """The maximum number of documents to retrieve in a given call.""" other_score_keys: List[str] = [] """Other keys in the metadata to factor into the score, e.g. 'importance'.""" default_salience: Optional[float] = None """The salience to assign memories not retrieved from the vector store. None assigns no salience to documents not fetched from the vector store. """ class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True def _document_get_date(self, field: str, document: Document) -> datetime.datetime: """Return the value of the date field of a document.""" if field in document.metadata: if isinstance(document.metadata[field], float): return datetime.datetime.fromtimestamp(document.metadata[field]) return document.metadata[field] return datetime.datetime.now() def _get_combined_score( self, document: Document, vector_relevance: Optional[float], current_time: datetime.datetime, ) -> float: """Return the combined score for a document.""" hours_passed = _get_hours_passed( current_time, document.metadata["last_accessed_at"], ) score = (1.0 - self.decay_rate) ** hours_passed for key in self.other_score_keys: if key in document.metadata: score += document.metadata[key] if vector_relevance is not None: score += vector_relevance return score def get_salient_docs(self, query: str) -> Dict[int, Tuple[Document, float]]: """Return documents that are salient to the query.""" docs_and_scores: List[Tuple[Document, float]] docs_and_scores = self.vectorstore.similarity_search_with_relevance_scores( query, **self.search_kwargs ) results = {} for fetched_doc, relevance in docs_and_scores: if "buffer_idx" in fetched_doc.metadata: buffer_idx = fetched_doc.metadata["buffer_idx"] doc = self.memory_stream[buffer_idx] results[buffer_idx] = (doc, relevance) return results def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """Return documents that are relevant to the query.""" current_time = datetime.datetime.now() docs_and_scores = { doc.metadata["buffer_idx"]: (doc, self.default_salience) for doc in self.memory_stream[-self.k :] } # If a doc is considered salient, update the salience score docs_and_scores.update(self.get_salient_docs(query)) rescored_docs = [ (doc, self._get_combined_score(doc, relevance, current_time)) for doc, relevance in docs_and_scores.values() ] rescored_docs.sort(key=lambda x: x[1], reverse=True) result = [] # Ensure frequently accessed memories aren't forgotten for doc, _ in rescored_docs[: self.k]: # TODO: Update vector store doc once `update` method is exposed. buffered_doc = self.memory_stream[doc.metadata["buffer_idx"]] buffered_doc.metadata["last_accessed_at"] = current_time result.append(buffered_doc) return result def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: """Add documents to vectorstore.""" current_time = kwargs.get("current_time") if current_time is None: current_time = datetime.datetime.now() # Avoid mutating input documents dup_docs = [deepcopy(d) for d in documents] for i, doc in enumerate(dup_docs): if "last_accessed_at" not in doc.metadata: doc.metadata["last_accessed_at"] = current_time if "created_at" not in doc.metadata: doc.metadata["created_at"] = current_time doc.metadata["buffer_idx"] = len(self.memory_stream) + i self.memory_stream.extend(dup_docs) return self.vectorstore.add_documents(dup_docs, **kwargs) async def aadd_documents( self, documents: List[Document], **kwargs: Any ) -> List[str]: """Add documents to vectorstore.""" current_time = kwargs.get("current_time") if current_time is None: current_time = datetime.datetime.now() # Avoid mutating input documents dup_docs = [deepcopy(d) for d in documents] for i, doc in enumerate(dup_docs): if "last_accessed_at" not in doc.metadata: doc.metadata["last_accessed_at"] = current_time if "created_at" not in doc.metadata: doc.metadata["created_at"] = current_time doc.metadata["buffer_idx"] = len(self.memory_stream) + i self.memory_stream.extend(dup_docs) return await self.vectorstore.aadd_documents(dup_docs, **kwargs)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~xml.py
"""Loads Microsoft Excel files.""" from typing import Any, List from langchain.document_loaders.unstructured import ( UnstructuredFileLoader, validate_unstructured_version, ) class UnstructuredXMLLoader(UnstructuredFileLoader): """Load `XML` file using `Unstructured`. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples -------- from langchain.document_loaders import UnstructuredXMLLoader loader = UnstructuredXMLLoader( "example.xml", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://unstructured-io.github.io/unstructured/bricks.html#partition-xml """ def __init__( self, file_path: str, mode: str = "single", **unstructured_kwargs: Any ): validate_unstructured_version(min_unstructured_version="0.6.7") super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.partition.xml import partition_xml return partition_xml(filename=self.file_path, **self.unstructured_kwargs)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_transformers~doctran_text_translate.py
from typing import Any, Optional, Sequence from langchain.schema import BaseDocumentTransformer, Document from langchain.utils import get_from_env class DoctranTextTranslator(BaseDocumentTransformer): """Translate text documents using doctran. Arguments: openai_api_key: OpenAI API key. Can also be specified via environment variable ``OPENAI_API_KEY``. language: The language to translate *to*. Example: .. code-block:: python from langchain.document_transformers import DoctranTextTranslator # Pass in openai_api_key or set env var OPENAI_API_KEY qa_translator = DoctranTextTranslator(language="spanish") translated_document = await qa_translator.atransform_documents(documents) """ def __init__( self, openai_api_key: Optional[str] = None, language: str = "english", openai_api_model: Optional[str] = None, ) -> None: self.openai_api_key = openai_api_key or get_from_env( "openai_api_key", "OPENAI_API_KEY" ) self.openai_api_model = openai_api_model or get_from_env( "openai_api_model", "OPENAI_API_MODEL" ) self.language = language def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: raise NotImplementedError async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Translates text documents using doctran.""" try: from doctran import Doctran doctran = Doctran( openai_api_key=self.openai_api_key, openai_model=self.openai_api_model ) except ImportError: raise ImportError( "Install doctran to use this parser. (pip install doctran)" ) doctran_docs = [ doctran.parse(content=doc.page_content, metadata=doc.metadata) for doc in documents ] for i, doc in enumerate(doctran_docs): doctran_docs[i] = await doc.translate(language=self.language).execute() return [ Document(page_content=doc.transformed_content, metadata=doc.metadata) for doc in doctran_docs ]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~excel.py
