path
stringlengths
8
399
content_id
stringlengths
40
40
detected_licenses
sequence
license_type
stringclasses
2 values
repo_name
stringlengths
6
109
repo_url
stringlengths
25
128
star_events_count
int64
0
52.9k
fork_events_count
int64
0
7.07k
gha_license_id
stringclasses
9 values
gha_event_created_at
timestamp[us]
gha_updated_at
timestamp[us]
gha_language
stringclasses
28 values
language
stringclasses
1 value
is_generated
bool
1 class
is_vendor
bool
1 class
conversion_extension
stringclasses
17 values
size
int64
317
10.5M
script
stringlengths
245
9.7M
script_size
int64
245
9.7M
/Auto AI Predicting Life Expectancy - P3 notebook.ipynb
b66091b122b6071b42e91f028ba55652a90c7eed
[]
no_license
SmartPracticeschool/llSPS-INT-2664-Predicting-Life-Expectancy-using-Machine-Learning
https://github.com/SmartPracticeschool/llSPS-INT-2664-Predicting-Life-Expectancy-using-Machine-Learning
1
0
null
null
null
null
Jupyter Notebook
false
false
.py
48,784
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 (sandboxed) # language: python # name: python3 # --- # # Bloomberg BQuant Spotlight Webinar Series: Balancing Act # This is a companion notebook to the "Understanding the Financial Statement Impact of Operating Leases" webinar. # + deletable=true editable=true import bqplot as bqp from bqplot.interacts import BrushSelector import pandas as pd import numpy as np from ipywidgets import Dropdown, HBox, VBox, HTML import bqwidgets as bqw import bql bq=bql.Service() # + deletable=true editable=true params={'currency':'USD','fa_filing_status':'MRXP'} qparams={'currency':'USD','fa_filing_status':'MRXP','fa_period_type':'Q'} # + [markdown] deletable=true editable=true # <h5 style='color:LIGHTSKYBLUE'>Proxy Metric - Operating Lease Percentage of Liabilities</h5> # + deletable=true editable=true total_ol_liability=bq.func.znav(bq.data.bs_total_operating_lease_liabs(**params)) debt=bq.func.znav(bq.data.bs_tot_liab2(**params)) op_lease_pct_of_liabilities=bq.func.if_(bq.func.or_(bq.func.equals(total_ol_liability,0),bq.func.equals(debt,0)), 0, bq.func.dropna(total_ol_liability/debt))*100 # + [markdown] deletable=true editable=true # <h5 style='color:LightSeaGreen'>Pre-ASC842 EBITDA</h5> # + deletable=true editable=true def bq_old_ebitda(params): grid=bq.data.eqy_fund_ind() da=bq.data.cf_depr_amort(**params) oi=bq.data.is_oper_inc(**params) reit_oi=bq.data.ebit(**params) industrial=oi+da financial=oi+da+bq.func.znav(bq.data.is_int_expenses(**params)) utility=oi+da+bq.func.znav(bq.data.is_total_d_and_a_adjustment(**params)) reit=reit_oi+da old_ebitda=bq.func.if_(bq.func.in_(grid,['Industrial']),industrial, bq.func.if_(bq.func.in_(grid,['Financial']),financial, bq.func.if_(bq.func.in_(grid,['Utility']),utility, bq.func.if_(bq.func.in_(grid,['REIT']),reit,bql.NA)))) return old_ebitda old_ebitda=bq_old_ebitda(params) old_qebitda=bq_old_ebitda(qparams) # + [markdown] deletable=true editable=true # <h5 style='color:LightSeaGreen'>Pre-ASC842 Enterprise Value</h5> # + deletable=true editable=true old_ev=bq.data.curr_entp_val(**params)-bq.func.znav(bq.data.bs_total_operating_lease_liabs(**params)) # + [markdown] deletable=true editable=true # <h5 style='color:LightSeaGreen'>Pre-ASC842 Total Debt</h5> # + deletable=true editable=true old_debt=bq.data.short_and_long_term_debt(**params)-bq.func.znav(bq.data.bs_total_operating_lease_liabs(**params)) # + [markdown] deletable=true editable=true # <h5 style='color:LIGHTSKYBLUE'>Post-ASC842 vs. Pre-ASC842</h5> # + deletable=true editable=true ev=bq.data.curr_entp_val(**params) ebitda=bq.data.ebitda(**params) qebitda=bq.data.ebitda(**qparams) sales=bq.data.sales_rev_turn(**params) debt=bq.data.short_and_long_term_debt(**params) ev_ebitda=bq.func.if_(ebitda>0,ev/ebitda,bql.NA) old_ev_ebitda=bq.func.if_(old_ebitda>0,old_ev/old_ebitda,bql.NA) disc_ev_ebitda=bq.func.if_(ev_ebitda/old_ev_ebitda>0, ev_ebitda/old_ev_ebitda-1, bql.NA)*100 ebitda_margin=bq.func.if_(sales>0,ebitda/sales,bql.NA) old_ebitda_margin=bq.func.if_(sales>0,old_ebitda/sales,bql.NA) disc_ebitda_margin=bq.func.if_(ebitda_margin/old_ebitda_margin>0, ebitda_margin/old_ebitda_margin-1, bql.NA)*100 debt_ebitda=bq.func.if_(ebitda>0,debt/ebitda,bql.NA) old_debt_ebitda=bq.func.if_(old_ebitda>0,old_debt/old_ebitda,bql.NA) disc_debt_to_ebitda=(debt_ebitda/old_debt_ebitda-1)*100 disc_10q_ebitda=bq.func.if_(bq.func.and_(bq.func.equals(old_qebitda,0)==False,qebitda/old_qebitda>0), qebitda/old_qebitda-1, bql.NA)*100 # + [markdown] deletable=true editable=true # <h5 style='color:ORANGE'>Data Request</h5> # + deletable=true editable=true req_d={'Name':bq.data.name(), 'Sector':bq.data.gics_sector_name(), 'Industry':bq.data.gics_industry_name(), 'FA Class':bq.data.eqy_fund_ind(), 'Op Lease Pct of Liabilities':op_lease_pct_of_liabilities, 'EV to EBITDA':disc_ev_ebitda, 'EBITDA Margin':disc_ebitda_margin, 'Debt to EBITDA':disc_debt_to_ebitda, 'Last 10-Q EBITDA':disc_10q_ebitda} univ_filter_criteria=bq.func.and_(bq.func.znav(bq.data.bs_total_operating_lease_liabs(**params))>0, bq.func.in_(bq.data.eqy_fund_ind(),['Industrial','REIT','Utility','Financial'])) univ=bq.univ.filter(bq.univ.members('SPX Index'),univ_filter_criteria) req=bql.Request(univ,req_d) # + deletable=true editable=true bqexec=bq.execute(req) # + deletable=true editable=true reference_columns=['Name','Sector','Industry','FA Class','Op Lease Pct of Liabilities'] discrepancy_columns=['Last 10-Q EBITDA', 'EV to EBITDA','EBITDA Margin', 'Debt to EBITDA'] # + deletable=true editable=true df_cols=[] for col in reference_columns+discrepancy_columns: df_cols.append(bqexec.get(col).df()[col]) data=pd.concat(df_cols,axis=1).reset_index().rename(columns={'ID':'Ticker'}) # + deletable=true editable=true data.head() # + deletable=true editable=true data_clean=data.copy() for col in discrepancy_columns: data_clean[col]=data_clean[col].clip(lower=data[col].quantile(0.05),upper=data[col].quantile(0.95)) # + deletable=true editable=true data_clean=data_clean.round(decimals=2) # + [markdown] deletable=true editable=true # <h5 style='color:ORANGE'>Post-ASC842 vs. Pre-ASC842 Visualization</h5> # + deletable=true editable=true # Data source # data_clean data_cols=['Op Lease Pct of Liabilities']+discrepancy_columns # Create scales scale_x = bqp.LinearScale() scale_y = bqp.LinearScale() c_sc=bqp.OrdinalColorScale() ttp_flds=['name','color'] ttp_lbls=['Name','Sector'] ttp=bqp.Tooltip(fields=ttp_flds,labels=ttp_lbls) # Create marks mark_scatter = bqp.Scatter(x=data_clean[data_cols[0]], y=data_clean[data_cols[1]], scales={'x': scale_x, 'y': scale_y,'color':c_sc}, default_size=48, color=data_clean['Industry'], names=data_clean['Name'], display_names=False, tooltip=ttp) # Create Axes axis_x = bqp.Axis(scale=scale_x, label=data_cols[0]) axis_y = bqp.Axis(scale=scale_y, orientation='vertical', tick_format='0.0f', label=data_cols[1]) # Create selector selector = BrushSelector(x_scale=scale_x, y_scale=scale_y, marks=[mark_scatter]) # Create Figure figure = bqp.Figure(marks=[mark_scatter], axes=[axis_x, axis_y], animation_duration=500, layout={'width':'99%', 'height':'400px'}, padding_x=0.05, title='S&P 500 ASC 842 Impact', title_style={'font-size': '22px'}, padding_y=0.05, interaction=selector, fig_margin={'top': 50, 'bottom': 60, 'left': 50, 'right':30}) # Create dropown widgets dropdown_x = Dropdown(description='X axis', options=data_cols, value=data_cols[0]) dropdown_y = Dropdown(description='Y axis', options=data_cols, value=data_cols[1]) # Define callback function for dropdown widgets def update_plot(evt): if evt is not None: new_value = evt['new'] if evt['owner'] == dropdown_x: mark_scatter.x = data_clean[new_value] axis_x.label = new_value elif evt['owner'] == dropdown_y: mark_scatter.y = data_clean[new_value] axis_y.label = new_value # Define callback function for selections def on_select(evt): if evt is not None and evt['new'] is not None: indices = evt['new'] datagrid.data = data_clean.iloc[indices].reset_index() # Bind callback to the dropdown widgets dropdown_x.observe(update_plot, names=['value']) dropdown_y.observe(update_plot, names=['value']) mark_scatter.observe(on_select, names=['selected']) # Create datagrid col_defs=[{'children': [{'field': 'Ticker', 'headerName': 'Ticker', 'width': 170}, {'field': 'Name', 'headerName': 'Name', 'width': 190}, {'field': 'Sector', 'headerName': 'Sector', 'width': 190}, {'field': 'Industry', 'headerName': 'Industry', 'width': 190}, {'field': 'FA Class', 'headerName': 'FA Class', 'width': 96}, {'field': 'Op Lease Pct of Liabilities', 'headerName': 'Op Lease Pct of Liabilities', 'width': 240}], 'headerName': 'Company'}, {'children': [{'field': 'Last 10-Q EBITDA', 'headerName': 'Last 10-Q EBITDA', 'width': 192}, {'field': 'EV to EBITDA', 'headerName': 'EV to EBITDA', 'width': 144}, {'field': 'EBITDA Margin', 'headerName': 'EBITDA Margin', 'width': 156}, {'field': 'Debt to EBITDA', 'headerName': 'Debt to EBITDA', 'width': 168}], 'headerName': '% Discrepancy in ASU 2016-02 Impacted Data'}] datagrid = bqw.DataGrid(data=data_clean,column_defs=col_defs) # Create Box containers widget_box = HBox([dropdown_x, dropdown_y], layout={'margin': '10px'}) app_container = VBox([figure, widget_box, datagrid], layout={'width':'100%'}) # Display the visualization app_container
9,933
/minhpham/.ipynb_checkpoints/DataPrep-checkpoint.ipynb
00745c1fa9e39ff55386587ddaedfc441a79395f
[]
no_license
saigontrade88/IEEEBigData21_RL
https://github.com/saigontrade88/IEEEBigData21_RL
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
10,817
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- from sklearn.datasets import make_blobs X, y =make_blobs(centers=4, random_state =8) y = y%2 # + from IPython.display import display import numpy as np import matplotlib.pyplot as plt # %matplotlib inline import pandas as pd import mglearn import platform from matplotlib import font_manager, rc plt.rcParams['axes.unicode_minus']=False if platform.system()=='Darwin': rc('font', family='AppleGothic') elif platform.system() =='Windows': path = 'c:/Windows/Fonts/malgun.ttf' font_name = font_manager.FontProperties(fname=path).get_name() rc('font', family=font_name) else: print('Unknown system... sorry~~~~') # - mglearn.discrete_scatter(X[:,0], X[:,1],y) plt.xlabel('ํŠน์„ฑ 0') plt.ylabel('ํŠน์„ฑ 1') from sklearn.svm import LinearSVC linear_svm = LinearSVC().fit(X,y) mglearn.plots.plot_2d_separator(linear_svm, X) mglearn.discrete_scatter(X[:,0], X[:,1],y) plt.xlabel('ํŠน์„ฑ 0') plt.ylabel('ํŠน์„ฑ 1') # ๋‘ ๋ฒˆ์งธ ํŠน์„ฑ์„ ์ œ๊ณฑํ•˜์—ฌ ์ถ”๊ฐ€ํ•ฉ๋‹ˆ๋‹ค. X_new = np.hstack([X, X[:,1:]**2]) from mpl_toolkits.mplot3d import Axes3D, axes3d figure = plt.figure() # 3์ฐจ์› ๊ทธ๋ž˜ํ”„ ax = Axes3D(figure, elev=-152, azim =-26) # y == 0์ธ ํฌ์ธํŠธ๋ฅผ ๋จผ์ € ๊ทธ๋ฆฌ๊ณ  ๋‹ค์Œ y==1์ธ ํฌ์ธํŠธ๋ฅผ ๊ทธ๋ฆฝ๋‹ˆ๋‹ค. mask = y ==0 ax.scatter(X_new[mask,0], X_new[mask, 1], X_new[mask, 2], c='b', cmap=mglearn.cm2, s=60, edgecolor='k') ax.scatter(X_new[~mask,0], X_new[~mask,1], X_new[~mask, 2], c='r', marker='^', cmap=mglearn.cm2, s=60, edgecolor='k') ax.set_xlabel('ํŠน์„ฑ 0') ax.set_ylabel('ํŠน์„ฑ 1') ax.set_zlabel('ํŠน์„ฑ 1**2') # + linear_svm_3d = LinearSVC().fit(X_new, y) coef, intercept = linear_svm_3d.coef_.ravel(), linear_svm_3d.intercept_ # ์„ ํ˜• ๊ฒฐ์ • ๊ฒฝ๊ณ„ ๊ทธ๋ฆฌ๊ธฐ figure = plt.figure() ax = Axes3D(figure, elev=-152, azim = -26) xx = np.linspace(X_new[:,0].min()- 2,X_new[:,0].max() +2, 50) yy = np.linspace(X_new[:,1].min()-2, X_new[:,1].max() +2, 50) XX,YY = np.meshgrid(xx,yy) ZZ =(coef[0] * XX +coef[1]*YY +intercept) / -coef[2] ax.plot_surface(XX,YY,ZZ,rstride=8, cstride=8, alpha=0.3) ax.scatter(X_new[mask, 0], X_new[mask,1], X_new[mask, 2],c ='b', cmap=mglearn.cm2, s =60, edgecolor='k') ax.scatter(X_new[~mask,0], X_new[~mask,1], X_new[~mask,2], c='r', marker='^', cmap = mglearn.cm2, s=60, edgecolor='k') ax.set_xlabel('ํŠน์„ฑ 0') ax.set_ylabel('ํŠน์„ฑ 1') ax.set_zlabel('ํŠน์„ฑ 1 **2') # - ZZ = YY **2 dec = linear_svm_3d.decision_function(np.c_[XX.ravel(), YY.ravel(), ZZ.ravel()]) plt.contour(XX, YY, dec.reshape(XX.shape), levels = [dec.min(), 0, dec.max()], cmap=mglearn.cm2, alpha =0.5) mglearn.discrete_scatter(X[:,0], X[:,1], y) plt.xlabel('ํŠน์„ฑ 0') plt.ylabel('ํŠน์„ฑ 1') # ### ์ปค๋„ ๊ธฐ๋ฒ• # ### SVM ์ดํ•ดํ•˜๊ธฐ from sklearn.svm import SVC X,y = mglearn.tools.make_handcrafted_dataset() svm = SVC(kernel ='rbf', C=10, gamma = 0.1).fit(X,y) mglearn.plots.plot_2d_separator(svm, X, eps=.5) #๋ฐ์ดํ„ฐ ํฌ์ธํŠธ ๊ทธ๋ฆฌ๊ธฐ mglearn.discrete_scatter(X[:, 0], X[:,1], y) #์„œํฌํŠธ ๋ฒกํ„ฐ sv = svm.support_vectors_ # dual_coef_์˜ ๋ถ€ํ˜ธ์— ์˜ํ•ด ์„œํฌํŠธ ๋ฒกํ„ฐ์˜ ํด๋ž˜์Šค ๋ ˆ์ด๋ธ”์ด ๊ฒฐ์ •๋ฉ๋‹ˆ๋‹ค. sv_labels = svm.dual_coef_.ravel()>0 mglearn.discrete_scatter(sv[:,0], sv[:,1], sv_labels, s=15, markeredgewidth=3) plt.xlabel('ํŠน์„ฑ 0') plt.ylabel('ํŠน์„ฑ 1') # ### SVM ๋งค๊ฐœ๋ณ€์ˆ˜ ํŠœ๋‹ # + fig, axes = plt.subplots(3,3, figsize=(15,10)) for ax, C in zip(axes, [-1,0,3]): for a, gamma in zip(ax, range(-1,2)): mglearn.plots.plot_svm(log_C=C, log_gamma=gamma, ax=a) axes[0,0].legend(['ํด๋ž˜์Šค 0', 'ํด๋ž˜์Šค 1', 'ํด๋ž˜์Šค 0 ์„œํฌํŠธ ๋ฒกํ„ฐ', 'ํด๋ž˜์Šค 1 ์„œํฌํŠธ ๋ฒกํ„ฐ'], ncol =4, loc=(.9, 1.2)) # - from sklearn.datasets import load_breast_cancer cancer = load_breast_cancer() from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( cancer.data, cancer.target, random_state=0) svc = SVC() svc.fit(X_train, y_train) print('ํ›ˆ๋ จ ์„ธํŠธ ์ •ํ™•๋„:{:.3f}'.format(svc.score(X_train, y_train))) print('ํ…Œ์ŠคํŠธ ์„ธํŠธ ์ •ํ™•๋„:{:.3f}'.format(svc.score(X_test, y_test))) plt.boxplot(X_train) plt.yscale('symlog') plt.xlabel('ํŠน์„ฑ ๋ชฉ๋ก') plt.ylabel('ํŠน์„ฑ ํฌ๊ธฐ') # ### SVM์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ # + # ํ›ˆ๋ จ ์„ธํŠธ์—์„œ ํŠน์„ฑ๋ณ„ ์ตœ์†Ÿ๊ฐ’ ๊ณ„์‚ฐ min_on_training = X_train.min(axis =0) # ํ›ˆ๋ จ ์„ธํŠธ์—์„œ ํŠน์„ฑ๋ณ„ (์ตœ๋Œ“๊ฐ’ - ์ตœ์†Ÿ๊ฐ’) ๋ฒ”์œ„ ๊ณ„์‚ฐ range_on_training = (X_train - min_on_training).max(axis =0) #ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ์ตœ์†Ÿ๊ฐ’์„ ๋นผ๊ณ  ๋ฒ”์œ„๋กœ ๋‚˜๋ˆ„๋ฉด #๊ฐ ํŠน์„ฑ์— ๋Œ€ํ•ด ์ตœ์†Ÿ๊ฐ’์€ 0 ์ตœ๋Œ“๊ฐ’์€ 1์ž…๋‹ˆ๋‹ค. X_train_scaled = (X_train - min_on_training) / range_on_training print('ํŠน์„ฑ๋ณ„ ์ตœ์†Ÿ๊ฐ’ \n', X_train_scaled.min(axis=0)) print('ํŠน์„ฑ๋ณ„ ์ตœ๋Œ“๊ฐ’ \n', X_train_scaled.max(axis=0)) # - # ํ…Œ์ŠคํŠธ ์„ธํŠธ์—๋„ ๊ฐ™์€ ์ž‘์—…์„ ์ ์šฉํ•˜์ง€๋งŒ # ํ›ˆ๋ จ ์„ธํŠธ์—์„œ ๊ณ„์‚ฐํ•œ ์ตœ์†Ÿ๊ฐ’๊ณผ ๋ฒ”์œ„๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. X_test_scaled = (X_test - min_on_training) / range_on_training # + svc = SVC() svc.fit(X_train_scaled, y_train) print('ํ›ˆ๋ จ ์„ธํŠธ ์ •ํ™•๋„: {:.3f}'.format(svc.score(X_train_scaled, y_train))) print('ํ…Œ์ŠคํŠธ ์„ธํŠธ ์ •ํ™•๋„:{:.3f}'.format(svc.score(X_test_scaled, y_test))) # - svc = SVC(C=1000) svc.fit(X_train_scaled, y_train) print('ํ›ˆ๋ จ ์„ธํŠธ ์ •ํ™•๋„:{:.3f}'.format(svc.score(X_train_scaled, y_train))) print('ํ…Œ์ŠคํŠธ ์„ธํŠธ ์ •ํ™•๋„:{:.3f}'.format(svc.score(X_test_scaled, y_test))) = (rawTestSet.shape[0], N_ITEMS+N_USER_PORTRAITS)), columns = colNames) # parse each line in parallel # first objects in shared memory for input and output print('creating shared memory objects ... ') mpManager = mp.Manager() inputSharedList = mpManager.list(rawTestSet.values.tolist()) # for memory efficiency outputSharedList = mpManager.list(output.values.tolist()) # shared output as a list (because DataFrame can't) p = mp.Pool(N_THREADS) print('multiprocessing ... ') for i in tqdm(range(rawTestSet.shape[0])): p.apply_async(parseUserFeaturesOneLine, [i, inputSharedList, outputSharedList]) p.close() p.join() # convert outputSharedList back to DataFrame print('convert to DataFrame ...') output = pd.DataFrame(data = outputSharedList, columns = colNames) # write to pkl file output.to_pickle('/tf/shared/data/UserFeaturesTestSet.pkl') test = prepareUserFeaturesTrainSet() print(test) # preparePurchasedItemsTrainSet() def getUserFeaturesTrainSet(): """ return: DataFrame with N_ITEMS+N_USER_PORTRAITS columns first N_ITEMS cols: one hot encoding of clicked items last N_USER_PORTRAITS cols: normalized user portraits """ return pd.read_pickle('./data/UserFeaturesTrainSet.pkl') def getPurchasedItemsTrainSet(): """ return: a list, each element is a list of purchased item by a user list length is same as PurchasedItemsTrainSet's nrow """ file = open('/tf/minhpham/data/PurchasedItemsTrainSet.pkl', 'rb') data = pickle.load(file) file.close() return data # - from sklearn.preprocessing import MinMaxScaler UserFeaturesTrainSet = getUserFeaturesTrainSet() for i in range(N_USER_PORTRAITS): colName = 'userPortrait' + str(i+1) scaler = MinMaxScaler() UserFeaturesTrainSet[colName] = scaler.fit_transform(UserFeaturesTrainSet[colName].values.reshape(-1,1)) UserFeaturesTrainSet.to_pickle('./data/UserFeaturesTrainSet.pkl') test = getPurchasedItemsTrainSet() print(test[:10])
7,072
/chap010_numeric_limits/chap010_001_numeric_limits.ipynb
35da385d399d31ebcd58fd0dfe6b7b2751dfd63c
[]
no_license
dandrewmyers/python-econometrics
https://github.com/dandrewmyers/python-econometrics
6
4
null
null
null
null
Jupyter Notebook
false
false
.py
5,396
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # ### Numeric Limits import numpy as np np.finfo(float).max np.finfo(float).min np.finfo(float).tiny np.finfo(float).eps x = 1.0 eps = np.finfo(float).eps x = x+eps/2 x == 1 x - 1 x = 1 + 2*eps x == 1 x - 1 x = 10 x + 2*eps x - 10 (x - 10) == 0 (1e120 - 1e103) == 1e120 1e103 / 1e120 rn int(PHI ** n / m.sqrt(5) + 0.5) print("fib =",fib(8))
630
/Lasso Regression.ipynb
e11f9b9d269dc74d2773e66bc560bf4c5661e4bc
[]
no_license
krishnan166/ML-for-Antenna-Optimisation
https://github.com/krishnan166/ML-for-Antenna-Optimisation
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
5,231
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="view-in-github" colab_type="text" # <a href="https://colab.research.google.com/github/RedaElmar/Course_intro_to_TF_for_DL/blob/master/l02c01.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # + [markdown] colab_type="text" id="HnKx50tv5aZD" # ##### Copyright 2018 The TensorFlow Authors. # + [markdown] colab_type="text" id="YHI3vyhv5p85" # # The Basics: Training Your First Model # + [markdown] colab_type="text" id="F8YVA_634OFk" # Welcome to this Colab where you will train your first Machine Learning model! # # We'll try to keep things simple here, and only introduce basic concepts. Later Colabs will cover more advanced problems. # # The problem we will solve is to convert from Celsius to Fahrenheit, where the approximate formula is: # # $$ f = c \times 1.8 + 32 $$ # # # Of course, it would be simple enough to create a conventional Python function that directly performs this calculation, but that wouldn't be machine learning. # # # Instead, we will give TensorFlow some sample Celsius values (0, 8, 15, 22, 38) and their corresponding Fahrenheit values (32, 46, 59, 72, 100). # Then, we will train a model that figures out the above formula through the training process. # + [markdown] colab_type="text" id="fA93WUy1zzWf" # ## Import dependencies # # First, import TensorFlow. Here, we're calling it `tf` for ease of use. We also tell it to only display errors. # # Next, import [NumPy](http://www.numpy.org/) as `np`. Numpy helps us to represent our data as highly performant lists. # + colab_type="code" id="-ZMgCvSRFqxE" colab={} import tensorflow as tf # + colab_type="code" id="y_WQEM5MGmg3" colab={} import numpy as np import logging logger = tf.get_logger() logger.setLevel(logging.ERROR) # + [markdown] colab_type="text" id="AC3EQFi20buB" # ## Set up training data # # As we saw before, supervised Machine Learning is all about figuring out an algorithm given a set of inputs and outputs. Since the task in this Codelab is to create a model that can give the temperature in Fahrenheit when given the degrees in Celsius, we create two lists `celsius_q` and `fahrenheit_a` that we can use to train our model. # + colab_type="code" id="gg4pn6aI1vms" colab={} celsius_q = np.array([-40, -10, 0, 8, 15, 22, 38], dtype=float) fahrenheit_a = np.array([-40, 14, 32, 46, 59, 72, 100], dtype=float) for i,c in enumerate(celsius_q): print("{} degrees Celsius = {} degrees Fahrenheit".format(c, fahrenheit_a[i])) # + [markdown] colab_type="text" id="wwJGmDrQ0EoB" # ### Some Machine Learning terminology # # - **Feature** โ€” The input(s) to our model. In this case, a single value โ€” the degrees in Celsius. # # - **Labels** โ€” The output our model predicts. In this case, a single value โ€” the degrees in Fahrenheit. # # - **Example** โ€” A pair of inputs/outputs used during training. In our case a pair of values from `celsius_q` and `fahrenheit_a` at a specific index, such as `(22,72)`. # # + [markdown] colab_type="text" id="VM7_9Klvq7MO" # ## Create the model # # Next, create the model. We will use the simplest possible model we can, a Dense network. Since the problem is straightforward, this network will require only a single layer, with a single neuron. # # ### Build a layer # # We'll call the layer `l0` and create it by instantiating `tf.keras.layers.Dense` with the following configuration: # # * `input_shape=[1]` โ€” This specifies that the input to this layer is a single value. That is, the shape is a one-dimensional array with one member. Since this is the first (and only) layer, that input shape is the input shape of the entire model. The single value is a floating point number, representing degrees Celsius. # # * `units=1` โ€” This specifies the number of neurons in the layer. The number of neTest accuracy: 0.6851 model = Sequential() model.add(Conv2D(64, kernel_size=(3, 3), activation='elu', input_shape=(32, 32, 3))) model.add(Conv2D(32, kernel_size=(3, 3), activation='elu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Activation('elu')) model.add(Dense(1000)) model.add(Activation('elu')) model.add(Dense(100)) model.add(Activation('elu')) model.add(Dense(10)) model.add(Activation('softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() """ """ #Training MLP took 1835.7603313922882 seconds #Test loss: 2.2038055744171143 #Test accuracy: 0.6506 model = Sequential() # https://stackoverflow.com/questions/34619177/what-does-tf-nn-conv2d-do-in-tensorflow model.add(Conv2D(64, kernel_size=(3, 3), activation='elu', input_shape=(32, 32, 3))) # https://www.quora.com/What-is-max-pooling-in-convolutional-neural-networks model.add(MaxPooling2D(pool_size=(2, 2))) # Ruido... mรกs o menos model.add(Dropout(0.25)) model.add(Flatten(input_shape=(32, 32, 3))) model.add(Activation('elu')) model.add(Dense(1000)) model.add(Activation('elu')) model.add(Dense(100)) model.add(Activation('elu')) model.add(Dense(10)) model.add(Activation('softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() """ """ # Test loss: 1.401836185646057 # Test accuracy: 0.7064 # Training MLP took 2226.8992404937744 seconds model = Sequential() model.add(Conv2D(64, kernel_size=(3, 3), activation='elu', input_shape=(32, 32, 3))) model.add(Conv2D(32, kernel_size=(3, 3), activation='elu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.5)) model.add(Flatten()) model.add(Activation('elu')) model.add(Dense(1000)) model.add(Dropout(0.5)) model.add(Activation('elu')) model.add(Dense(100)) model.add(Dropout(0.5)) model.add(Activation('elu')) model.add(Dense(10)) model.add(Activation('softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() """ """ #Con sale 64 entra a 32: # Test loss: 1.0052009043216705 # Test accuracy: 0.7138 # Training MLP took 2096.7810397148132 seconds model = Sequential() model.add(Conv2D(64, kernel_size=(3, 3), activation='elu', input_shape=(32, 32, 3))) model.add(Conv2D(32, kernel_size=(3, 3), activation='elu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.5)) model.add(Conv2D(64, kernel_size=(3, 3), activation='elu')) model.add(Conv2D(32, kernel_size=(3, 3), activation='elu', input_shape=(32, 32, 3))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.5)) model.add(Flatten()) model.add(Activation('elu')) model.add(Dense(1000)) model.add(Dropout(0.5)) model.add(Activation('elu')) model.add(Dense(100)) model.add(Dropout(0.5)) model.add(Activation('elu')) model.add(Dense(10)) model.add(Activation('softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() """ #Con sale 32 entra a 32: # Test loss: 1.035853784275055 # Test accuracy: 0.7291 # Training MLP took 2071.0573613643646 seconds model = Sequential() model.add(Conv2D(64, kernel_size=(3, 3), activation='elu', input_shape=(32, 32, 3))) model.add(Conv2D(32, kernel_size=(3, 3), activation='elu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.5)) model.add(Conv2D(32, kernel_size=(3, 3), activation='elu')) model.add(Conv2D(64, kernel_size=(3, 3), activation='elu', input_shape=(32, 32, 3))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.5)) model.add(Flatten()) model.add(Activation('elu')) model.add(Dense(1000)) model.add(Dropout(0.5)) model.add(Activation('elu')) model.add(Dense(100)) model.add(Dropout(0.5)) model.add(Activation('elu')) model.add(Dense(10)) model.add(Activation('softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() # + colab={"base_uri": "https://localhost:8080/", "height": 3060} colab_type="code" id="NJ7U0u3IpuPj" outputId="57b74713-afd3-49fb-b0ec-f20d6ba9ab5a" # Training import time start = time.time() history = model.fit(X_train, Y_train, batch_size=128, epochs=20, verbose=1, validation_data=(X_test, Y_test)) end = time.time() loss, acc = model.evaluate(X_test, Y_test, verbose=0) print('Test loss:', loss) print('Test accuracy:', acc) plot_model_history(history) print("Training MLP took " + str(end - start) + " seconds") # + colab={} colab_type="code" id="R4547GWaFX-c" rks internally. # + [markdown] colab_type="text" id="0-QsNCLD4MJZ" # ## Display training statistics # # The `fit` method returns a history object. We can use this object to plot how the loss of our model goes down after each training epoch. A high loss means that the Fahrenheit degrees the model predicts is far from the corresponding value in `fahrenheit_a`. # # We'll use [Matplotlib](https://matplotlib.org/) to visualize this (you could use another tool). As you can see, our model improves very quickly at first, and then has a steady, slow improvement until it is very near "perfect" towards the end. # # + colab_type="code" id="IeK6BzfbdO6_" colab={} import matplotlib.pyplot as plt plt.xlabel('Epoch Number') plt.ylabel("Loss Magnitude") plt.plot(history.history['loss']) # + [markdown] colab_type="text" id="LtQGDMob5LOD" # ## Use the model to predict values # # Now you have a model that has been trained to learn the relationship between `celsius_q` and `fahrenheit_a`. You can use the predict method to have it calculate the Fahrenheit degrees for a previously unknown Celsius degrees. # # So, for example, if the Celsius value is 100, what do you think the Fahrenheit result will be? Take a guess before you run this code. # + colab_type="code" id="oxNzL4lS2Gui" colab={} print(model.predict([100.0])) # + [markdown] colab_type="text" id="jApk6tZ1fBg1" # The correct answer is $100 \times 1.8 + 32 = 212$, so our model is doing really well. # # ### To review # # # * We created a model with a Dense layer # * We trained it with 3500 examples (7 pairs, over 500 epochs). # # Our model tuned the variables (weights) in the Dense layer until it was able to return the correct Fahrenheit value for any Celsius value. (Remember, 100 Celsius was not part of our training data.) # # + [markdown] colab_type="text" id="zRrOky5gm20Z" # ## Looking at the layer weights # # Finally, let's print the internal variables of the Dense layer. # + colab_type="code" id="kmIkVdkbnZJI" colab={} print("These are the layer variables: {}".format(l0.get_weights())) # + [markdown] colab_type="text" id="RSplSnMvnWC-" # The first variable is close to ~1.8 and the second to ~32. These values (1.8 and 32) are the actual variables in the real conversion formula. # # This is really close to the values in the conversion formula. We'll explain this in an upcoming video where we show how a Dense layer works, but for a single neuron with a single input and a single output, the internal math looks the same as [the equation for a line](https://en.wikipedia.org/wiki/Linear_equation#Slope%E2%80%93intercept_form), $y = mx + b$, which has the same form as the conversion equation, $f = 1.8c + 32$. # # Since the form is the same, the variables should converge on the standard values of 1.8 and 32, which is exactly what happened. # # With additional neurons, additional inputs, and additional outputs, the formula becomes much more complex, but the idea is the same. # # ### A little experiment # # Just for fun, what if we created more Dense layers with different units, which therefore also has more variables? # + colab_type="code" id="Y2zTA-rDS5Xk" colab={} l0 = tf.keras.layers.Dense(units=4, input_shape=[1]) l1 = tf.keras.layers.Dense(units=4) l2 = tf.keras.layers.Dense(units=1) model = tf.keras.Sequential([l0, l1, l2]) model.compile(loss='mean_squared_error', optimizer=tf.keras.optimizers.Adam(0.1)) model.fit(celsius_q, fahrenheit_a, epochs=500, verbose=False) print("Finished training the model") print(model.predict([100.0])) print("Model predicts that 100 degrees Celsius is: {} degrees Fahrenheit".format(model.predict([100.0]))) print("These are the l0 variables: {}".format(l0.get_weights())) print("These are the l1 variables: {}".format(l1.get_weights())) print("These are the l2 variables: {}".format(l2.get_weights())) # + [markdown] colab_type="text" id="xrpFFlgYhCty" # As you can see, this model is also able to predict the corresponding Fahrenheit value really well. But when you look at the variables (weights) in the `l0` and `l1` layers, they are nothing even close to ~1.8 and ~32. The added complexity hides the "simple" form of the conversion equation. # # Stay tuned for the upcoming video on how Dense layers work for the explanation. # + id="wOW7URUlvKfZ" colab_type="code" colab={}
12,935
/notebook/run.ipynb
0c9f70e94844cfbb60e7c08a32e85c9cfb3b34c1
[]
no_license
900groove/lstm-crf
https://github.com/900groove/lstm-crf
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
7,000
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import os import sys import pickle import torch sys.path.append(os.pardir) from lstm_crf.lstm_crf import BiLSTM_CRF from lstm_crf.util import parse_text # + START_TAG = "<START>" STOP_TAG = "<STOP>" with open('../data/word_to_ix_nikkei.pickle', mode='rb') as f: word_to_ix = pickle.load(f) tag_to_ix = {'*': 0, 'ใ‚ตๅค‰ๆŽฅ็ถš': 1, 'ไธ€่ˆฌ': 2, 'ไบบๅ': 3, 'ๅ‰ฏ่ฉžๅฏ่ƒฝ': 4, 'ๅŠฉๅ‹•่ฉž่ชžๅนน': 5, 'ๅŠฉๆ•ฐ่ฉž': 6, 'ๅœฐๅŸŸ': 7, 'ๅผ•็”จ': 8, 'ๅฝขๅฎนๅ‹•่ฉž่ชžๅนน': 9, '็‰นๆฎŠ': 10, '็ต„็น”': 11, '้€ฃ่ชž': 12, START_TAG: 13, STOP_TAG: 14} ix_to_tag = {i:t for t, i in tag_to_ix.items()} # + EMBEDDING_DIM = 100 HIDDEN_DIM = 200 TRAINIG_EPOCH = 5 BATCH_SIZE = 128 # DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' DEVICE = 'cpu' model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM) model.load_state_dict(torch.load('../model/trained_model.model')) # - def make_input(text): words = parse_text(text)[0] #word_id = [word_to_ix[w] for w in words] input = [] result = [] for w in words: try: input.append(w) result.append(word_to_ix[w]) except KeyError: pass return input, torch.tensor(result, dtype=torch.long) def text_to_id(text): text = text.replace('ใ€‚', ' ') text = [word_to_ix[s] for s in list(text)] return torch.tensor(text, dtype=torch.long) new_text = "2019ๅนด4ๆœˆ23ๆ—ฅใ€ใƒกใƒซใ‚ซใƒชใฎๆฑบๆธˆๅญไผš็คพใงใ‚ใ‚‹ใƒกใƒซใƒšใ‚คใŒใ‚ชใƒณใƒฉใ‚คใƒณใงๆœฌไบบ็ขบ่ชใงใใ‚‹ใ‚ตใƒผใƒ“ใ‚นใ‚’้–‹ๅง‹ใ—ใŸใ€‚็ฟŒ24ๆ—ฅใซใฏLINE Payใ‚‚2019ๅนด5ๆœˆๅˆๆ—ฌใซๅŒๆง˜ใฎใ‚ตใƒผใƒ“ใ‚นใ‚’ใ‚นใ‚ฟใƒผใƒˆใ™ใ‚‹ใจ็™บ่กจใ—ใŸใ€‚ใ‚นใƒžใƒ›ๆฑบๆธˆใ‚’ๅˆฉ็”จใ™ใ‚‹ใ†ใˆใงๅฟ…่ฆใ ใŒๆ‰‹้–“ใฎใ‹ใ‹ใ‚‹ๆœฌไบบ็ขบ่ชๆ‰‹็ถšใใ‚’็ฐก็ด ใซๅค‰ใˆใ€ๅˆฉ็”จ่€…็ฒๅพ—ใ‚’ๅ„ชไฝใซ้€ฒใ‚ใ‚‹็‹™ใ„ใŒใ‚ใ‚‹ใ€‚่ƒŒๆ™ฏใซใ‚ใ‚‹ใฎใฏ2018ๅนด็ง‹ใซ่กŒใ‚ใ‚ŒใŸๆณ•ๆ”นๆญฃใ ใ€‚" # + input_word, input_id = make_input(new_text) result = model.forward(input_id) for text, label in zip(input_word, result[1]): print(f'{text}: {ix_to_tag[label]}') # - a, b = parse_text(new_text) for aa, bb in zip(a, b): print(aa, bb) ult starting parameters for gamma are wrong ts = Tseries(-IN.series/1000, Gamma, IN.name) ml.add_tseries(ts) # Add well extraction 3 IN = next(x for x in meny.IN if x.name == 'Extraction 3') # extraction amount counts for the previous month IN.series = IN.series.resample('d').bfill() IN.name = IN.name.replace(' ','_') # divide by thousand, as default starting parameters for gamma are wrong ts = Tseries(-IN.series/1000, Gamma, IN.name) ml.add_tseries(ts) # Add noise model n = NoiseModel() ml.add_noisemodel(n) # Solve ml.solve() # - # ## 3. Plot the decomposition # Show the decomposition of the groundwater head, by plotting the influence on groundwater head of each of the stresses. ml.plot_decomposition()
2,914
/apache_spark/notebooks/spark_examples.ipynb
62467b43c4c136384e393bc4514ad0263322ddf4
[]
no_license
LabutinIgor/MLBD
https://github.com/LabutinIgor/MLBD
0
0
null
2020-03-28T15:07:57
2020-03-28T14:29:35
Jupyter Notebook
Jupyter Notebook
false
false
.py
411,460
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- gandalf = [10, 11, 13, 30, 22, 11, 10, 33, 22, 22] saruman = [23, 66, 12, 43, 12, 10, 44, 23, 12, 17] comb_spells = gandalf + saruman comb_spells # + gandalf_wins = [0, 1, 2, 3, 4, 5] saruman_wins = [0,1,2,3] len(gandalf_wins) # - len(saruman_wins) # + for gandalf_wins in gandalf_wins: print(gandalf_wins) # - for saruman_wins in saruman_wins: print(saruman_wins) # + POWER = {'Fireball': 50, 'Lightning bolt': 40, 'Magic arrow': 10, 'Black Tentacles': 25, 'Contagion': 45} gandalf = ['Fireball', 'Lightning bolt', 'Lightning bolt', 'Magic arrow', 'Fireball', 'Magic arrow', 'Lightning bolt', 'Fireball', 'Fireball', 'Fireball'] saruman = ['Contagion', 'Contagion', 'Black Tentacles', 'Fireball', 'Black Tentacles', 'Lightning bolt', 'Magic arrow', 'Contagion', 'Magic arrow', 'Magic arrow'] comb_spells = gandalf + saruman comb_spells # + POWER = {'Fireball': 50, 'Lightning bolt': 40, 'Magic arrow': 10, 'Black Tentacles': 25, 'Contagion': 45} gandalf = [50, 40, 40, 10, 50, 10, 40, 50, 50, 50] saruman = [45, 45, 25, 50, 25, 40, 10, 45, 10, 10] gandalf_wins=[0,1,2,3,4,5,6] sarum_wins=[0,1,2] len(gandalf_wins) # + len(sarum_wins) # + gandalf_power = ['Fireball':50, 'Lightning bolt':40, 'Lightning bolt':40, 'Magic arrow':10, 'Fireball':50, 'Magic arrow':10, 'Lightning bolt':40, 'Fireball':50, 'Fireball':50, 'Fireball':50] saruman_power = ['Contagion':45, 'Contagion':45, 'Black Tentacles':25, 'Fireball':50, 'Black Tentacles':25, 'Lightning bolt':40, 'Magic arrow':10, 'Contagion':45, 'Magic arrow':10, 'Magic arrow':10] # - ะธั… ะฝัƒะถะฝะพ ัะพั…ั€ะฐะฝะธั‚ัŒ ะฒ hdfs. # # 1. ะ—ะฐะฟัƒัั‚ะธั‚ะต terminal ั‡ะตั€ะตะท Jupyter # 2. `hdfs dfs -copyFromLocal data .` # # # ะŸั€ะพะฒะตั€ัะตะผ, ั‡ั‚ะพ ะฒัะต ะดะฐะฝะฝั‹ะต ะฝะฐ ะผะตัั‚ะต # !hdfs dfs -copyFromLocal ../../data . # !hdfs dfs -ls data/ml-25m/ # ### ะงั‚ะตะฝะธะต ะดะฐะฝะฝั‹ั… # # *ะ—ะฐะผะตั‡ะฐะฝะธะต*: ะคะฐะนะป `ml-25m-README.htm` ัะพะดะตั€ะถะธั‚ ะพะฟะธัะฐะฝะธะต ะดะฐะฝะฝั‹ั… # + DATA_PATH = 'data/ml-25m' RATINGS_PATH = os.path.join(DATA_PATH, 'ratings.csv') MOVIES_PATH = os.path.join(DATA_PATH, 'movies.csv') TAGS_PATH = os.path.join(DATA_PATH, 'tags.csv') # - ratings = sc.textFile(RATINGS_PATH) ratings.take(5) ratings.getNumPartitions() ratings = ratings \ .map(lambda s: s.split(',')) \ .filter(lambda arr: arr[0].isdigit()) \ .map(lambda arr: Rating(user_id=int(arr[0]), movie_id=int(arr[1]), rating=float(arr[2]), timestamp=int(arr[3]))) ratings.count() # ะšะพะปะธั‡ะตัั‚ะฒะพ ะฟะพะปัŒะทะพะฒะฐั‚ะตะปะตะน # + # %%time ratings \ .map(lambda r: r.user_id)\ .distinct()\ .count() # - # ะกะพั…ั€ะฐะฝะธะผ ะดะฐั‚ะฐัะตั‚ ะฒ ะฟะฐะผัั‚ัŒ ratings = ratings.persist() # + # %%time ratings \ .map(lambda r: r.user_id)\ .distinct()\ .count() # - # ะšะพะปะธั‡ะตัั‚ะฒะพ ั„ะธะปัŒะผะพะฒ ratings \ .map(lambda r: r.movie_id)\ .distinct()\ .count() # ## ะฃะฟั€ะฐะถะฝะตะฝะธั # ### ะคะธะปัŒะผั‹ ั ะฝะฐะธะฑะพะปัŒัˆะธะผ ัั€ะตะดะฝะธะผ ั€ะตะนั‚ะธะฝะณะพะผ # # ะะฐะนั‚ะธ 10 ั„ะธะปัŒะผะพะฒ ั ะฝะฐะธะฑะพะปัŒัˆะธะผ ัั€ะตะดะฝะธะผ ั€ะตะนั‚ะธะฝะณะพะผ. ะ’ั‹ะฒะตัั‚ะธ ะธั… ะฝะฐะทะฒะฐะฝะธั ะธ ัั€ะตะดะฝะธะน ั€ะตะนั‚ะธะฝะณ movies = sc.textFile(MOVIES_PATH) movies.take(5) # + movies = movies \ .map(lambda s: s.split(',')[:2]) \ .filter(lambda arr: arr[0].isdigit()) \ .keyBy(lambda arr: int(arr[0])) movie_avg_rating = ratings \ .map(lambda r: (r.movie_id, (r.rating, 1))) \ .reduceByKey(lambda a, b: (a[0] + b[0], a[1] + b[1])) \ .mapValues(lambda ratings: ratings[0] / ratings[1]) movie_avg_rating \ .join(movies) \ .sortBy(lambda key_value: key_value[1][0], ascending=False)\ .take(10) # - # ะกะพั…ั€ะฐะฝะธั‚ะต `rdd`, ัะพัั‚ะพัั‰ะธะน ะธะท ัั‚ั€ะพะบ ะฒะธะดะฐ `<movie_id>,<average_rating>` ะฝะฐ hdfs ะฒ ะฒะธะดะต ั‚ะตะบัั‚ะพะฒะพะณะพ ั„ะฐะนะปะฐ # + # movie_avg_rating\ # .repartition(10) \ # .saveAsTextFile(os.path.join(DATA_PATH, 'movie_avg_rating')) # - # ! hdfs dfs -ls data/ml-25m/movie_avg_rating # ### ะŸะพะฟัƒะปัั€ะฝะพัั‚ัŒ ั‚ัะณะพะฒ # # ะะฐะนั‚ะธ 20 ะฝะฐะธะฑะพะปะตะต ะฟะพะฟัƒะปัั€ะฝั‹ั… ั‚ัะณะพะฒ tags = sc.textFile(TAGS_PATH) tags.take(5) # + tags_count = tags\ .map(lambda s: (s.split(',')[2], 1))\ .reduceByKey(lambda a, b: a + b)\ .collect() len(tags_count) # - tags_count = sorted(tags_count, key=lambda tag_count: tag_count[1], reverse=True) # + keys, values = zip(*tags_count[:20]) f, ax = plt.subplots(figsize=(10, 6)) plt.xticks(rotation=85, fontsize=15) plt.bar(keys, values, align="center") plt.show() # - # ### ะคะธะปัŒะผั‹ ั ะฝะฐะธะฑะพะปัŒัˆะธะผ ั‡ะธัะปะพะผ ะพั†ะตะฝะพะบ # # ะะฐะนั‚ะธ 10 ั„ะธะปัŒะผะพะฒ ั ะฝะฐะธะฑะพะปัŒัˆะธะผ ั‡ะธัะปะพะผ ะพั†ะตะฝะพะบ. ะ’ั‹ะฒะตัั‚ะธ ะธั… ะฝะฐะทะฒะฐะฝะธั ะธ ั‡ะธัะปะพ ะพั†ะตะฝะพะบ movies.take(5) # + movie_cnt_rating = ratings \ .map(lambda r: (r.movie_id, 1)) \ .reduceByKey(lambda a, b: a + b) \ .join(movies) \ .sortBy(lambda key_value: key_value[1][0], ascending=False) \ .map(lambda key_value: (key_value[1][1][1], key_value[1][0])) \ movie_cnt_rating.take(10) # - # ### ะคะธะปัŒะผั‹ ั ะฝะฐะธะฑะพะปัŒัˆะธะผ ั‡ะธัะปะพะผ 5 # # ะะฐะนั‚ะธ 10 ั„ะธะปัŒะผะพะฒ ั ะฝะฐะธะฑะพะปัŒัˆะธะผ ั‡ะธัะปะพะผ 5ะพะบ ะฒ ะบะฐั‡ะตัั‚ะฒะต ะพั†ะตะฝะบะธ. ะ’ั‹ะฒะตัั‚ะธ ะธั… ะฝะฐะทะฒะฐะฝะธั ะธ ั‡ะธัะปะพ 5ะพะบ # + movie_cnt_rating_5 = ratings \ .filter(lambda r: r.rating == 5) \ .map(lambda r: (r.movie_id, 1)) \ .reduceByKey(lambda a, b: a + b) movie_cnt_rating_5 \ .join(movies) \ .sortBy(lambda key_value: key_value[1][0], ascending=False) \ .map(lambda key_value: (key_value[1][1][1], key_value[1][0])) \ .take(10) # - # ### ะ ะฐัะฟั€ะตะดะตะปะตะฝะธะต ั€ะตะนั‚ะธะฝะณะพะฒ ั„ะธะปัŒะผะพะฒ # # ะŸะพัั‚ั€ะพะธั‚ัŒ ั€ะฐัะฟั€ะตะดะตะปะตะฝะธะต ั„ะธะปัŒะผะพะฒ ะฟะพ ัั€. ั€ะตะนั‚ะธะฝะณะฐะผ (ะณะธัั‚ะพะณั€ะฐะผะผัƒ) # + movie_avg_rating_to_hist = movie_avg_rating \ .join(movies) \ .sortBy(lambda key_value: key_value[1][0], ascending=False) \ .map(lambda key_value: key_value[1][0]) \ .collect() movie_avg_rating_to_hist[:5] # - plt.hist(movie_avg_rating_to_hist, 20) plt.show() # ### ะ ะฐัะฟั€ะตะดะตะปะตะฝะธะต ั‡ะธัะปะฐ ะพั†ะตะฝะพะบ ะดะปั ั„ะธะปัŒะผะพะฒ # # ะŸะพัั‚ั€ะพะธั‚ัŒ ั€ะฐัะฟั€ะตะดะตะปะตะฝะธะต ั„ะธะปัŒะผะพะฒ ะฟะพ ั‡ะธัะปัƒ ะพั†ะตะฝะพะบ # + movie_cnt_rating_to_hist = movie_cnt_rating \ .map(lambda key_value: key_value[1]) \ .collect() plt.hist(movie_cnt_rating_to_hist, 20) plt.show() # - # ### ะ ะฐัะฟั€ะตะดะตะปะตะฝะธะต ั„ะธะปัŒะผะพะฒ ะฟะพ ะถะฐะฝั€ะฐะผ # # ะŸะพัั‚ั€ะพะธั‚ัŒ ะณะธัั‚ะพะณั€ะฐะผะผัƒ ั€ะฐัะฟั€ะตะดะตะปะตะฝะธั ั„ะธะปัŒะผะพะฒ ะฟะพ ะถะฐะฝั€ะฐะผ. ะžะฑั€ะฐั‚ะธั‚ะต ะฒะฝะธะผะฐะฝะธะต, ั‡ั‚ะพ ัƒ ั„ะธะปัŒะผะฐ ะผะพะถะตั‚ ะฑั‹ั‚ัŒ ัƒะบะฐะทะฐะฝะพ ะฑะพะปัŒัˆะต ะพะดะฝะพะณะพ ะถะฐะฝั€ะฐ. # + movies = sc.textFile(MOVIES_PATH) movies = movies \ .map(lambda s: s.split(',')) \ .filter(lambda arr: arr[0].isdigit()) genres = movies \ .flatMap(lambda arr: arr[-1].split('|')) \ .map(lambda g: (g, 1)) \ .reduceByKey(lambda a, b: a + b) \ .sortBy(lambda key_value: key_value[1], ascending=False) \ .collect() keys, values = zip(*genres[:20]) f, ax = plt.subplots(figsize=(10, 6)) plt.xticks(rotation=85, fontsize=15) plt.bar(keys, values, align="center") plt.show() # - # ### ะะบั‚ะตั€ั‹ # # ะ”ะปั ั€ะตัˆะตะฝะธั ะทะฐะดะฐั‡ ะฝะธะถะต ะฝัƒะถะฝะพ ะฒะพัะฟะพะปัŒะทะพะฒะฐั‚ัŒัั ั„ะฐะนะปะฐะผะธ `ratings.csv`, `movies.csv`, `links.csv` ะธ `tmdb.json`. # # * `links.csv` - ะทะฐะดะฐะตั‚ ะพั‚ะพะฑั€ะฐะถะตะฝะธะต ะธะท `movie_id` ะฒ `tmdb_movie_id` (ะฟะพะดั€ะพะฑะฝะพะต ะพะฟะธัะฐะฝะธะต ะฒ `ml-25m-README.htm`) # * `tmdb.json` - ัะพะดะตั€ะถะธั‚ ะฑะพะปัŒัˆะพะต ะบะพะปะธั‡ะตัั‚ะฒะพ ะดะฐะฝะฝั‹ั… ะพ ั„ะธะปัŒะผะฐั… ะฒ ั„ะพั€ะผะฐั‚ะต json (ะฝะฐ ะบะฐะถะดะพะน ัั‚ั€ะพั‡ะบะต ะพั‚ะดะตะปัŒะฝั‹ะน json) # # ะ—ะฐะดะฐั‡ะธ # # 1. ะะฐะนั‚ะธ ะฒัะต ั„ะธะปัŒะผั‹, ะฒ ะบะพั‚ะพั€ั‹ั… ะธะณั€ะฐะป `"id":31, "name":"Tom Hanks"` # 2. ะะฐะนั‚ะธ 10 ะฐะบั‚ะตั€ะพะฒ ัะฝัะฒัˆะธั…ัั ะฒ ะฝะฐะธะฑะพะปัŒัˆะตะผ ั‡ะธัะปะต ั„ะธะปัŒะผะพะฒ. ะ’ั‹ะฒะตัั‚ะธ ะธั… ะธะผะตะฝะฐ ะธ ะบะพะป-ะฒะพ ั„ะธะปัŒะผะพะฒ, ะฒ ะบะพั‚ะพั€ั‹ั… ะพะฝะธ ัะฝะธะผะฐะปะธััŒ # + LINKS_PATH = os.path.join(DATA_PATH, 'links.csv') TMBD_PATH = os.path.join(DATA_PATH, 'tmdb.json') links = sc.textFile(LINKS_PATH) links = links \ .map(lambda s: s.split(','))\ .filter(lambda arr: arr[0].isdigit())\ .keyBy(lambda arr: int(arr[0])) links.take(10) # - tmdb = sc.textFile(TMBD_PATH) tmdb.take(5) # + import json def hasTomHanks(casts): for cast in casts.values(): for c in cast: if c['id'] == 31: return True return False movies_with_tom_hanks = tmdb \ .map(lambda a: json.loads(a)) \ .filter(lambda a: 'casts' in a and hasTomHanks(a['casts'])) \ .map(lambda a: a['original_title']) movies_with_tom_hanks.take(20) # - # ### ะ”ะพะปั ะถะฐะฝั€ะฐ ะฒ ั‚ะตั‡ะตะฝะธะธ ะฒั€ะตะผะตะฝะธ # # ะ”ะปั ะบะฐะถะดะพะณะพ ะถะฐะฝั€ะฐ ะฝัƒะถะฝะพ ะฟะพัั‚ั€ะพะธั‚ัŒ ะบะฐะบ ะผะตะฝัะปะฐััŒ ะดะพะปั ะฒั‹ัˆะตะดัˆะธั… ั„ะธะปัŒะผะพะฒ ะดะฐะฝะฝะพะณะพ ะถะฐะฝั€ะฐ ะพั‚ะฝะพัะธั‚ะตะปัŒะฝะพ ะฒัะตั… ะพัั‚ะฐะปัŒะฝั‹ั… ะถะฐะฝั€ะพะฒ. # # ะ”ะฐั‚ัƒ ะฒั‹ั…ะพะดะฐ ั„ะธะปัŒะผะฐ ะผะพะถะฝะพ ะฒะทัั‚ัŒ ะธะท ั„ะฐะนะปะฐ `tmdb.json`. # # (ะกะผ. `plt.stackplot`) # + ###################################### ######### YOUR CODE HERE ############# ###################################### # - # ### ะžะบัƒะฟะฐะตะผะพัั‚ัŒ ั„ะธะปัŒะผะพะฒ # # ะ”ะปั ะบะฐะถะดะพะณะพ ะถะฐะฝั€ะฐ ะฟะพัั‡ะธั‚ะฐั‚ัŒ `ROI = mean(revenue) / mean(budget)` ะธ ะฟะพัั‚ั€ะพะธั‚ัŒ `barplot`, ะณะดะต ะฟะพ ะพัะธ x ะฑัƒะดะตั‚ ะฝะฐะทะฒะฐะฝะธะต ะถะฐะฝั€ะฐ, ะฐ ะฟะพ ะพัะธ y - `ROI` # # ะ”ะฐะฝะฝั‹ะต ะพ `revenue` ะธ `budget` ะผะพะถะฝะพ ะฝะฐะนั‚ะธ ะฒ ั„ะฐะนะปะต `tmdb.json`. # + ###################################### ######### YOUR CODE HERE ############# ######################################
8,870
/br_fake_news_detection.ipynb
ab340c93a7236ae50397c3d318a11af996e3017f
[ "MIT" ]
permissive
jeffersonscampos/br_fake_news_detection
https://github.com/jeffersonscampos/br_fake_news_detection
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
93,577
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="view-in-github" colab_type="text" # <a href="https://colab.research.google.com/github/Talendar/br_fake_news_detection/blob/main/br_fake_news_detection.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # + [markdown] id="x4mHP2h67TNN" # # Fake News Detection # # In this notebook, we'll use *deep learning* to classify texts written in Brazilian Portuguese as true or fake. The *corpus* used was created by NILC researches and is available [here](https://github.com/roneysco/Fake.br-Corpus). Let's start by downloading the data directly from GitHub. # + id="jE-6bkw0Yks3" outputId="16a9a0f2-fc0e-43a6-cd16-6d96e97e96b7" colab={"base_uri": "https://localhost:8080/", "height": 34} # !git clone https://github.com/roneysco/Fake.br-Corpus DATA_PATH = "./Fake.br-Corpus/size_normalized_texts" # + [markdown] id="48n43eJVYrP1" # Dealing with the project's dependencies: # + id="xqjGIQgVjyOz" import warnings warnings.filterwarnings(action='once') import numpy as np import pandas as pd import os import re import zipfile # %tensorflow_version 2.x import tensorflow as tf from sklearn.utils import shuffle from tensorflow.keras.callbacks import Callback from IPython.display import clear_output from gensim.models import KeyedVectors import nltk nltk.download('stopwords') nltk.download('punkt') nltk.download('rslp') # this class will be used later on class ClearCallback(Callback): """ Handles the cleaning of the log during the training of a model. """ def __init__(self, current_k, total_k): self._current_k = current_k self._total_k = total_k def on_epoch_end(self, epoch, logs=None): """ Clears the log. Called when a training epoch ends. """ clear_output(wait=True) print("Running %d-folds cross-validation. Current fold: %d.\n" % (self._total_k, self._current_k)) # + [markdown] id="u7OAYYqsFCWL" # TO_DO: Load and explore data # + id="xXDnyaoZBQc4" outputId="be0fd655-7d12-4b05-c98b-41b5bf636448" colab={"base_uri": "https://localhost:8080/", "height": 419} def load_txts(path): txts = [] for filename in sorted(os.listdir(path), key=lambda x: int(re.match("[0-9]+", x).group())): with open(os.path.join(path, filename)) as f: txts.append(f.read()) return txts true_txts = load_txts(os.path.join(DATA_PATH, "true")) fake_txts = load_txts(os.path.join(DATA_PATH, "fake")) assert(len(true_txts) == len(fake_txts)) data = pd.DataFrame( [{"text": t, "label": 0} for t in true_txts] + [{"text": f, "label": 1} for f in fake_txts] ).sample(frac=1) # %xdel true_txts # %xdel fake_txts pd.set_option('max_colwidth', 200) data # + [markdown] id="9RTUm-YNoKU8" # # BAG-OF-WORDS # + id="4-TfcLz2n_qJ" import string from sklearn.feature_extraction.text import CountVectorizer STOPWORDS = nltk.corpus.stopwords.words('portuguese') STEMMER = nltk.stem.RSLPStemmer() # + id="JYTNTVKxl-Mp" outputId="d4b7df3a-a097-4201-c292-21df3faf72bc" colab={"base_uri": "https://localhost:8080/", "height": 436} def normalize_texts(corpus, stem): processed_texts = [] counter = 0 for i, row in corpus.iterrows(): clear_output(wait=True) print("[%.2f%%] Processing text %d of %d." % (100*(counter+1)/len(corpus), counter+1, len(corpus))) counter += 1 text = " ".join( [ (w if not stem else STEMMER.stem(w)) for w in nltk.tokenize.word_tokenize(row["text"]) if w not in STOPWORDS and w not in string.punctuation ] ) processed_texts.append({"text": text, "label": row["label"]}) return pd.DataFrame(processed_texts) norm_data = normalize_texts(data, stem=True) norm_data # + id="n4e4fDFOQUWp" outputId="6cbbbbce-4568-4b43-ba9b-7909d0cdced6" colab={"base_uri": "https://localhost:8080/", "height": 153} # k-fold cross-validation k = 10 folds = np.split(norm_data.sample(frac=1), k) accuracies = [] for i in range(len(folds)): # separating data test_data, test_labels = folds[i]["text"].values, folds[i]["label"].values training_data = np.concatenate( [folds[j]["text"].values for j in range(len(folds)) if j != i] ) training_labels = np.concatenate( [folds[j]["label"].values for j in range(len(folds)) if j != i] ) # extracting features vectorizer = CountVectorizer(max_features=1000) training_data = vectorizer.fit_transform(training_data).toarray() # fit the vectorizer to the training corpus test_data = vectorizer.transform(test_data).toarray() # words of the test corpus that don't appear in the training corpus will be ignored! # preparing model model = tf.keras.Sequential([ tf.keras.layers.Dense(32, activation="relu", kernel_regularizer=tf.keras.regularizers.l2(1e-3)), tf.keras.layers.Dense(1, activation="sigmoid") ]) model.compile(loss="binary_crossentropy", optimizer=tf.keras.optimizers.Adam(1e-3), metrics=["accuracy"]) # training model.fit(training_data, training_labels, epochs=50, validation_data=(test_data, test_labels), callbacks=[ClearCallback(i + 1, k)]) # evaluating loss, acc = model.evaluate(test_data, test_labels) accuracies.append(acc) clear_output(wait=True) print("\n Cross-validation finished! Results:") print(" . Mean accuracy: %.2f%%" % (100*np.mean(accuracies))) print(" . Accuracies std: %.2f%%" % (100*np.std(accuracies))) # + [markdown] id="k7aUVc5Wy9ID" # # WORD EMBEDDINGS # # + id="DC5drzH1Vq_z" WVECTORS_LEN = 100 # dimenson of the word embeddings MAX_TEXT_TOKENS = 200 # + [markdown] id="832MEJTbVabB" # OPTION 1: download vectors # + id="ZGp9L0XM7-X4" # downloading vectors if ("glove_s%d.zip" % WVECTORS_LEN) not in os.listdir(): # !wget -O {"glove_s%d.zip" % WVECTORS_LEN} {"http://143.107.183.175:22980/download.php?file=embeddings/glove/glove_s%d.zip" % WVECTORS_LEN} if ("glove_s%d.txt" % WVECTORS_LEN) not in os.listdir(): with zipfile.ZipFile("glove_s%d.zip" % WVECTORS_LEN, 'r') as zip_ref: zip_ref.extractall() wv_pathname = "glove_s%d.txt" % WVECTORS_LEN # + [markdown] id="sgElaTlMVyen" # OPTION 2: load vectors from drive # + id="tqDkyTJqVx55" outputId="6ee46a89-e18c-4137-824b-811a41d5de69" colab={"base_uri": "https://localhost:8080/", "height": 34} from google.colab import drive drive.mount('/content/gdrive', force_remount=True) wv_pathname = "/content/gdrive/My Drive/Colab Notebooks//ml_data/glove_s%d.txt" % WVECTORS_LEN # + [markdown] id="cGWFAYxdWV9I" # Loading glove model (this might take a while) # + id="Cn8o6-GIzGF2" word_vectors = KeyedVectors.load_word2vec_format(wv_pathname) # + [markdown] id="FeMg7k7gZO9N" # Auxiliary functions: # + id="pJ4JaN6IZM_k" def vec_to_word(wv): """ Returns the closest word (string) to the given word vector. This is an expensive operation. """ return word_vectors.most_similar(positive=[wv], topn=1)[0][0] def vecs_to_txt(wv_list): """ Receives a list of word vectors and returns a list of words corresponding to each vector (one word per vector). This is an expensive operation. """ txt = [] for v in wv_list: txt.append(vec_to_word(v)) return txt def txt_to_vecs(txt): """ Receives a list of tokens (words) and returns a numpy array with word vectors corresponding to those tokens. If some word isn't found in the vocabulary, it will be ignored. """ vecs, ignored = [], [] for word in txt: try: v = word_vectors[word] vecs.append(v) except KeyError: ignored.append(word) return np.array(vecs), set(ignored) def pad(txts, mask_value): """ Pad sequences shorter than the max length seuquence using the given mask value. """ # find max len max = 0 for t in txts: max = len(t) if len(t) > max else max # pad for i, t in enumerate(txts): if len(t) < max: z = np.full(shape=(max - len(t) , WVECTORS_LEN), fill_value=mask_value) txts[i] = np.concatenate((t, z)) return np.array(txts) def build_wv_data(corpus, mask_value): features, labels, ignored_tokens = [], [], [] count = 0 for i, row in corpus.iterrows(): print("[%.1f%%] Processing text %d of %d." % ( 100 * (count)/len(corpus), count+1, len(corpus) )) count += 1 tokens = nltk.tokenize.word_tokenize(row["text"].lower()) if len(tokens) > MAX_TEXT_TOKENS: tokens = tokens[:MAX_TEXT_TOKENS] vecs, ign = txt_to_vecs( tokens ) features.append(vecs) labels.append(row["label"]) ignored_tokens += ign clear_output(wait=True) print("Padding texts...") return pad(features, mask_value), np.array(labels), \ set(ignored_tokens) # + id="Rn91LPP-e9ps" outputId="7d03d393-b1b2-4be0-ddb4-4d152d3aefa0" colab={"base_uri": "https://localhost:8080/", "height": 122} MASK_VALUE = -0.123 # value to be used for the masking procedure (ignore padding) wv_data, wv_labels, ignored_tokens = build_wv_data(corpus=data, mask_value=MASK_VALUE) print("All texts processed! \nIgnored tokens (unique): %d\n" % len(ignored_tokens)) print(ignored_tokens) # freeing memory # %xdel data # %xdel word_vectors # + id="KDQo6l-8jVlU" outputId="04b652e6-9425-48db-e662-d246b08e7d33" colab={"base_uri": "https://localhost:8080/", "height": 85} # k-fold cross-validation k = 10 folds, folds_labels = shuffle(wv_data, wv_labels) folds = np.array_split(folds, k) folds_labels = np.array_split(folds_labels, k) accuracies = [] for i in range(len(folds)): # separating data test_data, test_labels = folds[i], folds_labels[i] training_data = np.concatenate( [folds[j] for j in range(len(folds)) if j != i] ) training_labels = np.concatenate( [folds_labels[j] for j in range(len(folds)) if j != i] ) # preparing model model = tf.keras.Sequential([ tf.keras.layers.Masking(mask_value=MASK_VALUE), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32, return_sequences=True)), #, kernel_regularizer=tf.keras.regularizers.l2(3))), #tf.keras.layers.Dropout(0.25), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)), #, kernel_regularizer=tf.keras.regularizers.l2(3))), #tf.keras.layers.Dropout(0.25), tf.keras.layers.Dense(32, activation="relu"), tf.keras.layers.Dense(1, activation="sigmoid") ]) model.compile(loss="binary_crossentropy", optimizer=tf.keras.optimizers.Adam(1e-3), metrics=["accuracy"]) # training model.fit(training_data, training_labels, epochs=10, validation_data=(test_data, test_labels), callbacks=[ClearCallback(i + 1, k)]) # evaluating loss, acc = model.evaluate(test_data, test_labels) accuracies.append(acc) clear_output(wait=True) print("\n Cross-validation finished! Results:") print(" . Mean accuracy: %.2f%%" % (100*np.mean(accuracies))) print(" . Accuracies std: %.2f%%" % (100*np.std(accuracies)))
11,414
/ๆ–‡ไปถไธŽIO/.ipynb_checkpoints/5.20 ไธŽไธฒ่กŒ็ซฏๅฃ็š„ๆ•ฐๆฎ้€šไฟก-checkpoint.ipynb
67de47532a2df9975df986ff80d47c95c8a17688
[]
no_license
Asunqingwen/cookbook
https://github.com/Asunqingwen/cookbook
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
1,965
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from sklearn.preprocessing import StandardScaler # %matplotlib inline data = pd.read_csv('./data/Sensor_Weather_Data_Challenge.csv', index_col=0, parse_dates=True) data.head() data['date'] = data.index d = data.index[0] data['day'] = data['date'].apply(lambda x:x.weekday()) x_cols = data.columns[0:14] data_summary = pd.DataFrame({'features': x_cols, "tot_reading": np.sum(data[x_cols]).values}) # + data_summary['day_avg'] = data[x_cols].mean().values days = ['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday'] for i in range(0,7): data_summary[days[i]] = data[data['day'] == i][x_cols].sum().values/data_summary["tot_reading"]*100 data_summary['weekday']=data[(data['day']!=5) & (data['day']!=6)][x_cols].sum().values/data_summary["tot_reading"]*100 data_summary['weekend']=data[(data['day']==5) | (data['day']==6)][x_cols].sum().values/data_summary["tot_reading"]*100 # - data_summary data_summary.isna().sum() scaler = StandardScaler() scaled_mat = pd.DataFrame(scaler.fit_transform(data_summary.iloc[:, 1:]), columns = data_summary.columns[1:]) scaled_mat.index = data_summary.features corr = scaled_mat.corr() fig, ax = plt.subplots(figsize=(8, 6)) cax=ax.matshow(corr,vmin=-1,vmax=1) ax.matshow(corr) plt.xticks(range(len(corr.columns)), corr.columns) plt.yticks(range(len(corr.columns)), corr.columns) plt.xticks(rotation=90) plt.colorbar(cax) # ### segmentation on time of day data['hour'] = data['date'].apply(lambda x: round(x.hour/3)) data_hour = data.groupby(['day', 'hour']).mean() data_hour.index = [''.join(str(idx[0])+'-'+str(idx[1])) for idx in data_hour.index.values] data_hour = data_hour.transpose() scaler = StandardScaler() scaled_mat = pd.DataFrame(scaler.fit_transform(df), columns = df.columns, index=df.index) scaled_mat plt.figure(figsize=(8,20)) data_hour.transpose().iloc[:,0:14].plot() def plot_BIC(matrix,K): from sklearn import mixture BIC=[] for k in K: model=mixture.GaussianMixture(n_components=k,init_params='kmeans') model.fit(matrix) BIC.append(model.bic(matrix)) fig, ax = plt.subplots(figsize=(8, 6)) plt.plot(K,BIC,'-cx') plt.ylabel("BIC score") plt.xlabel("k") plt.title("BIC scoring for K-means cell's behaviour") return(BIC) scaled_mat.shape K = range(2,22) BIC = plot_BIC(scaled_mat,K) from sklearn.cluster import KMeans from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D cluster = KMeans(n_clusters=5,random_state=217) scaled_mat['cluster'] = cluster.fit_predict(scaled_mat.iloc[:, 0:14]) print(scaled_mat.cluster.value_counts()) cluster.cluster_centers_.shape from sklearn.metrics.pairwise import euclidean_distances distance = euclidean_distances(cluster.cluster_centers_, cluster.cluster_centers_) print(distance) cluster.cluster_centers_.shape pca.transform(scaled_mat).shape # + # Reduction dimention of the data using PCA pca = PCA(n_components=3) scaled_mat['x'] = pca.fit_transform(scaled_mat)[:,0] scaled_mat['y'] = pca.fit_transform(scaled_mat)[:,1] scaled_mat['z'] = pca.fit_transform(scaled_mat)[:,2] # Getting the center of each cluster for plotting cluster_centers = pca.transform(cluster.cluster_centers_) cluster_centers = pd.DataFrame(cluster_centers, columns=['x', 'y', 'z']) cluster_centers['cluster'] = range(0, len(cluster_centers)) print(cluster_centers) # + corr = scaled_mat.iloc[0:14,:].corr() fig, ax = plt.subplots(figsize=(8, 6)) cax=ax.matshow(corr,vmin=-1,vmax=1) ax.matshow(corr) plt.xticks(range(len(corr.columns)), corr.columns) plt.yticks(range(len(corr.columns)), corr.columns) plt.xticks(rotation=90) plt.colorbar(cax) # - # ### Clustering Data Points from statsmodels.tsa.seasonal import seasonal_decompose seasonal_decompose(pd.Series(data.iloc[:,0], index=data.index), model = "additive") temp = pd.Series(data.iloc[:, 14]) april = data.iloc[:, 0:16] df = april.resample('4D').mean().dropna().transpose() scaler = StandardScaler() scaled_= pd.DataFrame(scaler.fit_transform(df), columns = df.columns, index=df.index) K = range(2,16) BIC = plot_BIC(scaled_mat,K) cluster = KMeans(n_clusters=3,random_state=217) scaled_mat['cluster'] = cluster.fit_predict(scaled_mat) print(scaled_mat.cluster.value_counts()) cluster.cluster_centers_ scaled_mat # Reduction dimention of the data using PCA pca = PCA(n_components=3) df_pca = pca.fit_transform(scaled_mat) scaled_mat['x'] = df_pca[:,1] scaled_mat['y'] = df_pca[:,2] # Getting the center of each cluster for plotting cluster_centers = pca.transform(cluster.cluster_centers_) cluster_centers = pd.DataFrame(cluster_centers, columns=['x', 'y', 'z']) matrix = scaled_mat fig, ax = plt.subplots(figsize=(8, 6)) scatter=ax.scatter(matrix['x'],matrix['y'],c=matrix['cluster'],s=21,cmap=plt.cm.Set1_r) ax.scatter(cluster_centers['x'],cluster_centers['y'],s=70,c='blue',marker='+') ax.set_xlabel('x') ax.set_ylabel('y') plt.colorbar(scatter) plt.title('Data Segmentation') day_sampled=data.resample('1W').mean().iloc[:, np.concatenate((np.arange(0, 17), [19, 20]))] #day_sampled=data.resample('1W').mean().loc day_sampled=day_sampled.fillna(0) sc = StandardScaler() day_sampled.iloc[:, 0].plot() day_scaled = pd.DataFrame(sc.fit_transform(day_sampled), columns=day_sampled.columns, index=day_sampled.index) day_scaled.iloc[:, 0].plot() day_scaled = day_scaled.transpose() plot_BIC(day_scaled, range(2, day_scaled.shape[0])) k_means = KMeans(n_clusters=4, random_state=666) k_means.fit(day_scaled) scaled_centers = k_means.cluster_centers_ pca = PCA(n_components=3) day_pca = pca.fit_transform(day_scaled) pca.explained_variance_ratio_, sum(pca.explained_variance_ratio_) pca_centers = pd.DataFrame(pca.transform(scaled_centers), columns=['x', 'y', 'z']) pca_centers['cluster_id'] = pca_centers.index day_pca = pd.DataFrame(day_pca, columns=['x', 'y', 'z'], index=day_scaled.index) day_pca['cluster_id'] = pd.Categorical(k_means.predict(day_scaled)) plt.figure(figsize=(10, 8)) plt.scatter(x=day_pca['x'], y=day_pca['y'], c=day_pca['cluster_id']) #plt.scatter(x=pca_centers['x'], y=pca_centers['y'], c=pca_centers['cluster_id'], marker='+', s=200) for name in day_pca.index: plt.annotate(s=name, xy=(day_pca.loc[name]['x'] + 0.05, day_pca.loc[name]['y'] - 0.05)) day_pca.cluster_id = day_pca.cluster_id.astype("int") plt.figure(figsize=(10, 8)) sns.scatterplot(x='x', y='y', alpha = 0.6,hue='cluster_id', s=100, data=day_pca, palette=sns.color_palette("muted", n_colors=4)) for name in day_pca.index: plt.annotate(s=name, xy=(day_pca.loc[name]['x'], day_pca.loc[name]['y'] + 0.05)) plt.figure(figsize=(10, 8)) plt.scatter(x=day_pca['y'], y=day_pca['z'], c=day_pca['cluster_id']) plt.scatter(x=pca_centers['y'], y=pca_centers['z'], c=pca_centers['cluster_id'], marker='+', s=200) for name in day_pca.index: plt.annotate(s=name, xy=(day_pca.loc[name]['y'], day_pca.loc[name]['z'] + 0.05)) plt.figure(figsize=(10, 8)) plt.scatter(x=day_pca['x'], y=day_pca['z'], c=day_pca['cluster_id']) plt.scatter(x=pca_centers['x'], y=pca_centers['z'], c=pca_centers['cluster_id'], marker='+', s=200) for name in day_pca.index: plt.annotate(s=name, xy=(day_pca.loc[name]['x'], day_pca.loc[name]['z'] + 0.05))
7,593
/mapbox_upload.ipynb
cc5bc09cf47f2070153db0d4fb65b8762c2328f0
[ "MIT" ]
permissive
xdze2/arbresdegrenoble
https://github.com/xdze2/arbresdegrenoble
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
5,327
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import tensorflow as tf import tensorflow.contrib.layers as layers from sklearn import datasets import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import pandas as pd import seaborn as sns # %matplotlib inline boston = datasets.load_boston() df = pd.DataFrame(boston.data, columns=boston.feature_names) df['target'] = boston.target df.describe() # Plotting correlation colormap _ , ax = plt.subplots( figsize =( 12 , 10 ) ) corr = df.corr(method='pearson') cmap = sns.diverging_palette( 220 , 10 , as_cmap = True ) _ = sns.heatmap( corr, cmap = cmap, square=True, cbar_kws={ 'shrink' : .9 }, ax=ax, annot = True, annot_kws = { 'fontsize' : 12 }) # + # Create Test Train Split X_train, X_test, y_train, y_test = train_test_split(df [['RM', 'LSTAT', 'PTRATIO']], df[['target']], test_size=0.3, random_state=0) # Normalize data X_train = MinMaxScaler().fit_transform(X_train) y_train = MinMaxScaler().fit_transform(y_train) X_test = MinMaxScaler().fit_transform(X_test) Y_test = MinMaxScaler().fit_transform(y_test) # + #Network Parameters#Networ m = len(X_train) n = 3 # Number of features n_hidden = 20 # Number of hidden neurons # Hyperparameters batch_size = 200 eta = 0.01 max_epoch = 1000 # - def multilayer_perceptron(x): fc1 = layers.fully_connected(x, n_hidden, activation_fn=tf.nn.relu, scope='fc1') out = layers.fully_connected(fc1, 1, activation_fn=tf.sigmoid, scope='out') return out def accuracy(a,b): correct_prediction = tf.square(a -b) return tf.reduce_mean(tf.cast(correct_prediction, "float")) # + # build model, loss, and train op x = tf.placeholder(tf.float32, name='X', shape=[m,n]) y = tf.placeholder(tf.float32, name='Y') y_hat = multilayer_perceptron(x) mse = accuracy(y, y_hat) train = tf.train.AdamOptimizer(learning_rate= eta).minimize(mse) init = tf.global_variables_initializer() # - # Computation Graph with tf.Session() as sess: # Initialize variables sess.run(init) writer = tf.summary.FileWriter('graphs', sess.graph) # train the model for 100 epcohs for i in range(max_epoch): _, l, p = sess.run([train, mse, y_hat], feed_dict={x: X_train, y: y_train}) if i%100 == 0: print('Epoch {0}: Loss {1}'.format(i, l)) print("Training Done") print("Optimization Finished!") # Calculate accuracy print(" Mean Squared Error (Train data):", mse.eval({x: X_train, y: y_train})) plt.scatter(p,y_train) plt.ylabel('Estimated Price') plt.xlabel('Actual Price') plt.title('Estimated vs Actual Price Train Data') writer.close() markers[y[i]], markeredgecolor = colors[y[i]], #defining colors markerfacecolor = 'None', #no color inside of the marker markersize = 10, #size of marker markeredgewidth = 2) #edges size # - # ## Let's find the Frauds mappings = som.win_map(data=X) frauds = np.concatenate((mappings[(6,3)], mappings[(4,7)], mappings[(4,8)]), axis=0) #these frauds are potentially cheater so let's transform values as it was before frauds = sc.inverse_transform(frauds) fraud_customers = pd.DataFrame(frauds) fraud_customers.columns=['CustomerID', 'A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10', 'A11', 'A12', 'A13', 'A14'] # ## below listed are potential frauds or higher chances to be,and these customers are not identified by bank. this data will help bank to take a closer look on these customer. fraud_customers = fraud_customers.astype(int) fraud_customers.shape # ### Let's make one variable for keeping record of these potentially frauds and add it into main dataset so that we can apply supervised deep learning. # creating the matrix of features cutomers = dataset.iloc[:, :].values # creating the dependent variable, looping through whole dataset is_fraud = np.zeros(len(dataset)) for i in range(len(dataset)): if dataset.iloc[i,0] in frauds: is_fraud[i] = 1 customers = pd.DataFrame(cutomers) is_fraud = pd.DataFrame(is_fraud) bank_customers = pd.concat([customers, is_fraud], axis=1) bank_customers bank_customers.columns=['CustomerID','A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10', 'A11', 'A12', 'A13', 'A14','Class1','Class'] bank_customers = bank_customers.astype(int) bank_customers.head() bank_customers.to_csv('bank_customers.csv', index=False)
4,751
/Simulator/Power Spectral Models.ipynb
74773334711cc699fe1785ce04ff7291d4c250a6
[ "MIT" ]
permissive
StingraySoftware/notebooks
https://github.com/StingraySoftware/notebooks
18
34
MIT
2023-08-31T20:53:44
2023-08-22T13:03:01
Jupyter Notebook
Jupyter Notebook
false
false
.py
84,524
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Natural Language Processing Assignment 2 # ## Minimum Edit Distance # # Name: Zoe Tagboto import numpy as np def min_edit_distance(source_word, target_word): # First I find the length of my words and create a matrix source_word_len = len(source_word) target_word_len = len(target_word) matrix = np.zeros ((source_word_len+1, target_word_len+1),np.int64) #These are the costs associated with deletion insertion #and substitution del_cost = 1 ins_cost = 1 sub_cost = 2 for x in range(source_word_len+1): matrix [x, 0] = x for y in range(target_word_len+1): matrix [0, y] = y #This is to compute the minimum edit distance for x in range(1, source_word_len+1): for y in range(1, target_word_len+1): if source_word[x-1] == target_word[y-1]: matrix [x,y] = matrix[x-1, y-1] else: matrix [x,y] = min( matrix[x-1,y] + del_cost, matrix[x,y-1] + ins_cost, matrix[x-1,y-1] + sub_cost) print ("The minimum edit distance between "+source_word+" and the "+target_word+" is " + str(matrix[source_word_len, target_word_len])) min_edit_distance("intention", "execution")
1,616
/notebooks/heart_disease_analysis.ipynb
cb914022b5fbe34b2a5e35b68e9666ecc2e6036c
[ "MIT" ]
permissive
mahnoorbaig/heart-disease-data-analysis
https://github.com/mahnoorbaig/heart-disease-data-analysis
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
4,104,364
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + [markdown] colab_type="text" id="smQWTwI7k4Bf" # # Paso 1 # **Configuracion de Object Detection API**: en este paso, se descarga el modelo para la detecciรณn de objetos, tambiรฉn se realizan algunas copias y eliminaciones de referencia con el objetivo de dejar todo el ambiente configurado. # + colab={"autoexec": {"startup": false, "wait_interval": 0}} colab_type="code" id="XnBVJiIzYune" # !git clone https://github.com/tensorflow/models.git # !apt-get -qq install libprotobuf-java protobuf-compiler # !protoc ./models/research/object_detection/protos/string_int_label_map.proto --python_out=. # !cp -R models/research/object_detection/ object_detection/ # !rm -rf models # + [markdown] colab_type="text" id="qwWt0kSihqCv" # # Paso 2 # ** Importaciones ** necesarias para ejecutar la demostraciรณn de Object Detection API # + colab={"autoexec": {"startup": false, "wait_interval": 0}} colab_type="code" id="YspILW_rZu0v" import numpy as np import os import six.moves.urllib as urllib import sys import tarfile import tensorflow as tf import zipfile from collections import defaultdict from io import StringIO from matplotlib import pyplot as plt from PIL import Image from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util # + [markdown] colab_type="text" id="kGx_08UcmtOF" # # Paso 3 # ** Configuraciรณn ** del modelo a utilizar, ruta al modelo pre-entrenado y elementos de configuraciรณn adicionales para la implementaciรณn de Object Detection API. # + colab={"autoexec": {"startup": false, "wait_interval": 0}} colab_type="code" id="8n_alUkLZ1gl" MODEL_NAME = 'faster_rcnn_inception_resnet_v2_atrous_coco_2018_01_28' MODEL_FILE = MODEL_NAME + '.tar.gz' DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/' PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' PATH_TO_LABELS = os.path.join('object_detection/data', 'mscoco_label_map.pbtxt') NUM_CLASSES = 90 opener = urllib.request.URLopener() opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE) tar_file = tarfile.open(MODEL_FILE) for file in tar_file.getmembers(): file_name = os.path.basename(file.name) if 'frozen_inference_graph.pb' in file_name: tar_file.extract(file, os.getcwd()) detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) # + [markdown] colab_type="text" id="PbXKPFiWh1jG" # # Paso 4 # Secciรณn con las imรกgenes de demostraciรณn # + # !mkdir images # esta url-imagen deberรญa ser reemplazada por ustedes. este es solo el ejemplo almacenado en una capeta personal # !wget https://storage.googleapis.com/demostration_images/image.jpg -O images/image_1.jpg PATH_TO_TEST_IMAGES_DIR = 'images' TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image_{}.jpg'.format(i)) for i in range(1, 2) ] IMAGE_SIZE = (15, 11) # + [markdown] colab_type="text" id="_Vvi4-2fm2qe" # # Paso 5 # Pieza de implementaciรณn que representa la detecciรณn concreta, llamando a la sesiรณn TF # + colab={"autoexec": {"startup": false, "wait_interval": 0}} colab_type="code" id="q9FZsaZkaPUz" with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') for image_path in TEST_IMAGE_PATHS: image = Image.open(image_path) image_np = load_image_into_numpy_array(image) image_np_expanded = np.expand_dims(image_np, axis=0) (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: image_np_expanded}) vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=3) plt.figure(figsize=IMAGE_SIZE) plt.imshow(image_np)
5,158
/Module 4.ipynb
97612888e9c9c8907a0270757f389512576605f0
[]
no_license
Vigneshbaalaji/PreSec
https://github.com/Vigneshbaalaji/PreSec
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
12,474
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Probe attacks: Prediction import pandas as p # load the dataset df = p.read_csv("data.csv") # feature names features = ["duration", "protocol_type", "service", "flag", "src_bytes", "dst_bytes", "land", "Wrong_fragment", "Urgent", "hot", "num_failed_login", "logged_in", "num_compromised", "root_shell", "su_attempted", "num_root", "num_file_creations", "num_shells", "num_access_files", "num_outbound_cmds", "is_host_login", "is_guest_login", "count", "srv_count", "serror_rate", "srv_serror_rate", "rerror_rate", "srv_rerror_rate", "same_srv_rate", "diff_srv_rate", "srv_diff_host_rate", "dst_host_count", "dst_host_srv_count", "dst_host_same_srv_rate", "dst_host_diff_ srv_rate", "dst_host_same_src_port_rate", "dst_host_srv_diff_host _rate", "dst_host_serror_rate", "dst_host_srv_serror_rate", "dst_host_rerror_rate", "dst_host_srv_rerror_rate", "class"] df = p.read_csv("data.csv", names = features) df['Probe'] = df['class'].map({'normal.':0, 'snmpgetattack.':0, 'named.':0, 'xlock.':0, 'smurf.':0, 'ipsweep.':1, 'multihop.':0, 'xsnoop.':0, 'sendmail.':0, 'guess_passwd.':0, 'saint.':1, 'buffer_overflow.':0, 'portsweep.':1, 'pod.':0, 'apache2.':0, 'phf.':0, 'udpstorm.':0, 'warezmaster.':0, 'perl.':0, 'satan.':1, 'xterm.':0, 'mscan.':1, 'processtable.':0, 'ps.':0, 'nmap.':1, 'rootkit.':0, 'neptune.':0, 'loadmodule.':0, 'imap.':0, 'back.':0, 'httptunnel.':0, 'worm.':0, 'mailbomb.':0, 'ftp_write.':0, 'teardrop.':0, 'land.':0, 'sqlattack.':0, 'snmpguess.':0}) from sklearn.preprocessing import LabelEncoder var_mod = ['duration', 'protocol_type', 'service', 'flag', 'src_bytes', 'dst_bytes', 'land', 'Wrong_fragment', 'Urgent', 'hot', 'num_failed_login', 'logged_in', 'num_compromised', 'root_shell', 'su_attempted', 'num_root', 'num_file_creations', 'num_shells', 'num_access_files', 'num_outbound_cmds', 'is_host_login', 'is_guest_login', 'count', 'srv_count', 'serror_rate', 'srv_serror_rate', 'rerror_rate', 'srv_rerror_rate', 'same_srv_rate', 'diff_srv_rate', 'srv_diff_host_rate', 'dst_host_count', 'dst_host_srv_count', 'dst_host_same_srv_rate', 'dst_host_diff_ srv_rate', 'dst_host_same_src_port_rate', 'dst_host_srv_diff_host _rate', 'dst_host_serror_rate', 'dst_host_srv_serror_rate', 'dst_host_rerror_rate' ] le = LabelEncoder() for i in var_mod: df[i] = le.fit_transform(df[i]).astype(str) del df["dst_host_srv_rerror_rate"] del df["class"] #According to the cross-validated MCC scores, the random forest is the best-performing model, so now let's evaluate its performance on the test set. from sklearn.metrics import confusion_matrix, classification_report, matthews_corrcoef, cohen_kappa_score, accuracy_score, average_precision_score, roc_auc_score X = df.drop(labels='Probe', axis=1) #Response variable y = df.loc[:,'Probe'] del df #We'll use a test size of 30%. We also stratify the split on the response variable, which is very important to do because there are so few fraudulent transactions. from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y) #for our convienient we delete X,y variable for differentiate confusion del X, y # Prevent view warnings X_train.is_copy = False X_test.is_copy = False #According to the cross-validated MCC scores, the random forest is the best-performing model, so now let's evaluate its performance on the test set. from sklearn.metrics import confusion_matrix, classification_report, matthews_corrcoef, cohen_kappa_score, accuracy_score, average_precision_score, roc_auc_score # + from sklearn.linear_model import LogisticRegression logR= LogisticRegression() logR.fit(X_train,y_train) predictR = logR.predict(X_test) print(classification_report(y_test,predictR)) x = (accuracy_score(y_test,predictR)*100) print('Accuracy result is', x) print("") print(confusion_matrix(y_test,predictR)) # + from sklearn.tree import DecisionTreeClassifier dtree = DecisionTreeClassifier() dtree.fit(X_train, y_train) predictDT = dtree.predict(X_test) print(classification_report(y_test,predictDT)) x = (accuracy_score(y_test,predictDT)*100) print('Accuracy result is', x) print("") print(confusion_matrix(y_test,predictDT)) # + from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier() rf.fit(X_train, y_train) predictrf = rf.predict(X_test) print(classification_report(y_test,predictrf )) x = (accuracy_score(y_test,predictrf)*100) print('Accuracy result is', x) print("") print(confusion_matrix(y_test,predictrf)) # + from sklearn.neighbors import KNeighborsClassifier neigh = KNeighborsClassifier() neigh.fit(X_train, y_train) predictknn = neigh.predict(X_test) print(classification_report(y_test,predictknn )) x = (accuracy_score(y_test,predictknn)*100) print('Accuracy result is', x) print("") print(confusion_matrix(y_test,predictknn)) # -
5,329
/2019 Twins vs. World Series Twins.ipynb
fdae6b340b63bfae172a38608f1a7d6a06ceccd6
[]
no_license
parkererickson/baseballDataScience
https://github.com/parkererickson/baseballDataScience
2
0
null
null
null
null
Jupyter Notebook
false
false
.py
230,645
