title
stringlengths 7
246
| abstract
stringlengths 3
3.31k
|
---|---|
Deep Predictive Motion Tracking in Magnetic Resonance Imaging: Application to Fetal Imaging | Fetal magnetic resonance imaging (MRI) is challenged by uncontrollable, large, and irregular fetal movements. It is, therefore, performed through visual monitoring of fetal motion and repeated acquisitions to ensure diagnostic-quality images are acquired. Nevertheless, visual monitoring of fetal motion based on displayed slices, and navigation at the level of stacks-of-slices is inefficient. The current process is highly operator-dependent, increases scanner usage and cost, and significantly increases the length of fetal MRI scans which makes them hard to tolerate for pregnant women. To help build automatic MRI motion tracking and navigation systems to overcome the limitations of the current process and improve fetal imaging, we have developed a new real time image-based motion tracking method based on deep learning that learns to predict fetal motion directly from acquired images. Our method is based on a recurrent neural network, composed of spatial and temporal encoder-decoders, that infers motion parameters from anatomical features extracted from sequences of acquired slices. We compared our trained network on held out test sets (including data with different characteristics, e.g. different fetuses scanned at different ages, and motion trajectories recorded from volunteer subjects) with networks designed for estimation as well as methods adopted to make predictions. The results show that our method outperformed alternative techniques, and achieved real-time performance with average errors of 3.5 and 8 degrees for the estimation and prediction tasks, respectively. Our real-time deep predictive motion tracking technique can be used to assess fetal movements, to guide slice acquisitions, and to build navigation systems for fetal MRI. |
Detecting Electric Vehicle Battery Failure via Dynamic-VAE | In this note, we describe a battery failure detection pipeline backed up by deep learning models. We first introduce a large-scale Electric vehicle (EV) battery dataset including cleaned battery-charging data from hundreds of vehicles. We then formulate battery failure detection as an outlier detection problem, and propose a new algorithm named Dynamic-VAE based on dynamic system and variational autoencoders. We validate the performance of our proposed algorithm against several baselines on our released dataset and demonstrated the effectiveness of Dynamic-VAE. |
Hybrid Modelling Approaches for Forecasting Energy Spot Prices in EPEC market | In this work we considered several hybrid modelling approaches for forecasting energy spot prices in EPEC market. Hybridization is performed through combining a Naive model, Fourier analysis, ARMA and GARCH models, a mean-reversion and jump-diffusion model, and Recurrent Neural Networks (RNN). Training data was given in terms of electricity prices for 2013-2014 years, and test data as a year of 2015. |
A Communication-Efficient Distributed Gradient Clipping Algorithm for Training Deep Neural Networks | In distributed training of deep neural networks or Federated Learning (FL), people usually run Stochastic Gradient Descent (SGD) or its variants on each machine and communicate with other machines periodically. However, SGD might converge slowly in training some deep neural networks (e.g., RNN, LSTM) because of the exploding gradient issue. Gradient clipping is usually employed to address this issue in the single machine setting, but exploring this technique in the FL setting is still in its infancy: it remains mysterious whether the gradient clipping scheme can take advantage of multiple machines to enjoy parallel speedup. The main technical difficulty lies in dealing with nonconvex loss function, non-Lipschitz continuous gradient, and skipping communication rounds simultaneously. In this paper, we explore a relaxed-smoothness assumption of the loss landscape which LSTM was shown to satisfy in previous works and design a communication-efficient gradient clipping algorithm. This algorithm can be run on multiple machines, where each machine employs a gradient clipping scheme and communicate with other machines after multiple steps of gradient-based updates. Our algorithm is proved to have $O\left(\frac{1}{N\epsilon^4}\right)$ iteration complexity for finding an $\epsilon$-stationary point, where $N$ is the number of machines. This indicates that our algorithm enjoys linear speedup. We prove this result by introducing novel analysis techniques of estimating truncated random variables, which we believe are of independent interest. Our experiments on several benchmark datasets and various scenarios demonstrate that our algorithm indeed exhibits fast convergence speed in practice and thus validates our theory. |
Leaving No One Behind: A Multi-Scenario Multi-Task Meta Learning Approach for Advertiser Modeling | Advertisers play an essential role in many e-commerce platforms like Taobao and Amazon. Fulfilling their marketing needs and supporting their business growth is critical to the long-term prosperity of platform economies. However, compared with extensive studies on user modeling such as click-through rate predictions, much less attention has been drawn to advertisers, especially in terms of understanding their diverse demands and performance. Different from user modeling, advertiser modeling generally involves many kinds of tasks (e.g. predictions of advertisers' expenditure, active-rate, or total impressions of promoted products). In addition, major e-commerce platforms often provide multiple marketing scenarios (e.g. Sponsored Search, Display Ads, Live Streaming Ads) while advertisers' behavior tend to be dispersed among many of them. This raises the necessity of multi-task and multi-scenario consideration in comprehensive advertiser modeling, which faces the following challenges: First, one model per scenario or per task simply doesn't scale; Second, it is particularly hard to model new or minor scenarios with limited data samples; Third, inter-scenario correlations are complicated, and may vary given different tasks. To tackle these challenges, we propose a multi-scenario multi-task meta learning approach (M2M) which simultaneously predicts multiple tasks in multiple advertising scenarios. |
A Convex Similarity Index for Sparse Recovery of Missing Image Samples | This paper investigates the problem of recovering missing samples using methods based on sparse representation adapted especially for image signals. Instead of $l_2$-norm or Mean Square Error (MSE), a new perceptual quality measure is used as the similarity criterion between the original and the reconstructed images. The proposed criterion called Convex SIMilarity (CSIM) index is a modified version of the Structural SIMilarity (SSIM) index, which despite its predecessor, is convex and uni-modal. We derive mathematical properties for the proposed index and show how to optimally choose the parameters of the proposed criterion, investigating the Restricted Isometry (RIP) and error-sensitivity properties. We also propose an iterative sparse recovery method based on a constrained $l_1$-norm minimization problem, incorporating CSIM as the fidelity criterion. The resulting convex optimization problem is solved via an algorithm based on Alternating Direction Method of Multipliers (ADMM). Taking advantage of the convexity of the CSIM index, we also prove the convergence of the algorithm to the globally optimal solution of the proposed optimization problem, starting from any arbitrary point. Simulation results confirm the performance of the new similarity index as well as the proposed algorithm for missing sample recovery of image patch signals. |
Single-step deep reinforcement learning for open-loop control of laminar and turbulent flows | This research gauges the ability of deep reinforcement learning (DRL) techniques to assist the optimization and control of fluid mechanical systems. It combines a novel, "degenerate" version of the proximal policy optimization (PPO) algorithm, that trains a neural network in optimizing the system only once per learning episode, and an in-house stabilized finite elements environment implementing the variational multiscale (VMS) method, that computes the numerical reward fed to the neural network. Three prototypical examples of separated flows in two dimensions are used as testbed for developing the methodology, each of which adds a layer of complexity due either to the unsteadiness of the flow solutions, or the sharpness of the objective function, or the dimension of the control parameter space. Relevance is carefully assessed by comparing systematically to reference data obtained by canonical direct and adjoint methods. Beyond adding value to the shallow literature on this subject, these findings establish the potential of single-step PPO for reliable black-box optimization of computational fluid dynamics (CFD) systems, which paves the way for future progress in optimal flow control using this new class of methods. |
Algorithms for ridge estimation with convergence guarantees | The extraction of filamentary structure from a point cloud is discussed. The filaments are modeled as ridge lines or higher dimensional ridges of an underlying density. We propose two novel algorithms, and provide theoretical guarantees for their convergences. We consider the new algorithms as alternatives to the Subspace Constraint Mean Shift (SCMS) algorithm that do not suffer from a shortcoming of the SCMS that is also revealed in this paper. |
Deep Learning with Kernel Flow Regularization for Time Series Forecasting | Long Short-Term Memory (LSTM) neural networks have been widely used for time series forecasting problems. However, LSTMs are prone to overfitting and performance reduction during test phases. Several different regularization techniques have been shown in literature to prevent overfitting problems in neural networks. In this paper, first, we introduce application of kernel flow methods for time series forecasting in general. Afterward, we examine the effectiveness of applying kernel flow regularization on LSTM layers to avoid overfitting problems. We describe a regularization method by applying kernel flow loss function on LSTM layers. In experimental results, we show that kernel flow outperforms baseline models on time series forecasting benchmarks. We also compare the effect of dropout and kernel flow regularization techniques on LSTMs. The experimental results illustrate that kernel flow achieves similar regularization effect to dropout. It also shows that the best results is obtained using both kernel flow and dropout regularizations with early stopping on LSTM layers on some time series datasets (e.g. power-load demand forecasts). |
Sparse Attentive Backtracking: Temporal CreditAssignment Through Reminding | Learning long-term dependencies in extended temporal sequences requires credit assignment to events far back in the past. The most common method for training recurrent neural networks, back-propagation through time (BPTT), requires credit information to be propagated backwards through every single step of the forward computation, potentially over thousands or millions of time steps. This becomes computationally expensive or even infeasible when used with long sequences. Importantly, biological brains are unlikely to perform such detailed reverse replay over very long sequences of internal states (consider days, months, or years.) However, humans are often reminded of past memories or mental states which are associated with the current mental state. We consider the hypothesis that such memory associations between past and present could be used for credit assignment through arbitrarily long sequences, propagating the credit assigned to the current state to the associated past state. Based on this principle, we study a novel algorithm which only back-propagates through a few of these temporal skip connections, realized by a learned attention mechanism that associates current states with relevant past states. We demonstrate in experiments that our method matches or outperforms regular BPTT and truncated BPTT in tasks involving particularly long-term dependencies, but without requiring the biologically implausible backward replay through the whole history of states. Additionally, we demonstrate that the proposed method transfers to longer sequences significantly better than LSTMs trained with BPTT and LSTMs trained with full self-attention. |
PENet: Object Detection using Points Estimation in Aerial Images | Aerial imagery has been increasingly adopted in mission-critical tasks, such as traffic surveillance, smart cities, and disaster assistance. However, identifying objects from aerial images faces the following challenges: 1) objects of interests are often too small and too dense relative to the images; 2) objects of interests are often in different relative sizes; and 3) the number of objects in each category is imbalanced. A novel network structure, Points Estimated Network (PENet), is proposed in this work to answer these challenges. PENet uses a Mask Resampling Module (MRM) to augment the imbalanced datasets, a coarse anchor-free detector (CPEN) to effectively predict the center points of the small object clusters, and a fine anchor-free detector FPEN to locate the precise positions of the small objects. An adaptive merge algorithm Non-maximum Merge (NMM) is implemented in CPEN to address the issue of detecting dense small objects, and a hierarchical loss is defined in FPEN to further improve the classification accuracy. Our extensive experiments on aerial datasets visDrone and UAVDT showed that PENet achieved higher precision results than existing state-of-the-art approaches. Our best model achieved 8.7% improvement on visDrone and 20.3% on UAVDT. |
Semi-Supervised Classification Based on Classification from Positive and Unlabeled Data | Most of the semi-supervised classification methods developed so far use unlabeled data for regularization purposes under particular distributional assumptions such as the cluster assumption. In contrast, recently developed methods of classification from positive and unlabeled data (PU classification) use unlabeled data for risk evaluation, i.e., label information is directly extracted from unlabeled data. In this paper, we extend PU classification to also incorporate negative data and propose a novel semi-supervised classification approach. We establish generalization error bounds for our novel methods and show that the bounds decrease with respect to the number of unlabeled data without the distributional assumptions that are required in existing semi-supervised classification methods. Through experiments, we demonstrate the usefulness of the proposed methods. |