"""Loads Microsoft Excel files.""" from typing import Any, List from langchain.document_loaders.unstructured import ( UnstructuredFileLoader, validate_unstructured_version, ) class UnstructuredExcelLoader(UnstructuredFileLoader): """Load Microsoft Excel files using `Unstructured`. Like other Unstructured loaders, UnstructuredExcelLoader can be used in both "single" and "elements" mode. If you use the loader in "elements" mode, each sheet in the Excel file will be a an Unstructured Table element. If you use the loader in "elements" mode, an HTML representation of the table will be available in the "text_as_html" key in the document metadata. Examples -------- from langchain.document_loaders.excel import UnstructuredExcelLoader loader = UnstructuredExcelLoader("stanley-cups.xlsd", mode="elements") docs = loader.load() """ def __init__( self, file_path: str, mode: str = "single", **unstructured_kwargs: Any ): """ Args: file_path: The path to the Microsoft Excel file. mode: The mode to use when partitioning the file. See unstructured docs for more info. Optional. Defaults to "single". **unstructured_kwargs: Keyword arguments to pass to unstructured. """ validate_unstructured_version(min_unstructured_version="0.6.7") super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.partition.xlsx import partition_xlsx return partition_xlsx(filename=self.file_path, **self.unstructured_kwargs)
[]
2024-01-10
ai-forever/gigachain
libs~external_tools~translator.py
"""Тул для автоматического перевода промптов библиотеки LangChain с помощью OpenAI API.""" import ast import os import time import openai import tiktoken IGNORED_DIRS = { "venv", ".venv", "hub", ".github", ".mypy_cache", ".ruff_cache", "build", ".git", "__pycache__", "tests", "venv_clear", "docs", "external_tools", } enc = tiktoken.get_encoding("cl100k_base") ALREADY_PROCESSED_STORE = "libs/external_tools/translator_processed.txt" def translate_to_russian(text): # Restart after pause in case of openai.error.RateLimitError try: messages = [ { "role": "system", "content": """Я отправлю тебе программу на python или текстовый файл. В этой программе или тексте могут быть запросы (промпты) к большой языковой модели. Нужно перевести их на русский. В промпте могут содержаться плейсхолдеры в фигурных скобках, например {question} или {answer}. Это нормально, их нужно сохранить без перевода. Всю остальную программу нужно оставить как есть. Если в программе нет промптов, то нужно просто переписать её полностью. Больше ничего не надо выводить - только код с перевеёнными промптами. Не переводи комментарии в коде, не переводи docstring! Не переводи строки, которые не похожи на запросы или части запросов, например названия полей, имена ключей в словарях и тому подобное. Если ты не уверен, что это промпт, то лучше вообще не переводи. Если в файле нет ни одного промпта, верни "NO" без каких-либо пояснений. Общайся на `ты`, а не на `вы`, например `сделай`, а не `сделайте`. В промптах обращение к сети обязательно должно быть на "ты". Ты должен вернуть полный код программы, которую тебе прислали без сокращений или дополнительных пояснений или своих комментариев. Сразу пиши код. Не пиши в начале фразу "Код программы" и тому подобное. Начинай сразу с кода, первым словом в твоем ответе должна сразу быть программа""", # noqa: E501 }, {"role": "user", "content": text}, ] # Use tiktoken to check text size if len(enc.encode(text)) > 3500: with open(ALREADY_PROCESSED_STORE, "a", encoding="utf-8") as f: f.write("File is too big:\n") return text completion = openai.ChatCompletion.create( model="gpt-4", messages=messages, temperature=0.0, max_tokens=4500 ) translated_text = completion["choices"][0]["message"]["content"] if translated_text.startswith("NO"): return text return translated_text except Exception as ex: print("Exception occurred: ", ex) print("Rate limit error. Restarting in (30s)...") time.sleep(30) return translate_to_russian(text) def is_russian(s): return any(["а" <= ch <= "я" for ch in s.lower()]) ERROR_PHRASES = { "error", "exception", "failed", "cannot", "unable", "not found", "invalid", "unexpected", "could not", "please report", "stop sequences found ", "select ", } def is_not_error_message(s): return all(phrase not in s.lower() for phrase in ERROR_PHRASES) def set_parent(node): for child in ast.iter_child_nodes(node): child.parent = node set_parent(child) def process_file(file_path): try: # Check file is not processed yet. Create it if not exists if not os.path.exists(ALREADY_PROCESSED_STORE): with open(ALREADY_PROCESSED_STORE, "w", encoding="utf-8") as f: f.write("") with open(ALREADY_PROCESSED_STORE, "r", encoding="utf-8") as f: processed = f.read().splitlines() if file_path in processed: return False with open(file_path, "r", encoding="utf-8") as f: source = f.read() if (file_path.endswith("stuff_prompt.py")) and ( "prompt" in source or file_path.endswith(".txt") or "template = " in source.lower() or "PREFIX = " in source ): print(f"Found file: {file_path}") print(f"Source: {source}\n\n") print("Do you see prompts here? (y/n)") answer = input() if answer.lower() != "n": translated = translate_to_russian(source) if not translated.endswith("\n"): translated += "\n" with open(file_path, "w", encoding="utf-8") as f: f.write(translated) # Save file to processed list with open(ALREADY_PROCESSED_STORE, "a", encoding="utf-8") as f: f.write(file_path + "\n") pass else: with open(ALREADY_PROCESSED_STORE, "a", encoding="utf-8") as f: f.write("No prompts:" + "\n" + file_path + "\n") return True except UnicodeDecodeError: pass return False def main(directory): total = 0 for root, dirs, files in os.walk(directory): # Игнорируем ненужные директории dirs[:] = [d for d in dirs if d not in IGNORED_DIRS] for file in files: if file.endswith(".py") or file.endswith(".txt"): if process_file(os.path.join(root, file)): total += 1 print(f"Total files: {total}") if __name__ == "__main__": main(".")