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Dรฉveloppement d'un algorithme d'รฉvaluation des films en Spark # # Objectif du Projet # Il s'agit de dรฉvelopper en Spark une mรฉthode de descente de gradient, dans le but de rรฉsoudre un problรจme de filtrage collaboratif, et de la comparer avec une mรฉthode de la librairie MLIB. Ce Notebook a pour but le dรฉveloppement et la validation de l'approche, avant intรฉgration et exploitation dans le cadre de l'infrastructure dรฉveloppรฉe dans le projet. Pour information, de nombreuses versions de ce problรจme existent sur le web. # # Position du problรจme # Nous avons ร  notre disposition un RDD "ratings" du type (userID, movieID, rating). Les donnรฉes sont fournies par le fichier `ratings.dat`, stockรฉes au format ci-joint : # ``` # UserID::MovieID::Rating::Timestamp # ``` # # Ce RDD peut รชtre stockรฉ dans une matrice $R$ oรน l'on trouve "rating" ร  l'intersection de la ligne "userID" et de la colonne "movieID". # Si la matrice $R$ est de taille $m \times n$, nous cherchons $P \in R^{m,k}$ et $Q \in R^{n,k}$ telles que $R \approx \hat{R} = PQ^T$. # Pour cela on considรจre le problรจme # $$ \min_{P,Q} \sum_{i,j : r_{ij} \text{existe}} \ell_{i,j}(R,P,Q), $$ # oรน # $$ \ell_{i,j}(R,P,Q)= \left(r_{ij} - q_{j}^{\top}p_{i}\right)^2 + \lambda(|| p_{i} ||^{2}_2 + || q_{j} ||^2_2 ) $$ et $(p_i)_{1\leq i\leq m}$ et $(q_j)_{1\leq j\leq n}$ sont les lignes des matrices $P$ et $Q$ respectivement. Le paramรจtre $\lambda\geq 0$ est un paramรจtre de rรฉgularisation. # # Le problรจme que nous rรฉsolvons ici est un problรจme dit de "filtrage collaboratif", qui permet d'apporter une solution possible du problรจme Netflix. Les donnรฉes sont issues de la base de donnรฉes "The MoviLens Datasets" : # # F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4: 19:1โ€“19:19 # # + # Librairies import numpy as np from scipy import sparse import findspark findspark.init() # Environnement Spark from pyspark import SparkContext, SparkConf conf = SparkConf() conf.setMaster("local[*]") conf.setAppName("Matrix Factorization") sc = SparkContext(conf = conf) # - # #### Crรฉation du RDD et premiรจres statistiques sur le jeu de donnรฉes. # + # Rรฉpertoire contenant le jeu de donnรฉes movieLensHomeDir="data/" # ratings est un RDD du type (userID, movieID, rating) def parseRating(line): fields = line.split('::') return int(fields[0]), int(fields[1]), float(fields[2]) ratingsRDD = sc.textFile(movieLensHomeDir + "ratings.dat").map(parseRating).setName("ratings").cache() # Calcul du nombre de ratings numRatings = ratingsRDD.count() # Calcul du nombre d'utilisateurs distincts numUsers = ratingsRDD.map(lambda r: r[0]).distinct().count() # Calcul du nombre de films distincts numMovies = ratingsRDD.map(lambda r: r[1]).distinct().count() print("We have %d ratings from %d users on %d movies.\n" % (numRatings, numUsers, numMovies)) # Dimensions de la matrice R M = ratingsRDD.map(lambda r: r[0]).max() N = ratingsRDD.map(lambda r: r[1]).max() matrixSparsity = float(numRatings)/float(M*N) print("We have %d users, %d movies and the rating matrix has %f percent of non-zero value.\n" % (M, N, 100*matrixSparsity)) # - # Nous allons utiliser la routine ALS.train() de la librairie [MLLib](http://spark.apache.org/docs/latest/ml-guide.html) et en รฉvaluer la performance par un calcul de " Mean Squared Error" du rating de prรฉdiction. # + from pyspark.mllib.recommendation import ALS, MatrixFactorizationModel, Rating # Construction du modรจle de recommendations depuis l'approche "Alternating Least Squares" rank = 10 numIterations = 10 # Paramรจtres de la mรฉthode Alternating Least Squares (ALS) # ratings โ€“ RDD de Rating ou tuple (userID, productID, rating). # rank โ€“ Rang de la matrice modรจle. # iterations โ€“ Nombre d'itรฉrations. (default: 10) # lambda_ โ€“ Paramรจtre de rรฉgularisation. (default: 0.01) # Build the recommendation model using ALS model = ALS.train(ratingsRDD, rank, iterations=numIterations, lambda_=0.02) # Evaluation du modรจle sur le jeu de donnรฉes complet # Evaluate the model on rating data testdata = ratingsRDD.map(lambda p: (p[0], p[1])) predictions = model.predictAll(testdata).map(lambda r: ((r[0], r[1]), r[2])) ratesAndPreds = ratingsRDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions) MSE = ratesAndPreds.map(lambda r: (r[1][0] - r[1][1])**2).mean() print("Mean Squared Error = " + str(MSE)) # - # # Algorithmes de descente de gradient # # Le but de cette section est # 1. de calculer le gradient de la fonction, # 2. d'implรฉmenter une mรฉthode de gradient, # 3. de mesurer la prรฉcision de cette mรฉthode # # __Etapes :__ # # > Sรฉparer le jeu de donnรฉes en un jeu d'apprentissage (70%) et un jeu de test, en utilisant la fonction randomsplit ( http://spark.apache.org/docs/2.0.0/api/python/pyspark.html ) # # > Complรฉter la routine ci-dessous qui retourne le "rating" prรฉdit. Crรฉer un RDD contenant `(i,j,true rating,predicted rating)`. # # > Complรฉter la routine qui calcule le Mean Square Error (MSE) sur le jeu de donnรฉes. # # > Tester ensuite la routine de MSE en vous donnant les matrices $P$ et $Q$ alรฉatoires (utiliser np.random.rand(M,K)) et calculer quelques "ratings" prรฉdits. # # # + # Sรฉparation du jeu de donnรฉes en un jeu d'apprentissage et un jeu de test # Taille du jeu d'apprentissage (en %) learningWeight = 0.7 # Crรฉation des RDD "apprentissage" et "test" depuis la fonction randomsplit trainRDD, testRDD = ratingsRDD.randomSplit([learningWeight, 1 - learningWeight], seed = None) # Calcul du rating prรฉdit. def predictedRating(x, P, Q): """ This function computes predicted rating Args: x: tuple (UserID, MovieID, Rating) P: user's features matrix (M by K) Q: item's features matrix (N by K) Returns: predicted rating: l """ return (x[0], x[1], x[2], np.dot(P[x[0] - 1,:], Q[x[1] - 1,:].T)) # Calcul de l'erreur MSE def computeMSE(rdd, P, Q): """ This function computes Mean Square Error (MSE) Args: rdd: RDD(UserID, MovieID, Rating) P: user's features matrix (M by K) Q: item's features matrix (N by K) Returns: mse: mean square error """ r = rdd.collect() s = sum((r[i][2] - predictedRating(r[i], P, Q)[3])**2 for i in range(len(r))) return s/len(r) # + # Tailles des jeux de donnรฉes d'apprentissage et de tests. print("Size of the training dataset:", trainRDD.count()) print("Size of the testing dataset:", testRDD.count()) # Crรฉation de matrices alรฉatoires de dimension (M,K) et (N,K) K = 20 P = np.random.rand(M,K) Q = np.random.rand(N,K) # Calcul et affichage de l'erreur MSE pour ces matrices alรฉatoires MSE = computeMSE(ratingsRDD, P, Q) print("\nMSE (training set) = ", MSE) # Affichage de 10 ratings prรฉdits depuis ces matrices print("\n(userID, movieID, rating, predicted)") r = ratingsRDD.collect() for x in np.random.randint(len(r), size=10) : print(predictedRating(r[x], P, Q)) # - # Etapes : # # > Donner la formule des dรฉrivรฉes des fonctions $\ell_{i,j}$ selon $p_t$ et $q_s$ avec $1\leq t\leq m$ et $1\leq s\leq n$. # # > Implanter de l'algorithme de gradient sur l'ensemble d'apprentissage. Prendre un pas รฉgal ร  $\gamma=0.001$ et arrรชter sur un nombre maximum d'itรฉrations. # # > Commenter les tracรฉs de convergence et des indicateurs de qualitรฉ de la prรฉvision en fonction de la dimension latente (rang de $P$ et $Q$). # Algorithem de descente de gradient pour la factorisation de matrices def GD(trainRDD, K=10, MAXITER=50, GAMMA=0.001, LAMBDA=0.05): # Construction de la matrice R (creuse) row=[] col=[] data=[] for part in trainRDD.collect(): row.append(part[0]-1) col.append(part[1]-1) data.append(part[2]) R=sparse.csr_matrix((data, (row, col))) # Initialisation alรฉatoire des matrices P et Q M,N = R.shape P = np.random.rand(M,K) Q = np.random.rand(N,K) # Calcul de l'erreur MSE initiale mse=[] mse_tmp = computeMSE(trainRDD, P, Q) mse.append([0, mse_tmp]) print("epoch: ", str(0), " - MSE: ", str(mse_tmp)) # Boucle nonzero = R.nonzero() nbNonZero = R.nonzero()[0].size I,J = nonzero[0], nonzero[1] for epoch in range(MAXITER): for i,j in zip(I,J): # Mise ร  jour de P[i,:] et Q[j,:] par descente de gradient ร  pas fixe e = R[i, j] - np.dot(P[i, :], Q[j, :]) P[i,:] += GAMMA*(e*Q[j,:] - LAMBDA*P[i,:]) Q[j,:] += GAMMA*(e*P[i,:] - LAMBDA*Q[j,:]) # Calcul de l'erreur MSE courante, et sauvegarde dans le tableau mse mse.append(computeMSE(trainRDD,P,Q)) print("epoch: ", str(epoch + 1), " - MSE: ", str(computeMSE(trainRDD, P, Q))) return P, Q, mse # Calcul de P, Q et de la mse P,Q,mse = GD(trainRDD, K=10, MAXITER=10, GAMMA=0.001, LAMBDA=0.05) # Calcul de P, Q et de la mse P,Q,mse = GD(trainRDD, K=10, MAXITER=10, GAMMA=0.001, LAMBDA=0.05) # + import matplotlib.pyplot as plt # Affichage de l'erreur MSE print('mse = ', computeMSE(testRDD,P,Q)) # - # Etapes : # # > Calculer les ratings prรฉdits par la solution de la mรฉthode du gradient dans un RDD # # > Comparer sur le jeu de test les valeurs prรฉdites aux ratings sur 10 รฉchantillons alรฉatoires. # Calcul et affichage des ratings prรฉdits for i in range(10): print(predictedRating(testRDD.collect()[i],P,Q)) # r_vol ,order_price ,mot1_oco1.ordertype_name as ordertype_oco1 ,order_vol_oco1 ,order_price_oco1 ,mot1_oco2.ordertype_name as ordertype_oco2 ,order_vol_oco2 ,order_price_oco2 ,call_order_time ,mot2.ordertype_name as call_ordertype ,call_order_vol ,call_order_price ,execution_order_time ,mot3.ordertype_name as execution_ordertype ,execution_order_type as e_ordertype ,mos.orderstatus_name as execution_order_status ,execution_order_vol ,execution_order_price ,execution_order_time2 ,mot4.ordertype_name as execution_ordertype2 ,execution_order_type2 as e_ordertype2 ,mos2.orderstatus_name as execution_order_status2 ,execution_order_vol2 ,execution_order_price2 ,mpt.positiontype_name ,cash ,pos_vol ,pos_price ,total_value ,profit_value ,profit_rate ,position_count ,case when total_value > total_deposit then total_deposit when total_value <= total_deposit then total_value end as real_deposit ,total_unrealized_value ,leverage ,max_drawdown ,fee ,spread_fee ,regist_time ,entry_strategy ,exit_strategy from backtest_history as bh inner join m_ordertype as mot1 on bh.order_type = mot1.ordertype_id inner join m_ordertype as mot2 on bh.call_order_type = mot2.ordertype_id inner join m_ordertype as mot3 on bh.execution_order_type = mot3.ordertype_id inner join m_ordertype as mot4 on bh.execution_order_type2 = mot4.ordertype_id inner join m_positiontype as mpt on bh.position = mpt.positiontype_id inner join m_orderstatus as mos on bh.execution_order_status = mos.orderstatus_id inner join m_orderstatus as mos2 on bh.execution_order_status2 = mos2.orderstatus_id inner join m_ordertype as mot1_oco1 on bh.order_type_oco1 = mot1_oco1.ordertype_id inner join m_ordertype as mot1_oco2 on bh.order_type_oco2 = mot1_oco2.ordertype_id where symbol = '{}' and leg = '1d' and date(time) between '{}' and '{}' order by time """ # + def draw_backtest_history(df, ylim1, ylim2): x_size = df.shape[0] / 20 fig = plt.figure(figsize=(6 * x_size, 12)) ax = plt.subplot(4, 1, 1) candlestick2_ohlc(ax, df["open"], df["high"], df["low"], df["close"], width=0.9, colorup="b", colordown="r") ax.set_xlim([0, df.shape[0]]) ax.set_xticklabels([(df["time"][x].strftime("%Y%m%d") if x <= df.shape[0] else x) for x in ax.get_xticks()], rotation=30) ax.set_ylim(ylim1, ylim2) # extry_indicators ax.plot(df['entry_indicator1'], color="blue") ax.plot(df['entry_indicator2'], color="mediumblue") ax.plot(df['entry_indicator3'], color="mediumslateblue") ax.plot(df['entry_indicator4'], color="purple") ax.plot(df['entry_indicator5'], color="fuchsia") ax.plot(df['entry_indicator6'], color="orchid") ax.plot(df['entry_indicator7'], color="navy") # exit_indicators ax.plot(df['exit_indicator1'], color="orange") ax.plot(df['exit_indicator2'], color="tan") ax.plot(df['exit_indicator3'], color="moccasin") ax.plot(df['exit_indicator4'], color="brown") ax.plot(df['exit_indicator5'], color="maroon") ax.plot(df['exit_indicator6'], color="sandybrown") ax.plot(df['exit_indicator7'], color="tomato") # ็ด„ๅฎš entry_order = [1,2,3,4,5,6,7,8] exit_order = [9,10,11,12,13,14,15,16] for x in range(len(df.index)): if (df['execution_order_status'][x] == '็ด„ๅฎš' and df['execution_order_price'][x] != 0): if df['e_ordertype'][x] in entry_order: ax.plot(df.index[x], df['execution_order_price'][x], color="green", marker="D") else: ax.plot(df.index[x], df['execution_order_price'][x], color="red", marker="D") for x in range(len(df.index)): if (df['execution_order_status2'][x] == '็ด„ๅฎš' and df['execution_order_price2'][x] != 0): if df['e_ordertype2'][x] in entry_order: ax.plot(df.index[x], df['execution_order_price2'][x], color="green", marker="D") else: ax.plot(df.index[x], df['execution_order_price2'][x], color="red", marker="D") # ๆ็›Š ax2 = plt.subplot(4, 1, 2) ax2.bar(df.index, df['profit_value'], color="orange") ax2.set_xlim([0, df.shape[0]]) # ax2.set_xticklabels([(df["time"][x].strftime("%Y%m%d") if x <= df.shape[0] else x) for x in ax.get_xticks()], rotation=30) # ใƒใ‚ธใ‚ทใƒงใƒณใ‚ซใ‚ฆใƒณใƒˆ ax3 = plt.subplot(4, 1, 3) ax3.plot(df.index, df['position_count'], color="grey") ax3.set_xlim([0, df.shape[0]]) # ax3.set_xticklabels([(df["time"][x].strftime("%Y%m%d") if x <= df.shape[0] else x) for x in ax.get_xticks()], rotation=30) # ็ท่ณ‡็”ฃ ax4 = plt.subplot(4, 1, 4) ax4.bar(df.index, df['total_value'], color="purple") ax4.set_xlim([0, df.shape[0]]) # ax4.set_xticklabels([(df["time"][x].strftime("%Y%m%d") if x <= df.shape[0] else x) for x in ax.get_xticks()], rotation=30) # deposit ax4.bar(df.index, df['real_deposit'], color="yellow") ax4.bar(df.index, df['cash'], color="deepskyblue") # ax4.set_xlim([0, df.shape[0]]) ax4.set_xticklabels([(df["time"][x].strftime("%Y%m%d") if x <= df.shape[0] else x) for x in ax.get_xticks()], rotation=30) pd.set_option('display.max_columns', 100) # -
14,876
/.ipynb_checkpoints/DLND Your first neural network-checkpoint.ipynb
4b51e091c359ebf802a4caf6d00c49065dfc033e
[]
no_license
jeffthardy/ml_proj1
https://github.com/jeffthardy/ml_proj1
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
328,063
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + [markdown] deletable=true editable=true # # Your first neural network # # In this project, you'll build your first neural network and use it to predict daily bike rental ridership. We've provided some of the code, but left the implementation of the neural network up to you (for the most part). After you've submitted this project, feel free to explore the data and the model more. # # # + deletable=true editable=true # %matplotlib inline # %config InlineBackend.figure_format = 'retina' import numpy as np import pandas as pd import matplotlib.pyplot as plt # + [markdown] deletable=true editable=true # ## Load and prepare the data # # A critical step in working with neural networks is preparing the data correctly. Variables on different scales make it difficult for the network to efficiently learn the correct weights. Below, we've written the code to load and prepare the data. You'll learn more about this soon! # + deletable=true editable=true data_path = 'Bike-Sharing-Dataset/hour.csv' rides = pd.read_csv(data_path) # + deletable=true editable=true rides.head() # + [markdown] deletable=true editable=true # ## Checking out the data # # This dataset has the number of riders for each hour of each day from January 1 2011 to December 31 2012. The number of riders is split between casual and registered, summed up in the `cnt` column. You can see the first few rows of the data above. # # Below is a plot showing the number of bike riders over the first 10 days or so in the data set. (Some days don't have exactly 24 entries in the data set, so it's not exactly 10 days.) You can see the hourly rentals here. This data is pretty complicated! The weekends have lower over all ridership and there are spikes when people are biking to and from work during the week. Looking at the data above, we also have information about temperature, humidity, and windspeed, all of these likely affecting the number of riders. You'll be trying to capture all this with your model. # + deletable=true editable=true rides[:24*10].plot(x='dteday', y='cnt') # + [markdown] deletable=true editable=true # ### Dummy variables # Here we have some categorical variables like season, weather, month. To include these in our model, we'll need to make binary dummy variables. This is simple to do with Pandas thanks to `get_dummies()`. # + deletable=true editable=true dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday'] for each in dummy_fields: dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False) rides = pd.concat([rides, dummies], axis=1) fields_to_drop = ['instant', 'dteday', 'season', 'weathersit', 'weekday', 'atemp', 'mnth', 'workingday', 'hr'] data = rides.drop(fields_to_drop, axis=1) data.head() # + [markdown] deletable=true editable=true # ### Scaling target variables # To make training the network easier, we'll standardize each of the continuous variables. That is, we'll shift and scale the variables such that they have zero mean and a standard deviation of 1. # # The scaling factors are saved so we can go backwards when we use the network for predictions. # + deletable=true editable=true quant_features = ['casual', 'registered', 'cnt', 'temp', 'hum', 'windspeed'] # Store scalings in a dictionary so we can convert back later scaled_features = {} for each in quant_features: mean, std = data[each].mean(), data[each].std() scaled_features[each] = [mean, std] data.loc[:, each] = (data[each] - mean)/std # + [markdown] deletable=true editable=true # ### Splitting the data into training, testing, and validation sets # # We'll save the data for the last approximately 21 days to use as a test set after we've trained the network. We'll use this set to make predictions and compare them with the actual number of riders. # + deletable=true editable=true # Save data for approximately the last 21 days test_data = data[-21*24:] # Now remove the test data from the data set data = data[:-21*24] # Separate the data into features and targets target_fields = ['cnt', 'casual', 'registered'] features, targets = data.drop(target_fields, axis=1), data[target_fields] test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields] # + [markdown] deletable=true editable=true # We'll split the data into two sets, one for training and one for validating as the network is being trained. Since this is time series data, we'll train on historical data, then try to predict on future data (the validation set). # + deletable=true editable=true # Hold out the last 60 days or so of the remaining data as a validation set train_features, train_targets = features[:-60*24], targets[:-60*24] val_features, val_targets = features[-60*24:], targets[-60*24:] # + [markdown] deletable=true editable=true # ## Time to build the network # # Below you'll build your network. We've built out the structure and the backwards pass. You'll implement the forward pass through the network. You'll also set the hyperparameters: the learning rate, the number of hidden units, and the number of training passes. # # <img src="assets/neural_network.png" width=300px> # # The network has two layers, a hidden layer and an output layer. The hidden layer will use the sigmoid function for activations. The output layer has only one node and is used for the regression, the output of the node is the same as the input of the node. That is, the activation function is $f(x)=x$. A function that takes the input signal and generates an output signal, but takes into account the threshold, is called an activation function. We work through each layer of our network calculating the outputs for each neuron. All of the outputs from one layer become inputs to the neurons on the next layer. This process is called *forward propagation*. # # We use the weights to propagate signals forward from the input to the output layers in a neural network. We use the weights to also propagate error backwards from the output back into the network to update our weights. This is called *backpropagation*. # # > **Hint:** You'll need the derivative of the output activation function ($f(x) = x$) for the backpropagation implementation. If you aren't familiar with calculus, this function is equivalent to the equation $y = x$. What is the slope of that equation? That is the derivative of $f(x)$. # # Below, you have these tasks: # 1. Implement the sigmoid function to use as the activation function. Set `self.activation_function` in `__init__` to your sigmoid function. # 2. Implement the forward pass in the `train` method. # 3. Implement the backpropagation algorithm in the `train` method, including calculating the output error. # 4. Implement the forward pass in the `run` method. # # + deletable=true editable=true class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Set number of nodes in input, hidden and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Initialize weights self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes**-0.5, (self.input_nodes, self.hidden_nodes)) self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) self.lr = learning_rate #Sigmoid Activation Function self.activation_function = lambda x : 1/(1+np.exp(-x)) def train(self, features, targets): ''' Train the network on batch of features and targets. Arguments --------- features: 2D array, each row is one data record, each column is a feature targets: 1D array of target values ''' n_records = features.shape[0] delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape) delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape) for X, y in zip(features, targets): ### Forward pass ### hidden_inputs = np.dot(X,self.weights_input_to_hidden) # signals into hidden layer hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer final_inputs = np.dot(hidden_outputs,self.weights_hidden_to_output) # signals into final output layer final_outputs = final_inputs # signals from final output layer ### Backward pass ### # Output error error = y - final_outputs # Output layer error is the difference between desired target and actual output. # hidden layer's contribution to the error hidden_error = np.dot(self.weights_hidden_to_output,error) # Backpropagated error terms output_error_term = error # error * f'(x) , f'(x) = 1 hidden_error_term = hidden_error*hidden_outputs*(1-hidden_outputs) # error * f'(x), f'(x) = f(x)*(1-f(x)) # Scaling weight delta by learning rate / record count # Weight step (input to hidden) delta_weights_i_h += hidden_error_term*X[:,None] # Weight step (hidden to output) delta_weights_h_o += output_error_term * hidden_outputs[:,None] # Update the weights self.weights_hidden_to_output += self.lr * delta_weights_h_o / n_records # update hidden-to-output weights with gradient descent step self.weights_input_to_hidden += self.lr * delta_weights_i_h / n_records # update input-to-hidden weights with gradient descent step def run(self, features): ''' Run a forward pass through the network with input features Arguments --------- features: 1D array of feature values ''' #### Prediction forward pass #### # Hidden layer hidden_inputs = np.dot(features,self.weights_input_to_hidden) # signals into hidden layer hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer # Output layer final_inputs = np.dot(hidden_outputs,self.weights_hidden_to_output) # signals into final output layer final_outputs = final_inputs # signals from final output layer return final_outputs # + deletable=true editable=true def MSE(y, Y): return np.mean((y-Y)**2) # + [markdown] deletable=true editable=true # ## Unit tests # # Run these unit tests to check the correctness of your network implementation. This will help you be sure your network was implemented correctly before you starting trying to train it. These tests must all be successful to pass the project. # + deletable=true editable=true import unittest inputs = np.array([[0.5, -0.2, 0.1]]) targets = np.array([[0.4]]) test_w_i_h = np.array([[0.1, -0.2], [0.4, 0.5], [-0.3, 0.2]]) test_w_h_o = np.array([[0.3], [-0.1]]) class TestMethods(unittest.TestCase): ########## # Unit tests for data loading ########## def test_data_path(self): # Test that file path to dataset has been unaltered self.assertTrue(data_path.lower() == 'bike-sharing-dataset/hour.csv') def test_data_loaded(self): # Test that data frame loaded self.assertTrue(isinstance(rides, pd.DataFrame)) ########## # Unit tests for network functionality ########## def test_activation(self): network = NeuralNetwork(3, 2, 1, 0.5) # Test that the activation function is a sigmoid self.assertTrue(np.all(network.activation_function(0.5) == 1/(1+np.exp(-0.5)))) def test_train(self): # Test that weights are updated correctly on training network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() network.train(inputs, targets) self.assertTrue(np.allclose(network.weights_hidden_to_output, np.array([[ 0.37275328], [-0.03172939]]))) self.assertTrue(np.allclose(network.weights_input_to_hidden, np.array([[ 0.10562014, -0.20185996], [0.39775194, 0.50074398], [-0.29887597, 0.19962801]]))) def test_run(self): # Test correctness of run method network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() self.assertTrue(np.allclose(network.run(inputs), 0.09998924)) suite = unittest.TestLoader().loadTestsFromModule(TestMethods()) unittest.TextTestRunner().run(suite) # + [markdown] deletable=true editable=true # ## Training the network # # Here you'll set the hyperparameters for the network. The strategy here is to find hyperparameters such that the error on the training set is low, but you're not overfitting to the data. If you train the network too long or have too many hidden nodes, it can become overly specific to the training set and will fail to generalize to the validation set. That is, the loss on the validation set will start increasing as the training set loss drops. # # You'll also be using a method know as Stochastic Gradient Descent (SGD) to train the network. The idea is that for each training pass, you grab a random sample of the data instead of using the whole data set. You use many more training passes than with normal gradient descent, but each pass is much faster. This ends up training the network more efficiently. You'll learn more about SGD later. # # ### Choose the number of iterations # This is the number of batches of samples from the training data we'll use to train the network. The more iterations you use, the better the model will fit the data. However, if you use too many iterations, then the model with not generalize well to other data, this is called overfitting. You want to find a number here where the network has a low training loss, and the validation loss is at a minimum. As you start overfitting, you'll see the training loss continue to decrease while the validation loss starts to increase. # # ### Choose the learning rate # This scales the size of weight updates. If this is too big, the weights tend to explode and the network fails to fit the data. A good choice to start at is 0.1. If the network has problems fitting the data, try reducing the learning rate. Note that the lower the learning rate, the smaller the steps are in the weight updates and the longer it takes for the neural network to converge. # # ### Choose the number of hidden nodes # The more hidden nodes you have, the more accurate predictions the model will make. Try a few different numbers and see how it affects the performance. You can look at the losses dictionary for a metric of the network performance. If the number of hidden units is too low, then the model won't have enough space to learn and if it is too high there are too many options for the direction that the learning can take. The trick here is to find the right balance in number of hidden units you choose. # + deletable=true editable=true import sys ### Set the hyperparameters here ### iterations = 20000 learning_rate = 0.11 hidden_nodes = 5 output_nodes = 1 N_i = train_features.shape[1] network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate) losses = {'train':[], 'validation':[]} for ii in range(iterations): # Go through a random batch of 128 records from the training data set batch = np.random.choice(train_features.index, size=128) X, y = train_features.ix[batch].values, train_targets.ix[batch]['cnt'] network.train(X, y) # Printing out the training progress train_loss = MSE(network.run(train_features).T, train_targets['cnt'].values) val_loss = MSE(network.run(val_features).T, val_targets['cnt'].values) sys.stdout.write("\rProgress: {:2.1f}".format(100 * ii/float(iterations)) \ + "% ... Training loss: " + str(train_loss)[:5] \ + " ... Validation loss: " + str(val_loss)[:5]) sys.stdout.flush() losses['train'].append(train_loss) losses['validation'].append(val_loss) # + [markdown] deletable=true editable=true # **Hyperparameter Testing Notes** # # Initially I tried picking a few values at random and came to use 3 hidden nodes with a 0.1 learning rate and 20,000 iterations, but I wanted to get a more systematic view of that region, so I decided to loop through some options: # # ~~~~ # Initially trying a loop through various hidden node counts range(1,20,2) using 2000 iter and .1 learn rate: # Progress: 100.0% ... Training loss: 0.790 ... Validation loss: 1.292 # H#=1 # Progress: 100.0% ... Training loss: 0.262 ... Validation loss: 0.429 # H#=3 # Progress: 100.0% ... Training loss: 0.265 ... Validation loss: 0.435 # H#=5 # Progress: 100.0% ... Training loss: 0.265 ... Validation loss: 0.436 # H#=7 # Progress: 100.0% ... Training loss: 0.274 ... Validation loss: 0.446 # H#=9 # Progress: 100.0% ... Training loss: 0.290 ... Validation loss: 0.458 # H#=11 # Progress: 100.0% ... Training loss: 0.283 ... Validation loss: 0.445 # H#=13 # Progress: 100.0% ... Training loss: 0.278 ... Validation loss: 0.451 # H#=15 # Progress: 100.0% ... Training loss: 0.277 ... Validation loss: 0.447 # H#=17 # Progress: 100.0% ... Training loss: 0.276 ... Validation loss: 0.448 # H#=19 # # Since the last value is decreasing from the previous I'll run another 10 hidden node cases to see if I find a different minimum. # # Progress: 100.0% ... Training loss: 0.291 ... Validation loss: 0.447 # H#=21 # Progress: 100.0% ... Training loss: 0.285 ... Validation loss: 0.449 # H#=23 # Progress: 100.0% ... Training loss: 0.290 ... Validation loss: 0.464 # H#=25 # Progress: 100.0% ... Training loss: 0.292 ... Validation loss: 0.451 # H#=27 # Progress: 100.0% ... Training loss: 0.281 ... Validation loss: 0.440 # H#=29 # Progress: 100.0% ... Training loss: 0.297 ... Validation loss: 0.461 # H#=31 # # It seems like the best option is around 2-5 nodes, which makes sense to me since this data isn't a huge number of inputs. Next I will loop between 2-5 nodes and use a higher number of iterations to see finer detail. # # iterations = 20,000 , learn rate = .1 # # Progress: 100.0% ... Training loss: 0.512 ... Validation loss: 0.614 # H#=1 # Progress: 100.0% ... Training loss: 0.195 ... Validation loss: 0.356 # H#=2 # Progress: 100.0% ... Training loss: 0.185 ... Validation loss: 0.330 # H#=3 # Progress: 100.0% ... Training loss: 0.064 ... Validation loss: 0.144 # H#=4 # Progress: 100.0% ... Training loss: 0.067 ... Validation loss: 0.141 # H#=5 # Progress: 100.0% ... Training loss: 0.069 ... Validation loss: 0.152 # H#=6 # Progress: 100.0% ... Training loss: 0.080 ... Validation loss: 0.168 # H#=7 # ~~~~ # # # From this it actually looks like we should focus on 4 or 5. 4 had a lower training loss, but higher validation loss. My guess is that 5 may be the better choice, but they are pretty close. Next I'll try these two numbers but with a few different learning rates. # # ~~~~ # Learning Rate=0.05 # H#=4 # Progress: 100.0% ... Training loss: 0.163 ... Validation loss: 0.295 # H#=5 # Progress: 100.0% ... Training loss: 0.193 ... Validation loss: 0.357 # # Learning Rate=0.07 # H#=4 # Progress: 100.0% ... Training loss: 0.093 ... Validation loss: 0.187 # H#=5 # Progress: 100.0% ... Training loss: 0.077 ... Validation loss: 0.165 # # Learning Rate=0.09 # H#=4 # Progress: 100.0% ... Training loss: 0.086 ... Validation loss: 0.170 # H#=5 # Progress: 100.0% ... Training loss: 0.076 ... Validation loss: 0.162 # # Learning Rate=0.1 # H#=4 # Progress: 100.0% ... Training loss: 0.090 ... Validation loss: 0.165 # H#=5 # Progress: 100.0% ... Training loss: 0.074 ... Validation loss: 0.163 # # Learning Rate=0.11 # H#=4 # Progress: 100.0% ... Training loss: 0.068 ... Validation loss: 0.165 # H#=5 # Progress: 100.0% ... Training loss: 0.069 ... Validation loss: 0.156 # # Learning Rate=0.13 # H#=4 # Progress: 100.0% ... Training loss: 0.081 ... Validation loss: 0.167 # H#=5 # Progress: 100.0% ... Training loss: 0.076 ... Validation loss: 0.176 # # Learning Rate=0.15 # H#=4 # Progress: 100.0% ... Training loss: 0.078 ... Validation loss: 0.198 # H#=5 # Progress: 100.0% ... Training loss: 0.067 ... Validation loss: 0.182 # ~~~~ # # After seeing these results it seems that I am getting some statistical randomness as far as how good these settings work. When testing various hidden node values I saw the best result at 5 with only .141 validation loss. When I tried various learning rates over the 4 and 5 node setting I didn't even see a result as good as the previous 4 result, but did see the best results at .11 learning rate. Next I will stick to 5 nodes, .11 learning rate, and 20,000 iterations but run the test 5 times to see what kind of variance I get. # # ~~~~ # test 0 # Progress: 100.0% ... Training loss: 0.078 ... Validation loss: 0.165 # test 1 # Progress: 100.0% ... Training loss: 0.075 ... Validation loss: 0.171 # test 2 # Progress: 100.0% ... Training loss: 0.060 ... Validation loss: 0.146 # test 3 # Progress: 100.0% ... Training loss: 0.063 ... Validation loss: 0.140 # test 4 # Progress: 100.0% ... Training loss: 0.068 ... Validation loss: 0.149 # test 5 # Progress: 100.0% ... Training loss: 0.075 ... Validation loss: 0.164 # # ~~~~ # # I've decided these parameters are ok, but there is a bunch of variation from run to run. Maybe some longer runs would improve things, but it generally gives pretty good results. # # + deletable=true editable=true plt.plot(losses['train'], label='Training loss') plt.plot(losses['validation'], label='Validation loss') plt.legend() _ = plt.ylim() # + [markdown] deletable=true editable=true # ## Check out your predictions # # Here, use the test data to view how well your network is modeling the data. If something is completely wrong here, make sure each step in your network is implemented correctly. # + deletable=true editable=true fig, ax = plt.subplots(figsize=(8,4)) mean, std = scaled_features['cnt'] predictions = network.run(test_features).T*std + mean ax.plot(predictions[0], label='Prediction') ax.plot((test_targets['cnt']*std + mean).values, label='Data') ax.set_xlim(right=len(predictions)) ax.legend() dates = pd.to_datetime(rides.ix[test_data.index]['dteday']) dates = dates.apply(lambda d: d.strftime('%b %d')) ax.set_xticks(np.arange(len(dates))[12::24]) _ = ax.set_xticklabels(dates[12::24], rotation=45) # + [markdown] deletable=true editable=true # ## OPTIONAL: Thinking about your results(this question will not be evaluated in the rubric). # # Answer these questions about your results. How well does the model predict the data? Where does it fail? Why does it fail where it does? # # > **Note:** You can edit the text in this cell by double clicking on it. When you want to render the text, press control + enter # # #### answer: # # This model doesn't predict results extremely accurately, but it it usually gets the general gist of the data. It fails in some of the test data because it shows an abnormal characteristic from the rest of the training data. It looks like this has to do with Christmas and a typical period of vacation. You can't expect a model to predict abnormal events that it hasn't seen in training, which I think is the case here. For the more normal weeks before Christmas you see fairly accurate predictions, but once the Christmas holiday time starts you see differently shaped data and as a result poorer predictions.
24,364
/notebooks/4_molecular_visualization/1_Visualization_Tutorial.ipynb
5dfc38667826b21ad8b5fa4607411d0ec71590b4
[ "BSD-3-Clause" ]
permissive
celinedurniak/python-course-ikon
https://github.com/celinedurniak/python-course-ikon
0
0
null
2020-02-07T08:37:11
2020-02-05T12:22:36
null
Jupyter Notebook
false
false
.py
12,952
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # # Molecular Visualization Tutorial # ## Introduction # Jupyter Notebook can be used for visualization of both molecular and periodic structures. # Multiple viewers have been ported for use in the Notebook - here we will show how to construct a simple molecule and visualize it using several viewers. # This tutorial will also present operations on larger structures, including big PDB files. # # To create simple molecular sytems we will use the ASE package. # # ASE is an Atomic Simulation Environment written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simulations. # # ASE contains objects and structures for atomic structures as well as for calculators. # # # ### This tutorial # # In this tutorial we will learn about the basic concepts of visualizing structures using the Atomic Simulation Environment: # # 1. The Atom and Atoms objects and how to construct atomic structures with and without periodic boundary condistions # 2. Visualization of molecules and periodics with x3d and NGLView # 2. Visualization of larger structures with NGLView # # # The tutorial requires that the following python modules are installed: # 1. ase # 2. matplotlib # 3. nglview # # # These packages should be pre-installed on the virtual machine # ### Constructing a water molecule from scratch # # # For this task we will use ASE. To create molecules we need to first define atoms which are its constituents. from ase import Atom from ase import Atoms # A water molecule is fundametally a terahedral structure with the oxygen atoms in the center and the two hydrogen atoms and two lone pairs at the corners. The angle between two bonds in a fully symmetrical tetrahedron is 109 degrees. The lengths of the O-H bonds can be estimated from the atoms covalent radii. We will place the oxygen in origon and the two hydrogen atoms in the yz plane symmetrically around the z-axis. # + import numpy as np water = Atoms('OH2') # placing oxygen first # calculate bond length from ase.data import covalent_radii radius_h = covalent_radii[1] # indexed by atomic number radius_o = covalent_radii[8] bondlength = radius_h + radius_o # calculate x and y projections of unit vector pointing along the o-h bond angle = 109.*np.pi/180. # converting to radians xu = np.cos(angle/2) yu = np.sin(angle/2) # set positions # method 1 (indexig on atoms) water[1].position = bondlength*np.array([0, xu, yu]) water[2].position = bondlength*np.array([0, xu, -yu]) water.positions # - # A quicker one-liner for numpy users water.positions[1:, 1:] = bondlength*np.array( [[xu, yu], [xu, -yu]]) water.positions # ## Visualization # # ASE supports many molecular viewers. For embedded views in Jupyter notebooks it supports two, the x3d and nglviewer. from ase.visualize import view # The simple ase gui is default, but it pops out as a separate window, if this notebook is run locally. view([water, water]) # A notebook-embedded representation of a structure can be viewed with the `x3d` viewer, also internal to ASE. view(water, viewer='x3d') # The `x3d` viewer does not offer any scripting capability and the only operations you can perform are rotation (left mouse button), translation (Ctrl+left mouse button) and zoom (mouse wheel) # For some more bling directly in the Jupyter notebook we can use the `nglviewer` view(water, viewer='ngl') # Alternatively, we may read the ASE structure directly from NGLView. import nglview as nv v = nv.show_structure_file("dna.pdb") v # NGLviewer is a powerful utility. We can control many aspects of the display quality. # + # set size of the widget v._remote_call("setSize", target="Widget", args=["400px", "400px"]) # center the view v.center() # change the color of the background v.background='#ffc' # modify the z-clipping distance v.parameters=dict(clipDist=-10) # - # ### Exercise 1: Construct a molecule # H2S has an H-S-H angle of 90 degrees, construct an ASE molecule representing H2S using bond lengths based on covalent radius. # # *Hint* See below, in case you don't know the atomic_number of sulfur (but who doesn't?) sulfur = Atom('S') sulfur.number # atomic number # alternatively from ase.data import atomic_numbers atomic_numbers['S'] sh2 = 'replace this string with your code' # ### Exercise 2 using both x3d and NGLView viewers # # Visualize your SH2 molecule: 'replace with your code' # ## Crystals # We can use the viewers to look at not just 0D materials (molecules), but also for periodic systems: 1D (e.g. wires), 2D (e.g. surfaces), and 3D materials (e.g. crystals) # # Here we will focus on crystals # # Let's read in the NaH structure from a file, already present in the right location. from ase import io nah = io.read('NaH.cif') view(nah, viewer='ngl') # Repeating the cell three times is as easy as using a simple method on the loaded structure. view(nah.repeat(3), viewer='ngl') # ### Building # Like for the molecule a crystal can be generated by building from scratch, or reading it from a file as above, or by using predefined structures. # Let's build a crystal for silver using the ASE `bulk` module from ase.build import bulk ag = bulk('Ag') # Note, that ASE automatically assigned crystal symmetry (fcc) and lattice constant. # # This structure can now be nicely visualized. view(ag, viewer='ngl') # ### Databases # # Multiple databases can be queried for systems so we don't need to manually create them! # # One example is ASE's own `builder` database from ase import build ch3nh2 = build.molecule('CH3NO2') view(ch3nh2, viewer='ngl') # Jupyter Notebook can also be used to visualize entries from external databases, like the PDB database. We can query them with the name. # Let's have a look at the main proteaze of the 2019-nCoV coronavirus. import nglview import os os.environ['HTTPS_PROXY']='http://172.18.12.30:8123' os.environ['HTTP_PROXY']='http://172.18.12.30:8123' # This command will query the online database for the given PDB ID view = nglview.show_pdbid("6lu7") view.render_image() view # Notice how clicking on the protein shows the clicked atom exact location (residue). # NGLView offers a large number of options to allow for customized view. # + view.add_cartoon(selection="protein") view.add_surface(selection="protein", opacity=0.3) # specify color view.add_cartoon(selection="protein", color='blue') view.camera = 'orthographic' view.background = 'yellow' # - # We can of course load local files for viewing as well. view = nglview.show_structure_file("dna.pdb") view.add_cartoon() view
6,834
/spam_classifier.ipynb
c17d7782ed0f2a325ed5bf53fe3408c515ba6eb1
[]
no_license
ArtyomMinsk/spambase
https://github.com/ArtyomMinsk/spambase
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
11,461
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- from sklearn.naive_bayes import MultinomialNB from sklearn.cross_validation import train_test_split import numpy as np import pandas as pd from column_names import column_list from pandas import DataFrame, Series # Loading in the data file: spam_df = pd.read_csv('spambase.data', names = column_list, index_col = False) # Since we are going to split the given dataset into train and test datasets let's find out the shape of the original data, so later we will be able to check if `train_test_split` method splitted the data according to the set of parameters: spam_df.shape # Before we split the data we need to assign to $X$ and $y$ variables the data from the original dataset. Since our goal is to classify spam then the very last Series (1 - spam; 0 - not spam) of the original DataFrame has to be assign to variable $y$. And the rest of the DataFrame is assigned to variable $X$. #X = spam_df.drop('spam', axis = 1) X = spam_df[column_list[:-1]] y = spam_df['spam'] # Splitting the original dataset into training and testing datasets (60/40): X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = 0.6, random_state = 42) X_train.shape # Let's check the `train_test_split` function: 2760 rows is 60% of 4601 rows of the original dataset (2760 / 4601 = 0.599) # Training our model on the training set of data clf = MultinomialNB() clf.fit(X_train, y_train) clf.score(X_train, y_train) clf.score(X_test, y_test) # Making predictions on the testing set of data list_1_0 = clf.predict(X_test) list_1_0 # `list_1_0` is a list of values 1, 0 that represent spam and not spam. Let's find how many percent of spam is in the list using regular and Pandas methods: count_spam = 0 for item in list_1_0: if item == 1: count_spam += 1 count_spam spam_precentage = count_spam / len(list_1_0) * 100 spam_precentage df_list = DataFrame(list_1_0) df_list.columns = ['spam'] df_list.head() df_list.spam.value_counts() len(df_list) 703 / 1841 * 100 # ### Advanced Mode # # Let's eliminate the features `capital_run_length_average`, `capital_run_length_longest` and `capital_run_length_total` of the original dataset and check how the score changes. X = spam_df[column_list[:-4]] y = spam_df['spam'] X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = 0.6, random_state = 42) X_train.shape clf = MultinomialNB() clf.fit(X_train, y_train) clf.score(X_train, y_train) clf.score(X_test, y_test) # Result: By eliminating the features `capital_run_length_average`, `capital_run_length_longest` and `capital_run_length_total` of the original dataset the score goes up from 0.78 to 0.87.
2,916
/Recommendation Engine/Collaborative_Filtering.ipynb
fcc4000f465909dc06ef4e42108cf612d9b60492
[]
no_license
pittssp/DataScience-Scratch
https://github.com/pittssp/DataScience-Scratch
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
114,464
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # ## Collaborative Filtering # # Collaborative Filtering is a commonly used approach for recommender systems. In this notebook I will be using the "movie lens 100k" data set to further my understanding of how recommender systems are constructed. This includes constructing a sparse user-item(user-movie) matrix, weighing the pros and cons of the various imputing methods (mean, zero, KNN, SGD(didn't implement), using the sparse matrix to find similarities between users, and ultimately scoring movies to be recommended based on user and user similarities. # # --- import pandas as pd import numpy as np import matplotlib.pyplot as plt # #### Import Data movies_df = pd.read_csv('ml-latest-small/movies.csv') ratings_df = pd.read_csv('ml-latest-small/ratings.csv') movies_df.head() movies_df.shape ratings_df.describe() rating_count = ratings_df.groupby('movieId')['rating'].count() plt.hist(rating_count, bins= 100, log=True) plt.show() rating_count.quantile(np.arange(1, 0.6, -0.05)) # obviously very skewed data ... lets only select movies above the 85 % threshold movies_keep = rating_count[rating_count > 17].index ratings_df = ratings_df[ratings_df['movieId'].isin(movies_keep)] ratings_df.shape rating_count = ratings_df.groupby('movieId')['rating'].count() plt.hist(rating_count, bins= 100) plt.show() avg_ratings = ratings_df.groupby('userId', as_index=False)['rating'].mean() ratings_df = ratings_df.merge(avg_ratings, on='userId') ratings_df.head() df = ratings_df.merge(movies_df, on='movieId') df['norm_rating'] = df['rating_y'] - df['rating_x'] df.sort_values(['userId', 'movieId']).head() check = df.pivot(index='userId', columns='movieId', values='rating_x') plt.figure(figsize=(12,12)) plt.spy(check) plt.show() # I just think this is cool :) Sparsity Visualization feats_df = df.pivot(index='userId', columns='movieId', values='norm_rating') feats_df.head() # #### Filling Sparse Array # # When creating a User-Item matrix, many users will not have had the opportunity to review more than 5% of items. To deal with this extremely sparse matrix, we will try multiple methods to fill in missing values, each coming with trade offs that impact how recommendations are made. # + # Replacing NaN by Movie (column) Average final_movie = feats_df.fillna(feats_df.mean(axis=0)) # Replacing NaN by User (row) Average final_user = feats_df.apply(lambda row: row.fillna(row.mean()), axis=1) # Replacing NaN with zero final_zero = feats_df.fillna(0) # + from sklearn.impute import KNNImputer final_knn = pd.DataFrame(KNNImputer(missing_values=np.nan, n_neighbors=4, weights='distance').fit_transform(check), columns=feats_df.columns) # - set(final_zero.columns) - set(check.columns) # checking columns # + from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances # calculating cosine similarity matrix between all user's depending on how we will df def get_sim(df): """ Calculate user-user similarity scores """ temp = cosine_similarity(df) np.fill_diagonal(temp, 0) temp = pd.DataFrame(temp, index=df.index) temp.columns = df.index return temp # find users with highest cosine similarity scores between 1 user and the next def find_knn(df,n): return df.apply(lambda x: pd.Series(x.sort_values(ascending=False) .iloc[:n].index, index=['top{}'.format(i) for i in range(1, n+1)]), axis=1) # - # #### checking get_sim and find_knn with sample data # # checking cosine similarity logic # + cosine_data = pd.DataFrame([[1, 5, 5], [5, 1, 1], [1, 4, 4]]) # user 0 - most similar to user 2 # user 1 - more similar to user 2 than user 1, both unsimilar # user 2 - more similar to user 0 than user 1 get_sim(cosine_data) # look at find neighbors for further exploration # - find_knn(get_sim(cosine_data),2) # checking how cosine similarity changes with sparse matrix (zeros) # + sparse_data = pd.DataFrame([[5,1,0], [5,0,5], [0,1,5]]) get_sim(sparse_data) # - find_knn(get_sim(sparse_data),2) # + from scipy.sparse import csr_matrix from sklearn.neighbors import NearestNeighbors # Test Sklearn Nearest Neighbors vs above find_knn method pd.DataFrame(NearestNeighbors(n_jobs=-1, n_neighbors=2, algorithm='brute', metric='cosine'). \ fit(csr_matrix(sparse_data)). \ kneighbors(return_distance=False)) # - # Test KNN Imputer pd.DataFrame(KNNImputer(missing_values=0, n_neighbors=4, weights='distance').fit_transform(sparse_data)) # --- # ### Recommender Algorithm # + # converting MovieId to string for joining to list ratings_df = ratings_df.astype({"movieId": str}) # creating dataframe where for each user we have list of movies seen movie_user = ratings_df.groupby(by = 'userId')['movieId'].apply(lambda x:','.join(x)) movie_user.head() # - def find_rec(user, sparse_matrix): """ find_rec is dependent on sim_df, i.e. which method is used to fill in sparse matrix - ideally I want to try SGD method in filling in sparse matrix w/ SVD or PCA to determine best features for movie recommendation http://nicolas-hug.com/blog/matrix_facto_1 :param: user - userId whom you wish to retrieve list of movie recommendation's for :param: sim_df - similarity matrix must be either 'final_movie', 'final_user', 'final_zero', or 'final_knn' each differs in how NaN values are filled, movie avg, user avg, zero value, or knn_imputer """ # get list of movies user has seen movies_seen = check.columns[check[check.index==user].notna().any()].tolist() # get list of similar users based on cosine similarity # results are largely dependent on which method is used to fill in for NaNs sim_df = get_sim(sparse_matrix) # cosine similarity knn_df = find_knn(sim_df, 10) # top 30 users based on similarity close_users = knn_df[knn_df.index == user].values[0].tolist() # map nearby neighbors to find which movies should be under consideration similarly_seen = movie_user[movie_user.index.isin(close_users)].values similarly_seen = ','.join(similarly_seen).split(',') # take difference from what user has seen and what close user's have seen not_seen = set(similarly_seen) - set(movies_seen) not_seen = list(map(int, not_seen)) # take only movies that user has not seen and what neighbors have rated # use final_zero so that we only capture movies that similar users have reviewed # i.e. movies that similar users have not seen are 0 and hold no weight for ranking propensity related_movies = final_zero.loc[:, not_seen] # select only users (rows) that are neighbors to given user related_movies = related_movies[related_movies.index.isin(close_users)] related_movies = related_movies[related_movies.notnull()] # select user cosine similarity w/ respect to other users corr = sim_df.loc[user, :] fin = pd.concat([related_movies, corr], axis=1).dropna() # multiply given user cosine similarity and similar users' movie ratings fin_corr_x_score = pd.DataFrame([fin.iloc[:,i]*fin.iloc[:,-1] for i in range(len(fin.columns[:-1]))]).T fin_corr_x_score.columns = fin.columns[:-1].tolist() # sum user corr_x_score i.e. (cosine sim x similar users' ratings) pre_score = fin_corr_x_score.sum() # get final score by adding average to pre_score final_score = pd.DataFrame((pre_score).sort_values(ascending=False), columns=['score']) final_score = final_score.reset_index() recommendations = final_score.join(movies_df, on='index').dropna() return recommendations[['title', 'score']] # return sim_matrix find_rec(1, final_zero) # final_zero find_rec(1, final_movie) # + # find_rec(2, final_user) # results identicial to final_zero, bc sim_matrix nearly identical # - find_rec(1, final_knn) # ### Draw backs of this approach, # - very common items (movies) tend to consistently appear in recommendations # # - Users with common high reviews are more similar than users with common low reviews # # - method used to fill in sparse matrix gives very different results # # - method to fill sparse matrix is extremely likely under capturing user's ratings # - SGD Method to counter (http://nicolas-hug.com/blog/matrix_facto_1) # - put min function here ... # # - cosine similarity may not capture entire full 'distances' between users/ movies # - SVD to reduce dimension # - DNN to do something else idk
9,164
/Starter_Code/.ipynb_checkpoints/crypto_sentiment-checkpoint.ipynb
16f4b519933b3951fb03c03731e1633053234434
[]
no_license
AndreasC93/Natural_language_processing
https://github.com/AndreasC93/Natural_language_processing
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
470,895
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 2 # language: python # name: python2 # --- # <img src="http://files.oproject.org/img/HeaderOpenData.png"> # # # CMS Open Data Example #1: Di-Muons # ## Import Modules and Turn on Javascript # + from ROOT import TFile, TTree, TCanvas, TH1F # %jsroot on # - # ## Read in Data from Input File # + file = TFile("data/Dimuons.root","READ") Dimuons = file.Get("Dimuons") # - # ## Plot Muon Charge and Momentum # ### Setup the Canvas # + canvas = TCanvas() canvas.Divide(2,2) # - # ### Plot First Muon Charge and Momentum # + canvas.cd(1) Dimuons.Draw("Muon1_Px") canvas.cd(2); Dimuons.Draw("Muon1_Py") canvas.cd(3); Dimuons.Draw("Muon1_Pz") canvas.cd(4); Dimuons.Draw("Muon1_Charge"); canvas.Draw(); # - # ### Plot Second Muon Charge and Momentum # + canvas.cd(1) Dimuons.Draw("Muon2_Px") canvas.cd(2) Dimuons.Draw("Muon2_Py") canvas.cd(3) Dimuons.Draw("Muon2_Pz") canvas.cd(4) Dimuons.Draw("Muon2_Charge") canvas.Draw() # - # ## Apply Muon Quality Selection: # <img src="http://cms.web.cern.ch/sites/cms.web.cern.ch/files/styles/large/public/field/image/2011-bs-1-2.jpg?itok=k5_hcnFt"></img> <BR> # Muon _Global = 1 is a Global Muon (Global Muons have higher probability to be real muons)<BR> # Muon _Global = 0 not a Global Muon <BR> Selection = "Muon1_Global == 1 && Muon2_Global == 1" # # Compute Di-Muon Invariant Mass # Let's calculate the invariant mass $M$ of the two muons using a formula # ## Declare Histogram InvariantMass = TH1F("InvariantMass","#mu#mu mass; #mu#mu mass [GeV];Events", 900, 2, 120) # ## Define Invariant Mass Formula InvariantMassFormula ="sqrt((Muon1_Energy + Muon2_Energy)^2 - (Muon1_Px + Muon2_Px)^2 - (Muon1_Py + Muon2_Py)^2 - (Muon1_Pz + Muon2_Pz)^2)" # ## Plot Results # + Canvas = TCanvas() Dimuons.Draw( InvariantMassFormula + ">>InvariantMass", Selection) Canvas.SetLogy() Canvas.SetLogx() Canvas.Draw() # - # ## Exercise 1a: Can you spot any Di-Muon Resonances by eye? # ## Exercise 1b: Toggle Logarithmic scale on/off with Your Mouse # ## Exercise 1c: Zoom In on a One of the Resonances with Your Mouse # ## Exercise 2: Repeat exercise 1b by modifying code in cell [12] InvariantMass2 = TH1F("InvariantMass2","#mu#mu mass; #mu#mu mass [GeV];Events", 3000, 2, 120) InvariantMass2Formula ="sqrt((Muon1_Energy + Muon2_Energy)^2 - (Muon1_Px + Muon2_Px)^2 - (Muon1_Py + Muon2_Py)^2 - (Muon1_Pz + Muon2_Pz)^2)" # + Canvas = TCanvas() Dimuons.Draw( InvariantMass2Formula + ">>InvariantMass2") Canvas.SetLogy() Canvas.SetLogx() Canvas.Draw() # - itcoin Sentiment btc_df.describe() # Describe the Ethereum Sentiment eth_df.describe() # ### Questions: # # Q: Which coin had the highest mean positive score? # # A: # # Q: Which coin had the highest compound score? # # A: # # Q. Which coin had the highest positive score? # # A: # --- # # Tokenizer # # In this section, you will use NLTK and Python to tokenize the text for each coin. Be sure to: # 1. Lowercase each word # 2. Remove Punctuation # 3. Remove Stopwords # + from nltk.tokenize import word_tokenize, sent_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer, PorterStemmer from string import punctuation import re import nltk lemmatizer = WordNetLemmatizer() # + # Expand the default stopwords list if necessary sentence_tokenized = [sent_tokenize(i) for i in btc_df["text"]] print(sentence_tokenized) # - # Complete the tokenizer function def tokenizer(text): """Tokenizes text.""" sw = set(stopwords.words('english')) regex = re.compile("[^a-zA-Z ]") #regex = re.compile("btc_df["text"]") re_clean = regex.sub('', text) words = word_tokenize(re_clean) lem = [lemmatizer.lemmatize(word) for word in words] output = [word.lower() for word in lem if word.lower() not in sw] # Create a list of the words # Convert the words to lowercase # Remove the punctuation # Remove the stop words # Lemmatize Words into root words return output # + # Create a new tokens column for bitcoin btc_df["btc_tokenized"] = btc_df["text"].apply(tokenizer) btc_df # - # Create a new tokens column for ethereum eth_df["eth_tokenized"] = eth_df["text"].apply(tokenizer) eth_df # --- # # NGrams and Frequency Analysis # # In this section you will look at the ngrams and word frequency for each coin. # # 1. Use NLTK to produce the n-grams for N = 2. # 2. List the top 10 words for each coin. from collections import Counter from nltk import ngrams # Generate the Bitcoin N-grams where N=2 #def bigram_counter(btc_tokenized): # Combine all articles in corpus into one large string big_string_btc = ''.join(btc_df.text) #processed = process_text(big_string) bigrams = ngrams(big_string_btc.split(), n=2) top_10 = dict(Counter(bigrams).most_common(10)) pd.DataFrame(list(top_10.items()), columns=['bigram', 'count']) # Generate the Ethereum N-grams where N=2 #def bigram_counter(btc_tokenized): # Combine all articles in corpus into one large string big_string_eth = ''.join(eth_df.text) #processed = process_text(big_string) bigrams = ngrams(big_string_eth.split(), n=2) top_10 = dict(Counter(bigrams).most_common(10)) pd.DataFrame(list(top_10.items()), columns=['bigram', 'count']) # Use the token_count function to generate the top 10 words from each coin def token_count(tokens, N=10): """Returns the top N tokens from the frequency count""" return Counter(tokens).most_common(N) # Get the top 10 words for Bitcoin token_count(tokenizer(big_string_btc)) # Get the top 10 words for Ethereum token_count(tokenizer(big_string_eth)) # # Word Clouds # # In this section, you will generate word clouds for each coin to summarize the news for each coin from wordcloud import WordCloud import matplotlib.pyplot as plt plt.style.use('seaborn-whitegrid') import matplotlib as mpl mpl.rcParams['figure.figsize'] = [20.0, 10.0] # Generate the Bitcoin word cloud wc = WordCloud().generate(" ".join(tokenizer(big_string_btc))) plt.imshow(wc) # Generate the Ethereum word cloud wc = WordCloud().generate(" ".join(tokenizer(big_string_eth))) plt.imshow(wc) # # Named Entity Recognition # # In this section, you will build a named entity recognition model for both coins and visualize the tags using SpaCy. import spacy from spacy import displacy # + # Optional - download a language model for SpaCy # # !python -m spacy download en_core_web_sm # - # Load the spaCy model nlp = spacy.load('en_core_web_sm') # ## Bitcoin NER # Concatenate all of the bitcoin text together print(big_string_btc) # + # Run the NER processor on all of the text doc = nlp(big_string_btc) doc.user_data["title"]= "BTC NER" displacy.render(doc, style='ent') # Add a title to the document #doc.user_data["title"]= "BTC NER" # + # Render the visualization # YOUR CODE HERE! # - # List all Entities for ent in doc.ents: print(ent.text, ent.label_) # --- # ## Ethereum NER # Concatenate all of the bitcoin text together print(big_string_eth) # + # Run the NER processor on all of the text doc = nlp(big_string_eth) doc.user_data["title"]= "ETH NER" displacy.render(doc, style='ent') # Add a title to the document # YOUR CODE HERE! # + # Render the visualization # YOUR CODE HERE! # - # List all Entities for ent in doc.ents: print(ent.text, ent.label_)
7,547
/clustering/How HDBSCAN Works.ipynb
4f06e4c302748b811b233d2855b58d377f2b08bf
[]
no_license
ethen8181/programming
https://github.com/ethen8181/programming
17
14
null
2022-12-26T20:21:33
2022-06-23T20:21:13
Jupyter Notebook
Jupyter Notebook
false
false
.py
286,195
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python [Root] # language: python # name: Python [Root] # --- # # How HDBSCAN Works # # HDBSCAN is a clustering algorithm developed by [Campello, Moulavi, and Sander](http://link.springer.com/chapter/10.1007%2F978-3-642-37456-2_14). It extends DBSCAN by converting it into a hierarchical clustering algorithm, and then using a technique to extract a flat clustering based in the stability of clusters. The goal of this notebook is to give you an overview of how the algorithm works and the motivations behind it. In contrast to the HDBSCAN paper I'm going to describe it without reference to DBSCAN. Instead I'm going to explain how I like to think about the algorithm, which aligns more closely with [Robust Single Linkage](http://cseweb.ucsd.edu/~dasgupta/papers/tree.pdf) with [flat cluster extraction](http://link.springer.com/article/10.1007%2Fs10618-013-0311-4) on top of it. # # Before we get started we'll load up most of the libraries we'll need in the background, and set up our plotting (because I believe the best way to understand what is going on is to actually see it working in pictures). import numpy as np import matplotlib.pyplot as plt import seaborn as sns import sklearn.datasets as data # %matplotlib inline sns.set_context('poster') sns.set_style('white') sns.set_color_codes() plot_kwds = {'alpha' : 0.5, 's' : 80, 'linewidths':0} # The next thing we'll need is some data. To make for an illustrative example we'll need the data size to be fairly small so we can see what is going on. It will also be useful to have several clusters, preferably of different kinds. Fortunately sklearn has facilities for generating sample clustering data so I'll make use of that and make a dataset of one hundred data points. moons, _ = data.make_moons(n_samples=50, noise=0.05) blobs, _ = data.make_blobs(n_samples=50, centers=[(-0.75,2.25), (1.0, 2.0)], cluster_std=0.25) test_data = np.vstack([moons, blobs]) plt.scatter(test_data.T[0], test_data.T[1], color='b', **plot_kwds) # Now, the best way to explain HDBSCAN is actually just use it and then go through the steps that occurred along the way teasing out what is happening at each step. So let's load up the [hdbscan library](https://github.com/lmcinnes/hdbscan) and get to work. import hdbscan clusterer = hdbscan.HDBSCAN(min_cluster_size=5, gen_min_span_tree=True) clusterer.fit(test_data) # So now that we have clustered the data -- what actually happened? We can break it out into a series of steps # # 1. Transform the space according to the density/sparsity. # 2. Build the minimum spanning tree of the distance weighted graph. # 3. Construct a cluster hierarchy of connected components. # 4. Condense the cluster hierarchy based on minimum cluster size. # 5. Extract the stable clusters from the condensed tree. # ## Transform the space # # To find clusters we want to find the islands of higher density amid a sea of sparser noise -- and the assumption of noise is important: real data is messy and has outliers, corrupt data, and noise. The core of the clustering algorithm is single linkage clustering, and it can be quite sensitive to noise: a single noise data point in the wrong place can act as a bridge between islands, gluing them together. Obviously we want our algorithm to be robust against noise so we need to find a way to help 'lower the sea level' before running a single linkage algorithm. # # How can we characterize 'sea' and 'land' without doing a clustering? As long as we can get an estimate of density we can consider lower density points as the 'sea'. The goal here is not to perfectly distinguish 'sea' from 'land' -- this is an initial step in clustering, not the ouput -- just to make our clustering core a little more robust to noise. So given an identification of 'sea' we want to lower the sea level. For practical purposes that means making 'sea' points more distant from each other and from the 'land'. # # That's just the intuition however. How does it work in practice? We need a very inexpensive estimate of density, and the simplest is the distance to the *k*th nearest neighbor. If we have the distance matrix for our data (which we will need imminently anyway) we can simply read that off; alternatively if our metric is supported (and dimension is low) this is the sort of query that [kd-trees](http://scikit-learn.org/stable/modules/neighbors.html#k-d-tree) are good for. Let's formalise this and (following the DBSCAN, LOF, and HDBSCAN literature) call it the **core distance** defined for parameter *k* for a point *x* and denote as $\mathrm{core}_k(x)$. Now we need a way to spread apart points with low density (correspondingly high core distance). The simple way to do this is to define a new distance metric between points which we will call (again following the literature) the **mutual reachability distance**. We define mutual reachability distance as follows: # # <center>$d_{\mathrm{mreach-}k}(a,b) = \max \{\mathrm{core}_k(a), \mathrm{core}_k(b), d(a,b) \}$</center> # # where $d(a,b)$ is the original metric distance between *a* and *b*. Under this metric dense points (with low core distance) remain the same distance from each other but sparser points are pushed away to be at least their core distance away from any other point. This effectively 'lowers the sea level' spreading sparse 'sea' points out, while leaving 'land' untouched. The caveat here is that obviously this is dependent upon the choice of *k*; larger *k* values interpret more points as being in the 'sea'. All of this is a little easier to understand with a picture, so let's use a *k* value of five. Then for a given point we can draw a circle for the core distance as the circle that touches the fifth nearest neighbor, like so: # # <img src="images/distance1.svg" alt="Diagram demonstrating mutual reachability distance" width=640 height=480> # # Pick another point and we can do the same thing, this time with a different set of neighbors (one of them even being the first point we picked out). # # <img src="images/distance2.svg" alt="Diagram demonstrating mutual reachability distance" width=640 height=480> # # And we can do that a third time for good measure, with another set of five nearest neighbors and another circle with slightly different radius again. # # <img src="images/distance3.svg" alt="Diagram demonstrating mutual reachability distance" width=640 height=480> # # Now if we want to know the mutual reachabiility distance between the blue and green points we can start by draing in and arrow giving the distance between green and blue: # # <img src="images/distance4.svg" alt="Diagram demonstrating mutual reachability distance" width=640 height=480> # # This passes through the blue circle, but not the green circle -- the core distance for green is larger than the distance between blue and green. Thus we need to mark the mutual reachability distance between blue and green as larger -- equal to the radius of the green circle (easiest to picture if we base one end at the green point). # # <img src="images/distance4a.svg" alt="Diagram demonstrating mutual reachability distance" width=640 height=480> # # On the other hand the mutual reachablity distance from red to green is simply distance from red to green since that distance is greater than either core distance (i.e. the distance arrow passes through both circles). # # <img src="images/distance5.svg" alt="Diagram demonstrating mutual reachability distance" width=640 height=480> # # In general there is [underlying theory](http://arxiv.org/pdf/1506.06422v2.pdf) to demonstrate that mutual reachability distance as a transform works well in allowing single linkage clustering to more closely approximate the hierarchy of level sets of whatever true density distribution our points were sampled from. # ## Build the minimum spanning tree # # Now that we have a new mutual reachability metric on the data we want start finding the islands on dense data. Of course dense areas are relative, and different islands may have different densities. Conceptually what we will do is the following: consider the data as a weighted graph with the data points as vertices and an edge between any two points with weight equal to the mutual reachability distance of those points. # # Now consider a threshold value, starting high, and steadily being lowered. Drop any edges with weight above that threshold. As we drop edges we will start to disconnect the graph into connected components. Eventually we will have a hierarchy of connected components (from completely connected to completely disconnected) at varying threshold levels. # # In practice this is very expensive: there are $n^2$ edges and we don't want to have to run a connected components algorithm that many times. The right thing to do is to find a minimal set of edges such that dropping any edge from the set causes a disconnection of components. But we need more, we need this set to be such that there is no lower weight edge that could connect the components. Fortunately graph theory furnishes us with just such a thing: the minimum spanning tree of the graph. # # We can build the minimum spanning tree very efficiently via [Prim's algorithm](https://en.wikipedia.org/wiki/Prim%27s_algorithm) -- we build the tree one edge at a time, always adding the lowest weight edge that connects the current tree to a vertex not yet in the tree. You can see the tree HDBSCAN constructed below; note that this is the minimum spanning tree for *mutual reachability distance* which is different from the pure distance in the graph. In this case we had a *k* value of 5. # # In the case that the data lives in a metric space we can use even faster methods, such as Dual Tree Boruvka to build the minimal spanning tree. clusterer.minimum_spanning_tree_.plot(edge_cmap='viridis', edge_alpha=0.6, node_size=80, edge_linewidth=2) # ## Build the cluster hierarchy # # Given the minimal spanning tree, the next step is to convert that into the hierarchy of connected components. This is most easily done in the reverse order: sort the edges of the tree by distance (in increasing order) and then iterate through, creating a new merged cluster for each edge. The only difficult part here is to identify the two clusters each edge will join together, but this is easy enough via a [union-find](https://en.wikipedia.org/wiki/Disjoint-set_data_structure) data structure. We can view the result as a dendrogram as we see below: clusterer.single_linkage_tree_.plot(cmap='viridis', colorbar=True) # This brings us to the point where robust single linkage stops. We want more though; a cluster hierarchy is good, but we really want a set of flat clusters. We could do that by drawing a a horizontal line through the above diagram and selecting the clusters that it cuts through. This is in practice what [DBSCAN](http://scikit-learn.org/stable/modules/clustering.html#dbscan) effectively does (declaring any singleton clusters at the cut level as noise). The question is, how do we know where to draw that line? DBSCAN simply leaves that as a (very unintuitive) parameter. Worse, we really want to deal with variable density clusters and any choice of cut line is a choice of mutual reachability distance to cut at, and hence a single fixed density level. Ideally we want to be able to cut the tree at different places to select our clusters. This is where the next steps of HDBSCAN begin and create the difference from robust single linkage. # ## Condense the cluster tree # # The first step in cluster extraction is condensing down the large and complicated cluster hierarchy into a smaller tree with a little more data attached to each node. As you can see in the hierarchy above it is often the case that a cluster split is one or two points splitting off from a cluster; and that is the key point -- rather than seeing it as a cluster splitting into two new clusters we want to view it as a single persistent cluster that is 'losing points'. To make this concrete we need a notion of **minimum cluster size** which we take as a parameter to HDBSCAN. Once we have a value for minimum cluster size we can now walk through the hierarchy and at each split ask if one of the new clusters created by the split has fewer points than the minimum cluster size. If it is the case that we have fewer points than the minimum cluster size we declare it to be 'points falling out of a cluster' and have the larger cluster retain the cluster identity of the parent, marking down which points 'fell out of the cluster' and at what distance value that happened. If on the other hand the split is into two clusters each at least as large as the minimum cluster size then we consider that a true cluster split and let that split persist in the tree. After walking through the whole hierarchy and doing this we end up with a much smaller tree with a small number of nodes, each of which has data about how the size of the cluster at that node descreases over varying distance. We can visualize this as a dendrogram similar to the one above -- again we can have the width of the line represent the number of points in the cluster. This time, however, that width varies over the length of the line as points fall our of the cluster. For our data using a minimum cluster size of 5 the result looks like this: clusterer.condensed_tree_.plot() # This is much easier to look at and deal with, particularly in as simple a clustering problem as our current test dataset. However we still need to pick out clusters to use as a flat clustering. Looking at the plot above should give you some ideas about how one might go about doing this. # ## Extract the clusters # # Intuitively we want the choose clusters that persist and have a longer lifetime; short lived clusters are ultimately probably merely artifcacts of the single linkage approach. Looking at the previous plot we could say that we want to choose those clusters that have the greatest area of ink in the plot. To make a flat clustering we will need to add a further requirement that, if you select a cluster, then you cannot select any cluster that is a descendant of it. And in fact that intuitive notion of what should be done is exactly what HDBSCAN does. Of course we need to formalise things to make it a concrete algorithm. # # First we need a different measure than distance to consider the persistence of clusters; instead we will use $\lambda = \frac{1}{\mathrm{distance}}$. For a given cluster we can then define values $\lambda_{\mathrm{birth}}$ and $\lambda_{\mathrm{death}}$ to be the lambda value when the cluster split off and became it's own cluster, and the lambda value (if any) when the cluster split into smaller clusters respectively. In turn, for a given cluster, for each point *p* in that cluster we can define the value $\lambda_p$ as the lambda value at which that point 'fell out of the cluster' which is a value somewhere between $\lambda_{\mathrm{birth}}$ and $\lambda_{\mathrm{death}}$ since the point either falls out of the cluster at some point in the cluster's lifetime, or leaves the cluster when the cluster splits into two smaller clusters. Now, for each cluster compute the **stability** to as # # $\sum_{p \in \mathrm{cluster}} (\lambda_p - \lambda_{\mathrm{birth}})$. # # Declare all leaf nodes to be selected clusters. Now work up through the tree (the reverse topological sort order). If the sum of the stabilities of the child clusters is greater than the stability of the cluster then we set the cluster stability to be the sum of the child stabilities. If, on the other hand, the cluster's stability is greater than the su of it's children then we declare the cluster to be a selected cluster, and unselect all its descendants. Once we reach the root node we call the current set of selected clusters our flat clsutering and return that. # # Okay, that was wordy and complicated, but it really is simply performing our 'select the clusters in the plot with the largest total ink area' subject to descendant constraints that we explained earlier. We can select the clusters in the condensed tree dendrogram via this algorithm, and you get what you expect: clusterer.condensed_tree_.plot(select_clusters=True, selection_palette=sns.color_palette()) # Now that we have the clusters it is a simple enough matter to turn that into cluster labelling as per the sklearn API. Any point not in a selected cluster is simply a noise point (and assigned the label -1). We can do a little more though: for each cluster we have the $\lambda_p$ for each point *p* in that cluster; If we simply normalize those values (so they range from zero to one) then we have a measure of the strength of cluster membership for each point in the cluster. The hdbscan library returns this as a `probabilities_` attribute of the clusterer object. Thus, with labels and membership strengths in hand we can make the standard plot, choosing a color for points based on cluster label, and desaturating that color according the strength of membership (and make unclustered points pure gray). palette = sns.color_palette() cluster_colors = [sns.desaturate(palette[col], sat) if col >= 0 else (0.5, 0.5, 0.5) for col, sat in zip(clusterer.labels_, clusterer.probabilities_)] plt.scatter(test_data.T[0], test_data.T[1], c=cluster_colors, **plot_kwds) # And that is how HDBSCAN works. It may seem somewhat complicated -- there are a fair number of moving parts to the algorithm -- but ultimately each part is actually very straightforward and can be optimized well. Hopefully with a better understanding both of the intuitions and some of the implementation details of HDBSCAN you will feel motivated to [try it out](https://github.com/lmcinnes/hdbscan). The library continues to develop, and will provide a base for new ideas including a near parameterless Persistent Density Clustering algorithm, and a new semi-supervised clustering algorithm.
