Inconsistent Metadata
#1
by
chenghao
- opened
The features of the dataset shows
'answers': Sequence(feature={'text': Value(dtype='string', id=None), 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=None)
but the answers
are not sequences in the data:
'answers': {'text': ['France', 'France', 'France', 'France'], 'answer_start': [159, 159, 159, 159]}
The text
and answer_start
in answers
should be sequences not answers
itself.
I think it should look like this
'answers': {'text': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'answer_start': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None)}
Let me know if it makes sense, thanks!
A simple check you can run to verify the issue
from datasets import concatenate_datasets, load_dataset
squad = load_dataset("squad_v2")
squad["train"].to_json("output.jsonl", lines=True)
temp = load_dataset("json", data_files={"train": "output.jsonl"})
concatenate_datasets([temp["train"], squad["train"]])
It will complain about the exact same problem
ValueError: The features can't be aligned because the key answers of features {'id': Value(dtype='string', id=None), 'title': Value(dtype='string', id=None), 'context': Value(dtype='string', id=None), 'question': Value(dtype='string', id=None), 'answers': Sequence(feature={'text': Value(dtype='string', id=None), 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=None)} has unexpected type - Sequence(feature={'text': Value(dtype='string', id=None), 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=None) (expected either {'text': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'answer_start': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None)} or Value("null").
Hi ! The Sequence type is mostly here for compatibility for TensorFlow Datasets. When you have a Sequence of a dictionary of data types, it actually translates to a dictionary of list of elements.
therefore those two types
{
'text': Sequence(Value('string')),
'answer_start': Sequence(Value('int64'))
}
and
Sequence({
'text': Value('string'),
'answer_start': Value('int32')
})
are equivalent.
Concatenating datasets with these types should work though. Looks like you found a bug ;)
Feel free to open an issue on https://github.com/huggingface/datasets to explain the problem !
albertvillanova
changed discussion status to
closed