[ "Я отправлю тебе программу на python или текстовый файл. В этой программе или тексте могут быть запросы (промпты) к большой языковой модели. Нужно перевести их на русский.\n В промпте могут содержаться плейсхолдеры в фигурных скобках, например {question} или {answer}. Это нормально, их нужно сохранить без перевода.\n Всю остальную программу нужно оставить как есть. Если в программе нет промптов, то нужно просто переписать её полностью. Больше ничего не надо выводить - только код с перевеёнными промптами.\n Не переводи комментарии в коде, не переводи docstring! Не переводи строки, которые не похожи на запросы или части запросов, например названия полей, имена ключей в словарях и тому подобное. Если ты не уверен, что это промпт, то лучше вообще не переводи.\n Если в файле нет ни одного промпта, верни \"NO\" без каких-либо пояснений. Общайся на `ты`, а не на `вы`, например `сделай`, а не `сделайте`. В промптах обращение к сети обязательно должно быть на \"ты\".\n Ты должен вернуть полный код программы, которую тебе прислали без сокращений или дополнительных пояснений или своих комментариев. Сразу пиши код.\n Не пиши в начале фразу \"Код программы\" и тому подобное. Начинай сразу с кода, первым словом в твоем ответе должна сразу быть программа" ]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~storage~test_upstash_redis.py
"""Implement integration tests for Redis storage.""" from __future__ import annotations from typing import TYPE_CHECKING import pytest from langchain.storage.upstash_redis import UpstashRedisStore if TYPE_CHECKING: from upstash_redis import Redis pytest.importorskip("upstash_redis") URL = "<UPSTASH_REDIS_REST_URL>" TOKEN = "<UPSTASH_REDIS_REST_TOKEN>" @pytest.fixture def redis_client() -> Redis: """Yield redis client.""" from upstash_redis import Redis # This fixture flushes the database! client = Redis(url=URL, token=TOKEN) try: client.ping() except Exception: pytest.skip("Ping request failed. Verify that credentials are correct.") client.flushdb() return client def test_mget(redis_client: Redis) -> None: store = UpstashRedisStore(client=redis_client, ttl=None) keys = ["key1", "key2"] redis_client.mset({"key1": "value1", "key2": "value2"}) result = store.mget(keys) assert result == ["value1", "value2"] def test_mset(redis_client: Redis) -> None: store = UpstashRedisStore(client=redis_client, ttl=None) key_value_pairs = [("key1", "value1"), ("key2", "value2")] store.mset(key_value_pairs) result = redis_client.mget("key1", "key2") assert result == ["value1", "value2"] def test_mdelete(redis_client: Redis) -> None: """Test that deletion works as expected.""" store = UpstashRedisStore(client=redis_client, ttl=None) keys = ["key1", "key2"] redis_client.mset({"key1": "value1", "key2": "value2"}) store.mdelete(keys) result = redis_client.mget(*keys) assert result == [None, None] def test_yield_keys(redis_client: Redis) -> None: store = UpstashRedisStore(client=redis_client, ttl=None) redis_client.mset({"key1": "value2", "key2": "value2"}) assert sorted(store.yield_keys()) == ["key1", "key2"] assert sorted(store.yield_keys(prefix="key*")) == ["key1", "key2"] assert sorted(store.yield_keys(prefix="lang*")) == [] def test_namespace(redis_client: Redis) -> None: store = UpstashRedisStore(client=redis_client, ttl=None, namespace="meow") key_value_pairs = [("key1", "value1"), ("key2", "value2")] store.mset(key_value_pairs) cursor, all_keys = redis_client.scan(0) while cursor != 0: cursor, keys = redis_client.scan(cursor) if len(keys) != 0: all_keys.extend(keys) assert sorted(all_keys) == [ "meow/key1", "meow/key2", ] store.mdelete(["key1"]) cursor, all_keys = redis_client.scan(0, match="*") while cursor != 0: cursor, keys = redis_client.scan(cursor, match="*") if len(keys) != 0: all_keys.extend(keys) assert sorted(all_keys) == [ "meow/key2", ] assert list(store.yield_keys()) == ["key2"] assert list(store.yield_keys(prefix="key*")) == ["key2"] assert list(store.yield_keys(prefix="key1")) == []
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~embeddings~ollama.py
from typing import Any, Dict, List, Mapping, Optional import requests from langchain.pydantic_v1 import BaseModel, Extra from langchain.schema.embeddings import Embeddings class OllamaEmbeddings(BaseModel, Embeddings): """Ollama locally runs large language models. To use, follow the instructions at https://ollama.ai/. Example: .. code-block:: python from langchain.embeddings import OllamaEmbeddings ollama_emb = OllamaEmbeddings( model="llama:7b", ) r1 = ollama_emb.embed_documents( [ "Alpha is the first letter of Greek alphabet", "Beta is the second letter of Greek alphabet", ] ) r2 = ollama_emb.embed_query( "What is the second letter of Greek alphabet" ) """ base_url: str = "http://localhost:11434" """Base url the model is hosted under.""" model: str = "llama2" """Model name to use.""" embed_instruction: str = "passage: " """Instruction used to embed documents.""" query_instruction: str = "query: " """Instruction used to embed the query.""" mirostat: Optional[int] """Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)""" mirostat_eta: Optional[float] """Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1)""" mirostat_tau: Optional[float] """Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0)""" num_ctx: Optional[int] """Sets the size of the context window used to generate the next token. (Default: 2048) """ num_gpu: Optional[int] """The number of GPUs to use. On macOS it defaults to 1 to enable metal support, 0 to disable.""" num_thread: Optional[int] """Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores).""" repeat_last_n: Optional[int] """Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx)""" repeat_penalty: Optional[float] """Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)""" temperature: Optional[float] """The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8)""" stop: Optional[List[str]] """Sets the stop tokens to use.""" tfs_z: Optional[float] """Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1)""" top_k: Optional[int] """Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)""" top_p: Optional[int] """Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)""" @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Ollama.""" return { "model": self.model, "options": { "mirostat": self.mirostat, "mirostat_eta": self.mirostat_eta, "mirostat_tau": self.mirostat_tau, "num_ctx": self.num_ctx, "num_gpu": self.num_gpu, "num_thread": self.num_thread, "repeat_last_n": self.repeat_last_n, "repeat_penalty": self.repeat_penalty, "temperature": self.temperature, "stop": self.stop, "tfs_z": self.tfs_z, "top_k": self.top_k, "top_p": self.top_p, }, } model_kwargs: Optional[dict] = None """Other model keyword args""" @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model": self.model}, **self._default_params} class Config: """Configuration for this pydantic object.""" extra = Extra.forbid def _process_emb_response(self, input: str) -> List[float]: """Process a response from the API. Args: response: The response from the API. Returns: The response as a dictionary. """ headers = { "Content-Type": "application/json", } try: res = requests.post( f"{self.base_url}/api/embeddings", headers=headers, json={"model": self.model, "prompt": input, **self._default_params}, ) except requests.exceptions.RequestException as e: raise ValueError(f"Error raised by inference endpoint: {e}") if res.status_code != 200: raise ValueError( "Error raised by inference API HTTP code: %s, %s" % (res.status_code, res.text) ) try: t = res.json() return t["embedding"] except requests.exceptions.JSONDecodeError as e: raise ValueError( f"Error raised by inference API: {e}.