18,295
/.ipynb_checkpoints/credit_risk_ensemble-checkpoint.ipynb
665e2ae82f3f3d031a07a0d28e04027a890a557a
[]
no_license
Davisg1179/classification-homework
https://github.com/Davisg1179/classification-homework
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
37,661
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Ensemble Learning # # ## Initial Imports import warnings warnings.filterwarnings('ignore') import numpy as np import pandas as pd from pathlib import Path from collections import Counter from sklearn.metrics import balanced_accuracy_score from sklearn.metrics import confusion_matrix from imblearn.metrics import classification_report_imbalanced # ## Read the CSV and Perform Basic Data Cleaning # + # Load the data file_path = Path('LoanStats_2019Q1.csv') df = pd.read_csv(file_path) # Preview the data df.head() # - # ## Split the Data into Training and Testing # + # Create our features X = df.copy() X.drop("loan_status", axis=1, inplace=True) X = pd.get_dummies(X) X.head() # Create our target y = df["loan_status"] # - X.describe() # Check the balance of our target values y.value_counts() # Split the X and y into X_train, X_test, y_train, y_test from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=78) # ## Data Pre-Processing # # Scale the training and testing data using the `StandardScaler` from `sklearn`. Remember that when scaling the data, you only scale the features data (`X_train` and `X_testing`). # Create the StandardScaler instance from sklearn.preprocessing import StandardScaler scaler = StandardScaler() # Fit the Standard Scaler with the training data # When fitting scaling functions, only train on the training dataset X_scaler = scaler.fit(X_train) # Scale the training and testing data X_train_scaled = X_scaler.transform(X_train) X_test_scaled = X_scaler.transform(X_test) # ## Ensemble Learners # # In this section, you will compare two ensemble algorithms to determine which algorithm results in the best performance. You will train a Balanced Random Forest Classifier and an Easy Ensemble classifier . For each algorithm, be sure to complete the folliowing steps: # # 1. Train the model using the training data. # 2. Calculate the balanced accuracy score from sklearn.metrics. # 3. Display the confusion matrix from sklearn.metrics. # 4. Generate a classication report using the `imbalanced_classification_report` from imbalanced-learn. # 5. For the Balanced Random Forest Classifier only, print the feature importance sorted in descending order (most important feature to least important) along with the feature score # # Note: Use a random state of 1 for each algorithm to ensure consistency between tests # ### Balanced Random Forest Classifier # Resample the training data with the BalancedRandomForestClassifier from imblearn.ensemble import BalancedRandomForestClassifier brf = BalancedRandomForestClassifier(n_estimators=100, random_state=1) brf.fit(X_train, y_train) # Calculated the balanced accuracy score from sklearn.metrics import balanced_accuracy_score y_pred = brf.predict(X_test) balanced_accuracy_score(y_test, y_pred) # Display the confusion matrix from sklearn.metrics import confusion_matrix confusion_matrix(y_test, y_pred) # + # Print the imbalanced classification report from imblearn.metrics import classification_report_imbalanced y_pred = brf.predict(X_test) print(classification_report_imbalanced(y_test, y_pred)) # - # List the features sorted in descending order by feature importance importances = brf.feature_importances_ importances_sorted = sorted(zip(brf.feature_importances_, X.columns), reverse=True) importances_sorted # ### Easy Ensemble Classifier # Train the Classifier from imblearn.ensemble import EasyEnsembleClassifier ee = EasyEnsembleClassifier(n_estimators=100, random_state=1) ee.fit(X_train, y_train) # Calculated the balanced accuracy score y_pred = ee.predict(X_test) balanced_accuracy_score(y_test, y_pred) # Display the confusion matrix confusion_matrix(y_test, y_pred) # Print the imbalanced classification report y_pred = ee.predict(X_test) print(classification_report_imbalanced(y_test, y_pred)) # ### Final Questions # # 1. Which model had the best balanced accuracy score? # # YOUR ANSWER HERE. # # 2. Which model had the best recall score? # # YOUR ANSWER HERE. # # 3. Which model had the best geometric mean score? # # YOUR ANSWER HERE. # # 4. What are the top three features? # # YOUR ANSWER HERE. # 1. The Easy Ensemble model gives the best balanced accuracy score # 2. The Easy Ensemble model has the best recall score # 3. The Easy Ensemble model has the geometric mean score # 4. The top three features are 'total_rec_prncp', 'total_pymnt', and 'total_pymnt_inv'
4,754
/gt_exact_stats_soc_ep.ipynb
42161d76ee8b44ef2aedc21cb7b9dc4139014a90
[]
no_license
MaximilianPavon/DM_project
https://github.com/MaximilianPavon/DM_project
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
3,378
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import analysis import time filenames = ['soc-Epinions1.txt'] # %%time g = analysis.load_graph(filenames[0], directed=True) print('vertices:', g.num_vertices(), 'edges:', g.num_edges()) # + # %%time print('=====LSCC=====') lscc = analysis.calculate_largest_strongly_connected_comp(g) print('LSCC edges: \t', lscc.num_edges()) print('LSCC nodes: \t', lscc.num_vertices()) lscc_dists = analysis.calculate_distances(lscc) s_median, s_mean, s_diam, s_eff_diam = analysis.compute_stats(lscc_dists) print('median distance:\t', s_median) print('mean distance:\t\t', s_mean) print('diameter:\t\t', s_diam) print('effective diameter:\t', s_eff_diam) # + # %%time print('=====LWCC=====') lwcc = analysis.calculate_largest_weakly_connected_comp(g) print('LWCC edges: \t', lwcc.num_edges()) print('LWCC nodes: \t', lwcc.num_vertices()) lwcc_dists = analysis.calculate_distances(lwcc) w_median, w_mean, w_diam, w_eff_diam = analysis.compute_stats(lwcc_dists) print('median distance:\t', w_median) print('mean distance:\t\t', w_mean) print('diameter:\t\t', w_diam) print('effective diameter:\t', w_eff_diam) 'postag=' + postag, 'postag[:2]=' + postag[:2], ] if i > 0: word1 = sent[i-1][0] postag1 = sent[i-1][1] features.extend([ '-1:word.lower=' + word1.lower(), '-1:word.istitle=%s' % word1.istitle(), '-1:word.isupper=%s' % word1.isupper(), '-1:postag=' + postag1, '-1:postag[:2]=' + postag1[:2], ]) else: features.append('BOS') if i < len(sent)-1: word1 = sent[i+1][0] postag1 = sent[i+1][1] features.extend([ '+1:word.lower=' + word1.lower(), '+1:word.istitle=%s' % word1.istitle(), '+1:word.isupper=%s' % word1.isupper(), '+1:postag=' + postag1, '+1:postag[:2]=' + postag1[:2], ]) else: features.append('EOS') return features def sent2features(sent): return [word2features(sent, i) for i in range(len(sent))] def sent2labels(sent): return [label for token, postag, label in sent] def sent2tokens(sent): return [token for token, postag, label in sent] # - sent2features(train_sents[0:4]) # + # %%time X_train = sent2features(train_sents) y_train = sent2labels(train_sents) X_test = sent2features(train_sents) y_test = sent2labels(train_sents) # - # temp=unravelravel(X_train) for i in range # + len(X_train),len(y_train) # + # # %%time # X_train = [sent2features(s) for s in train_sents] # y_train = [sent2labels(s) for s in train_sents] # # X_test = [sent2features(s) for s in test_sents] # y_test = [sent2labels(s) for s in test_sents] # + # %%time trainer = pycrfsuite.Trainer(verbose=False) trainer.append(X_train, y_train) # + # # %%time # trainer = pycrfsuite.Trainer(verbose=False) # for xseq, yseq in zip(X_train, y_train): # trainer.append(xseq, yseq) # - trainer.set_params({ 'c1': 1.0, # coefficient for L1 penalty 'c2': 1e-3, # coefficient for L2 penalty 'max_iterations': 50, # stop earlier # include transitions that are possible, but not observed 'feature.possible_transitions': True }) trainer.params() # %%time trainer.train('conll2002-esp.crfsuite') tagger = pycrfsuite.Tagger() tagger.open('conll2002-esp.crfsuite') # + example_sent = test_sents[0:10] print(' '.join(sent2tokens(example_sent)), end='\n\n') print("Predicted:", ' '.join(tagger.tag(sent2features(example_sent)))) print("Correct: ", ' '.join(sent2labels(example_sent))) # - def bio_classification_report(y_true, y_pred): """ Classification report for a list of BIO-encoded sequences. It computes token-level metrics and discards "O" labels. Note that it requires scikit-learn 0.15+ (or a version from github master) to calculate averages properly! """ lb = LabelBinarizer() y_true_combined = lb.fit_transform(list(chain.from_iterable(y_true))) y_pred_combined = lb.transform(list(chain.from_iterable(y_pred))) tagset = set(lb.classes_) - {'O'} tagset = sorted(tagset, key=lambda tag: tag.split('-', 1)[::-1]) class_indices = {cls: idx for idx, cls in enumerate(lb.classes_)} return classification_report( y_true_combined, y_pred_combined, labels = [class_indices[cls] for cls in tagset], target_names = tagset, ) # %%time y_pred = [tagger.tag(xseq) for xseq in X_test] # %%time y_pred =tagger.tag(X_test) def trained_model_performance(predicted_list): tag_list=[x[1] for x in predicted_list] NE_list=list(set(tag_list)) print (NE_list) if 'O' in NE_list: NE_list.remove('O') if len(NE_list)!=0: count=[(x,tag_list.count(x))for x in NE_list] var_list=[] for i in NE_list: var_list=var_list+['tp_'+i,'fp_'+i,'fn_'+i] variable_dict=dict.fromkeys(var_list, 0) for lines in predicted_list: if lines[1]!='O': if lines[1]==lines[2]: variable_dict['tp_'+str(lines[1])]=variable_dict['tp_'+str(lines[1])]+1 elif lines[1]!=lines[2]: if lines[2]=='O': variable_dict['fn_'+str(lines[1])]=variable_dict['fn_'+str(lines[1])]+1 else: variable_dict['fp_'+str(lines[1])]=variable_dict['fp_'+str(lines[1])]+1 else: if lines[2]!='O': variable_dict['fp_'+str(lines[2])]=variable_dict['fp_'+str(lines[2])]+1 print ('NE counts', count) print ("Entity TP FP FN") tp=0 fp=0 fn=0 for ne in NE_list: tp=tp+variable_dict['tp_'+ne] fp=fp+variable_dict['fp_'+ne] fn=fn+variable_dict['fn_'+ne] print (ne, variable_dict['tp_'+ne] ,variable_dict['fp_'+ne] ,variable_dict['fn_'+ne] ) if (tp+fp)==0 or (tp+fn)==0: print ('division by zero') precision='denominator_zero' recall='denominator_zero' else: precision=float(tp)/(tp+fp) recall=float(tp)/(tp+fn) print ('precision =',float(precision)) print ('recall =' ,float(recall)) return (precision,recall) else: return ('No NE','No NE') pred=zip(tokens,y_test,y_pred) pred=[x for x in pred] len(y_pred),len(y_test),len(tokens),len(pred) trained_model_performance(pred) results_train=trained_model_performance(pred_training) lb = LabelBinarizer() y_true_combined = lb.fit_transform(list(chain.from_iterable(y_test))) y_pred_combined = lb.transform(list(chain.from_iterable(y_pred))) tagset = set(lb.classes_) - {'O'} tagset = sorted(tagset, key=lambda tag: tag.split('-', 1)[::-1]) class_indices = {cls: idx for idx, cls in enumerate(lb.classes_)} len(y_true_combined),len(y_pred_combined) classification_report( y_true_combined, y_pred_combined, labels = [class_indices[cls] for cls in tagset], target_names = tagset ) print(bio_classification_report(y_test, y_pred)) # + from collections import Counter info = tagger.info() def print_transitions(trans_features): for (label_from, label_to), weight in trans_features: print("%-6s -> %-7s %0.6f" % (label_from, label_to, weight)) print("Top likely transitions:") print_transitions(Counter(info.transitions).most_common(15)) print("\nTop unlikely transitions:") print_transitions(Counter(info.transitions).most_common()[-15:]) # + def print_state_features(state_features): for (attr, label), weight in state_features: print("%0.6f %-6s %s" % (weight, label, attr)) print("Top positive:") print_state_features(Counter(info.state_features).most_common(20)) print("\nTop negative:") print_state_features(Counter(info.state_features).most_common()[-20:]) # - import nltk groucho_grammar = nltk.CFG.fromstring(""" S -> NP VP PP -> P NP NP -> Det N | Det N PP | 'I' VP -> V NP | VP PP Det -> 'an' | 'my' N -> 'elephant' | 'pajamas' V -> 'shot' P -> 'in' """) sent = ['I', 'shot', 'an', 'gulshan', 'in', 'my', 'pajamas'] parser = nltk.ChartParser(groucho_grammar) for tree in parser.parse(sent): print(tree) from nltk.grammar import DependencyGrammar from nltk.parse import * s article</a> to learn how to share your work. # <hr> # <div class="alert alert-block alert-info" style="margin-top: 20px"> # <h2>Get IBM Watson Studio free of charge!</h2> # <p><a href="https://cocl.us/bottemNotebooksPython101Coursera"><img src="https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/PY0101EN/Ad/BottomAd.png" width="750" align="center"></a></p> # </div> # <h3>About the Authors:</h3> # <p><a href="https://www.linkedin.com/in/joseph-s-50398b136/" target="_blank">Joseph Santarcangelo</a> is a Data Scientist at IBM, and holds a PhD in Electrical Engineering. His research focused on using Machine Learning, Signal Processing, and Computer Vision to determine how videos impact human cognition. Joseph has been working for IBM since he completed his PhD.</p> # Other contributors: <a href="www.linkedin.com/in/jiahui-mavis-zhou-a4537814a">Mavis Zhou</a> # <hr> # <p>Copyright &copy; 2018 IBM Developer Skills Network. This notebook and its source code are released under the terms of the <a href="https://cognitiveclass.ai/mit-license/">MIT License</a>.</p>
9,812
/cross_validation/cross_validation.ipynb
10f5ca4e496e7869186c5dbbe3f6c76c46ce8b1c
[]
no_license
smart1004/tools
https://github.com/smart1004/tools
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
9,146
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # https://datascienceschool.net/view-notebook/266d699d748847b3a3aa7b9805b846ae/ # # https://m.blog.naver.com/PostView.nhn?blogId=sanghan1990&logNo=221116465873&proxyReferer=https%3A%2F%2Fwww.google.com%2F # # conda install statsmodels # #pip install -U statsmodels # + import pandas as pd import numpy as np from sklearn.datasets import load_boston boston = load_boston() dfX = pd.DataFrame(boston.data, columns=boston.feature_names) dfy = pd.DataFrame(boston.target, columns=["MEDV"]) df = pd.concat([dfX, dfy], axis=1) N = len(df) ratio = 0.7 np.random.seed(0) idx_train = np.random.choice(np.arange(N), np.int(ratio * N)) idx_test = list(set(np.arange(N)).difference(idx_train)) df_train = df.iloc[idx_train] df_test = df.iloc[idx_test] # - import statsmodels.formula.api as sm model = sm.OLS.from_formula("MEDV ~ " + "+".join(boston.feature_names), data=df_train) result = model.fit() print(result.summary()) # + from sklearn.model_selection import KFold scores = np.zeros(5) cv = KFold(5, shuffle=True, random_state=0) for i, (idx_train, idx_test) in enumerate(cv.split(df)): df_train = df.iloc[idx_train] df_test = df.iloc[idx_test] model = sm.OLS.from_formula("MEDV ~ " + "+".join(boston.feature_names), data=df_train) result = model.fit() pred = result.predict(df_test) rss = ((df_test.MEDV - pred) ** 2).sum() tss = ((df_test.MEDV - df_test.MEDV.mean())** 2).sum() rsquared = 1 - rss / tss scores[i] = rsquared print("ํ•™์Šต R2 = {:.8f}, ๊ฒ€์ฆ R2 = {:.8f}".format(result.rsquared, rsquared)) # + from sklearn.metrics import r2_score scores = np.zeros(5) cv = KFold(5, shuffle=True, random_state=0) for i, (idx_train, idx_test) in enumerate(cv.split(df)): df_train = df.iloc[idx_train] df_test = df.iloc[idx_test] model = sm.OLS.from_formula("MEDV ~ " + "+".join(boston.feature_names), data=df_train) result = model.fit() pred = result.predict(df_test) rsquared = r2_score(df_test.MEDV, pred) scores[i] = rsquared scores # + from sklearn.base import BaseEstimator, RegressorMixin import statsmodels.formula.api as smf import statsmodels.api as sm class StatsmodelsOLS(BaseEstimator, RegressorMixin): def __init__(self, formula): self.formula = formula self.model = None self.data = None self.result = None def fit(self, dfX, dfy): self.data = pd.concat([dfX, dfy], axis=1) self.model = smf.ols(self.formula, data=self.data) self.result = self.model.fit() def predict(self, new_data): return self.result.predict(new_data) # + from sklearn.model_selection import cross_val_score model = StatsmodelsOLS("MEDV ~ " + "+".join(boston.feature_names)) cv = KFold(5, shuffle=True, random_state=0) cross_val_score(model, dfX, dfy, scoring="r2", cv=cv) # -
3,122
/.ipynb_checkpoints/smoother-checkpoint.ipynb
643d85103e8d5f2a526f1b501890fa94d16141e7
[]
no_license
ogi-iii/SparseAdditiveModels
https://github.com/ogi-iii/SparseAdditiveModels
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
22,988
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import numpy as np import scipy from scipy.interpolate import UnivariateSpline import matplotlib.pylab as plt # %matplotlib inline x = np.linspace(-3, 3, 50) y = np.sin(x**2) + np.random.randn(50) plt.plot(x, y, 'ro', ms=5) # + plt.plot(x, y, 'ro', ms=5) xs = np.linspace(-3, 3, 1000) ss = UnivariateSpline(x, y) # sใ‚’paramๆŒ‡ๅฎšใ—ใชใ„ใจlen(y) fxs = ss(xs) #print(fxs) plt.plot(xs, fxs, '-') # - ons_univ import bar_chart_solution_1, bar_chart_solution_2 # - # In this workspace, you'll be working with this dataset comprised of attributes of creatures in the video game series Pokรฉmon. The data was assembled from the database of information found in [this GitHub repository](https://github.com/veekun/pokedex/tree/master/pokedex/data/csv). pokemon = pd.read_csv('./data/pokemon.csv') pokemon.head() # **Task 1**: There have been quite a few Pokรฉmon introduced over the series' history. How many were introduced in each generation? Create a _bar chart_ of these frequencies using the 'generation_id' column. base_color = sb.color_palette()[0] sb.countplot(data=pokemon, x='generation_id', color=base_color) # Once you've created your chart, run the cell below to check the output from our solution. Your visualization does not need to be exactly the same as ours, but it should be able to come up with the same conclusions. bar_chart_solution_1() # **Task 2**: Each Pokรฉmon species has one or two 'types' that play a part in its offensive and defensive capabilities. How frequent is each type? The code below creates a new dataframe that puts all of the type counts in a single column. pkmn_types = pokemon.melt(id_vars = ['id','species'], value_vars = ['type_1', 'type_2'], var_name = 'type_level', value_name = 'type').dropna() pkmn_types.head() # Your task is to use this dataframe to create a _relative frequency_ plot of the proportion of Pokรฉmon with each type, _sorted_ from most frequent to least. **Hint**: The sum across bars should be greater than 100%, since many Pokรฉmon have two types. Keep this in mind when considering a denominator to compute relative frequencies. # + n_count = pokemon.shape[0] pkmn_counts = pkmn_types['type'].value_counts() pkmn_index = pkmn_counts.index pkmn_max = pkmn_counts.max() / n_count tick = np.arange(0, pkmn_max, 0.02) tick_label = ['{:.02f}'.format(x) for x in tick] # - sb.countplot(data=pkmn_types, y='type', color=base_color, order=pkmn_index) plt.xticks(tick*n_count, tick_label) plt.xlabel('proportion') bar_chart_solution_2() # If you're interested in seeing the code used to generate the solution plots, you can find it in the `solutions_univ.py` script in the workspace folder. You can navigate there by clicking on the Jupyter icon in the upper left corner of the workspace. Spoiler warning: the script contains solutions for all of the workspace exercises in this lesson, so take care not to spoil your practice!
3,207
/3 Matplotlib/32-MatplotlibExercises.ipynb
6d45b86817621f8aaeba560001e2272875b023d6
[]
no_license
jovanidesouza/CalculoComplementar
https://github.com/jovanidesouza/CalculoComplementar
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
104,268
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernel_info: # name: python3 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # ### Note # * Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. # + # Dependencies and Setup import pandas as pd # File to Load (Remember to Change These) file_to_load = "Resources/purchase_data.csv" # Read Purchasing File and store into Pandas data frame purchase_data_df = pd.read_csv(file_to_load) purchase_data_df.head() # - #check for missing data purchase_data_df.count() # ## Player Count # * Display the total number of players # # + #Calculate the total number of players Total_Players = len(purchase_data_df["SN"].unique()) #Create new dataframe of Total Players Total_Players_df = pd.DataFrame({"Total Players":[Total_Players]}) Total_Players_df # - # ## Purchasing Analysis (Total) # * Run basic calculations to obtain number of unique items, average price, etc. # # # * Create a summary data frame to hold the results # # # * Optional: give the displayed data cleaner formatting # # # * Display the summary data frame # # + # Unique on Item_ID Total_Unique_Items = len(purchase_data_df["Item ID"].unique()) #Take average of Price Average_Price = purchase_data_df["Price"].mean() #Len of Purchase ID Total_Purchased_Items = len(purchase_data_df["Purchase ID"]) #Sum of Price Tot_Revenue = purchase_data_df["Price"].sum() #Create new Dataframe of summarized dat Summary_df = pd.DataFrame({"Number of Unique Items":[Total_Unique_Items],"Average Price":Average_Price,"Number of Purchases":Total_Purchased_Items,"Total Revenue":Tot_Revenue}) Summary_df # - # ## Gender Demographics # * Percentage and Count of Male Players # # # * Percentage and Count of Female Players # # # * Percentage and Count of Other / Non-Disclosed # # # # + Player_Group = purchase_data_df.groupby("SN") Gender_Group_df = pd.DataFrame(Player_Group["Gender"]) Gender_Group_df = Gender_Group_df.groupby("Gender") Gender_Group_df.head() # - # + #User_Group_df = purchase_data_df.groupby(['SN']) #Gender_Group_df = User_Group_df["Gender"].count() #Gender_Group_df # + #Gender_Group_df = purchase_data_df.groupby(['Gender']) #Gender_Group_2_df = Gender_Group_df['SN'].unique #Gender_Group_2_df # + #Get count of different genders #Gender_Count = User_Group_df["Gender"].value_counts() #Gender_Count # - # # ## Purchasing Analysis (Gender) # * Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender # # # # # * Create a summary data frame to hold the results # # # * Optional: give the displayed data cleaner formatting # # # * Display the summary data frame # + items_purchased = Player_Group["SN"].count() # # - # ## Age Demographics # * Establish bins for ages # # # * Categorize the existing players using the age bins. Hint: use pd.cut() # # # * Calculate the numbers and percentages by age group # # # * Create a summary data frame to hold the results # # # * Optional: round the percentage column to two decimal points # # # * Display Age Demographics Table # # ## Purchasing Analysis (Age) # * Bin the purchase_data data frame by age # # # * Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. in the table below # # # * Create a summary data frame to hold the results # # # * Optional: give the displayed data cleaner formatting # # # * Display the summary data frame # ## Top Spenders # * Run basic calculations to obtain the results in the table below # # # * Create a summary data frame to hold the results # # # * Sort the total purchase value column in descending order # # # * Optional: give the displayed data cleaner formatting # # # * Display a preview of the summary data frame # # # ## Most Popular Items # * Retrieve the Item ID, Item Name, and Item Price columns # # # * Group by Item ID and Item Name. Perform calculations to obtain purchase count, item price, and total purchase value # # # * Create a summary data frame to hold the results # # # * Sort the purchase count column in descending order # # # * Optional: give the displayed data cleaner formatting # # # * Display a preview of the summary data frame # # # ## Most Profitable Items # * Sort the above table by total purchase value in descending order # # # * Optional: give the displayed data cleaner formatting # # # * Display a preview of the data frame # # a = plt.figure() ax3 = figura.add_axes([0,0,1,1]) ax4 = figura.add_axes([0.2,0.5,.4,.4]) # + [markdown] id="A4h6_l49TLXq" colab_type="text" # ## Exercรญcio 4 # # **Use plt.subplots (nrows = 1, ncols = 2) para criar o grรกfico abaixo.** # + id="4fYIyIjwTLXr" colab_type="code" outputId="84295de1-0b5d-4989-9fc8-f849af66e081" colab={"base_uri": "https://localhost:8080/", "height": 269} executionInfo={"status": "ok", "timestamp": 1572972379389, "user_tz": 120, "elapsed": 922, "user": {"displayName": "jovani de souza", "photoUrl": "https://lh5.googleusercontent.com/-oK60BEkZFG4/AAAAAAAAAAI/AAAAAAAAALQ/c3xa2z4LUBE/s64/photo.jpg", "userId": "13092737875236348379"}} fig,axes = plt.subplots(nrows=1,ncols=2) # + [markdown] id="Mx7saP-GTLXs" colab_type="text" # **Agora plote (x, y) e (x, z) nos eixos. Brinque com a largura de linha e o estilo** # + id="W9ilP-1cTLXt" colab_type="code" outputId="e6d088db-039b-452b-99a6-420f12fb9c72" colab={"base_uri": "https://localhost:8080/", "height": 282} executionInfo={"status": "ok", "timestamp": 1572972430035, "user_tz": 120, "elapsed": 1154, "user": {"displayName": "jovani de souza", "photoUrl": "https://lh5.googleusercontent.com/-oK60BEkZFG4/AAAAAAAAAAI/AAAAAAAAALQ/c3xa2z4LUBE/s64/photo.jpg", "userId": "13092737875236348379"}} fig,axes = plt.subplots(nrows=1,ncols=2) axes[0].plot(x,y,color='blue',lw="5",ls="--") axes[1].plot(x,z,color='red',lw="3") # + [markdown] id="5VI9EqrITLXu" colab_type="text" # # **Veja se vocรช pode redimensionar o grรกfico adicionando o argumento figsize () em plt.subplots () estรก copiando e colando o cรณdigo anterior.** # + id="Hxyevp9YTLXv" colab_type="code" outputId="7a342ce1-c857-491f-f9df-c2f9f3317aa5" colab={"base_uri": "https://localhost:8080/", "height": 228} executionInfo={"status": "ok", "timestamp": 1572972555608, "user_tz": 120, "elapsed": 1144, "user": {"displayName": "jovani de souza", "photoUrl": "https://lh5.googleusercontent.com/-oK60BEkZFG4/AAAAAAAAAAI/AAAAAAAAALQ/c3xa2z4LUBE/s64/photo.jpg", "userId": "13092737875236348379"}} fig,axes = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) axes[0].plot(x,y,color='blue',lw="5",ls="--") axes[1].plot(x,z,color='red',lw="3")
6,877
/aa/10/code/ไธ‰็งๅ›žๅฝ’ๆจกๅž‹ๆฏ”่พƒ.ipynb
74cf3f58736da8890a2468d35adefe0d8cd42e6c
[]
no_license
shuaixiaohao/ML
https://github.com/shuaixiaohao/ML
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
108,286
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # **Question :** Load the iris.csv dataset using pandas # # **Level:** Easy # **Input format :** # # Load the iris dataset # **Output format :** # # csv values # **Sample Input :** # # import packages # **Sample Output :** # # values # + import pandas as pd # write your code here # - ndom(size=200) # ๅ‡่ฎพ200ไธชๆ•ฐๆฎ็‰นๅพๅชๆœ‰10ไธชๆ˜ฏๅฏน็ป“ๆžœๆœ‰ๅฝฑๅ“ index = np.arange(0,200,1) # ไฟฎๆ”น่พ“ๅ…ฅๆ•ฐๆฎ็š„ๅ†…ๅญ˜็ป“ๆž„ np.random.shuffle(index) # - coefs[index[10:]] = 0 # ็ณปๆ•ฐไน˜ไปฅๆ ทๆœฌ็‰นๅพ๏ผŒๅฐฑๅพ—ๅˆฐไบ†ๆ ทๆœฌๆ ‡็ญพ y = np.dot(X,coefs) y.shape y.max(),y.min() # ๅฏนๆ ทๆœฌๆ ‡็ญพๆทปๅŠ ๅ™ชๅฃฐ noise = np.random.random(size=50)*2-1 noise.max(),noise.min() # ๆŠŠๅ™ช้Ÿณๆ•ฐๆฎๆทปๅŠ ๅˆฐๆ ทๆœฌๆ ‡็ญพyไธญ y += noise plt.plot(coefs) plt.xlabel('features') plt.ylabel('coefs') # + linear = LinearRegression() ridge = Ridge(alpha=100000) lasso = Lasso(alpha=0.05) linear.fit(X,y) ridge.fit(X,y) lasso.fit(X,y) # ไฟ็•™ไธ‰็ง็ฎ—ๆณ•็š„็ณปๆ•ฐ coefs1 = linear.coef_ coefs2 = ridge.coef_ coefs3 = lasso.coef_ plt.figure(figsize=(12,8)) axes1 = plt.subplot(2,2,1) axes1.plot(coefs) axes1.set_title('True',color='blue') axes2 = plt.subplot(2,2,2) axes2.plot(coefs1,color='green') axes2.set_title('LinearRegression') axes3 = plt.subplot(2,2,3) axes3.plot(coefs2,color='orange') axes3.set_title('Ridge') axes4 = plt.subplot(2,2,4) axes4.plot(coefs3,color='cyan') axes4.set_title('Lasso') # - a = np.array([1,2,3,4,5]) b = [0,3,4] a[b] # + x = np.array([[1,2,3],[2,3,4],[3,4,5]]) w = np.array([0,1,2]) np.dot(x,w)
1,649
/PPE/ENSEMBLE2/scripts/Analyse/Choix_param_reduce.ipynb
d2828a790a648d7e6d77b68cb2d989c47091adc5
[]
no_license
speatier/CNRMppe_save
https://github.com/speatier/CNRMppe_save
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
634,474
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import pandas as pd import numpy as np import seaborn as sn import matplotlib.pyplot as plt prokka=pd.read_csv("/home/tsweet/Going_through_Phages/data/vgasGeneFunctionData_Prokka.csv") prokka.head(10) data = np.array(prokka) covMatrix = np.cov(data,bias=True) print (covMatrix) lib.pyplot as plt #from mpl_toolkits.basemap import Basemap import pandas.plotting import matplotlib.ticker as ticker # scatter plot matrix des variables quantitatives from pandas.plotting import scatter_matrix import seaborn as sns; sns.set() # Scikit-learn from sklearn import linear_model from sklearn.linear_model import LassoCV, LassoLarsCV, LassoLarsIC from sklearn.linear_model import Lasso from sklearn.metrics import r2_score from sklearn import preprocessing from sklearn import tree from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix from sklearn import metrics from sklearn.neural_network import MLPRegressor # - # ## Import functions import sys sys.path.append('/data/home/globc/peatier/CNRMppe') import Fonctions from Fonctions import get_wavg_budget_df from Fonctions import wavg from Fonctions import plotlines_Xdf from Fonctions import plotlines_1df from Fonctions import Deltas_Lambda from Fonctions import get_3D_budget_xarr from Fonctions import get_3D_xarr from Fonctions import get_3D_SW_xarr from Fonctions import get_3D_LW_xarr # # Import data # + param_values = np.load(file="/data/home/globc/peatier/CNRMppe/PPE/ENSEMBLE2/files/npy/X_EmulateurFeedbacksN.npy") feedbacks = np.load(file="/data/home/globc/peatier/CNRMppe/PPE/ENSEMBLE2/files/npy/Net_feedbacks.npy") pc1_SW = np.load(file="/data/home/globc/peatier/CNRMppe/PPE/ENSEMBLE2/files/npy/PPE2_EOF1pc_SW.npy") pc2_SW = np.load(file="/data/home/globc/peatier/CNRMppe/PPE/ENSEMBLE2/files/npy/PPE2_EOF2pc_SW.npy") pc3_SW = np.load(file="/data/home/globc/peatier/CNRMppe/PPE/ENSEMBLE2/files/npy/PPE2_EOF3pc_SW.npy") pc1_LW = np.load(file="/data/home/globc/peatier/CNRMppe/PPE/ENSEMBLE2/files/npy/PPE2_EOF1pc_LW.npy") pc2_LW = np.load(file="/data/home/globc/peatier/CNRMppe/PPE/ENSEMBLE2/files/npy/PPE2_EOF2pc_LW.npy") pc3_LW = np.load(file="/data/home/globc/peatier/CNRMppe/PPE/ENSEMBLE2/files/npy/PPE2_EOF3pc_LW.npy") LW_feedbacks = np.load(file = "/data/home/globc/peatier/CNRMppe/PPE/ENSEMBLE2/files/npy/LW_feedbacks.npy") SW_feedbacks = np.load(file = "/data/home/globc/peatier/CNRMppe/PPE/ENSEMBLE2/files/npy/SW_feedbacks.npy") param_names = np.load(file="/data/home/globc/peatier/CNRMppe/PPE/ENSEMBLE2/files/npy/LHS_paramNames.npy") # + feedbacks_classes = (feedbacks*10).astype('int')/10 pc1_SW_classes = (pc1_SW*10).astype('int')/10 pc2_SW_classes = (pc2_SW*10).astype('int')/10 pc3_SW_classes = (pc3_SW*10).astype('int')/10 pc1_LW_classes = (pc1_LW*10).astype('int')/10 pc2_LW_classes = (pc2_LW*10).astype('int')/10 pc3_LW_classes = (pc3_LW*10).astype('int')/10 LW_feedbacks_classes = (LW_feedbacks*10).astype('int')/10 SW_feedbacks_classes = (SW_feedbacks*10).astype('int')/10 # + df = pd.DataFrame(param_values, columns = param_names) df['Net_Feedbacks'] = feedbacks_classes df['LW_feedbacks'] = LW_feedbacks_classes df['SW_feedbacks'] = SW_feedbacks_classes df['pc1_SW'] = pc1_SW_classes df['pc2_SW'] = pc2_SW_classes df['pc3_SW'] = pc3_SW_classes df['pc1_LW'] = pc1_LW_classes df['pc2_LW'] = pc2_LW_classes df['pc3_LW'] = pc3_LW_classes df # - # # Pair plot data = ['RKDX', 'AGRE2', 'RAUTEFR', 'VVN', 'RQLCR', 'Net_Feedbacks'] df_short = df[data] data_short = ['RKDX', 'AGRE2', 'RAUTEFR', 'VVN', 'RQLCR'] df_short # + import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # Pair plot of parameters with the highest Sobol index sm = plt.cm.ScalarMappable(cmap='RdBu_r', norm=norm) ax = sns.pairplot(df_short,hue='Net_Feedbacks',markers="o", palette=('coolwarm'),vars=data_short, diag_kind='hist', diag_kws = {'alpha': 1.0, 'edgecolor' : None}, plot_kws = {'alpha': 1.0, 'edgecolor' : None}) #ax._legend.remove() #ax.fig.legend(labels=range(0,10,1), title = 'Net Feedbacks') ax.fig.subplots_adjust(top=0.92, bottom=0.08) # Title plt.suptitle('5 dominant parameters for Net Feedbacks', size = 28) # Enregistrer les figures ............................................................... #g.savefig("/data/home/globc/peatier/figures/Pairplot_HighSoboIndices.png", dpi=None, # orientation='portrait', bbox_inches='tight', pad_inches=0.1, # frameon=None, metadata=None) # Show the graph .................................. plt.show() # - data = ['TFVL', 'RSWINHF_ICE', 'AGRE2', 'VVN', 'RLWINHF_LIQ', 'SW_feedbacks'] df_short = df[data] data_short = ['TFVL', 'RSWINHF_ICE', 'AGRE2', 'VVN', 'RLWINHF_LIQ'] df_short # + import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # Pair plot of parameters with the highest Sobol index sm = plt.cm.ScalarMappable(cmap='coolwarm', norm=norm) ax = sns.pairplot(df_short,hue='SW_feedbacks',markers="o", palette=('coolwarm'),vars=data_short, diag_kind='hist', diag_kws = {'alpha': 1.0, 'edgecolor' : None}, plot_kws = {'alpha': 1.0, 'edgecolor' : None}) #ax._legend.remove() #ax.fig.legend(labels=range(0,10,1), title = 'Net Feedbacks') ax.fig.subplots_adjust(top=0.92, bottom=0.08) # Title plt.suptitle('5 dominant parameters for SW feedbacks', size = 28) # Enregistrer les figures ............................................................... #g.savefig("/data/home/globc/peatier/figures/Pairplot_HighSoboIndices.png", dpi=None, # orientation='portrait', bbox_inches='tight', pad_inches=0.1, # frameon=None, metadata=None) # Show the graph .................................. plt.show() # - data = ['VVN', 'AGRE2', 'AGRE1', 'RLWINHF_ICE', 'TENTRX', 'LW_feedbacks'] df_short = df[data] data_short = ['VVN', 'AGRE2', 'AGRE1', 'RLWINHF_ICE', 'TENTRX'] df_short # + import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # Pair plot of parameters with the highest Sobol index sm = plt.cm.ScalarMappable(cmap='coolwarm', norm=norm) ax = sns.pairplot(df_short,hue='LW_feedbacks',markers="o", palette=('coolwarm'),vars=data_short, diag_kind='hist', diag_kws = {'alpha': 1.0, 'edgecolor' : None}, plot_kws = {'alpha': 1.0, 'edgecolor' : None}) #ax._legend.remove() #ax.fig.legend(labels=range(0,10,1), title = 'Net Feedbacks') ax.fig.subplots_adjust(top=0.92, bottom=0.08) # Title plt.suptitle('5 dominant parameters for LW feedbacks', size = 28) # Enregistrer les figures ............................................................... #g.savefig("/data/home/globc/peatier/figures/Pairplot_HighSoboIndices.png", dpi=None, # orientation='portrait', bbox_inches='tight', pad_inches=0.1, # frameon=None, metadata=None) # Show the graph .................................. plt.show() # - # # Choix final des 5 paramรจtres gardรฉs pour l'ENSEMBLE 3 # + param_ENSEMBLE3 = ['ALMAVE', 'VVX', 'RSWINHF_ICE', 'FNEBC', 'RQLCR'] # Save the parameter names in a file for the LHS_generate np.save('/data/home/globc/peatier/CNRMppe/PPE/files/npy/ENSEMBLE3_param_names.npy', param_ENSEMBLE3) # -
7,555
/src/tutorials/Tutorial with stdout.ipynb
ededc908066b0536627d8de3999ec115a8785f28
[]
no_license
Sylhare/Project-P
https://github.com/Sylhare/Project-P
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
2,125
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Working with stdout import sys # Import system functionality sys.stdout.write("A test") print("?") sys.stdout = sys.__stdout__ # Redirect stdout to the default system one print("Something...") sys.stdout.write("A test") # It will be printed on the console, the default `stdout` file = open('output.txt', 'w') sys.stdout = file print("I am in the file") file.close()
644
/Real_Time_Dog_Breed_Classification_Kafka_Service.ipynb
20c5c9519127cbd27ef087f533fe3fdb283c1e72
[]
no_license
KroneckerDelta/realtime-image-classification-kafka-service
https://github.com/KroneckerDelta/realtime-image-classification-kafka-service
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
7,962
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- from keras.layers.pooling import GlobalAveragePooling2D from keras.layers.merge import Concatenate from keras.layers import Input, Dense from keras.layers.core import Dropout, Activation from keras.callbacks import ModelCheckpoint from keras.preprocessing.image import img_to_array from keras.layers.normalization import BatchNormalization from keras.models import Model from keras.applications import inception_v3 import numpy as np from sklearn.preprocessing import LabelEncoder, OneHotEncoder import pickle import os.path from keras.applications.inception_v3 import InceptionV3, preprocess_input import base64 from PIL import Image from kafka import KafkaConsumer, KafkaProducer from io import BytesIO import json try: assert os.path.isfile('dogbreed_model.hdf5') and \ os.path.isfile('dogbreed_labels.pickle') except: print("Run the Train_Dog_Breed_Model Script first to train the Dog Breed Classification Model") raise inception_model = InceptionV3(weights='imagenet', include_top=False) # + net_input = Input(shape=(8, 8, 2048)) net = GlobalAveragePooling2D()(net_input) net = Dense(512, use_bias=False, kernel_initializer='uniform')(net) net = BatchNormalization()(net) net = Activation("relu")(net) net = Dropout(0.5)(net) net = Dense(256, use_bias=False, kernel_initializer='uniform')(net) net = BatchNormalization()(net) net = Activation("relu")(net) net = Dropout(0.5)(net) net = Dense(133, kernel_initializer='uniform', activation="softmax")(net) dog_breed_model = Model(inputs=[net_input], outputs=[net]) dog_breed_model.summary() dog_breed_model.load_weights('dogbreed_model.hdf5') # + with open("dogbreed_labels.pickle", "rb") as f: dogbreed_labels = np.array(pickle.load(f)) def format_percentage(raw_probability): return "{0:.2f}%".format(raw_probability * 100) class LabelRecord(object): def __init__(self, predictions): probabilities = np.array(predictions[0]) top_five_breed_index = np.argsort(probabilities)[::-1][:5] dog_breed_names = dogbreed_labels[top_five_breed_index] self.label1 = dog_breed_names[0].upper() self.probability1 = format_percentage(probabilities[top_five_breed_index[0]]) self.label2 = dog_breed_names[1].upper() self.probability2 = format_percentage(probabilities[top_five_breed_index[1]]) self.label3 = dog_breed_names[2].upper() self.probability3 = format_percentage(probabilities[top_five_breed_index[2]]) self.label4 = dog_breed_names[3].upper() self.probability4 = format_percentage(probabilities[top_five_breed_index[3]]) self.label5 = dog_breed_names[4].upper() self.probability5 = format_percentage(probabilities[top_five_breed_index[4]]) def toJSON(self): return json.dumps(self, default=lambda obj: obj.__dict__, sort_keys=True, indent=4) # - # Kafka Service consumer = KafkaConsumer('classificationimage', group_id='group1') producer = KafkaProducer(bootstrap_servers='localhost:9092') for message in consumer: # transform image image_data = base64.b64decode(message.value.decode()) pil_image = Image.open(BytesIO(image_data)) image_array = img_to_array(pil_image) image_batch = np.expand_dims(image_array, axis=0) processed_image = preprocess_input(image_batch.copy()) # make predictions inception_v3_predictions = inception_model.predict(processed_image) predictions = dog_breed_model.predict(inception_v3_predictions) # transform predictions to json label = LabelRecord(predictions) label_json = label.toJSON() # send encoded label producer.send('classificationlabel', label_json.encode())
3,984
/miyamoto/FK_IK_furukawa-Copy1.ipynb
072cabfb18d65d8c395047d141041b76fcbd4120
[]
no_license
maeda-lab/Scaledown
https://github.com/maeda-lab/Scaledown
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
2,932,043
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # ๅทฎๅ‹•้–ข็ฏ€ใƒžใƒ‹ใƒ”ใƒฅใƒฌใƒผใ‚ฟใฎ้€†้‹ๅ‹•ๅญฆ # # Created by Masahiro Furukawa, Aug 18, 2020 # # ![image.png](attachment:image.png) # + #ๅ‚่€ƒURL -> https://qiita.com/tibigame/items/61cecf86fc978628bfee #ๅ‚่€ƒๅ›ณๆ›ธ -> ใƒใƒผใƒซใฎใƒญใƒœใƒƒใƒˆใƒปใƒžใƒ‹ใƒ”ใƒฅใƒฌใƒผใ‚ฟ import numpy as np import sympy as sym sym.init_printing() Pi = sym.S.Pi # ๅ††ๅ‘จ็Ž‡ #sympyใฎๅ††ๅ‘จ็Ž‡ใฎๆ–นใ‚’ไฝฟใ†ใ“ใจใ‚’ใ™ใ™ใ‚ใ‚‹๏ผˆใ“ใฃใกใฎๆ–นใŒ้‡ๅญๅŒ–่ชคๅทฎใŒๅคงใใใชใ‚‹๏ผŽnumpyใ‚‚ๅŒๆง˜ใซๅคงใใ„๏ผ‰ import math pi = math.pi # ่ง’ๅบฆๅค‰ๆ•ฐ (J_1,J_2,J_3,J_4,J_5,J_6) = sym.symbols('J_1,J_2,J_3,J_4,J_5,J_6') # ใƒชใƒณใ‚ฏใƒ‘ใƒฉใƒกใƒผใ‚ฟ (a_1,a_2,a_3,d_4) = sym.symbols('a_1,a_2,a_3,d_4') # ใƒชใƒณใ‚ฏใƒ‘ใƒฉใƒกใƒผใ‚ฟ (j,a,d,alpha) = sym.symbols('j,a,d,alpha') # T6 (n_x, n_y, n_z, o_x, o_y, o_z, a_x, a_y, a_z, p_x, p_y, p_z) = sym.symbols('n_x, n_y, n_z, o_x, o_y, o_z, a_x, a_y, a_z, p_x, p_y, p_z') # + #sin.cosใฎ็ฐกๆ˜“่จ˜่ฟฐ็”จ def S(a): return sym.sin(a) def C(a): return sym.cos(a) # + #ๅ›ž่ปขใƒปไธฆ้€ฒ่กŒๅˆ— def rotx(a): return sym.Matrix([[1, 0, 0, 0], [0, C(a), -S(a), 0], [0, S(a), C(a), 0], [0, 0, 0, 1]]) def roty(a): return sym.Matrix([[C(a), 0, S(a), 0], [0, 1, 0, 0], [-S(a), 0, C(a), 0], [0, 0, 0, 1]]) def rotz(a): return sym.Matrix([[C(a), -S(a), 0, 0], [S(a), C(a), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) def trans(x, y, z): return sym.Matrix([[1, 0, 0, x], [0, 1, 0, y], [0, 0, 1, z], [0, 0, 0, 1]]) # DH matrix def DH(j, alpha, a, d): return rotz(j)*trans(a,0,d)*rotx(alpha) # inverse DH matrix def DHi(j, alpha, a, d): return rotx(-alpha)*trans(-a,0,-d)*rotz(-j) # - # target้ …ใ‚’ๅผeqใ‹ใ‚‰ใใใ‚Šๅ‡บใ™ใŸใ‚ใฎ้–ขๆ•ฐ def obs(eq, target): sol = sym.solve(eq, target) for i in range(len(sol)): display( sym.Eq(target, sol[i])) print( str(len(sol)) +' equation(s) in total') return sol # ### DHๆณ•ใซๅŸบใฅใๅบงๆจ™็ณป้–“ใฎ้–ขไฟ‚่กจ็พ # # |ๅบงๆจ™็ณป i|Z_i-1่ปธๅ›žใ‚Šใซ่ง’ๅบฆฮธ_i|X_i่ปธๅ‘จใ‚Šใซใญใ˜ใ‚Œ่ง’ฮฑ_iใ ใ‘ๅ›ž่ปข|ๅ›ž่ปขๅพŒใฎX_i-1 (=X_i)ใซๆฒฟใฃใฆ้•ทใ•a_iใ ใ‘ไธฆ้€ฒ|Z_i-1ใซๆฒฟใฃใฆ่ท้›ขd_iใ ใ‘ไธฆ้€ฒ| # |-|-|-|-|-| # |1|$J_1$|$\pi/2$|$a_1$|0| # |2|$J_2+\pi/2$|0|$a_2$|0| # |3|$J_3-J_2$|$\pi/2$|$a_3$|0| # |4|$J_4$|$-\pi/2$|0|$d_4$| # |5|$J_5$|$\pi/2$|0|0| # |6|$J_6$|0|0|0|$ # ### ๅค‰ๆ›่กŒๅˆ— A # + easy=False if(easy): A1=sym.trigsimp( DH (J_1, Pi/2, 0, 0)) A3=sym.trigsimp( DH (J_3 - J_2, Pi/2, 0, 0)) A1i=sym.trigsimp( DHi (J_1, Pi/2, 0, 0)) A3i=sym.trigsimp( DHi (J_3 - J_2, Pi/2, 0, 0)) else: A1=sym.trigsimp( DH (J_1, Pi/2, a_1, 0)) A3=sym.trigsimp( DH (J_3 - J_2, Pi/2, a_3, 0)) # inverse matrix A1i=sym.trigsimp( DHi (J_1, Pi/2, a_1, 0)) A3i=sym.trigsimp( DHi (J_3 - J_2, Pi/2, a_3, 0)) A2=sym.trigsimp( DH (J_2+ Pi/2, 0, a_2, 0)) A4=sym.trigsimp( DH (J_4, -Pi/2, 0, d_4)) A5=sym.trigsimp( DH (J_5, Pi/2, 0, 0)) A6=sym.trigsimp( DH (J_6, 0, 0, 0)) # inverse matrix A2i=sym.trigsimp( DHi (J_2+ Pi/2, 0, a_2, 0)) A4i=sym.trigsimp( DHi (J_4, -Pi/2, 0, d_4)) A5i=sym.trigsimp( DHi (J_5, Pi/2, 0, 0)) A6i=sym.trigsimp( DHi (J_6, 0, 0, 0)) # - A3 # ้€†่กŒๅˆ—ใ‚’ใ‹ใ‘ใ‚‹ใจๅ˜ไฝ่กŒๅˆ—ใซใชใ‚‹ใ“ใจใฎ็ขบ่ช ret = A1i*A1 sym.trigsimp(ret) # # ้€†้‹ๅ‹•ๅญฆ # ![image.png](attachment:image.png) # ![image.png](attachment:image.png) T6=sym.Matrix([[n_x, o_x, a_x, p_x], [n_y, o_y, a_y, p_y], [n_z, o_z, a_z, p_z], [0, 0, 0, 1]]) T6 # forward kinematics A56 = sym.trigsimp( A5*A6 ) A456 = sym.trigsimp( A4*A5*A6 ) A3456 = sym.trigsimp( A3*A4*A5*A6 ) A23456 = sym.trigsimp( A2*A3*A4*A5*A6 ) T = sym.trigsimp( A1*A2*A3*A4*A5*A6 ) T # ### ้ †้‹ๅ‹•ๅญฆ่จˆ็ฎ—็”จCใ‚ฝใƒผใ‚นใ‚ณใƒผใƒ‰ใ‚’ๅพ—ใ‚‹ # + # Masahiro Furukawa # Aug, 17, 2020 # # refernce : https://qiita.com/JmpM/items/4bea4997aaf406cca3b4 # Cใ‚ฝใƒผใ‚นใ‚’ๅพ—ใ‚‹ for ii in range(4): for jj in range(4): idx = jj*4+ii code = sym.ccode(T[idx],assign_to=('Trans['+str(jj)+']['+str(ii)+']'), standard='C89') print(code) print() # - # # inverse kinematics # $$ # % reference : https://qiita.com/namoshika/items/63db972bfd1030f8264a # % ็ฉบ็™ฝใฏ่กจ็คบใซๅฝฑ้Ÿฟใ—ใชใ„ใ€‚ใ‚ณใƒกใƒณใƒˆใฏ"%"ใงๅง‹ใ‚ใ‚‹ # % ไธ‹ไป˜ใๆ–‡ๅญ—ใฏ"_a"ใ€ไธŠไป˜ใๆ–‡ๅญ—ใฏ"^a" # % ๆ”น่กŒใฏ"\\"ใ‚’ไป˜ใ‘ใ‚‹ # {\boldsymbol{A}_{1}}^{-1} \boldsymbol{T}_6 = # \boldsymbol{A}_2 # \boldsymbol{A}_3 # \boldsymbol{A}_4 # \boldsymbol{A}_5 # \boldsymbol{A}_6 ใ€€ใ€€ใ€€(3.75)\\ # {\boldsymbol{A}_{1}}^{-1} \boldsymbol{T}_6 = # ^{1}\boldsymbol{T}_6 ใ€€ใ€€ใ€€(3.76) # % ่ค‡ๆ•ฐๆ–‡ๅญ—ใ‚’1่ฆ็ด ใจใ™ใ‚‹้š›ใฏ{...}ใงๅ›ฒใ† # % ็ฉบ็™ฝใฏ"\quad" # $$ T16 = sym.trigsimp( A1i*T6 ) # eq(3.70) T26 = sym.trigsimp( A2i*A1i*T6 ) # eq(3.71) T36 = sym.trigsimp( A3i*A2i*A1i*T6 ) # eq(3.72) T46 = sym.trigsimp( A4i*A3i*A2i*A1i*T6 ) # eq(3.73) T56 = sym.trigsimp( A5i*A4i*A3i*A2i*A1i*T6 ) # eq(3.74) # Left hand of (3.76) A1iT6 = T16 A1iT6 # Right hand of (3.76) A23456 # $$ # \displaystyle A_{1i}T_{6} = A_{23456} \\ # $$ # ใ‚ˆใ‚Šไปฅไธ‹ใฎ็ญ‰ๅผ็พคใ‚’ๅพ—ใ‚‹ for idx in range(12): display(sym.simplify ( sym.expand( sym.Eq( A1iT6[idx], A23456[idx])) ) ) # # J1 # ใ“ใฎใ†ใกไฝ็ฝฎใซ้–ขใ™ใ‚‹้ …ใฎใฟใ‚’ๆŠฝๅ‡บใ™ใ‚‹ใจ for idx in [3,7,11]: display(sym.simplify ( sym.expand( sym.Eq( A1iT6[idx], A23456[idx])) ) ) # ใฎ๏ผ“ๅ…ƒ้€ฃ็ซ‹ๆ–น็จ‹ๅผใ‚’ๅพ—ใ‚‹๏ผŽใ€€ไธŠ่จ˜็ฌฌ๏ผ“ๅผใฏ๏ผŒ sym.Eq(A1iT6[11] , A23456[11]) # ## p_x = 0 ใชใ‚‰็›ดใกใซ # + sol = sym.solve(p_y * C(J_1), J_1) for i in range(len(sol)): display( sym.simplify(sym.Eq(J_1, sol[i]))) print( str(len(sol)) +' equation(s) in total') # + # ใ—ใ‹ใ—ๅ€คๅŸŸ(-PI < J1 < PI)ใ‚ˆใ‚Š , p_x = 0 ใชใ‚‰็›ดใกใซ sol = sym.solve(p_y * C(J_1), J_1) for i in range(len(sol)): if -Pi < sol[0] and sol[i] < Pi: display( sym.simplify(sym.Eq(J_1, sol[i])), 'where p_x = 0') # - # ## p_y = 0 ใชใ‚‰็›ดใกใซ # + sol = sym.solve(p_x * S(J_1), J_1) for i in range(len(sol)): display( sym.simplify(sym.Eq(J_1, sol[i]))) print( str(len(sol)) +' equation(s) in total') # + # ใงใ‚ใ‚‹ใŒ๏ผŒใ€€ๅŒๆง˜ใซๅ€คๅŸŸ(-PI < J1 < PI)ใ‚ˆใ‚Š , p_y = 0 ใชใ‚‰็›ดใกใซ sol = sym.solve(p_x * S(J_1), J_1) for i in range(len(sol)): if -Pi < sol[0] and sol[i] < Pi: display( sym.simplify(sym.Eq(J_1, sol[i])) , 'where p_y = 0') # - # ## p_x != 0 ใงใ‚ใ‚‹ใ“ใจใŒ็ขบๅฎšใ—ใŸใชใ‚‰ใฐ๏ผŒ # ไธก่พบใ‚’p_xใงๅ‰ฒใ‚‹ใ“ใจใŒใงใ๏ผŒ # p_x != 0 ใชใ‚‰ใฐ ๅ‰่ฟฐใฎ้€šใ‚ŠC(J1) != 0ใงใ‚ใ‚‹ใ“ใจใŒๅฟ…็„ถ็š„ใซๆฑ‚ใพใ‚‹ใŸใ‚C(J1)ใงไธก่พบใ‚’ๅ‰ฒใฃใฆใ„ใ„ใŸใ‚๏ผŒ eq =sym.simplify((A1iT6[11] - A23456[11])/p_x/C(J_1)) display(eq) # ใ“ใฎๆ–น็จ‹ๅผใ‚’J1ใซใคใ„ใฆ่งฃใใจ๏ผŒ sol = sym.solve(eq, J_1) for i in range(len(sol)): display( sym.simplify(sym.Eq(J_1, sol[i])) , 'where p_x != 0') sol_J1 = sol # ใŒJ1ใซ้–ขใ™ใ‚‹่งฃๆž่งฃใงใ‚ใ‚‹๏ผŽ # # J2 # ๆฌกใซไธŠ่จ˜็ฌฌ๏ผ’ๅผใซ็€็›ฎใ™ใ‚‹ใจ sym.Eq(A1iT6[7] , A23456[7]) # ใงใ‚ใ‚‹ใ‹ใ‚‰,ไธŠ่จ˜็ฌฌ๏ผ‘ๅผใซ S(J2) ใ‚’ไปฃๅ…ฅใ™ในใ C(J2)ใ‚’ๆฑ‚ใ‚ใ‚‹ใจ eq =A1iT6[7] - A23456[7] target = C(J_2) CJ2 = obs(eq, target)[0] # ๅพ“ใฃใฆ๏ผŒS(J2)ใ‚’ๆฑ‚ใ‚ใ‚‹ใŸใ‚ใซใฏ๏ผŒC(J2)**2 + S(J2)**2 = 1 ใงใ‚ใ‚‹ใ‹ใ‚‰ๆจ™็š„ใจใชใ‚‹ๅผใ‚’ๅ†ๆŽฒใ™ใ‚‹ใจ๏ผŒ eq = sym.Eq(A1iT6[3] , A23456[3]) display(eq) # ใ‚’ๅพ—ใ‚‹๏ผŽ J1ใŒๆ—ข็ŸฅใฎใŸใ‚ไธŠๅผใฎๅทฆ่พบใ‚’LใจใŠใ sub = A1iT6[3] L = sym.symbols('L') eq = eq.subs(sub, L) display(sym.trigsimp(eq)) # S(J2)ใซใคใ„ใฆๆ•ด็†ใ™ใ‚‹ใจ๏ผŒ target = S(J_2) SJ2 = obs(eq, target)[0] # ใ“ใ“ใงS(J2)**2 + C(J2)**2 = 1 ใ‚ˆใ‚Š eq = sym.trigsimp(sym.Eq((SJ2**2+CJ2**2),1)) display(eq) display(sym.collect(sym.trigsimp(eq.expand()), [C(J_3),S(J_3)])) # ๆ–น็จ‹ๅผใ‚’J3ใซใคใ„ใฆ่งฃใใจ๏ผŒ target = J_3 sol_J3 = obs(eq, target) sol_L = L # + # Masahiro Furukawa # Aug, 21, 2020 # # refernce : https://qiita.com/JmpM/items/4bea4997aaf406cca3b4 sol_L = sub # J3 ใซๅฏพใ™ใ‚‹Cใ‚ฝใƒผใ‚นใ‚’ๅพ—ใ‚‹ code = sym.ccode(sub, assign_to=('L'), standard='C89') print("// constant L \n" + code + "\n") for ii in range(len(sol_J3)): code = sym.ccode(sol_J3[ii], assign_to=('J3'), standard='C89') print("// Solusion #"+ str(ii) +"\n" + code + "\n") # - # # J2 # ๆฌกใซ๏ผŒJ2ใซใคใ„ใฆ่งฃใ๏ผŽC(J2)ใซใคใ„ใฆ๏ผŒCJ2ใจใ—ใฆๅพ—ใ‚‰ใ‚Œใฆใ„ใ‚‹ใ‹ใ‚‰ใ“ใ‚Œใ‚‰ใฎๆ–น็จ‹ๅผใ‹ใ‚‰ไปฅไธ‹ใ‚’ๅพ—ใ‚‹๏ผŽ eq = sym.Eq(C(J_2), CJ2) display(eq) sol_J2 = obs(eq, J_2) # J2 ใซๅฏพใ™ใ‚‹Cใ‚ฝใƒผใ‚นใ‚’ๅพ—ใ‚‹ for ii in range(len(sol_J3)): code = sym.ccode(sol_J2[ii], assign_to=('J2'), standard='C89') print("// Solusion #"+ str(ii) +"\n" + code + "\n") # ไปฅไธŠใฎๅฐŽๅ‡บใ‹ใ‚‰ J1, J2, J3 ใŒๆฑ‚ใพใฃใŸ๏ผŽ # # J5 A3iA2iA1iT6 = A3i*A2i*A1i*T6 for idx in range(12): display(sym.simplify ( sym.expand( sym.Eq( A3iA2iA1iT6[idx], A456[idx])) ) ) # ไธŠ่จ˜ๅผใฎ็ฌฌ๏ผ‘๏ผ‘ๅผใฏ๏ผŒ idx=10 eq = sym.simplify ( sym.Eq( A3iA2iA1iT6[idx], A456[idx])) display(eq) sol_J5 = obs(eq, J_5) # J5 ใซๅฏพใ™ใ‚‹Cใ‚ฝใƒผใ‚นใ‚’ๅพ—ใ‚‹ for ii in range(len(sol_J5)): code = sym.ccode(sol_J5[ii], assign_to=('J5'), standard='C89') print("// Solusion #"+ str(ii) +"\n" + code + "\n") # # J4 # ไธŠ่จ˜ๅผใฎ็ฌฌ7ๅผใฏ๏ผŒ idx=6 eq = sym.simplify ( sym.Eq( A3iA2iA1iT6[idx], A456[idx])) display(eq) sol_J4 = obs(eq, J_4) # J4 ใซๅฏพใ™ใ‚‹Cใ‚ฝใƒผใ‚นใ‚’ๅพ—ใ‚‹ for ii in range(len(sol_J4)): code = sym.ccode(sol_J4[ii], assign_to=('J4'), standard='C89') print("// Solusion #"+ str(ii) +"\n" + code + "\n") # # J6 A5iA4iA3iA2iA1iT6 = A5i*A4i*A3i*A2i*A1i*T6 for idx in range(12): display(sym.simplify ( sym.expand( sym.Eq( A5iA4iA3iA2iA1iT6[idx], A6[idx])) ) ) # ไธŠ่จ˜ๅผใฎ็ฌฌ6ๅผใฏ๏ผŒ idx=5 eq = sym.simplify ( sym.Eq( A5iA4iA3iA2iA1iT6 [idx], A6[idx])) display(eq) sol_J6 = obs(eq, J_6) # J6 ใซๅฏพใ™ใ‚‹Cใ‚ฝใƒผใ‚นใ‚’ๅพ—ใ‚‹ for ii in range(len(sol_J6)): code = sym.ccode(sol_J6[ii], assign_to=('J6'), standard='C89') print("// Solusion #"+ str(ii) +"\n" + code + "\n") # ไปฅไธŠใ‹ใ‚‰ J4, J5, J6ใ‚’ๅพ—ใ‚‹๏ผŽ # # ๆจกๆ“ฌๅฎŸ้จ“ # + def substitute(f, j1,j2,j3,j4,j5,j6): # Link Length in [mm] a_1_ = 30.0 a_2_ = 120.0 a_3_ = 20.0 d_4_ = 129.0 # substitusion real value to variables f =f.subs([ (J_1, j1), (J_2, j2), (J_3, j3), (J_4, j4), (J_5, j5), (J_6, j6), (a_1, a_1_ ), (a_2 , a_2_), (a_3, a_3_), (d_4, d_4_) ]) f = sym.N(f) x.append(f[3]) y.append(f[7]) z.append(f[11]) return f def cal_FK(j1, j2, j3, j4, j5, j6): substitute(A1, j1, j2, j3, j4, j5, j6) substitute(A1*A2, j1, j2, j3, j4, j5, j6) substitute(A1*A2*A3, j1, j2, j3, j4, j5, j6) substitute(A1*A2*A3*A4, j1, j2, j3, j4, j5, j6) substitute(A1*A2*A3*A4*A5, j1, j2, j3, j4, j5, j6) # display(substitute(A1*A2*A3*A4*A5*A6, j1, j2, j3, j4, j5, j6) ) # test for FK x=[] y=[] z=[] # cal_FK(Pi/5,-Pi/4,-Pi/4,Pi/5,Pi/5,Pi/3) cal_FK(0,0,0,0,0,0) print(x) print(y) print(z) # # test for IK # N=[0, 0, 1] # O=[0,-1, 0] # A=[1, 0, 0] # P=[159,0,140] # # IK # (ij1, ij2, ij3, ij4, ij5, ij6) = cal_IK(N,O,A,P) # - # # ้ †้‹ๅ‹•ๅญฆใ‚ขใƒ‹ใƒกใƒผใ‚ทใƒงใƒณ # + # Masahiro Furukawa # Aug 23, 2020 # # %matplotlib inline ่กจ็คบใ ใจใ‚ขใƒ‹ใƒกใƒผใ‚ทใƒงใƒณใ—ใชใ„ # %matplotlib import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(9,9)) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(223) ax3 = fig.add_subplot(224) #, projection='3d' ax1.set_title("Top View (X-Y)") ax2.set_title("Front View (X-Z)") ax3.set_title("Right View (Y-Z)") def draw_(ax, x_, y_, a_=0.2): for i, X in enumerate(x_[:-1]): ax.plot([x_[i],x_[i+1]],[y_[i],y_[i+1]], "o-", color=plt.cm.tab10.colors[i], linewidth=2, markersize=3,alpha=a_) for i, X in enumerate(x_): s = ' ' + str(i) # ax.text(x_[i],y_[i], s, color="k") def draw(x,y,z,a_): # ๅณๆ‰‹็ณปไธ‰้ขๅ›ณ draw_(ax1,x,y,a_) draw_(ax2,x,z,a_) draw_(ax3,y,z,a_) def set_lim_(ax,lx,ly): ax.set_xlabel(lx) ax.set_ylabel(ly) ax.set_aspect('equal') ax.grid(True) def set_lim(): set_lim_(ax1,'X','Y') ax1.set_xlim([-400,400]) ax1.set_ylim([-400,400]) set_lim_(ax2,'X','Z') ax2.set_xlim([-400,400]) ax2.set_ylim([ -10,400]) set_lim_(ax3,'Y','Z') ax3.set_xlim([-400,400]) ax3.set_ylim([ -10,400]) set_lim() for i in range(10): # origin point x=[0] y=[0] z=[0] cal_FK(Pi/15*0, -Pi/20*i, -Pi/20, Pi/5,Pi/5,Pi/3) draw(x,y,z,float(i)/10) plt.pause(.5) # + # Masahiro Furukawa # Aug 23, 2020 # # %matplotlib inline # ่กจ็คบใ ใจใ‚ขใƒ‹ใƒกใƒผใ‚ทใƒงใƒณใ—ใชใ„ # %matplotlib import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(9,9)) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(223) ax3 = fig.add_subplot(224) #, projection='3d' ax1.set_title("Top View (X-Y)") ax2.set_title("Front View (X-Z)") ax3.set_title("Right View (Y-Z)") def cal_IK(n,o,a,p): sj1 = sym.N( sol_J1[0].subs([ (n_x,n[0]), (n_y,n[1]), (n_z,n[2]), (o_x,o[0]), (o_y,o[1]), (o_z,o[2]), (a_x,a[0]), (a_y,a[1]), (a_z,a[2]), (p_x,p[0]), (p_y,p[1]), (p_z,p[2]) , (a_1, a_1_ ), (a_2 , a_2_), (a_3, a_3_), (d_4, d_4_)])) ll = sym.N( sol_L.subs([ (n_x,n[0]), (n_y,n[1]), (n_z,n[2]), (o_x,o[0]), (o_y,o[1]), (o_z,o[2]), (a_x,a[0]), (a_y,a[1]), (a_z,a[2]), (p_x,p[0]), (p_y,p[1]), (p_z,p[2]) , (a_1, a_1_ ), (a_2 , a_2_), (a_3, a_3_), (d_4, d_4_), (J_1, sj1)])) sj3 = sym.N( sol_J3[1].subs([ (n_x,n[0]), (n_y,n[1]), (n_z,n[2]), (o_x,o[0]), (o_y,o[1]), (o_z,o[2]), (a_x,a[0]), (a_y,a[1]), (a_z,a[2]), (p_x,p[0]), (p_y,p[1]), (p_z,p[2]) , (L,ll),(a_1, a_1_ ), (a_2 , a_2_), (a_3, a_3_), (d_4, d_4_), (J_1, sj1), (L,ll)])) sj2 = sym.N( sol_J2[0].subs([ (n_x,n[0]), (n_y,n[1]), (n_z,n[2]), (o_x,o[0]), (o_y,o[1]), (o_z,o[2]), (a_x,a[0]), (a_y,a[1]), (a_z,a[2]), (p_x,p[0]), (p_y,p[1]), (p_z,p[2]) , (L,ll),(a_1, a_1_ ), (a_2 , a_2_), (a_3, a_3_), (d_4, d_4_), (J_1, sj1), (J_3, sj3)])) sj4 = sym.N( sol_J4[0].subs([ (n_x,n[0]), (n_y,n[1]), (n_z,n[2]), (o_x,o[0]), (o_y,o[1]), (o_z,o[2]), (a_x,a[0]), (a_y,a[1]), (a_z,a[2]), (p_x,p[0]), (p_y,p[1]), (p_z,p[2]) , (L,ll),(a_1, a_1_ ), (a_2 , a_2_), (a_3, a_3_), (d_4, d_4_), (J_1, sj1), (J_2, sj2), (J_3, sj3)])) sj5 = sym.N( sol_J5[0].subs([ (n_x,n[0]), (n_y,n[1]), (n_z,n[2]), (o_x,o[0]), (o_y,o[1]), (o_z,o[2]), (a_x,a[0]), (a_y,a[1]), (a_z,a[2]), (p_x,p[0]), (p_y,p[1]), (p_z,p[2]) , (L,ll),(a_1, a_1_ ), (a_2 , a_2_), (a_3, a_3_), (d_4, d_4_), (J_1, sj1), (J_2, sj2), (J_3, sj3), (J_4, sj4)])) sj6 = sym.N( sol_J5[0].subs([ (n_x,n[0]), (n_y,n[1]), (n_z,n[2]), (o_x,o[0]), (o_y,o[1]), (o_z,o[2]), (a_x,a[0]), (a_y,a[1]), (a_z,a[2]), (p_x,p[0]), (p_y,p[1]), (p_z,p[2]) , (L,ll),(a_1, a_1_ ), (a_2 , a_2_), (a_3, a_3_), (d_4, d_4_), (J_1, sj1), (J_2, sj2), (J_3, sj3), (J_4, sj4), (J_5, sj5)])) return (sj1, sj2, sj3, sj4, sj5, sj6) set_lim() for i in range(10): # origin point x=[0] y=[0] z=[0] N=[0, 0, 1] O=[0,-1, 0] A=[1, 0, 0] P=[200 ,0,110-11*i] # p_x = 159, P_z = 140 # IK (ij1, ij2, ij3, ij4, ij5, ij6) = cal_IK(N,O,A,P) # FK cal_FK(ij1, ij2, ij3, ij4, ij5, ij6) draw(x,y,z,float(i)/10) # plt.pause(.5) plt.show()