Improved Regret Analysis for Variance-Adaptive Linear Bandits and Horizon-Free Linear Mixture MDPs | In online learning problems, exploiting low variance plays an important role in obtaining tight performance guarantees yet is challenging because variances are often not known a priori. Recently, considerable progress has been made by Zhang et al. (2021) where they obtain a variance-adaptive regret bound for linear bandits without knowledge of the variances and a horizon-free regret bound for linear mixture Markov decision processes (MDPs). In this paper, we present novel analyses that improve their regret bounds significantly. For linear bandits, we achieve $\tilde O(d^{1.5}\sqrt{\sum_{k}^K \sigma_k^2} + d^2)$ where $d$ is the dimension of the features, $K$ is the time horizon, and $\sigma_k^2$ is the noise variance at time step $k$, and $\tilde O$ ignores polylogarithmic dependence, which is a factor of $d^3$ improvement. For linear mixture MDPs with the assumption of maximum cumulative reward in an episode being in $[0,1]$, we achieve a horizon-free regret bound of $\tilde O(d \sqrt{K} + d^2)$ where $d$ is the number of base models and $K$ is the number of episodes. This is a factor of $d^{3.5}$ improvement in the leading term and $d^7$ in the lower order term. Our analysis critically relies on a novel elliptical potential `count' lemma. This lemma allows a novel regret analysis in conjunction with the peeling trick, which is of independent interest. |
DeepTracker: Visualizing the Training Process of Convolutional Neural Networks | Deep convolutional neural networks (CNNs) have achieved remarkable success in various fields. However, training an excellent CNN is practically a trial-and-error process that consumes a tremendous amount of time and computer resources. To accelerate the training process and reduce the number of trials, experts need to understand what has occurred in the training process and why the resulting CNN behaves as such. However, current popular training platforms, such as TensorFlow, only provide very little and general information, such as training/validation errors, which is far from enough to serve this purpose. To bridge this gap and help domain experts with their training tasks in a practical environment, we propose a visual analytics system, DeepTracker, to facilitate the exploration of the rich dynamics of CNN training processes and to identify the unusual patterns that are hidden behind the huge amount of training log. Specifically,we combine a hierarchical index mechanism and a set of hierarchical small multiples to help experts explore the entire training log from different levels of detail. We also introduce a novel cube-style visualization to reveal the complex correlations among multiple types of heterogeneous training data including neuron weights, validation images, and training iterations. Three case studies are conducted to demonstrate how DeepTracker provides its users with valuable knowledge in an industry-level CNN training process, namely in our case, training ResNet-50 on the ImageNet dataset. We show that our method can be easily applied to other state-of-the-art "very deep" CNN models. |
Settling the Horizon-Dependence of Sample Complexity in Reinforcement Learning | Recently there is a surge of interest in understanding the horizon-dependence of the sample complexity in reinforcement learning (RL). Notably, for an RL environment with horizon length $H$, previous work have shown that there is a probably approximately correct (PAC) algorithm that learns an $O(1)$-optimal policy using $\mathrm{polylog}(H)$ episodes of environment interactions when the number of states and actions is fixed. It is yet unknown whether the $\mathrm{polylog}(H)$ dependence is necessary or not. In this work, we resolve this question by developing an algorithm that achieves the same PAC guarantee while using only $O(1)$ episodes of environment interactions, completely settling the horizon-dependence of the sample complexity in RL. We achieve this bound by (i) establishing a connection between value functions in discounted and finite-horizon Markov decision processes (MDPs) and (ii) a novel perturbation analysis in MDPs. We believe our new techniques are of independent interest and could be applied in related questions in RL. |
Localized adversarial artifacts for compressed sensing MRI | As interest in deep neural networks (DNNs) for image reconstruction tasks grows, their reliability has been called into question (Antun et al., 2020; Gottschling et al., 2020). However, recent work has shown that compared to total variation (TV) minimization, they show similar robustness to adversarial noise in terms of $\ell^2$-reconstruction error (Genzel et al., 2022). We consider a different notion of robustness, using the $\ell^\infty$-norm, and argue that localized reconstruction artifacts are a more relevant defect than the $\ell^2$-error. We create adversarial perturbations to undersampled MRI measurements which induce severe localized artifacts in the TV-regularized reconstruction. The same attack method is not as effective against DNN based reconstruction. Finally, we show that this phenomenon is inherent to reconstruction methods for which exact recovery can be guaranteed, as with compressed sensing reconstructions with $\ell^1$- or TV-minimization. |
Memory Efficient Meta-Learning with Large Images | Meta learning approaches to few-shot classification are computationally efficient at test time, requiring just a few optimization steps or single forward pass to learn a new task, but they remain highly memory-intensive to train. This limitation arises because a task's entire support set, which can contain up to 1000 images, must be processed before an optimization step can be taken. Harnessing the performance gains offered by large images thus requires either parallelizing the meta-learner across multiple GPUs, which may not be available, or trade-offs between task and image size when memory constraints apply. We improve on both options by proposing LITE, a general and memory efficient episodic training scheme that enables meta-training on large tasks composed of large images on a single GPU. We achieve this by observing that the gradients for a task can be decomposed into a sum of gradients over the task's training images. This enables us to perform a forward pass on a task's entire training set but realize significant memory savings by back-propagating only a random subset of these images which we show is an unbiased approximation of the full gradient. We use LITE to train meta-learners and demonstrate new state-of-the-art accuracy on the real-world ORBIT benchmark and 3 of the 4 parts of the challenging VTAB+MD benchmark relative to leading meta-learners. LITE also enables meta-learners to be competitive with transfer learning approaches but at a fraction of the test-time computational cost, thus serving as a counterpoint to the recent narrative that transfer learning is all you need for few-shot classification. |
Predicting MMSE Score from Finger-Tapping Measurement | Dementia is a leading cause of diseases for the elderly. Early diagnosis is very important for the elderly living with dementias. In this paper, we propose a method for dementia diagnosis by predicting MMSE score from finger-tapping measurement with machine learning pipeline. Based on measurement of finger tapping movement, the pipeline is first to select finger-tapping attributes with copula entropy and then to predict MMSE score from the selected attributes with predictive models. Experiments on real world data show that the predictive models such developed present good prediction performance. As a byproduct, the associations between certain finger-tapping attributes ('Number of taps', 'Average of intervals', and 'Frequency of taps' of both hands of bimanual in-phase task) and MMSE score are discovered with copula entropy, which may be interpreted as the biological relationship between cognitive ability and motor ability and therefore makes the predictive models explainable. The selected finger-tapping attributes can be considered as dementia biomarkers. |
Self-focusing virtual screening with active design space pruning | High-throughput virtual screening is an indispensable technique utilized in the discovery of small molecules. In cases where the library of molecules is exceedingly large, the cost of an exhaustive virtual screen may be prohibitive. Model-guided optimization has been employed to lower these costs through dramatic increases in sample efficiency compared to random selection. However, these techniques introduce new costs to the workflow through the surrogate model training and inference steps. In this study, we propose an extension to the framework of model-guided optimization that mitigates inferences costs using a technique we refer to as design space pruning (DSP), which irreversibly removes poor-performing candidates from consideration. We study the application of DSP to a variety of optimization tasks and observe significant reductions in overhead costs while exhibiting similar performance to the baseline optimization. DSP represents an attractive extension of model-guided optimization that can limit overhead costs in optimization settings where these costs are non-negligible relative to objective costs, such as docking. |
Graph Ordering: Towards the Optimal by Learning | Graph representation learning has achieved a remarkable success in many graph-based applications, such as node classification, link prediction, and community detection. These models are usually designed to preserve the vertex information at different granularity and reduce the problems in discrete space to some machine learning tasks in continuous space. However, regardless of the fruitful progress, for some kind of graph applications, such as graph compression and edge partition, it is very hard to reduce them to some graph representation learning tasks. Moreover, these problems are closely related to reformulating a global layout for a specific graph, which is an important NP-hard combinatorial optimization problem: graph ordering. In this paper, we propose to attack the graph ordering problem behind such applications by a novel learning approach. Distinguished from greedy algorithms based on predefined heuristics, we propose a neural network model: Deep Order Network (DON) to capture the hidden locality structure from partial vertex order sets. Supervised by sampled partial order, DON has the ability to infer unseen combinations. Furthermore, to alleviate the combinatorial explosion in the training space of DON and make the efficient partial vertex order sampling , we employ a reinforcement learning model: the Policy Network, to adjust the partial order sampling probabilities during the training phase of DON automatically. To this end, the Policy Network can improve the training efficiency and guide DON to evolve towards a more effective model automatically. Comprehensive experiments on both synthetic and real data validate that DON-RL outperforms the current state-of-the-art heuristic algorithm consistently. Two case studies on graph compression and edge partitioning demonstrate the potential power of DON-RL in real applications. |
Exact Phase Transitions in Deep Learning | This work reports deep-learning-unique first-order and second-order phase transitions, whose phenomenology closely follows that in statistical physics. In particular, we prove that the competition between prediction error and model complexity in the training loss leads to the second-order phase transition for nets with one hidden layer and the first-order phase transition for nets with more than one hidden layer. The proposed theory is directly relevant to the optimization of neural networks and points to an origin of the posterior collapse problem in Bayesian deep learning. |
Noise Contrastive Priors for Functional Uncertainty | Obtaining reliable uncertainty estimates of neural network predictions is a long standing challenge. Bayesian neural networks have been proposed as a solution, but it remains open how to specify their prior. In particular, the common practice of an independent normal prior in weight space imposes relatively weak constraints on the function posterior, allowing it to generalize in unforeseen ways on inputs outside of the training distribution. We propose noise contrastive priors (NCPs) to obtain reliable uncertainty estimates. The key idea is to train the model to output high uncertainty for data points outside of the training distribution. NCPs do so using an input prior, which adds noise to the inputs of the current mini batch, and an output prior, which is a wide distribution given these inputs. NCPs are compatible with any model that can output uncertainty estimates, are easy to scale, and yield reliable uncertainty estimates throughout training. Empirically, we show that NCPs prevent overfitting outside of the training distribution and result in uncertainty estimates that are useful for active learning. We demonstrate the scalability of our method on the flight delays data set, where we significantly improve upon previously published results. |
A New Look at Dynamic Regret for Non-Stationary Stochastic Bandits | We study the non-stationary stochastic multi-armed bandit problem, where the reward statistics of each arm may change several times during the course of learning. The performance of a learning algorithm is evaluated in terms of their dynamic regret, which is defined as the difference between the expected cumulative reward of an agent choosing the optimal arm in every time step and the cumulative reward of the learning algorithm. One way to measure the hardness of such environments is to consider how many times the identity of the optimal arm can change. We propose a method that achieves, in $K$-armed bandit problems, a near-optimal $\widetilde O(\sqrt{K N(S+1)})$ dynamic regret, where $N$ is the time horizon of the problem and $S$ is the number of times the identity of the optimal arm changes, without prior knowledge of $S$. Previous works for this problem obtain regret bounds that scale with the number of changes (or the amount of change) in the reward functions, which can be much larger, or assume prior knowledge of $S$ to achieve similar bounds. |