\nResponse: {res.text}" ) def _embed(self, input: List[str]) -> List[List[float]]: embeddings_list: List[List[float]] = [] for prompt in input: embeddings = self._process_emb_response(prompt) embeddings_list.append(embeddings) return embeddings_list def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed documents using a Ollama deployed embedding model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [f"{self.embed_instruction}{text}" for text in texts] embeddings = self._embed(instruction_pairs) return embeddings def embed_query(self, text: str) -> List[float]: """Embed a query using a Ollama deployed embedding model. Args: text: The text to embed. Returns: Embeddings for the text. """ instruction_pair = f"{self.query_instruction}{text}" embedding = self._embed([instruction_pair])[0] return embedding
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chat_models~fireworks.py
from typing import ( Any, AsyncIterator, Callable, Dict, Iterator, List, Optional, Type, Union, ) from langchain.adapters.openai import convert_message_to_dict from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.llms.base import create_base_retry_decorator from langchain.pydantic_v1 import Field, root_validator from langchain.schema.messages import ( AIMessage, AIMessageChunk, BaseMessage, BaseMessageChunk, ChatMessage, ChatMessageChunk, FunctionMessage, FunctionMessageChunk, HumanMessage, HumanMessageChunk, SystemMessage, SystemMessageChunk, ) from langchain.schema.output import ChatGeneration, ChatGenerationChunk, ChatResult from langchain.utils.env import get_from_dict_or_env def _convert_delta_to_message_chunk( _dict: Any, default_class: Type[BaseMessageChunk] ) -> BaseMessageChunk: """Convert a delta response to a message chunk.""" role = _dict.role content = _dict.content or "" additional_kwargs: Dict = {} if role == "user" or default_class == HumanMessageChunk: return HumanMessageChunk(content=content) elif role == "assistant" or default_class == AIMessageChunk: return AIMessageChunk(content=content, additional_kwargs=additional_kwargs) elif role == "system" or default_class == SystemMessageChunk: return SystemMessageChunk(content=content) elif role == "function" or default_class == FunctionMessageChunk: return FunctionMessageChunk(content=content, name=_dict.name) elif role or default_class == ChatMessageChunk: return ChatMessageChunk(content=content, role=role) else: return default_class(content=content) def convert_dict_to_message(_dict: Any) -> BaseMessage: """Convert a dict response to a message.""" role = _dict.role content = _dict.content or "" if role == "user": return HumanMessage(content=content) elif role == "assistant": content = _dict.content additional_kwargs: Dict = {} return AIMessage(content=content, additional_kwargs=additional_kwargs) elif role == "system": return SystemMessage(content=content) elif role == "function": return FunctionMessage(content=content, name=_dict.name) else: return ChatMessage(content=content, role=role) class ChatFireworks(BaseChatModel): """Fireworks Chat models.""" model: str = "accounts/fireworks/models/llama-v2-7b-chat" model_kwargs: dict = Field( default_factory=lambda: { "temperature": 0.7, "max_tokens": 512, "top_p": 1, }.copy() ) fireworks_api_key: Optional[str] = None max_retries: int = 20 @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key in environment.""" try: import fireworks.client except ImportError as e: raise ImportError( "Could not import fireworks-ai python package. " "Please install it with `pip install fireworks-ai`." ) from e fireworks_api_key = get_from_dict_or_env( values, "fireworks_api_key", "FIREWORKS_API_KEY" ) fireworks.client.api_key = fireworks_api_key return values @property def _llm_type(self) -> str: """Return type of llm.""" return "fireworks-chat" def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts = self._create_message_dicts(messages) params = { "model": self.model, "messages": message_dicts, **self.model_kwargs, } response = completion_with_retry( self, run_manager=run_manager, stop=stop, **params ) return self._create_chat_result(response) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts = self._create_message_dicts(messages) params = { "model": self.model, "messages": message_dicts, **self.model_kwargs, } response = await acompletion_with_retry( self, run_manager=run_manager, stop=stop, **params ) return self._create_chat_result(response) def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: if llm_outputs[0] is None: return {} return llm_outputs[0] def _create_chat_result(self, response: Any) -> ChatResult: generations = [] for res in response.choices: message = convert_dict_to_message(res.message) gen = ChatGeneration( message=message, generation_info=dict(finish_reason=res.finish_reason), ) generations.append(gen) llm_output = {"model": self.model} return ChatResult(generations=generations, llm_output=llm_output) def _create_message_dicts( self, messages: List[BaseMessage] ) -> List[Dict[str, Any]]: message_dicts = [convert_message_to_dict(m) for m in messages] return message_dicts def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: message_dicts = self._create_message_dicts(messages) default_chunk_class = AIMessageChunk params = { "model": self.model, "messages": message_dicts, "stream": True, **self.model_kwargs, } for chunk in completion_with_retry( self, run_manager=run_manager, stop=stop, **params ): choice = chunk.choices[0] chunk = _convert_delta_to_message_chunk(choice.delta, default_chunk_class) finish_reason = choice.finish_reason generation_info = ( dict(finish_reason=finish_reason) if finish_reason is not None else None ) default_chunk_class = chunk.