14,398
/.ipynb_checkpoints/Lesson10 File IO-checkpoint.ipynb
6300fa0b312aea569ecf58d205c00beb664a91d6
[ "Apache-2.0" ]
permissive
fzhcary/TCEF_Python_2021
https://github.com/fzhcary/TCEF_Python_2021
1
0
null
null
null
null
Jupyter Notebook
false
false
.py
339,316
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="view-in-github" colab_type="text" # <a href="https://colab.research.google.com/github/gabselbach/TCC-implementacoes/blob/master/AcentuaF%C3%A1cil.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # + [markdown] id="h1S30k1xK4FS" # # import # + id="9sIveSgeK0Xx" # !pip3 install Dicio import os import re import pandas as pd import time import requests import spacy import nltk from spacy.tokenizer import Tokenizer from bs4 import BeautifulSoup from unicodedata import normalize from re import match as re_match from re import compile as re_compile import spacy import spacy.cli import ast from dicio import Dicio dicio = Dicio() nltk.download('stopwords') spacy.cli.download('pt_core_news_sm') nlp = spacy.load("pt_core_news_sm") from openpyxl.workbook import Workbook nltk.download('stopwords') # !pip install python-Levenshtein from Levenshtein import distance # + [markdown] id="7s1OGAnDLCjI" # # busca no DICIO # + id="OOmuh1ZRLE--" def isdigit(s): comp = re_compile("^\d+?\.\d+?$") if comp.match(s) is None: return s.isdigit() return True def faz_busca2(token): acento = re.compile('ร |[รก-รบ]|รช|รด|รฃ|รต|รญ') dataNova = [] for k in token: t = 0 busca = k.lower() if(len(busca) > 2 and (not isdigit(busca))): busca = re.sub("[?|;|,*|.*]", "", busca) page = requests.get('https://www.dicio.com.br/'+busca+'/') soup = BeautifulSoup(page.text, 'html.parser') pDicio = soup.find('h1').text if(not acento.search(pDicio) or pDicio==busca or pDicio.lower()=="nรฃo encontrada"): temp = { 'PALAVRAANT': k.lower(), 'PALAVRADICIO': pDicio.lower(), 'SILABA':'', 'CLASSE': '', 'FORTE': '', 'MONOSSILABA': 0, 'ACENTO': 0, 'CORREC':0, 'TIPOCORREC':0, 'EXCEร‡AO':0, 'REGRAVERB':0, 'REGRANaoVERB': 0 } dataNova.append(temp) else: texto = soup.find_all('p', {'class': 'adicional'}) try: n = re.search(r"silรกbica: .+</b>", str(texto)) if(n == None): temp = { 'PALAVRAANT': k.lower(), 'PALAVRADICIO': pDicio.lower(), 'SILABA': 'FALTA', 'CLASSE': '', 'FORTE': '', 'MONOSSILABA': 0, 'ACENTO': 1, 'CORREC': 0, 'TIPOCORREC': 'DICIO+SEPARADOR', 'EXCEร‡AO': 0, 'REGRAVERB': 0, 'REGRANaoVERB': 0 } dataNova.append(temp) else: novo = str(re.sub('<[^>]+?>', '', n.group(0))).split(':') silaba = novo[1] silsepara = silaba.split('-') if(len(silsepara) == 1): mono = 1 else: mono = 0 oxi = '' paro = '' propa = '' classe = '' forte = '' aux = 0 for j in range(len(silsepara)-1, -1, -1): aux += 1 if(acento.search(silsepara[j]) and aux == 1): classe = 'oxรญtona' forte = silsepara[j] elif(acento.search(silsepara[j]) and aux == 2): classe = 'paroxรญtona' forte = silsepara[j] elif(acento.search(silsepara[j]) and aux == 3): classe = 'proparoxรญtona' forte = silsepara[j] temp = { 'PALAVRAANT': k.lower(), 'PALAVRADICIO': pDicio.lower(), 'SILABA': silaba, 'CLASSE': classe, 'FORTE': forte, 'MONOSSILABA': mono, 'ACENTO': 1, 'CORREC': 1, 'TIPOCORREC': 'dicionรกrio', 'EXCEร‡AO': 0, 'REGRAVERB': 0, 'REGRANaoVERB': 0 } dataNova.append(temp) except: print("") else: temp = { 'PALAVRAANT': k.lower(), 'PALAVRADICIO': 'NAN', 'SILABA': '', 'CLASSE': '', 'FORTE': '', 'MONOSSILABA': '', 'ACENTO': 0, 'CORREC': 0, 'TIPOCORREC': 'NAN', 'EXCEร‡AO': 0, 'REGRAVERB': 0, 'REGRANaoVERB': 0 } dataNova.append(temp) return dataNova # + [markdown] id="rUS4rdtcLF9z" # # busca no VOP # + id="P5zRJc3nLKeo" def faz_busca(token): dataNova = [] valorTime = 0 count = 0 acento = re.compile('ร |[รก-รบ]|รช|รด|รฃ|รต|รญ') for k in token: t = 0 busca = normalize('NFKD', str(k).lower()).encode( 'ASCII', 'ignore').decode('ASCII') if(len(busca) > 2 and (not isdigit(busca))): page = requests.get( 'http://www.portaldalinguaportuguesa.org/index.php?action=syllables&act=list&search='+busca) soup = BeautifulSoup(page.text, 'html.parser') palavras = soup.find_all('td', {'title': 'Palavra'}) classe = '' if(not palavras or len(k) == 1): temp = { 'PALAVRAANT': k.lower(), 'PALAVRAVOP': 'NAN', 'SILABA': 'NAN', 'CLASSE': 'NAN', 'FORTE': 'NAN', 'MONOSSILABA': 0, 'ACENTO': 1, 'CORREC':0, 'TIPOCORREC':'' } dataNova.append(temp) else: aux = 0 for i in palavras: link = re.sub('<[^>]+?>', '', str(i.find('a'))) pala = i.text.replace(" ", '').split('\n')[0] palavraNormalizada = normalize('NFKD', link).encode( 'ASCII', 'ignore').decode('ASCII').lower() if(palavraNormalizada == busca): if(not acento.search(str(link)) or k.lower()==str(link).lower()): t = 1 temp = { 'PALAVRAANT': k.lower(), 'PALAVRAVOP': 'NAN', 'SILABA': 'NAN', 'CLASSE': 'NAN', 'FORTE': 'NAN', 'MONOSSILABA': 0, 'ACENTO': 0, 'CORREC':0, 'TIPOCORREC':'' } dataNova.append(temp) break forte = re.sub('<[^>]+?>', '', str(i.find('u'))) silaba = pala.split(')')[1] silsepara = silaba.split('ยท') if(len(silsepara) == 1): mono = 1 else: mono = 0 oxi = '' paro = '' propa = '' for j in range(len(silsepara)-1, -1, -1): if(aux == 0): oxi = silsepara[j] + oxi elif(aux == 1): paro = silsepara[j] + paro elif(aux == 2): propa = silsepara[j] + propa aux += 1 if(oxi == forte): classe = 'oxรญtona' elif(paro == forte): classe = 'paroxรญtona' elif(propa == forte): classe = 'proparoxรญtona' temp = { 'PALAVRAANT': k.lower(), 'PALAVRAVOP': link.lower(), 'SILABA': silaba, 'CLASSE': classe, 'FORTE': normalize('NFKD', str(forte)).encode('ASCII', 'ignore').decode('ASCII'), 'MONOSSILABA': mono, 'ACENTO': 1, 'CORREC':1, 'TIPOCORREC':'dicionรกrio' } dataNova.append(temp) t = 1 break if(t == 1): break if(t != 1): temp = { 'PALAVRAANT': k.lower(), 'PALAVRAVOP': 'NAN', 'SILABA': 'NAN', 'CLASSE': 'NAN', 'FORTE': 'NAN', 'MONOSSILABA': 0, 'ACENTO': 1, 'CORREC':0, 'TIPOCORREC':'' } dataNova.append(temp) else: if(isdigit(busca)): x = 1 else: temp = { 'PALAVRAANT': k.lower(), 'PALAVRAVOP': 'NAN', 'SILABA': 'NAN', 'CLASSE': 'NAN', 'FORTE': 'NAN', 'MONOSSILABA': 0, 'ACENTO': 0, 'CORREC':0, 'TIPOCORREC':'' } dataNova.append(temp) return dataNova # + [markdown] id="a4lex5EVLRDV" # # crawler para o seaparador e funรงรฃo para pegar a sรญlaba forte # + id="4CfMS14vLe1-" def separador(dicionario): for (l,row) in dicionario.iterrows(): if(row['SILABA']=='FALTA' and (row['PALAVRADICIO']!='NAN' and row['PALAVRADICIO']!='nรฃo encontrada') ): page = requests.get("https://www.separaremsilabas.com/index.php?lang=index.php&p="+row['PALAVRADICIO']+"&button="+"Separa%C3%A7%C3%A3o+das+s%C3%ADlabas") soup = BeautifulSoup(page.text, 'html.parser') texto = str(soup.find('font', {'color': '#0018BF'})) texto = re.sub('<[^>]+?>', '',texto) dicionario.at[l,'SILABA']=texto dicionario.at[l,'ACENTO']=1 dicionario.at[l,'CORREC']=1 dicionario.at[l,'TIPOCORREC']='dicionario+separador' temp = pegaForte(texto) dicionario.at[l,'CLASSE']=temp['classe'] dicionario.at[l,'FORTE']=temp['forte'] return dicionario # + id="yFIaAZ1ZLgFr" def pegaForte(silaba): acento = re.compile('ร |[รก-รบ]|รช|รด|รฃ|รต|รญ') silsepara = silaba.split('-') oxi = '' paro = '' propa = '' forte='' classe='' aux=0 for j in range(len(silsepara)-1, -1, -1): aux += 1 if(acento.search(silsepara[j]) and aux==1): classe = 'oxรญtona' forte = silsepara[j] elif(acento.search(silsepara[j]) and aux==2): classe = 'paroxรญtona' forte = silsepara[j] elif(acento.search(silsepara[j]) and aux==3): classe = 'proparoxรญtona' forte = silsepara[j] t = { 'forte':forte, 'classe':classe } return t
12,248
/lab16thorello/analisi.ipynb
52f97c4889ef840720b369430987919d66798efd
[ "MIT" ]
permissive
grigolet/laboratorio-plasmi-I
https://github.com/grigolet/laboratorio-plasmi-I
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
364,903
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import matplotlib.pyplot as plt import numpy as np from utilities import * import pprint pp = pprint.PrettyPrinter(indent=4) # %matplotlib inline # ## Caratteristica filamento # # Come si puรฒ osservare dal grafico sotto il filamento non presenta una caratteristica lineare. Non รจ possibile stimare una resistenza vera e propria, perchรจ varia al variare della corrente fornita. # Cause: # # * riscaldamento del filamento? plot_data('data/R_Filamento_15122016.txt', x_label='I(A)', y_label='V(V)', title='Caratteristica filamento') # ## Caratteristica del plasma e grafico di isteresi # # Mostriamo le varie curve ottenute in laboratorio # + annotation_1 = """ $I_{bobina}$ = 10 A $V_{bobina}$ = 3 V $I_{filamento}$ = 60 A $V_{filamento}$ = 15.35 V P = 3.2e-4 mbar """ annotation_2 = """ $I_{bobina}$ = 253 A $V_{bobina}$ = 61.2 V $I_{filamento}$ = 60 A $V_{filamento}$ = 15.10 V P = 3.1e-4 mbar """ annotation_3 = """ $I_{bobina}$ = 550 A $V_{bobina}$ = 137.7 V $I_{filamento}$ = 60 A $V_{filamento}$ = 15.10 V P = 3.6e-4 mbar """ annotation_4 = """ $I_{scarica}$ = 0.94 A $V_{scarica}$ = 100 V $I_{filamento}$ = ? A $V_{filamento}$ = ? V P = 3.2e-4 mbar """ caratteristica_1 = plot_caratteristica_plasma('data/00115122016_discesa.txt', 'data/00115122016_salita.txt', title='Caratteristica di plasma', notes=annotation_1) caratteristica_2 = plot_caratteristica_plasma('data/00215122016_discesa.txt', 'data/00215122016_salita.txt', title='Caratteristica di plasma', notes=annotation_2) caratteristica_3 = plot_caratteristica_plasma('data/00315122016_discesa.txt', 'data/00315122016_salita.txt', title='Caratteristica di plasma', notes=annotation_3) caratteristica_4 = plot_caratteristica_plasma('data/00415122016_discesa.txt', 'data/00415122016_salita.txt', title='Caratteristica di campo', x_label='$B_{campo}(A)$', y_label='$I_{plasma} (A)$', notes=annotation_4) # -
2,382
/Part2.ipynb
75e51e33dcc26fd170a90477c636eafeee48239e
[]
no_license
fairfield-university-ba505-fall2018/healthstats-project-parts-1-to-4-Kerry-Clarke
https://github.com/fairfield-university-ba505-fall2018/healthstats-project-parts-1-to-4-Kerry-Clarke
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
12,195
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Health Stats Part 2: Dictionaries # <!--- Paste in your explanation of Waist-to-Hip ratios from Part 1. ---> # EDIT THIS MARKDOWN CELL # ## Source Data # <!--- Paste in your data definitions from Part 1. Then Try to organize them into a table in Markdown. ---> # EDIT THIS MARKDOWN CELL # ## Data Import # + # Goal: Extract the data from the file # opens the w2h_data.csv for reading f = open("w2h_data.csv", "r") # loads the file into a list of strings, one string per line raw_lines = list(f) # closes the file f.close() # + # Goal: Scrub and convert the data, loading it into a new list called rows # Strips out newline '\n' characters and converts to a list raw_rows = [r.rstrip('\n').split(',') for r in raw_lines] # <--- Whoa. Why does this work? # Creates a new list, starting with just the column names rows = list() rows.append(raw_rows[0]); # Convert each row_row, starting with the second columns = ["ID", "Waist", "Hip", "Gender"] for raw_row in raw_rows[1:]: # Note: the values in the raw_row list are all strings. # Create a new list called row that converts each item in raw_row to the right data type row = [int(raw_row[0]),int(raw_row[1]),int(raw_row[2]),raw_row[3]] record = dict(zip(columns, row)) # Append the new row to the rows list rows.append(record) # from here on out use the rows list instead of raw_rows or raw_lines rows # - # ## Calculations # + # Goal: For each row of data calculate and store the w2h_ratio and shape. # For each row in the rows list, calculate the waist to hips ratio and shape for row in rows[1:]: # Calculate the w2h_ratio w2h_ratio = float(row["Waist"])/float(row["Hip"]) # Based on the ratio and the gender, set the variable shape to either 'apple' or 'pear' if ((row["Gender"]=='M' and w2h_ratio > 0.9) or (row["Gender"] == 'F' and w2h_ratio > 0.8)) : shape = "Apple" else: shape = "Pear" # Add the new data to the end of the row row ["w2h_ratio"] = w2h_ratio row ["shape"] = shape # note: += is shorthand for the extend method used above rows # - # ## Output # + # Goal: pretty print the rows as an HTML table # Note: this works, but we can do this much better with pandas html_table = '<table><tr><th>' html_table += "</th><th>".join(rows[0]) html_table += '</th></tr>' for row in rows[1:]: html_table += "<tr><td>" html_table += "</td><td>".join(str(col) for col in row.values()) html_table += "</td></tr>" html_table += "</table>" from IPython.display import HTML, display display(HTML(html_table)) # - = string.punctuation.replace('%', '') dataset["lowercase_cleaned"] = dataset[colname].apply(lambda words: ' '.join(word.lower().translate(str.maketrans(string.punctuation, ' '*len(string.punctuation))) for word in words.split())) dataset["lowercase_cleaned"] = dataset["lowercase_cleaned"].str.replace('\d+', '') return dataset #retrieving pos for the words and lemmatisation def retreive_pos_wordnet(sentence): lemmatizer = nltk.stem.WordNetLemmatizer() sentence = ' '.join(word.lower().translate(str.maketrans(string.punctuation, ' '*len(string.punctuation))) for word in sentence.split()) list_words = sentence.split() final_list = [] for i in range (len(list_words)): tag = nltk.pos_tag(list_words)[i][1][0].upper() tag_dict = {"J": wordnet.ADJ, "N": wordnet.NOUN, "V": wordnet.VERB, "R": wordnet.ADV} final_tag = tag_dict.get(tag, wordnet.NOUN) lemmatized_word = lemmatizer.lemmatize(list_words[i],final_tag) final_list.append([list_words[i],final_tag,lemmatized_word]) return final_list # function to remove stop words and words with length < 3 def remove_stop_words_from_pos(pos_input_list): return_list = [] stop = stopwords.words('english') for pos in pos_input_list: if (pos[2] not in stop and (len(pos[2])>2 or pos[2]=="%%")): return_list.append(pos) return return_list # function to clean dictionary def lemmatize_sentences(sentence): lemmatizer = nltk.stem.WordNetLemmatizer() sentence = ' '.join(word.lower().translate(str.maketrans(string.punctuation, ' '*len(string.punctuation))) for word in sentence.split()) list_words = sentence.split() lemmatize_words = '' for i in range (len(list_words)): tag = nltk.pos_tag(list_words)[i][1][0].upper() tag_dict = {"J": wordnet.ADJ, "N": wordnet.NOUN, "V": wordnet.VERB, "R": wordnet.ADV} final_tag = tag_dict.get(tag, wordnet.NOUN) lemmatize_words += " " + lemmatizer.lemmatize(list_words[i],final_tag) return lemmatize_words.strip() def getLemmaExamplesFromSenseDict(word_pos, sense): word_pos = word_pos.strip() lemmaSenseKey = word_pos+ "_"+sense.get('id') sense_examples = "" if (lemmaSenseKey in SenseLemmaDictionary): sense_examples = SenseLemmaDictionary.get(lemmaSenseKey) else: sense_examples = ( lemmatize_sentences(sense.get('gloss').lower()) + " | " + ('.'.join(lemmatize_sentences(sentence.lower()) for sentence in sense.get('examples').split("."))) ) SenseLemmaDictionary[lemmaSenseKey] = sense_examples return sense_examples def getLemmaExamplesFromCorpusSenseDict(word_pos, sense): word_pos = word_pos.strip() lemmaSenseKey = word_pos+ "_"+sense.get('id') sense_examples = "" if (lemmaSenseKey in SenseLemmaCorpusDictionary): sense_examples = SenseLemmaCorpusDictionary.get(lemmaSenseKey) else: sense_examples = ( lemmatize_sentences(sense.get('gloss').lower()) + " | " + ('.'.join(lemmatize_sentences(sentence.lower()) for sentence in sense.get('examples').split("."))) ) SenseLemmaCorpusDictionary[lemmaSenseKey] = sense_examples return sense_examples # - # Model 1 : Simple lesk Algorithm def calculate_sense_model_one(target_word, pos_data): print(target_word) target_data = target_word.split(".") senses = getSenses(target_data[0].strip(), target_data[1].strip()) score_map = {} pos_sentence = [] for pos_word in pos_data: pos_sentence.append(pos_word[2]) for sense in senses: sense_score = 0 sense_examples = getLemmaExamplesFromSenseDict(target_word, sense) sense_example_words = sense_examples.split() common = set(sense_example_words).intersection( set(pos_sentence) ) score_map[sense.get('id')] = len(common) key_max = max(score_map, key=score_map.get) return key_max # + # Model 2 : Orginal lesk Algorithm def limitizeContextMapModelTwo(context_sense): dictionary_examples = "" for context_data in context_sense: for sense_data in context_data[2]: #dictionary_examples += lemmatize_sentences(sense_data.get('gloss').lower())+ " | " + lemmatize_sentences(sense_data.get('examples').lower()) dictionary_examples += getLemmaExamplesFromSenseDict(context_data[1], sense_data) return dictionary_examples def getContextDictModelTwo(target_data, pos_data, corpus=False): context_sense = [] target_sense = [] sentence = pos_data sentence_length = len(sentence) target_word = target_data.split(".")[0] target_pos = target_data.split(".")[1] for k in range(len(sentence)): if sentence[k][0] == "%%": target_index = k-1 targetWord = sentence[target_index][0] break i = target_index-2 j = target_index+2 k = 0 while((i>=0 or j<len(sentence)) and k<30): if(i>=0 and len(sentence[i][2].strip())>= 3 and sentence[i][2].strip() != target_word): context_word = sentence[i][2].strip() context_pos = sentence[i][1].strip() if(corpus): sense = getNewSenses(context_word,context_pos) else: sense = getSenses(context_word,context_pos) if len(sense) >= 1: context_sense.append([targetWord,context_word+"."+context_pos,sense, target_index-i]) if(j<len(sentence) and len(sentence[j][2].strip())>= 3 and sentence[j][2].strip() != target_word): context_word = sentence[j][2].strip() context_pos = sentence[j][1].strip() if(corpus): sense = getNewSenses(context_word,context_pos) else: sense = getSenses(context_word,context_pos) if len(sense) >= 1: context_sense.append([target_word,context_word+"."+context_pos,sense, j-target_index]) i = i-1 j = j+1 k = k+1 return context_sense def calculateSenseIdModelTwo(target_word_pos, pos_without_stopwords): print(target_word_pos) target_word_details = target_word_pos.split(".") target_senses = getSenses(target_word_details[0].strip(), target_word_details[1].strip()) score_map = {} context_sentence = limitizeContextMapModelTwo(getContextDictModelTwo(target_word_pos, pos_without_stopwords)) for sense in target_senses: #sense_examples = lemmatize_sentences(sense.get('gloss').lower())+ " | " + lemmatize_sentences(sense.get('examples').lower()) sense_examples = getLemmaExamplesFromSenseDict(target_word_pos.strip(), sense) sense_example_words = sense_examples.split() context_example_words = context_sentence.split() common = set(sense_example_words).intersection( set(context_example_words) ) context_score = len(common) score_map[sense.get('id')] = context_score key_max = max(score_map, key=score_map.get) return key_max # + # Model 3 + 5 : Advance original lesk Algorithm with and without corpus lesk def getContextClassificationModel3(context_sense, corpus=False): context_classification = {} for context_data in context_sense: dictionary_examples = "" context_interval = int(context_data[3]/5) for sense_data in context_data[2]: if (corpus): dictionary_examples += getLemmaExamplesFromCorpusSenseDict(context_data[1], sense_data) else: dictionary_examples += getLemmaExamplesFromSenseDict(context_data[1], sense_data) if(context_interval in context_classification): dictionary_examples = context_classification.get(context_interval) + dictionary_examples context_classification[context_interval] = dictionary_examples return context_classification def calculateSenseIdModel3(target_word_pos, pos_without_stopwords, corpus=False): print(target_word_pos) target_word_details = target_word_pos.split(".") if(corpus): target_senses = getNewSenses(target_word_details[0].strip(), target_word_details[1].strip()) else: target_senses = getSenses(target_word_details[0].strip(), target_word_details[1].strip()) score_map = {} context_classification = getContextClassificationModel3(getContextDictModelTwo(target_word_pos, pos_without_stopwords, corpus), corpus) for sense in target_senses: sense_score = 0 if (corpus): sense_examples = getLemmaExamplesFromCorpusSenseDict(target_word_pos.strip(), sense) else: sense_examples = getLemmaExamplesFromSenseDict(target_word_pos.strip(), sense) for context_level in context_classification: sense_example_words = sense_examples.split() context_example_words = context_classification.get(context_level).split() common = set(sense_example_words).intersection( set(context_example_words) ) context_score = len(common)*(6-int(context_level)+1) sense_score += context_score score_map[sense.get('id')] = sense_score key_max = max(score_map, key=score_map.get) return key_max # - # Model 4: Corpus lesk using simple algorithm def calculate_sense_corpus_model_one(target_word, pos_data): print(target_word) target_data = target_word.split(".") senses = getNewSenses(target_data[0].strip(), target_data[1].strip()) score_map = {} pos_sentence = [] for pos_word in pos_data: pos_sentence.append(pos_word[2]) for sense in senses: sense_score = 0 sense_examples = getLemmaExamplesFromCorpusSenseDict(target_word, sense) sense_example_words = sense_examples.split() common = set(sense_example_words).intersection( set(pos_sentence) ) score_map[sense.get('id')] = len(common) key_max = max(score_map, key=score_map.get) return key_max # + # Calculating accuracies of all models def calculate_accuracy(dataframe, column_name): accuracy_number = 0 i=0 for index, row in dataframe.iterrows(): if(int(row['Sense_ID'])==int(row[column_name])): accuracy_number += 1 i += 1 return ((accuracy_number/i)*100) # Exporting to CSV def exportToCSV(input_data_frame, csv_path): tmp_df = input_data_frame.drop(['Sentence', 'lowercase_cleaned', 'pos_data'], axis=1) tmp_df.to_csv(csv_path, index = False) # - # Main function if __name__ == "__main__": global Tree global TreeNew global SenseLemmaDictionary global SenseLemmaCorpusDictionary SenseLemmaDictionary = {} SenseLemmaCorpusDictionary = {} # Read the dictionary file - original Parser = objectify.makeparser(recover=True) Tree = objectify.fromstring(''.join(open('dictionary.xml').readlines()), Parser) #read test data train_data = pd.read_csv (r'C:\Users\ritu2\Desktop\UIC MSBA\Sem 2\Text Analytics\Assignments\Assignment 2\train.data',header=None,delimiter = "|") test_data = pd.read_csv (r'C:\Users\ritu2\Desktop\UIC MSBA\Sem 2\Text Analytics\Assignments\Assignment 2\test.data',header=None,delimiter = "|") validation_data = pd.read_csv (r'C:\Users\ritu2\Desktop\UIC MSBA\Sem 2\Text Analytics\Assignments\Assignment 2\validate.data',header=None,delimiter = "|") #rename columns for all the datasets train_data_new = rename_columns(train_data) test_data_new = rename_columns(test_data) validation_data_new = rename_columns(validation_data) #create new dictionary newDictionary() ParserNew = objectify.makeparser(recover=True) TreeNew = objectify.fromstring(''.join(open('new_dictionary.xml').readlines()), ParserNew) ################################# Validation data ################################### # validation set cleaning process method_one_validation_df = validation_data_new method_one_validation_df = lowercase_cleaned_data(method_one_validation_df, 'Sentence') method_one_validation_df["pos_data"] = method_one_validation_df['lowercase_cleaned'].apply(lambda sentence: retreive_pos_wordnet(sentence)) method_one_validation_df["pos_data"] = method_one_validation_df["pos_data"].apply(lambda pos_data_list: remove_stop_words_from_pos(pos_data_list)) # Model 1 - Simple lesk method_one_validation_df['simple_lesk_sense_id'] = method_one_validation_df.apply(lambda x: calculate_sense_model_one(x['Target_Word'], x['pos_data']), axis=1) # Model 2 - Original Lesk method_two_validation_df = method_one_validation_df method_two_validation_df['original_lesk_sense_id'] = method_two_validation_df.apply(lambda x: calculateSenseIdModelTwo(x['Target_Word'], x['pos_data']), axis=1) # Model 3 - Advance original lesk method_three_validation_df = method_two_validation_df method_three_validation_df['adv_original_lesk_sense_id'] = method_three_validation_df.apply(lambda x: calculateSenseIdModel3(x['Target_Word'], x['pos_data']), axis=1) # Model 4 - Corpus lesk method_four_validation_df = method_three_validation_df method_four_validation_df['corpus_lesk_sense_id'] = method_four_validation_df.apply(lambda x: calculate_sense_corpus_model_one(x['Target_Word'], x['pos_data']), axis=1) # Model 5 - Adv Corpus lesk method_five_validation_df = method_four_validation_df method_five_validation_df['adv_corpus_lesk_sense_id'] = method_five_validation_df.apply(lambda x: calculateSenseIdModel3(x['Target_Word'], x['pos_data'], True), axis=1) print("Accuracy of validation data for simple_lesk: " + str(calculate_accuracy(method_one_validation_df, "simple_lesk_sense_id"))) print("Accuracy of validation data for original_lesk: " + str(calculate_accuracy(method_two_validation_df, "original_lesk_sense_id"))) print("Accuracy of validation data for adv_original_lesk: " + str(calculate_accuracy(method_three_validation_df, "adv_original_lesk_sense_id"))) print("Accuracy of validation data for corpus_lesk: " + str(calculate_accuracy(method_four_validation_df, "corpus_lesk_sense_id"))) print("Accuracy of validation data for adv_corpus_lesk: " + str(calculate_accuracy(method_five_validation_df, "adv_corpus_lesk_sense_id"))) # Export validation results to CSV exportToCSV(method_five_validation_df, r'C:\Users\ritu2\Desktop\UIC MSBA\Sem 2\Text Analytics\Assignments\Assignment 2\validation_results.csv') ################################### Test data ###################################### # test set cleaning process method_one_test_df = test_data_new method_one_test_df = lowercase_cleaned_data(method_one_test_df, 'Sentence') method_one_test_df["pos_data"] = method_one_test_df['lowercase_cleaned'].apply(lambda sentence: retreive_pos_wordnet(sentence)) method_one_test_df["pos_data"] = method_one_test_df["pos_data"].apply(lambda pos_data_list: remove_stop_words_from_pos(pos_data_list)) # Model 1 - Simple Lesk method_one_test_df['simple_lesk_sense_id'] = method_one_test_df.apply(lambda x: calculate_sense_model_one(x['Target_Word'], x['pos_data']), axis=1) # Model 2 - Original Lesk method_two_test_df = method_one_test_df method_two_test_df['original_lesk_sense_id'] = method_two_test_df.apply(lambda x: calculateSenseIdModelTwo(x['Target_Word'], x['pos_data']), axis=1) # Model 3 - Advance original lesk method_three_test_df = method_two_test_df method_three_test_df['adv_original_lesk_sense_id'] = method_three_test_df.apply(lambda x: calculateSenseIdModel3(x['Target_Word'], x['pos_data']), axis=1) # Model 4 - Corpus lesk method_four_test_df = method_three_test_df method_four_test_df['corpus_lesk_sense_id'] = method_four_test_df.apply(lambda x: calculate_sense_corpus_model_one(x['Target_Word'], x['pos_data']), axis=1) # Model 5 - Adv Corpus lesk method_five_test_df = method_four_test_df method_five_test_df['adv_corpus_lesk_sense_id'] = method_five_test_df.apply(lambda x: calculateSenseIdModel3(x['Target_Word'], x['pos_data'], True), axis=1) # Export validation results to CSV exportToCSV(method_five_test_df, r'C:\Users\ritu2\Desktop\UIC MSBA\Sem 2\Text Analytics\Assignments\Assignment 2\test_data_results.csv') ################################### Training data ###################################### # train data cleaning process method_one_train_df = train_data_new method_one_train_df = lowercase_cleaned_data(method_one_train_df, 'Sentence') method_one_train_df["pos_data"] = method_one_train_df['lowercase_cleaned'].apply(lambda sentence: retreive_pos_wordnet(sentence)) method_one_train_df["pos_data"] = method_one_train_df["pos_data"].apply(lambda pos_data_list: remove_stop_words_from_pos(pos_data_list)) # Model 1 - Simple Lesk method_one_train_df['simple_lesk_sense_id'] = method_one_train_df.apply(lambda x: calculate_sense_model_one(x['Target_Word'], x['pos_data']), axis=1) # Model 2 - Original Lesk method_two_train_df = method_one_train_df method_two_train_df['original_lesk_sense_id'] = method_two_train_df.apply(lambda x: calculateSenseIdModelTwo(x['Target_Word'], x['pos_data']), axis=1) # Model 3 - Advance original lesk method_three_train_df = method_two_train_df method_three_train_df['adv_original_lesk_sense_id'] = method_three_train_df.apply(lambda x: calculateSenseIdModel3(x['Target_Word'], x['pos_data']), axis=1) # Calculating accuracies of training data print("Accuracy of training data for simple_lesk: " + str(calculate_accuracy(method_one_train_df, "simple_lesk_sense_id"))) print("Accuracy of training data for original_lesk: " + str(calculate_accuracy(method_two_train_df, "original_lesk_sense_id"))) print("Accuracy of training data for adv_original_lesk: " + str(calculate_accuracy(method_three_train_df, "adv_original_lesk_sense_id"))) # Export validation results to CSV exportToCSV(method_three_train_df, r'C:\Users\ritu2\Desktop\UIC MSBA\Sem 2\Text Analytics\Assignments\Assignment 2\training_data_results.csv')
21,493
/ะะปะณะพั€ะธั‚ะผั‹ ะฐะฝะฐะปะธะทะฐ ะดะฐะฝะฝั‹ั…/Lesson5.ipynb
3b5f265369cff5253b28eb436d2e8c94fb7ae22e
[]
no_license
TataMoskovkina/GeekUniversity
https://github.com/TataMoskovkina/GeekUniversity
0
0
null
2020-03-13T22:14:00
2020-03-10T21:28:23
Jupyter Notebook
Jupyter Notebook
false
false
.py
290,185
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + [markdown] colab_type="text" id="q0Z7pb2vbIWg" # # ะฃั€ะพะบ 5. ะกะปัƒั‡ะฐะนะฝั‹ะน ะปะตั # - # ### 1) ะคะพั€ะผะธั€ะพะฒะฐะฝะธั ะฒั‹ะฑะพั€ะบะธ - bootstrap # ![img/bootstrap.jpg](img/bootstrap.jpg) # # # ### 2) ะŸะพัั‚ั€ะพะตะฝะธะต ะบะพะผะฟะพะทะธั†ะธะธ ะฐะปะณะพั€ะธั‚ะผะพะฒ - bagging # ![img/bagging.png](img/bagging.png) # # # ### Random Forest == bagging ะฝะฐ ั€ะตัˆะฐัŽั‰ะธั… ะดะตั€ะตะฒัŒัั… # + colab={} colab_type="code" id="ZNR-FOeobIWs" import matplotlib.pyplot as plt import random from matplotlib.colors import ListedColormap from sklearn import datasets import numpy as np # + colab={} colab_type="code" id="m4Mb7omZbIWw" # ัะณะตะฝะตั€ะธั€ัƒะตะผ ะดะฐะฝะฝั‹ะต, ะฟั€ะตะดัั‚ะฐะฒะปััŽั‰ะธะต ัะพะฑะพะน 500 ะพะฑัŠะตะบั‚ะพะฒ ั 5-ัŽ ะฟั€ะธะทะฝะฐะบะฐะผะธ classification_data, classification_labels = datasets.make_classification(n_samples=500, n_features = 5, n_informative = 5, n_classes = 2, n_redundant=0, n_clusters_per_class=1, random_state=23) # + colab={} colab_type="code" id="2R53TJClbIWz" outputId="ff9cd4bc-207b-4b32-8efd-772e9af6868d" # ะฒะธะทัƒะฐะปะธะทะธั€ัƒะตะผ ัะณะตะฝะตั€ะธั€ะพะฒะฐะฝะฝั‹ะต ะดะฐะฝะฝั‹ะต colors = ListedColormap(['red', 'blue']) light_colors = ListedColormap(['lightcoral', 'lightblue']) plt.figure(figsize=(8,8)) plt.scatter(list(map(lambda x: x[0], classification_data)), list(map(lambda x: x[1], classification_data)), c=classification_labels, cmap=colors); # + [markdown] colab_type="text" id="L9ZdDJGvbIW8" # ะŸะพะฒั‚ะพั€ะธะผ ั€ะตะฐะปะธะทะฐั†ะธัŽ ะฟะพัั‚ั€ะพะตะฝะธั ะดะตั€ะตะฒะฐ ั€ะตัˆะตะฝะธะน ะธะท ะฟั€ะตะดั‹ะดัƒั‰ะตะณะพ ัƒั€ะพะบะฐ # + colab={} colab_type="code" id="AGdBq1lbbIW9" # ะ ะตะฐะปะธะทัƒะตะผ ะบะปะฐัั ัƒะทะปะฐ class Node: def __init__(self, index, t, true_branch, false_branch): self.index = index # ะธะฝะดะตะบั ะฟั€ะธะทะฝะฐะบะฐ, ะฟะพ ะบะพั‚ะพั€ะพะผัƒ ะฒะตะดะตั‚ัั ัั€ะฐะฒะฝะตะฝะธะต ั ะฟะพั€ะพะณะพะผ ะฒ ัั‚ะพะผ ัƒะทะปะต self.t = t # ะทะฝะฐั‡ะตะฝะธะต ะฟะพั€ะพะณะฐ self.true_branch = true_branch # ะฟะพะดะดะตั€ะตะฒะพ, ัƒะดะพะฒะปะตั‚ะฒะพั€ััŽั‰ะตะต ัƒัะปะพะฒะธัŽ ะฒ ัƒะทะปะต self.false_branch = false_branch # ะฟะพะดะดะตั€ะตะฒะพ, ะฝะต ัƒะดะพะฒะปะตั‚ะฒะพั€ััŽั‰ะตะต ัƒัะปะพะฒะธัŽ ะฒ ัƒะทะปะต # + colab={} colab_type="code" id="QGT-Wsx6bIW_" # ะ˜ ะบะปะฐัั ั‚ะตั€ะผะธะฝะฐะปัŒะฝะพะณะพ ัƒะทะปะฐ (ะปะธัั‚ะฐ) class Leaf: def __init__(self, data, labels): self.data = data self.labels = labels self.prediction = self.predict() def predict(self): # ะฟะพะดัั‡ะตั‚ ะบะพะปะธั‡ะตัั‚ะฒะฐ ะพะฑัŠะตะบั‚ะพะฒ ั€ะฐะทะฝั‹ั… ะบะปะฐััะพะฒ classes = {} # ัั„ะพั€ะผะธั€ัƒะตะผ ัะปะพะฒะฐั€ัŒ "ะบะปะฐัั: ะบะพะปะธั‡ะตัั‚ะฒะพ ะพะฑัŠะตะบั‚ะพะฒ" for label in self.labels: if label not in classes: classes[label] = 0 classes[label] += 1 # ะฝะฐะนะดะตะผ ะบะปะฐัั, ะบะพะปะธั‡ะตัั‚ะฒะพ ะพะฑัŠะตะบั‚ะพะฒ ะบะพั‚ะพั€ะพะณะพ ะฑัƒะดะตั‚ ะผะฐะบัะธะผะฐะปัŒะฝั‹ะผ ะฒ ัั‚ะพะผ ะปะธัั‚ะต ะธ ะฒะตั€ะฝะตะผ ะตะณะพ prediction = max(classes, key=classes.get) return prediction # + [markdown] colab_type="text" id="JvjWiryZbIW2" # ะ ะตะฐะปะธะทัƒะตะผ ะณะตะฝะตั€ะฐั†ะธัŽ $N$ ะฑัƒั‚ัั‚ั€ะฐะฟ-ะฒั‹ะฑะพั€ะพะบ ะธ ะฟะพะดะผะฝะพะถะตัั‚ะฒะฐ ะฟั€ะธะทะฝะฐะบะพะฒ ะดะปั ะฝะฐั…ะพะถะดะตะฝะธั ั€ะฐะทะฑะธะตะฝะธั ะฒ ัƒะทะปะต. # + colab={} colab_type="code" id="d7if4ogqbIW3" random.seed(42) def get_bootstrap(data, labels, N): n_samples = data.shape[0] bootstrap = [] for i in range(N): b_data = np.zeros(data.shape) b_labels = np.zeros(labels.shape) # TODO: random.choice() for j in range(n_samples): sample_index = random.randint(0, n_samples-1) b_data[j] = data[sample_index] b_labels[j] = labels[sample_index] bootstrap.append((b_data, b_labels)) return bootstrap # - def get_subsample(len_sample): sample_indexes = [i for i in range(len_sample)] len_subsample = int(np.sqrt(len_sample)) subsample = [] random.shuffle(sample_indexes) for i in range(len_subsample): subsample.append(sample_indexes.pop()) return subsample # + colab={} colab_type="code" id="DRTe458CbIXE" # ะ ะฐัั‡ะตั‚ ะบั€ะธั‚ะตั€ะธั ะ”ะถะธะฝะธ def gini(labels): # ะฟะพะดัั‡ะตั‚ ะบะพะปะธั‡ะตัั‚ะฒะฐ ะพะฑัŠะตะบั‚ะพะฒ ั€ะฐะทะฝั‹ั… ะบะปะฐััะพะฒ classes = {} for label in labels: if label not in classes: classes[label] = 0 classes[label] += 1 # ั€ะฐัั‡ะตั‚ ะบั€ะธั‚ะตั€ะธั impurity = 1 for label in classes: p = classes[label] / len(labels) impurity -= p ** 2 return impurity # + colab={} colab_type="code" id="YT7T4h3WbIXH" # ะ ะฐัั‡ะตั‚ ะบะฐั‡ะตัั‚ะฒะฐ def quality(left_labels, right_labels, current_gini): # ะดะพะปั ะฒั‹ะฑะพะบะธ, ัƒัˆะตะดัˆะฐั ะฒ ะปะตะฒะพะต ะฟะพะดะดะตั€ะตะฒะพ p = float(left_labels.shape[0]) / (left_labels.shape[0] + right_labels.shape[0]) return current_gini - p * gini(left_labels) - (1 - p) * gini(right_labels) # + colab={} colab_type="code" id="rqbAx1cXbIXK" # ะ ะฐะทะฑะธะตะฝะธะต ะดะฐั‚ะฐัะตั‚ะฐ ะฒ ัƒะทะปะต def split(data, labels, index, t): left = np.where(data[:, index] <= t) right = np.where(data[:, index] > t) true_data = data[left] false_data = data[right] true_labels = labels[left] false_labels = labels[right] return true_data, false_data, true_labels, false_labels # + colab={} colab_type="code" id="zP2pg3HUbIXP" # ะะฐั…ะพะถะดะตะฝะธะต ะฝะฐะธะปัƒั‡ัˆะตะณะพ ั€ะฐะทะฑะธะตะฝะธั def find_best_split(data, labels, min_leaf=1): # ะพะฑะพะทะฝะฐั‡ะธะผ ะผะธะฝะธะผะฐะปัŒะฝะพะต ะบะพะปะธั‡ะตัั‚ะฒะพ ะพะฑัŠะตะบั‚ะพะฒ ะฒ ัƒะทะปะต # min_leaf = 1 current_gini = gini(labels) best_quality = 0 best_t = None best_index = None n_features = data.shape[1] # ะฒั‹ะฑะพั€ ะธะฝะดะตะบัะฐ ะธะท ะฟะพะดะฒั‹ะฑะพั€ะบะธ ะดะปะธะฝะพะน sqrt(n_features) subsample = get_subsample(n_features) for index in subsample: t_values = [row[index] for row in data] for t in t_values: true_data, false_data, true_labels, false_labels = split(data, labels, index, t) # ะฟั€ะพะฟัƒัะบะฐะตะผ ั€ะฐะทะฑะธะตะฝะธั, ะฒ ะบะพั‚ะพั€ั‹ั… ะฒ ัƒะทะปะต ะพัั‚ะฐะตั‚ัั ะผะตะฝะตะต 5 ะพะฑัŠะตะบั‚ะพะฒ if len(true_data) < min_leaf or len(false_data) < min_leaf: continue current_quality = quality(true_labels, false_labels, current_gini) # ะฒั‹ะฑะธั€ะฐะตะผ ะฟะพั€ะพะณ, ะฝะฐ ะบะพั‚ะพั€ะพะผ ะฟะพะปัƒั‡ะฐะตั‚ัั ะผะฐะบัะธะผะฐะปัŒะฝั‹ะน ะฟั€ะธั€ะพัั‚ ะบะฐั‡ะตัั‚ะฒะฐ if current_quality > best_quality: best_quality, best_t, best_index = current_quality, t, index return best_quality, best_t, best_index # + colab={} colab_type="code" id="dQ4ZPJRUbIXR" # ะŸะพัั‚ั€ะพะตะฝะธะต ะดะตั€ะตะฒะฐ ั ะฟะพะผะพั‰ัŒัŽ ั€ะตะบัƒั€ัะธะฒะฝะพะน ั„ัƒะฝะบั†ะธะธ def build_tree(data, labels): quality, t, index = find_best_split(data, labels, min_leaf=1) # ะ‘ะฐะทะพะฒั‹ะน ัะปัƒั‡ะฐะน - ะฟั€ะตะบั€ะฐั‰ะฐะตะผ ั€ะตะบัƒั€ัะธัŽ, ะบะพะณะดะฐ ะฝะตั‚ ะฟั€ะธั€ะพัั‚ะฐ ะฒ ะบะฐั‡ะตัั‚ะฒะฐ if quality == 0: return Leaf(data, labels) true_data, false_data, true_labels, false_labels = split(data, labels, index, t) # ะ ะตะบัƒั€ัะธะฒะฝะพ ัั‚ั€ะพะธะผ ะดะฒะฐ ะฟะพะดะดะตั€ะตะฒะฐ true_branch = build_tree(true_data, true_labels) false_branch = build_tree(false_data, false_labels) # ะ’ะพะทะฒั€ะฐั‰ะฐะตะผ ะบะปะฐัั ัƒะทะปะฐ ัะพ ะฒัะตะผะธ ะฟะพะดะดะตั€ะตะฒัŒัะผะธ, ั‚ะพ ะตัั‚ัŒ ั†ะตะปะพะณะพ ะดะตั€ะตะฒะฐ return Node(index, t, true_branch, false_branch) # + [markdown] colab_type="text" id="T_YX8fnmbIXU" # ะขะตะฟะตั€ัŒ ะดะพะฑะฐะฒะธะผ ั„ัƒะฝะบั†ะธัŽ ั„ะพั€ะผะธั€ะพะฒะฐะฝะธั ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ. # + colab={} colab_type="code" id="PZMieMMrbIXV" def random_forest(data, labels, n_trees): forest = [] bootstrap = get_bootstrap(data, labels, n_trees) for b_data, b_labels in bootstrap: forest.append(build_tree(b_data, b_labels)) return forest # + colab={} colab_type="code" id="tWNbZTz4bIXX" # ะคัƒะฝะบั†ะธั ะบะปะฐััะธั„ะธะบะฐั†ะธะธ ะพั‚ะดะตะปัŒะฝะพะณะพ ะพะฑัŠะตะบั‚ะฐ def classify_object(obj, node): # ะžัั‚ะฐะฝะฐะฒะปะธะฒะฐะตะผ ั€ะตะบัƒั€ัะธัŽ, ะตัะปะธ ะดะพัั‚ะธะณะปะธ ะปะธัั‚ะฐ if isinstance(node, Leaf): answer = node.prediction return answer if obj[node.index] <= node.t: return classify_object(obj, node.true_branch) else: return classify_object(obj, node.false_branch) # + colab={} colab_type="code" id="rWOM8g_YbIXZ" # ั„ัƒะฝะบั†ะธั ั„ะพั€ะผะธั€ะพะฒะฐะฝะธั ะฟั€ะตะดัะบะฐะทะฐะฝะธั ะฟะพ ะฒั‹ะฑะพั€ะบะต ะฝะฐ ะพะดะฝะพะผ ะดะตั€ะตะฒะต def predict(data, tree): classes = [] for obj in data: prediction = classify_object(obj, tree) classes.append(prediction) return classes # - # ### ะŸั€ะตะดัะบะฐะทะฐะฝะธะต ะณะพะปะพัะพะฒะฐะฝะธะตะผ ะดะตั€ะตะฒัŒะตะฒ # + colab={} colab_type="code" id="ZtIgR7R-bIXc" def tree_vote(forest, data): predictions = [] for tree in forest: predictions.append(predict(data, tree)) predictions_per_object = list(zip(*predictions)) voted_predictions = [] for obj in predictions_per_object: voted_predictions.append(max(set(obj), key=obj.count)) return voted_predictions # + [markdown] colab_type="text" id="fkMTjBewbIXf" # ะ”ะฐะปะตะต ะผั‹ ัะดะตะปะฐะตะผ ะพะฑั‹ั‡ะฝะพะต ั€ะฐะทะฑะธะตะฝะธะต ะฒั‹ะฑะพั€ะบะธ ะฝะฐ ะพะฑัƒั‡ะฐัŽั‰ัƒัŽ ะธ ั‚ะตัั‚ะพะฒัƒัŽ, ะบะฐะบ ัั‚ะพ ะดะตะปะฐะปะพััŒ ั€ะฐะฝะตะต. # + colab={} colab_type="code" id="Ie9t9IyAbIXh" # ะ ะฐะทะพะฑัŒะตะผ ะฒั‹ะฑะพั€ะบัƒ ะฝะฐ ะพะฑัƒั‡ะฐัŽั‰ัƒัŽ ะธ ั‚ะตัั‚ะพะฒัƒัŽ from sklearn import model_selection train_data, test_data, train_labels, test_labels = model_selection.train_test_split(classification_data, classification_labels, test_size = 0.3, random_state = 1) # + colab={} colab_type="code" id="z4apOFB9bIXk" # ะ’ะฒะตะดะตะผ ั„ัƒะฝะบั†ะธัŽ ะฟะพะดัั‡ะตั‚ะฐ ั‚ะพั‡ะฝะพัั‚ะธ ะบะฐะบ ะดะพะปะธ ะฟั€ะฐะฒะธะปัŒะฝั‹ั… ะพั‚ะฒะตั‚ะพะฒ def accuracy_metric(actual, predicted): correct = 0 for i in range(len(actual)): if actual[i] == predicted[i]: correct += 1 return correct / float(len(actual)) * 100.0 # + colab={} colab_type="code" id="5hXVQEyJJYyY" # - # ### ะขะตัั‚ ัะฐะผะพะฟะธัะฝะพะณะพ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ # %%time n_trees = 1 my_forest_1 = random_forest(train_data, train_labels, n_trees) # + train_answs = tree_vote(my_forest_1, train_data) train_acc = accuracy_metric(train_labels, train_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ train: {train_acc:.3f}') # + test_answs = tree_vote(my_forest_1, test_data) test_acc = accuracy_metric(test_labels, test_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ test: {test_acc:.3f}') # - # %%time n_trees = 3 my_forest_3 = random_forest(train_data, train_labels, n_trees) # + train_answs = tree_vote(my_forest_3, train_data) train_acc = accuracy_metric(train_labels, train_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ train: {train_acc:.3f}') # + test_answs = tree_vote(my_forest_3, test_data) test_acc = accuracy_metric(test_labels, test_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ test: {test_acc:.3f}') # - # %%time n_trees = 10 my_forest_10 = random_forest(train_data, train_labels, n_trees) # + train_answs = tree_vote(my_forest_10, train_data) train_acc = accuracy_metric(train_labels, train_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ train: {train_acc:.3f}') # + test_answs = tree_vote(my_forest_10, test_data) test_acc = accuracy_metric(test_labels, test_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ test: {test_acc:.3f}') # - # %%time n_trees = 30 my_forest_30 = random_forest(train_data, train_labels, n_trees) # + train_answs = tree_vote(my_forest_30, train_data) train_acc = accuracy_metric(train_labels, train_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ train: {train_acc:.3f}') # + test_answs = tree_vote(my_forest_30, test_data) test_acc = accuracy_metric(test_labels, test_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ test: {test_acc:.3f}') # - # %%time n_trees = 50 my_forest_50 = random_forest(train_data, train_labels, n_trees) # + train_answs = tree_vote(my_forest_50, train_data) train_acc = accuracy_metric(train_labels, train_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ train: {train_acc:.3f}') # + test_answs = tree_vote(my_forest_50, test_data) test_acc = accuracy_metric(test_labels, test_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ test: {test_acc:.3f}') # - # ### ะ”ะพะผะฐัˆะฝะตะต ะทะฐะดะฐะฝะธะต # 1. ะกั„ะพั€ะผะธั€ะพะฒะฐั‚ัŒ ั ะฟะพะผะพั‰ัŒัŽ sklearn.make_classification ะดะฐั‚ะฐัะตั‚ ะธะท 100 ะพะฑัŠะตะบั‚ะพะฒ ั ะดะฒัƒะผั ะฟั€ะธะทะฝะฐะบะฐะผะธ, ะพะฑัƒั‡ะธั‚ัŒ ัะปัƒั‡ะฐะนะฝั‹ะน ะปะตั ะธะท 1, 3, 10 ะธ 50 ะดะตั€ะตะฒัŒะตะฒ ะธ ะฒะธะทัƒะฐะปะธะทะธั€ะพะฒะฐั‚ัŒ # ะธั… ั€ะฐะทะดะตะปััŽั‰ะธะต ะณะธะฟะตั€ะฟะปะพัะบะพัั‚ะธ ะฝะฐ ะณั€ะฐั„ะธะบะฐั… (ะฟะพ ะฟะพะดะพะฑะธัŽ ะฒะธะทัƒะฐะปะธะทะฐั†ะธะธ ะดะตั€ะตะฒัŒะตะฒ ะธะท ะฟั€ะตะดั‹ะดัƒั‰ะตะณะพ ัƒั€ะพะบะฐ, ะฝะตะพะฑั…ะพะดะธะผะพ ั‚ะพะปัŒะบะพ ะทะฐะผะตะฝะธั‚ัŒ ะฒั‹ะทะพะฒ ั„ัƒะฝะบั†ะธะธ predict ะฝะฐ tree_vote). # ะกะดะตะปะฐั‚ัŒ ะฒั‹ะฒะพะดั‹ ะพ ะฟะพะปัƒั‡ะฐะตะผะพะน ัะปะพะถะฝะพัั‚ะธ ะณะธะฟะตั€ะฟะปะพัะบะพัั‚ะธ ะธ ะฝะตะดะพะพะฑัƒั‡ะตะฝะธะธ ะธะปะธ ะฟะตั€ะตะพะฑัƒั‡ะตะฝะธะธ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะฒ ะทะฐะฒะธัะธะผะพัั‚ะธ ะพั‚ ะบะพะปะธั‡ะตัั‚ะฒะฐ ะดะตั€ะตะฒัŒะตะฒ ะฒ ะฝะตะผ (*). # 2. ะ—ะฐะผะตะฝะธั‚ัŒ ะฒ ั€ะตะฐะปะธะทะพะฒะฐะฝะฝะพะผ ะฐะปะณะพั€ะธั‚ะผะต ะฟั€ะพะฒะตั€ะบัƒ ั ะฟะพะผะพั‰ัŒัŽ ะพั‚ะปะพะถะตะฝะฝะพะน ะฒั‹ะฑะพั€ะบะธ ะฝะฐ Out-of-Bag. # 3. (ะะฐ ะฟะพะฒั‚ะพั€ะตะฝะธะต) ะŸะตั€ะตะฟะธัะฐั‚ัŒ ั„ัƒะฝะบั†ะธัŽ calc_gini ะธะท ัƒั€ะพะบะฐ ะฟั€ะพ ั€ะตัˆะฐัŽั‰ะธะต ะดะตั€ะตะฒัŒั ั‚ะฐะบ, ั‡ั‚ะพะฑั‹ ะฒ ะบะฐั‡ะตัั‚ะฒะต ะบั€ะธั‚ะตั€ะธั ะธัะฟะพะปัŒะทะพะฒะฐะปะฐััŒ ัะฝั‚ั€ะพะฟะธั ะจัะฝะฝะพะฝะฐ. ะŸะตั€ะตะธะผะตะฝะพะฒะฐั‚ัŒ ั„ัƒะฝะบั†ะธัŽ ะฒ calc_entropy (*). # #### 1. ะกั„ะพั€ะผะธั€ะพะฒะฐั‚ัŒ ั ะฟะพะผะพั‰ัŒัŽ sklearn.make_classification ะดะฐั‚ะฐัะตั‚ ะธะท 100 ะพะฑัŠะตะบั‚ะพะฒ ั ะดะฒัƒะผั ะฟั€ะธะทะฝะฐะบะฐะผะธ, ะพะฑัƒั‡ะธั‚ัŒ ัะปัƒั‡ะฐะนะฝั‹ะน ะปะตั ะธะท 1, 3, 10 ะธ 50 ะดะตั€ะตะฒัŒะตะฒ ะธ ะฒะธะทัƒะฐะปะธะทะธั€ะพะฒะฐั‚ัŒ ะธั… ั€ะฐะทะดะตะปััŽั‰ะธะต ะณะธะฟะตั€ะฟะปะพัะบะพัั‚ะธ ะฝะฐ ะณั€ะฐั„ะธะบะฐั… (ะฟะพ ะฟะพะดะพะฑะธัŽ ะฒะธะทัƒะฐะปะธะทะฐั†ะธะธ ะดะตั€ะตะฒัŒะตะฒ ะธะท ะฟั€ะตะดั‹ะดัƒั‰ะตะณะพ ัƒั€ะพะบะฐ, ะฝะตะพะฑั…ะพะดะธะผะพ ั‚ะพะปัŒะบะพ ะทะฐะผะตะฝะธั‚ัŒ ะฒั‹ะทะพะฒ ั„ัƒะฝะบั†ะธะธ predict ะฝะฐ tree_vote). ะกะดะตะปะฐั‚ัŒ ะฒั‹ะฒะพะดั‹ ะพ ะฟะพะปัƒั‡ะฐะตะผะพะน ัะปะพะถะฝะพัั‚ะธ ะณะธะฟะตั€ะฟะปะพัะบะพัั‚ะธ ะธ ะฝะตะดะพะพะฑัƒั‡ะตะฝะธะธ ะธะปะธ ะฟะตั€ะตะพะฑัƒั‡ะตะฝะธะธ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะฒ ะทะฐะฒะธัะธะผะพัั‚ะธ ะพั‚ ะบะพะปะธั‡ะตัั‚ะฒะฐ ะดะตั€ะตะฒัŒะตะฒ ะฒ ะฝะตะผ (*). classification_data, classification_labels = datasets.make_classification(n_samples=100, n_features = 2, n_classes = 2, n_redundant=0, n_clusters_per_class=1, random_state=23) # + # ะฒะธะทัƒะฐะปะธะทะธั€ัƒะตะผ ัะณะตะฝะตั€ะธั€ะพะฒะฐะฝะฝั‹ะต ะดะฐะฝะฝั‹ะต colors = ListedColormap(['red', 'blue']) light_colors = ListedColormap(['lightcoral', 'lightblue']) plt.figure(figsize=(8,8)) plt.scatter(list(map(lambda x: x[0], classification_data)), list(map(lambda x: x[1], classification_data)), c=classification_labels, cmap=colors); # - train_data, test_data, train_labels, test_labels = model_selection.train_test_split(classification_data, classification_labels, test_size = 0.3, random_state = 67) # %%time n_trees = 1 my_forest_1 = random_forest(train_data, train_labels, n_trees) # + train_answs = tree_vote(my_forest_1, train_data) train_acc = accuracy_metric(train_labels, train_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ train: {train_acc:.3f}') # + test_answs = tree_vote(my_forest_1, test_data) test_acc = accuracy_metric(test_labels, test_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ test: {test_acc:.3f}') # + def get_meshgrid(data, step=.05, border=1.2): x_min, x_max = data[:, 0].min() - border, data[:, 0].max() + border y_min, y_max = data[:, 1].min() - border, data[:, 1].max() + border return np.meshgrid(np.arange(x_min, x_max, step), np.arange(y_min, y_max, step)) plt.figure(figsize = (16, 7)) # ะณั€ะฐั„ะธะบ ะพะฑัƒั‡ะฐัŽั‰ะตะน ะฒั‹ะฑะพั€ะบะธ plt.subplot(1,2,1) xx, yy = get_meshgrid(train_data) mesh_predictions = np.array(tree_vote(my_forest_1, np.c_[xx.ravel(), yy.ravel()])).reshape(xx.shape) plt.pcolormesh(xx, yy, mesh_predictions, cmap = light_colors) plt.scatter(train_data[:, 0], train_data[:, 1], c = train_labels, cmap = colors) plt.title(f'Train accuracy={train_acc:.2f}') # ะณั€ะฐั„ะธะบ ั‚ะตัั‚ะพะฒะพะน ะฒั‹ะฑะพั€ะบะธ plt.subplot(1,2,2) plt.pcolormesh(xx, yy, mesh_predictions, cmap = light_colors) plt.scatter(test_data[:, 0], test_data[:, 1], c = test_labels, cmap = colors) plt.title(f'Test accuracy={test_acc:.2f}') # - # %%time n_trees = 3 my_forest_3 = random_forest(train_data, train_labels, n_trees) # + train_answs = tree_vote(my_forest_3, train_data) train_acc = accuracy_metric(train_labels, train_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ train: {train_acc:.3f}') # + test_answs = tree_vote(my_forest_3, test_data) test_acc = accuracy_metric(test_labels, test_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ test: {test_acc:.3f}') # + plt.figure(figsize = (16, 7)) # ะณั€ะฐั„ะธะบ ะพะฑัƒั‡ะฐัŽั‰ะตะน ะฒั‹ะฑะพั€ะบะธ plt.subplot(1,2,1) xx, yy = get_meshgrid(train_data) mesh_predictions = np.array(tree_vote(my_forest_1, np.c_[xx.ravel(), yy.ravel()])).reshape(xx.shape) plt.pcolormesh(xx, yy, mesh_predictions, cmap = light_colors) plt.scatter(train_data[:, 0], train_data[:, 1], c = train_labels, cmap = colors) plt.title(f'Train accuracy={train_acc:.2f}') # ะณั€ะฐั„ะธะบ ั‚ะตัั‚ะพะฒะพะน ะฒั‹ะฑะพั€ะบะธ plt.subplot(1,2,2) plt.pcolormesh(xx, yy, mesh_predictions, cmap = light_colors) plt.scatter(test_data[:, 0], test_data[:, 1], c = test_labels, cmap = colors) plt.title(f'Test accuracy={test_acc:.2f}') # - # %%time n_trees = 10 my_forest_10 = random_forest(train_data, train_labels, n_trees) # + train_answs = tree_vote(my_forest_10, train_data) train_acc = accuracy_metric(train_labels, train_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ train: {train_acc:.3f}') # + test_answs = tree_vote(my_forest_10, test_data) test_acc = accuracy_metric(test_labels, test_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ test: {test_acc:.3f}') # + plt.figure(figsize = (16, 7)) # ะณั€ะฐั„ะธะบ ะพะฑัƒั‡ะฐัŽั‰ะตะน ะฒั‹ะฑะพั€ะบะธ plt.subplot(1,2,1) xx, yy = get_meshgrid(train_data) mesh_predictions = np.array(tree_vote(my_forest_10, np.c_[xx.ravel(), yy.ravel()])).reshape(xx.shape) plt.pcolormesh(xx, yy, mesh_predictions, cmap = light_colors) plt.scatter(train_data[:, 0], train_data[:, 1], c = train_labels, cmap = colors) plt.title(f'Train accuracy={train_acc:.2f}') # ะณั€ะฐั„ะธะบ ั‚ะตัั‚ะพะฒะพะน ะฒั‹ะฑะพั€ะบะธ plt.subplot(1,2,2) plt.pcolormesh(xx, yy, mesh_predictions, cmap = light_colors) plt.scatter(test_data[:, 0], test_data[:, 1], c = test_labels, cmap = colors) plt.title(f'Test accuracy={test_acc:.2f}') # - # %%time n_trees = 50 my_forest_50 = random_forest(train_data, train_labels, n_trees) # + train_answs = tree_vote(my_forest_50, train_data) train_acc = accuracy_metric(train_labels, train_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ train: {train_acc:.3f}') # + test_answs = tree_vote(my_forest_50, test_data) test_acc = accuracy_metric(test_labels, test_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ test: {test_acc:.3f}') # + plt.figure(figsize = (16, 7)) # ะณั€ะฐั„ะธะบ ะพะฑัƒั‡ะฐัŽั‰ะตะน ะฒั‹ะฑะพั€ะบะธ plt.subplot(1,2,1) xx, yy = get_meshgrid(train_data) mesh_predictions = np.array(tree_vote(my_forest_50, np.c_[xx.ravel(), yy.ravel()])).reshape(xx.shape) plt.pcolormesh(xx, yy, mesh_predictions, cmap = light_colors) plt.scatter(train_data[:, 0], train_data[:, 1], c = train_labels, cmap = colors) plt.title(f'Train accuracy={train_acc:.2f}') # ะณั€ะฐั„ะธะบ ั‚ะตัั‚ะพะฒะพะน ะฒั‹ะฑะพั€ะบะธ plt.subplot(1,2,2) plt.pcolormesh(xx, yy, mesh_predictions, cmap = light_colors) plt.scatter(test_data[:, 0], test_data[:, 1], c = test_labels, cmap = colors) plt.title(f'Test accuracy={test_acc:.2f}') # - # ะŸะพะปัƒั‡ะตะฝะฝะฐั ะฟะปะพัะบะพัั‚ัŒ, ะฝะฐ ะผะพะน ะฒะทะณะปัะด, ัั€ะตะดะฝะตะตะน ัะปะพะถะฝะพัั‚ะธ. ะžะฝะฐ ะฝะต ะฟั€ะธะผะธั‚ะธะฒะฝะฐ, ะธะผะตะตั‚ ะฝะตะบะพั‚ะพั€ั‹ะต ั„ะธะณัƒั€ะฝั‹ะต ะพัะพะฑะตะฝะฝะพัั‚ะธ. Test accuracy ะทะดะตััŒ ะพะดะธะฝะฐะบะพะฒั‹ะน ะบะฐะบ ะฟั€ะธ ะปะตัะต ะฒ 10 ะดะตั€ะตะฒัŒะตะฒ, ั‚ะฐะบ ะธ ะฟั€ะธ ะปะตัะต ะฒ 50 ะดะตั€ะตะฒัŒะตะฒ ะธ ะฑะพะปัŒัˆะต ะฝะต ั€ะฐัั‚ะตั‚, ะทะฝะฐั‡ะธั‚ 10 ะดะตั€ะตะฒัŒะตะฒ ะดะพัั‚ะฐั‚ะพั‡ะฝะพะต ะบะพะปะธั‡ะตัั‚ะฒะพ ะดะปั ัั‚ะพะณะพ ัะปัƒั‡ะฐั. ะŸั€ะธ ะปะตัะต ะฒ 50 ะดะตั€ะตะฒัŒะตะฒ ะฝะต ะฝะฐัั‚ัƒะฟะธะปะพ ะฟะตั€ะตะพะฑัƒั‡ะตะฝะธะต, ะฟะพัะบะพะปัŒะบัƒ ะผะตั‚ั€ะธะบะฐ ะฝะต ัƒะฟะฐะปะฐ, ะฐ ะพัั‚ะฐะปะฐััŒ ะฟั€ะตะถะฝะตะน. Accuracy = 96.67 - ะดะพะฒะพะปัŒะฝะพ ะฝะต ะฟะปะพั…ะพะน ั€ะตะทัƒะปัŒั‚ะฐั‚. # ะ˜ะท ะปัŽะฑะพะฟั‹ั‚ัั‚ะฒะฐ ะฟะพัะผะพั‚ั€ะธะผ, ั‡ั‚ะพ ะฑัƒะดะตั‚ ะฟั€ะธ ั€ะฐะทะผะตั€ะต ะปะตัะฐ ะฒ 100 ะดะตั€ะตะฒัŒะตะฒ. # %%time n_trees = 100 my_forest_100 = random_forest(train_data, train_labels, n_trees) # + train_answs = tree_vote(my_forest_100, train_data) train_acc = accuracy_metric(train_labels, train_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ train: {train_acc:.3f}') # + test_answs = tree_vote(my_forest_100, test_data) test_acc = accuracy_metric(test_labels, test_answs) print(f'ะขะพั‡ะฝะพัั‚ัŒ ัะปัƒั‡ะฐะนะฝะพะณะพ ะปะตัะฐ ะธะท {n_trees} ะดะตั€ะตะฒัŒะตะฒ ะฝะฐ test: {test_acc:.3f}') # + plt.figure(figsize = (16, 7)) # ะณั€ะฐั„ะธะบ ะพะฑัƒั‡ะฐัŽั‰ะตะน ะฒั‹ะฑะพั€ะบะธ plt.subplot(1,2,1) xx, yy = get_meshgrid(train_data) mesh_predictions = np.array(tree_vote(my_forest_100, np.c_[xx.ravel(), yy.ravel()])).reshape(xx.shape) plt.pcolormesh(xx, yy, mesh_predictions, cmap = light_colors) plt.scatter(train_data[:, 0], train_data[:, 1], c = train_labels, cmap = colors) plt.title(f'Train accuracy={train_acc:.2f}') # ะณั€ะฐั„ะธะบ ั‚ะตัั‚ะพะฒะพะน ะฒั‹ะฑะพั€ะบะธ plt.subplot(1,2,2) plt.pcolormesh(xx, yy, mesh_predictions, cmap = light_colors) plt.scatter(test_data[:, 0], test_data[:, 1], c = test_labels, cmap = colors) plt.title(f'Test accuracy={test_acc:.2f}') # - # ะšะฐะบ ะฒะธะดะฝะพ, ะทะดะตััŒ ะฒัะต ะฑะตะท ะธะผะตะฝะตะฝะธะน, ะฟะพัั‚ะพะผัƒ ะฒะฟะพะปะฝะต ะผะพะถะฝะพ ะฑั‹ะปะพ ะพัั‚ะฐะฝะพะฒะธั‚ัŒัั ะฝะฐ 10 ะดะตั€ะตะฒัŒัั…. # #### 2. ะ—ะฐะผะตะฝะธั‚ัŒ ะฒ ั€ะตะฐะปะธะทะพะฒะฐะฝะฝะพะผ ะฐะปะณะพั€ะธั‚ะผะต ะฟั€ะพะฒะตั€ะบัƒ ั ะฟะพะผะพั‰ัŒัŽ ะพั‚ะปะพะถะตะฝะฝะพะน ะฒั‹ะฑะพั€ะบะธ ะฝะฐ Out-of-Bag. def out_of_bag() # #### 3.(ะะฐ ะฟะพะฒั‚ะพั€ะตะฝะธะต) ะŸะตั€ะตะฟะธัะฐั‚ัŒ ั„ัƒะฝะบั†ะธัŽ calc_gini ะธะท ัƒั€ะพะบะฐ ะฟั€ะพ ั€ะตัˆะฐัŽั‰ะธะต ะดะตั€ะตะฒัŒั ั‚ะฐะบ, ั‡ั‚ะพะฑั‹ ะฒ ะบะฐั‡ะตัั‚ะฒะต ะบั€ะธั‚ะตั€ะธั ะธัะฟะพะปัŒะทะพะฒะฐะปะฐััŒ ัะฝั‚ั€ะพะฟะธั ะจัะฝะฝะพะฝะฐ. ะŸะตั€ะตะธะผะตะฝะพะฒะฐั‚ัŒ ั„ัƒะฝะบั†ะธัŽ ะฒ calc_entropy (*) # + import math def calc_entropy(labels): # ะฟะพะดัั‡ะตั‚ ะบะพะปะธั‡ะตัั‚ะฒะฐ ะพะฑัŠะตะบั‚ะพะฒ ั€ะฐะทะฝั‹ั… ะบะปะฐััะพะฒ classes = {} for label in labels: if label not in classes: classes[label] = 0 classes[label] += 1 # ั€ะฐัั‡ะตั‚ ะบั€ะธั‚ะตั€ะธั entropy = 0 for label in classes: p = classes[label] / len(labels) entropy -= p * math.log2(p) return entropy # - calc_entropy(classification_labels) # ะšะปะฐััั‹ ะฒ ะฒั‹ะฑะพั€ะบะต ัƒ ะฝะฐั ัะฑะฐะปะฐะฝัะธั€ะพะฒะฐะฝั‹, ะฟะพัั‚ะพะผัƒ ะธ ัะฝั‚ั€ะพะฟะธั ะผะฐะบัะธะผะฐะปัŒะฝะฐั.