Free Energy Minimization: A Unified Framework for Modelling, Inference, Learning,and Optimization | The goal of these lecture notes is to review the problem of free energy minimization as a unified framework underlying the definition of maximum entropy modelling, generalized Bayesian inference, learning with latent variables, statistical learning analysis of generalization,and local optimization. Free energy minimization is first introduced, here and historically, as a thermodynamic principle. Then, it is described mathematically in the context of Fenchel duality. Finally, the mentioned applications to modelling, inference, learning, and optimization are covered starting from basic principles. |
Adaptive Kernel Value Caching for SVM Training | Support Vector Machines (SVMs) can solve structured multi-output learning problems such as multi-label classification, multiclass classification and vector regression. SVM training is expensive especially for large and high dimensional datasets. The bottleneck of the SVM training often lies in the kernel value computation. In many real-world problems, the same kernel values are used in many iterations during the training, which makes the caching of kernel values potentially useful. The majority of the existing studies simply adopt the LRU (least recently used) replacement strategy for caching kernel values. However, as we analyze in this paper, the LRU strategy generally achieves high hit ratio near the final stage of the training, but does not work well in the whole training process. Therefore, we propose a new caching strategy called EFU (less frequently used) which replaces the less frequently used kernel values that enhances LFU (least frequently used). Our experimental results show that EFU often has 20\% higher hit ratio than LRU in the training with the Gaussian kernel. To further optimize the strategy, we propose a caching strategy called HCST (hybrid caching for the SVM training), which has a novel mechanism to automatically adapt the better caching strategy in the different stages of the training. We have integrated the caching strategy into ThunderSVM, a recent SVM library on many-core processors. Our experiments show that HCST adaptively achieves high hit ratios with little runtime overhead among different problems including multi-label classification, multiclass classification and regression problems. Compared with other existing caching strategies, HCST achieves 20\% more reduction in training time on average. |
Competing AI: How does competition feedback affect machine learning? | This papers studies how competition affects machine learning (ML) predictors. As ML becomes more ubiquitous, it is often deployed by companies to compete over customers. For example, digital platforms like Yelp use ML to predict user preference and make recommendations. A service that is more often queried by users, perhaps because it more accurately anticipates user preferences, is also more likely to obtain additional user data (e.g. in the form of a Yelp review). Thus, competing predictors cause feedback loops whereby a predictor's performance impacts what training data it receives and biases its predictions over time. We introduce a flexible model of competing ML predictors that enables both rapid experimentation and theoretical tractability. We show with empirical and mathematical analysis that competition causes predictors to specialize for specific sub-populations at the cost of worse performance over the general population. We further analyze the impact of predictor specialization on the overall prediction quality experienced by users. We show that having too few or too many competing predictors in a market can hurt the overall prediction quality. Our theory is complemented by experiments on several real datasets using popular learning algorithms, such as neural networks and nearest neighbor methods. |
Robust Subspace Clustering via Tighter Rank Approximation | Matrix rank minimization problem is in general NP-hard. The nuclear norm is used to substitute the rank function in many recent studies. Nevertheless, the nuclear norm approximation adds all singular values together and the approximation error may depend heavily on the magnitudes of singular values. This might restrict its capability in dealing with many practical problems. In this paper, an arctangent function is used as a tighter approximation to the rank function. We use it on the challenging subspace clustering problem. For this nonconvex minimization problem, we develop an effective optimization procedure based on a type of augmented Lagrange multipliers (ALM) method. Extensive experiments on face clustering and motion segmentation show that the proposed method is effective for rank approximation. |
Adversarial Vulnerability of Randomized Ensembles | Despite the tremendous success of deep neural networks across various tasks, their vulnerability to imperceptible adversarial perturbations has hindered their deployment in the real world. Recently, works on randomized ensembles have empirically demonstrated significant improvements in adversarial robustness over standard adversarially trained (AT) models with minimal computational overhead, making them a promising solution for safety-critical resource-constrained applications. However, this impressive performance raises the question: Are these robustness gains provided by randomized ensembles real? In this work we address this question both theoretically and empirically. We first establish theoretically that commonly employed robustness evaluation methods such as adaptive PGD provide a false sense of security in this setting. Subsequently, we propose a theoretically-sound and efficient adversarial attack algorithm (ARC) capable of compromising random ensembles even in cases where adaptive PGD fails to do so. We conduct comprehensive experiments across a variety of network architectures, training schemes, datasets, and norms to support our claims, and empirically establish that randomized ensembles are in fact more vulnerable to $\ell_p$-bounded adversarial perturbations than even standard AT models. Our code can be found at https://github.com/hsndbk4/ARC. |
Co-Representation Learning For Classification and Novel Class Detection via Deep Networks | One of the key challenges of performing label prediction over a data stream concerns with the emergence of instances belonging to unobserved class labels over time. Previously, this problem has been addressed by detecting such instances and using them for appropriate classifier adaptation. The fundamental aspect of a novel-class detection strategy relies on the ability of comparison among observed instances to discriminate them into known and unknown classes. Therefore, studies in the past have proposed various metrics suitable for comparison over the observed feature space. Unfortunately, these similarity measures fail to reliably identify distinct regions in observed feature spaces useful for class discrimination and novel-class detection, especially in streams containing high-dimensional data instances such as images and texts. In this paper, we address this key challenge by proposing a semi-supervised multi-task learning framework called \sysname{} which aims to intrinsically search for a latent space suitable for detecting labels of instances from both known and unknown classes. We empirically measure the performance of \sysname{} over multiple real-world image and text datasets and demonstrate its superiority by comparing its performance with existing semi-supervised methods. |
On the privacy-utility trade-off in differentially private hierarchical text classification | Hierarchical text classification consists in classifying text documents into a hierarchy of classes and sub-classes. Although artificial neural networks have proved useful to perform this task, unfortunately they can leak training data information to adversaries due to training data memorization. Using differential privacy during model training can mitigate leakage attacks against trained models, enabling the models to be shared safely at the cost of reduced model accuracy. This work investigates the privacy-utility trade-off in hierarchical text classification with differential privacy guarantees, and identifies neural network architectures that offer superior trade-offs. To this end, we use a white-box membership inference attack to empirically assess the information leakage of three widely used neural network architectures. We show that large differential privacy parameters already suffice to completely mitigate membership inference attacks, thus resulting only in a moderate decrease in model utility. More specifically, for large datasets with long texts we observed Transformer-based models to achieve an overall favorable privacy-utility trade-off, while for smaller datasets with shorter texts convolutional neural networks are preferable. |
Cauchy Principal Component Analysis | Principal Component Analysis (PCA) has wide applications in machine learning, text mining and computer vision. Classical PCA based on a Gaussian noise model is fragile to noise of large magnitude. Laplace noise assumption based PCA methods cannot deal with dense noise effectively. In this paper, we propose Cauchy Principal Component Analysis (Cauchy PCA), a very simple yet effective PCA method which is robust to various types of noise. We utilize Cauchy distribution to model noise and derive Cauchy PCA under the maximum likelihood estimation (MLE) framework with low rank constraint. Our method can robustly estimate the low rank matrix regardless of whether noise is large or small, dense or sparse. We analyze the robustness of Cauchy PCA from a robust statistics view and present an efficient singular value projection optimization method. Experimental results on both simulated data and real applications demonstrate the robustness of Cauchy PCA to various noise patterns. |
Click-Based Student Performance Prediction: A Clustering Guided Meta-Learning Approach | We study the problem of predicting student knowledge acquisition in online courses from clickstream behavior. Motivated by the proliferation of eLearning lecture delivery, we specifically focus on student in-video activity in lectures videos, which consist of content and in-video quizzes. Our methodology for predicting in-video quiz performance is based on three key ideas we develop. First, we model students' clicking behavior via time-series learning architectures operating on raw event data, rather than defining hand-crafted features as in existing approaches that may lose important information embedded within the click sequences. Second, we develop a self-supervised clickstream pre-training to learn informative representations of clickstream events that can initialize the prediction model effectively. Third, we propose a clustering guided meta-learning-based training that optimizes the prediction model to exploit clusters of frequent patterns in student clickstream sequences. Through experiments on three real-world datasets, we demonstrate that our method obtains substantial improvements over two baseline models in predicting students' in-video quiz performance. Further, we validate the importance of the pre-training and meta-learning components of our framework through ablation studies. Finally, we show how our methodology reveals insights on video-watching behavior associated with knowledge acquisition for useful learning analytics. |
Improving Ads-Profitability Using Traffic-Fingerprints | This paper introduces the concept of traffic-fingerprints, i.e., normalized 24-dimensional vectors representing a distribution of daily traffic on a web page. Using k-means clustering we show that similarity of traffic-fingerprints is related to the similarity of profitability time patterns for ads shown on these pages. In other words, these fingerprints are correlated with the conversions rates, thus allowing us to argue about conversion rates on pages with negligible traffic. By blocking or unblocking whole clusters of pages we were able to increase the revenue of online campaigns by more than 50%. |
Multispectral Biometrics System Framework: Application to Presentation Attack Detection | In this work, we present a general framework for building a biometrics system capable of capturing multispectral data from a series of sensors synchronized with active illumination sources. The framework unifies the system design for different biometric modalities and its realization on face, finger and iris data is described in detail. To the best of our knowledge, the presented design is the first to employ such a diverse set of electromagnetic spectrum bands, ranging from visible to long-wave-infrared wavelengths, and is capable of acquiring large volumes of data in seconds. Having performed a series of data collections, we run a comprehensive analysis on the captured data using a deep-learning classifier for presentation attack detection. Our study follows a data-centric approach attempting to highlight the strengths and weaknesses of each spectral band at distinguishing live from fake samples. |
EagerPy: Writing Code That Works Natively with PyTorch, TensorFlow, JAX, and NumPy | EagerPy is a Python framework that lets you write code that automatically works natively with PyTorch, TensorFlow, JAX, and NumPy. Library developers no longer need to choose between supporting just one of these frameworks or reimplementing the library for each framework and dealing with code duplication. Users of such libraries can more easily switch frameworks without being locked in by a specific 3rd party library. Beyond multi-framework support, EagerPy also brings comprehensive type annotations and consistent support for method chaining to any framework. The latest documentation is available online at https://eagerpy.jonasrauber.de and the code can be found on GitHub at https://github.com/jonasrauber/eagerpy. |
How is a data-driven approach better than random choice in label space division for multi-label classification? | We propose using five data-driven community detection approaches from social networks to partition the label space for the task of multi-label classification as an alternative to random partitioning into equal subsets as performed by RAkELd: modularity-maximizing fastgreedy and leading eigenvector, infomap, walktrap and label propagation algorithms. We construct a label co-occurence graph (both weighted an unweighted versions) based on training data and perform community detection to partition the label set. We include Binary Relevance and Label Powerset classification methods for comparison. We use gini-index based Decision Trees as the base classifier. We compare educated approaches to label space divisions against random baselines on 12 benchmark data sets over five evaluation measures. We show that in almost all cases seven educated guess approaches are more likely to outperform RAkELd than otherwise in all measures, but Hamming Loss. We show that fastgreedy and walktrap community detection methods on weighted label co-occurence graphs are 85-92% more likely to yield better F1 scores than random partitioning. Infomap on the unweighted label co-occurence graphs is on average 90% of the times better than random paritioning in terms of Subset Accuracy and 89% when it comes to Jaccard similarity. Weighted fastgreedy is better on average than RAkELd when it comes to Hamming Loss. |