__class__ yield ChatGenerationChunk(message=chunk, generation_info=generation_info) if run_manager: run_manager.on_llm_new_token(chunk.content, chunk=chunk) async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: message_dicts = self._create_message_dicts(messages) default_chunk_class = AIMessageChunk params = { "model": self.model, "messages": message_dicts, "stream": True, **self.model_kwargs, } async for chunk in await acompletion_with_retry_streaming( self, run_manager=run_manager, stop=stop, **params ): choice = chunk.choices[0] chunk = _convert_delta_to_message_chunk(choice.delta, default_chunk_class) finish_reason = choice.finish_reason generation_info = ( dict(finish_reason=finish_reason) if finish_reason is not None else None ) default_chunk_class = chunk.__class__ yield ChatGenerationChunk(message=chunk, generation_info=generation_info) if run_manager: await run_manager.on_llm_new_token(token=chunk.content, chunk=chunk) def completion_with_retry( llm: ChatFireworks, *, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the completion call.""" import fireworks.client retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: return fireworks.client.ChatCompletion.create( **kwargs, ) return _completion_with_retry(**kwargs) async def acompletion_with_retry( llm: ChatFireworks, *, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the async completion call.""" import fireworks.client retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: return await fireworks.client.ChatCompletion.acreate( **kwargs, ) return await _completion_with_retry(**kwargs) async def acompletion_with_retry_streaming( llm: ChatFireworks, *, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the completion call for streaming.""" import fireworks.client retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: return fireworks.client.ChatCompletion.acreate( **kwargs, ) return await _completion_with_retry(**kwargs) def _create_retry_decorator( llm: ChatFireworks, run_manager: Optional[ Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun] ] = None, ) -> Callable[[Any], Any]: """Define retry mechanism.""" import fireworks.client errors = [ fireworks.client.error.RateLimitError, fireworks.client.error.ServiceUnavailableError, ] return create_base_retry_decorator( error_types=errors, max_retries=llm.max_retries, run_manager=run_manager )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~airbyte.py
from typing import Any, Callable, Iterator, List, Mapping, Optional from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.utils.utils import guard_import RecordHandler = Callable[[Any, Optional[str]], Document] class AirbyteCDKLoader(BaseLoader): """Load with an `Airbyte` source connector implemented using the `CDK`.""" def __init__( self, config: Mapping[str, Any], source_class: Any, stream_name: str, record_handler: Optional[RecordHandler] = None, state: Optional[Any] = None, ) -> None: """Initializes the loader. Args: config: The config to pass to the source connector. source_class: The source connector class. stream_name: The name of the stream to load. record_handler: A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state: The state to pass to the source connector. Defaults to None. """ from airbyte_cdk.models.airbyte_protocol import AirbyteRecordMessage from airbyte_cdk.sources.embedded.base_integration import ( BaseEmbeddedIntegration, ) from airbyte_cdk.sources.embedded.runner import CDKRunner class CDKIntegration(BaseEmbeddedIntegration): """A wrapper around the CDK integration.""" def _handle_record( self, record: AirbyteRecordMessage, id: Optional[str] ) -> Document: if record_handler: return record_handler(record, id) return Document(page_content="", metadata=record.data) self._integration = CDKIntegration( config=config, runner=CDKRunner(source=source_class(), name=source_class.__name__), ) self._stream_name = stream_name self._state = state def load(self) -> List[Document]: return list(self.lazy_load()) def lazy_load(self) -> Iterator[Document]: return self._integration._load_data( stream_name=self._stream_name, state=self._state ) @property def last_state(self) -> Any: return self._integration.last_state class AirbyteHubspotLoader(AirbyteCDKLoader): """Load from `Hubspot` using an `Airbyte` source connector.""" def __init__( self, config: Mapping[str, Any], stream_name: str, record_handler: Optional[RecordHandler] = None, state: Optional[Any] = None, ) -> None: """Initializes the loader. Args: config: The config to pass to the source connector. stream_name: The name of the stream to load. record_handler: A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state: The state to pass to the source connector. Defaults to None. """ source_class = guard_import( "source_hubspot", pip_name="airbyte-source-hubspot" ).SourceHubspot super().__init__( config=config, source_class=source_class, stream_name=stream_name, record_handler=record_handler, state=state, ) class AirbyteStripeLoader(AirbyteCDKLoader): """Load from `Stripe` using an `Airbyte` source connector.""" def __init__( self, config: Mapping[str, Any], stream_name: str, record_handler: Optional[RecordHandler] = None, state: Optional[Any] = None, ) -> None: """Initializes the loader. Args: config: The config to pass to the source connector. stream_name: The name of the stream to load. record_handler: A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state: The state to pass to the source connector. Defaults to None. """ source_class = guard_import( "source_stripe", pip_name="airbyte-source-stripe" ).SourceStripe super().__init__( config=config, source_class=source_class, stream_name=stream_name, record_handler=record_handler, state=state, ) class AirbyteTypeformLoader(AirbyteCDKLoader): """Load from `Typeform` using an `Airbyte` source connector.""" def __init__( self, config: Mapping[str, Any], stream_name: str, record_handler: Optional[RecordHandler] = None, state: Optional[Any] = None, ) -> None: """Initializes the loader. Args: config: The config to pass to the source connector. stream_name: The name of the stream to load. record_handler: A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state: The state to pass to the source connector. Defaults to None. """ source_class = guard_import( "source_typeform", pip_name="airbyte-source-typeform" ).SourceTypeform super().__init__( config=config, source_class=source_class, stream_name=stream_name, record_handler=record_handler, state=state, ) class AirbyteZendeskSupportLoader(AirbyteCDKLoader): """Load from `Zendesk Support` using an `Airbyte` source connector.""" def __init__( self, config: Mapping[str, Any], stream_name: str, record_handler: Optional[RecordHandler] = None, state: Optional[Any] = None, ) -> None: """Initializes the loader. Args: config: The config to pass to the source connector. stream_name: The name of the stream to load. record_handler: A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state: The state to pass to the source connector. Defaults to None. """ source_class = guard_import( "source_zendesk_support", pip_name="airbyte-source-zendesk-support" ).SourceZendeskSupport super().