21,662
/NLPTrainingCamp/seq2seq/seq2seq-translation-attention-pretrain-embedding.ipynb
ce2343e7faae9cd88aadb15bf06749ec6a90ff38
[ "MIT" ]
permissive
hotbaby/ml
https://github.com/hotbaby/ml
3
2
null
null
null
null
Jupyter Notebook
false
false
.py
38,936
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # seq2seqๆจกๅž‹โ€”โ€”ๆœบๅ™จ็ฟป่ฏ‘ # # ่ฟ›้˜ถๆ”น่ฟ›๏ผš # # ไฝฟ็”จ่…พ่ฎฏ้ข„่ฎญ็ปƒ่ฏๅ‘้‡ # ## ็Žฏๅขƒไพ่ต– # + import unicodedata import string import re import random import time import math import jieba import pandas as pd import torch import torch.nn as nn from torch import optim import torch.nn.functional as F from sklearn.model_selection import train_test_split # - # ## ๆ•ฐๆฎ้ข„ๅค„็† USE_CUDA = torch.cuda.is_available() print('USE_CUDA: %s' % USE_CUDA) SEGMENTATION = True # ๆ˜ฏๅฆๅˆ†่ฏ # ### ๆ–‡ๆœฌ้ข„ๅค„็† # # ไธขๅผƒ้™คไบ†ไธญๆ–‡ใ€ๅญ—ๆฏๅ’Œๅธธ็”จๆ ‡็‚นไน‹ๅค–็š„็ฌฆๅทใ€‚ # + jupyter={"outputs_hidden": false} # Turn a Unicode string to plain ASCII, thanks to http://stackoverflow.com/a/518232/2809427 def unicode_to_ascii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' ) # Lowercase, trim, and remove non-letter characters def normalize_string(s): s = unicode_to_ascii(s.lower().strip()) s = re.sub(r"([.!?])", r" \1", s) s = re.sub(r"[^a-zA-Z\u4e00-\u9fa5.!?๏ผŒใ€‚๏ผŸ]+", r" ", s) return s # - # ### ๆž„ๅปบ่ฏ่กจ # ๅผ•ๅ…ฅไธ‰ไธช็‰นๆฎŠ็š„Token: # # 1. `SOS`, "Start of sentenceโ€๏ผŒๆ ‡่ฏ†ๅฅๅญๅผ€ๅง‹ # 2. `EOS`, โ€œEnd of sentenceโ€๏ผŒ่กจ็คบๅฅๅญ็ป“ๆŸ # 3. `UNK`, "Unknown Token"๏ผŒๆ ‡่ฏ†ๆœช็™ปๅฝ•่ฏ # + SOS_token = 0 EOS_token = 1 UNK_token = 2 class Lang(object): """ ่ฏ่กจVocabulary. """ def __init__(self, name): self.name = name self.word2index = {} self.word2count = {} self.index2word = {0: "SOS", 1: "EOS", '2': 'UNK'} self.n_words = 3 # Count SOS and EOS def index_words(self, sentence): if self.name == 'cn': words = list(jieba.cut(sentence)) if SEGMENTATION else sentence for word in words: self.index_word(word) else: words = sentence.split(' ') for word in words: self.index_word(word) def index_word(self, word): if word not in self.word2index: self.word2index[word] = self.n_words self.word2count[word] = 1 self.index2word[self.n_words] = word self.n_words += 1 else: self.word2count[word] += 1 # - # ่ฏปๅ–ๅนณ่กŒ่ฏญๆ–™๏ผŒๅนถ่ฟ›่กŒๆธ…็†ใ€‚ def read_langs(lang1, lang2, reverse=False): print("Reading lines...") # Read the file and split into lines lines = open('%s-%s.txt' % (lang1, lang2)).read().strip().split('\n') # Split every line into pairs and normalize pairs = [[normalize_string(s) for s in l.split('\t')] for l in lines] # Reverse pairs, make Lang instances if reverse: pairs = [list(reversed(p)) for p in pairs] input_lang = Lang(lang2) output_lang = Lang(lang1) else: input_lang = Lang(lang1) output_lang = Lang(lang2) return input_lang, output_lang, pairs # ### ๅ‡†ๅค‡ๆ•ฐๆฎ้›† # # ๆ ทไพ‹ไธบไบ†ๅŠ ๅฟซ่ฎญ็ปƒ๏ผŒๅชไฟ็•™ไบ†ไธ้•ฟไบŽ10ไธชๅ•่ฏ็š„ๅฅๅฏน๏ผŒ็œŸๆญฃๅฎž้ชŒไธญๅฐ†ๆ›ดๅคšๆ•ฐๆฎ่€ƒ่™‘่ฟ›ๆฅๅฏ่ƒฝ่Žทๅพ—ๆ›ดๅฅฝ็š„ๆ•ˆๆžœใ€‚ # + jupyter={"outputs_hidden": false} MAX_LENGTH = 10 def filter_pair(p): return len(p[1].split(' ')) < MAX_LENGTH def filter_pairs(pairs): return [pair for pair in pairs if filter_pair(pair)] # - # ๅค„็†ๆ•ฐๆฎ็š„ๅ…จ่ฟ‡็จ‹๏ผš # # - ่ฏปๅ–ๆ•ฐๆฎ๏ผŒๆฏไธ€่กŒๅˆ†ๅˆซๅค„็†๏ผŒๅฐ†ๅ…ถ่ฝฌๆขๆˆๅฅๅฏน # - ๅฏนไบŽๆ–‡ๆœฌ่ฟ›่กŒๅค„็†๏ผŒ่ฟ‡ๆปคๆ— ็”จ็ฌฆๅท # - ๆ นๆฎๅทฒๆœ‰ๆ–‡ๆœฌๅฏนไบŽๅ•่ฏ่ฟ›่กŒ็ผ–ๅท๏ผŒๆž„ๅปบ็ฌฆๅทๅˆฐ็ผ–ๅท็š„ๆ˜ ๅฐ„ # # + jupyter={"outputs_hidden": false} def prepare_data(lang1_name, lang2_name, reverse=False): input_lang, output_lang, pairs = read_langs(lang1_name, lang2_name, reverse) print("Read %s sentence pairs" % len(pairs)) pairs = filter_pairs(pairs) print("Trimmed to %s sentence pairs" % len(pairs)) print("Indexing words...") for pair in pairs: input_lang.index_words(pair[0]) output_lang.index_words(pair[1]) return input_lang, output_lang, pairs input_lang, output_lang, pairs = prepare_data('cn', 'eng', False) # Print an example pair print(random.choice(pairs)) # - # ไปŽๆ•ฐๆฎ้›†ไธญsampleๅ‡บ200ๆกๆ•ฐๆฎไฝœไธบ้ชŒ่ฏ้›† def sample_test_dataset(size=100): with open('cn-eng-test.txt', 'w+') as f: f.write('\n'.join(['\t'.join(pair) for pair in random.sample(pairs, k=size)])) # + # sample_test_dataset() # - # ### ๅฐ†ๆ–‡ๆœฌๆ•ฐๆฎ่ฝฌๆขไธบๅผ ้‡ # # ไธบไบ†่ฎญ็ปƒ๏ผŒๆˆ‘ไปฌ้œ€่ฆๅฐ†ๅฅๅญๅ˜ๆˆ็ฅž็ป็ฝ‘็ปœๅฏไปฅ็†่งฃ็š„ไธœ่ฅฟ๏ผˆๆ•ฐๅญ—๏ผ‰ใ€‚ๆฏไธชๅฅๅญๅฐ†่ขซๅˆ†่งฃๆˆๅ•่ฏ๏ผŒ็„ถๅŽๅ˜ๆˆๅผ ้‡๏ผŒๅ…ถไธญๆฏไธชๅ•่ฏ้ƒฝ่ขซ็ดขๅผ•ๆ›ฟๆข๏ผˆๆฅ่‡ชไน‹ๅ‰็š„Lang็ดขๅผ•๏ผ‰ใ€‚ๅœจๅˆ›ๅปบ่ฟ™ไบ›ๅผ ้‡ๆ—ถ๏ผŒๆˆ‘ไปฌ่ฟ˜ๅฐ†้™„ๅŠ EOSไปค็‰Œไปฅ่กจ็คบ่ฏฅๅฅๅญๅทฒ็ป“ๆŸใ€‚ # # ![](https://i.imgur.com/LzocpGH.png) # + jupyter={"outputs_hidden": false} # Return a list of indexes, one for each word in the sentence def indexes_from_sentence(lang, sentence): """ ๆ นๆฎ่ฏ่กจ๏ผŒๅฐ†ๅฅๅญ่ฝฌๅŒ–ๆˆ็ดขๅผ•ๅˆ—่กจใ€‚ :reutrn list๏ผŒe.g. [1, 2, 3, 4] """ if lang.name == 'cn': words = list(jieba.cut(sentence)) if SEGMENTATION else sentence return [lang.word2index[word] if word in lang.word2index else UNK_token for word in words ] else: words = sentence.split(' ') return [lang.word2index[word] if word in lang.word2index else UNK_token for word in words] def variable_from_sentence(lang, sentence): """ ๅฐ†ๅฅๅญ่ฝฌๆขๆˆTensor. :return Tensor, shape(n, 1) """ indexes = indexes_from_sentence(lang, sentence) indexes.append(EOS_token) var = torch.LongTensor(indexes).view(-1, 1) if USE_CUDA: var = var.cuda() return var def variables_from_pair(pair): """ ๅฐ†ๅนณ่กŒ่ฏญๆ–™ๅฏน่ฝฌๅŒ–ๆˆTensors. :return (input_tensor, output_tensor) """ input_variable = variable_from_sentence(input_lang, pair[0]) target_variable = variable_from_sentence(output_lang, pair[1]) return (input_variable, target_variable) # + pair = random.choice(pairs) print('pair: %s' % pair) input_tensor, target_tensor = variables_from_pair(pair) print('input_tensor shape: %s, output_tensor shap: %s' % (input_tensor.shape, target_tensor.shape)) print('input_tensor: %s' % input_tensor) # - # # ๆจกๅž‹ # ## ็ผ–็ ๅ™จ # + jupyter={"outputs_hidden": false} class EncoderGRU(nn.Module): """GRU ็ผ–็ ๅ™จ""" def __init__(self, input_size, hidden_size, n_layers=1, bidirectional=False): """ ๅˆๅง‹ๅŒ– :param input_size, ่พ“ๅ…ฅ่ฏ่กจๅคง :param hidden_size, Embedding็ปดๅบฆๅคงๅฐ๏ผŒRNN hiddenๅคงๅฐ :param n_layers, RNNๅฑ‚ๆ•ฐ """ super(EncoderGRU, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.n_layers = n_layers self.bidirectional = bidirectional self.embedding = nn.Embedding(input_size, hidden_size) # ็”จGRUๆ›ฟๆขRNN # self.rnn = nn.RNN(hidden_size, hidden_size, n_layers) self.rnn = nn.GRU(hidden_size, hidden_size, n_layers) def forward(self, word_inputs, hidden): """ ๅ‰ๅ‘ไผ ๆ’ญ :param word_inputs, ่พ“ๅ…ฅๅบๅˆ— shape(n, 1) :param hidden, ้šๅฑ‚ shape(seq_len*n_layers, batch_size, hidden_size) :return output(seq_len, batch, num_directions*hidden_size), hidden(num_layers*num_directions, hidden_size) """ # Note: we run this all at once (over the whole input sequence) seq_len = len(word_inputs) embedded = self.embedding(word_inputs).view(seq_len, 1, -1) output, hidden = self.rnn(embedded, hidden) return output, hidden def init_hidden(self): num_directions = 2 if self.bidirectional else 1 hidden = torch.zeros(self.n_layers*num_directions, 1, self.hidden_size) if USE_CUDA: hidden = hidden.cuda() return hidden # + # encoder = EncoderGRU(input_lang.n_words, 100) # encoder.to(device) # pair = random.choice(pairs) # print('pair: %s' % pair) # encoder_hidden = encoder.init_hidden() # encoder_outputs, encoder_hidden = encoder(variable_from_sentence(input_lang, pair[0]), encoder_hidden) # print('seq_len: %s, encoder_outputs shape: %s, encoder_hidden shape: %s' % ( # len(pair[0]), encoder_outputs.shape, encoder_hidden.shape)) # - # ## ๆณจๆ„ๅŠ›ๆœบๅˆถ # + class Attention(nn.Module): """ๆ„ๅŠ›ๆœบๅˆถ""" def __init__(self, hidden_size): super(Attention, self).__init__() self.hidden_size = hidden_size def forward(self, decoder_hidden, encoder_outputs): """ ๅ‰ๅ‘ไผ ๆ’ญ :param decoder_hidden: shape(num_layers*num_directions, batch, hidden_size) :param encoder_outputs: shape(seq_len, batch, num_directions*hidden_size) :return attention_weighted_encoder_output shape(num_layers, batch, hidden_size) """ attn_weights = F.softmax(torch.matmul(torch.squeeze(encoder_outputs), torch.squeeze(decoder_hidden).view(-1, 1))) attn_weights = attn_weights.expand(encoder_outputs.shape[0], -1) attn_output = torch.sum(attn_weights * torch.squeeze(encoder_outputs), dim=0) return attn_output.view(1, 1, -1) # + # attention = Attention(100) # decoder_hidden = torch.randn(1, 1, 100) # encoder_outputs = torch.randn(6, 1, 100) # attention(decoder_hidden, encoder_outputs).shape # - # ## ่งฃ็ ๅ™จ # + jupyter={"outputs_hidden": false} class DecoderGRU(nn.Module): """ๆณจๆ„ๅŠ›ๆœบๅˆถ่งฃ็ ๅ™จ""" def __init__(self, hidden_size, output_size, n_layers=1, dropout_p=0.1): super(DecoderGRU, self).__init__() # Keep parameters for reference self.hidden_size = hidden_size self.output_size = output_size self.n_layers = n_layers self.dropout_p = dropout_p self.attention = Attention(hidden_size) # Define layers self.embedding = nn.Embedding(output_size, hidden_size) # ไฝฟ็”จGRUๆ›ฟๆขRNN # self.rnn = nn.RNN(hidden_size, hidden_size, n_layers, dropout=dropout_p) self.rnn = nn.GRU(hidden_size, hidden_size, n_layers, dropout=dropout_p) self.out = nn.Linear(hidden_size*2, output_size) def forward(self, word_input, last_hidden, encoder_outputs): # Note: we run this one step at a time word_embedded = self.embedding(word_input).view(1, 1, -1) # S=1 x B x N rnn_output, hidden = self.rnn(word_embedded, last_hidden) rnn_output = rnn_output.squeeze(0) # attention weighted encoder output attn_weighted_encoder_output = self.attention(hidden, encoder_outputs) attn_weighted_encoder_output = attn_weighted_encoder_output.squeeze(0) concat_output = torch.cat([rnn_output, attn_weighted_encoder_output], dim=1) output = F.log_softmax(self.out(concat_output)) return output, hidden # + # decoder = DecoderGRU(100, output_lang.n_words) # decoder.to(device) # decoder_hidden = encoder_hidden.view(1, 1, -1) # decoer_output, decoder_hidden = decoder(variable_from_sentence(output_lang, pair[1])[0], # decoder_hidden, # encoder_outputs) # print('decoder_output shape: %s, decoder_hidden shape: %s' % (decoer_output.shape, decoder_hidden.shape)) # - # # ่ฎญ็ปƒ # # ไธบไบ†่ฎญ็ปƒ๏ผŒๆˆ‘ไปฌ้ฆ–ๅ…ˆ้€š่ฟ‡็ผ–็ ๅ™จ้€ๅญ—่ฟ่กŒ่พ“ๅ…ฅ่ฏญๅฅ๏ผŒๅนถ่ทŸ่ธชๆฏไธช่พ“ๅ‡บๅ’Œๆœ€ๆ–ฐ็š„้š่—็Šถๆ€ใ€‚ๆŽฅไธ‹ๆฅ๏ผŒไธบ่งฃ็ ๅ™จๆไพ›่งฃ็ ๅ™จ็š„ๆœ€ๅŽไธ€ไธช้š่—็Šถๆ€ไฝœไธบๅ…ถ็ฌฌไธ€้š่—็Šถๆ€๏ผŒๅนถๅ‘ๅ…ถๆไพ›`<SOS>`ไฝœไธบๅ…ถ็ฌฌไธ€่พ“ๅ…ฅใ€‚ไปŽ้‚ฃ้‡Œๅผ€ๅง‹๏ผŒๆˆ‘ไปฌ่ฟญไปฃๅœฐ้ข„ๆต‹ๆฅ่‡ช่งฃ็ ๅ™จ็š„ไธ‹ไธ€ไธชๅ•่ฏใ€‚ # # **Teacher Forcing ๅ’Œ Scheduled Sampling** # # "Teacher Forcing"ๆŒ‡็š„ๆ˜ฏๆฏๆฌก้ƒฝๅŸบไบŽๅฎŒๅ…จๅ‡†็กฎ็š„ไธŠๆ–‡่ฟ›่กŒ่งฃ็ ๏ผŒ่ฟ™ๆ ท่ฎญ็ปƒๆจกๅž‹ๆ”ถๆ•›ๅพˆๅฟซ๏ผŒไฝ†ๆ˜ฏไผš้€ ๆˆๅฎž้™…ๅœบๆ™ฏๅ’Œ่ฎญ็ปƒๅœบๆ™ฏๆœ‰่พƒๅคงๅทฎๅˆซ๏ผŒๅ› ไธบๅฎž้™…ๅœบๆ™ฏไธŠๆ–‡ไนŸ้ƒฝๆ˜ฏๆจกๅž‹้ข„ๆต‹็š„๏ผŒๅฏ่ƒฝไธๅ‡†็กฎ๏ผŒๅ…ทไฝ“็ป†่Š‚ๅฏๅ‚่€ƒ[่ฎบๆ–‡](http://minds.jacobs-university.de/sites/default/files/uploads/papers/ESNTutorialRev.pdf)ใ€‚ # # ่ง‚ๅฏŸTeacher Forcing็š„็ฝ‘็ปœ็š„่พ“ๅ‡บ๏ผŒๆˆ‘ไปฌๅฏไปฅ็œ‹ๅˆฐ่ฏฅ็ฝ‘็ปœ่ฏญๆณ•่ฟž่ดฏ๏ผŒไฝ†ๆ˜ฏๅ็ฆปๆญฃ็กฎ็š„็ฟป่ฏ‘ใ€‚ๅฏไปฅๅฐ†ๅ…ถไธบๅญฆไผšไบ†ๅฆ‚ไฝ•ๅฌ่€ๅธˆ็š„ๆŒ‡็คบ๏ผŒ่€Œๆœชๅญฆไน ๅฆ‚ไฝ•็‹ฌ่‡ชๅ†’้™ฉใ€‚ # # ่งฃๅ†ณๅผบ่ฟซๆ•™ๅธˆ้—ฎ้ข˜็š„ๆ–นๆณ•็งฐไธบโ€œ่ฎกๅˆ’ๆŠฝๆ ทโ€๏ผˆ[Scheduled Sampling](https://arxiv.org/abs/1506.03099)๏ผ‰๏ผŒๅฎƒๅœจ่ฎญ็ปƒๆ—ถไป…ๅœจไฝฟ็”จ็›ฎๆ ‡ๅ€ผๅ’Œ้ข„ๆต‹ๅ€ผไน‹้—ด่ฟ›่กŒๅˆ‡ๆขใ€‚ๆˆ‘ไปฌๅฐ†ๅœจ่ฎญ็ปƒๆ—ถ้šๆœบ้€‰ๆ‹ฉ,ๆœ‰ๆ—ถๆˆ‘ไปฌๅฐ†ไฝฟ็”จ็œŸๅฎž็›ฎๆ ‡ไฝœไธบ่พ“ๅ…ฅ๏ผˆๅฟฝ็•ฅ่งฃ็ ๅ™จ็š„่พ“ๅ‡บ๏ผ‰๏ผŒๆœ‰ๆ—ถๆˆ‘ไปฌๅฐ†ไฝฟ็”จ่งฃ็ ๅ™จ็š„่พ“ๅ‡บใ€‚ # + jupyter={"outputs_hidden": false} teacher_forcing_ratio = 0.5 clip = 5.0 def train(input_variable, target_variable, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length=MAX_LENGTH): # Zero gradients of both optimizers encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() loss = 0 # Added onto for each word # Get size of input and target sentences input_length = input_variable.size()[0] target_length = target_variable.size()[0] # Run words through encoder encoder_hidden = encoder.init_hidden() encoder_outputs, encoder_hidden = encoder(input_variable, encoder_hidden) # Prepare input and output variables decoder_input = torch.LongTensor([[SOS_token]]) # Use last hidden state from encoder to start decoder decoder_hidden = encoder_hidden if USE_CUDA: decoder_input = decoder_input.cuda() # Choose whether to use teacher forcing use_teacher_forcing = random.random() < teacher_forcing_ratio if use_teacher_forcing: # Teacher forcing: Use the ground-truth target as the next input for di in range(target_length): decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden, encoder_outputs) loss += criterion(decoder_output, target_variable[di]) decoder_input = target_variable[di] # Next target is next input else: # Without teacher forcing: use network's own prediction as the next input for di in range(target_length): decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden, encoder_outputs) loss += criterion(decoder_output, target_variable[di]) # Get most likely word index (highest value) from output topv, topi = decoder_output.data.topk(1) ni = topi[0][0] decoder_input = torch.LongTensor([[ni]]) # Chosen word is next input if USE_CUDA: decoder_input = decoder_input.cuda() # Stop at end of sentence (not necessary when using known targets) if ni == EOS_token: break # Backpropagation loss.backward() torch.nn.utils.clip_grad_norm(encoder.parameters(), clip) torch.nn.utils.clip_grad_norm(decoder.parameters(), clip) encoder_optimizer.step() decoder_optimizer.step() return loss.item() / target_length # - # ไธ‹้ขๆ˜ฏ็”จไบŽ่พ…ๅŠฉ่พ“ๅ‡บ่ฎญ็ปƒๆƒ…ๅ†ต็š„ๅ‡ฝๆ•ฐ # + jupyter={"outputs_hidden": false} def as_minutes(s): m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) def time_since(since, percent): now = time.time() s = now - since es = s / (percent) rs = es - s return '%s (- %s)' % (as_minutes(s), as_minutes(rs)) # - # ## ่ฟ›่กŒ่ฎญ็ปƒGRU # + jupyter={"outputs_hidden": false} hidden_size = 500 n_layers = 1 dropout_p = 0.05 n_epochs = 150000 # Initialize models encoder = EncoderGRU(input_lang.n_words, hidden_size, n_layers) decoder = DecoderGRU(hidden_size, output_lang.n_words, n_layers, dropout_p=dropout_p) # Move models to GPU if USE_CUDA: encoder.cuda() decoder.cuda() # Initialize optimizers and criterion learning_rate = 0.0001 encoder_optimizer = optim.Adam(encoder.parameters(), lr=learning_rate) decoder_optimizer = optim.Adam(decoder.parameters(), lr=learning_rate) criterion = nn.NLLLoss() # Configuring training plot_every = 200 print_every = 1000 # Keep track of time elapsed and running averages start = time.time() plot_losses = [] print_loss_total = 0 # Reset every print_every plot_loss_total = 0 # Reset every plot_every # Begin! for epoch in range(1, n_epochs + 1): # Get training data for this cycle training_pair = variables_from_pair(random.choice(pairs)) input_variable = training_pair[0] target_variable = training_pair[1] # Run the train function loss = train(input_variable, target_variable, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion) # Keep track of loss print_loss_total += loss plot_loss_total += loss if epoch == 0: continue if epoch % print_every == 0: print_loss_avg = print_loss_total / print_every print_loss_total = 0 print_summary = 'Epoch %d/%d, %s, %.4f' % (epoch, n_epochs, time_since(start, epoch / n_epochs), print_loss_avg) print(print_summary) if epoch % plot_every == 0: plot_loss_avg = plot_loss_total / plot_every plot_losses.append(plot_loss_avg) plot_loss_total = 0.05 # - # **็ป˜ๅˆถ่ฎญ็ปƒloss** # + jupyter={"outputs_hidden": false} import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np # %matplotlib inline def show_plot(points): plt.figure() fig, ax = plt.subplots() loc = ticker.MultipleLocator(base=0.2) # put ticks at regular intervals ax.yaxis.set_major_locator(loc) plt.plot(points) show_plot(plot_losses) # - # # ๆจกๅž‹้ชŒ่ฏ # + jupyter={"outputs_hidden": false} def evaluate(sentence, max_length=MAX_LENGTH): input_variable = variable_from_sentence(input_lang, sentence) input_length = input_variable.size()[0] # Run through encoder encoder_hidden = encoder.init_hidden() encoder_outputs, encoder_hidden = encoder(input_variable, encoder_hidden) # Create starting vectors for decoder decoder_input = torch.LongTensor([[SOS_token]]) # SOS if USE_CUDA: decoder_input = decoder_input.cuda() decoder_hidden = encoder_hidden decoded_words = [] decoder_attentions = torch.zeros(max_length, max_length) # Run through decoder for di in range(max_length): decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden, encoder_outputs) # Choose top word from output topv, topi = decoder_output.data.topk(1) ni = topi[0][0] if ni == EOS_token: decoded_words.append('<EOS>') break else: decoded_words.append(output_lang.index2word[ni.item()]) # Next input is chosen word decoder_input = torch.LongTensor([[ni]]) if USE_CUDA: decoder_input = decoder_input.cuda() return decoded_words # - # ้šๆœบ้€‰ๅ–ไธ€ไธชๅฅๅญ่ฟ›่กŒ้ชŒ่ฏใ€‚ def evaluate_randomly(): pair = random.choice(pairs) output_words = evaluate(pair[0]) output_sentence = ' '.join(output_words) print('>', pair[0]) print('=', pair[1]) print('<', output_sentence) print('') # + jupyter={"outputs_hidden": false} evaluate_randomly() # - ' '.join(evaluate('ไบบ็”Ÿๆ˜ฏๆœ‰่ถฃ็š„ใ€‚')) # ้šๆœบ็š„้ชŒ่ฏๅชๆ˜ฏไธ€ไธช็ฎ€ๅ•็š„ไพ‹ๅญ๏ผŒไธบไบ†่ƒฝ็ณป็ปŸๆ€ง็š„ๅฎŒๆˆๆต‹่ฏ•ๆ•ฐๆฎ็š„็ฟป่ฏ‘๏ผŒ่ฟ™้‡Œไป้œ€่ฆๅฎž็Žฐไธ€ไธชๆ–ฐ็š„ๅ‡ฝๆ•ฐใ€‚ # + import collections from torchtext.data.metrics import bleu_score # ่ฏปๅ–ๆต‹่ฏ•ๆ•ฐๆฎ้›† with open('cn-eng-test.txt') as f: lines = f.read().strip().split('\n') test_pairs = [[normalize_string(s) for s in l.split('\t')] for l in lines] test_pairs_dict = collections.defaultdict(lambda : []) for pair in test_pairs: test_pairs_dict[pair[0]].append(pair[1].split(' ')) def evaluate_bleu_score(): candicates = [] references = [] for i, pair in enumerate(test_pairs_dict.items(), start=1): candicate = evaluate(pair[0]) if candicate[-1] == '<EOS>': candicate.pop(-1) candicates.append(candicate) references.append(pair[1]) score = bleu_score(candicates, references) return score # - print('test dataset bleu score: %s' % evaluate_bleu_score())
19,028
/data_gathering/get_links_and_pics.ipynb
fe2a42eeb82e4afb6c3e388e5382f9ea846c053b
[]
no_license
leem99/found_in_time
https://github.com/leem99/found_in_time
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
5,804
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # ## Get Links and Images # # * Script goes through the watch listing pages such as [here](https://www.prestigetime.com/luxury-watches-for-men.html). # * Download all of the watch pictures # * Get links for all individual watch pages (so that I can go back later and get more watch attributes). # * Save basic watch attributes to a csv. # # Note: Due to the structure of the PrestigeTime website, code is run seperately for men's and womens watches. # + # General Libraries import os import re import time import csv # Analysis Libraries import numpy as np import pandas as pd # Scraping Libraries from bs4 import BeautifulSoup import requests from fake_useragent import UserAgent # - # Randomize Me to Prevent Getting Blocked def random_soup(url): us = UserAgent() user_agent = {'User-Agent':us.random} response = requests.get(url,headers = user_agent) page = response.text soup = BeautifulSoup(page,"lxml") return soup # __Loop through all of the pages__ #Get all Watch Links (Not Previously Saved) #num_pages = 158 #mens num_pages = 127 #womens watch_list = [] for ix in range(1,num_pages+1): time.sleep(1+np.random.uniform(0,2)) #listing_soup = random_soup('https://www.prestigetime.com/luxury-watches-for-men.html&page='+str(ix)) listing_soup = random_soup('https://www.prestigetime.com/luxury-watches-for-women.html&page='+str(ix)) listings = listing_soup.find_all('div',class_='thumbnail thumbnail-center') for listing in listings: watch_dict = dict() #URL watch_dict['url'] = listing.find('a')['href'] #Image URL watch_dict['image_url'] = listing.find('img')['src'] #Brand watch_dict['brand'] = listing.find('strong').text.strip() # Model Name watch_dict['model_name'] = listing.find('span',id=re.compile("series-")).text.strip() # Model Number watch_dict['model_num'] = listing.find('span',id=re.compile("model_no")).text.strip() #Price price = listing.find('div',class_="caption-bottom").text price = price.split(':')[1] price = price.replace(',','') price = re.findall(r"(\d+)\.(\d+)", price) try: price = float(price[0][0] +'.'+ price[0][1]) except: IndexError price = np.nan watch_dict['price'] = price # Image Name image_name = watch_dict['brand'] + watch_dict['model_name'] + watch_dict['model_num'] image_name = re.sub('[^0-9a-zA-Z]+', '', image_name) watch_dict['image_name'] = image_name watch_list.append(watch_dict) if image_name+'.jpg' not in os.listdir('prestige_time_pics/'): # Download Image us = UserAgent() user_agent = {'User-Agent':us.random} time.sleep(1+np.random.uniform(0,2)) response = requests.get(watch_dict['image_url'],headers = user_agent) #f = open('../prestige_time_pics_mens/'+image_name+'.jpg','wb') f = open('../prestige_time_pics_womens/'+image_name+'.jpg','wb') f.write(requests.get(watch_dict['image_url']).content) f.close() print(ix) # __Save Summaries to CSV__ watch_DF = pd.DataFrame(watch_list) watch_DF.to_csv('watch_page_list_womens.csv',index=False) #watch_DF.to_csv('watch_page_list_mens.csv',index=False) ls) # + [markdown] papermill={"duration": 0.033697, "end_time": "2021-12-26T14:44:43.929710", "exception": false, "start_time": "2021-12-26T14:44:43.896013", "status": "completed"} # # Test Train Split # + papermill={"duration": 1.33781, "end_time": "2021-12-26T14:44:45.286218", "exception": false, "start_time": "2021-12-26T14:44:43.948408", "status": "completed"} train_dataset, test_dataset = temporal_signal_split(dataset, train_ratio=0.8 and launch JupyterLab. You should know see "U4-S1-NLP (Python3)" in the list of available kernels on launch screen. # + # Dependencies for the week (instead of conda) # Run if you're using colab, otherwise you should have a local copy of the data # #!wget https://raw.githubusercontent.com/LambdaSchool/DS-Unit-4-Sprint-1-NLP/main/requirements.txt # # !pip install -r requirements.txt # + jupyter={"outputs_hidden": true} # You'll use en_core_web_sm for the sprint challenge due memory constraints on Codegrader # #!python -m spacy download en_core_web_sm # Locally (or on colab) let's use en_core_web_lg # !python -m spacy download en_core_web_lg # Can do lg, takes awhile # Also on Colab, need to restart runtime after this step! # + [markdown] id="I0ssyXeiGEqc" toc-hr-collapsed=false # # Tokenze Text (Learn) # <a id="p1"></a> # + [markdown] id="sd6cxaNTGEqc" toc-hr-collapsed=true # ## Overview # # > **token**: an instance of a sequence of characters in some particular document that are grouped together as a useful semantic unit for processing # # > [_*Introduction to Information Retrival*_](https://nlp.stanford.edu/IR-book/) # # # ### The attributes of good tokens # # * Should be stored in an iterable data structure # - Allows analysis of the "semantic unit" # * Should be all the same case # - Reduces the complexity of our data # * Should be free of non-alphanumeric characters (ie punctuation, whitespace) # - Removes information that is probably not relevant to the analysis # + [markdown] id="dK-EKGVNGEqd" # Let's pretend we are trying analyze the random sequence here. Question: what is the most common character in this sequence? # + id="NODbGehhGEqe" random_seq = "AABAAFBBBBCGCDDEEEFCFFDFFAFFZFGGGGHEAFJAAZBBFCZ" # + [markdown] id="Uj0FHiJEGEqh" # A useful unit of analysis for us is going to be a letter or character # + colab={"base_uri": "https://localhost:8080/", "height": 54} id="OFWePC6XGEqh" outputId="41945a1a-6a50-4419-fcad-a08b4fe536cc" tokens = list(random_seq) print(tokens) # + [markdown] id="8tbp-hyDGEql" # Our tokens are already "good": in an iterable datastructure, all the same case, and free of noise characters (punctuation, whitespace), so we can jump straight into analysis. # + colab={"base_uri": "https://localhost:8080/", "height": 319} id="mFQcACruGEql" outputId="5f37008f-1886-498a-b4f6-6356a65059a3" import seaborn as sns sns.countplot(tokens); # + [markdown] id="o3TbbxfHGEqo" # The most common character in our sequence is "F". We can't just glance at the the sequence to know which character is the most common. We (humans) struggle to subitize complex data (like random text sequences). # # > __Subitize__ is the ability to tell the number of objects in a set, quickly, without counting. # # We need to chunk the data into countable pieces "tokens" for us to analyze them. This inability subitize text data is the motivation for our discussion today. # + [markdown] id="UMa8NJjlGEqo" toc-hr-collapsed=true # ### Tokenizing with Pure Python # + id="im96HX4XGEqp" sample = "Friends, Romans, countrymen, lend me your ears;" # + [markdown] id="Q8ACUekrGEqr" # ##### Iterable Tokens # # A string object in Python is already iterable. However, the item you iterate over is a character not a token: # # ``` # from time import sleep # for num, character in enumerate(sample): # sleep(.5) # print(f"Char {num} - {character}", end="\r") # ``` # # If we instead care about the words in our sample (our semantic unit), we can use the string method `.split()` to separate the whitespace and create iterable units. :) # + colab={"base_uri": "https://localhost:8080/", "height": 34} id="Q5Vh69V5GEqr" outputId="c16dd32b-fb89-4598-ef93-8a7b8c17122d" sample.split(" ") # + [markdown] id="3h3fMFY0GEqu" # ##### Case Normalization # A common data cleaning data cleaning task with token is to standardize or normalize the case. Normalizing case reduces the chance that you have duplicate records for things which have practically the same semantic meaning. You can use either the `.lower()` or `.upper()` string methods to normalize case. # # Consider the following example: # + id="i2K43cyJGEqu" import pandas as pd df = pd.read_csv('./data/Datafiniti_Amazon_Consumer_Reviews_of_Amazon_Products_May19.csv/Datafiniti_Amazon_Consumer_Reviews_of_Amazon_Products_May19.csv') # - df.head() # + colab={"base_uri": "https://localhost:8080/", "height": 85} deletable=false id="vbsvd0VvGEqx" nbgrader={"cell_type": "code", "checksum": "e986ee4afc96df48ac674f9b99732272", "grade": false, "grade_id": "cell-a170e7dda094d54e", "locked": false, "schema_version": 3, "solution": true, "task": false} outputId="ee9a8342-c843-449e-ac69-b52d6668bb05" # Get the count of how many times each unique brand occurs # YOUR CODE HERE df['brand'] = df['brand'].apply(lambda txt: txt.lower()) # - df['brand'].value_counts() # + [markdown] id="YkhFYsNXGEq1" # ##### Keep Only Alphanumeric Characters # Yes, we only want letters and numbers. Everything else is probably noise: punctuation, whitespace, and other notation. This one is little bit more complicated than our previous example. Here we will have to import the base package `re` (regular expressions). # # The only regex expression pattern you need for this is `'[^a-zA-Z 0-9]'` which keeps lower case letters, upper case letters, spaces, and numbers. # + colab={"base_uri": "https://localhost:8080/", "height": 37} id="YRY7kKSAGEq4" outputId="050ddca4-0c50-40bb-95be-c06c4e3d1055" sample = sample +" 911" print(sample) # - sample.split(' ') # + colab={"base_uri": "https://localhost:8080/", "height": 37} id="YRY7kKSAGEq4" outputId="050ddca4-0c50-40bb-95be-c06c4e3d1055" import re clean_text = re.sub('[^a-zA-Z 0-9]', '', sample) # - # Clean token example clean_token = clean_text.rstrip(' ').lower().split(' ') clean_token # + [markdown] id="obloLh7rGEq7" # #### Two Minute Challenge # - Complete the function `tokenize` below # - Combine the methods which we discussed above to clean text before we analyze it # - You can put the methods in any order you want # + deletable=false id="0zgbOnoIGEq7" nbgrader={"cell_type": "code", "checksum": "0f09207520f5a3a425756889e9cf78aa", "grade": false, "grade_id": "cell-42630c1891924a1a", "locked": false, "schema_version": 3, "solution": true, "task": false} def tokenize(text): """Parses a string into a list of semantic units (words) Args: text (str): The string that the function will tokenize. Returns: list: tokens parsed out by the mechanics of your choice """ # YOUR CODE HERE # Use regex to remove non-alphabetical chars remove_non_alpha = "[^a-zA-Z ]" clean_text = re.sub(remove_non_alpha,'', text) # Case normalization norm_text = clean_text.lower() return norm_text.split() # + colab={"base_uri": "https://localhost:8080/", "height": 34} id="qWsYy-LqGEq9" outputId="22ff3fdc-2185-4224-b42e-42ccaeb9663e" # this should be your output tokenize(sample) # + [markdown] id="erSMd4diGEq_" toc-hr-collapsed=true # ## Follow Along # # Our inability to analyze text data becomes quickly amplified in a business context. Consider the following: # # A business which sells widgets also collects customer reviews of those widgets. When the business first started out, they had a human read the reviews to look for patterns. Now, the business sells thousands of widgets a month. The human readers can't keep up with the pace of reviews to synthesize an accurate analysis. They need some science to help them analyze their data. # # Now, let's pretend that business is Amazon, and the widgets are Amazon products such as the Alexa, Echo, or other AmazonBasics products. Let's analyze their reviews with some counts. This dataset is available on [Kaggle](https://www.kaggle.com/datafiniti/consumer-reviews-of-amazon-products/). # - # !python -m spacy download en_core_web_lg # + id="8Ap1zL81GErA" """ Import Statements """ # Base from collections import Counter import re import pandas as pd # Plotting import squarify import matplotlib.pyplot as plt import seaborn as sns # NLP Libraries import spacy from spacy.tokenizer import Tokenizer from nltk.stem import PorterStemmer # Load our spacy english language model nlp = spacy.load('en_core_web_lg') # + colab={"base_uri": "https://localhost:8080/", "height": 267} id="ydhFysF-GErC" outputId="a6ba71f2-a186-441c-a00f-0bb9f0b6dc76" df.head(2) # + colab={"base_uri": "https://localhost:8080/", "height": 884} deletable=false id="Lkl_l_3KGErH" nbgrader={"cell_type": "code", "checksum": "c9af223b0b92d4f38bf65a8a59b77553", "grade": false, "grade_id": "cell-afe39f461a4852ac", "locked": false, "schema_version": 3, "solution": true, "task": false} outputId="23b1f11e-5349-46d7-8823-e1a46a93747f" # View counts of product review categories df['primaryCategories'].value_counts() # - # electronic_mask = df['primaryCategories'] == 'Electronics' df = df[electronic_mask] df['primaryCategories'].value_counts() # ### Create Tokens df['tokens'] = df["reviews.text"].apply(tokenize) df['tokens'] # + [markdown] id="8hOBAw2yGErU" # #### Analyzing Tokens # + colab={"base_uri": "https://localhost:8080/", "height": 187} deletable=false id="6jVvZAvJGErU" nbgrader={"cell_type": "code", "checksum": "4fcf360b68c204e6742580d513c4239e", "grade": false, "grade_id": "cell-1df54ac52c426166", "locked": false, "schema_version": 3, "solution": true, "task": false} outputId="79b4c6c6-5dda-4903-e472-94b4530cd049" # Object from Base Python from collections import Counter # YOUR CODE HERE word_counter = Counter() df['tokens'].apply(lambda token: word_counter.update(token)) # - word_counter.most_common(10) # + [markdown] id="TiVHbw6xGErW" # Let's create a fuction which takes a corpus of document and returns and dataframe of word counts for us to analyze. # + id="ypyH-_x1GErX" def count(tokens): """ Calculates some basic statistics about tokens in our corpus (i.e. corpus means collections text data) """ # stores the count of each token word_counts = Counter() # stores the number of docs that each token appears in appears_in = Counter() total_docs = len(tokens) for token in tokens: # stores count of every appearance of a token word_counts.update(token) # use set() in order to not count duplicates, thereby count the num of docs that each token appears in appears_in.update(set(token)) # build word count dataframe temp = zip(word_counts.keys(), word_counts.values()) wc = pd.DataFrame(temp, columns = ['word', 'count']) # rank the the word counts wc['rank'] = wc['count'].rank(method='first', ascending=False) total = wc['count'].sum() # calculate the percent total of each token wc['pct_total'] = wc['count'].apply(lambda token_count: token_count / total * 100) # calculate the cumulative percent total of word counts wc = wc.sort_values(by='rank') wc['cul_pct_total'] = wc['pct_total'].cumsum() # create dataframe for document stats t2 = zip(appears_in.keys(), appears_in.values()) ac = pd.DataFrame(t2, columns=['word', 'appears_in']) # merge word count stats with doc stats wc = ac.merge(wc, on='word') wc['appears_in_pct'] = wc['appears_in'].apply(lambda x: x / total_docs * 100) return wc.sort_values(by='rank') # + id="GqqwygrUGErZ" # Use the Function wc = count(df['tokens']) # + colab={"base_uri": "https://localhost:8080/", "height": 204} id="_0EkCpReGEra" outputId="9a6a6a11-b9ea-49ab-f07e-d8bdadd781c1" wc.head() # + colab={"base_uri": "https://localhost:8080/", "height": 279} id="u9kI5BjnGErc" outputId="8622477c-d7c7-4d6c-c58e-994ae23b65ee" import seaborn as sns # Cumulative Distribution Plot plt.figure(figsize=(15,6)) plt.grid() sns.lineplot(x='rank', y='cul_pct_total', data=wc); # + colab={"base_uri": "https://localhost:8080/", "height": 34} id="GKpixh5DGEre" outputId="0611cd25-46ce-4e16-edd3-d1ae2ca09e92" wc[wc['rank'] <= 350]['cul_pct_total'].max() # + colab={"base_uri": "https://localhost:8080/", "height": 248} id="-yuCq8nuGErg" outputId="a4d60c06-06a5-47cc-84ad-cd1faa8d30de" import squarify import matplotlib.pyplot as plt wc_top20 = wc[wc['rank'] <= 20] squarify.plot(sizes=wc
16,384
/sklearn_logistic_regression.ipynb
7eabf259546e0cdfbbef3dee0af9fc33d2664bda
[]
no_license
yash2798/Alexa_Project
https://github.com/yash2798/Alexa_Project
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
1,243
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="view-in-github" colab_type="text" # <a href="https://colab.research.google.com/github/yash2798/Alexa_Project/blob/master/sklearn_logistic_regression.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # + id="PDf_Tjerhjov" import os import tarfile from six.moves import urllib # + [markdown] id="eH88SbYTiPNA" # # New Section l(scale=eps, size=(n,1)) Y = Y_true + eps return X,Y,Y_true def visualize(X, Y, Y_true, mu, sigma, title=None): sns.scatterplot(X[:,0], Y.flatten(), label='Noisy measurement') sns.lineplot(X[:,0], Y_true.flatten(), label='True function') plt.xlabel('X') plt.ylabel('Y') if not title is None: plt.title(title) # estimation Y_pred = np.matmul(X,mu) sns.lineplot(X[:,0].flatten(), Y_pred.flatten(), color='lightgreen', label='Predicted Mean') Y0 = np.matmul(X,mu-np.sqrt(np.array([[sigma[0,0]],[0]]))) Y1 = np.matmul(X,mu+np.sqrt(np.array([[sigma[0,0]],[0]]))) plt.fill_between(X[:,0].flatten(),Y0[:,0],Y1[:,0], color='lightgreen', alpha=0.3, label='Predicted std') Y0 = np.matmul(X,mu-np.sqrt(np.array([[0],[sigma[1,1]]]))) Y1 = np.matmul(X,mu+np.sqrt(np.array([[0],[sigma[1,1]]]))) plt.fill_between(X[:,0].flatten(),Y0[:,0],Y1[:,0], color='lightgreen', alpha=0.3) plt.legend() for n in [3,20,100]: plt.figure(figsize=(10,5)) X,Y,Y_true = gen_data(n=n, eps=0.1) # prior mu = np.array([[0],[0]]) b = 5 sigma = np.eye(2)*b**2 plt.subplot(1,2,1) visualize(X,Y,Y_true,mu,sigma,title='n={}, Prior'.format(n)) print(mu,sigma) # likelihood a = 1 # posterior ATA = np.matmul(X.T, X) Lam = ATA/a**2 + np.eye(2)/b**2 sigma_post = np.linalg.inv(Lam) mu_post = np.matmul(sigma_post, (np.matmul(X.T, Y)/a**2 + mu/b*82)) plt.subplot(1,2,2) visualize(X,Y,Y_true,mu_post,sigma_post,title='n={}, Posterior'.format(n)) print(mu_post, sigma_post)
2,256
/week13/day1/theory/SimpleRNN-time-series.ipynb
a7dee094e3de987d5b0a432de9a40c410112cc17
[]
no_license
RMolleda/Data_science_RM
https://github.com/RMolleda/Data_science_RM
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
5,424,255
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Time-series prediction with Keras `SimpleRNN` class # ### Dr. Tirthajyoti Sarkar, Fremont, CA 94536 ([LinkedIn](https://www.linkedin.com/in/tirthajyoti-sarkar-2127aa7/), [Github](https://tirthajyoti.github.io)) # # For more tutorial-style notebooks on deep learning, **[here is my Github repo](https://github.com/tirthajyoti/Deep-learning-with-Python)**. # # For more tutorial-style notebooks on general machine learning, **[here is my Github repo](https://github.com/tirthajyoti/Machine-Learning-with-Python)**. # # --- # ### What is this Notebook about? # In this notebook, we show a building simple recurrent neural network (RNN) using Keras. # # We will generate some synthetic time-series data by multiplying two periodic/ sinusoidal signals and adding some stochasticity (Gaussian noise). Then, we will take a small fraction of the data and train a simple RNN model with it and try to predict the rest of the data and see how the predictions match up with the ground truth. # + import pandas as pd import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, SimpleRNN from tensorflow.keras.optimizers import RMSprop from tensorflow.keras.callbacks import Callback # + # Total time points N = 3000 # Time point to partition train/test splits Tp = 750 t = np.arange(0,N) x = (2*np.sin(0.02*t)*np.sin(0.003*t))+0.5*np.random.normal(size=N) df = pd.DataFrame(x, columns=['Data']) len(df) # - plt.figure(figsize=(15,4)) plt.plot(df, c='blue') plt.grid(True) plt.show() # ### Split the values in train and test # # So, we took only 25% of the data as training samples and set aside the rest of the data for testing. # # Looking at the time-series plot, we think **it is not easy for a standard model to come up with correct trend predictions.** values = df.values train, test = values[0:Tp ,:], values[Tp:N,:] print("Train data length:", train.shape) print("Test data length:", test.shape) index = df.index.values plt.figure(figsize=(15,4)) plt.plot(index[0:Tp],train,c='blue') plt.plot(index[Tp:N],test,c='orange',alpha=0.7) plt.legend(['Train','Test']) plt.axvline(df.index[Tp], c="r") plt.grid(True) plt.show() # ### Step (or _embedding_) # RNN model requires a step value that contains n number of elements as an input sequence. # # Suppose x = {1,2,3,4,5,6,7,8,9,10} # # for step=1, x input and its y prediction become: # # | x | y | # |---|---| # | 1 | 2 | # | 2 | 3 | # | 3 | 4 | # | ... | ... | # | 9 | 10 | # # for step=3, x and y contain: # # | x | y | # |---|---| # | 1,2,3 | 4 | # | 2,3,4 | 5 | # | 3,4,5 | 6 | # | ... | ... | # | 7,8,9 | 10 | # # Here, we choose `step=4`. In more complex RNN and in particular for text processing, this is also called _embedding size_. train.shape step = 4 np.append(train,np.repeat(train[-1,],step)).shape train[-1,] np.repeat(train[-1],10) train[-8:] # + step = 4 # add step elements into train and test test = np.append(test, np.repeat(test[-1,],step)) train = np.append(train, np.repeat(train[-1,],step)) # - train[-8:] print("Train data length:", train.shape) print("Test data length:", test.shape) # ### Converting to a multi-dimensional array # Next, we'll convert test and train data into the matrix with step value as it has shown above example. def convert_to_matrix(data, step): X, Y = [], [] for i in range(len(data)-step): d = i+step X.append(data[i:d,]) Y.append(data[d,]) return np.array(X), np.array(Y) # + trainX, trainY = convert_to_matrix(train,step) testX, testY = convert_to_matrix(test,step) trainX.shape # - # 750 trozos de 4 valores trainX[0] trainX[1] trainX[2] trainX[3] trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) trainX.shape # (9, 3, 1, 2, 1, 4) # ### Ejemplo de dimensiones [1,4,2,3] --> (4,) [[1,4,2,3], [1,4,2,3]] --> (2, 4) [[ [1,4,2,3], [1,4,2,3] ]] --> (1, 2, 4) # + [ [ [ [1,4,2,3], [1,4,2,3] ] ], [ [ [1,4,2,3], [1,4,2,3] ] ] ] --> (2, 1, 2, 4) # - # Para entrenar el modelo, necesito que los datos tengan la siguiente dimensiรณn: # # (750, 1, 4) # # - 750: el nรบmero total de trozos # - 1: una fila de datos # - 4: cada trozo tiene cuatro valores # # En el caso de una imagen, recordemos con un ejemplo: # # (750, 28, 28) # # 750 imรกgenes de resoluciรณn 28x28 print("Training data shape:", trainX.shape,', ',trainY.shape) print("Test data shape:", testX.shape,', ',testY.shape) # ### Keras model with `SimpleRNN` layer # # - 256 neurons in the RNN layer # - 32 denurons in the densely connected layer # - a single neuron for the output layer # - ReLu activation # - learning rate: 0.001 def build_simple_rnn(num_units=128, embedding=4, num_dense=32, lr=0.001): """ Builds and compiles a simple RNN model Arguments: num_units: Number of units of a the simple RNN layer embedding: Embedding length - Steps - Tamaรฑo de ventana num_dense: Number of neurons in the dense layer followed by the RNN layer lr: Learning rate (uses RMSprop optimizer) Returns: A compiled Keras model. """ model = Sequential() model.add(SimpleRNN(units=num_units, input_shape=(1, embedding), activation="relu")) model.add(Dense(num_dense, activation="relu")) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer=RMSprop(lr=lr),metrics=['mse']) return model model = build_simple_rnn() # Taking the defaults model.summary() # ### A simple callback class to show a message every 50 epochs class MyCallback(Callback): def on_epoch_end(self, epoch, logs=None): if (epoch+1) % 50 == 0 and epoch>0: print("Epoch number {} done".format(epoch+1)) # ### Fit the model # Con batch_size = 16 lo que harรญamos es que cogemos los datos de esta forma: # # - (16, 1, 4) # # Cogemos 16 trozos de 1 fila con 4 datos batch_size=16 num_epochs = 1000 model.fit(trainX,trainY, epochs=num_epochs, batch_size=batch_size, callbacks=[MyCallback()],verbose=0) # ### Plot loss plt.figure(figsize=(7,5)) plt.title("RMSE loss over epochs",fontsize=16) plt.plot(np.sqrt(model.history.history['loss']),c='k',lw=2) plt.grid(True) plt.xlabel("Epochs",fontsize=14) plt.ylabel("Root-mean-squared error",fontsize=14) plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.show() # ### Predictions # Note that the model was fitted only with the `trainX` and `trainY` data. plt.figure(figsize=(5,4)) plt.title("This is what the model saw",fontsize=18) plt.plot(trainX[:,0][:,0],c='blue') plt.grid(True) plt.show() plt.figure(figsize=(5,4)) plt.title("This is what the model saw",fontsize=18) plt.plot(testX[:,0][:,0],c='blue') plt.grid(True) plt.show() trainPredict = model.predict(trainX) testPredict = model.predict(testX) # predicted contiene todo el conjunto de datos predicho por nuestro modelo predicted = np.concatenate((trainPredict,testPredict),axis=0) plt.figure(figsize=(10,4)) plt.title("This is what the model predicted",fontsize=18) plt.plot(testPredict,c='orange') plt.grid(True) plt.show() # ### Comparing it with the ground truth (test set) index = df.index.values plt.figure(figsize=(15,4)) plt.title("Ground truth and prediction together",fontsize=18) plt.plot(index,df,c='blue') plt.plot(index,predicted,c='orange',alpha=0.75) plt.legend(['True data','Predicted'],fontsize=15) plt.axvline(df.index[Tp], c="r") plt.grid(True) plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.show() # ### How are the errors distributed? # The errors, or residuals, as they are called in a regression problem, can be plotted to see if they follow any specific distribution. In the generation process, we injected Gaussian noise, so we expect the error to follow the same pattern, _if the model has been able to fit to the real data correctly_. error = predicted[Tp:N]-df[Tp:N] error = np.array(error).ravel() plt.figure(figsize=(7,5)) plt.hist(error,bins=25,edgecolor='k',color='orange') plt.show() plt.figure(figsize=(15,4)) plt.plot(error,c='blue',alpha=0.75) plt.hlines(y=0,xmin=-50,xmax=2400,color='k',lw=3) plt.xlim(-50,2350) plt.grid(True) plt.show() # ## Make the model better # # Note, for running these experiments reasonably fast, we will fix the model size to be smaller than the model above. We will use a RNN layer with 32 neurons followed by a densely connected layer of 8 neurons. # ### Varying the embedding/step size def predictions(model,trainX,testX): trainPredict = model.predict(trainX) testPredict = model.predict(testX) predicted = np.concatenate((trainPredict,testPredict),axis=0) return predicted def plot_compare(predicted): index = df.index.values plt.figure(figsize=(15,4)) plt.title("Ground truth and prediction together",fontsize=18) plt.plot(index,df,c='blue') plt.plot(index,predicted,c='orange',alpha=0.75) plt.legend(['True data','Predicted'],fontsize=15) plt.axvline(df.index[Tp], c="r") plt.grid(True) plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.show() def prepare_data(step=4): values = df.values train, test = values[0:Tp,:], values[Tp:N,:] test = np.append(test,np.repeat(test[-1,],step)) train = np.append(train,np.repeat(train[-1,],step)) trainX, trainY =convertToMatrix(train,step) testX, testY =convertToMatrix(test,step) trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) return trainX,testX,trainY,testY from sklearn.metrics import mean_squared_error, mean_absolute_error def errors(testX, df): y_true = df[Tp:N].values y_pred = model.predict(testX) error = y_pred - y_true return [mean_absolute_error(y_true=y_true, y_pred=y_pred)] for s in [2,4,6,8,10,12]: # s = steps - tamaรฑo ventana trainX,testX,trainY,testY = prepare_data(s) model = build_simple_rnn(num_units=32,num_dense=8, embedding=s) batch_size=16 num_epochs = 100 model.fit(trainX,trainY, epochs=num_epochs, batch_size=batch_size, verbose=0) preds = predictions(model,trainX,testX) print("Embedding size: {}".format(s)) print("Error (mae):", errors(testX, df)) print("-"*100) plot_compare(preds) print() # ### Number of epochs for e in [100,200,300,400,500]: trainX, testX, trainY, testY = prepare_data(2) model = build_simple_rnn(num_units=32,num_dense=8,embedding=2) batch_size=8 num_epochs = e model.fit(trainX,trainY, epochs=num_epochs, batch_size=batch_size, verbose=0) preds = predictions(model,trainX,testX) print("Ran for {} epochs".format(e)) print("Error:", errors(testX, df)) print("-"*100) plot_compare(preds) print() # ### Batch size # + best_step = 2 for b in [2,4,8,16,32,64]: trainX,testX,trainY,testY = prepare_data(best_step) model = build_simple_rnn(num_units=32,num_dense=8,embedding=best_step) batch_size=b num_epochs = 250 model.fit(trainX,trainY, epochs=num_epochs, batch_size=batch_size, verbose=0) preds = predictions(model,trainX,testX) print("Ran with batch size: {}".format(b)) print("Error:", errors(testX, df)) print("-"*100) plot_compare(preds) print() # - # Ultimately, an exhaustive hyperparameter tuning is needed for the best overall performance. Also, the predictive power is not well-defined as we are judging the quality of the prediction mostly visually here but a neumerical metric (or a few of them) would be a better approach.
12,095
/graph_Weights/.ipynb_checkpoints/Untitled-checkpoint.ipynb
0b46b6a769eeb6011f7fbad4f76e127d4fa61dc8
[]
no_license
coderXmachina2/Deep-learning-Meerkat-RFI-removal
https://github.com/coderXmachina2/Deep-learning-Meerkat-RFI-removal
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
10,174
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import pandas as pd import numpy as np #from requests_html import HTML from string import punctuation from collections import Counter import nltk from nltk.corpus import stopwords from nltk.stem import SnowballStemmer import re # + stop_words = ['the','a','an','and','but','if','or','because','as','what','which','this','that','these','those','then', 'just','so','than','such','both','through','about','for','is','of','while','during','to','What','Which', 'Is','If','While','This'] def clean_doc2tokens(text, remove_stop_words=True, stem_words=False): # Clean the text text = re.sub(r"[^A-Za-z0-9]", " ", text) text = re.sub(r"what's", "", text) text = re.sub(r"What's", "", text) text = re.sub(r"\'s", " ", text) text = re.sub(r"\'ve", " have ", text) text = re.sub(r"can't", "cannot ", text) text = re.sub(r"n't", " not ", text) text = re.sub(r"I'm", "I am", text) text = re.sub(r" m ", " am ", text) text = re.sub(r"\'re", " are ", text) text = re.sub(r"\'d", " would ", text) text = re.sub(r"\'ll", " will ", text) text = re.sub(r"([0-9])[Kk] ",r"\1 000 ",text) text = re.sub(r" e g ", " eg ", text) text = re.sub(r" b g ", " bg ", text) text = re.sub(r"\0s", "0", text) text = re.sub(r" 9 11 ", "911", text) text = re.sub(r"e-mail", "email", text) text = re.sub(r"\s{2,}", " ", text) text = re.sub(r"quikly", "quickly", text) text = re.sub(r" usa ", " America ", text) text = re.sub(r" USA ", " America ", text) text = re.sub(r" u s ", " America ", text) text = re.sub(r" uk ", " England ", text) text = re.sub(r" UK ", " England ", text) #text = re.sub(r"india", "India", text) #text = re.sub(r"switzerland", "Switzerland", text) #text = re.sub(r"china", "China", text) text = re.sub(r"chinese", "Chinese", text) text = re.sub(r"imrovement", "improvement", text) text = re.sub(r"intially", "initially", text) #text = re.sub(r"quora", "Quora", text) text = re.sub(r" dms ", "direct messages ", text) text = re.sub(r"demonitization", "demonetization", text) text = re.sub(r"actived", "active", text) text = re.sub(r"kms", " kilometers ", text) text = re.sub(r"KMs", " kilometers ", text) text = re.sub(r" cs ", " computer science ", text) text = re.sub(r" upvotes ", " up votes ", text) text = re.sub(r" iPhone ", " phone ", text) text = re.sub(r"\0rs ", " rs ", text) text = re.sub(r"calender", "calendar", text) text = re.sub(r"ios", "operating system", text) text = re.sub(r"gps", "GPS", text) text = re.sub(r"gst", "GST", text) text = re.sub(r"programing", "programming", text) text = re.sub(r"bestfriend", "best friend", text) text = re.sub(r"dna", "DNA", text) text = re.sub(r"III", "3", text) text = re.sub(r"the US", "America", text) text = re.sub(r"Astrology", "astrology", text) text = re.sub(r"Method", "method", text) text = re.sub(r"Find", "find", text) text = re.sub(r"banglore", "Banglore", text) text = re.sub(r" J K ", " JK ", text) text = text.split() # Remove punctuation from text text = [c for c in text if c not in punctuation] text = [c.lower() for c in text] # Optionally, remove stop words if remove_stop_words: text = [w for w in text if not w in stop_words] # Optionally, shorten words to their stems if stem_words: stemmer = SnowballStemmer('english') text = [stemmer.stem(word) for word in text] # Return a list of words return text def tokens2doc(tokens, vocab_list): tokens = ['UNK' if w not in vocab_list else w for w in tokens] return ' '.join(tokens) def update_vocab(tokens, vocab): tokens = clean_doc2tokens(data) vocab.update(tokens) # create vocab (clean data, split tokens) # create clean corpus (clean data again, replace UNK) # train word vectors # + def create_vocab(corpus): corpus_nounk = list() vocab = Counter() loop = 1 for data in corpus: if loop % 10000 == 0: print(loop) tokens = clean_doc2tokens(data) corpus_nounk.append(tokens) vocab.update(tokens) loop = loop + 1 return corpus_nounk,vocab def create_vocab_list(vocab, min_occurrence): vocab_freq_list = [[k,c] for k,c in vocab.most_common() if c >= min_occurrence] return vocab_freq_list def create_clean_corpus(corpus_nounk, vocab_list): corpus_withunk = list() loop = 1 for data in corpus_nounk: if loop%10000 == 0: print(loop) loop = loop + 1 tokens = ['UNK' if w not in vocab_list else w for w in data] corpus_withunk.append(tokens) return corpus_withunk # - train_pairs = pd.read_csv('/Users/zhang/MscProject_tweak2vec/QuoraQuestionPairs/train.csv',encoding='ISO-8859-1') pd.options.display.max_colwidth=200 train_pairs[:10] question1 = train_pairs['question1'] question2 = train_pairs['question2'] is_duplicate = train_pairs['is_duplicate'] questions = [] labels = [] line = 0 for q in zip(question1,question2): if type(q[0])==str and type(q[1])==str: questions.append(q[0]) questions.append(q[1]) labels.append(is_duplicate[line]) line = line+1 np.save('quora_labels',np.array(labels)) corpus_clean, vocab = create_vocab(questions) len(vocab) np.save('quora_vocaball.npy', vocab) # + # >5 30299 # >10 20900 # >20 14468 min_occurrence = 5 vocab_freq_list = create_vocab_list(vocab, min_occurrence) vocab_list = [w[0] for w in vocab_freq_list] len(vocab_list) # - np.save('quora_vocab5.npy',np.array(vocab_freq_list)) corpus_withunk = create_clean_corpus(corpus_clean, vocab_list) np.save('quora_corpus_withunk5.npy',np.array(corpus_withunk)) quora_tokens = np.load('/Users/zhang/MscProject_tweak2vec/corpus/quora_corpus_withunk5.npy') vocab = Counter() for line in quora_tokens: vocab.update(line) len(vocab) txtName = "/Users/zhang/MscProject_tweak2vec/corpus/quora_train5.txt" f=open(txtName, "a+") for line in quora_tokens: new_context = ' '.join(line) new_context = new_context + '\n' f.write(new_context) f.close() na) plt.xlabel('Features', fontsize=15) plt.ylabel('Percent of missing values', fontsize=15) plt.title('Percent missing data by feature', fontsize=15) plt.show() # -
6,668
/Lung csv/Untitled1.ipynb
358aa4f77eb6efbaf6afea4b665f2f049d2a99cb
[]
no_license
varunsharma92/MajorProject
https://github.com/varunsharma92/MajorProject
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
10,369
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: tf # language: python # name: tf # --- from sklearn import datasets import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.decomposition import PCA iris = datasets.load_iris() x = iris.data[:, :2] y = iris.target x_min, x_max = x[:, 0].min() - .5, x[:, 0].max() + .5 y_min, y_max = x[:, 1].min() - .5, x[:, 1].max() + .5 plt.figure(2, figsize=(8,6)) plt.clf() plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.Set1, edgecolor='k') plt.xlabel('Sepal Length') plt.ylabel('Sepal Width') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) # + fig = plt.figure(1, figsize=(8,6)) ax = Axes3D(fig, elev=-150, azim=110) x_reduced = PCA(n_components=3).fit_transform(iris.data) ax.scatter(x_reduced[:, 0], x_reduced[:, 1], x_reduced[:, 2], c=y, cmap=plt.cm.Set1, edgecolor='k', s=40) ax.set_title("First three PCA Directions") ax.set_xlabel('First eigenvector') ax.w_xaxis.set_ticklabels([]) ax.set_ylabel('2nd Eigenvector') ax.w_yaxis.set_ticklabels({}) ax.set_zlabel('3rd Eigenvector') ax.w_zaxis.set_ticklabels([]) plt.show() # -
1,305
/259. 3Sum Smaller.ipynb
0638ae4103e3a3ab8edaeb35de1dfa1e5041a6c2
[]
no_license
EvaXue/Leet_code
https://github.com/EvaXue/Leet_code
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
2,074
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # https://leetcode.com/problems/3sum-smaller/ # # https://www.youtube.com/watch?v=F4UKF07-tvo class Solution(object): def threeSumSmaller(self, nums, target): """ :type nums: List[int] :type target: int :rtype: int """ if len(nums)<3: return 0 newnums = sorted(nums) counter = 0 for i in range(len(newnums)-2): counter+=self.twoSumSmaller(newnums[i+1:],target-newnums[i]) return counter def twoSumSmaller(self, nums, target): counter=0 l,r=0,len(nums)-1 while l<r: if nums[l]+nums[r]<target: counter+=r-l l+=1 else: r-=1 return counter test =Solution() nums=[3,2,6,1,7,-1,-3] target =9 test.threeSumSmaller(nums,target)
1,132
/Assignment_2.ipynb
08634df0cb456acc22cd503d4855348bd0bf051e
[]
no_license
saadhzubairi/Essential-Software
https://github.com/saadhzubairi/Essential-Software
0
1
null
2021-02-25T09:29:26
2021-02-25T05:19:27
Jupyter Notebook
Jupyter Notebook
false
false
.py
3,391
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3.8.3 32-bit # metadata: # interpreter: # hash: e6858818f08132fef2d8e9cc72590e325ddf64885e96d19b2831d8fd2b733b18 # name: python3 # --- # Q1) Your first task is to print all the multiples of 7 in the range 0 to 100 using a for loop. Keep in mind that 0 is also a multiple of 7. # Q2) Write a code that prints the first 30 cube numbers (x**3), starting with x=0 and ending with x=30. # Q4) Write a code that prints the factorial of a given number. See if you can do it using both for and while loops. # # (Remember that the factorial of a number is defined as the product of an integer and all integers before it. For example, the factorial of five (5!) is equal to 1\*2\*3\*4\*5=120. Also recall that the factorial of zero (0!) is equal to 1.) # Q3) The following code contains an error that will leave it in an infinite loop. Fix the code so that it works for all numbers. # # for eg. # When n = 0, we get False; # When n = 1, we get True; # When n = 8, we get True; # When n = 9, we get False; # # (The code takes in an integer n and return True if n is a power of 2 or False if n is not a power of 2) # # + n = 0 # Check if the number can be divided by two without a remainder while n % 2 == 0: n = n / 2 # If after dividing by two the number is 1, it's a power of two if n == 1: return True return False # - # Q4) If we have a string variable named Weather = "Rainfall", what code will print the substring or all characters before the "f"? # Q5) When animal = "Hippopotamus", what commands will return (i) "pop" (ii) "t" (iii) "us"? #
1,799
/PIL/PIL_module/PIL_2.0.ipynb
ae4065bb524328660cf38404e294d381640fa151
[]
no_license
husun0822/BlueSky_Project
https://github.com/husun0822/BlueSky_Project
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
227,586
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- #By Emmanuel Cocom import pandas as pd import numpy as np # ### READ RAW DATA # + #link to problem on kaggle #https://www.kaggle.com/c/bike-sharing-demand/data #get untouched dataset bycle_df = pd.read_csv('train.csv') #columns bycle_df.columns # - #shape bycle_df.shape #df printed out to see raw data bycle_df[:350:50] # ### MUST DROP BOTH CASUAL AND REGISTERED COLUMNS. LEAKAGE VARIABLES # # They are another representation of the label we are trying to predict 'count' in two columns # # registered + casual = count (label) # # we will not know registered, casual data in ever in any real life testing because they are the label 'count' we are trying predict! # # Keeping them jeapordizes the integrity and usefulness of our model as it will rely on those columns to predict the label, but they are the label # + #Drop casual bycle_df.drop('casual', axis=1, inplace=True) #DROP registered bycle_df.drop('registered', axis=1, inplace=True) bycle_df.columns #both casual and registered are gone # - # ## Unsupported Formats: Datetime column cannot be used in it's current format: date hour:00. # #### Data will be extracted from datetime column to form three new columns: # # hour : 0-23 # # day_of_year: 0 - 365 (but raw data only provides up to 364) # # weekday: 0-6 (0-Sun, 6-Sat) # + from datetime import datetime #extract hour from datetime bycle_df['hour'] = bycle_df.datetime.apply(lambda x : x.split()[1].split(':')[0]) #extract day_of_year from datetime bycle_df['day_of_year'] = bycle_df.datetime.apply(lambda x : datetime.strptime(x, '%m/%d/%y %H:00').strftime('%-j')) #extract weekday from datetime bycle_df['weekday']= bycle_df.datetime.apply(lambda x : datetime.strptime(x, '%m/%d/%y %H:00').strftime('%w')) #bycle_df.datetime.apply(lambda x : datetime.strptime(x, '%m/%d/%y %H:00').strftime('%w')) #extract weekday from datetime bycle_df['year']= bycle_df.datetime.apply(lambda x : datetime.strptime(x, '%m/%d/%y %H:00').strftime('%Y')).to_frame('year') #extract weekday from datetime bycle_df['month']= bycle_df.datetime.apply(lambda x : datetime.strptime(x, '%m/%d/%y %H:00').strftime('%-m')).to_frame('month') bycle_df.head() #adding month year features to see if model improves if we can predict by month or year #year_df = bycle_df.datetime.apply(lambda x : datetime.strptime(x, '%m/%d/%y %H:00').strftime('%Y')).to_frame('year') #datetime_df = bycle_df.datetime.apply(lambda x: datetime.strptime(x, '%m/%d/%y %H:00').strftime('%-m')).to_frame('month') #month_year_df = pd.concat([year_df ,datetime_df ], axis=1) #month_year_df.head() # - # ### MISSING VALUES and Corrupt data values # + #HELPER FUNCTIONS, TO TEST FOR MISSING OR CORRUPT DATA IN EACH COLUMN/FEATURE #helper for string data def check_if_missing_strings(value): if value == None or value.strip() == '' or value.lower() == 'nan' or value == np.nan: print(value, j, ' is the missing value') return np.nan else: return value #Helper for numerical data def check_if_empty_ints(value): if value == '' or value == None or value == 'nan' or value == np.nan: print('missing value') else: pass def check_if_less_one(value): if value <1: print('less than one, check it out!') def check_if_greater_than(value, limit): if value > limit: print('less than one, check it out!') def check_if_less_than(value, limit): if value < limit: print('less than one, check it out!') def check_if_less_than_x_greater_than_y(value, x_limit, y_limit): if value < x_limit: print(value) print(' is dangerous data and less than ', x_limit) if value > y_limit: print(value) print(' is dangerous data and greater than ', y_limit) #checking for both missing and corrupt data( data that does not make sense ) #datetime stamp :: clear bycle_df.datetime.apply(lambda x: check_if_missing_strings(x)) #results show NO missing values #season :: clear bycle_df.season.apply(lambda x: check_if_empty_ints(x))#results show NO missing values bycle_df.season.apply(lambda x: check_if_less_one(x))#results show NO corrupt values #holiday :: clear bycle_df.holiday.apply(lambda x: check_if_empty_ints(x))#results show NO missing values bycle_df.holiday.apply(lambda x: check_if_less_than_x_greater_than_y(x, 0, 1))#results show NO corrupt values bycle_df.holiday.unique() #workingday:: clear bycle_df.workingday.apply(lambda x: check_if_empty_ints(x))#results show NO missing values bycle_df.workingday.apply(lambda x: check_if_less_than_x_greater_than_y(x, 0, 1))#results show NO corrupt values bycle_df.workingday.unique() #weather:: clear bycle_df.weather.apply(lambda x: check_if_empty_ints(x))#results show NO missing values bycle_df.weather.apply(lambda x: check_if_less_than_x_greater_than_y(x, 1, 4))#results show NO corrupt values bycle_df.weather.unique() #atemp :: clear bycle_df.atemp.apply(lambda x: check_if_empty_ints(x))#results show NO missing values bycle_df.atemp.apply(lambda x: check_if_less_than(x, 0.1))#results show NO corrupt values bycle_df.atemp.unique() #-humidity :: NOT CLEAR! --> NO MISSING DATA: HOWEVER ---> CORRUPT DATA: YES bycle_df.humidity.apply(lambda x: check_if_empty_ints(x)) #results show NO missing values bycle_df.humidity.unique() #results show YES Corrupt Data, as it's impossible to have 0 humidity on earth #windspeed :: clear bycle_df.windspeed.apply(lambda x: check_if_empty_ints(x)) #results show NO missing values bycle_df.windspeed.unique() #results show No Missing Data, as it is possible to have 0 windspeed #hour :: clear bycle_df.hour.apply(lambda x: check_if_empty_ints(x)) #results show NO missing values bycle_df.hour.apply(lambda x: check_if_less_than_x_greater_than_y(int(x), 0, 23))#results show NO corrupt data values bycle_df.hour.unique() #results show No Missing Data, #day_of_year :: clear bycle_df.day_of_year.apply(lambda x: check_if_empty_ints(x)) #results show NO missing values bycle_df.day_of_year.apply(lambda x: check_if_less_than_x_greater_than_y(int(x), int(0), int(365)))#results show NO corrupt data values bycle_df.day_of_year.unique() #results show No Missing Data, #Weekday :: clear bycle_df.weekday.apply(lambda x: check_if_empty_ints(x)) #results show NO missing values bycle_df.weekday.apply(lambda x: check_if_less_than_x_greater_than_y(int(x), int(0), int(6)))#results show NO corrupt data values bycle_df.weekday.unique() #results show No Missing Data, print('testing done') # - print(bycle_df.shape) bycle_df.head() # ### Fixing Corrupt Data - By replacing it with column average # + #fixing humidity by adding average of the column to all zero values (as zero is impossible value it means the data is just missing) import numpy as np def nan_if_zero(value): if value == 0: return np.nan return value def mean_if_nan(value, mean): if value == 0: return mean else: return value #verify corrupt data bycle_df['humidity'].unique() #changes zero corrupt data to numpy.nan value random_var = bycle_df.humidity.apply(lambda x: nan_if_zero(x)) #finds mean of column, ignores nan values by default mean_humid = random_var.mean() #apply mean to all zero corrupt data values in original df column humidity bycle_df['humidity'] = bycle_df.humidity.apply(lambda x: mean_if_nan(int(x), int(mean_humid))) #DATA IS CLEARED NOW --> NO CORRUPTION IN HUMIDITY COLUMN bycle_df['humidity'].unique() # + #Numerical features - scaled # - # ### One Hot Encode categorical features that are non-binary # ### Looking at all possible values for all columns that need one Hot Encoding # + #categorical features cat_features = ['season', 'holiday','workingday', 'weather', 'hour', 'month'] #looking for non-binary categorical features to OneHotEncode non_binary_cat_features = {} for x in cat_features: if len(bycle_df[x].unique()) > 2: #only if they have 3 or more possible values non_binary_cat_features[x] = bycle_df[x].unique() print('The following need to go through One Hot Encoded Transformation:\n') for x,y in non_binary_cat_features.items(): print(x, 'has the features ', y) #features that do no not need to be one hot encoded non_encoded_features = ['holiday','workingday', 'temp','atemp', 'humidity', 'windspeed', 'day_of_year', 'weekday', 'year'] # - # #### Column 'Year needs to be changed to binary form' # + def year_to_bin(value): if value == '2011': return 0 return 1 bycle_df['year']= bycle_df.year.apply(lambda x : year_to_bin(x)) # - bycle_df.head() # ### Column 'hour' will be put into 4 bins of 6 hours. This is reduce the number of features that will be created due to OneHotEncoding. Features created will be 4 instead of 24. # + #HELPER FUNCTION TO PUT HOUR VALUES INTO BINS def four_hour_bins(hour): hour = int(hour) if hour <=5: return 1 elif hour <=11: return 2 elif hour <=17: return 3 else: return 4 bycle_df['hour'] = bycle_df.hour.apply(lambda x : four_hour_bins(x)) print('The possible choicse of column hour after putting into bins') print(bycle_df['hour'].unique()) # - bycle_df.head() # #### Actual OHE Proces # + #One hot encoding from sklearn.preprocessing import OneHotEncoder #create OneHotEncoder object for each one one_hot_encod_season = OneHotEncoder() one_hot_encod_weather = OneHotEncoder() one_hot_encod_hour = OneHotEncoder() one_hot_encod_month = OneHotEncoder() #transform values to OneHotEncoding values with new columns for each feature x_season = one_hot_encod_season.fit_transform(bycle_df.season.values.reshape(-1,1)).toarray() x_weather = one_hot_encod_weather.fit_transform(bycle_df.weather.values.reshape(-1,1)).toarray() x_hour = one_hot_encod_weather.fit_transform(bycle_df.weather.values.reshape(-1,1)).toarray() x_month = one_hot_encod_month.fit_transform(bycle_df.month.values.reshape(-1,1)).toarray() print(x_hour) # + #Make a data data frame for each categorical feature that was one hot encoded using numpy results and proper column names df_bycle_ohe_season = pd.DataFrame(x_season, columns = [' spring,', 'summer', 'fall', 'winter']) df_bycle_ohe_weather = pd.DataFrame(x_weather, columns = [' clear', 'mist', 'light', 'heavy_rain']) df_bycle_ohe_hour = pd.DataFrame(x_hour, columns = [' EarlyMorning', 'Morning', 'Evening', 'Night']) df_bycle_ohe_month = pd.DataFrame(x_month, columns = ['Jan', 'Feb', 'March', 'April', 'May', 'June', 'July', 'August', 'Sept','Oct','Nov','Dec']) print(df_bycle_ohe_season[:300:50]) print('\n\n\n') print(df_bycle_ohe_weather[:300:50]) print('\n\n\n') print(df_bycle_ohe_hour[:300:50]) print('\n\n\n') print(df_bycle_ohe_month[:300:50]) #concatenate all the individual one hot encoded dataframes into one dataframe df_bycle_ohe_feature_matrix = pd.concat([df_bycle_ohe_season,df_bycle_ohe_weather ], axis=1) df_bycle_ohe_feature_matrix = pd.concat([df_bycle_ohe_feature_matrix, df_bycle_ohe_hour ], axis=1) df_bycle_ohe_feature_matrix = pd.concat([df_bycle_ohe_feature_matrix, df_bycle_ohe_month ], axis=1) #print out new df containing onehotencoding columns and values print('\n\n\nOneHotEncoded DF:\n\n') print(df_bycle_ohe_feature_matrix[:300:50]) non_encoded_feature_matrix = bycle_df[non_encoded_features] # - # ### Features & Labels # #### New Feature Matrix-- Combining numerical and OneHotEncoded Featuress # + #Labels label = bycle_df['count'] print(label.shape) print('label is count: \n') print(label[0:300:50]) #combine non encoded and encoded feature matrices bycle_feature_matrix = pd.concat([non_encoded_feature_matrix, df_bycle_ohe_feature_matrix], axis = 1) #columns of new feature matrix print('\n\nfeature matrix columns') print('column names are \n', bycle_feature_matrix.columns) #print(bycle_feature_matrix.head()) #df_to_be_used_later = bycle_feature_matrix.copy() #df_to_be_used_later = pd.concat([df_to_be_used_later ,df_bycle_ohe_weather ], axis=1) #df_to_be_used_later.head() # - # #### We will make a Models Based Of Each Month instead of a model for every month in the year, so a df split will created for each month #first bring it back together, so labels are paired off correctly with f matrix as data is filtered and split df_with_label = pd.concat([bycle_feature_matrix, label], axis = 1) df_with_label.head() # + df_splits = [] months = ['Jan', 'Feb', 'March', 'April', 'May', 'June', 'July', 'August', 'Sept', 'Oct', 'Nov', 'Dec'] #0- feature_matrix 1-label for month in months: df_month_fmatrix = df_with_label[df_with_label[month] == 1.0]#filter out rows for only that month label_month = df_month_fmatrix['count'] #labels are extracted for filtered rows del df_month_fmatrix['count'] #label is dropped from feature matrix df_splits.append([df_month_fmatrix, label_month]) #feature matrix and labels are put into a list print('\n\n\n\n') for x in range(len(df_splits)): print('Month: ', months[x]) print('shape fmatrix', df_splits[x][0].shape) print('shape label is', df_splits[x][1].shape) print('\n') # - # ### NORMALIZING DATA # #### Normalize data for each month # + from sklearn import preprocessing #normalize data for x in range(len(df_splits)): #scale it -> d type changes to numpy array scaled_feature_matrix_month_numpyarray = preprocessing.scale(df_splits[x][0]) #change back to df df_month_scaled = pd.DataFrame(scaled_feature_matrix_month_numpyarray, columns = df_splits[x][0].columns) #store back the scaled data back into list. df_splits[x][0] = df_month_scaled print('sample of list of stored monthly dataframes and label\n\n') print(df_splits[0][0].head()) print(df_splits[0][1][:5:]) # - # ## ALGORITHM 1: RANDOM FOREST bycle_feature_matrix.head() print(bycle_feature_matrix.columns) # ### X_train, X_test, y_train, y_test for each month of year - going to be used from here on out, for any individual runs from sklearn.model_selection import train_test_split monthly_train_test_splits = [] for month in df_splits: X_train, X_test, y_train, y_test = train_test_split(month[0], month[1], test_size=0.25, random_state=4) monthly_train_test_splits.append([X_train, X_test, y_train, y_test]) # + print('sample of monthly split for first month') print('X_train shape is', monthly_train_test_splits[0][0].shape) print('y_train shape is',monthly_train_test_splits[0][2].shape ) print('X_test shape is', monthly_train_test_splits[0][1].shape) print('y_test shape is', monthly_train_test_splits[0][3].shape) # - # ### INDIVIDUAL RUN from sklearn.ensemble import RandomForestRegressor # + from sklearn import metrics import numpy as np #kaggle requested metric def rmsle(y, y_): log1 = np.nan_to_num(np.array([np.log(v + 1) for v in y])) log2 = np.nan_to_num(np.array([np.log(v + 1) for v in y_])) calc = (log1 - log2) ** 2 return np.sqrt(np.mean(calc)) #rmse, feature importance, predictions below monthly_forests_rmse = {} monthly_f_importance = {} monthly_predictions = {} monthly_forests_rmsle = {} for x in range(len(monthly_train_test_splits)): rf = RandomForestRegressor(n_estimators = 200, random_state = 1) rf.fit(monthly_train_test_splits[x][0], monthly_train_test_splits[x][2]); predictions = rf.predict(monthly_train_test_splits[x][1]) mse = metrics.mean_squared_error(monthly_train_test_splits[x][3], predictions) rmse = np.sqrt(mse) monthly_forests_rmse[months[x]] = rmse #save feature importance for each month monthly_f_importance[months[x]] = pd.Series(rf.feature_importances_,index=bycle_feature_matrix.columns).sort_values(ascending=False) monthly_predictions[months[x]] = predictions monthly_forests_rmsle[months[x]] = rmsle(monthly_train_test_splits[x][3], predictions) #save predictions # - # #### Feature Importance #print('\n\n\n') print('The following are the feature importance generated by random forest model for each month\n\n') for x,y in monthly_f_importance.items(): print('month: ', x, '\n\nfeature_importance:\n\n', y) print('\n\n') # ### Evaluating our results # #### Using kaggle's requested metric for evaluation def rmsle(y, y_): log1 = np.nan_to_num(np.array([np.log(v + 1) for v in y])) log2 = np.nan_to_num(np.array([np.log(v + 1) for v in y_])) calc = (log1 - log2) ** 2 return np.sqrt(np.mean(calc)) for x,y in monthly_forests_rmsle.items(): print('month: ', x, 'rmsle: ', y) # #### Using RMSE Metric for evaulation for x,y in monthly_forests.items(): print('month: ', x, ' rmse: ', y) # ### CROSS VALIDATION RUN # + from sklearn.cross_validation import cross_val_score crossv_montly_forests_rmse_list = {} crossv_montly_forests_rmse = {} for month in range(len(df_splits)): rf_cv = RandomForestRegressor(random_state = 42) mse_list= cross_val_score(rf_cv, df_splits[month][0], df_splits[month][1], cv=10, scoring='neg_mean_squared_error') mse_list_positive = -mse_list rmse_list = np.sqrt(mse_list_positive) rmse_mean = rmse_list.mean() #save monthly rmse list crossv_montly_forests_rmse_list[months[month]] = rmse_list #save monthly rmse mean crossv_montly_forests_rmse[months[month]] = rmse_mean for x,y in crossv_montly_forests_rmse_list.items(): print('\nmonth: ', x, '\nrmse_list: ', y) for x,y in crossv_montly_forests_rmse.items(): print('month: ', x, 'rmse: ', y) # - # ### IMPROVING ACCURACY ATTEMPT - FEATURE REDUCTION -FAILED TO IMPROVE ACCURACY # #### Manual Feature Reduction... Checking RMSE With up to 7 best features. # # #FEATURE IMPORTANCE- Best features below # # #best 5 features for each month model # #### ['humidity','atemp','temp','windspeed','year' ] #1 - Jan # #### ['humidity','temp','windspeed','atemp','day_of_year']#Feb # #### ['temp','atemp','humidity','windspeed','year']#3 March # #### ['humidity','windspeed','temp','atemp','day_of_year']#April # #### ['atempt','humidity','windspeed','day_of_year','temp'],#May # #### ['humidity','windspeed','year', 'day_of_year', 'temp',],#6 June # #### ['temp','humidity','day_of_year','windspeed','atemp'],#July # #### ['temp','humidity','windspeed','day_of_year','year'],#August # #### ['humidity','atemp','windspeed','temp','day_of_year'],#9 Sept # #### ['humidity','windspeed','atemp','temp','day_of_year'],#10 - Oct # #### ['humidity','temp','windspeed','day_of_year','temp',],#11 - #Nov # #### ['humidity','temp','windspeed','day_of_year','atemp',],#12 - December # #### cross validation and feature reduction #best 5 features for each month model best_features = [ ['humidity','atemp','temp','windspeed','year' ],#1 - Jan ['humidity','temp','windspeed','atemp','day_of_year'],#Feb ['temp','atemp','humidity','windspeed','year'],#3 March ['humidity','windspeed','temp','atemp','day_of_year'],#April ['atempt','humidity','windspeed','day_of_year','temp'],#May ['humidity','windspeed','year', 'day_of_year', 'temp',],#6 June ['temp','humidity','day_of_year','windspeed','atemp'],#July ['temp','humidity','windspeed','day_of_year','year'],#August ['humidity','atemp','windspeed','temp','day_of_year'],#9 Sept ['humidity','windspeed','atemp','temp','day_of_year'],#10 - Oct ['humidity','temp','windspeed','day_of_year','temp',],#11 - Nov ['humidity','temp','windspeed','day_of_year','atemp',],#12 - December ] # + from sklearn.cross_validation import cross_val_score crossv_montly_forests_feature_reduction_rmse_list = {} crossv_montly_forests_feature_reduction_rmse = {} for month in range(len(df_splits)): rf_cv = RandomForestRegressor(random_state = 42) #line below filters out all other columsn other than 5 best for each model of each year mse_list= cross_val_score(rf_cv, df_splits[month][0][best_features[0]], df_splits[month][1], cv=10, scoring='neg_mean_squared_error') mse_list_positive = -mse_list rmse_list = np.sqrt(mse_list_positive) rmse_mean = rmse_list.mean() #save monthly rmse list crossv_montly_forests_feature_reduction_rmse_list[months[month]] = rmse_list #save monthly rmse mean crossv_montly_forests_feature_reduction_rmse[months[month]] = rmse_mean #for x,y in crossv_montly_forests_feature_reduction_rmse_list.items(): # print('\nmonth: ', x, '\nrmse_list: ', y) for x,y in crossv_montly_forests_feature_reduction_rmse.items(): print('month: ', x, 'rmse: ', y) # - # ### IMPROVING ACCURACY ATTEMPT -ADA BOOST - SUCCESS from sklearn.ensemble import AdaBoostRegressor from sklearn.metrics import mean_squared_error from math import sqrt # + ada_boost_montly_rmse = {} for x in range(len(monthly_train_test_splits)): #rf_ab= RandomForestRegressor(n_estimators = 100, random_state = 3) ada_boost_reg = AdaBoostRegressor(RandomForestRegressor(n_estimators = 100, random_state = 3), n_estimators=100, random_state=3) #rf_ab.fit(X_train, y_train) ada_boost_reg.fit(monthly_train_test_splits[x][0], monthly_train_test_splits[x][2]) #rf_predictions = rf_ab.predict(X_test) abr_predictions = ada_boost_reg.predict(monthly_train_test_splits[x][1]) #rf_rmse= sqrt(mean_squared_error(y_test, rf_predictions)) # abr_predictions_rmse = sqrt(mean_squared_error(monthly_train_test_splits[x][3], abr_predictions)) mse = metrics.mean_squared_error(monthly_train_test_splits[x][3], abr_predictions) rmse = np.sqrt(mse) ada_boost_montly_rmse[months[x]] = rmse for x,y in ada_boost_montly_rmse.items(): print('\nmonth: \n', x , ' rmse: ', y, '\n') # - from statistics import mean mean(ada_boost_montly_rmse.values()) print('averaging the rmse of all 12 models we get', mean(ada_boost_montly_rmse.values())) # ### IMPROVING ACCURACY ATTEMPT -ADA BOOST CROSS VALIDATION- SUCCESS # + from sklearn.cross_validation import cross_val_score crossv_adab_montly_forests_rmse_list = {} crossv_adab_montly_forests_rmse = {} for month in range(len(df_splits)): ada_boost = AdaBoostRegressor(RandomForestRegressor(n_estimators = 100, random_state = 3), n_estimators = 100, random_state = 6) mse_ada = cross_val_score(ada_boost, df_splits[month][0], df_splits[month][1], cv=10, scoring='neg_mean_squared_error') mse_ada_positive = - mse_ada rmse_ada_list = np.sqrt(mse_ada_positive) #print(rmse_ada) rmse_cv_ada= rmse_ada_list.mean() #print(accuracy_cv_ada) #save monthly rmse list crossv_adab_montly_forests_rmse_list[months[month]] = rmse_ada_list #save monthly rmse mean crossv_adab_montly_forests_rmse[months[month]] = rmse_cv_ada #for x,y in crossv_adab_montly_forests_rmse_list.items(): # print('month: ', x, '\nrmsle_list: ', y) for x,y in crossv_adab_montly_forests_rmse.items(): print('month: ', x, 'rmsle: ', y) # - mean(crossv_adab_montly_forests_rmse.values()) # ### IMPROVING ACCURACY ATTEMPT - PCA - DIMENSIONALITY REDUCTION - SUCCESS # + from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from math import sqrt import numpy as np from sklearn.ensemble import AdaBoostRegressor from sklearn.metrics import mean_squared_error pca_montly_rmse = {} for x in range(len(monthly_train_test_splits)): #grabbing data from split done early on X_train = monthly_train_test_splits[x][0] y_train = monthly_train_test_splits[x][2] X_test = monthly_train_test_splits[x][1] y_test = monthly_train_test_splits[x][3] scaler = StandardScaler().fit(X_train) X_train_scaled = pd.DataFrame(scaler.transform(X_train), index=X_train.index.values, columns=X_train.columns.values) X_test_scaled = pd.DataFrame(scaler.transform(X_test), index=X_test.index.values, columns=X_test.columns.values) pca = PCA() #create pca object pca.fit(X_train) cpts = pd.DataFrame(pca.transform(X_train)) #print(cpts) #still same amount of columns as training x_axis = np.arange(1, pca.n_components_+1) #print(x_axis) # still same amount of columns as training pca_scaled = PCA() pca_scaled.fit(X_train_scaled) #print(pca_scaled) cpts_scaled = pd.DataFrame(pca.transform(X_train_scaled)) #from sklearn.ensemble import RandomForestRegressor rf = RandomForestRegressor(n_estimators=500, oob_score=True, random_state=6) #print(X_train.head()) #rf.fit(X_train, y_train) rf.fit(cpts_scaled, y_train) predicted_train = rf.predict(X_train) predicted_test = rf.predict(X_test) rf_rmse= sqrt(mean_squared_error(y_test, predicted_test)) pca_montly_rmse[months[x]] = rf_rmse # + for x,y in pca_montly_rmse.items(): print('month is: ', x, ' rmse is ', y) # - # #### ADA PCA RF # + from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from math import sqrt import numpy as np from sklearn.ensemble import AdaBoostRegressor from sklearn.metrics import mean_squared_error ab_pca_montly_rmse = {} for x in range(len(monthly_train_test_splits)): #grabbing data from split done early on X_train = monthly_train_test_splits[x][0] y_train = monthly_train_test_splits[x][2] X_test = monthly_train_test_splits[x][1] y_test = monthly_train_test_splits[x][3] #create the scaler and fit it using training data scaler = StandardScaler().fit(X_train) #create df with trained scaled data X_train_scaled = pd.DataFrame(scaler.transform(X_train), index=X_train.index.values, columns=X_train.columns.values) X_test_scaled = pd.DataFrame(scaler.transform(X_test), index=X_test.index.values, columns=X_test.columns.values) pca_rf = PCA() #create pca object pca_rf.fit(X_train)#pass x_train data cpts = pd.DataFrame(pca_rf.transform(X_train)) #print(cpts) #still same amount of columns as training x_axis = np.arange(1, pca_rf.n_components_+1) #print(x_axis) # still same amount of columns as training pca_scaled = PCA() pca_scaled.fit(X_train_scaled) #print(pca_scaled) cpts_scaled = pd.DataFrame(pca.transform(X_train_scaled)) rf = RandomForestRegressor(n_estimators=100, oob_score=True, random_state=6) rf.fit(X_train, y_train) predicted_train = rf.predict(X_train) predicted_test = rf.predict(X_test) ada_boost_reg2 = AdaBoostRegressor(rf, n_estimators=100, random_state=3) ada_boost_reg2.fit(X_train, y_train) abr_predictions = ada_boost_reg2.predict(X_test) ab_pca_rmse= sqrt(mean_squared_error(y_test, abr_predictions)) #print('x',x, 'rmse is', ab_pca_rmse) ab_pca_montly_rmse[months[x]] = ab_pca_rmse print('\n\n') for x,y in ab_pca_montly_rmse.items(): print('month is: ', x, ' rmse is ', y) # -
27,253
/Day-3/exercises/Remote Iteration.ipynb
c97ce146502c1b8338b884c156fc5e03bf8d5bbd
[]
no_license
Dr-RIZWANAHMED/ngcm-tutorial-python
https://github.com/Dr-RIZWANAHMED/ngcm-tutorial-python
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
8,960
