Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -35,10 +35,24 @@ The length of each text sample was calculated in terms of tokens using the T5 to
|
|
35 |
|
36 |
The resulting processed data files are stored in Apache parquet and can be loaded using the `pandas' library or the `datasets' library from the Hugging Face transformers package. The relevant column names and data types for summarization are
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
## Usage
|
43 |
|
44 |
Load the desired parquet file(s) using `pandas` or `datasets`. Here is an example using `pandas`:
|
@@ -63,5 +77,5 @@ dataset = load_dataset("pszemraj/scientific_lay_summarisation-plos-norm")
|
|
63 |
train_set = dataset['train']
|
64 |
# Print the first few samples
|
65 |
for i in range(5):
|
66 |
-
print(
|
67 |
```
|
|
|
35 |
|
36 |
The resulting processed data files are stored in Apache parquet and can be loaded using the `pandas' library or the `datasets' library from the Hugging Face transformers package. The relevant column names and data types for summarization are
|
37 |
|
38 |
+
|
39 |
+
|
40 |
+
```python
|
41 |
+
DatasetDict({
|
42 |
+
train: Dataset({
|
43 |
+
features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'],
|
44 |
+
num_rows: 24773
|
45 |
+
})
|
46 |
+
test: Dataset({
|
47 |
+
features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'],
|
48 |
+
num_rows: 1376
|
49 |
+
})
|
50 |
+
validation: Dataset({
|
51 |
+
features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'],
|
52 |
+
num_rows: 1376
|
53 |
+
})
|
54 |
+
})
|
55 |
+
```
|
56 |
## Usage
|
57 |
|
58 |
Load the desired parquet file(s) using `pandas` or `datasets`. Here is an example using `pandas`:
|
|
|
77 |
train_set = dataset['train']
|
78 |
# Print the first few samples
|
79 |
for i in range(5):
|
80 |
+
print(train_set[i])
|
81 |
```
|