__init__( config=config, source_class=source_class, stream_name=stream_name, record_handler=record_handler, state=state, ) class AirbyteShopifyLoader(AirbyteCDKLoader): """Load from `Shopify` using an `Airbyte` source connector.""" def __init__( self, config: Mapping[str, Any], stream_name: str, record_handler: Optional[RecordHandler] = None, state: Optional[Any] = None, ) -> None: """Initializes the loader. Args: config: The config to pass to the source connector. stream_name: The name of the stream to load. record_handler: A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state: The state to pass to the source connector. Defaults to None. """ source_class = guard_import( "source_shopify", pip_name="airbyte-source-shopify" ).SourceShopify super().__init__( config=config, source_class=source_class, stream_name=stream_name, record_handler=record_handler, state=state, ) class AirbyteSalesforceLoader(AirbyteCDKLoader): """Load from `Salesforce` using an `Airbyte` source connector.""" def __init__( self, config: Mapping[str, Any], stream_name: str, record_handler: Optional[RecordHandler] = None, state: Optional[Any] = None, ) -> None: """Initializes the loader. Args: config: The config to pass to the source connector. stream_name: The name of the stream to load. record_handler: A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state: The state to pass to the source connector. Defaults to None. """ source_class = guard_import( "source_salesforce", pip_name="airbyte-source-salesforce" ).SourceSalesforce super().__init__( config=config, source_class=source_class, stream_name=stream_name, record_handler=record_handler, state=state, ) class AirbyteGongLoader(AirbyteCDKLoader): """Load from `Gong` using an `Airbyte` source connector.""" def __init__( self, config: Mapping[str, Any], stream_name: str, record_handler: Optional[RecordHandler] = None, state: Optional[Any] = None, ) -> None: """Initializes the loader. Args: config: The config to pass to the source connector. stream_name: The name of the stream to load. record_handler: A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state: The state to pass to the source connector. Defaults to None. """ source_class = guard_import( "source_gong", pip_name="airbyte-source-gong" ).SourceGong super().__init__( config=config, source_class=source_class, stream_name=stream_name, record_handler=record_handler, state=state, )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~utilities~github.py
"""Util that calls GitHub.""" from __future__ import annotations import json from typing import TYPE_CHECKING, Any, Dict, List, Optional from langchain.pydantic_v1 import BaseModel, Extra, root_validator from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: from github.Issue import Issue class GitHubAPIWrapper(BaseModel): """Wrapper for GitHub API.""" github: Any #: :meta private: github_repo_instance: Any #: :meta private: github_repository: Optional[str] = None github_app_id: Optional[str] = None github_app_private_key: Optional[str] = None github_branch: Optional[str] = None github_base_branch: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" github_repository = get_from_dict_or_env( values, "github_repository", "GITHUB_REPOSITORY" ) github_app_id = get_from_dict_or_env(values, "github_app_id", "GITHUB_APP_ID") github_app_private_key = get_from_dict_or_env( values, "github_app_private_key", "GITHUB_APP_PRIVATE_KEY" ) github_branch = get_from_dict_or_env( values, "github_branch", "GITHUB_BRANCH", default="master" ) github_base_branch = get_from_dict_or_env( values, "github_base_branch", "GITHUB_BASE_BRANCH", default="master" ) try: from github import Auth, GithubIntegration except ImportError: raise ImportError( "PyGithub is not installed. " "Please install it with `pip install PyGithub`" ) with open(github_app_private_key, "r") as f: private_key = f.read() auth = Auth.AppAuth( github_app_id, private_key, ) gi = GithubIntegration(auth=auth) installation = gi.get_installations()[0] # create a GitHub instance: g = installation.get_github_for_installation() values["github"] = g values["github_repo_instance"] = g.get_repo(github_repository) values["github_repository"] = github_repository values["github_app_id"] = github_app_id values["github_app_private_key"] = github_app_private_key values["github_branch"] = github_branch values["github_base_branch"] = github_base_branch return values def parse_issues(self, issues: List[Issue]) -> List[dict]: """ Extracts title and number from each Issue and puts them in a dictionary Parameters: issues(List[Issue]): A list of Github Issue objects Returns: List[dict]: A dictionary of issue titles and numbers """ parsed = [] for issue in issues: title = issue.title number = issue.number parsed.append({"title": title, "number": number}) return parsed def get_issues(self) -> str: """ Fetches all open issues from the repo Returns: str: A plaintext report containing the number of issues and each issue's title and number. """ issues = self.github_repo_instance.get_issues(state="open") if issues.totalCount > 0: parsed_issues = self.parse_issues(issues) parsed_issues_str = ( "Found " + str(len(parsed_issues)) + " issues:\n" + str(parsed_issues) ) return parsed_issues_str else: return "No open issues available" def get_issue(self, issue_number: int) -> Dict[str, Any]: """ Fetches a specific issue and its first 10 comments Parameters: issue_number(int): The number for the github issue Returns: dict: A doctionary containing the issue's title, body, and comments as a string """ issue = self.github_repo_instance.get_issue(number=issue_number) page = 0 comments: List[dict] = [] while len(comments) <= 10: comments_page = issue.get_comments().get_page(page) if len(comments_page) == 0: break for comment in comments_page: comments.append({"body": comment.body, "user": comment.user.login}) page += 1 return { "title": issue.title, "body": issue.body, "comments": str(comments), } def create_pull_request(self, pr_query: str) -> str: """ Makes a pull request from the bot's branch to the base branch Parameters: pr_query(str): a string which contains the PR title and the PR body. The title is the first line in the string, and the body are the rest of the string. For example, "Updated README\nmade changes to add info" Returns: str: A success or failure message """ if self.github_base_branch == self.github_branch: return """Cannot make a pull request because commits are already in the master branch""" else: try: title = pr_query.split("\n")[0] body = pr_query[len(title) + 2 :] pr = self.github_repo_instance.create_pull( title=title, body=body, head=self.github_branch, base=self.github_base_branch, ) return f"Successfully created PR number {pr.number}" except Exception as e: return "Unable to make pull request due to error:\n" + str(e) def comment_on_issue(self, comment_query: str) -> str: """ Adds a comment to a github issue Parameters: comment_query(str): a string which contains the issue number, two newlines, and the comment. for example: "1\n\nWorking on it now" adds the comment "working on it now" to issue 1 Returns: str: A success or failure message """ issue_number = int(comment_query.split("\n\n")[0]) comment = comment_query[len(str(issue_number)) + 2 :] try: issue = self.github_repo_instance.get_issue(number=issue_number) issue.create_comment(comment) return "Commented on issue " + str(issue_number) except Exception as e: return "Unable to make comment due to error:\n" + str(e) def create_file(self, file_query: str) -> str: """ Creates a new file on the Github repo Parameters: file_query(str): a string which contains the file path and the file contents. The file path is the first line in the string, and the contents are the rest of the string. For example, "hello_world.md\n# Hello World!" Returns: str: A success or failure message """ file_path = file_query.split("\n")[0] file_contents = file_query[len(file_path) + 2 :] try: exists = self.github_repo_instance.get_contents(file_path) if exists is None: self.github_repo_instance.create_file( path=file_path, message="Create " + file_path, content=file_contents, branch=self.github_branch, ) return "Created file " + file_path else: return f"File already exists at {file_path}. Use update_file instead" except Exception as e: return "Unable to make file due to error:\n" + str(e) def read_file(self, file_path: str) -> str: """ Reads a file from the github repo Parameters: file_path(str): the file path Returns: str: The file decoded as a string """ file = self.github_repo_instance.get_contents(file_path) return file.decoded_content.decode("utf-8") def update_file(self, file_query: str) -> str: """ Updates a file with new content. Parameters: file_query(str): Contains the file path and the file contents. The old file contents is wrapped in OLD <<<< and >>>> OLD The new file contents is wrapped in NEW <<<< and >>>> NEW For example: /test/hello.txt OLD <<<< Hello Earth! >>>> OLD NEW <<<< Hello Mars! >>>> NEW Returns: A success or failure message """ try: file_path = file_query.split("\n")[0] old_file_contents = ( file_query.split("OLD <<<<")[1].split(">>>> OLD")[0].strip() ) new_file_contents = ( file_query.split("NEW <<<<")[1].split(">>>> NEW")[0].strip() ) file_content = self.read_file(file_path) updated_file_content = file_content.replace( old_file_contents, new_file_contents ) if file_content == updated_file_content: return ( "File content was not updated because old content was not found." "It may be helpful to use the read_file action to get " "the current file contents." ) self.github_repo_instance.update_file( path=file_path, message="Update " + file_path, content=updated_file_content, branch=self.github_branch, sha=self.github_repo_instance.get_contents(file_path).sha, ) return "Updated file " + file_path except Exception as e: return "Unable to update file due to error:\n" + str(e) def delete_file(self, file_path: str) -> str: """ Deletes a file from the repo Parameters: file_path(str): Where the file is Returns: str: Success or failure message """ try: file = self.github_repo_instance.get_contents(file_path) self.github_repo_instance.delete_file( path=file_path, message="Delete " + file_path, branch=self.github_branch, sha=file.sha, ) return "Deleted file " + file_path except Exception as e: return "Unable to delete file due to error:\n" + str(e) def run(self, mode: str, query: str) -> str: if mode == "get_issues": return self.get_issues() elif mode == "get_issue": return json.dumps(self.get_issue(int(query))) elif mode == "comment_on_issue": return self.comment_on_issue(query) elif mode == "create_file": return self.create_file(query) elif mode == "create_pull_request": return self.create_pull_request(query) elif mode == "read_file": return self.read_file(query) elif mode == "update_file": return self.update_file(query) elif mode == "delete_file": return self.delete_file(query) else: raise ValueError("Invalid mode" + mode)
[]
2024-01-10
ai-forever/gigachain
libs~experimental~langchain_experimental~autonomous_agents~baby_agi~baby_agi.py
"""BabyAGI agent.""" from collections import deque from typing import Any, Dict, List, Optional from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.schema.language_model import BaseLanguageModel from langchain.schema.vectorstore import VectorStore from langchain_experimental.autonomous_agents.baby_agi.task_creation import ( TaskCreationChain, ) from langchain_experimental.autonomous_agents.baby_agi.task_execution import ( TaskExecutionChain, ) from langchain_experimental.autonomous_agents.baby_agi.task_prioritization import ( TaskPrioritizationChain, ) from langchain_experimental.pydantic_v1 import BaseModel, Field # This class has a metaclass conflict: both `Chain` and `BaseModel` define a metaclass # to use, and the two metaclasses attempt to define the same functions but # in mutually-incompatible ways. It isn't clear how to resolve this, # and this code predates mypy beginning to perform that check. # # Mypy errors: # ``` # Definition of "__repr_str__" in base class "Representation" is # incompatible with definition in base class "BaseModel" [misc] # Definition of "__repr_name__" in base class "Representation" is # incompatible with definition in base class "BaseModel" [misc] # Definition of "__rich_repr__" in base class "Representation" is # incompatible with definition in base class "BaseModel" [misc] # Definition of "__pretty__" in base class "Representation" is # incompatible with definition in base class "BaseModel" [misc] # Metaclass conflict: the metaclass of a derived class must be # a (non-strict) subclass of the metaclasses of all its bases [misc] # ``` # # TODO: look into refactoring this class in a way that avoids the mypy type errors class BabyAGI(Chain, BaseModel): # type: ignore[misc] """Controller model for the BabyAGI agent.""" task_list: deque = Field(default_factory=deque) task_creation_chain: Chain = Field(...) task_prioritization_chain: Chain = Field(...) execution_chain: Chain = Field(...) task_id_counter: int = Field(1) vectorstore: VectorStore = Field(init=False) max_iterations: Optional[int] = None class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True def add_task(self, task: Dict) -> None: self.task_list.append(task) def print_task_list(self) -> None: print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m") for t in self.task_list: print(str(t["task_id"]) + ": " + t["task_name"]) def print_next_task(self, task: Dict) -> None: print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m") print(str(task["task_id"]) + ": " + task["task_name"]) def print_task_result(self, result: str) -> None: print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m") print(result) @property