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python (myenv) # language: python # name: myenv # --- # + #imports import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt import scipy.stats as stats matplotlib.style.use('ggplot') #style of plots #to plot in this notebook # %matplotlib inline champs = ['Brazil - Sรฉrie A','Brazil - Sรฉrie B','Spain - La Liga 1', 'Germany - Bundesliga','Italy - Serie A', 'England - Premier League', 'France - Ligue 1', 'Portugal - Primeira Liga', 'Netherlands - Eredivise'] PATH_PROJECT = "/home/igormago/git/doutorado/" PATH_NOTEBOOKS_DATA = PATH_PROJECT + 'notebooks/data/' # + df = pd.read_csv(PATH_NOTEBOOKS_DATA + 'features3.csv') resume = pd.DataFrame() rows = ['books','rf1','rf2'] resume['matches_num'] = pd.Series(len(df)) resume['hits_books'] = pd.Series(len(df[df.m_favorite == df.m_column_result])) resume['hits_rf1'] = pd.Series(len(df[df.m_column_result == df.rf1000])) resume['hits_rf2'] = pd.Series(len(df[df.m_column_result == df.rf1000_fs1])) hits=[resume.hits_books, resume.hits_rf1, resume.hits_rf2] resume['errors_books'] = resume['matches_num'] - resume['hits_books'] resume['errors_rf1'] = resume['matches_num'] - resume['hits_rf1'] resume['errors_rf2'] = resume['matches_num'] - resume['hits_rf2'] errors=[resume.errors_books, resume.errors_rf1, resume.errors_rf2] resume['p_hits_books'] = resume['hits_books'] / resume['matches_num'] resume['p_hits_rf1'] = resume['hits_rf1'] / resume['matches_num'] resume['p_hits_rf2'] = resume['hits_rf2'] / resume['matches_num'] resume['p_errors_books'] = resume['errors_books'] / resume['matches_num'] resume['p_errors_rf1'] = resume['errors_rf1'] / resume['matches_num'] resume['p_errors_rf2'] = resume['errors_rf2'] / resume['matches_num'] resume['pl_books'] = df['m_odd_favorite'][df.m_favorite == df.m_column_result].sum() - resume['matches_num'] resume['pl_rf1'] = df['m_odd_favorite'][df.m_column_result == df.rf1000].sum() - resume['matches_num'] resume['pl_rf2'] = df['m_odd_favorite'][df.m_column_result == df.rf1000_fs1].sum() - resume['matches_num'] resume.to_csv(PATH_NOTEBOOKS_DATA + 'eval1.csv',index=False); print(resume) # + df = pd.read_csv(PATH_NOTEBOOKS_DATA + 'features3.csv') resume = pd.DataFrame() x1 = df.groupby(['m_favorite','m_medium','m_underdog'])['m_match_id'].count() x1 = pd.Series.to_frame(x1) x2 = df[df.m_column_result == df.m_favorite].groupby(['m_favorite','m_medium','m_underdog'])['m_match_id'].count() x3 = df[df.m_column_result == df.rf1000].groupby(['m_favorite','m_medium','m_underdog'])['m_match_id'].count() x4 = df[df.m_column_result == df.rf1000_fs1].groupby(['m_favorite','m_medium','m_underdog'])['m_match_id'].count() resume = pd.concat([x1,x2],axis=1, join='inner') resume = pd.concat([resume,x3],axis=1, join='inner') resume = pd.concat([resume,x4],axis=1, join='inner') print(resume) resume.columns = ['matches_num','hits_books','hits_rf1','hits_rf2'] resume['errors_books'] = resume['matches_num'] - resume['hits_books'] resume['errors_rf1'] = resume['matches_num'] - resume['hits_rf1'] resume['errors_rf2'] = resume['matches_num'] - resume['hits_rf2'] resume['p_hits_books'] = resume['hits_books'] / resume['matches_num'] resume['p_hits_rf1'] = resume['hits_rf1'] / resume['matches_num'] resume['p_hits_rf2'] = resume['hits_rf2'] / resume['matches_num'] resume['p_errors_books'] = resume['errors_books'] / resume['matches_num'] resume['p_errors_rf1'] = resume['errors_rf1'] / resume['matches_num'] resume['p_errors_rf2'] = resume['errors_rf2'] / resume['matches_num'] print(resume) # + df = pd.read_csv(PATH_NOTEBOOKS_DATA + 'features3.csv') resume = pd.DataFrame() x1 = df.groupby(['m_favorite'])['m_match_id'].count() x1 = pd.Series.to_frame(x1) x2 = df.groupby(['rf1000'])['m_match_id'].count() x2 = pd.Series.to_frame(x2) x3 = df.groupby(['rf1000_fs1'])['m_match_id'].count() x3 = pd.Series.to_frame(x3) book_A = len(df[df.m_favorite == 'A'][df.m_column_result == df.m_favorite]) book_D = len(df[df.m_favorite == 'D'][df.m_column_result == df.m_favorite]) book_H = len(df[df.m_favorite == 'H'][df.m_column_result == df.m_favorite]) rf1_A = len(df[df.rf1000 == 'A'][df.m_column_result == df.rf1000]) rf1_D = len(df[df.rf1000 == 'D'][df.m_column_result == df.rf1000]) rf1_H = len(df[df.rf1000 == 'H'][df.m_column_result == df.rf1000]) rf2_A = len(df[df.rf1000_fs1 == 'A'][df.m_column_result == df.rf1000_fs1]) rf2_D = len(df[df.rf1000_fs1 == 'D'][df.m_column_result == df.rf1000_fs1]) rf2_H = len(df[df.rf1000_fs1 == 'H'][df.m_column_result == df.rf1000_fs1]) book_PL = df['m_odd_favorite'][df.m_column_result == df.m_favorite].groupby(df.m_favorite).sum() rf1_PL = df['m_odd_favorite'][df.m_column_result == df.rf1000].groupby(df.rf1000).sum() rf2_PL = df['m_odd_favorite'][df.m_column_result == df.rf1000_fs1].groupby(df.rf1000_fs1).sum() hits_books = [book_A, book_D, book_H] hits_rf1 = [rf1_A, rf1_D, rf1_H] hits_rf2 = [rf2_A, rf2_D, rf2_H] x1['hits_books'] = hits_books x2['hits_books'] = hits_rf1 x3['hits_books'] = hits_rf2 x1['p'] = x1.hits_books / x1.m_match_id x2['p'] = x2.hits_books / x2.m_match_id x3['p'] = x3.hits_books / x3.m_match_id x1 = pd.concat([x1,book_PL],axis=1, join='inner') x2 = pd.concat([x2,rf1_PL],axis=1, join='inner') x3 = pd.concat([x3,rf2_PL],axis=1, join='inner') print(x1) print(x2) print(x3) # + def teste(row): if (row.rf1000 == 'H'): return row.m_odd_home elif (row.rf1000 == 'D'): return row.m_odd_draw else: return row.m_odd_away df = pd.read_csv(PATH_NOTEBOOKS_DATA + 'features3.csv') df['rf1000_odd'] = df.apply(teste, axis=1) resume = pd.DataFrame() xBook = df.groupby(['m_favorite'])['m_match_id'].count() xBook = pd.Series.to_frame(xBook) x1 = df.groupby(['rf1000'])['m_match_id'].count() x1 = pd.Series.to_frame(x1) x2 = df.groupby(['rf1000_fs1'])['m_match_id'].count() x2 = pd.Series.to_frame(x2) x3 = df.groupby(['rf1000_fs3'])['m_match_id'].count() x3 = pd.Series.to_frame(x3) x4 = df.groupby(['rf1000_fs4'])['m_match_id'].count() x4 = pd.Series.to_frame(x4) book_A = len(df[df.m_favorite == 'A'][df.m_column_result == df.m_favorite]) book_D = len(df[df.m_favorite == 'D'][df.m_column_result == df.m_favorite]) book_H = len(df[df.m_favorite == 'H'][df.m_column_result == df.m_favorite]) rf1_A = len(df[df.rf1000 == 'A'][df.m_column_result == df.rf1000]) rf1_D = len(df[df.rf1000 == 'D'][df.m_column_result == df.rf1000]) rf1_H = len(df[df.rf1000 == 'H'][df.m_column_result == df.rf1000]) rf2_A = len(df[df.rf1000_fs1 == 'A'][df.m_column_result == df.rf1000_fs1]) rf2_D = len(df[df.rf1000_fs1 == 'D'][df.m_column_result == df.rf1000_fs1]) rf2_H = len(df[df.rf1000_fs1 == 'H'][df.m_column_result == df.rf1000_fs1]) rf3_A = len(df[df.rf1000_fs3 == 'A'][df.m_column_result == df.rf1000_fs3]) rf3_D = len(df[df.rf1000_fs3 == 'D'][df.m_column_result == df.rf1000_fs3]) rf3_H = len(df[df.rf1000_fs3 == 'H'][df.m_column_result == df.rf1000_fs3]) rf4_A = len(df[df.rf1000_fs4 == 'A'][df.m_column_result == df.rf1000_fs4]) rf4_D = len(df[df.rf1000_fs4 == 'D'][df.m_column_result == df.rf1000_fs4]) rf4_H = len(df[df.rf1000_fs4 == 'H'][df.m_column_result == df.rf1000_fs4]) book_PL = df['m_odd_favorite'][df.m_column_result == df.m_favorite].groupby(df.m_favorite).sum() rf1_PL = df['rf1000_odd'][df.m_column_result == df.rf1000].groupby(df.rf1000).sum() rf2_PL = df['m_odd_favorite'][df.m_column_result == df.rf1000_fs1].groupby(df.rf1000_fs1).sum() rf3_PL = df['m_odd_favorite'][df.m_column_result == df.rf1000_fs3].groupby(df.rf1000_fs3).sum() rf4_PL = df['m_odd_favorite'][df.m_column_result == df.rf1000_fs4].groupby(df.rf1000_fs4).sum() hits_books = [book_A, book_D, book_H] hits_rf1 = [rf1_A, rf1_D, rf1_H] hits_rf2 = [rf2_A, rf2_D, rf2_H] hits_rf3 = [rf3_A, rf3_D, rf3_H] hits_rf4 = [rf4_A, rf4_D, rf4_H] xBook['hits'] = hits_books x1['hits'] = hits_rf1 x2['hits'] = hits_rf2 x3['hits'] = hits_rf3 x4['hits'] = hits_rf4 xBook['p'] = xBook.hits / xBook.m_match_id x1['p'] = x1.hits / x1.m_match_id x2['p'] = x2.hits / x2.m_match_id x3['p'] = x3.hits / x3.m_match_id x4['p'] = x4.hits / x4.m_match_id # xBook = pd.concat([xBook,book_PL],axis=1, join='inner') # x1 = pd.concat([x1,rf1_PL],axis=1, join='inner') # x2 = pd.concat([x2,rf2_PL],axis=1, join='inner') # x3 = pd.concat([x3,rf3_PL],axis=1, join='inner') # x4 = pd.concat([x4,rf4_PL],axis=1, join='inner') print(xBook) print(x1) print(x2) print(x3) print(x4) # - # + def setRFOddFavorite(row): if (row.rf1000 == 'H'): return row.m_odd_home elif (row.rf1000 == 'D'): return row.m_odd_draw else: return row.m_odd_away df = pd.read_csv(PATH_NOTEBOOKS_DATA + 'features3.csv') df['rf1000_odd'] = df.apply(teste, axis=1) resume = pd.DataFrame() xBook = df.groupby(['m_favorite'])['m_match_id'].count() xBook = pd.Series.to_frame(xBook) x1 = df[df.m_match_num > 180].groupby(['rf1000'])['m_match_id'].count() x1 = pd.Series.to_frame(x1) x2 = df[df.m_match_num > 180].groupby(['rf1000_fs1'])['m_match_id'].count() x2 = pd.Series.to_frame(x2) x3 = df[df.m_match_num > 180].groupby(['rf1000_fs3'])['m_match_id'].count() x3 = pd.Series.to_frame(x3) x4 = df[df.m_match_num > 180].groupby(['rf1000_fs4'])['m_match_id'].count() x4 = pd.Series.to_frame(x4) book_A = len(df[df[df.m_match_num > 180].m_favorite == 'A'][df.m_column_result == df.m_favorite]) book_D = len(df[df[df.m_match_num > 180].m_favorite == 'D'][df.m_column_result == df.m_favorite]) book_H = len(df[df[df.m_match_num > 180].m_favorite == 'H'][df.m_column_result == df.m_favorite]) rf1_A = len(df[df[df.m_match_num > 180].rf1000 == 'A'][df.m_column_result == df.rf1000]) rf1_D = len(df[df[df.m_match_num > 180].rf1000 == 'D'][df.m_column_result == df.rf1000]) rf1_H = len(df[df[df.m_match_num > 180].rf1000 == 'H'][df.m_column_result == df.rf1000]) rf2_A = len(df[df[df.m_match_num > 180].rf1000_fs1 == 'A'][df.m_column_result == df.rf1000_fs1]) rf2_D = len(df[df[df.m_match_num > 180].rf1000_fs1 == 'D'][df.m_column_result == df.rf1000_fs1]) rf2_H = len(df[df[df.m_match_num > 180].rf1000_fs1 == 'H'][df.m_column_result == df.rf1000_fs1]) rf3_A = len(df[df[df.m_match_num > 180].rf1000_fs3 == 'A'][df.m_column_result == df.rf1000_fs3]) rf3_D = len(df[df[df.m_match_num > 180].rf1000_fs3 == 'D'][df.m_column_result == df.rf1000_fs3]) rf3_H = len(df[df[df.m_match_num > 180].rf1000_fs3 == 'H'][df.m_column_result == df.rf1000_fs3]) rf4_A = len(df[df[df.m_match_num > 180].rf1000_fs4 == 'A'][df.m_column_result == df.rf1000_fs4]) rf4_D = len(df[df[df.m_match_num > 180].rf1000_fs4 == 'D'][df.m_column_result == df.rf1000_fs4]) rf4_H = len(df[df[df.m_match_num > 180].rf1000_fs4 == 'H'][df.m_column_result == df.rf1000_fs4]) book_PL = df['m_odd_favorite'][df.m_match_num > 180][df.m_column_result == df.m_favorite].groupby(df.m_favorite).sum() rf1_PL = df['rf1000_odd'][df.m_match_num > 180][df.m_column_result == df.rf1000].groupby(df.rf1000).sum() rf2_PL = df['m_odd_favorite'][df.m_match_num > 180][df.m_column_result == df.rf1000_fs1].groupby(df.rf1000_fs1).sum() rf3_PL = df['m_odd_favorite'][df.m_match_num > 180][df.m_column_result == df.rf1000_fs3].groupby(df.rf1000_fs3).sum() rf4_PL = df['m_odd_favorite'][df.m_match_num > 180][df.m_column_result == df.rf1000_fs4].groupby(df.rf1000_fs4).sum() hits_books = [book_A, book_D, book_H] hits_rf1 = [rf1_A, rf1_D, rf1_H] hits_rf2 = [rf2_A, rf2_D, rf2_H] hits_rf3 = [rf3_A, rf3_D, rf3_H] hits_rf4 = [rf4_A, rf4_D, rf4_H] xBook['hits'] = hits_books x1['hits'] = hits_rf1 x2['hits'] = hits_rf2 x3['hits'] = hits_rf3 x4['hits'] = hits_rf4 xBook['p'] = xBook.hits / xBook.m_match_id x1['p'] = x1.hits / x1.m_match_id x2['p'] = x2.hits / x2.m_match_id x3['p'] = x3.hits / x3.m_match_id x4['p'] = x4.hits / x4.m_match_id # xBook = pd.concat([xBook,book_PL],axis=1, join='inner') # x1 = pd.concat([x1,rf1_PL],axis=1, join='inner') # x2 = pd.concat([x2,rf2_PL],axis=1, join='inner') # x3 = pd.concat([x3,rf3_PL],axis=1, join='inner') # x4 = pd.concat([x4,rf4_PL],axis=1, join='inner') print(xBook) print(x1) print(x2) print(x3) print(x4) # + def setRFOddFavorite(row): if (row.pred == 'H'): return row.m_odd_home elif (row.pred == 'D'): return row.m_odd_draw else: return row.m_odd_away df = pd.read_csv(PATH_NOTEBOOKS_DATA + 'features2.csv') #df = df[df.m_match_group_num > 8] df['pred_books'] = df['m_favorite'] df['favorite_odd_books'] = df['m_odd_favorite'] methods = [] for x in range (1,15): methods.append('rf'+ str(x)) for m in methods: temp = pd.read_csv(PATH_NOTEBOOKS_DATA + 'pred_' + m + '.csv') temp['favorite_odd'] = temp.apply(setRFOddFavorite, axis=1) df['pred_' + m] = temp['pred'] df['favorite_odd_' + m] = temp['favorite_odd'] df = df[df.pred_rf1.isnull() == False] methods.append('books') # + def createRow (name, gp1, hits, pl): row = {} row['method'] = name print(gp1['H']) row['num_preds'] = gp1['H'] + gp1['D'] + gp1['A'] row['H'] = gp1['H'] row['D'] = gp1['D'] row['A'] = gp1['A'] row['hits_H'] = hits['H'] row['hits_D'] = hits['D'] row['hits_A'] = hits['A'] row['hits'] = hits['H'] + hits['D'] + hits['A'] row['profit_H'] = pl['H'] row['profit_D'] = pl['D'] row['profit_A'] = pl['A'] row['profit'] = pl['H'] + pl['D'] + pl['A'] return row results = [] for m in methods: res = {} res['name'] = m res['g'] = df.groupby(['pred_' + m])['m_match_id'].count() res['hits'] = df[df.m_column_result == df['pred_' + m]].groupby(['pred_' + m])['m_match_id'].count() res['profit'] = df[df.m_column_result == df['pred_' + m]].groupby(['pred_' + m])['favorite_odd_' + m].sum() results.append(res) resume = pd.DataFrame() for r in results: resume = resume.append(pd.Series(createRow(r['name'],r['g'], r['hits'], r['profit'])), ignore_index=True) resume = resume[['method','num_preds','H','D','A','hits','hits_H','hits_D','hits_A','profit_H','profit_D','profit_A']] resume['p_hits'] = resume['hits'] / resume ['num_preds'] resume['p_hits_H'] = resume['hits_H'] / resume ['H'] resume['p_hits_D'] = resume['hits_D'] / resume ['D'] resume['p_hits_A'] = resume['hits_A'] / resume ['A'] resume['pl_H'] = resume ['profit_H'] - resume['H'] resume['pl_D'] = resume ['profit_D'] - resume['D'] resume['pl_A'] = resume ['profit_A'] - resume['A'] print(resume) # + # book_A = len(df[df.pred_books == 'A']) # book_D = len(df[df.pred_books == 'D']) # book_H = len(df[df.pred_books == 'H']) # rf1_A = len(df[df.pred_rf1 == 'A']) # rf1_D = len(df[df.pred_rf1 == 'D']) # rf1_H = len(df[df.pred_rf1 == 'H']) # rf2_A = len(df[df.pred_rf2 == 'A']) # rf2_D = len(df[df.pred_rf2 == 'D']) # rf2_H = len(df[df.pred_rf2 == 'H']) # books_hits = len(df[df.m_column_result == df.pred_books]) # rf1_hits = len(df[df.m_column_result == df.pred_rf1]) # rf2_hits = len(df[df.m_column_result == df.pred_rf2]) # h_book_A = len(df[df.pred_books == 'A'][df.m_column_result == df.pred_books]) # h_book_D = len(df[df.pred_books == 'D'][df.m_column_result == df.pred_books]) # h_book_H = len(df[df.pred_books == 'H'][df.m_column_result == df.pred_books]) # h_rf1_A = len(df[df.pred_rf1 == 'A'][df.m_column_result == df.pred_rf1]) # h_rf1_D = len(df[df.pred_rf1 == 'D'][df.m_column_result == df.pred_rf1]) # h_rf1_H = len(df[df.pred_rf1 == 'H'][df.m_column_result == df.pred_rf1]) # h_rf2_A = len(df[df.pred_rf2 == 'A'][df.m_column_result == df.pred_rf2]) # h_rf2_D = len(df[df.pred_rf2 == 'D'][df.m_column_result == df.pred_rf2]) # h_rf2_H = len(df[df.pred_rf2 == 'H'][df.m_column_result == df.pred_rf2]) # print(books_hits/len(df)) # print(book_A,h_book_A, h_book_A/book_A) # print(book_D,h_book_D, h_book_D/book_D) # print(book_H,h_book_H, h_book_H/book_H) # print("") # print(rf1_hits/len(df)) # print(rf1_A,h_rf1_A, h_rf1_A/rf1_A) # print(rf1_D,h_rf1_D, h_rf1_D/rf1_D) # print(rf1_H,h_rf1_H, h_rf1_H/rf1_H) # print("") # print(rf2_hits/len(df)) # print(rf2_A,h_rf1_A, h_rf2_A/rf2_A) # print(rf2_D,h_rf1_D, h_rf2_D/rf2_D) # print(rf2_H,h_rf1_H, h_rf2_H/rf2_H) # value = len(df[df.pred_rf2 == 'D'][df.m_column_result == "H"]) # print((h_rf1_H+value)/(rf2_D+rf2_H)) # print(value/rf2_D) #group by result prediction # + rounds = pd.DataFrame() rounds['matches'] = df.groupby(['m_match_group_num'])['m_match_id'].count() for m in methods: #rounds['hits_' + m] = df[df.m_column_result == df['pred_' + m]].groupby(['m_match_group_num'])['m_match_id'].count() rounds['p_hits' + m] = df[df.m_column_result == df['pred_' + m]].groupby(['m_match_group_num'])['m_match_id'].count() / rounds['matches'] print(rounds) # + rounds = pd.DataFrame() rounds['matches'] = df.groupby(['m_match_group_num'])['m_match_id'].count() for m in methods: #rounds['hits_' + m] = df[df.m_column_result == df['pred_' + m]].groupby(['m_match_group_num'])['m_match_id'].count() rounds['p_hits' + m] = df[df.m_column_result == df['pred_' + m]].groupby(['m_match_group_num'])['m_match_id'].count() / rounds['matches'] print(rounds) # + champs = pd.DataFrame() champs['matches'] = df.groupby(['c_championship_name'])['m_match_id'].count() for m in methods: #rounds['hits_' + m] = df[df.m_column_result == df['pred_' + m]].groupby(['m_match_group_num'])['m_match_id'].count() champs['p_hits' + m] = df[df.m_column_result == df['pred_' + m]].groupby(['c_championship_name'])['m_match_id'].count() / champs['matches'] print(champs) # - nfo_dict['esfMRI']['fa_objs'][1], 'values') # ## ALL CONTRASTS - TASK and RT EXCLUDED # # ### Only excluding Task fails the KMO test info_dict, BIC_df = pipeline(ALL_MAPS_NO_TASK_NO_RT) # # RT MAPS info_dict, BIC_df = pipeline(RT_MAPS, factor_options=np.arange(1,15,1), nfac_plot=[7])
17,970
/.ipynb_checkpoints/Curso Introduรงรฃo ร  Ciรชncia da Computaรงรฃo com Python - Parte 2-checkpoint.ipynb
cc2cd069df033a7fb9a24a16ef8b8c4b39b0c4f7
[ "MIT" ]
permissive
marcelomiky/PythonCodes
https://github.com/marcelomiky/PythonCodes
2
0
null
null
null
null
Jupyter Notebook
false
false
.py
14,664
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # ECE 457B - Tutorial 3 # # 1. Introduction to [Sklearn](https://scikit-learn.org/stable/index.html) # 2. The [IRIS dataset](https://archive.ics.uci.edu/ml/datasets/iris) # 3. Comparing Models # + import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder, MinMaxScaler from sklearn.svm import SVC from sklearn.metrics import confusion_matrix, classification_report, ConfusionMatrixDisplay from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.optimizers import Adam # - # ## Load and Explore Dataset # # Features # 1. sepal length in cm # 2. sepal width in cm # 3. petal length in cm # 4. petal width in cm # # # Classes: # 1. Iris Setosa # 2. Iris Versicolour # 3. Iris Virginica # # "One class is linearly separable from the other 2; the latter are NOT linearly separable from each other." # + iris = load_iris() x = iris.data y_ = iris.target print("Size of features: {}".format(x.shape)) print("Size of labels: {}".format(y_.shape)) print("Sample data: {}".format(x[:3])) print("Sample labels: {}".format(y_[:3])) class_names = ['setosa', 'versicolor', 'virginica'] # - # ## Data Preprocessing and Preparation # # Let's explore how we can use sklearn for full data proprocessing # # 1. Normalize the feature space # 2. For the purpose of using a neural network and since this is a classification problem, we will be using softmax activation in the output layer. For that, we will change the labels to be one-hot-encoded (sklearn) # 3. Lets use a 80-20 train-test split. For that, we'll use the train_test_split function from sklearn # + # Normalize the data X_norm = (x - x.min(axis=0)) / (x.max(axis=0) - x.min(axis=0)) # One-hot encode the labels encoder = OneHotEncoder(sparse=False) # Split the data into training and testing train_x, test_x, train_y, test_y = train_test_split(X_norm, y_, test_size=0.20) train_y_enc = encoder.fit_transform(train_y.reshape(-1,1)) test_y_enc = encoder.fit_transform(test_y.reshape(-1,1)) print("Sample train data: {}".format(train_x[:3])) print("Sample train labels: {}".format(train_y_enc[:3])) # - # ## The Model # + # Build the model model = Sequential() model.add(Dense(10, input_shape=(4,), activation='relu', name='input')) model.add(Dense(10, activation='relu', name='hidden1')) model.add(Dense(3, activation='softmax', name='output')) print(model.summary()) # Compile the model # Adam optimizer with learning rate of 0.001 optimizer = Adam(lr=0.001) model.compile(optimizer, loss='categorical_crossentropy', metrics=['accuracy']) # - # Train the model model.fit(train_x, train_y_enc, verbose=1 , batch_size=5, epochs=50) # + # Test on unseen data results = model.evaluate(test_x, test_y_enc) print('Final test set loss: {:4f}'.format(results[0])) print('Final test set accuracy: {:4f}'.format(results[1])) # - # ## Use Support Vector Machines # + # Using SVM (Also from sklearn) svm_ = SVC(gamma='auto') svm_.fit(train_x, train_y) y_svm = svm_.predict(test_x) acc_svm = sum([1 for i in range(0,len(test_y)) if test_y[i] == y_svm[i] ])/len(test_y) print("SVM Accuracy: {}%".format(acc_svm*100)) # - # ## Confusion Matrix # + y_mlp = model.predict_classes(test_x) cm_mlp = confusion_matrix(test_y, y_mlp) print(cm_mlp) print(classification_report(test_y, y_mlp, target_names=class_names)) disp1 = ConfusionMatrixDisplay(confusion_matrix=cm_mlp,display_labels=class_names) disp1.plot() # + cm_svm = confusion_matrix(test_y, y_svm) print(cm_svm) print(classification_report(test_y, y_svm, target_names=class_names)) disp2 = ConfusionMatrixDisplay(confusion_matrix=cm_svm,display_labels=class_names) disp2.plot() # - batches[1][1].shape)) print("็ฌฌไธ‰ไธชmini_batch_Y็š„็ปดๅบฆ: " + str(mini_batches[2][1].shape)) # - # # ๆณจๆ„ mini_batch็š„ๅคงๅฐไธ€่ˆฌ้€‰ๆ‹ฉ2็š„ๆฌกๆ–น : return False else: matriz = [] for i in range(len(m1)): linha = [] for j in range(len(m1[0])): linha.append(m1[i][j] + m2[i][j]) matriz.append(linha) return matriz # + deletable=true editable=true m1 = [[1, 2, 3], [4, 5, 6]] m2 = [[2, 3, 4], [5, 6, 7]] soma_matrizes(m1, m2) # + deletable=true editable=true m1 = [[1], [2], [3]] m2 = [[2, 3, 4], [5, 6, 7]] soma_matrizes(m1, m2) # + [markdown] deletable=true editable=true # ### Praticar tarefa de programaรงรฃo: Exercรญcios adicionais (opcionais) # # Exercรญcio 1: Imprimindo matrizes # # Como proposto na primeira vรญdeo-aula da semana, escreva uma funรงรฃo imprime_matriz(matriz), que recebe uma matriz como parรขmetro e imprime a matriz, linha por linha. Note que NรƒO se deve imprimir espaรงos apรณs o รบltimo elemento de cada linha! # # Exemplos: # # # minha_matriz = [[1], [2], [3]] # # imprime_matriz(minha_matriz) # # 1 # # 2 # # 3 # # minha_matriz = [[1, 2, 3], [4, 5, 6]] # # imprime_matriz(minha_matriz) # # 1 2 3 # # 4 5 6 # # + deletable=true editable=true def imprime_matriz(A): for i in range(len(A)): for j in range(len(A[i])): print(A[i][j]) # + deletable=true editable=true minha_matriz = [[1], [2], [3]] imprime_matriz(minha_matriz) # + deletable=true editable=true minha_matriz = [[1, 2, 3], [4, 5, 6]] imprime_matriz(minha_matriz) # + [markdown] deletable=true editable=true # ### Exercรญcio 2: Matrizes multiplicรกveis # # Duas matrizes sรฃo multiplicรกveis se o nรบmero de colunas da primeira รฉ igual ao nรบmero de linhas da segunda. Escreva a funรงรฃo sao_multiplicaveis(m1, m2) que recebe duas matrizes como parรขmetro e devolve True se as matrizes forem multiplicavรฉis (na ordem dada) e False caso contrรกrio. # # Exemplos: # # m1 = [[1, 2, 3], [4, 5, 6]] # # m2 = [[2, 3, 4], [5, 6, 7]] # # sao_multiplicaveis(m1, m2) => False # # # m1 = [[1], [2], [3]] # # m2 = [[1, 2, 3]] # # sao_multiplicaveis(m1, m2) => True # + deletable=true editable=true def sao_multiplicaveis(m1, m2): '''Recebe duas matrizes como parรขmetros e devolve True se as matrizes forem multiplicรกveis (nรบmero de colunas da primeira รฉ igual ao nรบmero de linhs da segunda). False se nรฃo forem ''' if len(m1) == len(m2[0]): return True else: return False # - m1 = [[1, 2, 3], [4, 5, 6]] m2 = [[2, 3, 4], [5, 6, 7]] sao_multiplicaveis(m1, m2) m1 = [[1], [2], [3]] m2 = [[1, 2, 3]] sao_multiplicaveis(m1, m2)
6,673
/tensorflow_/Tensorflow_Basic3_variable.ipynb
ba1986a28c75e4f5b20964bb55c5a62c1c303c09
[]
no_license
yennanliu/analysis
https://github.com/yennanliu/analysis
11
9
null
null
null
null
Jupyter Notebook
false
false
.py
4,913
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import numpy as np import tensorflow as tf # - A TensorFlow variable is the best way to represent shared, persistent state manipulated by your program. # # - Variables are manipulated via the `tf.Variable class.` A tf.Variable represents a tensor whose value can be changed by running ops on it. Unlike tf.Tensor objects, a tf.Variable exists outside the context of a single session.run call. # # - Internally, a `tf.Variable` stores a persistent tensor. Specific ops allow you to read and modify the values of this tensor. These modifications are visible across multiple tf.Sessions, so multiple workers can see the same values for a tf.Variable # # - https://www.tensorflow.org/programmers_guide/variables # Create two variables. weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="weights") biases = tf.Variable(tf.zeros([200]), name="biases") weights # + # https://www.tensorflow.org/versions/r1.0/programmers_guide/variables # Create two variables. weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="weights") biases = tf.Variable(tf.zeros([200]), name="biases") ... # Add an op to initialize the variables. init_op = tf.global_variables_initializer() # Later, when launching the model with tf.Session() as sess: # Run the init operation. sess.run(init_op) ... # Use the model ... # + # dev # - # + # example # https://github.com/MorvanZhou/Tensorflow-Tutorial/blob/master/tutorial-contents/203_variable.py var = tf.Variable(0) # our first variable in the "global_variable" set add_operation = tf.add(var, 1) update_operation = tf.assign(var, add_operation) with tf.Session() as sess: # once define variables, you have to initialize them by doing this sess.run(tf.global_variables_initializer()) for _ in range(3): sess.run(update_operation) print(sess.run(var)) # - add_operation type(add_operation)
2,219
/LR.ipynb
9e7d7ceca62de45913458a97d9091c541470f800
[]
no_license
MuhamadElBeheiry/Optical_Character_Recognizer
https://github.com/MuhamadElBeheiry/Optical_Character_Recognizer
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
10,747
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="view-in-github" colab_type="text" # <a href="https://colab.research.google.com/github/mohamedahmedsaadahmed77/Research-Project-Selected-2/blob/master/LR.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # + id="Fam5ytVcjiLl" colab_type="code" outputId="dc801a1f-e734-4296-c970-957c26701870" colab={"base_uri": "https://localhost:8080/", "height": 51} # %tensorflow_version 1.x import tensorflow as tf print(tf.__version__) # + id="ZsjEBty7h9pG" colab_type="code" outputId="e2bf8830-4fdd-4cc3-8526-7b9db9de5a46" colab={"base_uri": "https://localhost:8080/", "height": 153} # !git clone https://github.com/mohamedahmedsaadahmed77/OCR-Selected-2.git # + id="en2JPYgZh9lt" colab_type="code" colab={} import numpy as np import os from imutils import paths import cv2 import pandas as pd def load_images(path): print("[INFO] loading images...") imagePaths = list(paths.list_images(path)) imagePaths.sort() data = [] labels = [] for imagePath in imagePaths: label = imagePath.split(os.path.sep)[-2] image = cv2.imread(imagePath) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) image = np.reshape(image, (28*28))/255.0 data.append(image) labels.append(label) data = np.array(data) labels = pd.get_dummies(labels) labels = np.array(labels) print("[INFO] done") return data,labels # + id="CZDZv0I_h9h0" colab_type="code" outputId="b99a4ce4-f046-4279-e742-87b5080d2d00" colab={"base_uri": "https://localhost:8080/", "height": 85} x_train, y_train = load_images('/content/OCR-Selected-2/Dataset/Training') x_test, y_test = load_images('/content/OCR-Selected-2/Dataset/Test') # + id="XarFVDTfbjUf" colab_type="code" outputId="aa783076-7517-42ff-aef8-21f510f5cd9d" colab={"base_uri": "https://localhost:8080/", "height": 51} from sklearn.decomposition import PCA pca = PCA(.95) pca.fit(x_train) # + id="dsDAMqBUcEas" colab_type="code" outputId="6175aebb-5170-4a96-f381-1db54ef5faf0" colab={"base_uri": "https://localhost:8080/", "height": 51} x_train = pca.transform(x_train) x_test = pca.transform(x_test) print(x_train.shape) print(x_test.shape) # + id="DzkBQD7bhqbK" colab_type="code" colab={} # Hyper parameters learning_rate = 0.0001 epochs = 32 batch_size = 16 batches = int(x_train.shape[0] / batch_size) # I choose placeholder to make it recieve any number of records to make code flexable X = tf.placeholder(tf.float32, [None, 116]) Y = tf.placeholder(tf.float32, [None, 26]) # I choose variable cause itโ€™s values will be changed to get more better values and i put random values for the first time W = tf.Variable(.1 * np.random.randn(116, 26).astype(np.float32)) B = tf.Variable(.1 * np.random.randn(26).astype(np.float32)) # + id="KS_H36hKhxfF" colab_type="code" colab={} # Formula of logistic regression : X * W + B pred = tf.nn.softmax(tf.add(tf.matmul(X,W), B)) # Cost function cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(pred), axis=1)) # Optimiser that will get better values for bais and weights optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # + id="birGFpOmhxdW" colab_type="code" outputId="a34fe446-aade-48b5-8a79-e2c9346d9255" colab={"base_uri": "https://localhost:8080/", "height": 578} # Session to determine the flow of computitional graph (TensorFlow) with tf.Session() as sesh: # Set initial values of tensor variables (Mandatory) sesh.run(tf.global_variables_initializer()) for epoch in range(epochs): for i in range(batches): offset = i * epoch x = x_train[offset: offset + batch_size] y = y_train[offset: offset + batch_size] sesh.run(optimizer, feed_dict={X: x, Y:y}) # Get cost function value (Optional) costVal = sesh.run(cost, feed_dict={X:x, Y:y}) print(f'epoch: {epoch:2d} cost_val= {costVal:.4f}') # Calculate the accuracy correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) acc = accuracy.eval({X: x_test, Y: y_test}) print(f'Accuracy: {acc * 100:.2f}%')
4,406
/04-fisher-example.ipynb
7f8d1e768cb8d8e2371c894b06bd90baabacc8fe
[ "MIT" ]
permissive
romilly/machine-learning-1
https://github.com/romilly/machine-learning-1
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
95,398
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Dimensionality reduction and classification with Fisher's linear discriminant # # In this notebook we will deal with two interesting applications of Fisher's linear discriminant: dimensionality reduction, and classification. This discriminant is formulated so that an appropriate projection of the data is found, so that the distance between points of different classes is **maximized** and the distance between points of the same class is **minimized**. The fact that it needs label information makes this a supervised learning method, in contrast to other dimensionality reduction techniques that work without labels, such as [PCA](https://dfdazac.github.io/pca_ex.html). # # ## The data # # For illustration purposes, we will use a synthetic dataset, containing samples from two Gaussian distributions. # + # %matplotlib inline import numpy as np import matplotlib.pyplot as plt np.random.seed(42) # Mean and covariance matrix of the distributions mu1 = np.array([-1.5, -0.0]) cov1 = np.array([[1, -0.2], [-0.2, 0.5]]) mu2 = np.array([2, 1]) cov2 = np.array([[1, -0.2], [-0.2, 0.5]]) # Get samples and plot data1 = np.random.multivariate_normal(mu1, cov1, 100) data2 = np.random.multivariate_normal(mu2, cov2, 100) plt.figure(figsize=(5, 5)) plt.scatter(data1[:,0], data1[:,1]) plt.scatter(data2[:,0], data2[:,1]); # - # ## Projecting the data # # As we introduced it, Fisher's linear discriminant is calculated so that the optimal projection that maximizes the between-class variance and minimizes the within-class variance is found. The projection is one-dimensional, which might be too extreme for some applications, but for a classification task it is useful, since we can find a threshold in the projected one-dimensional space that separates between the two classes. # + from discriminant_analysis.fisher import FisherDiscriminant # Collect the features and labels in arrays X = np.vstack((data1, data2)) Y = np.concatenate((np.zeros(len(data1), dtype=np.int), np.ones(len(data2), dtype=np.int))) # Find the optimal projection model = FisherDiscriminant() model.fit(X, Y) X_proj = model.transform(X) # - # We have projected the data, which originally lay in a two-dimensional space, to a one-dimensional space, which we stored in the `X_proj` array. We can plot a histogram of this data to observe how well the classes can be discriminated in the projected space. plt.hist(X_proj[Y == 0], label='Class 0') plt.hist(X_proj[Y == 1], label='Class 1') plt.legend() plt.title('Data in the projected space'); # Great! It looks as if we reduced the dimensionality of the data, and now we are able to discriminate between two classes by defining a single appropriate threshold. For this example, this threshold seems to lie between 0 and 1. Now we might ask, how do we choose the correct threshold? # # ## Grid-searching for the best threshold # # A quick idea that comes to my mind is to split the data into training and test splits, and use the training split to find the best threshold between 0 and 1, using 4-fold cross-validation. Let's try! # + from data.utils import crossval_indices, split_train_test from metrics.classification import accuracy # Shuffle the data and split into training and test rand_idx = np.random.permutation(len(X)) X = X[rand_idx] Y = Y[rand_idx] X_train, Y_train, X_test, Y_test = split_train_test(X, Y) # Find the best threshold in the interval [0, 1) threshold_values = np.linspace(0, 1, 20) accuracies = np.zeros(len(threshold_values)) n_folds = 4 for i, threshold in enumerate(threshold_values): # Get cross-validation indices train_folds, valid_folds = crossval_indices(len(X_train), n_folds) acc = 0 for train_i, valid_i in zip(train_folds, valid_folds): # Fit the model model.fit(X_train[train_i], Y_train[train_i]) # Project validation data X_proj = model.transform(X_train[valid_i]) # Predict using the threshold Y_pred = np.zeros(len(Y_train[valid_i]), dtype=np.int) Y_pred[X_proj > threshold] = 1 # Get accuracy acc += accuracy(Y_train[valid_i], Y_pred) # Calculate average accuracy acc /= n_folds accuracies[i] = acc # Plot accuracy as a function of the threshold plt.plot(threshold_values, accuracies) max_threshold_idx = np.argmax(accuracies) best_threshold = threshold_values[max_threshold_idx] plt.title('Accuracy, \n maximum of {:.3f} with threshold = {:.3f}'.format(accuracies[max_threshold_idx], best_threshold)) plt.xlabel('Threshold'); # - # We have obtained the best threshold that separates the data in the one-dimensional space using cross-validation. What is the final accuracy on the test set? # Project test data X_proj = model.transform(X_test) # Predict using the threshold Y_pred = np.zeros(len(Y_test), dtype=np.int) Y_pred[X_proj > best_threshold] = 1 # Get accuracy print('Accuracy: {:.4f}'.format(accuracy(Y_test, Y_pred))) # Not bad for our toy example. # # There is a second idea that we can use to solve the problem of classification with Fisher's discriminant, which is more formal, as we will now see. # # ## Maximum likelihood and some decision theory # # If we take a look again at the histograms obtained for the projected data, we can see that the classes are normally distributed. This is the case because they come from two-dimensional Gaussian distributions. This means that instead of searching manually for a threshold, we can let the data speak to us, by finding maximum likelihood estimates of the parameters (the mean and standard deviation) of the projected distributions. It turns out that the `fit()` method of the `FisherDiscriminant` class does exactly this, so we can visualize the distributions after fitting the model. # + from scipy.stats import norm # Fitting the model finds the optimal projection # as well as the maximum likelihood estimates model.fit(X_train, Y_train) X_proj = model.transform(X_train) # Plot histograms of projected data fig, ax1 = plt.subplots() ax1.hist(X_proj[Y_train == 0], label='Class 0', alpha=0.4) ax1.hist(X_proj[Y_train == 1], label='Class 1', alpha=0.4) ax1.set_ylabel('Counts') # Plot estimated densities ax2 = ax1.twinx() x = np.linspace(-5, 5, 100) ax2.plot(x, norm.pdf(x, loc=model.mean1, scale=model.std1)) ax2.plot(x, norm.pdf(x, loc=model.mean2, scale=model.std2)) ax2.set_ylim([0, 1]) ax2.set_ylabel('Probability density'); # - # We can now find the best threshold using the training data by using a handy result from decision theory (see [1] for more details): the minimum misclassification rate is obtained at the intersection of the class-conditional densities, which we just found. This intersection can be found analitically and is also computed when calling the `fit()` method. Let's see what this value is. model.threshold # This is the threshold used by the `predict()` method, so we can readily make predictions for the test data and obtain the accuracy. Y_pred = model.predict(X_test) print('Accuracy: {:.4f}'.format(accuracy(Y_test, Y_pred))) # We obtain the same accuracy than with the cross-validation method, even though the threshold found with both methods is different. However, the estimation approach is preferable since the solution is found analitically instead of iterating, which saves computational resources, and also it doesn't involve setting hyperparameters. # # --- # ## Nonlinear data # # The example data we have used so far is easy because it's already linearly separable in the original space. What if we have more complicated data, like the moons dataset? # + from sklearn.datasets import make_moons X, Y = make_moons(100, noise=0.1) plt.scatter(X[Y == 0, 0], X[Y == 0, 1]) plt.scatter(X[Y == 1, 0], X[Y == 1, 1]); # - # Clearly there is not a line that can separate the two classes. Let's try, however, just to satisfy our curiosity. # Split into training and test X_train, Y_train, X_test, Y_test = split_train_test(X, Y) # Train and evaluate model.fit(X_train, Y_train) Y_pred = model.predict(X_test) print('Accuracy: {:.4f}'.format(accuracy(Y_test, Y_pred))) # We can do better than that! # # We will now help the discriminant by extracting features out of the data. We will use a cubic polynomial basis to map the data to a higher dimensional space (from two dimensions up to 9). In this space, ideally the two classes will be linearly separable, so that when we project it down to a one-dimensional space using Fisher's discriminant the threshold will be more effective. # + from features.basis_functions import polynomial_basis # Map data to a higher dimensional space # (The constant is dropped to avoid singular matrices) degree = 3 X_feat = polynomial_basis(X, degree)[:, 1:] # Split into training and test X_train, Y_train, X_test, Y_test = split_train_test(X_feat, Y) # Train and evaluate model.fit(X_train, Y_train) Y_pred = model.predict(X_test) print('Accuracy: {:.4f}'.format(accuracy(Y_test, Y_pred))) # - # Yes! We could make this number bigger by mapping to a space of higher dimension, although we have to keep in mind that by doing so the number of features will increase, which adds to the computational cost. For now we will keep this degree and move to one last cool visualization: the decision boundary created by the polynomial basis and Fisher's discriminant. # Create a grid N = 200 x1 = np.linspace(-2, 3, N) x2 = np.linspace(-1, 2, N) X1, X2 = np.meshgrid(x1, x2) X_flat = np.column_stack((X1.flatten(), X2.flatten())) # Get features X_feat = polynomial_basis(X_flat, degree)[:, 1:] # Evaluate model on grid Y_pred = model.predict(X_feat).reshape(X1.shape) plt.contourf(X1, X2, Y_pred, cmap='bone', alpha=0.1) plt.scatter(X[Y == 0, 0], X[Y == 0, 1]) plt.scatter(X[Y == 1, 0], X[Y == 1, 1]); # Whoa. # # As we have seen, the mapping to a higher dimension gives us more flexibility on the kind of problems that we can tackle with Fisher's discriminant. There are also extensions of the discriminant for multi-class problems, which might be worth examining considering what we have seen for the binary case. # # ### References # [1] Bishop, Christopher M. "Pattern recognition and machine learning (information science and statistics)." (2006). ) # - # + folds = StratifiedKFold(n_splits= 10, shuffle=True) oof_preds = np.zeros(X.shape[0]) sub_preds = np.zeros(rx.shape[0]) feature_importance_df = pd.DataFrame() for n_fold, (train_idx, valid_idx) in enumerate(folds.split(X, Y)): train_x, train_y = X[train_idx,:], Y[train_idx] valid_x, valid_y = X[valid_idx,:], Y[valid_idx] train_wx = wX[train_idx,:] valid_wx = wX[valid_idx,:] train_id, valid_id = Xid[train_idx], Xid[valid_idx] print("Train Index:",train_idx,",Val Index:",valid_idx) if n_fold >= 0: lstmmodel=train_lstm(n_symbols, embedding_weights,train_x, train_y, valid_x, valid_y) # feats = Model(inputs=lstmmodel.input, outputs=lstmmodel.get_layer('dense1').output) lstmmodel.save('LSTM_fold_%d.h5'%(n_fold)) tmp_valid = lstmmodel.predict(valid_x) tmp_valid= np.reshape(tmp_valid, [-1]) oof_preds[valid_idx] = tmp_valid res1 = np.reshape(lstmmodel.predict(rx), [-1]) sub_preds += (res1) / folds.n_splits print('Fold %2d AUC-LSTM : %.6f' % (n_fold + 1, roc_auc_score(valid_y, oof_preds[valid_idx]))) del train_x, train_y, valid_x, valid_y app_test = pd.read_csv('testing-set.csv', usecols=['order_id']) preds = pd.DataFrame({"order_id":app_test["order_id"], "deal_or_not":sub_preds}) # create output sub-folder preds.to_csv("output/LSTM_" + str(roc_auc_score(Y, oof_preds)) + ".csv", index=False) # - # + len1 = len(Y) tind = np.zeros(len1, np.int) for i in range(len1): tind[i]=i import random as rn rn.shuffle(tind) train_x, train_y = X[tind[1000:],:], Y[tind[1000:]] valid_x, valid_y = X[tind[:1000],:], Y[tind[:1000]] print("Train Index:",tind[1000:],",Val Index:",tind[:1000]) lstmmodel=train_lstm(n_symbols, embedding_weights,train_x, train_y, valid_x, valid_y) lstmmodel.save('LSTM_%d.h5'%(n_fold)) tmp_valid = lstmmodel.predict(valid_x) tmp_valid= np.reshape(tmp_valid, [-1]) res1 = np.reshape(lstmmodel.predict(rx), [-1]) app_test = pd.read_csv('testing-set.csv', usecols=['order_id']) preds = pd.DataFrame({"order_id":app_test["order_id"], "deal_or_not":res1}) # create output sub-folder preds.to_csv("output/LSTM_all.csv", index=False) # - app_test = pd.read_csv('testing-set.csv', usecols=['order_id']) preds = pd.DataFrame({"order_id":app_test["order_id"], "deal_or_not":res1}) # create output sub-folder preds.to_csv("output/LSTM_all.csv", index=False)
13,106
/iris/notebook.ipynb
8ef6515c4ce7cda6cc86ae46c4a3b627242e83b1
[]
no_license
jkrukowski/strata
https://github.com/jkrukowski/strata
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
6,916
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python [conda env:py35] # language: python # name: conda-env-py35-py # --- import tensorflow as tf import numpy as np # + training_set = tf.contrib.learn.datasets.base.load_csv_with_header( filename='iris_training.csv', target_dtype=np.int, features_dtype=np.float32) test_set = tf.contrib.learn.datasets.base.load_csv_with_header( filename='iris_test.csv', target_dtype=np.int, features_dtype=np.float32) # - feature_columns = [tf.feature_column.numeric_column("x", shape=[4])] classifier = tf.estimator.DNNClassifier(feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3, model_dir="./model") train_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": np.array(training_set.data)}, y=np.array(training_set.target), num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=2000) test_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": np.array(test_set.data)}, y=np.array(test_set.target), num_epochs=1, shuffle=False) # + accuracy_score = classifier.evaluate(input_fn=test_input_fn)["accuracy"] print("\nTest Accuracy: {0:f}\n".format(accuracy_score)) # -
1,506
/nbs/09b_vision.utils.ipynb
f875258edef1e22445598692f0fc3c835a6871b9
[ "Apache-2.0" ]
permissive
ROCmSoftwarePlatform/fastai2
https://github.com/ROCmSoftwarePlatform/fastai2
0
0
Apache-2.0
2020-09-15T17:44:03
2020-06-30T21:21:22
null
Jupyter Notebook
false
false
.py
11,235
# --- # jupyter: # jupytext: # split_at_heading: true # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + #default_exp vision.utils # - #export from fastai2.torch_basics import * from fastai2.data.all import * from fastai2.vision.core import * #hide from nbdev.showdoc import * # + # path = untar_data(URLs.IMAGENETTE) # + # path # - # # Vision utils # # > Some utils function to quickly download a bunch of images, check them and pre-resize them #export def _download_image_inner(dest, inp, timeout=4): i,url = inp suffix = re.findall(r'\.\w+?(?=(?:\?|$))', url) suffix = suffix[0] if len(suffix)>0 else '.jpg' try: download_url(url, dest/f"{i:08d}{suffix}", overwrite=True, show_progress=False, timeout=timeout) except Exception as e: f"Couldn't download {url}." with tempfile.TemporaryDirectory() as d: d = Path(d) url = "https://www.fast.ai/images/jh-head" _download_image_inner(d, (125,url)) assert (d/'00000125.jpg').is_file() #export def download_images(dest, url_file=None, urls=None, max_pics=1000, n_workers=8, timeout=4): "Download images listed in text file `url_file` to path `dest`, at most `max_pics`" if urls is None: urls = url_file.read().strip().split("\n")[:max_pics] dest = Path(dest) dest.mkdir(exist_ok=True) parallel(partial(_download_image_inner, dest, timeout=timeout), list(enumerate(urls)), n_workers=n_workers) with tempfile.TemporaryDirectory() as d: d = Path(d) url_file = d/'urls.txt' url_file.write("\n".join([f"https://www.fast.ai/images/{n}" for n in "jh-head thomas.JPG sg-head".split()])) download_images(d, url_file) for i in [0,2]: assert (d/f'0000000{i}.jpg').is_file() assert (d/f'00000001.JPG').is_file() #export def resize_to(img, targ_sz, use_min=False): "Size to resize to, to hit `targ_sz` at same aspect ratio, in PIL coords (i.e w*h)" w,h = img.size min_sz = (min if use_min else max)(w,h) ratio = targ_sz/min_sz return int(w*ratio),int(h*ratio) # + class _FakeImg(): def __init__(self, size): self.size=size img = _FakeImg((200,500)) test_eq(resize_to(img, 400), [160,400]) test_eq(resize_to(img, 400, use_min=True), [400,1000]) # - #export def verify_image(fn): "Confirm that `fn` can be opened" try: im = Image.open(fn) im.draft(im.mode, (32,32)) im.load() return True except: return False #export def verify_images(fns): "Find images in `fns` that can't be opened" return L(fns[i] for i,o in enumerate(parallel(verify_image, fns)) if not o) #export def resize_image(file, dest, max_size=None, n_channels=3, ext=None, img_format=None, resample=Image.BILINEAR, resume=False, **kwargs ): "Resize file to dest to max_size" dest = Path(dest) dest_fname = dest/file.name if resume and dest_fname.exists(): return if verify_image(file): img = Image.open(file) imgarr = np.array(img) img_channels = 1 if len(imgarr.shape) == 2 else imgarr.shape[2] if (max_size is not None and (img.height > max_size or img.width > max_size)) or img_channels != n_channels: if ext is not None: dest_fname=dest_fname.with_suffix(ext) if max_size is not None: new_sz = resize_to(img, max_size) img = img.resize(new_sz, resample=resample) if n_channels == 3: img = img.convert("RGB") img.save(dest_fname, img_format, **kwargs) file = Path('images/puppy.jpg') dest = Path('.') resize_image(file, max_size=400, dest=dest) im = Image.open(dest/file.name) test_eq(im.shape[1],400) (dest/file.name).unlink() #export def resize_images(path, max_workers=defaults.cpus, max_size=None, recurse=False, dest=Path('.'), n_channels=3, ext=None, img_format=None, resample=Image.BILINEAR, resume=None, **kwargs): "Resize files on path recursevely to dest to max_size" path = Path(path) if resume is None and dest != Path('.'): resume=False os.makedirs(dest, exist_ok=True) files = get_image_files(path, recurse=recurse) parallel(resize_image, files, max_workers=max_workers, max_size=max_size, dest=dest, n_channels=n_channels, ext=ext, img_format=img_format, resample=resample, resume=resume, **kwargs) with tempfile.TemporaryDirectory() as d: dest = Path(d)/'resized_images' resize_images('images', max_size=100, dest=dest) # # Export - #hide from nbdev.export import notebook2script notebook2script()
4,736
/data_preprocessing/Finishing alignment pipeline.ipynb
be5207b5e97395f8f39508ea328472c04afd9cac
[ "BSD-3-Clause" ]
permissive
portugueslab/Prat_et_al
https://github.com/portugueslab/Prat_et_al
0
0
null
2022-09-12T13:49:46
2022-09-12T13:33:57
Jupyter Notebook
Jupyter Notebook
false
false
.py
4,473
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + # %load_ext autoreload import deepdish as dd import numpy as np import pandas as pd import json from skimage import io from notebook_utilities.display import stack_browser, display_array from matplotlib import pyplot as plt from fimpy.core.split_dataset import H5SplitDataset from pathlib import Path # - % autoreload from fimpy.registration.plane import align_single_planes_sobel, displacement_between_planes, shift_planes from fimpy.registration.volume import sobel_stack from fimpy.registration.reg_from_skimage import register_translation path = Path(r"J:\_Shared\exp22_2p\EC\imported\180526 f1\src") ds = H5SplitDataset(path) ref = np.mean(ds[:10,:,:,:], 0) prefilter_sigma = 3.3 upsampling=10 ds.shape whole_stack.shape whole_stack = np.zeros((ds.shape[0]//50+1,) + ds.shape[1:]) # %%time whole_stack[:,:,:,:] = ds[:,:,:,:][::50, :,:,:] ref = whole_stack[:2,:,:,:].mean(0) sob_ref = sobel_stack(ref, prefilter_sigma) # Find between-planes shifts # + shifts_planes = np.zeros((ref.shape[0], 2)) num_planes = ref.shape[0] centre_plane = int(num_planes // 2) for i in range(centre_plane, ref.shape[0]-1): s, error, diffphase = register_translation(ref[i,:,:], ref[i+1,:,:], 10) shifts_planes[i+1,:] = shifts_planes[i,:] + s for i in range(centre_plane, 0, -1): s, error, diffphase = register_translation(ref[i,:,:], ref[i-1,:,:], 10) shifts_planes[i-1,:] = shifts_planes[i,:] + s # - display_array(shift_planes(ref[np.newaxis, :,:,:], dict(shifts=shifts_planes))) shifts_planes[30,:] i = 30 shifted, shifts = align_single_planes_sobel(whole_stack[:,i:i+1,:,:], np.fft.fftn(sob_ref[i:i+1, :, :]), prefilter_sigma=prefilter_sigma, upsample_factor=10, maxshift=15) display_array(whole_stack[0,i:i+1,:,:] - whole_stack[-1,i:i+1,:,:]) display_array(shifted[0,:,:,:] - shifted[-1,:,:,:])
2,125
/Classificacao/Naive_Bayes/Naiva_Bayes_Countries.ipynb
36723b940870ee2174e5fca0cdf7057a1aca9ef4
[]
no_license
BAssis777/CursoDS_ProfDanilo
https://github.com/BAssis777/CursoDS_ProfDanilo
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
90,070
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Baseline simulations and deterministic sensitivity analyses # In this notebook computations for a health state transition model, commonly referred to as Markov model, are implemented. In the healthcare setting a patient can be in a predefined set of Markov states (health states) per unit of time. Each health state is related with a health reward (Quality-Adjusted Life Years) and costs per unit of time. Furthermore, transitions between health states are possible based on defined transition probabilities. For further explanation of Markov models read Markov_model_explanation.docx in the repository. # # Baseline simulations refer to the use of a set of predefined parameters to perform health state transition simulations. Baseline parameters are reported in table 1 in: <br> # # "Cost and health effects of case management compared to outpatient clinic follow-up in a Dutch heart failure cohort" <br> by H. van Voorst and A.E.R. Arnold <br> # DOI: 10.1002/ehf2.12692 # # Next to the baseline simulation results the code below directly computes deterministic one-way sensitivity analyses based on percentages change. In one-way deterministic sensitivity analyses no correlation between parameters was included, thus each parameter is changed while all the other parameters are set to their baseline value. Given a percentage change for every model parameter the simulated Quality-Adjusted Life Years (QALYs), costs (โ‚ฌ), and Net Monetary Benefit (NMB in โ‚ฌ) cumulative over a 5 year simulated follow-up are computed. An explanation of the background of the computations is available in the Markov_model_explanation.docx file in this repository. # # This notebook is the first in an series of three: # 1. Baseline simulations and one-way deterministic sensitivity analyses. # 2. Probabilistic sensitivity analysis: uniform distributed parameters # 3. Probabilistic sensitivity analysis: most probable distributed parameters import pandas as pd import numpy as np import math import time import os import pickle # ## Probability-time adjustment functions # Since the baseline input values of each baseline parameter was not estimated over the same time span computations were required. Furhtermore, based on a probability of an event in a control arm the probability of an event in the intervention arm was computed with the Relative Risk (RR). Functions below assume constant distribution of probabilities through time. # + def monthly_prob(totmonths, events, total): """ Function computes the monthly probability of an event if measurement of events is over multiple months totmonths: amount of months for measurement events: number of events in totmonths total: total amount of patients at risk in totmonths """ prob_event = (events/total) prob_surv = 1 - prob_event monthly_event_free_prob = prob_surv**(1/totmonths) mothly_event_prob = 1 - monthly_event_free_prob return mothly_event_prob def RR_intervention(p_control, RR, rr_months, pc_months): """ Computes the probability of an event in the intervention arm based on the Relative Risk (RR) and probability in the control arm (p_control). p_control: Probability of event in control arm RR: Relative Risk of event in intervention arm relative to control arm rr_months: months used to compute RR pc_months: months over which p_control is measured """ if rr_months==pc_months: p_intervention = p_control*RR else: # first convert the control probability to the # same follow up time of the RR probabilities pc_adj = 1-(1-p_control)**(rr_months/pc_months) # compute the intervention probability event free p_int_eventfree = 1-pc_adj*RR # probability of no event in intervention group # go back to the followup time of the control probability p_intervention = 1-p_int_eventfree**(pc_months/rr_months) return p_intervention # - # ## Defining Costs and QALYs per health state # The functions below implement the defining of Cost and QALY related parameters. The function infl_adjustment computes a correction factor for an increase in costs through time. # + def infl_adjustment(months, yearly_CPI=1.029): #months """ Compute a inflation adjustment factor for the amount of months (months) that have passed since the start year (reference year; 2020). Use a predefined inflation factor (yearly_CPI). Output: The inflation adjustment factor. """ CPI_adj_factor = yearly_CPI**(months/12) return CPI_adj_factor def define_Costs(ic, CPI, refyear): """ - ic: Either the 'Intervention' or 'Control' arm as follow-up costs can differ. - CPI: Consumer price index adjustment factor, used to compute the current costs indexed from the year in which costs were computed. In the study either 2014 or 2016 were used for different costs. - refyear: The refernce case year in which the simulations start, in the study 2020 was used. Output: Cost per month for each of the 4 Markov States """ FU_cost = 36*(CPI**(refyear-2016)) if ic=='Intervention': FU_cost = 36*(CPI**(refyear-2014)) Costs_N12 = round(FU_cost,2) Costs_N34 = round(FU_cost,2) Costs_H = round(3800*(CPI**(refyear-2016)),2) Costs_D = 0 return Costs_N12, Costs_N34, Costs_H, Costs_D def define_QALYs(): """ Define monthly QALYs for the 4 Markov states used in this model. Output: QALYs per month for each of the 4 Markov states """ QALY_N12 = 0.76/12 QALY_N34 = 0.54/12 QALY_H = 0.54/12 QALY_D = 0 return QALY_N12, QALY_N34, QALY_H, QALY_D # - # ## Model input definition # The function model_input receives a dictionary with all the parameters as control settings (including RR, costs and QALYs) and returns the probability transition matrix and cost and QALY matrices for both control and intervention arm. As the Model contains 4 Markov states each simulation period (month) 4 possible transitions can occur and thus a 4x4 transition matrix was defined. def model_input(dct): """ A dictionary with all the below defined parameters was used as input for this function. Output: control (fullc) and intervention (fulli) transition matrices. Cost (control;intervention: C_mat_c;C_mat_i) and QALY (Q_mat) matrices. """ #control arm bc = dct['b'] cc = dct['c'] dc = dct['d'] ac = 1-bc-cc-dc ec = dct['e'] #0 gc = dct['g'] hc = dct['h'] fc = 1-ec-gc-hc jc = dct['j'] kc = dct['k'] #0 lc = dct['l'] ic = 1-jc-kc-lc fullc = np.array([[ac, bc, cc, dc], [ec, fc, gc, hc], [ic, jc, kc, lc], [0,0,0,1]], dtype = 'float64') #intervention arm # RR was computed over 12 months # Probabilities over 1 month bi = dct['b'] ci = RR_intervention(dct['c'], dct['RR_read'], 12, 1) di = RR_intervention(dct['d'], dct['RR_mort'], 12, 1) ai = 1-bi-ci-di ei = dct['e'] gi = RR_intervention(dct['g'], dct['RR_read'], 12, 1) hi = RR_intervention(dct['h'], dct['RR_mort'], 12, 1) fi = 1-ei-gi-hi ji = dct['j'] ki = dct['k'] li = dct['l'] ii = 1-ji-ki-li fulli = np.array([[ai, bi, ci, di], [ei, fi, gi, hi], [ii, ji, ki, li], [0,0,0,1]],dtype = 'float64') Q_mat = np.array([dct['Q_N12'],dct['Q_N34'],dct['Q_H'],0]) # define the cost matrices, assume equal costs for hospitalization C_mat_c = np.array([dct['C_N12_c'],dct['C_N34_c'],dct['C_H_c'],0]) C_mat_i = np.array([dct['C_N12_i'],dct['C_N34_i'],dct['C_H_c'],0]) return fullc, fulli, C_mat_c, C_mat_i, Q_mat # ## Simulate a month # The function below simulates a single period (month) based on input transition probabilities in a matrix and then calculates the QALYs and Costs with discounting. def simulate_month(df, # pd DataFrame where all results are stored r, # A name to add to each row of new results in df month, # the period (month) since start of simulation patient_dist, # Markov state distribution before new period transition_mat, # Matrix with transition probabilities Q_mat, # Matrix with QALYs per Markov state C_mat, # Matrix with Costs per Markov state discount_rate_C, # Discounting % for costs CPI, # Inflation rate discount_rate_Q): # Discounting % for QALYs """ Simulates a single month given input parameters Output: df with results (df) and new Markov state distribution of patients """ # Compute inflation adjustment factor (CPI_adj) # for the amount of months that have passed since # the begin of simulations CPI_adj = infl_adjustment(month, CPI) # compute the patient Markov state distribution after 1 period (month) new_patient_dist = np.matmul(patient_dist,transition_mat) # Use the patient Markov state distribution #to compute costs and QALYs for the specified period (month) QALYs = new_patient_dist*Q_mat Costs = new_patient_dist*C_mat T_Q = QALYs.sum() T_C = Costs.sum() # Compute discounted costs and QALYs disc_factor_C = discount_rate_C**(month/12) disc_factor_Q = discount_rate_Q**(month/12) disc_Q = T_Q/(disc_factor_Q ) disc_C = round((T_C*CPI_adj)/(disc_factor_C), 2) # put everything in a new row in the dataframe nr = [r, month, *new_patient_dist, *QALYs, T_Q, disc_Q, *Costs, T_C, disc_C] df.loc[len(df)]=nr return df, new_patient_dist # ## Perform the simulation # The function below implements simulation af a single cohort for multiple periods (months) given a specified transition matrix. def simulate_cohort(transition_mat, # the transition matrix per period (month) C_mat, # Matrix with Costs per Markov state Q_mat, # Matrix with QALYs per Markov state r='Control', #Name to add to each row in the output df sim_months = 60, # Amount of total motnhs to simulate cohort_size = 1e5, # Amount of patients in the cohort CPI = 1.029, # Yearly inflation rate (2.9%) discount_rate_Q = 1.015,# Yearly discounting rate of QALYs discount_rate_C = 1.04):# Yearly discounting rate of Costs """ Simulates the cohort for multiple periods (months) Output: Dataframe with outcome per period (result_df), cumulative costs (Cost_tot_disc) and QALYs (QALY_tot_disc) over the simulated period (sim_months) """ t1 = time.time() # Define columns of the output file result_df = \ pd.DataFrame(columns = ['Cohort_type', 'Month', 'NYHA_12', 'NYHA_34', 'Hospital', 'Dead', 'Q_N12','Q_N34','Q_H', 'Q_D', 'QALY_tot', 'QALY_disc', 'C_N12', 'C_N34','C_H', 'C_D', 'Cost_tot', 'Cost_disc']) # Define the start patient distribution across Markov states patient_dist = np.array([0,0,cohort_size,0]) # Perform computations per month for month in range(1,sim_months+1): result_df, patient_dist = \ simulate_month(result_df,r,month, patient_dist,transition_mat, Q_mat, C_mat,discount_rate_C, CPI, discount_rate_Q) Cost_tot_disc = result_df['Cost_disc'].sum() QALY_tot_disc = result_df['QALY_disc'].sum() t2 = time.time() print('Total simulation time '+r+':', round((t2-t1),2), 'seconds') return result_df, Cost_tot_disc, QALY_tot_disc # ## General functions implemented in final function # Two general functions were used to crunch all the data in usefull format # + def excel_multtabs(df_list, tabname_list, loc, fname): """ Based on a list of pandas dataframes (df_list), defined tabnames (tabname_list where len(df_list)), a location and filename (loc, fname) a excel file with multiple tabs is created and saved. """ f = loc+'\\'+fname # Create a Pandas Excel writer using XlsxWriter as the engine. writer = pd.ExcelWriter(f, engine='xlsxwriter') #loop over the list and write the tabs for df,tabname in zip(df_list,tabname_list): df.to_excel(writer, sheet_name=tabname) # Close the Pandas Excel writer and output the Excel file. writer.save() return def merge_dicts(d1, d2): """ Function to merge two dictionaries to one """ for k,v in d1.items(): d1[k] = {**d1[k],**d2[k]} return d1 # - # ## Deterministic sensitivity analysis probabilities # In order to evaluate the independent changes of the probabilities (except for a, e, f, i, k due to the definition of their probability), all options with a change of -10% and +10% of one variable are generated in a dataframe. The parameters a, f, i are used to absorb any changes in the other parameters in order to keep the sum of all transition probabilities 1. # + def one_way_sens(fullc,# monthly probabilities of the control arm perc_change, # percentage change to use for sensitivity analysis RR_readmission=0.64, # RR of hospital readmission for intervention arm RR_mortality=0.78, #RR of mortality for intervention arm cohort_size = 1e5,# cohort size sloc=None): # if sloc is specified results are saved """ Given a set of input parameters one-way sensitivity analysis with change of each parameter with a defined percentage (perc_change) was performed Output: Dictionary with {parameter:{change_percentage: {dCosts:cost values, dQALYs: QALY values}}} """ # define baseline parameters a,b,c,d,e,f,g,h,i,j,k,l = list(fullc) dt = np.array([a,b,c,d,e,f,g,h,i,j,k,l]) costs_control = list(define_Costs('Control', 1.029, 2020)[:-1]) costs_intervention = list(define_Costs('Intervention', 1.029, 2020)[:-1]) QALYs = list(define_QALYs()[:-1]) # create a dict of baseline control arm parameters cols = ['changed_parameter', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'RR_read', 'RR_mort', 'C_N12_c', 'C_N34_c','C_H_c', 'C_N12_i', 'C_N34_i','C_H_i', 'Q_N12','Q_N34','Q_H'] data_row1 = ['original', *dt,RR_readmission,RR_mortality, *costs_control, *costs_intervention, *QALYs] dct = {} for col,dr in zip(cols,data_row1): dct[col]=dr # Generate baseline model results c_mat, i_mat, Cm_c, Cm_i, Qm = model_input(dct) dfc, costc, qc = simulate_cohort(c_mat, Cm_c, Qm , r='Control_baseline', cohort_size = cohort_size) dfi, costi, qi = simulate_cohort(i_mat, Cm_i, Qm , r='Intervention_baseline', cohort_size = cohort_size) dcost_base = (costi-costc)/cohort_size dqaly_base = (qi-qc)/cohort_size df_list = [dfc,dfi] tabname_list = ['C_base', 'I_base'] res = pd.DataFrame(columns = ['changed_parameter', 'C_costs', 'I_costs', 'C_QALY', 'I_QALY', 'dcosts', 'dQALYs', 'dcosts_base', 'dQALY_base']) res.loc[len(res)] = \ ['baseline',costc/cohort_size, costi/cohort_size, qc/cohort_size, qi/cohort_size, dcost_base, dqaly_base, 0,0] # define variables that are not used for # deterministic sensitivity (by default left over parameters) resultants = ['a', 'f', 'i'] zeros = ['e','k'] dct_restabl = {} # loop over all parameters defined for k,v in dct.items(): # exclude paramters that are resultants or defined as zero if (k not in resultants)&\ (k not in zeros)&\ (k!='changed_parameter'): tdict = {} # data is stored in this dictionary updict = {**dct} # copy original parameters downdict = {**dct} # copy original parameters #change values +/- a perc_change updict[k] = v*(1+perc_change) downdict[k] = v*(1-perc_change) #construct transition matrices for perc_change up and down upc_mat, upi_mat, upCost_c, upCost_i, upQ = model_input(updict) downc_mat, downi_mat, downCost_c, downCost_i, downQ = model_input(downdict) #compute results for up and down perc_change of parameter k addname = k+'__'+str(1+perc_change) dfc, costc, qc = simulate_cohort(upc_mat, \ upCost_c, upQ, r='Control_'+addname, cohort_size = cohort_size) dfi, costi, qi = simulate_cohort(upi_mat, \ upCost_i, upQ, r='Intervention_'+addname, cohort_size = cohort_size) #compute difference between intervention and #cohort and difference of difference compared to baseline dcost = (costi-costc)/cohort_size # per patient difference in costs (intervention-control) dqaly = (qi-qc)/cohort_size # per patient difference in QALYs (intervention-control) dCb = abs(dcost)-abs(dcost_base) # difference in costs relative to baseline simulation dQb = abs(dqaly)-abs(dqaly_base)# difference in QALYs relative to baseline simulation df_list.extend([dfc,dfi]) tabname_list.extend(['C_'+addname, 'I_'+addname]) res.loc[len(res)] = [addname,costc/cohort_size, costi/cohort_size, qc/cohort_size, qi/cohort_size, dcost, dqaly, dCb, dQb] tdict[perc_change] = {'dcosts': dcost, 'dQALYs':dqaly} addname = k+'__'+str(1-perc_change) dfc, costc, qc = simulate_cohort(downc_mat, downCost_c, downQ, r='Control_'+addname,cohort_size = cohort_size) dfi, costi, qi = simulate_cohort(downi_mat, downCost_i, downQ, r='Intervention_'+addname,cohort_size = cohort_size) dcost = (costi-costc)/cohort_size dqaly = (qi-qc)/cohort_size dCb = abs(dcost)-abs(dcost_base) dQb = abs(dqaly)-abs(dqaly_base) df_list.extend([dfc,dfi]) tabname_list.extend(['C_'+addname, 'I_'+addname]) res.loc[len(res)] = [addname,costc/cohort_size, costi/cohort_size, qc/cohort_size, qi/cohort_size, dcost, dqaly,dCb, dQb] tdict[-perc_change] = {'dcosts': dcost, 'dQALYs':dqaly} dct_restabl[k] = tdict df_list.append(res) tabname_list.append('differences') # store all dataframes with per simulation results if required if sloc!=None: fname = 'one-way-sens_'+str(perc_change)+'.xlsx' excel_multtabs(df_list, tabname_list, sloc, fname) return dct_restabl # - # ## Implementation of study data # + # Control arm probabilities per month #B = N12 -> N34 (NYHA decay from NYHA 1/2 to #NYHA 3/4; net effect assumed zero) bc = 0 #C = N12 -> H (Hospital readmission from NYHA 1/2) c_tot = 948 c_event = 185 c_months = 12 cc = monthly_prob(c_months, c_event, c_tot) #D = N12 -> D (Mortality from NYHA 1/2) d_tot = 948 d_event = 217 d_months = 12 dc = monthly_prob(d_months, d_event, d_tot) #A = N12 -> N12 (residual; No change from NYHA 1/2) ac = 1 - bc - cc - dc #E = N34 -> N12 (No recovery from NYHA 3/4 to #NYHA 1/2 was assumed 0) ec = 0 #G = N34 -> H (Hospital readmission rate from NYHA 3/4) g_tot = 78 # Value observed in the cohort was not used gc = 0.0227 # Literature estimate that was used (monthly) #H = N34 -> D (Mortality rate from NYHA 3/4) h_tot = 78 h_event = 31 h_months = 12 hc = monthly_prob(h_months, h_event, h_tot) #F = N34 -> N34 (residual; No change from NYHA 3/4) fc = 1 - gc - hc #fi = 1 - gi - hi #I = H -> N12 (Discharge to NYHA 1/2) i_tot = 1114 i_event = 948 ic = i_event/i_tot #J = H -> N34 (Discharge to NYHA 3/4) j_tot = 1114 j_event = 78 jc = j_event/j_tot #K = H -> H (Hospital admission were # not longer than 1 month; defined 0) kc = 0 #L = H -> D (In hospital mortality) l_tot = 1114 l_event = 88 lc = l_event/l_tot #M,N,O define as zero, P defined as 1 (dead = dead) fullc = np.array([ac, bc, cc, dc, ec, fc, gc, hc, ic, jc, kc, lc]) # - # ## Implementation of multiple one-way deterministic sensitivity analyses # Below the results of multiple one-way deterministic sensitivity analyses is implemented for different percentage change (pc) sloc = r'C:\Users\henkvanvoorst\Documents\publicaties\HF simulatie\rebuttle\final_results\rebuttle_codecorrect' dct_restabl = None for pc in [.1,.2,.3,.4,.5]: dct_restabl2 = one_way_sens(fullc,pc,RR_readmission=0.64, RR_mortality=0.78, sloc=sloc) if dct_restabl!=None: dct_restabl = merge_dicts(dct_restabl, dct_restabl2) else: dct_restabl = dct_restabl2
21,769
/.ipynb_checkpoints/Project1_MAKI-checkpoint.ipynb
4a4a5d45c7c087f7fa68ed235634a632f77904ab
[]
no_license
Daskalovski13/Homework
https://github.com/Daskalovski13/Homework
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
217,860
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import numpy as np import cv2 from matplotlib import pyplot as plt import pandas as pd img=cv2.imread('Downloads/Kitti_traning_dataset_5/000000.png') dst0 = cv2.resize(img, dsize=(640, 360), interpolation=cv2.INTER_AREA) # ## 680*380 resize ํ›„ bounding_box # # + img=cv2.imread('Downloads/Kitti_traning_dataset_5/000000.png') dst0 = cv2.resize(img, dsize=(640, 360), interpolation=cv2.INTER_AREA) h_์ „,w_์ „,c_์ „=img.shape h, w, c = dst0.shape print('๋ฆฌ์‚ฌ์ด์ฆˆ๊ฐ€๋กœ:', w,'\n๊ฐ€๋กœ:',w_์ „,'\n๋น„์œจ:',w/w_์ „) print('\n๋ฆฌ์‚ฌ์ด์ฆˆ์„ธ๋กœ:', h,'\n์„ธ๋กœ:',h_์ „,'\n๋น„์œจ:',h/h_์ „) w_๋น„์œจ=w/w_์ „ h_๋น„์œจ=h/h_์ „ # - def boundingbox(img,df): for X in range (0,len(df)): label=df[0][X] x1=round(float(df[4][X])*w_๋น„์œจ) y1=round(float(df[5][X])*h_๋น„์œจ) x2=round(float(df[6][X])*w_๋น„์œจ) y2=round(float(df[7][X])*h_๋น„์œจ) img2=cv2.rectangle(img,(x1,y1),(x2,y2),(0,255,0),1) img2=cv2.putText(img, label, (x1-10,y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 1) return img2 img=cv2.imread('Downloads/Kitti_traning_dataset_5/000000.png') df=pd.read_csv('Downloads/Kitti_traning_dataset_5/000000.txt',sep=' ',header=None) img=boundingbox(dst0,df) cv2.imshow('img',img) cv2.waitKey(0) plt.imshow(dst0) # # ํšŒ์ „ํ›„ bounding_box # x # = # r # c # o # s # ฮธ # # # y # = # r # s # i # n # ฮธ # # # ๋ณ€ํ™˜ ๊ณต์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ทน์ขŒํ‘œ๋ฅผ ์ง๊ต์ขŒํ‘œ๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค. from sympy import * import math # + i=60 sinx = math.sin(math.pi * (i/180)) cosx = math.cos(math.pi * (i/180)) print('sin',i ,':',sinx,'cos',i,':', cosx) # - gression # Ordinary least squares: # Setting up the design matrices for 3rd, 4th and 5th order Polynomial: poly3 = PolynomialFeatures(degree=3) Xdes3 = poly3.fit_transform(np.c_[xx.ravel(), yy.ravel()]) poly4 = PolynomialFeatures(degree=4) Xdes4 = poly4.fit_transform(np.c_[xx.ravel(), yy.ravel()]) poly5 = PolynomialFeatures(degree=5) Xdes5 = poly5.fit_transform(np.c_[xx.ravel(), yy.ravel()]) # Reshaping the zz to fit the data z = zz.reshape(-1,1) # Setting up the fitting functions ols3 = LinearRegression() ols3.fit(Xdes3,z) ols4 = LinearRegression() ols4.fit(Xdes4,z) ols5 = LinearRegression() ols5.fit(Xdes5,z) # New data for testing and plotting the model: n_row = 100 n_col = 100 ax_row = np.random.rand(n_row) ax_col = np.random.rand(n_col) sort_inds_row = np.argsort(ax_row) sort_inds_col = np.argsort(ax_col) ROW = ax_row[sort_inds_row] COL = ax_col[sort_inds_col] ROWp, COLp = np.meshgrid(ROW, COL) X3plot = poly3.fit_transform(np.c_[ROWp.ravel(), COLp.ravel()]) X4plot = poly4.fit_transform(np.c_[ROWp.ravel(), COLp.ravel()]) X5plot = poly5.fit_transform(np.c_[ROWp.ravel(), COLp.ravel()]) # This evaluates the height associated for each pair of coordinate made from np.meshgrid Zpredict3 = ols3.predict(X3plot) Zpredict4 = ols4.predict(X4plot) Zpredict5 = ols5.predict(X5plot) # + # Plot the generated surfaces for OLS models. fig3 = plt.figure() ax3 = fig3.gca(projection='3d') surf = ax3.plot_surface(ROWp, COLp, Zpredict3.reshape(*ROWp.shape), linewidth = 0, antialiased = False, cmap=cm.plasma) ax3.set_title('3rd order Polynomial model') ax3.set_xlabel("x") ax3.set_ylabel("y") ax3.set_zlabel("z") fig3.colorbar(surf) fig4 = plt.figure() ax4 = fig4.gca(projection='3d') surf = ax4.plot_surface(ROWp, COLp, Zpredict4.reshape(*ROWp.shape), linewidth = 0, antialiased = False, cmap=cm.rainbow) ax4.set_title('4th order Polynomial model') ax4.set_xlabel("x") ax4.set_ylabel("y") ax4.set_zlabel("z") fig4.colorbar(surf) fig5 = plt.figure() ax5 = fig5.gca(projection='3d') surf = ax5.plot_surface(ROWp, COLp, Zpredict5.reshape(*ROWp.shape), linewidth = 0, antialiased = False, cmap=cm.terrain) ax5.set_title('5th order Polynomial model') ax5.set_xlabel("x") ax5.set_ylabel("y") ax5.set_zlabel("z") fig5.colorbar(surf) plt.show() # + # Evaluating the OLS models: variances, MSE and R2 scores: from sklearn.metrics import mean_squared_error, r2_score, mean_squared_log_error, mean_absolute_error v_beta3 = np.diag(np.linalg.inv(Xdes3.T.dot(Xdes3))) sigma3 = 1/(n-3-1) * np.sum((z-Zpredict3)**2) var3 = v_beta3*sigma3 print('Ordinary least squares results: \n') print(' Variance of betas, 3rd order:', var3) v_beta4 = np.diag(np.linalg.inv(Xdes4.T.dot(Xdes4))) sigma4 = 1/(n-4-1) * np.sum((z-Zpredict4)**2) var4 = v_beta4*sigma4 print('\n Variance of betas, 4th order:', var4) v_beta5 = np.diag(np.linalg.inv(Xdes5.T.dot(Xdes5))) sigma5 = 1/(n-5-1) * np.sum((z-Zpredict5)**2) var5 = v_beta5*sigma5 print('\n Variance of betas, 5th order:', var5) print("\n Mean squared error, 3rd order:", mean_squared_error(z,Zpredict3)) print(" Mean squared error, 4th order:", mean_squared_error(z,Zpredict4)) print(" Mean squared error, 5th order:", mean_squared_error(z,Zpredict5)) print('\n R2 score 3rd order, 3rd order:', r2_score(z,Zpredict3)) print(' R2 score 4th order, 4th order:', r2_score(z,Zpredict4)) print(' R2 score 5th order, 5th order:', r2_score(z,Zpredict5)) # - # + # Ridge method: # Define various lambda values to be tested lmb_values = [1e-4, 1e-3, 1e-2, 10, 1e2, 1e4] num_values = len(lmb_values) ## Ridge-regression for 3rd, 4th and 5th order Polynomial beta_ridge3 = np.zeros((np.size(Xdes3,1),num_values)) beta_ridge4 = np.zeros((np.size(Xdes4,1),num_values)) beta_ridge5 = np.zeros((np.size(Xdes5,1),num_values)) I3 = np.eye(np.size(Xdes3,1)) I4 = np.eye(np.size(Xdes4,1)) I5 = np.eye(np.size(Xdes5,1)) for i,lmb in enumerate(lmb_values): beta_ridge3[:,i] = (np.linalg.inv( Xdes3.T @ Xdes3 + lmb*I3) @ Xdes3.T @ z).flatten() for i,lmb in enumerate(lmb_values): beta_ridge4[:,i] = (np.linalg.inv( Xdes4.T @ Xdes4 + lmb*I4) @ Xdes4.T @ z).flatten() for i,lmb in enumerate(lmb_values): beta_ridge5[:,i] = (np.linalg.inv( Xdes5.T @ Xdes5 + lmb*I5) @ Xdes5.T @ z).flatten() pred_ridge3 = X3plot @ beta_ridge3 pred_ridge4 = X4plot @ beta_ridge4 pred_ridge5 = X5plot @ beta_ridge5 ### R2-score of the results print('Ridge method R2 scores: \n') for i in range(num_values): print('lambda = %g'%lmb_values[i]) print('R2 3rd order Polynomial: %g'%r2_score(z,pred_ridge3[:,i])) print('R2 4th order Polynomial: %g'%r2_score(z,pred_ridge4[:,i])) print('R2 5th order Polynomial: %g\n'%r2_score(z,pred_ridge5[:,i])) # -
6,476
/Model/brain-tumor-classification-using-cnn.ipynb
302423eaf9d294246f24f119cc949ed1f5136317
[]
no_license
AM1CODES/HackOff---Brain-Tumor-Detection-Web-app
https://github.com/AM1CODES/HackOff---Brain-Tumor-Detection-Web-app
4
2
null
2021-06-02T13:07:46
2021-02-10T15:14:46
Jupyter Notebook
Jupyter Notebook
false
false
.py
128,856
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + _uuid="8f2839f25d086af736a60e9eeb907d3b93b6e0e5" _cell_guid="b1076dfc-b9ad-4769-8c92-a6c4dae69d19" _kg_hide-output=false import numpy as np import pandas as pd import os import tensorflow as tf import matplotlib.pyplot as plt import matplotlib.image as mpimg from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.optimizers import RMSprop,Adam import cv2 # + _uuid="d629ff2d2480ee46fbb7e2d37f6b5fab8052498a" _cell_guid="79c7e3d0-c299-4dcb-8224-4455121ee9b0" DATA = r"/kaggle/input/brain-tumor-classification-mri/Training/" #reading the data CATEGORIES = ["glioma_tumor","meningioma_tumor","no_tumor","pituitary_tumor"] #defining the 4 categories that we have for category in CATEGORIES: path = os.path.join(DATA,category) for img in os.listdir(path): img_array = cv2.imread(os.path.join(path,img)) plt.imshow(img_array) plt.show() plt.axis("off") break break # - IMG_SIZE = 150 #defining our image size new_array = cv2.resize(img_array,(IMG_SIZE,IMG_SIZE))#scaling down our images plt.imshow(new_array,cmap = "gray") plt.axis("off") # + training_data = [] #manipulating our training data def create_training_data(): for category in CATEGORIES: path = os.path.join(DATA,category) class_num = CATEGORIES.index(category) #defining the different categories of the images in our data for img in os.listdir(path): try: img_array = cv2.imread(os.path.join(path,img),cv2.IMREAD_GRAYSCALE) #loading the images in grayscale new_array = cv2.resize(img_array,(IMG_SIZE,IMG_SIZE)) training_data.append([new_array,class_num]) #adding our data in to the training_data list which we will use to define our X and y for train-tets split except Exception as e: pass create_training_data() # - X = [] #used for storing the features y = [] #used for storing the labels for features,label in training_data: X.append(features) y.append(label) X = np.array(X).reshape(-1,IMG_SIZE,IMG_SIZE) #print(X.shape) X = X/255.0 X = X.reshape(-1,150,150,1) print(X.shape) from keras.utils.np_utils import to_categorical #one-hot eencoding our values y = to_categorical(y, num_classes = 4) from sklearn.model_selection import train_test_split #splitting the data into training and validaton set X_train, X_val, Y_train, Y_val = train_test_split(X, y, test_size = 0.2, random_state=42) print("x_train shape",X_train.shape) print("x_test shape",X_val.shape) print("y_train shape",Y_train.shape) print("y_test shape",Y_val.shape) # + #defining our model model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(64, (3,3), activation='relu',padding = 'Same', input_shape=(150, 150, 1)), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Dropout(0.25), tf.keras.layers.Conv2D(128, (3,3), activation='relu',padding = 'Same'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Dropout(0.25), tf.keras.layers.Conv2D(128, (3,3), activation='relu',padding = 'Same'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Dropout(0.25), tf.keras.layers.Conv2D(128, (3,3), activation='relu',padding = 'Same'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Dropout(0.25), tf.keras.layers.Conv2D(256, (3,3), activation='relu',padding = 'Same'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Dropout(0.25), tf.keras.layers.Flatten(), tf.keras.layers.Dense(1024, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(4, activation='softmax') ]) optimizer = Adam(lr=0.001) model.compile(loss='categorical_crossentropy', optimizer = optimizer, metrics=['accuracy']) epochs = 50 batch_size = 40 datagen = ImageDataGenerator( rotation_range=0, zoom_range = 0, width_shift_range=0, height_shift_range=0, horizontal_flip=True, vertical_flip=False) # - model.summary() #checking what our final model would look like datagen.fit(X_train) history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size), epochs = epochs, validation_data = (X_val,Y_val)) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.legend(['loss', 'val_loss']) plt.title('Loss') plt.xlabel('epoch') plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.legend(['accuracy', 'val_accuracy']) plt.title('Accuracy') plt.xlabel('epoch') model.save('BrainTumor.h5') vation data for this station and plot the results as a histogram Waihee = session.query((Measurement.tobs)).\ filter(and_((Measurement.station=="USC00519281"),(Measurement.date>yearago))).all() Waihee = pd.DataFrame(Waihee, columns = ['Temperature']) Waihee.head() # + ax = Waihee.hist(column='Temperature', bins=12, grid=False, figsize=(12,8), color='blue', zorder=2, rwidth=0.9, label='Temperature') ax = ax[0] for x in ax: x.set_title("Waihee Temps 8-24-16 to 8-23-17") x.set_xlabel("Temperature (Degrees Fahrenheit)", labelpad=20, weight='bold', size=12) x.set_ylabel("Frequency", labelpad=20, weight='bold', size=12) plt.grid(True) # - # ![precipitation](Images/station-histogram.png) # + # This function called `calc_temps` will accept start date and end date in the format '%Y-%m-%d' # and return the minimum, average, and maximum temperatures for that range of dates def calc_temps(start_date, end_date): """TMIN, TAVG, and TMAX for a list of dates. Args: start_date (string): A date string in the format %Y-%m-%d end_date (string): A date string in the format %Y-%m-%d Returns: TMIN, TAVE, and TMAX """ return session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\ filter(Measurement.date >= start_date).filter(Measurement.date <= end_date).all() # function usage example print(calc_temps('2012-2-28', '2012-3-05')) # - # Use your previous function `calc_temps` to calculate the tmin, tavg, and tmax # for your trip using the previous year's data for those same dates. # -------------------------------------------------------------------------- # no trip dates given.. I made them up. I also had to grab old dates that would be withing the range of the data... # This didn't take long but the instructions were incomplete and misleading. print(calc_temps('2016-10-7','2016-11-1')) # Plot the results from your previous query as a bar chart. # Use "Trip Avg Temp" as your Title # Use the average temperature for the y value # Use the peak-to-peak (tmax-tmin) value as the y error bar (yerr) result = calc_temps('2016-10-7','2016-11-1') result result[0][0] # fig, ax = plt.subplots() # plt.bar(x='Trip Duration', y='Temperature',yerr=(result[0][2]-result[0][0]), ax=result[0][1], capsize=4) # errorbar(result[0][1],result[0][1], yerr=(result[0][2]-result[0][0]), marker='s', mfc='red', # mec='green', ms=20, mew=4) trips = ["Oct 7th to Nov 1st"] Avg_Temps = [result[0][1]] x_axis = np.arange(len(Avg_Temps)) plt.bar(trips, Avg_Temps, yerr=(result[0][2]-result[0][0]), color="b", align="center",capsize=10) plt.title("Trip Avg Temp") plt.ylabel("Temp (F)") # + # Calculate the total amount of rainfall per weather station for your trip dates using the previous year's matching dates. # Sort this in descending order by precipitation amount and list the station, name, latitude, longitude, and elevation # order_by(desc(total_rain)).all() sel6 = [Measurement.station, Station.name, Station.latitude,Station.longitude,Station.elevation, func.sum(Measurement.prcp).label('total_rain')] trip_rain = session.query(*sel6).filter(Measurement.date >= '2016-10-7').filter(Measurement.date <= '2016-11-1').\ group_by(Measurement.station) trip_rain trip_rain_df=pd.DataFrame(trip_rain, columns= ['station', 'name', 'latitude','longitude','elevation','precipitation']) trip_rain_df.sort_values(by='precipitation', ascending=False).reset_index() # - trip_rain.all() # ## Optional Challenge Assignment # + # Create a query that will calculate the daily normals # (i.e. the averages for tmin, tmax, and tavg for all historic data matching a specific month and day) def daily_normals(date): """Daily Normals. Args: date (str): A date string in the format '%m-%d' Returns: A list of tuples containing the daily normals, tmin, tavg, and tmax """ sel = [func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)] return session.query(*sel).filter(func.strftime("%m-%d", Measurement.date) == date).all() daily_normals("01-01") # + # calculate the daily normals for your trip # push each tuple of calculations into a list called `normals` # Set the start and end date of the trip # Use the start and end date to create a range of dates # Stip off the year and save a list of %m-%d strings # Loop through the list of %m-%d strings and calculate the normals for each date # - # Load the previous query results into a Pandas DataFrame and add the `trip_dates` range as the `date` index # Plot the daily normals as an area plot with `stacked=False`
