pszemraj commited on
Commit
fc5486c
1 Parent(s): 0a8377c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -5
README.md CHANGED
@@ -35,10 +35,24 @@ The length of each text sample was calculated in terms of tokens using the T5 to
35
 
36
  The resulting processed data files are stored in Apache parquet and can be loaded using the `pandas' library or the `datasets' library from the Hugging Face transformers package. The relevant column names and data types for summarization are
37
 
38
- - `article`: the scientific article text (string)
39
- - `summary`: the lay summary text (string)
40
- - `article_length`: the length of the article in tokens (int)
41
- - `summary_length`: the length of the summary in tokens (int)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  ## Usage
43
 
44
  Load the desired parquet file(s) using `pandas` or `datasets`. Here is an example using `pandas`:
@@ -63,5 +77,5 @@ dataset = load_dataset("pszemraj/scientific_lay_summarisation-plos-norm")
63
  train_set = dataset['train']
64
  # Print the first few samples
65
  for i in range(5):
66
- print(dataset[i])
67
  ```
 
35
 
36
  The resulting processed data files are stored in Apache parquet and can be loaded using the `pandas' library or the `datasets' library from the Hugging Face transformers package. The relevant column names and data types for summarization are
37
 
38
+
39
+
40
+ ```python
41
+ DatasetDict({
42
+ train: Dataset({
43
+ features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'],
44
+ num_rows: 24773
45
+ })
46
+ test: Dataset({
47
+ features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'],
48
+ num_rows: 1376
49
+ })
50
+ validation: Dataset({
51
+ features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'],
52
+ num_rows: 1376
53
+ })
54
+ })
55
+ ```
56
  ## Usage
57
 
58
  Load the desired parquet file(s) using `pandas` or `datasets`. Here is an example using `pandas`:
 
77
  train_set = dataset['train']
78
  # Print the first few samples
79
  for i in range(5):
80
+ print(train_set[i])
81
  ```