def input_keys(self) -> List[str]: return ["objective"] @property def output_keys(self) -> List[str]: return [] def get_next_task( self, result: str, task_description: str, objective: str, **kwargs: Any ) -> List[Dict]: """Get the next task.""" task_names = [t["task_name"] for t in self.task_list] incomplete_tasks = ", ".join(task_names) response = self.task_creation_chain.run( result=result, task_description=task_description, incomplete_tasks=incomplete_tasks, objective=objective, **kwargs, ) new_tasks = response.split("\n") return [ {"task_name": task_name} for task_name in new_tasks if task_name.strip() ] def prioritize_tasks( self, this_task_id: int, objective: str, **kwargs: Any ) -> List[Dict]: """Prioritize tasks.""" task_names = [t["task_name"] for t in list(self.task_list)] next_task_id = int(this_task_id) + 1 response = self.task_prioritization_chain.run( task_names=", ".join(task_names), next_task_id=str(next_task_id), objective=objective, **kwargs, ) new_tasks = response.split("\n") prioritized_task_list = [] for task_string in new_tasks: if not task_string.strip(): continue task_parts = task_string.strip().split(".", 1) if len(task_parts) == 2: task_id = task_parts[0].strip() task_name = task_parts[1].strip() prioritized_task_list.append( {"task_id": task_id, "task_name": task_name} ) return prioritized_task_list def _get_top_tasks(self, query: str, k: int) -> List[str]: """Get the top k tasks based on the query.""" results = self.vectorstore.similarity_search(query, k=k) if not results: return [] return [str(item.metadata["task"]) for item in results] def execute_task(self, objective: str, task: str, k: int = 5, **kwargs: Any) -> str: """Execute a task.""" context = self._get_top_tasks(query=objective, k=k) return self.execution_chain.run( objective=objective, context="\n".join(context), task=task, **kwargs ) def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run the agent.""" _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() objective = inputs["objective"] first_task = inputs.get("first_task", "Make a todo list") self.add_task({"task_id": 1, "task_name": first_task}) num_iters = 0 while True: if self.task_list: self.print_task_list() # Step 1: Pull the first task task = self.task_list.popleft() self.print_next_task(task) # Step 2: Execute the task result = self.execute_task( objective, task["task_name"], callbacks=_run_manager.get_child() ) this_task_id = int(task["task_id"]) self.print_task_result(result) # Step 3: Store the result in Pinecone result_id = f"result_{task['task_id']}_{num_iters}" self.vectorstore.add_texts( texts=[result], metadatas=[{"task": task["task_name"]}], ids=[result_id], ) # Step 4: Create new tasks and reprioritize task list new_tasks = self.get_next_task( result, task["task_name"], objective, callbacks=_run_manager.get_child(), ) for new_task in new_tasks: self.task_id_counter += 1 new_task.update({"task_id": self.task_id_counter}) self.add_task(new_task) self.task_list = deque( self.prioritize_tasks( this_task_id, objective, callbacks=_run_manager.get_child() ) ) num_iters += 1 if self.max_iterations is not None and num_iters == self.max_iterations: print( "\033[91m\033[1m" + "\n*****TASK ENDING*****\n" + "\033[0m\033[0m" ) break return {} @classmethod def from_llm( cls, llm: BaseLanguageModel, vectorstore: VectorStore, verbose: bool = False, task_execution_chain: Optional[Chain] = None, **kwargs: Any, ) -> "BabyAGI": """Initialize the BabyAGI Controller.""" task_creation_chain = TaskCreationChain.from_llm(llm, verbose=verbose) task_prioritization_chain = TaskPrioritizationChain.from_llm( llm, verbose=verbose ) if task_execution_chain is None: execution_chain: Chain = TaskExecutionChain.from_llm(llm, verbose=verbose) else: execution_chain = task_execution_chain return cls( task_creation_chain=task_creation_chain, task_prioritization_chain=task_prioritization_chain, execution_chain=execution_chain, vectorstore=vectorstore, **kwargs, )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~tools~edenai~image_explicitcontent.py
from __future__ import annotations import logging from typing import Optional from langchain.callbacks.manager import CallbackManagerForToolRun from langchain.tools.edenai.edenai_base_tool import EdenaiTool logger = logging.getLogger(__name__) class EdenAiExplicitImageTool(EdenaiTool): """Tool that queries the Eden AI Explicit image detection. for api reference check edenai documentation: https://docs.edenai.co/reference/image_explicit_content_create. To use, you should have the environment variable ``EDENAI_API_KEY`` set with your API token. You can find your token here: https://app.edenai.run/admin/account/settings """ name = "edenai_image_explicit_content_detection" description = ( "A wrapper around edenai Services Explicit image detection. " """Useful for when you have to extract Explicit Content from images. it detects adult only content in images, that is generally inappropriate for people under the age of 18 and includes nudity, sexual activity, pornography, violence, gore content, etc.""" "Input should be the string url of the image ." ) combine_available = True feature = "image" subfeature = "explicit_content" def _parse_json(self, json_data: dict) -> str: result_str = f"nsfw_likelihood: {json_data['nsfw_likelihood']}\n" for idx, found_obj in enumerate(json_data["items"]): label = found_obj["label"].lower() likelihood = found_obj["likelihood"] result_str += f"{idx}: {label} likelihood {likelihood},\n" return result_str[:-2] def _parse_response(self, json_data: list) -> str: if len(json_data) == 1: result = self._parse_json(json_data[0]) else: for entry in json_data: if entry.get("provider") == "eden-ai": result = self._parse_json(entry) return result def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" query_params = {"file_url": query, "attributes_as_list": False} return self._call_eden_ai(query_params)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~xorbits.py
from typing import Any from langchain.document_loaders.dataframe import BaseDataFrameLoader class XorbitsLoader(BaseDataFrameLoader): """Load `Xorbits` DataFrame.""" def __init__(self, data_frame: Any, page_content_column: str = "text"): """Initialize with dataframe object. Requirements: Must have xorbits installed. You can install with `pip install xorbits`. Args: data_frame: Xorbits DataFrame object. page_content_column: Name of the column containing the page content. Defaults to "text". """ try: import xorbits.pandas as pd except ImportError as e: raise ImportError( "Cannot import xorbits, please install with 'pip install xorbits'." ) from e if not isinstance(data_frame, pd.DataFrame): raise ValueError( f"Expected data_frame to be a xorbits.pandas.DataFrame, \ got {type(data_frame)}" ) super().__init__(data_frame, page_content_column=page_content_column)
[]