pszemraj commited on
Commit
19ce822
1 Parent(s): fe72742

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -8
README.md CHANGED
@@ -6,11 +6,17 @@ language:
6
  - en
7
  size_categories:
8
  - 10K<n<100K
 
9
  ---
10
 
11
  # scientific_lay_summarisation - PLOS - normalized
12
 
13
- This dataset contains scientific lay summaries which have been preprocessed [with this code](https://gist.github.com/pszemraj/bd344637af7c0c10ecf4ab62c4d0ce91). The preprocessing includes fixing punctuation and whitespace issues, and calculating the token length of each text sample using a tokenizer from the T5 model.
 
 
 
 
 
14
  ## Data Cleaning
15
 
16
  The text in both the "article" and "summary" columns was processed to ensure that punctuation and whitespace were consistent. The `fix_punct_whitespace` function was applied to each text sample to:
@@ -38,14 +44,12 @@ The datasets can be loaded using the `pandas` library or using the `datasets` li
38
  To use the processed datasets, load the desired parquet file(s) using `pandas` or `datasets`. Here is an example using `pandas`:
39
 
40
  ```python
41
-
42
  import pandas as pd
43
 
44
- # Load a parquet file
45
  df = pd.read_parquet("scientific_lay_summarisation-plos-norm/train.parquet")
46
-
47
- # Print the first few rows
48
- print(df.head())
49
  ```
50
 
51
 
@@ -53,11 +57,10 @@ print(df.head())
53
  And here is an example using `datasets`:
54
 
55
  ```python
56
-
57
  from datasets import load_dataset
58
 
59
  dataset = load_dataset("pszemraj/scientific_lay_summarisation-plos-norm")
60
-
61
  # Print the first few samples
62
  for i in range(5):
63
  print(dataset[i])
 
6
  - en
7
  size_categories:
8
  - 10K<n<100K
9
+ source_datasets: tomasg25/scientific_lay_summarisation
10
  ---
11
 
12
  # scientific_lay_summarisation - PLOS - normalized
13
 
14
+ This dataset is a modified version of [tomasg25/scientific_lay_summarization](https://huggingface.co/datasets/tomasg25/scientific_lay_summarisation) and contains scientific lay summaries that have been preprocessed [with this code](https://gist.github.com/pszemraj/bd344637af7c0c10ecf4ab62c4d0ce91). The preprocessing includes fixing punctuation and whitespace problems, and calculating the token length of each text sample using a tokenizer from the T5 model.
15
+
16
+ Original dataset details:
17
+ - **Repository:** https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation
18
+ - **Paper:** [Making Science Simple: Corpora for the Lay Summarisation of Scientific Literature](https://arxiv.org/abs/2210.09932)
19
+
20
  ## Data Cleaning
21
 
22
  The text in both the "article" and "summary" columns was processed to ensure that punctuation and whitespace were consistent. The `fix_punct_whitespace` function was applied to each text sample to:
 
44
  To use the processed datasets, load the desired parquet file(s) using `pandas` or `datasets`. Here is an example using `pandas`:
45
 
46
  ```python
47
+ # download the dataset files by clicking on 'use in datasets' and cloning
48
  import pandas as pd
49
 
50
+ # Load train set
51
  df = pd.read_parquet("scientific_lay_summarisation-plos-norm/train.parquet")
52
+ print(df.info())
 
 
53
  ```
54
 
55
 
 
57
  And here is an example using `datasets`:
58
 
59
  ```python
 
60
  from datasets import load_dataset
61
 
62
  dataset = load_dataset("pszemraj/scientific_lay_summarisation-plos-norm")
63
+ train_set = dataset['train']
64
  # Print the first few samples
65
  for i in range(5):
66
  print(dataset[i])