Backpropagation-Free Learning Method for Correlated Fuzzy Neural Networks | In this paper, a novel stepwise learning approach based on estimating desired premise parts' outputs by solving a constrained optimization problem is proposed. This learning approach does not require backpropagating the output error to learn the premise parts' parameters. Instead, the near best output values of the rules premise parts are estimated and their parameters are changed to reduce the error between current premise parts' outputs and the estimated desired ones. Therefore, the proposed learning method avoids error backpropagation, which lead to vanishing gradient and consequently getting stuck in a local optimum. The proposed method does not need any initialization method. This learning method is utilized to train a new Takagi-Sugeno-Kang (TSK) Fuzzy Neural Network with correlated fuzzy rules including many parameters in both premise and consequent parts, avoiding getting stuck in a local optimum due to vanishing gradient. To learn the proposed network parameters, first, a constrained optimization problem is introduced and solved to estimate the desired values of premise parts' output values. Next, the error between these values and the current ones is utilized to adapt the premise parts' parameters based on the gradient-descent (GD) approach. Afterward, the error between the desired and network's outputs is used to learn consequent parts' parameters by the GD method. The proposed paradigm is successfully applied to real-world time-series prediction and regression problems. According to experimental results, its performance outperforms other methods with a more parsimonious structure. |
Domain Adaptation for Time-Series Classification to Mitigate Covariate Shift | The performance of a machine learning model degrades when it is applied to data from a similar but different domain than the data it has initially been trained on. To mitigate this domain shift problem, domain adaptation (DA) techniques search for an optimal transformation that converts the (current) input data from a source domain to a target domain to learn a domain-invariant representations that reduces domain discrepancy. This paper proposes a novel supervised domain adaptation based on two steps. First, we search for an optimal class-dependent transformation from the source to the target domain from a few samples. We consider optimal transport methods such as the earth mover distance with Laplacian regularization, Sinkhorn transport and correlation alignment. Second, we use embedding similarity techniques to select the corresponding transformation at inference. We use correlation metrics and maximum mean discrepancy with higher-order moment matching techniques. We conduct an extensive evaluation on time-series datasets with domain shift including simulated and various online handwriting datasets to demonstrate the performance. |
Language-Independent Tokenisation Rivals Language-Specific Tokenisation for Word Similarity Prediction | Language-independent tokenisation (LIT) methods that do not require labelled language resources or lexicons have recently gained popularity because of their applicability in resource-poor languages. Moreover, they compactly represent a language using a fixed size vocabulary and can efficiently handle unseen or rare words. On the other hand, language-specific tokenisation (LST) methods have a long and established history, and are developed using carefully created lexicons and training resources. Unlike subtokens produced by LIT methods, LST methods produce valid morphological subwords. Despite the contrasting trade-offs between LIT vs. LST methods, their performance on downstream NLP tasks remain unclear. In this paper, we empirically compare the two approaches using semantic similarity measurement as an evaluation task across a diverse set of languages. Our experimental results covering eight languages show that LST consistently outperforms LIT when the vocabulary size is large, but LIT can produce comparable or better results than LST in many languages with comparatively smaller (i.e. less than 100K words) vocabulary sizes, encouraging the use of LIT when language-specific resources are unavailable, incomplete or a smaller model is required. Moreover, we find that smoothed inverse frequency (SIF) to be an accurate method to create word embeddings from subword embeddings for multilingual semantic similarity prediction tasks. Further analysis of the nearest neighbours of tokens show that semantically and syntactically related tokens are closely embedded in subword embedding spaces |
Revisiting Adversarial Robustness Distillation: Robust Soft Labels Make Student Better | Adversarial training is one effective approach for training robust deep neural networks against adversarial attacks. While being able to bring reliable robustness, adversarial training (AT) methods in general favor high capacity models, i.e., the larger the model the better the robustness. This tends to limit their effectiveness on small models, which are more preferable in scenarios where storage or computing resources are very limited (e.g., mobile devices). In this paper, we leverage the concept of knowledge distillation to improve the robustness of small models by distilling from adversarially trained large models. We first revisit several state-of-the-art AT methods from a distillation perspective and identify one common technique that can lead to improved robustness: the use of robust soft labels -- predictions of a robust model. Following this observation, we propose a novel adversarial robustness distillation method called Robust Soft Label Adversarial Distillation (RSLAD) to train robust small student models. RSLAD fully exploits the robust soft labels produced by a robust (adversarially-trained) large teacher model to guide the student's learning on both natural and adversarial examples in all loss terms. We empirically demonstrate the effectiveness of our RSLAD approach over existing adversarial training and distillation methods in improving the robustness of small models against state-of-the-art attacks including the AutoAttack. We also provide a set of understandings on our RSLAD and the importance of robust soft labels for adversarial robustness distillation. |
Analyzing Hypersensitive AI: Instability in Corporate-Scale Machine Learning | Predictive geometric models deliver excellent results for many Machine Learning use cases. Despite their undoubted performance, neural predictive algorithms can show unexpected degrees of instability and variance, particularly when applied to large datasets. We present an approach to measure changes in geometric models with respect to both output consistency and topological stability. Considering the example of a recommender system using word2vec, we analyze the influence of single data points, approximation methods and parameter settings. Our findings can help to stabilize models where needed and to detect differences in informational value of data points on a large scale. |
The Variational Fair Autoencoder | We investigate the problem of learning representations that are invariant to certain nuisance or sensitive factors of variation in the data while retaining as much of the remaining information as possible. Our model is based on a variational autoencoding architecture with priors that encourage independence between sensitive and latent factors of variation. Any subsequent processing, such as classification, can then be performed on this purged latent representation. To remove any remaining dependencies we incorporate an additional penalty term based on the "Maximum Mean Discrepancy" (MMD) measure. We discuss how these architectures can be efficiently trained on data and show in experiments that this method is more effective than previous work in removing unwanted sources of variation while maintaining informative latent representations. |
Techniques for Learning Binary Stochastic Feedforward Neural Networks | Stochastic binary hidden units in a multi-layer perceptron (MLP) network give at least three potential benefits when compared to deterministic MLP networks. (1) They allow to learn one-to-many type of mappings. (2) They can be used in structured prediction problems, where modeling the internal structure of the output is important. (3) Stochasticity has been shown to be an excellent regularizer, which makes generalization performance potentially better in general. However, training stochastic networks is considerably more difficult. We study training using M samples of hidden activations per input. We show that the case M=1 leads to a fundamentally different behavior where the network tries to avoid stochasticity. We propose two new estimators for the training gradient and propose benchmark tests for comparing training algorithms. Our experiments confirm that training stochastic networks is difficult and show that the proposed two estimators perform favorably among all the five known estimators. |
Differentially Private Testing of Identity and Closeness of Discrete Distributions | We study the fundamental problems of identity testing (goodness of fit), and closeness testing (two sample test) of distributions over $k$ elements, under differential privacy. While the problems have a long history in statistics, finite sample bounds for these problems have only been established recently. In this work, we derive upper and lower bounds on the sample complexity of both the problems under $(\varepsilon, \delta)$-differential privacy. We provide optimal sample complexity algorithms for identity testing problem for all parameter ranges, and the first results for closeness testing. Our closeness testing bounds are optimal in the sparse regime where the number of samples is at most $k$. Our upper bounds are obtained by privatizing non-private estimators for these problems. The non-private estimators are chosen to have small sensitivity. We propose a general framework to establish lower bounds on the sample complexity of statistical tasks under differential privacy. We show a bound on differentially private algorithms in terms of a coupling between the two hypothesis classes we aim to test. By constructing carefully chosen priors over the hypothesis classes, and using Le Cam's two point theorem we provide a general mechanism for proving lower bounds. We believe that the framework can be used to obtain strong lower bounds for other statistical tasks under privacy. |
An Analysis of Approaches Taken in the ACM RecSys Challenge 2018 for Automatic Music Playlist Continuation | The ACM Recommender Systems Challenge 2018 focused on the task of automatic music playlist continuation, which is a form of the more general task of sequential recommendation. Given a playlist of arbitrary length with some additional meta-data, the task was to recommend up to 500 tracks that fit the target characteristics of the original playlist. For the RecSys Challenge, Spotify released a dataset of one million user-generated playlists. Participants could compete in two tracks, i.e., main and creative tracks. Participants in the main track were only allowed to use the provided training set, however, in the creative track, the use of external public sources was permitted. In total, 113 teams submitted 1,228 runs to the main track; 33 teams submitted 239 runs to the creative track. The highest performing team in the main track achieved an R-precision of 0.2241, an NDCG of 0.3946, and an average number of recommended songs clicks of 1.784. In the creative track, an R-precision of 0.2233, an NDCG of 0.3939, and a click rate of 1.785 was obtained by the best team. This article provides an overview of the challenge, including motivation, task definition, dataset description, and evaluation. We further report and analyze the results obtained by the top performing teams in each track and explore the approaches taken by the winners. We finally summarize our key findings, discuss generalizability of approaches and results to domains other than music, and list the open avenues and possible future directions in the area of automatic playlist continuation. |
Model Explanations under Calibration | Explaining and interpreting the decisions of recommender systems are becoming extremely relevant both, for improving predictive performance, and providing valid explanations to users. While most of the recent interest has focused on providing local explanations, there has been a much lower emphasis on studying the effects of model dynamics and its impact on explanation. In this paper, we perform a focused study on the impact of model interpretability in the context of calibration. Specifically, we address the challenges of both over-confident and under-confident predictions with interpretability using attention distribution. Our results indicate that the means of using attention distributions for interpretability are highly unstable for un-calibrated models. Our empirical analysis on the stability of attention distribution raises questions on the utility of attention for explainability. |
Approximate Kalman Filter Q-Learning for Continuous State-Space MDPs | We seek to learn an effective policy for a Markov Decision Process (MDP) with continuous states via Q-Learning. Given a set of basis functions over state action pairs we search for a corresponding set of linear weights that minimizes the mean Bellman residual. Our algorithm uses a Kalman filter model to estimate those weights and we have developed a simpler approximate Kalman filter model that outperforms the current state of the art projected TD-Learning methods on several standard benchmark problems. |
CHISEL: Compression-Aware High-Accuracy Embedded Indoor Localization with Deep Learning | GPS technology has revolutionized the way we localize and navigate outdoors. However, the poor reception of GPS signals in buildings makes it unsuitable for indoor localization. WiFi fingerprinting-based indoor localization is one of the most promising ways to meet this demand. Unfortunately, most work in the domain fails to resolve challenges associated with deployability on resource-limited embedded devices. In this work, we propose a compression-aware and high-accuracy deep learning framework called CHISEL that outperforms the best-known works in the area while maintaining localization robustness on embedded devices. |