9,601
/3. Data Visualisations/.ipynb_checkpoints/Data Visualisation-checkpoint.ipynb
f4eff6a89106d4dcddb265e1def3a5cf7b792a82
[]
no_license
spencerldixon/intro-to-data-science
https://github.com/spencerldixon/intro-to-data-science
2
1
null
null
null
null
Jupyter Notebook
false
false
.py
601,411
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Data Visualisation with Matplotlib and Seaborn # # In this lesson, we'll look at two popular data visualisation libraries; Matplotlib, and Seaborn (built on top of matplotlib) # # Let's get started by importing our dependencies import numpy as np import pandas as pd import matplotlib.pyplot as plt # + # Magic helper for inline graphs in jupyter notebook # %matplotlib inline # - x = np.linspace(0,5,11) y = x ** 2 x y # ## Matplotlib Approach #1 - Functional # # Matplotlib can be used in two ways, the functional approach, and the object oriented approach. You'll probably come across both, so it's worth being familiar with both approaches. plt.plot(x, y) plt.show() plt.plot(x, y) plt.xlabel('X Label') plt.ylabel('Y Label') plt.title('My Graph') plt.show() # + plt.subplot(1,2,1) # Number of rows, number of columns, plot we're referring to plt.plot(x,y,'r') plt.subplot(1,2,2) plt.plot(y,x,'b') plt.show() # - # ## Approach #2 - Object Oriented # # The object oriented approach is a little more tricky but can be used to generate more complex plots. The idea is to create a blank canvas first (called a figure) and then add the charts we want (axes) and plot to those axes. # + fig = plt.figure() # Create a blank figure axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # Add a graph/set of axes (Left start, bottom start, width, height) axes.plot(x, y) axes.set_xlabel('X Label') axes.set_ylabel('Y Label') axes.set_title("My Title") # + fig = plt.figure(figsize=(5,5)) axes1 = fig.add_axes([0.1, 0.1, 0.8, 0.8]) axes2 = fig.add_axes([0.2, 0.5, 0.4, 0.3]) axes1.plot(x,y,'r') axes2.plot(y,x) # - fig, axes = plt.subplots(nrows=1, ncols=2) axes # + fig, axes = plt.subplots(nrows=1, ncols=2) axes[0].plot(x, y) axes[0].set_title("first plot") axes[1].plot(y, x) axes[1].set_title("second plot") plt.tight_layout() # - # ## Legends # # To add legends to our charts, we need to do two things; firstly, we need to ensure our plots are labelled. Secondly we can call the legend method and optionally specify our location for our legend. # + fig = plt.figure(figsize=(3,2)) ax = fig.add_axes([0,0,1,1]) ax.plot(x, y, label="Things") # Must use labels for legends ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_title("My Chart") ax.legend(loc="best") # - # ## Saving Charts # # I recommend a 300dpi parameter if using for print or publication fig.savefig('my_chart.png', dpi=300) # ## Styling # + z = np.random.rand(11) fig = plt.figure() ax = fig.add_axes([0,0,1,1]) ax.plot(x, y, color="red", linewidth=1) # Can use strings, or hex ax.plot(y, x, color="#0000FF", linewidth=3, alpha=0.5, linestyle="--") ax.plot(y, z, color="green", linestyle=":", marker="o", markersize="5") # - # # Pandas Built In Plotting df = pd.DataFrame({"name": ["Alice", "Bob", "Charles", "David", "Emma", "Fred"], "age": [27, 28, 40, 27, 30, 41] }) df df['age'].plot.hist(bins=5) df.plot.bar() # # Seaborn # # Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics. import seaborn as sns tips = sns.load_dataset('tips') tips.head() sns.countplot(x='sex', data=tips) # + plt.figure(figsize=((12,3))) sns.countplot(x='sex', data=tips) # - sns.distplot(tips['total_bill'], kde=False, bins=30) # kernel density estimation sns.jointplot(x='total_bill', y='tip', data=tips) sns.pairplot(tips) sns.pairplot(tips, hue='sex') sns.rugplot(tips['total_bill']) # + # x is categorical, y is numerical # Uses mean by default sns.barplot(x='sex', y='total_bill', data=tips) # - sns.barplot(x='sex', y='total_bill', data=tips, estimator=np.std) sns.boxplot(x='day', y='total_bill', data=tips) sns.boxplot(x='day', y='total_bill', data=tips, hue='smoker') sns.violinplot(x='day', y='total_bill', data=tips, hue='sex') sns.violinplot(x='day', y='total_bill', data=tips, hue='sex', split=True) sns.stripplot(x='day', y='total_bill', data=tips) sns.stripplot(x='day', y='total_bill', data=tips, jitter=True) sns.violinplot(x='day', y='total_bill', data=tips) sns.stripplot(x='day', y='total_bill', data=tips, jitter=True, color="black") # ## Matrix plots # + flights = sns.load_dataset('flights') flights.head() # - tc = tips.corr() sns.heatmap(data=tc, annot=True, cmap='coolwarm') fp = flights.pivot_table(index='month', columns='year', values='passengers') fp sns.heatmap(fp, cmap='coolwarm') sns.clustermap(fp, cmap='coolwarm') sns.clustermap(fp, cmap='coolwarm', standard_scale=1) # ## Grids iris = sns.load_dataset('iris') iris.head() iris['species'].unique() g = sns.FacetGrid(data=tips, col='time', row='smoker') g.map(sns.distplot, 'total_bill') sns.lmplot(x='total_bill', y='tip', data=tips) predict([1,0,0]))) # + #Demonstrate NAND logic X = np.array([ [0,0,0], [0,0,1], [0,1,0], [0,1,1], [1,0,0], [1,0,1], [1,1,0], [1,1,1], ]) #only false when all 1's y = np.array([ [1], [1], [1], [1], [1], [1], [1], [0], ]) #set up the learning rate lr = 0.1 #set up the number of epochs e = 500000 train(X, y, lr, e) print("Final Weights: ") print_vars() print("--------------------Predictions") print("Should be 0: {}".format(predict([1,1,1]))) print("Should be 1: {}".format(predict([1,1,0]))) print("Should be 1: {}".format(predict([1,0,0]))) print("Should be 1: {}".format(predict([1,0,1]))) print("Should be 1: {}".format(predict([0,0,0]))) # + #Demonstrate an OR logic X = np.array([ [0,0,0], [0,0,1], [0,1,0], [0,1,1], [1,0,0], [1,0,1], [1,1,0], [1,1,1], ]) #only false when all 0's y = np.array([ [0], [1], [1], [1], [1], [1], [1], [1], ]) #set up the learning rate lr = 0.1 #set up the number of epochs e = 700 train(X, y, lr, e) print("Final Weights: ") print_vars() print("--------------------Predictions") print("Should be 1: {}".format(predict([1,1,1]))) print("Should be 1: {}".format(predict([1,1,0]))) print("Should be 1: {}".format(predict([1,0,0]))) print("Should be 1: {}".format(predict([0,0,1]))) print("Should be 0: {}".format(predict([0,0,0]))) # + #Demonstrate AND on the second two X = np.array([ [0,0,0], [0,0,1], [0,1,0], [0,1,1], [1,0,0], [1,0,1], [1,1,0], [1,1,1], ]) #only true when last two are true y = np.array([ [0], [0], [0], [1], [0], [0], [0], [1], ]) #set up the learning rate lr = 0.1 #set up the number of epochs e = 700 train(X, y, lr, e) print("Final Weights: ") print_vars() print("--------------------Predictions") print("Should be 0: {}".format(predict([1,0,1]))) print("Should be 0: {}".format(predict([1,1,0]))) print("Should be 0: {}".format(predict([0,0,0]))) print("Should be 1: {}".format(predict([0,1,1]))) print("Should be 1: {}".format(predict([1,1,1]))) # + #Demonstrate OR on the second two X = np.array([ [0,0,0], [0,0,1], [0,1,0], [0,1,1], [1,0,0], [1,0,1], [1,1,0], [1,1,1], ]) #only true when either of the last two are true y = np.array([ [0], [1], [1], [1], [0], [1], [1], [1], ]) #set up the learning rate lr = 0.1 #set up the number of epochs e = 700 train(X, y, lr, e) print("Final Weights: ") print_vars() print("--------------------Predictions") print("Should be 0: {}".format(predict([0,0,0]))) print("Should be 0: {}".format(predict([1,0,0]))) print("Should be 1: {}".format(predict([0,0,1]))) print("Should be 1: {}".format(predict([0,1,1]))) print("Should be 1: {}".format(predict([1,1,1]))) print("Should be 1: {}".format(predict([1,1,0]))) # + #The prior tests have given the perceptron a very straightforward truth table, #Now let's throw in a curve ball, where there is at least one ambiguous case #So based on the OR on the second two test from before, we will throw in an extra record #that contradicts the prior case. X = np.array([ [0,0,0], [0,0,1], [0,1,0], [0,1,1], [1,0,0], #this one [1,0,1], [1,1,0], [1,1,1], [1,0,0] #and this one ]) # y = np.array([ [0], [1], [1], [1], [0], #are [1], [1], [1], [1] #ambiguous ]) #set up the learning rate lr = 0.1 #set up the number of epochs e = 700 train(X, y, lr, e) print("Final Weights: ") print_vars() print("--------------------Predictions") print("Should be 0: {}".format(predict([0,0,0]))) print("Should be 1: {}".format(predict([0,0,1]))) print("Should be 1: {}".format(predict([0,1,1]))) print("Should be 1: {}".format(predict([1,1,1]))) print("Should be 1: {}".format(predict([1,1,0]))) print("This is the ambiguous case: {}".format(predict([1,0,0]))) # + #So the prior one with the ambiguous case came down on the side of zero, #lets skew that with more qty of ambiguous leaning toward zero X = np.array([ [0,0,0], [0,0,1], [0,1,0], [0,1,1], [1,0,0], #this one [1,0,1], [1,1,0], [1,1,1], [1,0,0], #and this one [1,0,0] #but so is this this one ]) # y = np.array([ [0], [1], [1], [1], [0], #are [1], [1], [1], [1], #ambiguous [0] #but now we lean zero ]) #set up the learning rate lr = 0.1 #set up the number of epochs e = 700 train(X, y, lr, e) print("Final Weights: ") print_vars() print("--------------------Predictions") print("Should be 0: {}".format(predict([0,0,0]))) print("Should be 1: {}".format(predict([0,0,1]))) print("Should be 1: {}".format(predict([0,1,1]))) print("Should be 1: {}".format(predict([1,1,1]))) print("Should be 1: {}".format(predict([1,1,0]))) print("This is the ambiguous case, hoping for zero: {}".format(predict([1,0,0]))) # + #So the prior one with the ambiguous case came down on the side of , #lets skew it back to one with more data X = np.array([ [0,0,0], [0,0,1], [0,1,0], [0,1,1], [1,0,0], #this one [1,0,1], [1,1,0], [1,1,1], [1,0,0], #and this one [1,0,0], #but so is this this one [1,0,0], #and this [1,0,0], #and this ]) # y = np.array([ [0], [1], [1], [1], [0], #are [1], [1], [1], [1], #ambiguous [0], #but now we lean zero [1], #and now back to one [1], ]) #set up the learning rate lr = 0.1 #set up the number of epochs e = 700 train(X, y, lr, e) print("Final Weights: ") print_vars() print("--------------------Predictions") print("Should be 0: {}".format(predict([0,0,0]))) print("Should be 1: {}".format(predict([0,0,1]))) print("Should be 1: {}".format(predict([0,1,1]))) print("Should be 1: {}".format(predict([1,1,1]))) print("Should be 1: {}".format(predict([1,1,0]))) print("This is the ambiguous case, hoping for one: {}".format(predict([1,0,0]))) # -
11,103
/list/frequency_of_elements_solution.ipynb
fca48ec6e626acf31c8224c72f5488b6709743b5
[ "Apache-2.0" ]
permissive
cntfk2017/Udemy_Python_Hand_On
https://github.com/cntfk2017/Udemy_Python_Hand_On
1
0
Apache-2.0
2020-05-25T07:09:26
2020-05-25T07:09:25
null
Jupyter Notebook
false
false
.py
1,299
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + # Write a Python program to get the frequency of the elements in a list. # input # my_list = [10,10,10,10,20,20,20,20,40,40,50,50,30] # outout # {10: 4, 20: 4, 40: 2, 50: 2, 30: 1} import collections my_list = [10,10,10,10,20,20,20,20,40,40,50,50,30] print("Original List : ",my_list) ctr = collections.Counter(my_list) print("Frequency of the elements in the List : ",ctr)
645
/code2.ipynb
e91b508123b83b0736eacf1ca9688ad304afed8a
[]
no_license
acachila/RealEstateETL
https://github.com/acachila/RealEstateETL
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
50,703
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import pandas as pd from sqlalchemy import create_engine from datetime import datetime import datetime as dt rds_connection_string = "postgres:Dpspfmrlvk*9@localhost:5432/House_sales" engine = create_engine(f'postgresql://{rds_connection_string}') engine.table_names() data = pd.read_sql_table(con = engine, table_name = "list_per_sq_ft") data.head() # start = input("start: ") # end = input("end: ") start = "2019-1-1" end = "2019-5-1" start = datetime.strptime(start,'%Y-%m-%d') end = datetime.strptime(end,'%Y-%m-%d') start = datetime.strftime(start,'%Y-%m') end = datetime.strftime(end,'%Y-%m') df = data[["regionname","city","state","metro","countyname",start,end]] df.rename(columns={"regionname":"zip"},inplace=True) df["diff"] = df[end].astype(float)/df[start].astype(float) df1 = df.sort_values("diff",ascending=True).head() df1 = df1.reset_index(drop=True) df1 zipcodes= df1["zip"] cities = df1["city"] states = df1["state"] zipcode = zipcodes[0] city = cities[0] state = states[0] # + # Create code to answer each of the following questions. # Hint: You will need multiple target URLs and multiple API requests. # Dependencies import requests import json # from config import gkey gkey = "AIzaSyA-Rjp6nOeJp6815Xt1Kkuxc5XKMiKl_yA" # Retrieve Google API key from config.py # + # 1. What are the geocoordinates (latitude/longitude) of Seattle, Washington? target = zipcode # Build the endpoint URL target_url = (f'https://maps.googleapis.com/maps/api/geocode/json?address={target}&key={gkey}') geo_data = requests.get(target_url).json() # + # 2. What are the geocoordinates (latitude/longitude) of The White House? lat = geo_data["results"][0]["geometry"]["location"]["lat"] lng = geo_data["results"][0]["geometry"]["location"]["lng"] # Print the latitude and longitude print(''' Place: {0} Latitude: {1} Longitude: {2} '''.format(target, lat, lng)) # - # create dataframe/clear datafrmae import pandas as pd records = pd.DataFrame() # + target_coordinates = str(lat) + "," + str(lng) target_search = input("search: ") target_radius = 8000 target_type = input("type: ") # set up a parameters dictionary params = { "location": target_coordinates, "keyword": target_search, "radius": target_radius, "type": target_type, "key": gkey } # base url base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" # run a request using our params dictionary response = requests.get(base_url, params=params) places_data = response.json() n=0 # while int(n) > len(places_data): while int(n) < len(places_data["results"]): try: price=places_data["results"][int(n)]["price_level"] except KeyError: price = "NA" content = pd.DataFrame ({"type":target_search, "name":[places_data["results"][int(n)]["name"]], "score":[places_data["results"][int(n)]["rating"]], "reviews":[places_data["results"][int(n)]["user_ratings_total"]], "price":price, "address":[places_data["results"][int(n)]["vicinity"]]}) records = records.append(content) n+=1 records # - #to put it in dataframe records.to_sql("local_place1",con=engine,index=False,if_exists='replace') #crime rate data gathering # Dependencies # Dependencies import os from bs4 import BeautifulSoup as bs import requests import re crime_rate = pd.DataFrame() for n in range(0,len(df1)): state = states[n] city = cities[n] zipcode = zipcodes[n] # URL of page to be scraped url = f'https://www.bestplaces.net/crime/zip-code/{state}/{city}/{zipcode}' # Retrieve page with the requests module response = requests.get(url) # Create a Beautiful Soup object soup = bs(response.text, 'html.parser') # Print all divs with col-md-12 divs = soup.find_all("div", {"class": "col-md-12"}) # n=0 # for div in divs: # print(f'dqyun:{n}') # n+=1 # print(div.text) s = str(divs[2]).split("violent crime is ")[1] result = re.findall(r"[-+]?\d*\.\d+|\d+", s) vcr = result[0] s = str(divs[2]).split("property crime is ")[1] result = re.findall(r"[-+]?\d*\.\d+|\d+", s) pcr = result[0] apnd = pd.DataFrame({"zip":[zipcode], "violent crime": [vcr], "property crime": [pcr]}) print("df") crime_rate = crime_rate.append(apnd) divs[2] crime_rate crime_save = pd.merge(df1,crime_rate,on="zip") crime_save.to_sql("crime1",con=engine,index=False,if_exists='replace') engine.table_names() recalled_crime_data = pd.read_sql_table(con = engine, table_name = "crime1") recalled_crime_data.head() recalled_local_data = pd.read_sql_table(con = engine, table_name = "local_place1") recalled_local_data.head()
5,094
/examples/FinRL_PaperTrading_Demo.ipynb
7a0913277a3f1d1e05e0f6b45b8ad18f3f1c1237
[ "MIT" ]
permissive
AI4Finance-LLC/FinRL-Library
https://github.com/AI4Finance-LLC/FinRL-Library
1,949
478
null
null
null
null
Jupyter Notebook
false
false
.py
72,036
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Scrapeing data about US congress members from Wikipedia # In this notebook we will start a project with the aim to have a machine learning model which can determine what party a US congressional district is most likely to vote for. The first part for every project is to aquire the data required. This can be done by being given it from a third party, downloading data files or, as in this case, scrapeing a webpage for it. from bs4 import BeautifulSoup as bs #For inspecting html webpage in notebook import pandas as pd #To put data into frames for joining into a final result, also sued for printing to csv import lxml #For parsing html import requests #For requesting the webpages which we will srape import time #To have a wait timer when scraping, for politeness sake import os #For saving in folder import multiprocessing as mp # For this project we will start with the wikipedia page detailing the current (2020-06-21) list of US congress members. From this base page we can get the representative from each congress district together with data about their party affiliation previous experience, education, when they assumed their current office, residence, and which year they were born. url = "https://en.wikipedia.org/wiki/List_of_current_members_of_the_United_States_House_of_Representatives" #Url to wikipedia page response = requests.get(url) #The received page when requesting the specified url soup = bs(response.content, 'lxml') #creating a BeautifulSoup object which we can display in the notebook and inspect print(soup.prettify()) #Print the parsed html page tables = soup.find_all('table') #Returns all tables on the webpage tables #Print all tables in jupyter #Returns the tables where you can sort the data on the webpage. members_table = soup.find_all("table", class_ ="wikitable sortable")[2] #The webpage which we are interested in print(members_table.prettify()) #Print the table of interest # Pandas has built in function to instantly scrape the wikipedia table and put the information into a pandas frame. congress_members_frame = pd.read_html("https://en.wikipedia.org/wiki/List_of_current_members_of_the_United_States_House_of_Representatives")[6] #Index specifies which table to put into a fram congress_members_frame # Now we will go through the table of congress members and scrape the links to their wikipedia pages links_to_members = [] #list to store links for row in members_table.findAll('tr'): #find all rows cells = row.findAll('td') #find all columns if len(cells) == 9: #the number of columns in the table of interest is 9 links = cells[1].findAll('a') #By inspecting the parsed html side we can see that links are started with an a hence we want to find all links in the second column if links != []: #Make sure that there is a link, vacancies have no links for example link = links[1].get('href') #Since the table has a link to an image of the congress member before the link to their page we need to chose the second link links_to_members.append('https://en.wikipedia.org' + link) #Add the unique link to the list else: continue #If no link is found continue to next row # Use the list created above to visit each members page and extract the name of their spouse, if any, and number of childre, if any. Names are scraped to get a unique key for later joining. # + names = [] #List to keep the names used as keys. spouses = [] #List to keep name of spouses childrens = [] #List to keep number of childrens for member in links_to_members: #Set the three items of interest to a base case, in case we don't find the data we want we don't want to save the data from the previous #candidata again. cname = " " bname = " " spouse = "none" children = " " url = member #link to specific member resp = requests.get(url, params={'action': 'raw'}) #request the page as raw wikidata page for easy of scrapeing the info box page = resp.text for line in page.splitlines(): #go through each line #We are looking for names which might most likely be under birth_name, name, or Name with either a white space after the '|' or no whitespace. if line.startswith('| birth_name'): bname = line.partition('=')[-1].strip() elif line.startswith('|birth_name'): bname = line.partition('=')[-1].strip() elif line.startswith('|name'): cname = line.partition('=')[-1].strip() elif line.startswith('| name'): cname = line.partition('=')[-1].strip() elif line.startswith('|Name'): cname = line.partition('=')[-1].strip() elif line.startswith('| Name'): cname = line.partition('=')[-1].strip() #Spouse are most likelt found under spouse or Spouse elif line.startswith('|spouse'): spouse = line.partition('=')[-1].strip() elif line.startswith('|Spouse'): spouse = line.partition('=')[-1].strip() elif line.startswith('| Spouse'): spouse = line.partition('=')[-1].strip() elif line.startswith('| spouse'): spouse = line.partition('=')[-1].strip() #number of childrens might be udner children, Children, childrens, or Childrens elif line.startswith('| children'): children = line.partition('=')[-1].strip() elif line.startswith('| Children'): children = line.partition('=')[-1].strip() elif line.startswith('|children'): children = line.partition('=')[-1].strip() elif line.startswith('|Children'): children = line.partition('=')[-1].strip() elif line.startswith('|Childrens'): children = line.partition('=')[-1].strip() elif line.startswith('| Childrens'): children = line.partition('=')[-1].strip() elif line.startswith('| childrens'): children = line.partition('=')[-1].strip() elif line.startswith('| childrens'): children = line.partition('=')[-1].strip() #Website appears to be the last part of the infobox so when we reach it we stop scan their page. elif line.startswith('|website'): break elif line.startswith('| website'): break if cname != " ": #We will prefere their called name which should correspond better between tables name = cname elif bname != " ": #If we only find their birth name we will use that instead to make manual pairing easier when cleaning data name = bname else: #If we do not find any name we wil lfill it in as blank name = " " names.append(name) #Add the name to the list spouses.append(spouse) #Add the name of the spouse to the list childrens.append(children) #Add the number of childrens to the list time.sleep(0.5) #Wait this time to be polite # - member_personal_data = pd.DataFrame(names,columns=['Member']) #Put the new data into a frame with first column being member. member_personal_data['Spouse'] = spouses member_personal_data['Childrens'] = childrens # Join the two tables using the member name as the key. In this case a full outer join will be used in order to include data which we fail to find the correct keys, e.g. one of frame might have th name Joe while another has the name Joseph. Another alternative would be do join on the position in the frames however the vacancies will mess up this ordering so we would need to place these last, or first. result = pd.merge(congress_members_frame, member_personal_data,how = 'outer', on = 'Member') result.to_csv(os.getcwd()+'/data/resultingData/congress_members.csv') #Print the results to a csv file. # This then concoludes the first part of trying to create a model for which party a congress district in the US will vote for, the code in here is written as a runable program in the file "web_scrapeing_us_congress.py". In the next part we will go through and clean the data which we just scraped. args.gamma self.batch_size = args.batch_size self.repeat_times = args.repeat_times self.reward_scale = args.reward_scale self.soft_update_tau = args.soft_update_tau self.states = None # assert self.states == (1, state_dim) self.device = torch.device(f"cuda:{gpu_id}" if (torch.cuda.is_available() and (gpu_id >= 0)) else "cpu") act_class = getattr(self, "act_class", None) cri_class = getattr(self, "cri_class", None) self.act = self.act_target = act_class(net_dims, state_dim, action_dim).to(self.device) self.cri = self.cri_target = cri_class(net_dims, state_dim, action_dim).to(self.device) \ if cri_class else self.act self.act_optimizer = torch.optim.Adam(self.act.parameters(), args.learning_rate) self.cri_optimizer = torch.optim.Adam(self.cri.parameters(), args.learning_rate) \ if cri_class else self.act_optimizer self.criterion = torch.nn.SmoothL1Loss() @staticmethod def optimizer_update(optimizer, objective: Tensor): optimizer.zero_grad() objective.backward() optimizer.step() @staticmethod def soft_update(target_net: torch.nn.Module, current_net: torch.nn.Module, tau: float): for tar, cur in zip(target_net.parameters(), current_net.parameters()): tar.data.copy_(cur.data * tau + tar.data * (1.0 - tau)) class AgentPPO(AgentBase): def __init__(self, net_dims: [int], state_dim: int, action_dim: int, gpu_id: int = 0, args: Config = Config()): self.if_off_policy = False self.act_class = getattr(self, "act_class", ActorPPO) self.cri_class = getattr(self, "cri_class", CriticPPO) AgentBase.__init__(self, net_dims, state_dim, action_dim, gpu_id, args) self.ratio_clip = getattr(args, "ratio_clip", 0.25) # `ratio.clamp(1 - clip, 1 + clip)` self.lambda_gae_adv = getattr(args, "lambda_gae_adv", 0.95) # could be 0.80~0.99 self.lambda_entropy = getattr(args, "lambda_entropy", 0.01) # could be 0.00~0.10 self.lambda_entropy = torch.tensor(self.lambda_entropy, dtype=torch.float32, device=self.device) def explore_env(self, env, horizon_len: int) -> [Tensor]: states = torch.zeros((horizon_len, self.state_dim), dtype=torch.float32).to(self.device) actions = torch.zeros((horizon_len, self.action_dim), dtype=torch.float32).to(self.device) logprobs = torch.zeros(horizon_len, dtype=torch.float32).to(self.device) rewards = torch.zeros(horizon_len, dtype=torch.float32).to(self.device) dones = torch.zeros(horizon_len, dtype=torch.bool).to(self.device) ary_state = self.states[0] get_action = self.act.get_action convert = self.act.convert_action_for_env for i in range(horizon_len): state = torch.as_tensor(ary_state, dtype=torch.float32, device=self.device) action, logprob = [t.squeeze(0) for t in get_action(state.unsqueeze(0))[:2]] ary_action = convert(action).detach().cpu().numpy() ary_state, reward, done, _ = env.step(ary_action) if done: ary_state = env.reset() states[i] = state actions[i] = action logprobs[i] = logprob rewards[i] = reward dones[i] = done self.states[0] = ary_state rewards = (rewards * self.reward_scale).unsqueeze(1) undones = (1 - dones.type(torch.float32)).unsqueeze(1) return states, actions, logprobs, rewards, undones def update_net(self, buffer) -> [float]: with torch.no_grad(): states, actions, logprobs, rewards, undones = buffer buffer_size = states.shape[0] '''get advantages reward_sums''' bs = 2 ** 10 # set a smaller 'batch_size' when out of GPU memory. values = [self.cri(states[i:i + bs]) for i in range(0, buffer_size, bs)] values = torch.cat(values, dim=0).squeeze(1) # values.shape == (buffer_size, ) advantages = self.get_advantages(rewards, undones, values) # advantages.shape == (buffer_size, ) reward_sums = advantages + values # reward_sums.shape == (buffer_size, ) del rewards, undones, values advantages = (advantages - advantages.mean()) / (advantages.std(dim=0) + 1e-5) assert logprobs.shape == advantages.shape == reward_sums.shape == (buffer_size,) '''update network''' obj_critics = 0.0 obj_actors = 0.0 update_times = int(buffer_size * self.repeat_times / self.batch_size) assert update_times >= 1 for _ in range(update_times): indices = torch.randint(buffer_size, size=(self.batch_size,), requires_grad=False) state = states[indices] action = actions[indices] logprob = logprobs[indices] advantage = advantages[indices] reward_sum = reward_sums[indices] value = self.cri(state).squeeze(1) # critic network predicts the reward_sum (Q value) of state obj_critic = self.criterion(value, reward_sum) self.optimizer_update(self.cri_optimizer, obj_critic) new_logprob, obj_entropy = self.act.get_logprob_entropy(state, action) ratio = (new_logprob - logprob.detach()).exp() surrogate1 = advantage * ratio surrogate2 = advantage * ratio.clamp(1 - self.ratio_clip, 1 + self.ratio_clip) obj_surrogate = torch.min(surrogate1, surrogate2).mean() obj_actor = obj_surrogate + obj_entropy.mean() * self.lambda_entropy self.optimizer_update(self.act_optimizer, -obj_actor) obj_critics += obj_critic.item() obj_actors += obj_actor.item() a_std_log = getattr(self.act, 'a_std_log', torch.zeros(1)).mean() return obj_critics / update_times, obj_actors / update_times, a_std_log.item() def get_advantages(self, rewards: Tensor, undones: Tensor, values: Tensor) -> Tensor: advantages = torch.empty_like(values) # advantage value masks = undones * self.gamma horizon_len = rewards.shape[0] next_state = torch.tensor(self.states, dtype=torch.float32).to(self.device) next_value = self.cri(next_state).detach()[0, 0] advantage = 0 # last_gae_lambda for t in range(horizon_len - 1, -1, -1): delta = rewards[t] + masks[t] * next_value - values[t] advantages[t] = advantage = delta + masks[t] * self.lambda_gae_adv * advantage next_value = values[t] return advantages class PendulumEnv(gym.Wrapper): # a demo of custom gym env def __init__(self): gym.logger.set_level(40) # Block warning gym_env_name = "Pendulum-v0" if gym.__version__ < '0.18.0' else "Pendulum-v1" super().__init__(env=gym.make(gym_env_name)) '''the necessary env information when you design a custom env''' self.env_name = gym_env_name # the name of this env. self.state_dim = self.observation_space.shape[0] # feature number of state self.action_dim = self.action_space.shape[0] # feature number of action self.if_discrete = False # discrete action or continuous action def reset(self) -> np.ndarray: # reset the agent in env return self.env.reset() def step(self, action: np.ndarray) -> (np.ndarray, float, bool, dict): # agent interacts in env # We suggest that adjust action space to (-1, +1) when designing a custom env. state, reward, done, info_dict = self.env.step(action * 2) return state.reshape(self.state_dim), float(reward), done, info_dict def train_agent(args: Config): args.init_before_training() env = build_env(args.env_class, args.env_args) agent = args.agent_class(args.net_dims, args.state_dim, args.action_dim, gpu_id=args.gpu_id, args=args) agent.states = env.reset()[np.newaxis, :] evaluator = Evaluator(eval_env=build_env(args.env_class, args.env_args), eval_per_step=args.eval_per_step, eval_times=args.eval_times, cwd=args.cwd) torch.set_grad_enabled(False) while True: # start training buffer_items = agent.explore_env(env, args.horizon_len) torch.set_grad_enabled(True) logging_tuple = agent.update_net(buffer_items) torch.set_grad_enabled(False) evaluator.evaluate_and_save(agent.act, args.horizon_len, logging_tuple) if (evaluator.total_step > args.break_step) or os.path.exists(f"{args.cwd}/stop"): torch.save(agent.act.state_dict(), args.cwd + '/actor.pth') break # stop training when reach `break_step` or `mkdir cwd/stop` def render_agent(env_class, env_args: dict, net_dims: [int], agent_class, actor_path: str, render_times: int = 8): env = build_env(env_class, env_args) state_dim = env_args['state_dim'] action_dim = env_args['action_dim'] agent = agent_class(net_dims, state_dim, action_dim, gpu_id=-1) actor = agent.act print(f"| render and load actor from: {actor_path}") actor.load_state_dict(torch.load(actor_path, map_location=lambda storage, loc: storage)) for i in range(render_times): cumulative_reward, episode_step = get_rewards_and_steps(env, actor, if_render=True) print(f"|{i:4} cumulative_reward {cumulative_reward:9.3f} episode_step {episode_step:5.0f}") class Evaluator: def __init__(self, eval_env, eval_per_step: int = 1e4, eval_times: int = 8, cwd: str = '.'): self.cwd = cwd self.env_eval = eval_env self.eval_step = 0 self.total_step = 0 self.start_time = time.time() self.eval_times = eval_times # number of times that get episodic cumulative return self.eval_per_step = eval_per_step # evaluate the agent per training steps self.recorder = [] print(f"\n| `step`: Number of samples, or total training steps, or running times of `env.step()`." f"\n| `time`: Time spent from the start of training to this moment." f"\n| `avgR`: Average value of cumulative rewards, which is the sum of rewards in an episode." f"\n| `stdR`: Standard dev of cumulative rewards, which is the sum of rewards in an episode." f"\n| `avgS`: Average of steps in an episode." f"\n| `objC`: Objective of Critic network. Or call it loss function of critic network." f"\n| `objA`: Objective of Actor network. It is the average Q value of the critic network." f"\n| {'step':>8} {'time':>8} | {'avgR':>8} {'stdR':>6} {'avgS':>6} | {'objC':>8} {'objA':>8}") def evaluate_and_save(self, actor, horizon_len: int, logging_tuple: tuple): self.total_step += horizon_len if self.eval_step + self.eval_per_step > self.total_step: return self.eval_step = self.total_step rewards_steps_ary = [get_rewards_and_steps(self.env_eval, actor) for _ in range(self.eval_times)] rewards_steps_ary = np.array(rewards_steps_ary, dtype=np.float32) avg_r = rewards_steps_ary[:, 0].mean() # average of cumulative rewards std_r = rewards_steps_ary[:, 0].std() # std of cumulative rewards avg_s = rewards_steps_ary[:, 1].mean() # average of steps in an episode used_time = time.time() - self.start_time self.recorder.append((self.total_step, used_time, avg_r)) print(f"| {self.total_step:8.2e} {used_time:8.0f} " f"| {avg_r:8.2f} {std_r:6.2f} {avg_s:6.0f} " f"| {logging_tuple[0]:8.2f} {logging_tuple[1]:8.2f}") def get_rewards_and_steps(env, actor, if_render: bool = False) -> (float, int): # cumulative_rewards and episode_steps device = next(actor.parameters()).device # net.parameters() is a Python generator. state = env.reset() episode_steps = 0 cumulative_returns = 0.0 # sum of rewards in an episode for episode_steps in range(12345): tensor_state = torch.as_tensor(state, dtype=torch.float32, device=device).unsqueeze(0) tensor_action = actor(tensor_state) action = tensor_action.detach().cpu().numpy()[0] # not need detach(), because using torch.no_grad() outside state, reward, done, _ = env.step(action) cumulative_returns += reward if if_render: env.render() if done: break return cumulative_returns, episode_steps + 1 # + [markdown] id="9tzAw9k26nAC" # ##DRL Agent Class # + id="pwCbbocm6PHM" from __future__ import annotations import torch # from elegantrl.agents import AgentA2C MODELS = {"ppo": AgentPPO} OFF_POLICY_MODELS = ["ddpg", "td3", "sac"] ON_POLICY_MODELS = ["ppo"] # MODEL_KWARGS = {x: config.__dict__[f"{x.upper()}_PARAMS"] for x in MODELS.keys()} # # NOISE = { # "normal": NormalActionNoise, # "ornstein_uhlenbeck": OrnsteinUhlenbeckActionNoise, # } class DRLAgent: """Implementations of DRL algorithms Attributes ---------- env: gym environment class user-defined class Methods ------- get_model() setup DRL algorithms train_model() train DRL algorithms in a train dataset and output the trained model DRL_prediction() make a prediction in a test dataset and get results """ def __init__(self, env, price_array, tech_array, turbulence_array): self.env = env self.price_array = price_array self.tech_array = tech_array self.turbulence_array = turbulence_array def get_model(self, model_name, model_kwargs): env_config = { "price_array": self.price_array, "tech_array": self.tech_array, "turbulence_array": self.turbulence_array, "if_train": True, } environment = self.env(config=env_config) env_args = {'config': env_config, 'env_name': environment.env_name, 'state_dim': environment.state_dim, 'action_dim': environment.action_dim, 'if_discrete': False} agent = MODELS[model_name] if model_name not in MODELS: raise NotImplementedError("NotImplementedError") model = Config(agent_class=agent, env_class=self.env, env_args=env_args) model.if_off_policy = model_name in OFF_POLICY_MODELS if model_kwargs is not None: try: model.learning_rate = model_kwargs["learning_rate"] model.batch_size = model_kwargs["batch_size"] model.gamma = model_kwargs["gamma"] model.seed = model_kwargs["seed"] model.net_dims = model_kwargs["net_dimension"] model.target_step = model_kwargs["target_step"] model.eval_gap = model_kwargs["eval_gap"] model.eval_times = model_kwargs["eval_times"] except BaseException: raise ValueError( "Fail to read arguments, please check 'model_kwargs' input." ) return model def train_model(self, model, cwd, total_timesteps=5000): model.cwd = cwd model.break_step = total_timesteps train_agent(model) @staticmethod def DRL_prediction(model_name, cwd, net_dimension, environment): if model_name not in MODELS: raise NotImplementedError("NotImplementedError") agent_class = MODELS[model_name] environment.env_num = 1 agent = agent_class(net_dimension, environment.state_dim, environment.action_dim) actor = agent.act # load agent try: cwd = cwd + '/actor.pth' print(f"| load actor from: {cwd}") actor.load_state_dict(torch.load(cwd, map_location=lambda storage, loc: storage)) act = actor device = agent.device except BaseException: raise ValueError("Fail to load agent!") # test on the testing env _torch = torch state = environment.reset() episode_returns = [] # the cumulative_return / initial_account episode_total_assets = [environment.initial_total_asset] with _torch.no_grad(): for i in range(environment.max_step): s_tensor = _torch.as_tensor((state,), device=device) a_tensor = act(s_tensor) # action_tanh = act.forward() action = ( a_tensor.detach().cpu().numpy()[0] ) # not need detach(), because with torch.no_grad() outside state, reward, done, _ = environment.step(action) total_asset = ( environment.amount + ( environment.price_ary[environment.day] * environment.stocks ).sum() ) episode_total_assets.append(total_asset) episode_return = total_asset / environment.initial_total_asset episode_returns.append(episode_return) if done: break print("Test Finished!") # return episode total_assets on testing data print("episode_return", episode_return) return episode_total_assets # + [markdown] id="zjLda8No6pvI" # ## Train & Test Functions # + id="j8-e03ev32oz" from __future__ import annotations from finrl.config import ERL_PARAMS from finrl.config import INDICATORS from finrl.config import RLlib_PARAMS from finrl.config import SAC_PARAMS from finrl.config import TRAIN_END_DATE from finrl.config import TRAIN_START_DATE from finrl.config_tickers import DOW_30_TICKER from finrl.meta.data_processor import DataProcessor # construct environment def train( start_date, end_date, ticker_list, data_source, time_interval, technical_indicator_list, drl_lib, env, model_name, if_vix=True, **kwargs, ): # download data dp = DataProcessor(data_source, **kwargs) data = dp.download_data(ticker_list, start_date, end_date, time_interval) data = dp.clean_data(data) data = dp.add_technical_indicator(data, technical_indicator_list) if if_vix: data = dp.add_vix(data) else: data = dp.add_turbulence(data) price_array, tech_array, turbulence_array = dp.df_to_array(data, if_vix) env_config = { "price_array": price_array, "tech_array": tech_array, "turbulence_array": turbulence_array, "if_train": True, } env_instance = env(config=env_config) # read parameters cwd = kwargs.get("cwd", "./" + str(model_name)) if drl_lib == "elegantrl": DRLAgent_erl = DRLAgent break_step = kwargs.get("break_step", 1e6) erl_params = kwargs.get("erl_params") agent = DRLAgent_erl( env=env, price_array=price_array, tech_array=tech_array, turbulence_array=turbulence_array, ) model = agent.get_model(model_name, model_kwargs=erl_params) trained_model = agent.train_model( model=model, cwd=cwd, total_timesteps=break_step ) # + id="Evsg8QtEDHDO" from __future__ import annotations from finrl.config import INDICATORS from finrl.config import RLlib_PARAMS from finrl.config import TEST_END_DATE from finrl.config import TEST_START_DATE from finrl.config_tickers import DOW_30_TICKER def test( start_date, end_date, ticker_list, data_source, time_interval, technical_indicator_list, drl_lib, env, model_name, if_vix=True, **kwargs, ): # import data processor from finrl.meta.data_processor import DataProcessor # fetch data dp = DataProcessor(data_source, **kwargs) data = dp.download_data(ticker_list, start_date, end_date, time_interval) data = dp.clean_data(data) data = dp.add_technical_indicator(data, technical_indicator_list) if if_vix: data = dp.add_vix(data) else: data = dp.add_turbulence(data) price_array, tech_array, turbulence_array = dp.df_to_array(data, if_vix) env_config = { "price_array": price_array, "tech_array": tech_array, "turbulence_array": turbulence_array, "if_train": False, } env_instance = env(config=env_config) # load elegantrl needs state dim, action dim and net dim net_dimension = kwargs.get("net_dimension", 2**7) cwd = kwargs.get("cwd", "./" + str(model_name)) print("price_array: ", len(price_array)) if drl_lib == "elegantrl": DRLAgent_erl = DRLAgent episode_total_assets = DRLAgent_erl.DRL_prediction( model_name=model_name, cwd=cwd, net_dimension=net_dimension, environment=env_instance, ) return episode_total_assets # + [markdown] id="pf5aVHAU-xF6" # ## Import Dow Jones 30 Symbols # + id="jx25TA_X87F-" ticker_list = DOW_30_TICKER action_dim = len(DOW_30_TICKER) # + colab={"base_uri": "https://localhost:8080/"} id="UIV0kO_y-inG" outputId="bd7b3c21-641e-4eb7-a4af-ae7d156042a6" print(ticker_list) # + colab={"base_uri": "https://localhost:8080/"} id="CnqQ-cC5-rfO" outputId="29b248c9-ec98-44cd-befb-65192af72ea4" print(INDICATORS) # + [markdown] id="rZMkcyjZ-25l" # ## Calculate the DRL state dimension manually for paper trading # + id="GLfkTsXK-e90" # amount + (turbulence, turbulence_bool) + (price, shares, cd (holding time)) * stock_dim + tech_dim state_dim = 1 + 2 + 3 * action_dim + len(INDICATORS) * action_dim # + colab={"base_uri": "https://localhost:8080/"} id="QqUkvImG-n66" outputId="9cb4a3d8-5064-4971-d095-65d3ab12f11a" state_dim # + id="8Z6qlLXY-fA2" env = StockTradingEnv # + [markdown] id="J25MuZLiGqCP" # ## Show the data # + [markdown] id="puJZWm8NHtSN" # ### Step 1. Pick a data source # + colab={"base_uri": "https://localhost:8080/"} id="3ZCru8f7GqgL" outputId="010e6a83-1280-410a-e240-4bc8ec124774" #DP = DataProcessor(data_source = 'alpaca', # API_KEY = API_KEY, # API_SECRET = API_SECRET, # API_BASE_URL = API_BASE_URL # ) # + [markdown] id="nvPEW2mYHvkR" # ### Step 2. Get ticker list, Set start date and end date, specify the data frequency # + id="NPNxj6c8HIiE" #data = DP.download_data(start_date = '2021-10-04', # end_date = '2021-10-08', # ticker_list = ticker_list, # time_interval= '1Min') # + colab={"base_uri": "https://localhost:8080/"} id="pPcazCq1d5ec" outputId="39d61284-7b51-46c2-cc2d-424f0f569e25" #data['timestamp'].nunique() # + [markdown] id="i46jGdE0IAel" # ### Step 3. Data Cleaning & Feature Engineering # + colab={"base_uri": "https://localhost:8080/"} id="x9euUsEPHWFK" outputId="2ae7fae7-d9ae-4f34-f32a-13e1476debea" #data = DP.clean_data(data) #data = DP.add_technical_indicator(data, INDICATORS) #data = DP.add_vix(data) # + colab={"base_uri": "https://localhost:8080/"} id="GOcPTaAgHdxa" outputId="4da334de-fbf6-49ca-ed22-bf1a99469457" #data.shape # + [markdown] id="bbu03L_UIMWt" # ### Step 4. Transform to numpy array # + colab={"base_uri": "https://localhost:8080/"} id="Rzj0vjZZHdGM" outputId="d0ec43a2-b78e-4c09-c048-b88e7eba6c81" #price_array, tech_array, turbulence_array = DP.df_to_array(data, if_vix=True) # + [markdown] id="eW0UDAXI1nEa" # # Part 2: Train the agent # + [markdown] id="lArLOFcJ7VMO" # ## Train # + id="g1F84mebj4gu" ERL_PARAMS = {"learning_rate": 3e-6,"batch_size": 2048,"gamma": 0.985, "seed":312,"net_dimension":[128,64], "target_step":5000, "eval_gap":30, "eval_times":1} env = StockTradingEnv #if you want to use larger datasets (change to longer period), and it raises error, #please try to increase "target_step". It should be larger than the episode steps. # + colab={"base_uri": "https://localhost:8080/"} id="BxcNI2fdNjip" outputId="8db09736-a3a1-48a2-9e61-f9d8828ee327" train(start_date = '2022-08-25', end_date = '2022-08-31', ticker_list = ticker_list, data_source = 'alpaca', time_interval= '1Min', technical_indicator_list= INDICATORS, drl_lib='elegantrl', env=env, model_name='ppo', if_vix=True, API_KEY = API_KEY, API_SECRET = API_SECRET, API_BASE_URL = API_BASE_URL, erl_params=ERL_PARAMS, cwd='./papertrading_erl', #current_working_dir break_step=1e5) # + [markdown] id="g37WugV_1pAS" # ## Test # + id="SxYoWCDa02TW" account_value_erl=test(start_date = '2022-09-01', end_date = '2022-09-02', ticker_list = ticker_list, data_source = 'alpaca', time_interval= '1Min', technical_indicator_list= INDICATORS, drl_lib='elegantrl', env=env, model_name='ppo', if_vix=True, API_KEY = API_KEY, API_SECRET = API_SECRET, API_BASE_URL = API_BASE_URL, cwd='./papertrading_erl', net_dimension = ERL_PARAMS['net_dimension']) # + [markdown] id="e8aNQ58X7avM" # ## Use full data toย train # + [markdown] id="3CQ9_Yv41r88" # After tuning well, retrain on the training and testing sets # + colab={"base_uri": "https://localhost:8080/"} id="cUSgbwt_10V3" outputId="50f3d8c6-b333-480e-b2fb-25e566797806" train(start_date = '2022-08-25', end_date = '2022-09-02', ticker_list = ticker_list, data_source = 'alpaca', time_interval= '1Min', technical_indicator_list= INDICATORS, drl_lib='elegantrl', env=env, model_name='ppo', if_vix=True, API_KEY = API_KEY, API_SECRET = API_SECRET, API_BASE_URL = API_BASE_URL, erl_params=ERL_PARAMS, cwd='./papertrading_erl_retrain', break_step=2e5) # + [markdown] id="sIQN6Ggt7gXY" # # Part 3: Deploy the agent # + [markdown] id="UFoxkigg1zXa" # ## Setup Alpaca Paper trading environment # + id="LpkoZpYzfneS" import datetime import threading from finrl.meta.data_processors.processor_alpaca import AlpacaProcessor import alpaca_trade_api as tradeapi import time import pandas as pd import numpy as np import torch import gym class AlpacaPaperTrading(): def __init__(self,ticker_list, time_interval, drl_lib, agent, cwd, net_dim, state_dim, action_dim, API_KEY, API_SECRET, API_BASE_URL, tech_indicator_list, turbulence_thresh=30, max_stock=1e2, latency = None): #load agent self.drl_lib = drl_lib if agent =='ppo': if drl_lib == 'elegantrl': agent_class = AgentPPO agent = agent_class(net_dim, state_dim, action_dim) actor = agent.act # load agent try: cwd = cwd + '/actor.pth' print(f"| load actor from: {cwd}") actor.load_state_dict(torch.load(cwd, map_location=lambda storage, loc: storage)) self.act = actor self.device = agent.device except BaseException: raise ValueError("Fail to load agent!") elif drl_lib == 'rllib': from ray.rllib.agents import ppo from ray.rllib.agents.ppo.ppo import PPOTrainer config = ppo.DEFAULT_CONFIG.copy() config['env'] = StockEnvEmpty config["log_level"] = "WARN" config['env_config'] = {'state_dim':state_dim, 'action_dim':action_dim,} trainer = PPOTrainer(env=StockEnvEmpty, config=config) trainer.restore(cwd) try: trainer.restore(cwd) self.agent = trainer print("Restoring from checkpoint path", cwd) except: raise ValueError('Fail to load agent!') elif drl_lib == 'stable_baselines3': from stable_baselines3 import PPO try: #load agent self.model = PPO.load(cwd) print("Successfully load model", cwd) except: raise ValueError('Fail to load agent!') else: raise ValueError('The DRL library input is NOT supported yet. Please check your input.') else: raise ValueError('Agent input is NOT supported yet.') #connect to Alpaca trading API try: self.alpaca = tradeapi.REST(API_KEY,API_SECRET,API_BASE_URL, 'v2') except: raise ValueError('Fail to connect Alpaca. Please check account info and internet connection.') #read trading time interval if time_interval == '1s': self.time_interval = 1 elif time_interval == '5s': self.time_interval = 5 elif time_interval == '1Min': self.time_interval = 60 elif time_interval == '5Min': self.time_interval = 60 * 5 elif time_interval == '15Min': self.time_interval = 60 * 15 else: raise ValueError('Time interval input is NOT supported yet.') #read trading settings self.tech_indicator_list = tech_indicator_list self.turbulence_thresh = turbulence_thresh self.max_stock = max_stock #initialize account self.stocks = np.asarray([0] * len(ticker_list)) #stocks holding self.stocks_cd = np.zeros_like(self.stocks) self.cash = None #cash record self.stocks_df = pd.DataFrame(self.stocks, columns=['stocks'], index = ticker_list) self.asset_list = [] self.price = np.asarray([0] * len(ticker_list)) self.stockUniverse = ticker_list self.turbulence_bool = 0 self.equities = [] def test_latency(self, test_times = 10): total_time = 0 for i in range(0, test_times): time0 = time.time() self.get_state() time1 = time.time() temp_time = time1 - time0 total_time += temp_time latency = total_time/test_times print('latency for data processing: ', latency) return latency def run(self): orders = self.alpaca.list_orders(status="open") for order in orders: self.alpaca.cancel_order(order.id) # Wait for market to open. print("Waiting for market to open...") self.awaitMarketOpen() print("Market opened.") while True: # Figure out when the market will close so we can prepare to sell beforehand. clock = self.alpaca.get_clock() closingTime = clock.next_close.replace(tzinfo=datetime.timezone.utc).timestamp() currTime = clock.timestamp.replace(tzinfo=datetime.timezone.utc).timestamp() self.timeToClose = closingTime - currTime if(self.timeToClose < (60)): # Close all positions when 1 minutes til market close. print("Market closing soon. Stop trading.") break '''# Close all positions when 1 minutes til market close. print("Market closing soon. Closing positions.") threads = [] positions = self.alpaca.list_positions() for position in positions: if(position.side == 'long'): orderSide = 'sell' else: orderSide = 'buy' qty = abs(int(float(position.qty))) respSO = [] tSubmitOrder = threading.Thread(target=self.submitOrder(qty, position.symbol, orderSide, respSO)) tSubmitOrder.start() threads.append(tSubmitOrder) # record thread for joining later for x in threads: # wait for all threads to complete x.join() # Run script again after market close for next trading day. print("Sleeping until market close (15 minutes).") time.sleep(60 * 15)''' else: self.trade() last_equity = float(self.alpaca.get_account().last_equity) cur_time = time.time() self.equities.append([cur_time,last_equity]) time.sleep(self.time_interval) def awaitMarketOpen(self): isOpen = self.alpaca.get_clock().is_open while(not isOpen): clock = self.alpaca.get_clock() openingTime = clock.next_open.replace(tzinfo=datetime.timezone.utc).timestamp() currTime = clock.timestamp.replace(tzinfo=datetime.timezone.utc).timestamp() timeToOpen = int((openingTime - currTime) / 60) print(str(timeToOpen) + " minutes til market open.") time.sleep(60) isOpen = self.alpaca.get_clock().is_open def trade(self): state = self.get_state() if self.drl_lib == 'elegantrl': with torch.no_grad(): s_tensor = torch.as_tensor((state,), device=self.device) a_tensor = self.act(s_tensor) action = a_tensor.detach().cpu().numpy()[0] action = (action * self.max_stock).astype(int) elif self.drl_lib == 'rllib': action = self.agent.compute_single_action(state) elif self.drl_lib == 'stable_baselines3': action = self.model.predict(state)[0] else: raise ValueError('The DRL library input is NOT supported yet. Please check your input.') self.stocks_cd += 1 if self.turbulence_bool == 0: min_action = 10 # stock_cd threads = [] for index in np.where(action < -min_action)[0]: # sell_index: sell_num_shares = min(self.stocks[index], -action[index]) qty = abs(int(sell_num_shares)) respSO = [] tSubmitOrder = threading.Thread(target=self.submitOrder(qty, self.stockUniverse[index], 'sell', respSO)) tSubmitOrder.start() threads.append(tSubmitOrder) # record thread for joining later self.cash = float(self.alpaca.get_account().cash) self.stocks_cd[index] = 0 for x in threads: # wait for all threads to complete x.join() threads = [] for index in np.where(action > min_action)[0]: # buy_index: if self.cash < 0: tmp_cash = 0 else: tmp_cash = self.cash buy_num_shares = min(tmp_cash // self.price[index], abs(int(action[index]))) if (buy_num_shares != buy_num_shares): # if buy_num_change = nan qty = 0 # set to 0 quantity else: qty = abs(int(buy_num_shares)) qty = abs(int(buy_num_shares)) respSO = [] tSubmitOrder = threading.Thread(target=self.submitOrder(qty, self.stockUniverse[index], 'buy', respSO)) tSubmitOrder.start() threads.append(tSubmitOrder) # record thread for joining later self.cash = float(self.alpaca.get_account().cash) self.stocks_cd[index] = 0 for x in threads: # wait for all threads to complete x.join() else: # sell all when turbulence threads = [] positions = self.alpaca.list_positions() for position in positions: if(position.side == 'long'): orderSide = 'sell' else: orderSide = 'buy' qty = abs(int(float(position.qty))) respSO = [] tSubmitOrder = threading.Thread(target=self.submitOrder(qty, position.symbol, orderSide, respSO)) tSubmitOrder.start() threads.append(tSubmitOrder) # record thread for joining later for x in threads: # wait for all threads to complete x.join() self.stocks_cd[:] = 0 def get_state(self): alpaca = AlpacaProcessor(api=self.alpaca) price, tech, turbulence = alpaca.fetch_latest_data(ticker_list = self.stockUniverse, time_interval='1Min', tech_indicator_list=self.tech_indicator_list) turbulence_bool = 1 if turbulence >= self.turbulence_thresh else 0 turbulence = (self.sigmoid_sign(turbulence, self.turbulence_thresh) * 2 ** -5).astype(np.float32) tech = tech * 2 ** -7 positions = self.alpaca.list_positions() stocks = [0] * len(self.stockUniverse) for position in positions: ind = self.stockUniverse.index(position.symbol) stocks[ind] = ( abs(int(float(position.qty)))) stocks = np.asarray(stocks, dtype = float) cash = float(self.alpaca.get_account().cash) self.cash = cash self.stocks = stocks self.turbulence_bool = turbulence_bool self.price = price amount = np.array(self.cash * (2 ** -12), dtype=np.float32) scale = np.array(2 ** -6, dtype=np.float32) state = np.hstack((amount, turbulence, self.turbulence_bool, price * scale, self.stocks * scale, self.stocks_cd, tech, )).astype(np.float32) state[np.isnan(state)] = 0.0 state[np.isinf(state)] = 0.0 print(len(self.stockUniverse)) return state def submitOrder(self, qty, stock, side, resp): if(qty > 0): try: self.alpaca.submit_order(stock, qty, side, "market", "day") print("Market order of | " + str(qty) + " " + stock + " " + side + " | completed.") resp.append(True) except: print("Order of | " + str(qty) + " " + stock + " " + side + " | did not go through.") resp.append(False) else: print("Quantity is 0, order of | " + str(qty) + " " + stock + " " + side + " | not completed.") resp.append(True) @staticmethod def sigmoid_sign(ary, thresh): def sigmoid(x): return 1 / (1 + np.exp(-x * np.e)) - 0.5 return sigmoid(ary / thresh) * thresh class StockEnvEmpty(gym.Env): #Empty Env used for loading rllib agent def __init__(self,config): state_dim = config['state_dim'] action_dim = config['action_dim'] self.env_num = 1 self.max_step = 10000 self.env_name = 'StockEnvEmpty' self.state_dim = state_dim self.action_dim = action_dim self.if_discrete = False self.target_return = 9999 self.observation_space = gym.spaces.Box(low=-3000, high=3000, shape=(state_dim,), dtype=np.float32) self.action_space = gym.spaces.Box(low=-1, high=1, shape=(action_dim,), dtype=np.float32) def reset(self): return def step(self, actions): return # + [markdown] id="os4C4-4H7ns7" # ## Run Paper trading # + colab={"base_uri": "https://localhost:8080/"} id="7nw0i-0UN3-7" outputId="25729df7-4775-49af-bf5a-38e3970d0056" print(DOW_30_TICKER) # + colab={"base_uri": "https://localhost:8080/"} id="YsSBK9ION1t6" outputId="49a69655-850f-436b-a21c-fffe48528e71" state_dim # + colab={"base_uri": "https://localhost:8080/"} id="xYtSv6P1N247" outputId="174550ce-664a-41fc-bd89-9d3726960c5b" action_dim # + id="Kl9nulnAJtiI" paper_trading_erl = AlpacaPaperTrading(ticker_list = DOW_30_TICKER, time_interval = '1Min', drl_lib = 'elegantrl', agent = 'ppo', cwd = './papertrading_erl_retrain', net_dim = ERL_PARAMS['net_dimension'], state_dim = state_dim, action_dim= action_dim, API_KEY = API_KEY, API_SECRET = API_SECRET, API_BASE_URL = API_BASE_URL, tech_indicator_list = INDICATORS, turbulence_thresh=30, max_stock=1e2) paper_trading_erl.run() # + [markdown] id="srzBZfYEUI1O" # # Part 4: Check Portfolio Performance # + id="chovN1UhTAht" import alpaca_trade_api as tradeapi import exchange_calendars as tc import numpy as np import pandas as pd import pytz import yfinance as yf import matplotlib.ticker as ticker import matplotlib.dates as mdates from datetime import datetime as dt from finrl.plot import backtest_stats import matplotlib.pyplot as plt # + id="CaofxMNCfAR1" def get_trading_days(start, end): nyse = tc.get_calendar('NYSE') df = nyse.sessions_in_range(pd.Timestamp(start,tz=pytz.UTC), pd.Timestamp(end,tz=pytz.UTC)) trading_days = [] for day in df: trading_days.append(str(day)[:10]) return trading_days def alpaca_history(key, secret, url, start, end): api = tradeapi.REST(key, secret, url, 'v2') trading_days = get_trading_days(start, end) df = pd.DataFrame() for day in trading_days: #df = df.append(api.get_portfolio_history(date_start = day,timeframe='5Min').df.iloc[:78]) df= pd.concat([df,api.get_portfolio_history(date_start = day,timeframe='5Min').df.iloc[:78]],ignore_index=True) equities = df.equity.values cumu_returns = equities/equities[0] cumu_returns = cumu_returns[~np.isnan(cumu_returns)] return df, cumu_returns def DIA_history(start): data_df = yf.download(['^DJI'],start=start, interval="5m") data_df = data_df.iloc[:] baseline_returns = data_df['Adj Close'].values/data_df['Adj Close'].values[0] return data_df, baseline_returns # + [markdown] id="5CHiZRVpURpx" # ## Get cumulative return # + id="O_YT7v-LSdfV" df_erl, cumu_erl = alpaca_history(key=API_KEY, secret=API_SECRET, url=API_BASE_URL, start='2022-09-01', #must be within 1 month end='2022-09-12') #change the date if error occurs # + colab={"base_uri": "https://localhost:8080/"} id="IMcQjwHOS6Zb" outputId="1fb21460-1da9-4998-f0c0-fcbf5b056e66" df_djia, cumu_djia = DIA_history(start='2022-09-01') # + colab={"base_uri": "https://localhost:8080/", "height": 238} id="PJXPwmx9Ts5o" outputId="c59014eb-c2f9-4be2-8a87-7892cc0b1094" df_erl.tail() # + colab={"base_uri": "https://localhost:8080/"} id="o1Iaw90FTNfU" outputId="0629dca2-d9dd-4c2a-e363-dc0f01daba41" returns_erl = cumu_erl -1 returns_dia = cumu_djia - 1 returns_dia = returns_dia[:returns_erl.shape[0]] print('len of erl return: ', returns_erl.shape[0]) print('len of dia return: ', returns_dia.shape[0]) # + id="2IawaMsDwZni" returns_erl # + [markdown] id="5Z0LEm7KUZ5W" # ## plot and save # + id="Foqk1wIQTQJ3" import matplotlib.pyplot as plt plt.figure(dpi=1000) plt.grid() plt.grid(which='minor', axis='y') plt.title('Stock Trading (Paper trading)', fontsize=20) plt.plot(returns_erl, label = 'ElegantRL Agent', color = 'red') #plt.plot(returns_sb3, label = 'Stable-Baselines3 Agent', color = 'blue' ) #plt.plot(returns_rllib, label = 'RLlib Agent', color = 'green') plt.plot(returns_dia, label = 'DJIA', color = 'grey') plt.ylabel('Return', fontsize=16) plt.xlabel('Year 2021', fontsize=16) plt.xticks(size = 14) plt.yticks(size = 14) ax = plt.gca() ax.xaxis.set_major_locator(ticker.MultipleLocator(78)) ax.xaxis.set_minor_locator(ticker.MultipleLocator(6)) ax.yaxis.set_minor_locator(ticker.MultipleLocator(0.005)) ax.yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=2)) ax.xaxis.set_major_formatter(ticker.FixedFormatter(['','10-19','','10-20', '','10-21','','10-22'])) plt.legend(fontsize=10.5) plt.savefig('papertrading_stock.png') # + id="O_LsHVj_TZGL"
53,478
/Assignment_scarpingdata_from _Poineer.ipynb
a66db9fe6375f07eba6ff28e7f401859bff0e5a1
[]
no_license
leenachatterjee/FliprobointernshipLeena
https://github.com/leenachatterjee/FliprobointernshipLeena
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
179,015
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + import pandas as pd import numpy as np import requests import selenium from selenium import webdriver from bs4 import BeautifulSoup #importing the Web driver dr=webdriver.Chrome("chromedriver.exe") import time # Importing required Exceptions which needs to handled from selenium.common.exceptions import StaleElementReferenceException, NoSuchElementException import re # - url="https://www.dailypioneer.com/archive/" dr.get(url) April=dr.find_element_by_xpath('//div[@class="frst-timeline archiveTimeline frst-date-opposite frst-left-align"]/div[6]/div/div/ul/li[4]/a') April dr.get(April.get_attribute('href')) url=[] # + for j in dr.find_elements_by_xpath('//div[@class="pagingList"]/ul/li/a'): url.append(j.get_attribute('href')) url # - url A=[] for i in url: for i in dr.find_elements_by_xpath('//div[@class="innerNewsList"]/div/div/h2/a'): A.append(i.get_attribute('href')) A # + date_att=[] date=dr.find_elements_by_xpath('//div[@class="innerNewsList"]/div/div/h2/a') # - date_att HeadS_Line=[] for i in A: dr.get(i) time.sleep(3) try: HeadS_Line_tag=dr.find_element_by_xpath('//h2[@itemprop="headline"]') HeadS_Line.append(HeadS_Line_tag.text) except NoSuchElementException: HeadS_Line.append(" ") HeadS_Line Head_Line=[] # + for i in date_att: dr.get(i) time.sleep(3) try: Head_Line_tag=dr.find_element_by_xpath('//h2[@itemprop="headline"]') Head_Line.append(Head_Line_tag.text) except NoSuchElementException: Head_Line.append(" ") # - Head_Line A # + T2=[] # - for i in A: dr.get(i) time.sleep(3) try: A1_tag=dr.find_element_by_xpath('//span[@itemprop="datePublished"]') T2.append(A1_tag.text) except NoSuchElementException: T2.append(" ") T2 # + Author=[] for i in A: dr.get(i) time.sleep(3) try: A_tag=dr.find_element_by_xpath('//span[@itemprop="author"]') Author.append(A_tag.text) except NoSuchElementException: Author.append(" ") # - Author # + P=[] for i in A: dr.get(i) time.sleep(3) try: P_tag=dr.find_element_by_xpath('//div[@class="newsDetailedContent"]') P.append(P_tag.text) except NoSuchElementException: P.append(" ") # - P data=pd.DataFrame({}) data['HeadLine']=HeadS_Line[:500] data['Time']=T2[:500] data['Author']=Author[:500] data['Paragraph']=P[:500] data df=data.copy() df.head() df.to_csv('A.csv', index=False) df.to_excel('B.xlsx')
2,833
/rf_model.ipynb
1f74aaaac5c042ca79fdefee891b4e6c8f1ccf4b
[ "MIT" ]
permissive
ENEmyr/autotrading
https://github.com/ENEmyr/autotrading
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
29,921
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import numpy as np import math, os, sys import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestRegressor dataset = np.load('dataset/all_data-preprocessed.npz') features, labels = dataset['features'].astype('float32'), dataset['labels'].astype('float32') train_test_split_factor = .8 validation_split_factor = .2 train_x, train_y, test_x, test_y = features[:math.floor(len(features)*train_test_split_factor)], labels[:math.floor(len(labels)*train_test_split_factor)], features[math.floor(len(features)*train_test_split_factor):], labels[math.floor(len(labels)*train_test_split_factor):] train_x, test_x = np.expand_dims(train_x, axis=-1), np.expand_dims(test_x, axis=-1) # for use with TimeDistributed input_shape = train_x.shape print(train_x.shape, train_y.shape, test_x.shape, test_y.shape) train_x = train_x.reshape(train_x.shape[0], 7).astype('float32') test_x = test_x.reshape(test_x.shape[0], 7).astype('float32') print(train_x.shape, test_x.shape) model = RandomForestRegressor(n_estimators=200 ,max_depth=10,random_state=0) model.fit(train_x, train_y) pred = model.predict(test_x[:64]) close_pred = np.reshape(pred, (-1, 1)) test_y_reshape = np.reshape(test_y[:64], (-1, 1)) days = np.arange(1, len(test_y_reshape)+1) plt.plot(days, test_y_reshape, 'b', label='Actual line') plt.plot(days, close_pred, 'r', label='Predicted line') plt.title('RFRegressor') plt.xlabel('Days') plt.ylabel('Close Prices') plt.legend() plt.show() from sklearn.metrics import mean_squared_error as MSE def evaluate(model, test_features, test_labels): predictions = model.predict(test_features) errors = abs(predictions - test_labels) mape = 100 * np.mean(errors / test_labels) accuracy = 100 - mape print('Model Performance') print('Average Error: {:0.4f} degrees.'.format(np.mean(errors))) print('RMSE: {:0.4f}' .format(math.sqrt(MSE(test_y[:64], pred)))) print('Accuracy = {:0.2f}%.'.format(accuracy)) return accuracy accuracy = evaluate(model, test_x, test_y) # save model import joblib joblib.dump(model, 'weights/rf.sav')
2,352
/.ipynb_checkpoints/EDA_ratings_vod-checkpoint.ipynb
2c8d40952984b817786deb11786ecc49461f15c9
[]
no_license
stephanerappeneau/scienceofmovies
https://github.com/stephanerappeneau/scienceofmovies
4
2
null
null
null
null
Jupyter Notebook
false
false
.py
109,336
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # 3. Data Updates # ## 3.1. Rearrange Dataframe oneday_desktop = pd.read_excel("oneday.xlsx", "desktop") oneday_mobile = pd.read_excel("oneday.xlsx", "mobile") oneday_tablet = pd.read_excel("oneday.xlsx", "tablet") period_desktop = pd.read_excel("period.xlsx", "desktop") period_mobile = pd.read_excel("period.xlsx", "mobile") period_tablet = pd.read_excel("period.xlsx", "tablet") def df_toint(df, date_type): df = df.drop(["deviceCategory"], axis=0) df = df.apply(pd.to_numeric) cols = [] for col in df.columns: col = col.replace("X", "") col = col.split(".") if date_type == "oneday": col = col[0] + "/" + col[1] + "/" + col[2] elif date_type == "period": col = col[0] + "/" + col[1] + "/" + col[2] + "-" + col[3] + "/" + col[4] + "/" + col[5] cols.append(col) df.columns = cols return df oneday_dfs = [oneday_desktop, oneday_mobile, oneday_tablet] oneday_desktop, oneday_mobile, oneday_tablet = [df_toint(oneday_df, "oneday") for oneday_df in oneday_dfs] period_dfs = [period_desktop, period_mobile, period_tablet] period_desktop, period_mobile, period_tablet = [df_toint(period_df, "period") for period_df in period_dfs] # ## 3.2. Update Excel with Extracted Data # Run excel in the background. xw.App().visible = False # Detemine which workbook to activate. wb = xw.Book("performance.xlsx") # Detemine which worksheet to activate. sheet_ga = wb.sheets["ga"] # Find the last column of dataframe which is to be written to Excel. oneday_col = sheet_ga.api.UsedRange.Find(oneday_tablet.columns[-1]).address oneday_col = oneday_col.split('$')[1] period_col = sheet_ga.api.UsedRange.Find(period_tablet.columns[-1]).address period_col = period_col.split('$')[1] # Specify where to insert the extracted data. def insert_value(sheet_ga, df, col, ga_dict): for key in ga_dict: sheet_ga.range(col + str(key)).value = df.iloc[:,-1][ga_dict[key]] return sheet_ga ga_dict_desktop = {17:"users", 18:"sessions", 19:"pageviews", 20:"totalEvents", 21:"searchSessions", 22:"campaignPageviews"} ga_dict_mobile = {27:"users", 28:"sessions", 29:"pageviews", 30:"totalEvents", 31:"searchSessions", 32:"campaignPageviews"} ga_dict_tablet = {37:"users", 38:"sessions", 39:"pageviews", 40:"totalEvents", 41:"searchSessions", 42:"campaignPageviews"} sheet_ga = insert_value(sheet_ga, oneday_desktop, oneday_col, ga_dict_desktop) sheet_ga = insert_value(sheet_ga, oneday_mobile, oneday_col, ga_dict_mobile) sheet_ga = insert_value(sheet_ga, oneday_tablet, oneday_col, ga_dict_tablet) sheet_ga = insert_value(sheet_ga, period_desktop, period_col, ga_dict_desktop) sheet_ga = insert_value(sheet_ga, period_mobile, period_col, ga_dict_mobile) sheet_ga = insert_value(sheet_ga, period_tablet, period_col, ga_dict_tablet) # Save and close the workbook. wb.save() wb.close() r = pd.DataFrame() df_other = dft.loc[:,{'value','user_id'}] df_other = df_other.rename(columns = {'value':'titre_ref_score'}) df_other = df_other.merge(dff,how='inner',on='user_id') df_other = df_other.rename(columns = {'value':'titre_other_score'}) df_other['score_ref_moins_other'] = df_other.titre_ref_score-df_other.titre_other_score #calcul de la note moyenne, variance & nb de notes sur le film {titre} meta.loc[meta[meta["titre"]==titre].index,"note_moyenne"] = float(round(dft.value.mean(),2)) meta.loc[meta[meta["titre"]==titre].index,"nb_noteurs"] = dft.value.count() meta.loc[meta[meta["titre"]==titre].index,"ecart_type"] = float(round(dft.value.var(),2)) meta.loc[meta[meta["titre"]==titre].index,"annรฉe"] = dft.year.unique()[0] meta.loc[meta[meta["titre"]==titre].index,"nb_films_moyens_vus_par_noteur"] = int(len(df_other)/dft.value.count()) meta.loc[meta[meta["titre"]==titre].index,"ecart_moyen_other_movies"] = float(round(df_other.score_ref_moins_other.mean(),2)) meta.sort_values(by="nb_noteurs", ascending=False) # + #Zoomons sur eros + massacre (un film trรจs apprรฉciรฉ) et le sang sรฉchรฉ (un film peu apprรฉciรฉ) dft = df[df["title"]=="Eros + Massacre"] #"Le Sang sรฉchรฉ"] if len(dft)>0: #Rรฉcupรฉration des autres films vus par les utilisateurs ayant notรฉ le film {titre} et diffรฉrentiel de notes df_other = pd.DataFrame() df_other = dft.loc[:,{'value','user_id'}] df_other = df_other.rename(columns = {'value':'titre_ref_score'}) df_other = df_other.merge(dff,how='inner',on='user_id') df_other = df_other.rename(columns = {'value':'titre_other_score'}) df_other['score_ref_moins_other'] = df_other.titre_ref_score-df_other.titre_other_score # Distrib du nb de note par utilisateur rg = df_other.groupby('user_id').count()['year'] plt.hist(rg,bins=range(500,9000,500)) plt.xlabel("# of rating") plt.ylabel("# of users") plt.title("Distribution of vodkaster number of ratings by user") #On affiche plt.show() #COnclusion : pour le titre de "eros + massacre", le film a รฉtรฉ vu par des gros power users (3k films par user en moyenne oO) # - #quels sont les autres films qui ont รฉtรฉ les plus vus par ceux qui ont vu 'eros + massacre' ? df_other.groupby('title').count()['user_id'].sort_values(ascending=False)[:10] #en toute logique on a les films les plus populaires qui apparaissent....il faudrait virer les films 'trop vus' #ceux qui apparaissent plus de fois que le nb de users correspondent ร  des films qui ont le mรชme titre #pour eliminer le pb il suffit de grouper par identifiant unique df_other[:10] # + #Comment les users ont t'ils apprรฉciรฉ ce film par rapport au reste de leur collection ? plt.hist(df_other.score_ref_moins_other,bins=np.arange(-5,5,0.5)) plt.xlabel("ecart de note avec "+titre) plt.ylabel("# of movies") plt.title("Distribution des ecarts de note avec {}, moyenne รฉcart {} (diff>0 signifie film en moyenne plus apprรฉciรฉ)".format(titre, df_other.score_ref_moins_other.mean())) plt.plot([0,0], [0,10000], color='red', linestyle='-', linewidth=1) #On affiche plt.show() #Pour Eros+M, le film est en moyenne aprรฉciรฉ 1 cran au dessus des autres films vus par les users l'ayant notรฉ # - #Quels sont films les plus proches et les plus lointains en terme de note dft = df_other.groupby('title')['score_ref_moins_other'].agg(['mean','count']).reset_index().sort_values(ascending=False, by ='mean') #n'affichons que ceux qui ont รฉtรฉ vus au moins par 5 users dft[dft['count']>5] #intepretation : c'est interessant parce que รงa commence ร  "polariser" les gouts, trรจs clairement #les films les plus lointains nรฉgativement sont des boues et les plus lointains positivements #sont des films "artsy" et vus uniquement par un public de connaisseurs #et si on enlรจve le filtre d'un film vu par aux moins 5 users, on voit plus spรฉcifiquement pointer des films vus par des #connaisseurs en cinรฉma japonais # Idรฉes # - faire un scatterplot pour chaque film entre nb de voteur et note moyenne en รฉcart # - crรฉer N subplots pour toute la liste des films de yoshida pour avoir une meilleure idรฉe du positionnement dans un cursus de cinรฉphile # - tracer un "criticogramme" e.g quand temporellement un mec a notรฉ les yoshida dans son "cursus" de cinรฉphile => besoin de la date de la notation. # - question : comment sรฉlectionner les films "aux antipodes" ? comment gรฉrer la popularitรฉ ? # - idรฉe ร  venir : moteur de recommandation (filtrage collaboratif) # # Sinon # - difficultรฉ de jointure imdb # - feedback D3.js # - feedback neo4j # # A faire # - apparition des ratings de yoshida/oshima dans le temps, par film # - apparition des ratings de yoshida/oshima dans le temps, par utilisateur pour ceux qui vu plus que N films # vs niveau d'activitรฉ de l'utilisateur # - regression / prรฉdiction # - montrer les films qui ont des pics de notation (trolls) # - รฉvolution des notes au fil du cursus cinรฉphile # - montrage les utilisateurs les plus actifs # - รฉvolution frรฉquence personnages gays au fil des annรฉes
8,221
/Arrays.ipynb
15d55110b75484f4f07759b64f71fe317ae94ecc
[]
no_license
Chandrakanth10/Pythontest-
https://github.com/Chandrakanth10/Pythontest-
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
20,180