An Empirical Evaluation of Four Algorithms for Multi-Class Classification: Mart, ABC-Mart, Robust LogitBoost, and ABC-LogitBoost | This empirical study is mainly devoted to comparing four tree-based boosting algorithms: mart, abc-mart, robust logitboost, and abc-logitboost, for multi-class classification on a variety of publicly available datasets. Some of those datasets have been thoroughly tested in prior studies using a broad range of classification algorithms including SVM, neural nets, and deep learning. In terms of the empirical classification errors, our experiment results demonstrate: 1. Abc-mart considerably improves mart. 2. Abc-logitboost considerably improves (robust) logitboost. 3. Robust) logitboost} considerably improves mart on most datasets. 4. Abc-logitboost considerably improves abc-mart on most datasets. 5. These four boosting algorithms (especially abc-logitboost) outperform SVM on many datasets. 6. Compared to the best deep learning methods, these four boosting algorithms (especially abc-logitboost) are competitive. |
Estimating Smooth GLM in Non-interactive Local Differential Privacy Model with Public Unlabeled Data | In this paper, we study the problem of estimating smooth Generalized Linear Models (GLM) in the Non-interactive Local Differential Privacy (NLDP) model. Different from its classical setting, our model allows the server to access some additional public but unlabeled data. By using Stein's lemma and its variants, we first show that there is an $(\epsilon, \delta)$-NLDP algorithm for GLM (under some mild assumptions), if each data record is i.i.d sampled from some sub-Gaussian distribution with bounded $\ell_1$-norm. Then with high probability, the sample complexity of the public and private data, for the algorithm to achieve an $\alpha$ estimation error (in $\ell_\infty$-norm), is $O(p^2\alpha^{-2})$ and ${O}(p^2\alpha^{-2}\epsilon^{-2})$, respectively, if $\alpha$ is not too small ({\em i.e.,} $\alpha\geq \Omega(\frac{1}{\sqrt{p}})$), where $p$ is the dimensionality of the data. This is a significant improvement over the previously known quasi-polynomial (in $\alpha$) or exponential (in $p$) complexity of GLM with no public data. Also, our algorithm can answer multiple (at most $\exp(O(p))$) GLM queries with the same sample complexities as in the one GLM query case with at least constant probability. We then extend our idea to the non-linear regression problem and show a similar phenomenon for it. Finally, we demonstrate the effectiveness of our algorithms through experiments on both synthetic and real world datasets. To our best knowledge, this is the first paper showing the existence of efficient and effective algorithms for GLM and non-linear regression in the NLDP model with public unlabeled data. |
Online Covariance Matrix Estimation in Stochastic Gradient Descent | The stochastic gradient descent (SGD) algorithm is widely used for parameter estimation, especially for huge data sets and online learning. While this recursive algorithm is popular for computation and memory efficiency, quantifying variability and randomness of the solutions has been rarely studied. This paper aims at conducting statistical inference of SGD-based estimates in an online setting. In particular, we propose a fully online estimator for the covariance matrix of averaged SGD iterates (ASGD) only using the iterates from SGD. We formally establish our online estimator's consistency and show that the convergence rate is comparable to offline counterparts. Based on the classic asymptotic normality results of ASGD, we construct asymptotically valid confidence intervals for model parameters. Upon receiving new observations, we can quickly update the covariance matrix estimate and the confidence intervals. This approach fits in an online setting and takes full advantage of SGD: efficiency in computation and memory. |
Predicting the Location of Bicycle-sharing Stations using OpenStreetMap Data | Planning the layout of bicycle-sharing stations is a complex process, especially in cities where bicycle sharing systems are just being implemented. Urban planners often have to make a lot of estimates based on both publicly available data and privately provided data from the administration and then use the Location-Allocation model popular in the field. Many municipalities in smaller cities may have difficulty hiring specialists to carry out such planning. This thesis proposes a new solution to streamline and facilitate the process of such planning by using spatial embedding methods. Based only on publicly available data from OpenStreetMap, and station layouts from 34 cities in Europe, a method has been developed to divide cities into micro-regions using the Uber H3 discrete global grid system and to indicate regions where it is worth placing a station based on existing systems in different cities using transfer learning. The result of the work is a mechanism to support planners in their decision making when planning a station layout with a choice of reference cities. |
Predicting Clinical Outcomes in COVID-19 using Radiomics and Deep Learning on Chest Radiographs: A Multi-Institutional Study | We predict mechanical ventilation requirement and mortality using computational modeling of chest radiographs (CXRs) for coronavirus disease 2019 (COVID-19) patients. This two-center, retrospective study analyzed 530 deidentified CXRs from 515 COVID-19 patients treated at Stony Brook University Hospital and Newark Beth Israel Medical Center between March and August 2020. DL and machine learning classifiers to predict mechanical ventilation requirement and mortality were trained and evaluated using patient CXRs. A novel radiomic embedding framework was also explored for outcome prediction. All results are compared against radiologist grading of CXRs (zone-wise expert severity scores). Radiomic and DL classification models had mAUCs of 0.78+/-0.02 and 0.81+/-0.04, compared with expert scores mAUCs of 0.75+/-0.02 and 0.79+/-0.05 for mechanical ventilation requirement and mortality prediction, respectively. Combined classifiers using both radiomics and expert severity scores resulted in mAUCs of 0.79+/-0.04 and 0.83+/-0.04 for each prediction task, demonstrating improvement over either artificial intelligence or radiologist interpretation alone. Our results also suggest instances where inclusion of radiomic features in DL improves model predictions, something that might be explored in other pathologies. The models proposed in this study and the prognostic information they provide might aid physician decision making and resource allocation during the COVID-19 pandemic. |
Learning Latent Space Energy-Based Prior Model for Molecule Generation | Deep generative models have recently been applied to molecule design. If the molecules are encoded in linear SMILES strings, modeling becomes convenient. However, models relying on string representations tend to generate invalid samples and duplicates. Prior work addressed these issues by building models on chemically-valid fragments or explicitly enforcing chemical rules in the generation process. We argue that an expressive model is sufficient to implicitly and automatically learn the complicated chemical rules from the data, even if molecules are encoded in simple character-level SMILES strings. We propose to learn latent space energy-based prior model with SMILES representation for molecule modeling. Our experiments show that our method is able to generate molecules with validity and uniqueness competitive with state-of-the-art models. Interestingly, generated molecules have structural and chemical features whose distributions almost perfectly match those of the real molecules. |
Sintel: A Machine Learning Framework to Extract Insights from Signals | The detection of anomalies in time series data is a critical task with many monitoring applications. Existing systems often fail to encompass an end-to-end detection process, to facilitate comparative analysis of various anomaly detection methods, or to incorporate human knowledge to refine output. This precludes current methods from being used in real-world settings by practitioners who are not ML experts. In this paper, we introduce Sintel, a machine learning framework for end-to-end time series tasks such as anomaly detection. The framework uses state-of-the-art approaches to support all steps of the anomaly detection process. Sintel logs the entire anomaly detection journey, providing detailed documentation of anomalies over time. It enables users to analyze signals, compare methods, and investigate anomalies through an interactive visualization tool, where they can annotate, modify, create, and remove events. Using these annotations, the framework leverages human knowledge to improve the anomaly detection pipeline. We demonstrate the usability, efficiency, and effectiveness of Sintel through a series of experiments on three public time series datasets, as well as one real-world use case involving spacecraft experts tasked with anomaly analysis tasks. Sintel's framework, code, and datasets are open-sourced at https://github.com/sintel-dev/. |
Learning Object Arrangements in 3D Scenes using Human Context | We consider the problem of learning object arrangements in a 3D scene. The key idea here is to learn how objects relate to human poses based on their affordances, ease of use and reachability. In contrast to modeling object-object relationships, modeling human-object relationships scales linearly in the number of objects. We design appropriate density functions based on 3D spatial features to capture this. We learn the distribution of human poses in a scene using a variant of the Dirichlet process mixture model that allows sharing of the density function parameters across the same object types. Then we can reason about arrangements of the objects in the room based on these meaningful human poses. In our extensive experiments on 20 different rooms with a total of 47 objects, our algorithm predicted correct placements with an average error of 1.6 meters from ground truth. In arranging five real scenes, it received a score of 4.3/5 compared to 3.7 for the best baseline method. |
mAnI: Movie Amalgamation using Neural Imitation | Cross-modal data retrieval has been the basis of various creative tasks performed by Artificial Intelligence (AI). One such highly challenging task for AI is to convert a book into its corresponding movie, which most of the creative film makers do as of today. In this research, we take the first step towards it by visualizing the content of a book using its corresponding movie visuals. Given a set of sentences from a book or even a fan-fiction written in the same universe, we employ deep learning models to visualize the input by stitching together relevant frames from the movie. We studied and compared three different types of setting to match the book with the movie content: (i) Dialog model: using only the dialog from the movie, (ii) Visual model: using only the visual content from the movie, and (iii) Hybrid model: using the dialog and the visual content from the movie. Experiments on the publicly available MovieBook dataset shows the effectiveness of the proposed models. |
EventNet: Asynchronous Recursive Event Processing | Event cameras are bio-inspired vision sensors that mimic retinas to asynchronously report per-pixel intensity changes rather than outputting an actual intensity image at regular intervals. This new paradigm of image sensor offers significant potential advantages; namely, sparse and non-redundant data representation. Unfortunately, however, most of the existing artificial neural network architectures, such as a CNN, require dense synchronous input data, and therefore, cannot make use of the sparseness of the data. We propose EventNet, a neural network designed for real-time processing of asynchronous event streams in a recursive and event-wise manner. EventNet models dependence of the output on tens of thousands of causal events recursively using a novel temporal coding scheme. As a result, at inference time, our network operates in an event-wise manner that is realized with very few sum-of-the-product operations---look-up table and temporal feature aggregation---which enables processing of 1 mega or more events per second on standard CPU. In experiments using real data, we demonstrated the real-time performance and robustness of our framework. |
Learning to Solve PDE-constrained Inverse Problems with Graph Networks | Learned graph neural networks (GNNs) have recently been established as fast and accurate alternatives for principled solvers in simulating the dynamics of physical systems. In many application domains across science and engineering, however, we are not only interested in a forward simulation but also in solving inverse problems with constraints defined by a partial differential equation (PDE). Here we explore GNNs to solve such PDE-constrained inverse problems. Given a sparse set of measurements, we are interested in recovering the initial condition or parameters of the PDE. We demonstrate that GNNs combined with autodecoder-style priors are well-suited for these tasks, achieving more accurate estimates of initial conditions or physical parameters than other learned approaches when applied to the wave equation or Navier-Stokes equations. We also demonstrate computational speedups of up to 90x using GNNs compared to principled solvers. Project page: https://cyanzhao42.github.io/LearnInverseProblem |
Software-Defined Edge Computing: A New Architecture Paradigm to Support IoT Data Analysis | The rapid deployment of Internet of Things (IoT) applications leads to massive data that need to be processed. These IoT applications have specific communication requirements on latency and bandwidth, and present new features on their generated data such as time-dependency. Therefore, it is desirable to reshape the current IoT architectures by exploring their inherent nature of communication and computing to support smart IoT data process and analysis. We introduce in this paper features of IoT data, trends of IoT network architectures, some problems in IoT data analysis, and their solutions. Specifically, we view that software-defined edge computing is a promising architecture to support the unique needs of IoT data analysis. We further present an experiment on data anomaly detection in this architecture, and the comparison between two architectures for ECG diagnosis. Results show that our method is effective and feasible. |
Leveraging Patient Similarity and Time Series Data in Healthcare Predictive Models | Patient time series classification faces challenges in high degrees of dimensionality and missingness. In light of patient similarity theory, this study explores effective temporal feature engineering and reduction, missing value imputation, and change point detection methods that can afford similarity-based classification models with desirable accuracy enhancement. We select a piecewise aggregation approximation method to extract fine-grain temporal features and propose a minimalist method to impute missing values in temporal features. For dimensionality reduction, we adopt a gradient descent search method for feature weight assignment. We propose new patient status and directional change definitions based on medical knowledge or clinical guidelines about the value ranges for different patient status levels, and develop a method to detect change points indicating positive or negative patient status changes. We evaluate the effectiveness of the proposed methods in the context of early Intensive Care Unit mortality prediction. The evaluation results show that the k-Nearest Neighbor algorithm that incorporates methods we select and propose significantly outperform the relevant benchmarks for early ICU mortality prediction. This study makes contributions to time series classification and early ICU mortality prediction via identifying and enhancing temporal feature engineering and reduction methods for similarity-based time series classification. |
A Survey of Deep Meta-Learning | Deep neural networks can achieve great successes when presented with large data sets and sufficient computational resources. However, their ability to learn new concepts quickly is limited. Meta-learning is one approach to address this issue, by enabling the network to learn how to learn. The field of Deep Meta-Learning advances at great speed, but lacks a unified, in-depth overview of current techniques. With this work, we aim to bridge this gap. After providing the reader with a theoretical foundation, we investigate and summarize key methods, which are categorized into i)~metric-, ii)~model-, and iii)~optimization-based techniques. In addition, we identify the main open challenges, such as performance evaluations on heterogeneous benchmarks, and reduction of the computational costs of meta-learning. |
Btech thesis report on adversarial attack detection and purification of adverserially attacked images | This is Btech thesis report on detection and purification of adverserially attacked images. A deep learning model is trained on certain training examples for various tasks such as classification, regression etc. By training, weights are adjusted such that the model performs the task well not only on training examples judged by a certain metric but has an excellent ability to generalize on other unseen examples as well which are typically called the test data. Despite the huge success of machine learning models on a wide range of tasks, security has received a lot less attention along the years. Robustness along various potential cyber attacks also should be a metric for the accuracy of the machine learning models. These cyber attacks can potentially lead to a variety of negative impacts in the real world sensitive applications for which machine learning is used such as medical and transportation systems. Hence, it is a necessity to secure the system from such attacks. Int this report, I focus on a class of these cyber attacks called the adversarial attacks in which the original input sample is modified by small perturbations such that they still look visually the same to human beings but the machine learning models are fooled by such inputs. In this report I discuss 2 novel ways to counter the adversarial attack using AutoEncoders, 1) by detecting the presence of adversaries and 2) purifying these adversaries to make target classification models robust against such attacks. |
Explainable Machine Learning in Deployment | Explainable machine learning offers the potential to provide stakeholders with insights into model behavior by using various methods such as feature importance scores, counterfactual explanations, or influential training data. Yet there is little understanding of how organizations use these methods in practice. This study explores how organizations view and use explainability for stakeholder consumption. We find that, currently, the majority of deployments are not for end users affected by the model but rather for machine learning engineers, who use explainability to debug the model itself. There is thus a gap between explainability in practice and the goal of transparency, since explanations primarily serve internal stakeholders rather than external ones. Our study synthesizes the limitations of current explainability techniques that hamper their use for end users. To facilitate end user interaction, we develop a framework for establishing clear goals for explainability. We end by discussing concerns raised regarding explainability. |
Simplicial Neural Networks | We present simplicial neural networks (SNNs), a generalization of graph neural networks to data that live on a class of topological spaces called simplicial complexes. These are natural multi-dimensional extensions of graphs that encode not only pairwise relationships but also higher-order interactions between vertices - allowing us to consider richer data, including vector fields and $n$-fold collaboration networks. We define an appropriate notion of convolution that we leverage to construct the desired convolutional neural networks. We test the SNNs on the task of imputing missing data on coauthorship complexes. |
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning | Video understanding relies on perceiving the global content and modeling its internal connections (e.g., causality, movement, and spatio-temporal correspondence). To learn these interactions, we apply a mask-then-predict pre-training task on discretized video tokens generated via VQ-VAE. Unlike language, where the text tokens are more independent, neighboring video tokens typically have strong correlations (e.g., consecutive video frames usually look very similar), and hence uniformly masking individual tokens will make the task too trivial to learn useful representations. To deal with this issue, we propose a block-wise masking strategy where we mask neighboring video tokens in both spatial and temporal domains. We also add an augmentation-free contrastive learning method to further capture the global content by predicting whether the video clips are sampled from the same video. We pre-train our model on uncurated videos and show that our pre-trained model can reach state-of-the-art results on several video understanding datasets (e.g., SSV2, Diving48). Lastly, we provide detailed analyses on model scalability and pre-training method design. Code is released at https://github.com/airsplay/vimpac. |
Realistic Ultrasound Image Synthesis for Improved Classification of Liver Disease | With the success of deep learning-based methods applied in medical image analysis, convolutional neural networks (CNNs) have been investigated for classifying liver disease from ultrasound (US) data. However, the scarcity of available large-scale labeled US data has hindered the success of CNNs for classifying liver disease from US data. In this work, we propose a novel generative adversarial network (GAN) architecture for realistic diseased and healthy liver US image synthesis. We adopt the concept of stacking to synthesize realistic liver US data. Quantitative and qualitative evaluation is performed on 550 in-vivo B-mode liver US images collected from 55 subjects. We also show that the synthesized images, together with real in vivo data, can be used to significantly improve the performance of traditional CNN architectures for Nonalcoholic fatty liver disease (NAFLD) classification. |
Manopt, a Matlab toolbox for optimization on manifolds | Optimization on manifolds is a rapidly developing branch of nonlinear optimization. Its focus is on problems where the smooth geometry of the search space can be leveraged to design efficient numerical algorithms. In particular, optimization on manifolds is well-suited to deal with rank and orthogonality constraints. Such structured constraints appear pervasively in machine learning applications, including low-rank matrix completion, sensor network localization, camera network registration, independent component analysis, metric learning, dimensionality reduction and so on. The Manopt toolbox, available at www.manopt.org, is a user-friendly, documented piece of software dedicated to simplify experimenting with state of the art Riemannian optimization algorithms. We aim particularly at reaching practitioners outside our field. |
AutoBSS: An Efficient Algorithm for Block Stacking Style Search | Neural network architecture design mostly focuses on the new convolutional operator or special topological structure of network block, little attention is drawn to the configuration of stacking each block, called Block Stacking Style (BSS). Recent studies show that BSS may also have an unneglectable impact on networks, thus we design an efficient algorithm to search it automatically. The proposed method, AutoBSS, is a novel AutoML algorithm based on Bayesian optimization by iteratively refining and clustering Block Stacking Style Code (BSSC), which can find optimal BSS in a few trials without biased evaluation. On ImageNet classification task, ResNet50/MobileNetV2/EfficientNet-B0 with our searched BSS achieve 79.29%/74.5%/77.79%, which outperform the original baselines by a large margin. More importantly, experimental results on model compression, object detection and instance segmentation show the strong generalizability of the proposed AutoBSS, and further verify the unneglectable impact of BSS on neural networks. |
Shuffle and Learn: Unsupervised Learning using Temporal Order Verification | In this paper, we present an approach for learning a visual representation from the raw spatiotemporal signals in videos. Our representation is learned without supervision from semantic labels. We formulate our method as an unsupervised sequential verification task, i.e., we determine whether a sequence of frames from a video is in the correct temporal order. With this simple task and no semantic labels, we learn a powerful visual representation using a Convolutional Neural Network (CNN). The representation contains complementary information to that learned from supervised image datasets like ImageNet. Qualitative results show that our method captures information that is temporally varying, such as human pose. When used as pre-training for action recognition, our method gives significant gains over learning without external data on benchmark datasets like UCF101 and HMDB51. To demonstrate its sensitivity to human pose, we show results for pose estimation on the FLIC and MPII datasets that are competitive, or better than approaches using significantly more supervision. Our method can be combined with supervised representations to provide an additional boost in accuracy. |
Adversarial Approximate Inference for Speech to Electroglottograph Conversion | Speech produced by human vocal apparatus conveys substantial non-semantic information including the gender of the speaker, voice quality, affective state, abnormalities in the vocal apparatus etc. Such information is attributed to the properties of the voice source signal, which is usually estimated from the speech signal. However, most of the source estimation techniques depend heavily on the goodness of the model assumptions and are prone to noise. A popular alternative is to indirectly obtain the source information through the Electroglottographic (EGG) signal that measures the electrical admittance around the vocal folds using dedicated hardware. In this paper, we address the problem of estimating the EGG signal directly from the speech signal, devoid of any hardware. Sampling from the intractable conditional distribution of the EGG signal given the speech signal is accomplished through optimization of an evidence lower bound. This is constructed via minimization of the KL-divergence between the true and the approximated posteriors of a latent variable learned using a deep neural auto-encoder that serves an informative prior. We demonstrate the efficacy of the method at generating the EGG signal by conducting several experiments on datasets comprising multiple speakers, voice qualities, noise settings and speech pathologies. The proposed method is evaluated on many benchmark metrics and is found to agree with the gold standard while proving better than the state-of-the-art algorithms on a few tasks such as epoch extraction. |
Partition-based formulations for mixed-integer optimization of trained ReLU neural networks | This paper introduces a class of mixed-integer formulations for trained ReLU neural networks. The approach balances model size and tightness by partitioning node inputs into a number of groups and forming the convex hull over the partitions via disjunctive programming. At one extreme, one partition per input recovers the convex hull of a node, i.e., the tightest possible formulation for each node. For fewer partitions, we develop smaller relaxations that approximate the convex hull, and show that they outperform existing formulations. Specifically, we propose strategies for partitioning variables based on theoretical motivations and validate these strategies using extensive computational experiments. Furthermore, the proposed scheme complements known algorithmic approaches, e.g., optimization-based bound tightening captures dependencies within a partition. |
Quantitative Evaluations on Saliency Methods: An Experimental Study | It has been long debated that eXplainable AI (XAI) is an important topic, but it lacks rigorous definition and fair metrics. In this paper, we briefly summarize the status quo of the metrics, along with an exhaustive experimental study based on them, including faithfulness, localization, false-positives, sensitivity check, and stability. With the experimental results, we conclude that among all the methods we compare, no single explanation method dominates others in all metrics. Nonetheless, Gradient-weighted Class Activation Mapping (Grad-CAM) and Randomly Input Sampling for Explanation (RISE) perform fairly well in most of the metrics. Utilizing a set of filtered metrics, we further present a case study to diagnose the classification bases for models. While providing a comprehensive experimental study of metrics, we also examine measuring factors that are missed in current metrics and hope this valuable work could serve as a guide for future research. |
Modeling the Interaction between Agents in Cooperative Multi-Agent Reinforcement Learning | Value-based methods of multi-agent reinforcement learning (MARL), especially the value decomposition methods, have been demonstrated on a range of challenging cooperative tasks. However, current methods pay little attention to the interaction between agents, which is essential to teamwork in games or real life. This limits the efficiency of value-based MARL algorithms in the two aspects: collaborative exploration and value function estimation. In this paper, we propose a novel cooperative MARL algorithm named as interactive actor-critic~(IAC), which models the interaction of agents from the perspectives of policy and value function. On the policy side, a multi-agent joint stochastic policy is introduced by adopting a collaborative exploration module, which is trained by maximizing the entropy-regularized expected return. On the value side, we use the shared attention mechanism to estimate the value function of each agent, which takes the impact of the teammates into consideration. At the implementation level, we extend the value decomposition methods to continuous control tasks and evaluate IAC on benchmark tasks including classic control and multi-agent particle environments. Experimental results indicate that our method outperforms the state-of-the-art approaches and achieves better performance in terms of cooperation. |
A comparative study of several ADPCM schemes with linear and nonlinear prediction | In this paper we compare several ADPCM schemes with nonlinear prediction based on neural nets with the classical ADPCM schemes based on several linear prediction schemes. Main studied variations of the ADPCM scheme with adaptive quantization (2 to 5 bits) are: -forward vs backward -sample adaptive vs block adaptive |
Counterfactual Phenotyping with Censored Time-to-Events | Estimation of treatment efficacy of real-world clinical interventions involves working with continuous outcomes such as time-to-death, re-hospitalization, or a composite event that may be subject to censoring. Counterfactual reasoning in such scenarios requires decoupling the effects of confounding physiological characteristics that affect baseline survival rates from the effects of the interventions being assessed. In this paper, we present a latent variable approach to model heterogeneous treatment effects by proposing that an individual can belong to one of latent clusters with distinct response characteristics. We show that this latent structure can mediate the base survival rates and helps determine the effects of an intervention. We demonstrate the ability of our approach to discover actionable phenotypes of individuals based on their treatment response on multiple large randomized clinical trials originally conducted to assess appropriate treatments to reduce cardiovascular risk. |
Online Heterogeneous Mixture Learning for Big Data | We propose the online machine learning for big data analysis with heterogeneity. We performed an experiment to compare the accuracy of each iteration between batch one and online one. It is possible to converge quickly with the same accuracy as the batch one. |
A Deep Generative Model of Speech Complex Spectrograms | This paper proposes an approach to the joint modeling of the short-time Fourier transform magnitude and phase spectrograms with a deep generative model. We assume that the magnitude follows a Gaussian distribution and the phase follows a von Mises distribution. To improve the consistency of the phase values in the time-frequency domain, we also apply the von Mises distribution to the phase derivatives, i.e., the group delay and the instantaneous frequency. Based on these assumptions, we explore and compare several combinations of loss functions for training our models. Built upon the variational autoencoder framework, our model consists of three convolutional neural networks acting as an encoder, a magnitude decoder, and a phase decoder. In addition to the latent variables, we propose to also condition the phase estimation on the estimated magnitude. Evaluated for a time-domain speech reconstruction task, our models could generate speech with a high perceptual quality and a high intelligibility. |
Citizen centric optimal electric vehicle charging stations locations in a full city: case of Malaga | This article presents the problem of locating electric vehicle (EV) charging stations in a city by defining the Electric Vehicle Charging Stations Locations (EV-CSL) problem. The idea is to minimize the distance the citizens have to travel to charge their vehicles. EV-CSL takes into account the maximum number of charging stations to install and the electric power requirements. Two metaheuristics are applied to address the relying optimization problem: a genetic algorithm (GA) and a variable neighborhood search (VNS). The experimental analysis over a realistic scenario of Malaga city, Spain, shows that the metaheuristics are able to find competitive solutions which dramatically improve the actual installation of the stations in Malaga. GA provided statistically the best results. |
Inherent Trade-Offs in the Fair Determination of Risk Scores | Recent discussion in the public sphere about algorithmic classification has involved tension between competing notions of what it means for a probabilistic classification to be fair to different groups. We formalize three fairness conditions that lie at the heart of these debates, and we prove that except in highly constrained special cases, there is no method that can satisfy these three conditions simultaneously. Moreover, even satisfying all three conditions approximately requires that the data lie in an approximate version of one of the constrained special cases identified by our theorem. These results suggest some of the ways in which key notions of fairness are incompatible with each other, and hence provide a framework for thinking about the trade-offs between them. |
Only sparsity based loss function for learning representations | We study the emergence of sparse representations in neural networks. We show that in unsupervised models with regularization, the emergence of sparsity is the result of the input data samples being distributed along highly non-linear or discontinuous manifold. We also derive a similar argument for discriminatively trained networks and present experiments to support this hypothesis. Based on our study of sparsity, we introduce a new loss function which can be used as regularization term for models like autoencoders and MLPs. Further, the same loss function can also be used as a cost function for an unsupervised single-layered neural network model for learning efficient representations. |
Using machine learning for medium frequency derivative portfolio trading | We use machine learning for designing a medium frequency trading strategy for a portfolio of 5 year and 10 year US Treasury note futures. We formulate this as a classification problem where we predict the weekly direction of movement of the portfolio using features extracted from a deep belief network trained on technical indicators of the portfolio constituents. The experimentation shows that the resulting pipeline is effective in making a profitable trade. |
A Deep Conditioning Treatment of Neural Networks | We study the role of depth in training randomly initialized overparameterized neural networks. We give a general result showing that depth improves trainability of neural networks by improving the conditioning of certain kernel matrices of the input data. This result holds for arbitrary non-linear activation functions under a certain normalization. We provide versions of the result that hold for training just the top layer of the neural network, as well as for training all layers, via the neural tangent kernel. As applications of these general results, we provide a generalization of the results of Das et al. (2019) showing that learnability of deep random neural networks with a large class of non-linear activations degrades exponentially with depth. We also show how benign overfitting can occur in deep neural networks via the results of Bartlett et al. (2019b). We also give experimental evidence that normalized versions of ReLU are a viable alternative to more complex operations like Batch Normalization in training deep neural networks. |
Contrast to Divide: Self-Supervised Pre-Training for Learning with Noisy Labels | The success of learning with noisy labels (LNL) methods relies heavily on the success of a warm-up stage where standard supervised training is performed using the full (noisy) training set. In this paper, we identify a "warm-up obstacle": the inability of standard warm-up stages to train high quality feature extractors and avert memorization of noisy labels. We propose "Contrast to Divide" (C2D), a simple framework that solves this problem by pre-training the feature extractor in a self-supervised fashion. Using self-supervised pre-training boosts the performance of existing LNL approaches by drastically reducing the warm-up stage's susceptibility to noise level, shortening its duration, and improving extracted feature quality. C2D works out of the box with existing methods and demonstrates markedly improved performance, especially in the high noise regime, where we get a boost of more than 27% for CIFAR-100 with 90% noise over the previous state of the art. In real-life noise settings, C2D trained on mini-WebVision outperforms previous works both in WebVision and ImageNet validation sets by 3% top-1 accuracy. We perform an in-depth analysis of the framework, including investigating the performance of different pre-training approaches and estimating the effective upper bound of the LNL performance with semi-supervised learning. Code for reproducing our experiments is available at https://github.com/ContrastToDivide/C2D |
Addressing Leakage in Self-Supervised Contextualized Code Retrieval | We address contextualized code retrieval, the search for code snippets helpful to fill gaps in a partial input program. Our approach facilitates a large-scale self-supervised contrastive training by splitting source code randomly into contexts and targets. To combat leakage between the two, we suggest a novel approach based on mutual identifier masking, dedentation, and the selection of syntax-aligned targets. Our second contribution is a new dataset for direct evaluation of contextualized code retrieval, based on a dataset of manually aligned subpassages of code clones. Our experiments demonstrate that our approach improves retrieval substantially, and yields new state-of-the-art results for code clone and defect detection. |
Using Interaction Data to Predict Engagement with Interactive Media | Media is evolving from traditional linear narratives to personalised experiences, where control over information (or how it is presented) is given to individual audience members. Measuring and understanding audience engagement with this media is important in at least two ways: (1) a post-hoc understanding of how engaged audiences are with the content will help production teams learn from experience and improve future productions; (2), this type of media has potential for real-time measures of engagement to be used to enhance the user experience by adapting content on-the-fly. Engagement is typically measured by asking samples of users to self-report, which is time consuming and expensive. In some domains, however, interaction data have been used to infer engagement. Fortuitously, the nature of interactive media facilitates a much richer set of interaction data than traditional media; our research aims to understand if these data can be used to infer audience engagement. In this paper, we report a study using data captured from audience interactions with an interactive TV show to model and predict engagement. We find that temporal metrics, including overall time spent on the experience and the interval between events, are predictive of engagement. The results demonstrate that interaction data can be used to infer users' engagement during and after an experience, and the proposed techniques are relevant to better understand audience preference and responses. |
Anomaly Detection by Recombining Gated Unsupervised Experts | Anomaly detection has been considered under several extents of prior knowledge. Unsupervised methods do not require any labelled data, whereas semi-supervised methods leverage some known anomalies. Inspired by mixture-of-experts models and the analysis of the hidden activations of neural networks, we introduce a novel data-driven anomaly detection method called ARGUE. Our method is not only applicable to unsupervised and semi-supervised environments, but also profits from prior knowledge of self-supervised settings. We designed ARGUE as a combination of dedicated expert networks, which specialise on parts of the input data. For its final decision, ARGUE fuses the distributed knowledge across the expert systems using a gated mixture-of-experts architecture. Our evaluation motivates that prior knowledge about the normal data distribution may be as valuable as known anomalies. |
Generalization through Simulation: Integrating Simulated and Real Data into Deep Reinforcement Learning for Vision-Based Autonomous Flight | Deep reinforcement learning provides a promising approach for vision-based control of real-world robots. However, the generalization of such models depends critically on the quantity and variety of data available for training. This data can be difficult to obtain for some types of robotic systems, such as fragile, small-scale quadrotors. Simulated rendering and physics can provide for much larger datasets, but such data is inherently of lower quality: many of the phenomena that make the real-world autonomous flight problem challenging, such as complex physics and air currents, are modeled poorly or not at all, and the systematic differences between simulation and the real world are typically impossible to eliminate. In this work, we investigate how data from both simulation and the real world can be combined in a hybrid deep reinforcement learning algorithm. Our method uses real-world data to learn about the dynamics of the system, and simulated data to learn a generalizable perception system that can enable the robot to avoid collisions using only a monocular camera. We demonstrate our approach on a real-world nano aerial vehicle collision avoidance task, showing that with only an hour of real-world data, the quadrotor can avoid collisions in new environments with various lighting conditions and geometry. Code, instructions for building the aerial vehicles, and videos of the experiments can be found at github.com/gkahn13/GtS |
Grammar Based Directed Testing of Machine Learning Systems | The massive progress of machine learning has seen its application over a variety of domains in the past decade. But how do we develop a systematic, scalable and modular strategy to validate machine-learning systems? We present, to the best of our knowledge, the first approach, which provides a systematic test framework for machine-learning systems that accepts grammar-based inputs. Our OGMA approach automatically discovers erroneous behaviours in classifiers and leverages these erroneous behaviours to improve the respective models. OGMA leverages inherent robustness properties present in any well trained machine-learning model to direct test generation and thus, implementing a scalable test generation methodology. To evaluate our OGMA approach, we have tested it on three real world natural language processing (NLP) classifiers. We have found thousands of erroneous behaviours in these systems. We also compare OGMA with a random test generation approach and observe that OGMA is more effective than such random test generation by up to 489%. |
Sponge Examples: Energy-Latency Attacks on Neural Networks | The high energy costs of neural network training and inference led to the use of acceleration hardware such as GPUs and TPUs. While this enabled us to train large-scale neural networks in datacenters and deploy them on edge devices, the focus so far is on average-case performance. In this work, we introduce a novel threat vector against neural networks whose energy consumption or decision latency are critical. We show how adversaries can exploit carefully crafted $\boldsymbol{sponge}~\boldsymbol{examples}$, which are inputs designed to maximise energy consumption and latency. We mount two variants of this attack on established vision and language models, increasing energy consumption by a factor of 10 to 200. Our attacks can also be used to delay decisions where a network has critical real-time performance, such as in perception for autonomous vehicles. We demonstrate the portability of our malicious inputs across CPUs and a variety of hardware accelerator chips including GPUs, and an ASIC simulator. We conclude by proposing a defense strategy which mitigates our attack by shifting the analysis of energy consumption in hardware from an average-case to a worst-case perspective. |
Amplitude Spectrum Transformation for Open Compound Domain Adaptive Semantic Segmentation | Open compound domain adaptation (OCDA) has emerged as a practical adaptation setting which considers a single labeled source domain against a compound of multi-modal unlabeled target data in order to generalize better on novel unseen domains. We hypothesize that an improved disentanglement of domain-related and task-related factors of dense intermediate layer features can greatly aid OCDA. Prior-arts attempt this indirectly by employing adversarial domain discriminators on the spatial CNN output. However, we find that latent features derived from the Fourier-based amplitude spectrum of deep CNN features hold a more tractable mapping with domain discrimination. Motivated by this, we propose a novel feature space Amplitude Spectrum Transformation (AST). During adaptation, we employ the AST auto-encoder for two purposes. First, carefully mined source-target instance pairs undergo a simulation of cross-domain feature stylization (AST-Sim) at a particular layer by altering the AST-latent. Second, AST operating at a later layer is tasked to normalize (AST-Norm) the domain content by fixing its latent to a mean prototype. Our simplified adaptation technique is not only clustering-free but also free from complex adversarial alignment. We achieve leading performance against the prior arts on the OCDA scene segmentation benchmarks. |
Hybrid Physical-Deep Learning Model for Astronomical Inverse Problems | We present a Bayesian machine learning architecture that combines a physically motivated parametrization and an analytic error model for the likelihood with a deep generative model providing a powerful data-driven prior for complex signals. This combination yields an interpretable and differentiable generative model, allows the incorporation of prior knowledge, and can be utilized for observations with different data quality without having to retrain the deep network. We demonstrate our approach with an example of astronomical source separation in current imaging data, yielding a physical and interpretable model of astronomical scenes. |
Test-time Fourier Style Calibration for Domain Generalization | The topic of generalizing machine learning models learned on a collection of source domains to unknown target domains is challenging. While many domain generalization (DG) methods have achieved promising results, they primarily rely on the source domains at train-time without manipulating the target domains at test-time. Thus, it is still possible that those methods can overfit to source domains and perform poorly on target domains. Driven by the observation that domains are strongly related to styles, we argue that reducing the gap between source and target styles can boost models' generalizability. To solve the dilemma of having no access to the target domain during training, we introduce Test-time Fourier Style Calibration (TF-Cal) for calibrating the target domain style on the fly during testing. To access styles, we utilize Fourier transformation to decompose features into amplitude (style) features and phase (semantic) features. Furthermore, we present an effective technique to Augment Amplitude Features (AAF) to complement TF-Cal. Extensive experiments on several popular DG benchmarks and a segmentation dataset for medical images demonstrate that our method outperforms state-of-the-art methods. |
GrADE: A graph based data-driven solver for time-dependent nonlinear partial differential equations | The physical world is governed by the laws of physics, often represented in form of nonlinear partial differential equations (PDEs). Unfortunately, solution of PDEs is non-trivial and often involves significant computational time. With recent developments in the field of artificial intelligence and machine learning, the solution of PDEs using neural network has emerged as a domain with huge potential. However, most of the developments in this field are based on either fully connected neural networks (FNN) or convolutional neural networks (CNN). While FNN is computationally inefficient as the number of network parameters can be potentially huge, CNN necessitates regular grid and simpler domain. In this work, we propose a novel framework referred to as the Graph Attention Differential Equation (GrADE) for solving time dependent nonlinear PDEs. The proposed approach couples FNN, graph neural network, and recently developed Neural ODE framework. The primary idea is to use graph neural network for modeling the spatial domain, and Neural ODE for modeling the temporal domain. The attention mechanism identifies important inputs/features and assign more weightage to the same; this enhances the performance of the proposed framework. Neural ODE, on the other hand, results in constant memory cost and allows trading of numerical precision for speed. We also propose depth refinement as an effective technique for training the proposed architecture in lesser time with better accuracy. The effectiveness of the proposed framework is illustrated using 1D and 2D Burgers' equations. Results obtained illustrate the capability of the proposed framework in modeling PDE and its scalability to larger domains without the need for retraining. |
Barely Biased Learning for Gaussian Process Regression | Recent work in scalable approximate Gaussian process regression has discussed a bias-variance-computation trade-off when estimating the log marginal likelihood. We suggest a method that adaptively selects the amount of computation to use when estimating the log marginal likelihood so that the bias of the objective function is guaranteed to be small. While simple in principle, our current implementation of the method is not competitive computationally with existing approximations. |
The Role of Domain Expertise in User Trust and the Impact of First Impressions with Intelligent Systems | Domain-specific intelligent systems are meant to help system users in their decision-making process. Many systems aim to simultaneously support different users with varying levels of domain expertise, but prior domain knowledge can affect user trust and confidence in detecting system errors. While it is also known that user trust can be influenced by first impressions with intelligent systems, our research explores the relationship between ordering bias and domain expertise when encountering errors in intelligent systems. In this paper, we present a controlled user study to explore the role of domain knowledge in establishing trust and susceptibility to the influence of first impressions on user trust. Participants reviewed an explainable image classifier with a constant accuracy and two different orders of observing system errors (observing errors in the beginning of usage vs. in the end). Our findings indicate that encountering errors early-on can cause negative first impressions for domain experts, negatively impacting their trust over the course of interactions. However, encountering correct outputs early helps more knowledgable users to dynamically adjust their trust based on their observations of system performance. In contrast, novice users suffer from over-reliance due to their lack of proper knowledge to detect errors. |
Enforcing Policy Feasibility Constraints through Differentiable Projection for Energy Optimization | While reinforcement learning (RL) is gaining popularity in energy systems control, its real-world applications are limited due to the fact that the actions from learned policies may not satisfy functional requirements or be feasible for the underlying physical system. In this work, we propose PROjected Feasibility (PROF), a method to enforce convex operational constraints within neural policies. Specifically, we incorporate a differentiable projection layer within a neural network-based policy to enforce that all learned actions are feasible. We then update the policy end-to-end by propagating gradients through this differentiable projection layer, making the policy cognizant of the operational constraints. We demonstrate our method on two applications: energy-efficient building operation and inverter control. In the building operation setting, we show that PROF maintains thermal comfort requirements while improving energy efficiency by 4% over state-of-the-art methods. In the inverter control setting, PROF perfectly satisfies voltage constraints on the IEEE 37-bus feeder system, as it learns to curtail as little renewable energy as possible within its safety set. |
Lane-Merging Using Policy-based Reinforcement Learning and Post-Optimization | Many current behavior generation methods struggle to handle real-world traffic situations as they do not scale well with complexity. However, behaviors can be learned off-line using data-driven approaches. Especially, reinforcement learning is promising as it implicitly learns how to behave utilizing collected experiences. In this work, we combine policy-based reinforcement learning with local optimization to foster and synthesize the best of the two methodologies. The policy-based reinforcement learning algorithm provides an initial solution and guiding reference for the post-optimization. Therefore, the optimizer only has to compute a single homotopy class, e.g.\ drive behind or in front of the other vehicle. By storing the state-history during reinforcement learning, it can be used for constraint checking and the optimizer can account for interactions. The post-optimization additionally acts as a safety-layer and the novel method, thus, can be applied in safety-critical applications. We evaluate the proposed method using lane-change scenarios with a varying number of vehicles. |
Convergence and Implicit Bias of Gradient Flow on Overparametrized Linear Networks | Neural networks trained via gradient descent with random initialization and without any regularization enjoy good generalization performance in practice despite being highly overparametrized. A promising direction to explain this phenomenon is to study how initialization and overparametrization affect convergence and implicit bias of training algorithms. In this paper, we present a novel analysis of single-hidden-layer linear networks trained under gradient flow, which connects initialization, optimization, and overparametrization. Firstly, we show that the squared loss converges exponentially to its optimum at a rate that depends on the level of imbalance and the margin of the initialization. Secondly, we show that proper initialization constrains the dynamics of the network parameters to lie within an invariant set. In turn, minimizing the loss over this set leads to the min-norm solution. Finally, we show that large hidden layer width, together with (properly scaled) random initialization, ensures proximity to such an invariant set during training, allowing us to derive a novel non-asymptotic upper-bound on the distance between the trained network and the min-norm solution. |
Distributed Learning via Filtered Hyperinterpolation on Manifolds | Learning mappings of data on manifolds is an important topic in contemporary machine learning, with applications in astrophysics, geophysics, statistical physics, medical diagnosis, biochemistry, 3D object analysis. This paper studies the problem of learning real-valued functions on manifolds through filtered hyperinterpolation of input-output data pairs where the inputs may be sampled deterministically or at random and the outputs may be clean or noisy. Motivated by the problem of handling large data sets, it presents a parallel data processing approach which distributes the data-fitting task among multiple servers and synthesizes the fitted sub-models into a global estimator. We prove quantitative relations between the approximation quality of the learned function over the entire manifold, the type of target function, the number of servers, and the number and type of available samples. We obtain the approximation rates of convergence for distributed and non-distributed approaches. For the non-distributed case, the approximation order is optimal. |