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %matplotlib inline import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns iris = sns.load_dataset("iris") iris.head() group = iris.groupby("species") group.head() group.first() iris.describe() iris = sns.load_dataset("iris") sns.stripplot(x="sepal_length", y="petal_length", data=iris); sns.boxplot(x="sepal_length", y="petal_length", hue="species", data=iris); sns.regplot(x = 'sepal_length', y = 'petal_length', data = iris) sns.factorplot(x="sepal_length", y="petal_length", hue="petal_width", col="species", data=iris, kind="swarm"); sns.jointplot(x = 'petal_length', y = 'petal_width', data = iris) sns.pairplot(hue = 'species', data = iris) gapminder = pd.read_csv("https://raw.githubusercontent.com/swcarpentry/python-novice-gapminder/gh-pages/data/asia_gdp_per_capita.csv") gapminder.head() gapminder.columns iris.columns gapminder.to_csv('gapminder.csv') gap2 = pd.read_csv('gapminder.csv') save under new file name gap2 gap2.head() y module # import array # import array as arr {the mostly used array importing method} # from array import * {imports all the components present in the array module} # + #Method -1 # import array # a=array.array('i',[1,2,3,4,5,6]) #The first array is the name of the module #The second array is array constructor #The 'i' reffers to the type code; type code - type of the data type that can be inserted into the array # + #Method -2 # import array as arr # Here, the arr is the alias name # a=arr.array('i',[1,2,3,4,5,6]) # a # + #Method -3 #from array import * # a=arr.array('i',[1,2,3,4,5,6]) # a # + # Insertion and deletion of arrays will be a bit difficult # Insertion of a element at the end of the array will be easy # Insertion will be difficult if we need to add a element at the middle of the array # The insertion of element at the middle of the array will result in moving the elements one step backword # The insertion operation at the middle is not an efficient task as we need to move all the elements # In the worse case, the operation can take Linear Time or O(N) to perform insertion operation # Deletion also causes a similar peoblem as that of the Insertion operation # When we delete an element, we need to move the remaining elements one step forward # Each individual byte of memory can be stored or retrived on O(1) time # Time Complexity # Add a new item :- O(1) # Insert item into a given index:- O(N) # Removing last item:- O(1) # Removing the middle item:- O(N) # - # # Accessing array Elements # + #To access array elements, we need to access with the help of index of the element #Indexing always starts from 0 #Negative indexing can also be used,Negative indexing - the indexing starts from the reverse order of traversal. #By using negative indexing, we can access the array elements from the end # - import array as arr a=arr.array('i',[1,2,3,4,5,6]) a a[2] a[-2] # # Basic array Operations # + #Arrays are mutable; mutable - which means they can be changable #Some of the Basic operations in the Arrays are #Finding the length of an array #Adding/ Changing element of an array #Removing/ Deleting elements of an array #Array Concatenation #Slicing #Looping through an array # - # # Finding length of an array # + #TO find the length of an array, we can use the len() function to achive this. #The len() function returns an integer value that is equal to number of elements present in that array #The len() function takes only one input parameter, i.e the name of the array len(a) # - # # Adding elements to the array # + #There are three methods to add elements to an arrary: #1.append():- used when we want to add a single element to the array #2.extend():- used to add when we want to add more than one element to the array at the end #3.insert():- Used when we want to add an element at a specific position of the array #When we use the extend function, we need to specify the values in the square brackets # - a a.append(8) a a.extend([9,34,53]) a # + a.insert(1,6) a #in the index function, the first value will be the array index where the value should be added #The second value will be the data that should be added to the array # - # # Removing elements of an Array # + # TO temove the elements of the array, we can use two methods: #1. pop() :- used when we want to remove an element and to return it #2. remove() :- Used when we want to remove an element with a specific value without returnng it #The pop() function can take no parameters or only one parameter. #The parameter pop() function can take is the index of the element #If we dont specify any parameter, the pop() function returns the last element in the array #The remove() function takes only one parameter that is the element that is to be removed # - a a.pop() a a.pop(-2) a a.remove(6) #Here in this case, the 1st occurance of '6' will be removed a # # Array Concatination # + #concatination means joining #Array concatination can be done with "+" symbol #One rule is that both the arrays should have the same type code # When we try to concatenate of different data types, we get TypeError # - b=arr.array('i',[1,2,3,4,5,6,7]) c=arr.array('i',[23,25,26,27]) d=arr.array('i') d=b+c d # # Slicing an Array # + #Slicing actually means, fetching particulat values into the array in a certain range #An array can be sliced using the : symbol #This returns the range of elements that we have specified by the index numbers #Slicing an array only returns the values, but dosent remove the values from the array # - d d[0:5] #Here the index starts from index 0 and then goes till 5. Dosent include the value at index position 5 d d[0:-2] d[0:-3] d[::-1] d # + #[::-1] - reprints the reversed copy of the array, dosent reverse the array #This method is not preffered, because it exhausts the memory # - # # Looping through an array # + #There are two type of loops: # 1. for :- for loop iterates over the items of an array specified number of times # 2. while :- While loop iterates over the elements until a certain condition is met # 3 conditions to use while loop # 1:- initialise the iterator # 2:- Specify a condition # 3:- increment the iterator #If we dont increment the iterator, the while loop will go on for - ever # - d for x in d: print(x) for x in d[0:5]: print(x) d # + #Here the iterator is named as temp; we can use any name we want temp = 0 while temp<d[2]: print(d[temp]) temp = temp+1 # - a temp=0 while temp<len(a): print(a[temp]) temp +=1 rch.std(dataFunc(b), unbiased=False))) unbiased.append(sampleKTimes(iters, lambda: torch.std(dataFunc(b), unbiased=True))) biasedFixed.append(sampleKTimes(iters, lambda: torch.std(dataFunc(b)*getCorrectionBiased(b), unbiased=False))) unbiasedFixed.append(sampleKTimes(iters, lambda: torch.std(dataFunc(b)*getCorrectionUnbiased(b), unbiased=True))) if not returnResults: fig = plt.figure(figsize=(10,10)) ax1 = fig.add_subplot(211) ax1.plot(batchSizes,biased, label="Biased " + str(iters) + " iters") ax1.plot(batchSizes,unbiased, label="Unbiased " + str(iters) + " iters") ax1.plot(batchSizes,biasedFixed, label="Biased fixed " + str(iters) + " iters") ax1.plot(batchSizes,unbiasedFixed, label="Unbiased fixed " + str(iters) + " iters") ax1.set_ylabel('Estimated Standard Deviation') ax1.set_xlabel('Batch Size') ax1.legend() else: return batchSizes, biased, unbiased, biasedFixed, unbiasedFixed runComparisonVarianceExperiment(iters=10000, maxBatchSize=40, dataFunc=dataFunc) runComparisonVarianceExperiment(iters=10000, maxBatchSize=40, dataFunc=lambda batchSize: torch.normal(10, 0.1, [batchSize])) # So that's all great, but how does this relate to actual neural networks? Lets see if these still hold up. To do that, what we will do is make a single layer, then make a "fixup layer" that tries to make the outputs of that layer zero mean and one standard deviation. If our estimations are too far off, we will end up not getting the correct output statistics. class FeedforwardLayer(torch.nn.Module): def __init__(self, inSize, outSize): super().__init__() self.inSize = inSize self.outSize = outSize self.weights = nn.Parameter(torch.normal(0, 1, [inSize, outSize])) self.bias = nn.Parameter(torch.normal(0, 1, [outSize])) def forward(self, x): res = [email protected]+self.bias return res def generateInputData(self, batchSize): return torch.normal(0, 1, [batchSize, self.inSize]) class FixupLayer(torch.nn.Module): def __init__(self, layer, fixupIters, fixupBatchSize, applyCorrection=True, eps=0.01): super().__init__() assert fixupBatchSize>1, "Fixup batch size needs to be greater than one to compute std" self.fixupIters, self.fixupBatchSize = fixupIters, fixupBatchSize self.layer = layer x = layer.generateInputData(fixupBatchSize) layerOutput = layer(x) layerOutputShape = list(layerOutput.shape)[1:] self.avgStd = torch.ones(layerOutputShape) self.avgMean = torch.zeros(layerOutputShape) for i in range(fixupIters): x = layer.generateInputData(fixupBatchSize) y = layer(x) std = y.std(axis=0) if applyCorrection: std = std*getCorrectionUnbiased(fixupBatchSize) self.avgStd += std self.avgMean += y.mean(axis=0) self.avgStd /= float(fixupIters) self.avgMean /= float(fixupIters) # Make sure it's not too small so we don't get nans self.avgStd = torch.clamp(self.avgStd, min=eps) def forward(self, x): return (self.layer(x)-self.avgMean)/self.avgStd def runFixupExperiment(layer, fixupIters, maxBatchSize, sampleIters, layerInputs, layerOutputs, ax=None, **kwargs): batchSizes = [] uncorrected = [] corrected = [] for b in range(2, maxBatchSize): fixupUncorrected = FixupLayer(layer, fixupIters=fixupIters, fixupBatchSize=b, applyCorrection=False) fixupCorrected = FixupLayer(layer, fixupIters=fixupIters, fixupBatchSize=b, applyCorrection=True) # Use a large enough batch size that we can get the correct estimate for comparing uncorrected.append(sampleKTimes(sampleIters, lambda: torch.std(fixupUncorrected(torch.normal(0, 1, [2000, layerInputs]))))) corrected.append(sampleKTimes(sampleIters, lambda: torch.std(fixupCorrected(torch.normal(0, 1, [2000, layerInputs]))))) batchSizes.append(b) if ax is None: fig = plt.figure(figsize=(20,20)) ax = fig.add_subplot(211) ax.plot(batchSizes,uncorrected, '--', label="Unorrected " + str(fixupIters) + " iters (" + str(layerInputs) + "," + str(layerOutputs) + ")" + str(kwargs)) ax.plot(batchSizes,corrected, label="Corrected " + str(fixupIters) + " iters (" + str(layerInputs) + "," + str(layerOutputs) + ")" + str(kwargs)) ax.set_ylabel('Standard Deviation') ax.set_xlabel('Fixup Batch Size') ax.legend() return ax # + def runExperiement(layerInputs, layerOutputs, ax=None): layer = FeedforwardLayer(layerInputs, layerOutputs) return runFixupExperiment(layer=layer, fixupIters=1000, maxBatchSize=20, sampleIters=10, layerInputs=layerInputs, layerOutputs=layerOutputs, ax=ax) ax = runExperiement(100, 10) ax = runExperiement(10, 10, ax=ax) ax = runExperiement(10, 100, ax=ax) # - # Great, so we see that the adjustment seems to help, and also that the ratio between inputs and outputs doesn't seem to matter much. What if we add an activation function? # + class SoftRELULayer(torch.nn.Module): def __init__(self, weightLess, offset): super().__init__() self.weightLess = weightLess self.offset = offset def forward(self, x): biggerThan = torch.max(torch.tensor([0.0]), x) lessThan = torch.min(torch.tensor([0.0]), x) return biggerThan + lessThan*self.weightLess - self.offset class DenseLayer(torch.nn.Module): def __init__(self, inSize, outSize, act): super().__init__() self.inSize, self.outSize, self.act = inSize, outSize, act self.feedforward = FeedforwardLayer(inSize, outSize) def forward(self, x): return self.act(self.feedforward(x)) def generateInputData(self, bs): return torch.normal(0, 1, [bs, self.inSize]) # + def runExperiement(layerInputs, layerOutputs, ax=None, **kwargs): layer = DenseLayer(layerInputs, layerOutputs, act=SoftRELULayer(**kwargs)) print(layerInputs, layerOutputs, kwargs) return runFixupExperiment(layer=layer, fixupIters=1000, maxBatchSize=20, sampleIters=20, layerInputs=layerInputs, layerOutputs=layerOutputs, ax=ax, **kwargs) ax = runExperiement(10, 10, weightLess=0.0, offset=0.0) ax = runExperiement(10, 10, weightLess=1.0, offset=0.0, ax=ax) ax = runExperiement(10, 10, weightLess=2.0, offset=0.0, ax=ax) ax = runExperiement(10, 10, weightLess=0.5, offset=0.0, ax=ax) # + ax = runExperiement(10, 10, weightLess=0.0, offset=0.5) ax = runExperiement(10, 10, weightLess=1.0, offset=0.5, ax=ax) ax = runExperiement(10, 10, weightLess=2.0, offset=0.5, ax=ax) ax = runExperiement(10, 10, weightLess=0.5, offset=0.5, ax=ax) # - # That's interesting. Fixup seems to work as long we don't use "pure" RELU. Let's try something very close to pure RELU to verify this: ax = runExperiement(10, 10, weightLess=0.001, offset=0.0) ax = runExperiement(10, 10, weightLess=0.01, offset=0.0, ax=ax) ax = runExperiement(10, 10, weightLess=0.1, offset=0.0, ax=ax) ax = runExperiement(10, 10, weightLess=0.3, offset=0.0, ax=ax) ax = runExperiement(10, 10, weightLess=1.5, offset=0.0) ax = runExperiement(10, 10, weightLess=3.0, offset=0.0, ax=ax) ax = runExperiement(10, 10, weightLess=10.0, offset=0.0, ax=ax) ax = runExperiement(10, 10, weightLess=100.0, offset=0.0, ax=ax) layerInputs = 100 layerOutputs = 10 layer = FeedforwardLayer(layerInputs, layerOutputs) runFixupExperiment(layer=layer, fixupIters=1000, maxBatchSize=20, sampleIters=1000, layerInputs=layerInputs, layerOutputs=layerOutputs) def adjustedStd(x, batchSize, unbiased=True, **kwargs): if unbiased: return torch.std(x, unbiased=unbiased, **kwargs)*getCorrectionUnbiased(batchSize) else: return torch.std(x, unbiased=unbiased, **kwargs)*getCorrectionBiased(batchSize) test_pr = pr.fit_transform(x_test[['horsepower']]) lr.fit(x_train_pr, y_train) Rsqu_test.append(lr.score(x_test_pr, y_test)) plt.plot(order, Rsqu_test) plt.xlabel('order') plt.ylabel('R^2') plt.title('R^2 Using Test Data') plt.text(3, 0.75, 'Maximum R^2 ') # - # We see the R^2 gradually increases until an order three polynomial is used. Then the R^2 dramatically decreases at four. # The following function will be used in the next section; please run the cell. def f(order, test_data): x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=test_data, random_state=0) pr = PolynomialFeatures(degree=order) x_train_pr = pr.fit_transform(x_train[['horsepower']]) x_test_pr = pr.fit_transform(x_test[['horsepower']]) poly = LinearRegression() poly.fit(x_train_pr,y_train) PollyPlot(x_train[['horsepower']], x_test[['horsepower']], y_train,y_test, poly, pr) # The following interface allows you to experiment with different polynomial orders and different amounts of data. # + jupyter={"outputs_hidden": false} interact(f, order=(0, 6, 1), test_data=(0.05, 0.95, 0.05)) # - # <div class="alert alert-danger alertdanger" style="margin-top: 20px"> # <h1> Question #4a):</h1> # # <b>We can perform polynomial transformations with more than one feature. Create a "PolynomialFeatures" object "pr1" of degree two?</b> # </div> # + pr1=PolynomialFeatures(degree=2) x_train_pr1=pr.fit_transform(x_train[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']]) x_test_pr1=pr.fit_transform(x_test[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']]) print("number of test samples :", x_test_pr1[0]) print("number of training samples:",x_train_pr1.shape[0]) poly1=linear_model.LinearRegression().fit(x_train_pr1,y_train) yhat_test1=poly1.predict(x_test_pr1) Title='Distribution Plot of Predicted Value Using Test Data vs Data Distribution of Test Data' DistributionPlot(y_test, yhat_test1, "Actual Values (Test)", "Predicted Values (Test)", Title) # - # <div class="alert alert-danger alertdanger" style="margin-top: 20px"> # <h1> Question #4b): </h1> # # <b> # Transform the training and testing samples for the features 'horsepower', 'curb-weight', 'engine-size' and 'highway-mpg'. Hint: use the method "fit_transform" # ?</b> # </div> # Double-click <b>here</b> for the solution. # # <!-- The answer is below: # # x_train_pr1=pr.fit_transform(x_train[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']]) # # x_test_pr1=pr.fit_transform(x_test[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']]) # # --> # <!-- The answer is below: # # x_train_pr1=pr.fit_transform(x_train[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']]) # x_test_pr1=pr.fit_transform(x_test[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']]) # # --> # <div class="alert alert-danger alertdanger" style="margin-top: 20px"> # <h1> Question #4c): </h1> # <b> # How many dimensions does the new feature have? Hint: use the attribute "shape" # </b> # </div> # Double-click <b>here</b> for the solution. # # <!-- The answer is below: # # There are now 15 features: x_train_pr1.shape # # --> # <div class="alert alert-danger alertdanger" style="margin-top: 20px"> # <h1> Question #4d): </h1> # # <b> # Create a linear regression model "poly1" and train the object using the method "fit" using the polynomial features?</b> # </div> # Double-click <b>here</b> for the solution. # # <!-- The answer is below: # # poly1=linear_model.LinearRegression().fit(x_train_pr1,y_train) # # --> # <div class="alert alert-danger alertdanger" style="margin-top: 20px"> # <h1> Question #4e): </h1> # <b>Use the method "predict" to predict an output on the polynomial features, then use the function "DistributionPlot" to display the distribution of the predicted output vs the test data?</b> # </div> # Double-click <b>here</b> for the solution. # # <!-- The answer is below: # # yhat_test1=poly1.predict(x_test_pr1) # Title='Distribution Plot of Predicted Value Using Test Data vs Data Distribution of Test Data' # DistributionPlot(y_test, yhat_test1, "Actual Values (Test)", "Predicted Values (Test)", Title) # # --> # <div class="alert alert-danger alertdanger" style="margin-top: 20px"> # <h1> Question #4f): </h1> # # <b>Use the distribution plot to determine the two regions were the predicted prices are less accurate than the actual prices.</b> # </div> # Double-click <b>here</b> for the solution. # # <!-- The answer is below: # # The predicted value is lower than actual value for cars where the price $ 10,000 range, conversely the predicted price is larger than the price cost in the $30, 000 to $40,000 range. As such the model is not as accurate in these ranges . # # --> # # <img src = "https://ibm.box.com/shared/static/c35ipv9zeanu7ynsnppb8gjo2re5ugeg.png" width = 700, align = "center"> # # <h2 id="ref3">Part 3: Ridge regression</h2> # In this section, we will review Ridge Regression we will see how the parameter Alfa changes the model. Just a note here our test data will be used as validation data. # Let's perform a degree two polynomial transformation on our data. pr=PolynomialFeatures(degree=2) x_train_pr=pr.fit_transform(x_train[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg','normalized-losses','symboling']]) x_test_pr=pr.fit_transform(x_test[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg','normalized-losses','symboling']]) # Let's import <b>Ridge</b> from the module <b>linear models</b>. from sklearn.linear_model import Ridge # Let's create a Ridge regression object, setting the regularization parameter to 0.1 RigeModel=Ridge(alpha=0.1) # Like regular regression, you can fit the model using the method <b>fit</b>. # + jupyter={"outputs_hidden": false} RigeModel.fit(x_train_pr, y_train) # - # Similarly, you can obtain a prediction: # + jupyter={"outputs_hidden": false} yhat = RigeModel.predict(x_test_pr) # - # Let's compare the first five predicted samples to our test set # + jupyter={"outputs_hidden": false} print('predicted:', yhat[0:4]) print('test set :', y_test[0:4].values) # - # We select the value of Alfa that minimizes the test error, for example, we can use a for loop. # + jupyter={"outputs_hidden": false} Rsqu_test = [] Rsqu_train = [] dummy1 = [] ALFA = 10 * np.array(range(0,1000)) for alfa in ALFA: RigeModel = Ridge(alpha=alfa) RigeModel.fit(x_train_pr, y_train) Rsqu_test.append(RigeModel.score(x_test_pr, y_test)) Rsqu_train.append(RigeModel.score(x_train_pr, y_train)) # - # We can plot out the value of R^2 for different Alphas # + jupyter={"outputs_hidden": false} width = 12 height = 10 plt.figure(figsize=(width, height)) plt.plot(ALFA,Rsqu_test, label='validation data ') plt.plot(ALFA,Rsqu_train, 'r', label='training Data ') plt.xlabel('alpha') plt.ylabel('R^2') plt.legend() # - # Figure 6:The blue line represents the R^2 of the test data, and the red line represents the R^2 of the training data. The x-axis represents the different values of Alfa # The red line in figure 6 represents the R^2 of the test data, as Alpha increases the R^2 decreases; therefore as Alfa increases the model performs worse on the test data. The blue line represents the R^2 on the validation data, as the value for Alfa increases the R^2 decreases. # <div class="alert alert-danger alertdanger" style="margin-top: 20px"> # <h1> Question #5): </h1> # # Perform Ridge regression and calculate the R^2 using the polynomial features, use the training data to train the model and test data to test the model. The parameter alpha should be set to 10. # </div> # + jupyter={"outputs_hidden": false} # Write your code below and press Shift+Enter to execute RigeModel = Ridge(alpha=0) RigeModel.fit(x_train_pr, y_train) RigeModel.score(x_test_pr, y_test) # - # Double-click <b>here</b> for the solution. # # <!-- The answer is below: # # RigeModel = Ridge(alpha=0) # RigeModel.fit(x_train_pr, y_train) # RigeModel.score(x_test_pr, y_test) # # --> # <h2 id="ref4">Part 4: Grid Search</h2> # The term Alfa is a hyperparameter, sklearn has the class <b>GridSearchCV</b> to make the process of finding the best hyperparameter simpler. # Let's import <b>GridSearchCV</b> from the module <b>model_selection</b>. # + jupyter={"outputs_hidden": false} from sklearn.model_selection import GridSearchCV # - # We create a dictionary of parameter values: # + jupyter={"outputs_hidden": false} parameters1= [{'alpha': [0.001,0.1,1, 10, 100, 1000, 10000, 100000, 100000]}] parameters1 # - # Create a ridge regions object: # + jupyter={"outputs_hidden": false} RR=Ridge() RR # - # Create a ridge grid search object # + jupyter={"outputs_hidden": false} Grid1 = GridSearchCV(RR, parameters1,cv=4) # - # Fit the model # + jupyter={"outputs_hidden": false} Grid1.fit(x_data[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']], y_data) # - # The object finds the best parameter values on the validation data. We can obtain the estimator with the best parameters and assign it to the variable BestRR as follows: # + jupyter={"outputs_hidden": false} BestRR=Grid1.best_estimator_ BestRR # - # We now test our model on the test data # + jupyter={"outputs_hidden": false} BestRR.score(x_test[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']], y_test) # - # <div class="alert alert-danger alertdanger" style="margin-top: 20px"> # <h1> Question #6): </h1> # Perform a grid search for the alpha parameter and the normalization parameter, then find the best values of the parameters # </div> # + jupyter={"outputs_hidden": false} # Write your code below and press Shift+Enter to execute parameters2= [{'alpha': [0.001,0.1,1, 10, 100, 1000,10000,100000,100000],'normalize':[True,False]} ] Grid2 = GridSearchCV(Ridge(), parameters2,cv=4) Grid2.fit(x_data[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']],y_data) Grid2.best_estimator_ # - # Double-click <b>here</b> for the solution. # # <!-- The answer is below: # # parameters2= [{'alpha': [0.001,0.1,1, 10, 100, 1000,10000,100000,100000],'normalize':[True,False]} ] # Grid2 = GridSearchCV(Ridge(), parameters2,cv=4) # Grid2.fit(x_data[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']],y_data) # Grid2.best_estimator_ # # --> # <h1>Thank you for completing this notebook!</h1> # <div class="alert alert-block alert-info" style="margin-top: 20px"> # # <p><a href="https://cocl.us/corsera_da0101en_notebook_bottom"><img src="https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/DA0101EN/Images/BottomAd.png" width="750" align="center"></a></p> # </div> # # <h3>About the Authors:</h3> # # This notebook was written by <a href="https://www.linkedin.com/in/mahdi-noorian-58219234/" target="_blank">Mahdi Noorian PhD</a>, <a href="https://www.linkedin.com/in/joseph-s-50398b136/" target="_blank">Joseph Santarcangelo</a>, Bahare Talayian, Eric Xiao, Steven Dong, Parizad, Hima Vsudevan and <a href="https://www.linkedin.com/in/fiorellawever/" target="_blank">Fiorella Wenver</a> and <a href=" https://www.linkedin.com/in/yi-leng-yao-84451275/ " target="_blank" >Yi Yao</a>. # # <p><a href="https://www.linkedin.com/in/joseph-s-50398b136/" target="_blank">Joseph Santarcangelo</a> is a Data Scientist at IBM, and holds a PhD in Electrical Engineering. His research focused on using Machine Learning, Signal Processing, and Computer Vision to determine how videos impact human cognition. Joseph has been working for IBM since he completed his PhD.</p> # <hr> # <p>Copyright &copy; 2018 IBM Developer Skills Network. This notebook and its source code are released under the terms of the <a href="https://cognitiveclass.ai/mit-license/">MIT License</a>.</p>
26,645
/.ipynb_checkpoints/Untitled1-checkpoint.ipynb
c1e5289da4a5ec638fa77716b6bff30f441d181f
[]
no_license
XianyiCheng/videogame_music_generation
https://github.com/XianyiCheng/videogame_music_generation
1
0
null
null
null
null
Jupyter Notebook
false
false
.py
80,980
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + import tensorflow as tf import numpy as np from tqdm import tqdm import CRBM import input_manipulation tf.reset_default_graph() """ This file stores the code for initializing the weights of the RNN-RBM. We initialize the parameters of the RBMs by training them directly on the data with CD-k. We initialize the parameters of the RNN with small weights. """ num_epochs = 20 #The number of epochs to train the CRBM lr = 0.0001 #The learning rate for the CRBM num_conv_filters = 8 conv_strides = 2 span = 123 num_timesteps = 32 size_conv_filters = 4 hidden_width = np.floor((num_timesteps-size_conv_filters)/conv_strides) + 1 n_hidden_recurrent = 100 #Load the Songs songs = input_manipulation.get_songs('Game_Music_Midi') x = tf.placeholder(tf.float32, [None, num_timesteps, span], name="x") #The placeholder variable that holds our data #Testing batch_size = tf.placeholder(tf.int64, [1], name="batch_size") #parameters of CRBM W = tf.Variable(tf.truncated_normal([size_conv_filters, span, 1, num_conv_filters], 0.001), name="W") #The weight matrix of the RBM bh = tf.Variable(tf.zeros([hidden_width,num_conv_filters], tf.float32), name="bh") #The RNN -> RBM hidden bias vector bv = tf.Variable(tf.zeros([num_timesteps, span], tf.float32), name="bv")#The RNN -> RBM visible bias vector #parameters related to RNN Wuh = tf.Variable(tf.random_normal([n_hidden_recurrent, int(hidden_width*num_conv_filters)], 0.0001), name="Wuh") #The RNN -> RBM hidden weight matrix Wuv = tf.Variable(tf.random_normal([n_hidden_recurrent, int(num_timesteps*span)], 0.0001), name="Wuv") #The RNN -> RBM visible weight matrix Wvu = tf.Variable(tf.random_normal([int(num_timesteps*span), n_hidden_recurrent], 0.0001), name="Wvu") #The data -> RNN weight matrix Wuu = tf.Variable(tf.random_normal([n_hidden_recurrent, n_hidden_recurrent], 0.0001), name="Wuu") #The RNN hidden unit weight matrix bu = tf.Variable(tf.zeros([1, n_hidden_recurrent], tf.float32), name="bu") #The RNN hidden unit bias vector u0 = tf.Variable(tf.zeros([1, n_hidden_recurrent], tf.float32), name="u0") #The initial state of the RNN #The RBM bias vectors. These matrices will get populated during rnn-rbm training and generation BH_t = tf.Variable(tf.ones([hidden_width,num_conv_filters], tf.float32), name="BH_t") BV_t = tf.Variable(tf.ones([num_timesteps, span], tf.float32), name="BV_t") #Build the RBM optimization saver = tf.train.Saver() #Note that we initialize the RNN->RBM bias vectors with the bias vectors of the trained RBM. These vectors will form the templates for the bv_t and #bh_t of each RBM that we create when we run the RNN-RBM # - updt = CRBM.get_cd_update_batch(x, W, bv, bh, 1, lr) # + sess = tf.Session() #Initialize the variables of the model init = tf.global_variables_initializer() sess.run(init) #Run over each song num_epoch times for epoch in tqdm(range(20)): for song in songs: sess.run(updt, feed_dict={x: song}) """ for i in range(song.shape[0]): [W_c,bv_c, bh_c]=sess.run(updt, feed_dict={x: song[i,:,:]}) #W = tf.add(W,W_c) #bv = tf.add(bv,bv_c) #bh = tf.add(bh,bh_c) """ # - s = songs[0][0,:,:] x_sample = CRBM.gibbs_sample(s, W, bv, bh, 1) #The sample of the hidden nodes, starting from the visible state of x h = CRBM.crbm_inference(s,W,bh) #The sample of the hidden nodes, starting from the visible state of x_sample h_sample = CRBM.crbm_inference(x_sample, W, bh) #fc = CRBM.free_energy(x_sample, h_sample, W, bv, bh) fc = tf.exp(h_sample) #fc = h_sample g = tf.gradients(fc,h_sample,stop_gradients = h_sample) s = song[0,:,:] x_sample = CRBM.gibbs_sample(s, W, bv, bh, 1) #The sample of the hidden nodes, starting from the visible state of x h = CRBM.crbm_inference(s,W,bh) #The sample of the hidden nodes, starting from the visible state of x_sample h_sample = CRBM.crbm_inference(x_sample, W, bh) #fc = CRBM.free_energy(x_sample, h_sample, W, bv, bh) fc = tf.exp(h_sample) #fc = h_sample g = tf.gradients(fc,h_sample,stop_gradients = h_sample) h_sample.eval(session=sess) h_sample hhh = sess.run(h_sample) print(hhh) print('111') print(sess.run(tf.exp(hhh))) ck</td> # <td>32.2</td> # <td>42</td> # <td>17-Feb-76</td> # <td></td> # <td>9.5</td> # </tr> # <tr> # <td>Bee Gees</td> # <td>Saturday Night Fever</td> # <td>1977</td> # <td>1:15:54</td> # <td>Disco</td> # <td>20.6</td> # <td>40</td> # <td>15-Nov-77</td> # <td>Y</td> # <td>9.0</td> # </tr> # <tr> # <td>Fleetwood Mac</td> # <td>Rumours</td> # <td>1977</td> # <td>00:40:01</td> # <td>Soft rock</td> # <td>27.9</td> # <td>40</td> # <td>04-Feb-77</td> # <td></td> # <td>9.5</td> # </tr> # </table></font> # <hr> # <h2 id="tuple">Tuples</h2> # In Python, there are different data types: string, integer and float. These data types can all be contained in a tuple as follows: # <img src="https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/PY0101EN/Chapter%202/Images/TuplesType.png" width="750" align="center" /> # Now, let us create your first tuple with string, integer and float. # + # Create your first tuple tuple1 = ("disco",10,1.2 ) tuple1 # - # The type of variable is a **tuple**. # + # Print the type of the tuple you created type(tuple1) # - # <h3 id="index">Indexing</h3> # Each element of a tuple can be accessed via an index. The following table represents the relationship between the index and the items in the tuple. Each element can be obtained by the name of the tuple followed by a square bracket with the index number: # <img src="https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/PY0101EN/Chapter%202/Images/TuplesIndex.gif" width="750" align="center"> # We can print out each value in the tuple: # + # Print the variable on each index print(tuple1[0]) print(tuple1[1]) print(tuple1[2]) # - # We can print out the **type** of each value in the tuple: # # + # Print the type of value on each index print(type(tuple1[0])) print(type(tuple1[1])) print(type(tuple1[2])) # - # We can also use negative indexing. We use the same table above with corresponding negative values: # <img src="https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/PY0101EN/Chapter%202/Images/TuplesNeg.png" width="750" align="center"> # We can obtain the last element as follows (this time we will not use the print statement to display the values): # + # Use negative index to get the value of the last element tuple1[-1] # - # We can display the next two elements as follows: # + # Use negative index to get the value of the second last element tuple1[-2] # + # Use negative index to get the value of the third last element tuple1[-3] # - # <h3 id="concate">Concatenate Tuples</h3> # We can concatenate or combine tuples by using the **+** sign: # + # Concatenate two tuples tuple2 = tuple1 + ("hard rock", 10) tuple2 # - # We can slice tuples obtaining multiple values as demonstrated by the figure below: # <img src="https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/PY0101EN/Chapter%202/Images/TuplesSlice.gif" width="750" align="center"> # <h3 id="slice">Slicing</h3> # We can slice tuples, obtaining new tuples with the corresponding elements: # + # Slice from index 0 to index 2 tuple2[0:3] # - # We can obtain the last two elements of the tuple: # + # Slice from index 3 to index 4 tuple2[3:5] # - # We can obtain the length of a tuple using the length command: # + # Get the length of tuple len(tuple2) # - # This figure shows the number of elements: # <img src="https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/PY0101EN/Chapter%202/Images/TuplesElement.png" width="750" align="center"> # <h3 id="sort">Sorting</h3> # Consider the following tuple: # + # A sample tuple Ratings = (0, 9, 6, 5, 10, 8, 9, 6, 2) # - # We can sort the values in a tuple and save it to a new tuple: # + # Sort the tuple RatingsSorted = sorted(Ratings) RatingsSorted # - # <h3 id="nest">Nested Tuple</h3> # A tuple can contain another tuple as well as other more complex data types. This process is called 'nesting'. Consider the following tuple with several elements: # + # Create a nest tuple NestedT =(1, 2, ("pop", "rock") ,(3,4),("disco",(1,2))) # - # Each element in the tuple including other tuples can be obtained via an index as shown in the figure: # <img src="https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/PY0101EN/Chapter%202/Images/TuplesNestOne.png" width="750" align="center"> # + # Print element on each index print("Element 0 of Tuple: ", NestedT[0]) print("Element 1 of Tuple: ", NestedT[1]) print("Element 2 of Tuple: ", NestedT[2]) print("Element 3 of Tuple: ", NestedT[3]) print("Element 4 of Tuple: ", NestedT[4]) # - # We can use the second index to access other tuples as demonstrated in the figure: # <img src="https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/PY0101EN/Chapter%202/Images/TuplesNestTwo.png" width="750" align="center"> # We can access the nested tuples : # + # Print element on each index, including nest indexes print("Element 2, 0 of Tuple: ", NestedT[2][0]) print("Element 2, 1 of Tuple: ", NestedT[2][1]) print("Element 3, 0 of Tuple: ", NestedT[3][0]) print("Element 3, 1 of Tuple: ", NestedT[3][1]) print("Element 4, 0 of Tuple: ", NestedT[4][0]) print("Element 4, 1 of Tuple: ", NestedT[4][1]) # - # We can access strings in the second nested tuples using a third index: # + # Print the first element in the second nested tuples NestedT[2][1][0] # + # Print the second element in the second nested tuples NestedT[2][1][1] # - # We can use a tree to visualise the process. Each new index corresponds to a deeper level in the tree: # <img src="https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/PY0101EN/Chapter%202/Images/TuplesNestThree.gif" width="750" align="center"> # Similarly, we can access elements nested deeper in the tree with a fourth index: # + # Print the first element in the second nested tuples NestedT[4][1][0] # + # Print the second element in the second nested tuples NestedT[4][1][1] # - # The following figure shows the relationship of the tree and the element <code>NestedT[4][1][1]</code>: # <img src="https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/PY0101EN/Chapter%202/Images/TuplesNestFour.gif" width="750" align="center"> # <h2 id="quiz">Quiz on Tuples</h2> # Consider the following tuple: # + # sample tuple genres_tuple = ("pop", "rock", "soul", "hard rock", "soft rock", \ "R&B", "progressive rock", "disco") genres_tuple # - # Find the length of the tuple, <code>genres_tuple</code>: # Write your code below and press Shift+Enter to execute len(genres_tuple) # <img src="https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/PY0101EN/Chapter%202/Images/TuplesQuiz.png" width="1100" align="center"> # Double-click __here__ for the solution. # # <!-- Your answer is below: # len(genres_tuple) # --> # Access the element, with respect to index 3: # Write your code below and press Shift+Enter to execute genres_tuple[3] # Double-click __here__ for the solution. # # <!-- Your answer is below: # genres_tuple[3] # --> # Use slicing to obtain indexes 3, 4 and 5: # Write your code below and press Shift+Enter to execute genres_tuple[3:6] # Double-click __here__ for the solution. # # <!-- Your answer is below: # genres_tuple[3:6] # --> # Find the first two elements of the tuple <code>genres_tuple</code>: # Write your code below and press Shift+Enter to execute genres_tuple[0:2] # Double-click __here__ for the solution. # # <!-- Your answer is below: # genres_tuple[0:2] # --> # Find the first index of <code>"disco"</code>: # Write your code below and press Shift+Enter to execute genres_tuple.index("disco") # Double-click __here__ for the solution. # # <!-- Your answer is below: # genres_tuple.index("disco") # --> # Generate a sorted List from the Tuple <code>C_tuple=(-5, 1, -3)</code>: # Write your code below and press Shift+Enter to execute C_tuple=(-5, 1, -3) sorted(C_tuple) # Double-click __here__ for the solution. # # <!-- Your answer is below: # C_tuple = (-5, 1, -3) # C_list = sorted(C_tuple) # C_list # --> # <hr> # <h2>The last exercise!</h2> # <p>Congratulations, you have completed your first lesson and hands-on lab in Python. However, there is one more thing you need to do. The Data Science community encourages sharing work. The best way to share and showcase your work is to share it on GitHub. By sharing your notebook on GitHub you are not only building your reputation with fellow data scientists, but you can also show it off when applying for a job. Even though this was your first piece of work, it is never too early to start building good habits. So, please read and follow <a href="https://cognitiveclass.ai/blog/data-scientists-stand-out-by-sharing-your-notebooks/" target="_blank">this article</a> to learn how to share your work. # <hr> # <div class="alert alert-block alert-info" style="margin-top: 20px"> # <h2>Get IBM Watson Studio free of charge!</h2> # <p><a href="https://cocl.us/NotebooksPython101bottom"><img src="https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/PY0101EN/Ad/BottomAd.png" width="750" align="center"></a></p> # </div> # <h3>About the Authors:</h3> # <p><a href="https://www.linkedin.com/in/joseph-s-50398b136/" target="_blank">Joseph Santarcangelo</a> is a Data Scientist at IBM, and holds a PhD in Electrical Engineering. His research focused on using Machine Learning, Signal Processing, and Computer Vision to determine how videos impact human cognition. Joseph has been working for IBM since he completed his PhD.</p> # Other contributors: <a href="www.linkedin.com/in/jiahui-mavis-zhou-a4537814a">Mavis Zhou</a> # <hr> # <p>Copyright &copy; 2018 IBM Developer Skills Network. This notebook and its source code are released under the terms of the <a href="https://cognitiveclass.ai/mit-license/">MIT License</a>.</p>
14,659
/DecisionTree-Implementation.ipynb
fec68bd786db1aa25fccc1c92240d63f638b4814
[]
no_license
sakshi2199/MachineLearning
https://github.com/sakshi2199/MachineLearning
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
6,243
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- pip install numpy pandas keras sklearn #Make necessary imports import numpy as np import itertools import pandas as pd from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.metrics import accuracy_score, confusion_matrix #Now lets read the data in a dataframe and take a look at the first few rows df = pd.read_csv("news.csv") df.shape df.head() #Lets get some labels from dataframe labels = df.label labels.head() #Split the dataset into testing and training datasets X_train, X_test, Y_train, Y_test = train_test_split(df['text'],labels,test_size=0.2,random_state=7) #Initialize a tfidvectorizer with stopwords from English and a maximum frequency of 0.7, words with more frequency will be lost. tfidf_vectorizer = TfidfVectorizer(stop_words='english', max_df=0.7) #Fit and transform the training data and transform the training data tfidf_train=tfidf_vectorizer.fit_transform(X_train) tfidf_test=tfidf_vectorizer.transform(X_test) pac = PassiveAggressiveClassifier(max_iter=50) pac.fit(tfidf_train,Y_train) Y_pred = pac.predict(tfidf_test) score = accuracy_score(Y_test,Y_pred) score confusion_matrix(Y_test,Y_pred, labels=['FAKE','REAL']) type="code" colab={"base_uri": "https://localhost:8080/", "height": 118} outputId="b258f11a-2a9d-4a58-bf0d-4443aed37d70" predicted_output # + id="IZK5lztSByJu" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 118} outputId="cec7bf46-8e0b-4e45-b7e9-c2602eac4ebc" test_ans # + id="qsGfhRpAB0RB" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 34} outputId="ab1e0099-02e3-43e2-b08c-e9fcb61aed42" score=accuracy_score(test_ans, predicted_output) score*100 # + id="HgCqCpUFCCRn" colab_type="code" colab={} plt.show() plt.close() # + plt.axis("equal") plt.pie([df['Total Deaths'].max(),df['Total Recoveries'].max()],labels=["Deaths","Recoveries"], shadow=True,colors=["red","green"], autopct='%1.1f%%',radius=1.5,explode=[0,0.1],counterclock=True, startangle=45) plt.savefig("piechart2.png", bbox_inches="tight", pad_inches=1, transparent=False) plt.show() plt.close() # - # Deaths Vs. Recoveries
2,511
/Tutorials/DeepLearningForAudio/Deep Learning for Audio Part 2b - Train and Predict on UrbanSound dataset.ipynb
41beb7c0380573e6e9805b2ef680b233e62a31bb
[ "MIT" ]
permissive
Azure/DataScienceVM
https://github.com/Azure/DataScienceVM
177
112
MIT
2022-12-13T19:55:55
2022-11-22T19:35:11
Jupyter Notebook
Jupyter Notebook
false
false
.py
140,379
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Deep Learning for Audio Part 2b - Train and Predict on UrbanSound dataset # Following the pre-processing code in part 2a, we will train a neural network to achieve the state-of-art performance using a CNN. There are a few published benchmarks, and this paper [Learning from Between-class Examples for Deep Sound Recognition](https://arxiv.org/abs/1711.10282) by Tokozume et al. achieves the state-of-art result with error rate of 21.7%. # + # change the seed before anything else import numpy as np np.random.seed(1) import tensorflow as tf tf.set_random_seed(1) import os import time import keras keras.backend.clear_session() import matplotlib.pyplot as plt import sklearn from keras.models import Sequential from keras.layers import Activation from keras.layers import Convolution2D, MaxPooling2D, Dropout from keras.layers.pooling import GlobalAveragePooling2D from keras.optimizers import Adamax from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.regularizers import l2 from sklearn.metrics import precision_recall_fscore_support, roc_auc_score from keras.layers.normalization import BatchNormalization # + frames = 150 bands = 150 feature_size = bands * frames num_channels = 3 data_dir = "/mnt/us8k-" + str(bands) + "bands-" + str(frames) + "frames-"+str(num_channels)+"channel" num_labels = 10 # - # If you're going to run this code with the full data set, this notebook assumes you've already parsed all the files and saved the numpy array to disk. We will load all the training examples (a set of 43722 examples, the first 8 folds), then use fold9 as the validation fold, and use fold 10 as the test fold. # # this will aggregate all the training data def load_all_folds(test_fold): assert (type(test_fold) == int) assert (test_fold > 0 and test_fold < 11) subsequent_fold = False train_set_range = list(range(1, 11)) train_set_range.remove(test_fold) valid_fold = train_set_range.pop() for k in train_set_range: fold_name = 'fold' + str(k) feature_file = os.path.join(data_dir, fold_name + '_x.npy') labels_file = os.path.join(data_dir, fold_name + '_y.npy') loaded_features = np.load(feature_file) # flip the spectrogram for each channel loaded_features = np.transpose(loaded_features, (0, 2, 1, 3)) loaded_labels = np.load(labels_file) print("Adding ", fold_name, "New Features: ", loaded_features.shape) if subsequent_fold: train_x_loaded = np.concatenate((train_x_loaded, loaded_features)) train_y_loaded = np.concatenate((train_y_loaded, loaded_labels)) else: train_x_loaded = loaded_features train_y_loaded = loaded_labels subsequent_fold = True # use the penultimate fold for validation valid_fold_name = 'fold' + str(valid_fold) feature_file = os.path.join(data_dir, valid_fold_name + '_x.npy') labels_file = os.path.join(data_dir, valid_fold_name + '_y.npy') valid_x = np.load(feature_file) # flip the spectrogram for each channel valid_x = np.transpose(valid_x, (0, 2, 1, 3)) valid_y = np.load(labels_file) # and use the last fold for testing test_fold_name = 'fold' + str(test_fold) feature_file = os.path.join(data_dir, test_fold_name + '_x.npy') labels_file = os.path.join(data_dir, test_fold_name + '_y.npy') test_x = np.load(feature_file) test_x = np.transpose(test_x, (0, 2, 1, 3)) test_y = np.load(labels_file) return train_x_loaded, train_y_loaded, valid_x, valid_y, test_x, test_y # # Training a Convolutional Neural Network with Keras and TensorFlow # This method defines a few evaluation metrics that will be used to evaluate the performance of a trained model. def evaluate(model, test_x, test_y): y_prob = model.predict(test_x, verbose=0) y_pred = np.argmax(y_prob, axis=-1) y_true = np.argmax(test_y, 1) # evaluate the model score, accuracy = model.evaluate(test_x, test_y, batch_size=32) print("\nAccuracy = {:.4f}".format(accuracy)) print("\nError Rate = {:.4f}".format(1. - accuracy)) return accuracy # We use a similar DNN architecture on featurized data as the winning solution to [DCASE 2016 Track 4](http://www.cs.tut.fi/sgn/arg/dcase2016/task-audio-tagging). DCASE is the audio challenge for sound domain and is held every year. The architecture is as below: # # ![CNN Architecture](https://msdnshared.blob.core.windows.net/media/2018/01/013018_0211_HearingAIGe10.png) def build_model(): model = Sequential() # section 1 model.add(Convolution2D(filters=32, kernel_size=5, strides=2, padding="same", kernel_regularizer=l2(0.0001), kernel_initializer="normal", input_shape=(frames, bands, num_channels))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Convolution2D(filters=32, kernel_size=3, strides=1, padding="same", kernel_regularizer=l2(0.0001), kernel_initializer="normal")) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.3)) # section 2 model.add(Convolution2D(filters=64, kernel_size=3, strides=1, padding="same", kernel_regularizer=l2(0.0001), kernel_initializer="normal")) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Convolution2D(filters=64, kernel_size=3, strides=1, padding="same", kernel_regularizer=l2(0.0001), kernel_initializer="normal")) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.3)) # section 3 model.add(Convolution2D(filters=128, kernel_size=3, strides=1, padding="same", kernel_regularizer=l2(0.0001), kernel_initializer="normal")) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Convolution2D(filters=128, kernel_size=3, strides=1, padding="same", kernel_regularizer=l2(0.0001), kernel_initializer="normal")) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Convolution2D(filters=128, kernel_size=3, strides=1, padding="same", kernel_regularizer=l2(0.0001), kernel_initializer="normal")) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Convolution2D(filters=128, kernel_size=3, strides=1, padding="same", kernel_regularizer=l2(0.0001), kernel_initializer="normal")) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.3)) # section 4 model.add(Convolution2D(filters=512, kernel_size=3, strides=1, padding="valid", kernel_regularizer=l2(0.0001), kernel_initializer="normal")) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Convolution2D(filters=512, kernel_size=1, strides=1, padding="valid", kernel_regularizer=l2(0.0001), kernel_initializer="normal")) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.5)) # section 5 model.add(Convolution2D(filters=10, kernel_size=1, strides=1, padding="valid", kernel_regularizer=l2(0.0001), kernel_initializer="normal")) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(GlobalAveragePooling2D()) model.add(Activation('softmax')) # compile and fit model, reduce epochs if you want a result faster # the validation set is used to identify parameter settings (epoch) that achieves # the highest classification accuracy return model # apply scaling factor to a dataset - train, validation or test def do_scale(x4d, verbose = True): """Do scale on the input sequence data. Args: x34d: ndarray, input sequence data, shape: (n_clips, n_time, n_freq, channel) verbose: boolean Returns: Scaled input sequence data. """ t1 = time.time() (n_clips, n_time, n_freq, n_channel) = x4d.shape x4d_scaled = np.zeros(x4d.shape) for channel in range(n_channel): x2d = x4d[:,:,:,channel].reshape((n_clips * n_time, n_freq)) x2d_scaled = scaler_list[channel].transform(x2d) x3d_scaled = x2d_scaled.reshape((n_clips, n_time, n_freq)) x4d_scaled[:,:,:,channel] = x3d_scaled if verbose == 1: print("Scaling time: %s" % (time.time() - t1,)) return x4d_scaled # + # earlystopping ends training when the validation loss stops improving model_checkpoint = ModelCheckpoint( './sound_classification_epoch_{epoch:03d}_val_loss_{val_loss:.4f}.hdf5', monitor='val_loss', save_best_only=True) reduce_lr_on_plateau = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, verbose=1, min_lr=1e-7) early_stopping = EarlyStopping(monitor='val_loss', patience=20, verbose=1) callbacks = [reduce_lr_on_plateau, early_stopping] acc_list = [] # preliniary estimation of performance # use this if you want to test on 10 folds and obtain standard deviation estimate # for test_fold in range(1, 11): # use this if you just want to test performance on one fold for test_fold in [10]: keras.backend.clear_session() model = build_model() # compile the model model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer=Adamax(0.01)) train_x, train_y, valid_x, valid_y, test_x, test_y = load_all_folds(test_fold) # for each channel, compute scaling factor scaler_list = [] (n_clips, n_time, n_freq, n_channel) = train_x.shape for channel in range(n_channel): t1 = time.time() xtrain_2d = train_x[:, :, :, channel].reshape((n_clips * n_time, n_freq)) scaler = sklearn.preprocessing.StandardScaler().fit(xtrain_2d) # print("Channel %d Mean: %s" % (channel, scaler.mean_,)) # print("Channel %d Std: %s" % (channel, scaler.scale_,)) # print("Calculating scaler time: %s" % (time.time() - t1,)) scaler_list += [scaler] train_x = do_scale(train_x) valid_x = do_scale(valid_x) test_x = do_scale(test_x) print(train_x.shape) # use a batch size to fully utilize GPU power history = model.fit(train_x, train_y, validation_data=(valid_x, valid_y), callbacks=callbacks, batch_size=256, epochs=100) acc = evaluate(model, test_x, test_y) acc_list += [acc] # - acc_array = np.array(acc_list) print("acc mean %.4f acc std %.4f" % (acc_array.mean(), acc_array.std())) # + % matplotlib inline import pandas as pd import seaborn as sn from sklearn.metrics import confusion_matrix #model.fit(train_x, train_y, validation_data=(valid_x, valid_y), callbacks=[earlystop], batch_size=32, nb_epoch=50) acc = evaluate(model, test_x, test_y) #evaluate(model) labels = ["air conditioner", "horn", "children", "dog", "drill", "engine", "gun", "hammer", "siren", "music"] print("Showing Confusion Matrix") y_prob = model.predict(test_x, verbose=0) y_pred = np.argmax(y_prob, axis=-1) y_true = np.argmax(test_y, 1) cm = confusion_matrix(y_true, y_pred) def print_cm(cm, labels, hide_zeroes=False, hide_diagonal=False, hide_threshold=None): """pretty print for confusion matrixes""" columnwidth = max([len(x) for x in labels] + [5]) # 5 is value length empty_cell = " " * columnwidth # Print header print(" " + empty_cell, end=' ') for label in labels: print("%{0}s".format(columnwidth) % label, end=' ') print() # Print rows for i, label1 in enumerate(labels): print(" %{0}s".format(columnwidth) % label1, end=' ') for j in range(len(labels)): cell = "%{0}s".format(columnwidth) % cm[i, j] if hide_zeroes: cell = cell if float(cm[i, j]) != 0 else empty_cell if hide_diagonal: cell = cell if i != j else empty_cell if hide_threshold: cell = cell if cm[i, j] > hide_threshold else empty_cell print(cell, end=' ') print() print_cm(cm, labels) df_cm = pd.DataFrame(cm, labels, labels) plt.figure(figsize=(16, 8)) sn.heatmap(df_cm, annot=True, annot_kws={"size": 14}, fmt='g', linewidths=.5) # + fig = plt.figure(figsize=(16,8)) print("History keys:", (history.history.keys())) # summarise history for training and validation set accuracy plt.subplot(1,2,1) plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('Model Accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') # summarise history for training and validation set loss plt.subplot(1,2,2) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model Loss') plt.ylabel('loss', fontsize = 'large') plt.xlabel('epoch', fontsize = 'large' ) plt.legend(['train', 'validation'], loc='upper left') plt.show() tics that you generated in this section and answer the following question. # # * How much do the outliers change the mean value of the California average total payments for diabetes? # # # #### Step 1: Use the `describe` function to find the mean value of the average total payments. # Use the describe function to calculate the mean value of California's average total payments. # YOUR CODE HERE # #### Step 2: Use the interactive bar plot (for the sorted values of the California average total payments) to estimate a payment value that you can use to filter out the highest three data spikes. # Using the ca_average_total_payments DataFrame, create a conditional statement # that can be used to filter out the three largest payments # YOUR CODE HERE # #### Step 3: Use `loc` to filter out the three outlier payments from the California average total payments. Then recalculate the summary statistics by using the `describe` function. # + # Create a DataFrame that filters out the 3 largest payments from the California data filtered_california_payments = # YOUR CODE HERE # View the filtered DataFrame in a plot # YOUR CODE HERE # - # Use the describe function to calculate summary statistics for the filtered data. # YOUR CODE HERE # #### Step 4: Review the two sets of summary statistics that you generated in this section and answer the following question. # **Question** How much do the outliers change the mean value of the California average total payments for diabetes? # # **Answer** # YOUR ANSWER HERE
16,010
/Notebook/RF/RF_NoFE_ori
e47e42a279aa9891cf28ff5dd2b02d7eebda3c36
[]
no_license
ngonhi/TrafficSignRecognition
https://github.com/ngonhi/TrafficSignRecognition
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
19,311
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + [markdown] deletable=true editable=true # # K-Means Clustering Example # - # ## Goal # -implementation of k-means algorithm # + [markdown] deletable=true editable=true # Mari kita membuat beberapa data dummy yang mencakup orang-orang yang dikelompokkan berdasarkan pendapatan dan usia, secara acak. # + deletable=true editable=true from numpy import random, array #Buat cluster pendapatan / umur palsu untuk N orang di cluster k def createClusteredData(N, k): random.seed(10) pointsPerCluster = float(N)/k X = [] for i in range (k): incomeCentroid = random.uniform(20000.0, 200000.0) # membuat random centroid income antara 20ribu-200ribu ageCentroid = random.uniform(20.0, 70.0) # membuat random centroid age antara 20-70 for j in range(int(pointsPerCluster)): X.append([random.normal(incomeCentroid, 10000.0), random.normal(ageCentroid, 2.0)]) X = array(X) return X # + [markdown] deletable=true editable=true # Kami akan menggunakan k-means untuk menemukan kembali kluster ini pada unsupervised learning : # + deletable=true editable=true # %matplotlib inline from sklearn.cluster import KMeans # fungsi untuk mengaktifkan KMeans import matplotlib.pyplot as plt # memanggil fungsi untuk membuat grafik from sklearn.preprocessing import scale # memanggil fungsi untuk scaling data from numpy import random, float # memanggil fungsi untuk mengubah dataset menjadi tipe data float data = createClusteredData(100, 5) # membuat clustered data untuk 100 orang secara acak dengan 5 cluster model = KMeans(n_clusters=5) # Kita melakukan data scaling sehingga kita dapat perbadingan antara data pendapatan dengan umur sebanding # Ini dilakukan karena K-Means akan sangat baik digunakan apabila data sudah terskala model = model.fit(scale(data)) # Kita dapat melihat cluster yang disiapkan untuk setiap titik data print(model.labels_) # Kita membuat visualisasi untuk melihat hasilnya plt.figure(figsize=(8, 6)) plt.scatter(data[:,0], data[:,1], c=model.labels_.astype(float)) plt.show() # - # ## Summary # - Sebelum melakukan operasi K-Means, kita perlu melakukan scaling pada tiap data untuk menghasilkan perbandingan yang setara.
2,473
/BERT Summarizer.ipynb
63bbe6d959464ebf15ff067d0eaa0821110b63f8
[]
no_license
KabyleAI/ner
https://github.com/KabyleAI/ner
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
30,107
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + import bs4 with open('data/bleak.htm', encoding='ISO-8859-1') as f: content = f.read() print(content[:100]) bs = bs4.BeautifulSoup(content) paragraphs = bs.find_all('p') # - for i, p in enumerate(paragraphs[:50]): print(i, p) ARTICLE = paragraphs[37].text.replace('\n', ' ') print(len(ARTICLE.split())) ARTICLE # + from transformers import pipeline summarizer = pipeline("summarization") summary_text = summarizer(ARTICLE , max_length=200, min_length=30, do_sample=False) # - summary_text summary_text[0] from itertools import zip_longest for a, b in zip_longest(ARTICLE.split(), [' ']+summary_text[0]['summary_text'].split() ): print(a, b.upper()) ate the datatype(s) for the parameter # param2 : state the datatype(s) for the parameter # param3 : state the datatype(s) for the parameter and # continue with more details if necessary on a new # set of indented lines. # # Output: # A desription of the output of the function including # the datatype(s) of the output. Also describe special # behaviour. # # Example: # >>> function_name(1,2,3) # 1.2345 # ''' # # ``` # # See these [examples](http://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) and these [examples](https://google.github.io/styleguide/pyguide.html?showone=Comments#Comments). # ## 2. Keyword arguments # # When we define functions, we list the input parameters. These are called positional parameters (or positional arguments) because the position in the `def` statement determines which parameter is which. def poly(x,y): "Compute x + y**2." return x + y**2 poly(1,2) poly(2,1) # A [keyword argument](https://docs.python.org/3/tutorial/controlflow.html#keyword-arguments) allows us to insert default values for some parameters and we call them by name and the order doesn't matter. def greeting(first_name,last_name,salutation='Hello, '): return "{0}{1} {2}!".format(salutation, first_name, last_name) greeting('Patrick','Walls') greeting('Walls','Patrick') greeting('LeBron','James',salutation='I love you ') # In this function, `first_name` and `last_name` are positional arguments and `saluation` is a keyword argument. # For example, the function `pandas.read_csv` in the `pandas` package has *many* keyword arguments: import pandas as pd # + # pd.read_csv? # - # So *many* keyword arguments! The keyword arguments I use most often are `encoding`, `skiprows` and `usecols`. # ## 3. Numerical integration # # We've already seen left, right and midpoint [Riemann sums](https://en.wikipedia.org/wiki/Riemann_sum). For example, the left Riemann sum of $f(x)$ over the interval $[a,b]$ using a partition of size $N$ is: # # $$ # \int_a^b f(x) \, dx \approx \sum_{k=1}^{N} f(x_{k-1}) \Delta x_k # $$ # # where $x_0 = a, x_1, \dots, x_N = b$ and $\Delta x_k = x_k - x_{k-1}$. # A better approximation is the [trapezoid rule](https://en.wikipedia.org/wiki/Trapezoidal_rule): # # $$ # \int_a^b f(x) \, dx \approx \frac{1}{2} \sum_{k=1}^{N} (f(x_k) + f(x_{k-1})) \Delta x_k # $$ # # where $x_0 = a, x_1, \dots, x_N = b$ and $\Delta x_k = x_k - x_{k-1}$. # Notice that the trapezoid rule is the average of the left and right Riemann sums! # Let's write a function called `trapz` which takes input parameters $f$, $a$, $b$ and $N$ and returns an approximation of $\int_a^b f(x) dx$ using the trapezoid rule with a partition of length $N$ (evenly spaced points). Set default values $a=0$, $b=1$ and $N=50$. def trapz(f,a=0,b=1,N=50): '''Approximate integral f(x) from a to b using trapezoid rule. The trapezoid rule used below approximates the integral \int_a^b f(x) dx using the sum: \sum_{k=1}^N (f(x_k) + f(x_{k-1}))(x_k - x_{k-1}) where x_0 = a, x_1, ... , x_N = b are evenly spaced x_k - x_{k-1} = (b-a)/N. Parameters ---------- f : vectorized function of a single variable a,b : numbers defining the interval of integration [a,b] N : integer setting the length of the partition Returns ------- Approximate value of integral of f(x) from a to b using the trapezoid rule with partition of length N. Examples -------- >>> trapz(np.sin,a=0,b=np.pi/2,N=1000) 0.99899979417741058 ''' x = np.linspace(a,b,N) y = f(x) Delta_x = (b - a)/N integral = 0.5 * Delta_x * (y[1:] + y[:-1]).sum() return integral trapz(np.sin,a=0,b=np.pi/2,N=1000) # Notice that we have used the NumPy style of docstring here.
4,854
/code/cluster_model_poorDF.ipynb
7d7cd31ce275df8e6450500255d3cbcc8f348bb2
[ "CC0-1.0" ]
permissive
rwright914/Project_5
https://github.com/rwright914/Project_5
0
0
CC0-1.0
2021-02-05T20:28:19
2021-02-04T21:44:52
null
Jupyter Notebook
false
false
.py
23,476
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + [markdown] id="NYnQhQFNI8tg" # # Como o Aprendizado de Mรกquina pode ajudar na descoberta de novos remรฉdios? # # # ![dna.jpg](
20,478
/L1_RNN.ipynb
937843dc7ff61340d8a9fe51b4b10ad1a36553b7
[ "MIT" ]
permissive
CISC-372/Notebook
https://github.com/CISC-372/Notebook
4
13
null
null
null
null
Jupyter Notebook
false
false
.py
4,213
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="NizlsIoFLzP5" colab_type="text" # ## Setup # + id="5LciWxRrHCm4" colab_type="code" colab={} import tensorflow as tf from tensorflow import keras import numpy as np print('Tensorflow version is', tf.__version__) # + [markdown] id="FPdKoy1yL52r" colab_type="text" # ## Load Dataset # + id="BmXRq9_ZHQwf" colab_type="code" colab={} imdb = keras.datasets.imdb (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000) print('Training data', len(train_data)) print('Testing data', len(test_data)) # + [markdown] id="7SD10H3AL9Id" colab_type="text" # ## Data Exploration # + id="8KiAi4qJHWvP" colab_type="code" colab={} print('The first training sample:', train_data[0]) print('The first training sample\'s label:', train_labels[0]) # + id="eIMxoPXONiAJ" colab_type="code" colab={} # A dictionary mapping words to an integer index word_index = imdb.get_word_index() # The first indices are reserved word_index = {k:(v+3) for k,v in word_index.items()} word_index["<PAD>"] = 0 word_index["<START>"] = 1 word_index["<UNK>"] = 2 # unknown word_index["<UNUSED>"] = 3 reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) def decode_review(text): return ' '.join([reverse_word_index.get(i, '?') for i in text]) decode_review(train_data[0]) # + [markdown] id="rQCCePDuMGO_" colab_type="text" # ## Padding # + id="NpBJOZHvHneg" colab_type="code" colab={} train_data_pd = keras.preprocessing.sequence.pad_sequences( train_data, value=word_index["<PAD>"], padding='post', maxlen=256) test_data_pd = keras.preprocessing.sequence.pad_sequences( test_data, value=word_index["<PAD>"], padding='post', maxlen=256) print('Shape of padded training set', train_data_pd.shape) print('Shape of padded testing set', test_data_pd.shape) print(train_data_pd[0]) print(decode_review(train_data_pd[0])) # + [markdown] id="YQ2pJaCzOq9s" colab_type="text" # ## Experimental Protocol # + id="jtJLJ9ysIG0j" colab_type="code" colab={} x_validation = train_data_pd[:10000] x_train = train_data_pd[10000:] x_test = test_data_pd y_validation = train_labels[:10000] y_train = train_labels[10000:] y_test = test_labels # + [markdown] id="Mk9mMx-XMoSv" colab_type="text" # ## Training # + id="OrdCPYL_IwHp" colab_type="code" colab={} vocab_size = 10000 model = keras.Sequential() model.add(keras.layers.Embedding(vocab_size, 25)) model.add(keras.layers.CuDNNGRU(100)) model.add(keras.layers.Dense(1, activation=tf.nn.sigmoid)) model.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) history = model.fit(x_train, y_train, epochs=15, batch_size=512, validation_data=(x_validation, y_validation), verbose=1) results = model.evaluate(x_test, y_test) print(results)
3,144
/MissionToMars.ipynb
cf78a4a55e96be346cd0c3e43e4dbcbf0fc7802d
[]
no_license
ivyfong/Mission-to-Mars
https://github.com/ivyfong/Mission-to-Mars
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
20,866
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # Dependencies from bs4 import BeautifulSoup as bs from splinter import Browser import pandas as pd import time # Save urls news_url = 'https://mars.nasa.gov/news/?page=0&per_page=40&order=publish_date+desc%2Ccreated_at+desc&search=&category=19%2C165%2C184%2C204&blank_scope=Latest' image_url = 'https://www.jpl.nasa.gov/spaceimages/?search=&category=Mars' weather_url = 'https://twitter.com/marswxreport?lang=en' facts_url = 'https://space-facts.com/mars/' hemispheres_url = 'https://astrogeology.usgs.gov/search/results?q=hemisphere+enhanced&k1=target&v1=Mars' # ## NASA Mars News # #### Scrape the NASA Mars News Site and collect the latest News Title and Paragraph Text. Assign the text to variables called news_title and news_p that you can reference later. # + # Open chrome browser executable_path = {'executable_path':'chromedriver.exe'} browser = Browser('chrome',**executable_path,headless=False, incognito=True) # Visit specified url browser.visit(news_url) # Save html from browser in object html = browser.html # Pass HTML string to bs news_html = bs(html,'html.parser') # Close chrome browser browser.quit() # - # Collect information for the latest news article latest_article = news_html.find('li',class_="slide") latest_article # Collect the lastest news title news_title = latest_article.find('div',class_="content_title").text news_title # Collect the lastest news paragraph text news_p = latest_article.find('div',class_="article_teaser_body").text news_p # ## JPL Mars Space Images - Featured Image # #### Visit the url for JPL Featured Space Image. Use splinter to navigate the site and find the image url for the current Featured Mars Image and assign the url string to a variable called featured_image_url. Make sure to find the image url to the full size .jpg image. Make sure to save a complete url string for this image. # + # Open chrome browser executable_path = {'executable_path':'chromedriver.exe'} browser = Browser('chrome',**executable_path,headless=False, incognito=True) # Visit specified url browser.visit(image_url) # Save html from browser in object html = browser.html # Pass HTML string to bs image_html = bs(html,'html.parser') # Close chrome browser browser.quit() # - # Collect the featured image href featured_image_href = image_html.find('a',id="full_image")['data-fancybox-href'] featured_image_href # Save the complete featured image url featured_image_url = f"https://www.jpl.nasa.gov{featured_image_href}" featured_image_url # ## Mars Weather # #### Visit the Mars Weather twitter account here and scrape the latest Mars weather tweet from the page. Save the tweet text for the weather report as a variable called mars_weather. # + # Open chrome browser executable_path = {'executable_path':'chromedriver.exe'} browser = Browser('chrome',**executable_path,headless=False, incognito=True) # Visit specified url browser.visit(weather_url) # Save html from browser in object html = browser.html # Pass HTML string to bs weather_html = bs(html,'html.parser') # Close chrome browser browser.quit() # - # Collect the latest Mars weather tweet mars_weather = weather_html.find('p',class_="tweet-text").contents[0] mars_weather # ## Mars Facts # #### Visit the Mars Facts webpage here and use Pandas to scrape the table containing facts about the planet including Diameter, Mass, etc. Use Pandas to convert the data to a HTML table string. # + # Scrape the Mars facts table and save as a df mars_facts_df = pd.read_html(facts_url)[0] # Specify column names mars_facts_df.columns =['Description','Value'] # Print df mars_facts_df # - # Convert and save Pandas df to HTML table mars_facts = mars_facts_df.to_html(index=False,justify='left',classes='table table-striped table-bordered') mars_facts # ## Mars Hemispheres # #### Visit the USGS Astrogeology site here to obtain high resolution images for each of Mar's hemispheres. You will need to click each of the links to the hemispheres in order to find the image url to the full resolution image. Save both the image url string for the full resolution hemisphere image, and the Hemisphere title containing the hemisphere name. Use a Python dictionary to store the data using the keys img_url and title. Append the dictionary with the image url string and the hemisphere title to a list. This list will contain one dictionary for each hemisphere. # + # Create list of hemisphere names hemispheres_list = ['Cerberus Hemisphere Enhanced', 'Schiaparelli Hemisphere Enhanced', 'Syrtis Major Hemisphere Enhanced', 'Valles Marineris Hemisphere Enhanced'] # Create empty list for hemisphere names and urls hemispheres_name_url = [] # + # Open chrome browser executable_path = {'executable_path':'chromedriver.exe'} browser = Browser('chrome',**executable_path,headless=False, incognito=True) # Visit specified url browser.visit(hemispheres_url) # Loop to save the hemisphere image urls for hemisphere in hemispheres_list: # Navigate to hemisphere image browser.click_link_by_partial_text(hemisphere) # Save html from browser in object html = browser.html # Pass HTML string to bs hemisphere_html = bs(html,'html.parser') # Collect and save hemisphere name hemisphere_name = hemisphere_html.find('h2',class_="title").text # Collect and save image url hemisphere_image_src = hemisphere_html.find('img',class_="wide-image")['src'] hemisphere_image_url = f'https://astrogeology.usgs.gov{hemisphere_image_src}' # Save url and name in dictionary hemisphere_dict = {"title":hemisphere_name, "img_url":hemisphere_image_url} # Add dictionary to list created above hemispheres_name_url.append(dict(hemisphere_dict)) # Move back through browsing history to return to main page browser.back() # Close chrome browser browser.quit() # Print list hemispheres_name_url # - # ## Save output in a dictionary scrape_data = {"news_title":news_title, "news_p":news_p, "featured_image_url":featured_image_url, "mars_weather":mars_weather, "mars_facts":mars_facts, "hemispheres_name_url":hemispheres_name_url} scrape_data
6,529
/Pandas_and_CSV/Andres-Project_2_Work.ipynb
86e30847897d5cf94cfb59b50de6744277989950
[]
no_license
MichFig/Data-Science-Job-Search
https://github.com/MichFig/Data-Science-Job-Search
0
0
null
2021-03-16T12:41:39
2021-03-16T12:37:49
null
Jupyter Notebook
false
false
.py
71,027
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + # Modules import pandas as pd csv_file = "cleaned_data_2.0.csv" df = pd.read_csv(csv_file) df.head() # + df["relevent_experience_bool"] = df["relevent_experience"] == "Has relevent experience" df.head() # + ##Introduce "Training Hours" bins TH_bins = [0, 19, 39, 59, 79, 10000] TH_group_names = ["<20","20-40","41-60","61-80",">80"] ##Introduce "Years of Experience" bins YE_bins = [0, 0.99, 4, 9, 19, 10000] YE_group_names = ["<1","1-5","6-10","11-20",">20"] #Categorize the existing players using bins df["Training Hours"] = pd.cut(df["training_hours"], TH_bins, labels=TH_group_names,include_lowest=True) df["Years of Experience"] = pd.cut(df["experience"], YE_bins, labels=YE_group_names,include_lowest=True) df.head(100) # + major_multiplier = { "STEM":4, "Business":2, "Other":1, } RE_Y_training_hours_score = { "<20":0, "20-40":5, "41-60":10, "61-80":15, ">80":20 } RE_N_training_hours_score = { "<20":0, "20-40":20, "41-60":40, "61-80":60, ">80":80 } RE_Y_years_exp_score = { "<1":2, "1-5":4, "6-10":8, "11-20":16, ">20":20 } RE_N_years_exp_score = { "<1":0.5, "1-5":1, "6-10":2, "11-20":4, ">20":5 } Relevant_Experience = 0 df["Relevant Experience Score"] = Relevant_Experience df['major_multiplier']= df['major_discipline'].map(major_multiplier) df['RE_Y_training_hours_score']= df['Training Hours'].map(RE_Y_training_hours_score) df['RE_N_training_hours_score']= df['Training Hours'].map(RE_N_training_hours_score) df['RE_Y_years_exp_score']= df["Years of Experience"].map(RE_Y_years_exp_score) df['RE_N_years_exp_score']= df["Years of Experience"].map(RE_N_years_exp_score) df['RE_Y_training_hours_score']= df['RE_Y_training_hours_score'].astype("float") df['RE_N_training_hours_score']= df['RE_N_training_hours_score'].astype("float") df['RE_Y_years_exp_score']= df['RE_Y_years_exp_score'].astype("float") df['RE_N_years_exp_score']= df['RE_N_years_exp_score'].astype("float") #df['Relevant Experience']= df['Relevant Experience'].astype("float") df.head(100) #"Relevant Experience" formula calculation SCORE ELEMENTS # + #df.loc[df["relevent_experience_bool"] == "True", "Relevant Experience Score"] = (df["major_multiplier"] * df["RE_Y_years_exp"] + df["RE_Y_training_hours"]) #df.loc[df["relevent_experience_bool"] == "False", "Relevant Experience Score"] = (df["major_multiplier"] * df["RE_N_years_exp"] + df["RE_N_training_hours"]) #df["Relevant Experience Score"] = df["relevent_experience_bool"].apply(lambda x: (df["major_multiplier"] * df["RE_Y_years_exp"] + df["RE_Y_training_hours"]) if x=="True" else (df["major_multiplier"] * df["RE_N_years_exp"] + df["RE_N_training_hours"], axis=1)) ####TEST # df = df.assign(Relevant Experience Score=lambda x: (x["major_multiplier"] * x["RE_Y_years_exp"]) + (x["RE_Y_training_hours"])) # def RE_Score(relevent_experience_bool,RE_Y_training_hours,RE_N_training_hours,RE_Y_years_exp,RE_N_years_exp): # if 'True' in relevent_experience_bool: # return (df["major_multiplier"] * df["RE_Y_years_exp"] + df["RE_Y_training_hours"]) # else 'False' in relevent_experience_bool: # return (df["major_multiplier"] * df["RE_N_years_exp"] + df["RE_N_training_hours"]) # df["Relevant Experience Score"] = df.apply(lambda x: RE_Score(x["major_multiplier"], x["RE_Y_years_exp"], x["RE_Y_training_hours"], x["RE_N_years_exp"], x["RE_N_training_hours"], axis=1) ###TEST # df["Relevant Experience Score"] = df.relevent_experience_bool.apply( # lambda x: ((df["major_multiplier"] * df["RE_Y_years_exp"] + df["RE_Y_training_hours"]) if x == 'True' else (df["major_multiplier"] * df["RE_N_years_exp"] + df["RE_N_training_hours"]))) Rel_Exp_Score_Y = (df["major_multiplier"] * df["RE_Y_years_exp_score"]) + df["RE_Y_training_hours_score"] Rel_Exp_Score_N = (df["major_multiplier"] * df["RE_N_years_exp_score"]) + df["RE_N_training_hours_score"] df["Rel_Exp_Score_Y"] = Rel_Exp_Score_Y df["Rel_Exp_Score_N"] = Rel_Exp_Score_N df["Relevant Experience Score"] = Relevant_Experience df.loc[df["relevent_experience_bool"] == True, "Relevant Experience Score"] = df["Rel_Exp_Score_Y"] df.loc[df["relevent_experience_bool"] != True, "Relevant Experience Score"] = df["Rel_Exp_Score_N"] df.head(100) # - clean_df = df[["id", "enrollee_id", "gender", "relevent_experience", "education_level", "major_discipline", "experience", "Training Hours", "Years of Experience", "Relevant Experience Score" ]] clean_df.head() # Push the remade DataFrame to a new CSV file clean_df.to_csv("DataScienceScores.csv", encoding="utf-8", index=False, header=True)
5,092
/Clustering.ipynb
bd78dd1ad0ff7d5f773f79ca5fdef99394da18fe
[]
no_license
Tkpro/CheungGarrett
https://github.com/Tkpro/CheungGarrett
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
69,161
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Assignment - Linear Regression # + # import required libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib import seaborn as sns sns.set_style('whitegrid') import warnings warnings.filterwarnings('ignore') # - # ## Contents # *** # <a href='#I'>**I. Data Understanding**</a> # # <a href='#II'>**II. Data Preparation and EDA**</a> # # <a href='#III'>**III. Spliting dataset and Scaling**</a> # # <a href='#IV'>**IV. Model Building**</a> # # <a href='#V'>**V. Residual Analysis**</a> # # <a href='#VI'>**VI. Making Predictions and Model Evaluation**</a> # # <a href='#VII'>**VII. Interpretation**</a> # ***** # ### I. Data Understanding<a id='I'></a> # + # imoport data into a dataframe data = pd.read_csv('CarPrice_Assignment.csv') # lets have a priliminary look at the dataset data.head() # - data.info(verbose = True, null_counts = True) # There are 16 numerical and 10 non-numerical variables in the raw form of this dataset. Also, as we can notice, each variable consists of 205 entries which is the total number of entries. This suggests that there are no null values in the dataset. #lets confirm the number of null values in the dataset print('Number of null values in the dataset = ' + str(data.isnull().sum().sum())) data.describe() # Values of variables have high variance accross the dataset, hence, it will require Scaling. # Lets have a look at the number of unique values that each column has. data.nunique().sort_values(ascending=False) # 1. There are 205 unique car_IDs. This suggests that there are no duplicate entries in our dataset. # 2. Some of the car names are repetative. This suggests that same cars with multiple generation may exists in the dataset. # ### II. Data Preparation and EDA<a id='II'></a> # Lets understand each variable individually and prepare the dataset. First we'll take care of all the categorical variables. # ### 1. car_ID # As there are no duplicates in the dataset, we can drop car_ID. data = data.drop(['car_ID'], axis=1) data.head() # ***Create function to plot countplot*** def make_countplot(dataframe, variable): fig, ax1 = plt.subplots(1,1,figsize = (6,6)) sns.countplot(x=variable, data = dataframe, ax =ax1, order=dataframe[variable].value_counts().index) for nr, p in enumerate(ax1.patches): ax1.text(p.get_x() + p.get_width()*0.5, p.get_y() + p.get_height(), str(p.get_height()), fontsize=10,\ color='black', ha='center', va='bottom') plt.xticks(rotation=60) plt.show() # ### 2. symboling # lets first have a look at the unique values of this variable make_countplot(data, 'symboling') # Due to the range of the variable (starting -ve and ending +ve), it will be difficult to interpret the result. To make it all +ve, we'll shift variable by 3, i.e. add 3. data['symboling'] = data['symboling'] + 3 data['symboling'].unique() # By doing this we have made a constant change in the variable which doesnot effect the regression but imrpoves interpretability. # ***Before proceeding lets make a function to create dummy variables, concatinating with main dataset, and dropping original variables*** # + # dummy variable with least count amongst all class will be dropped def make_dummies(dataframe, variable): dummy_to_drop = data[variable].value_counts().index[-1] dummy_data = pd.get_dummies(dataframe[variable], prefix=variable) dataframe = pd.concat([data, dummy_data], axis = 1) dataframe = dataframe.drop([variable], axis = 1) dataframe = dataframe.drop([variable + '_' + dummy_to_drop], axis = 1) return dataframe # - # ### 3. CarName # lets first have a look at the values of this variable data['CarName'].head() # The variable consists of 2 parts, car's company and car's model. We will consider only car's company for regression. # lets create a new variable CarCompany in the dataset data['CarCompany'] = data['CarName'].str.split(' ', n=1, expand=True)[0] data['CarCompany'].head() # lets have a look at the unique values of this variable data['CarCompany'].unique() # As we can notice, there are multiple errors in the name of car company. # + # lets correct the names by replacing the errors with standard names carcompany_correction_map = {'alfa-romero': 'alfa-romeo', 'maxda': 'mazda', 'Nissan': 'nissan',\ 'porcshce': 'porsche','toyouta': 'toyota', 'vokswagen': 'volkswagen',\ 'vw': 'volkswagen'} data = data.replace({'CarCompany': carcompany_correction_map}) # lets have a look at the unique values of this variable data['CarCompany'].unique() # - # lets have a look at the count of each company the data carcompany_value_count = data['CarCompany'].value_counts() make_countplot(data, 'CarCompany') # Even after correcting car company name, there are still 20+ companies. These if converted directly to dummy variables, will create large number of columns. Lets combine these companies based on the median car price that the company is offering. carCompany_price = data.groupby(by='CarCompany')['price'].median().sort_values(ascending=False) carCompany_price # dividing and creating intervals using pd.cut cut = pd.cut(carCompany_price, 3) cut # getting the intervals carCompany_price_bins = cut.dtypes.categories carCompany_price_bins # Now, lets use the derived intervals and apply them to price column to create a new column called `CarClass` that will represent if the car is from a high range company(S), medium range company(A) or a low range company(B). bins = [0, carCompany_price_bins[0].right, carCompany_price_bins[1].right, np.inf] data['CarClass'] = pd.cut(data['price'], bins=bins, labels=['B','A','S']) # Lets create a countplot for our new CarClass column # lets have a look at the counts again make_countplot(data, 'CarClass') # + # drop CarName and CarCompany as now they are redundant variables data = data.drop(['CarName','CarCompany'], axis=1) # make dummy variables out of CarClass column data = make_dummies(data, 'CarClass') # lets have a look at the data again data.head() # - # ### 4. fueltype # lets have a look at the unique values of this variable make_countplot(data, 'fueltype') # Replace this variable with its dummy values. # + data = make_dummies(data, 'fueltype') # lets have a look at the data again data.head() # - # ### 5. aspiration # lets have a look at the unique values of this variable make_countplot(data, 'aspiration') # Replace this variable with its dummy values. # + data = make_dummies(data, 'aspiration') # lets have a look at the data again data.head() # - # ### 6. doornumber # lets have a look at the unique values of this variable make_countplot(data, 'doornumber') # Replace this variable with its dummy values. # + data = make_dummies(data, 'doornumber') # lets have a look at the data again data.head() # - # ### 7. carbody # lets have a look at the count of each company the data carbody_value_count = data['carbody'].value_counts() make_countplot(data, 'carbody') # Considering a category significant only if has atleast 5% count in the dataset. `5% of 205 = 10` # + # combining categories with less than threshold value data['carbody'] = pd.Series(np.where(data['carbody'].isin(carbody_value_count.index[carbody_value_count <= 10]),\ 'other', data['carbody'])) # lets have a look at the counts again make_countplot(data, 'carbody') # - # Replace this variable with its dummy values. # + data = make_dummies(data, 'carbody') # lets have a look at the data again data.head() # - # ### 8. drivewheel # lets have a look at the unique values of this variable make_countplot(data, 'drivewheel') # Replace this variable with its dummy values. # + data = make_dummies(data, 'drivewheel') # lets have a look at the data again data.head() # - # ### 9. enginelocation # lets have a look at the unique values of this variable make_countplot(data, 'enginelocation') # Replace this variable with its dummy values. # + data = make_dummies(data, 'enginelocation') # lets have a look at the data again data.head() # - # ### 10. enginetype # lets have a look at the unique values of this variable enginetype_value_count = data['enginetype'].value_counts() make_countplot(data, 'enginetype') # + # combining categories with less than threshold value data['enginetype'] = pd.Series(np.where(data['enginetype'].isin(enginetype_value_count.index[enginetype_value_count <= 10]),\ 'other', data['enginetype'])) # lets have a look at the counts again make_countplot(data, 'enginetype') # - # Replace this variable with its dummy values. # + data = make_dummies(data, 'enginetype') # lets have a look at the data again data.head() # - # ### 11. cylindernumber # lets have a look at the unique values of this variable make_countplot(data, 'cylindernumber') # cylindernumber is an ordinal categorical variable and represent numbers hence can be converted to numerical values. But this operation should not change the nature and order in this variable. # + cylindernumber_map = {'two': 0, 'three': 1, 'four': 2, 'five': 3, 'six': 4, 'eight': 5, 'twelve': 6} data = data.replace({'cylindernumber': cylindernumber_map}) # lets have a look at count plot again make_countplot(data, 'cylindernumber') # - data['cylindernumber'].describe() # ### 12. fuelsystem # lets have a look at the unique values of this variable fuelsystem_value_count = data['fuelsystem'].value_counts() make_countplot(data, 'fuelsystem') # + # combining categories with less than threshold value data['fuelsystem'] = pd.Series(np.where(data['fuelsystem'].isin(fuelsystem_value_count.index[fuelsystem_value_count <= 10]),\ 'other', data['fuelsystem'])) # lets have a look at the counts again make_countplot(data, 'fuelsystem') # - # Replace this variable with its dummy values. # + data = make_dummies(data, 'fuelsystem') # lets have a look at the data again data.head() # - # Lets have a look at the data info after treating all the categorical variables data.info() # Now lets have a look at numeric variables # + # ploting distribution plot for each variable numerical_data = data.select_dtypes(include=['int64', 'float64']) for col in numerical_data.columns: sns.distplot(numerical_data[col]) plt.show() # - # All the numeric variables are almost normally distributed. Also none of them have outliers which needs to be treated. # ### III. Spliting dataset and Scaling<a id='III'></a> # Spliting into training and testing # + # import required libraries from sklearn.model_selection import train_test_split # spliting data into train and test set with train size as 75% of original data np.random.seed(0) data_train, data_test = train_test_split(data, train_size = 0.75, random_state = 100) print('Shape of training data: ' + str(data_train.shape)) print('Shape of testing data: ' + str(data_test.shape)) # - # Rescaling numeric features. We'll use MinMaxScaler. # import required libraries and create a scaler object from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() # + # Apply scaler() to all the columns except the and 'dummy' variables num_vars = data.select_dtypes(include=['int64', 'float64']).columns data_train[num_vars] = scaler.fit_transform(data_train[num_vars]) # lets have a look at the data data_train.head() # - # lets have a look at data description after scaling data_train.describe() # ### IV. Model Building<a id='IV'></a> # To start with, lets have a look at correlation of price with other variables. price_corr = pd.DataFrame(data.corr()['price'].sort_values(ascending=False)) plt.figure(figsize = (5, 20)) sns.heatmap(price_corr, cmap='YlGnBu', annot=True) plt.show() # Many variables such as eniginesize, curbweight, horsepower, carwidth etc. are highly correlated with price. Lets have a look at the visual representation of the same. # + # take all independent variables in decreasing order of collinearity independents = price_corr.index[price_corr.index != 'price'] # plot independent variables against target for i in range(independents.size//5): sns.pairplot(data_train, y_vars='price', x_vars=independents[i*5:i*5+5], kind='reg') plt.show() # - # Again it is evident from these graphs that there is a clear linear relationship between price and atleast the top 10 independent variables. # Lets also explore the correlation between each variable and check if the there are any clusters present based on that correlation. sns.clustermap(data.corr(), cmap='YlGnBu', figsize=(13, 13)) # There are clearly multiple clusters present in the correaltion matrix. Major ones are as follows - # 1. Cluster 1 # - CarClass_A # - boreratio # - drivewheel_rwd # - wheelbase # - carlength # - enginesize # - price # - carwidth # - curbweight # - cylindernumber # - horsepower # 2. Cluster 2 # - enginetype_ohc # - fuelsystem_2bbl # - citympg # - highwaympg # - CarClass_B # - drivewheel_fwd # # Both clusters have high positive intra-correlation and high negative inter-correlation. It can be understood from price perspective. Cluster 1 has positive correlation with price and Cluster 2 has negative. # # Also few variables have high correlation such as compressionratio and fuelsystem_idi, citympg and highwaympg, etc. # These correlation are expected as per the domain knowledge. # ***Recurrsive Feature Elimination (RFE)*** # We require RFE in this case because number of features is high and RFE provides an automatic removal of features based on significance and Variance Inflation Factor (VIF). We will be using the **LinearRegression function from SciKit Learn** for its compatibility with RFE (which is a utility from sklearn). # Importing RFE and LinearRegression from sklearn.feature_selection import RFE from sklearn.linear_model import LinearRegression # seperating independent variaboles(X) and target variable(y) y_train = data_train.pop('price') X_train = data_train # + # Running RFE with the output number of the variable equal to 20 lmRFE = LinearRegression() lmRFE.fit(X_train, y_train) # running RFE rfe = RFE(lmRFE, 20) rfe = rfe.fit(X_train, y_train) # - rfe_support = pd.DataFrame({'Variable': X_train.columns,'RFE_Support': rfe.support_,'RFE_ranking': rfe.ranking_}) rfe_support = rfe_support.sort_values('RFE_ranking').reset_index(drop=True) rfe_support # Lets have a look at the variables that were eliminated by RFE. # variables that are not supported by RFE print('Non supported variables: ' + str(list(X_train.columns[~rfe.support_]))) # RFE eliminated variables that were not significant for our regression model. Some such as symbolying, fueltype_gas, carheight etc. are not significantly correlated with price(as evident from the graph earlier), others such as horespower, fuelsystem_idi etc. are just redundant due to multicolinearity. # Now we have the top 20 variables supported by RFE. Lets do manual feature elimination based on significance and VIF. col = X_train.columns[rfe.support_] # ### Building model using statsmodel, for the detailed statistics # ***Model 1*** # + # Creating X_train dataframe with RFE selected variables X_train_rfe = X_train[col] # Adding a constant variable import statsmodels.api as sm X_train_rfe = sm.add_constant(X_train_rfe) # Running the linear model lm = sm.OLS(y_train,X_train_rfe).fit() #Let's see the summary of our linear model print(lm.summary()) # - # `R-squared` of first model came out to be `0.961`. But many of the variables are not significant also there may be multicollinearity amongst variables. We'll eliminate variables untill we get a stable model. Initially we'll consider p-value for feature elimination and later we'll consider VIF too. # Variable with highest p-value is `wheelbase`. As we can notice fro the pairplot made earlier, wheelbase doesnot have a strong linear relation with price, it is rather random. Lets remove that variable and run the model again. # ***Model 2*** # + # Drop the variable with highest p-value X_train_rfe = X_train_rfe.drop('wheelbase', axis=1) # Running the linear model lm = sm.OLS(y_train,X_train_rfe).fit() #Let's see the summary of our linear model print(lm.summary()) # - # R-squared didn't change after dropping wheelbase. Also significance of other variables have also increased. Next variables with highest p-values are `compressionratio` and like wheelbase, its relation with price is weak. Lets drop it and observe the difference. # ***Model 3*** # + # Drop the variable with highest p-value X_train_rfe = X_train_rfe.drop(['compressionratio'], axis=1) # Running the linear model lm = sm.OLS(y_train,X_train_rfe).fit() #Let's see the summary of our linear model print(lm.summary()) # - # R-squared didn't change after dropping compressionratio. Next variables with highest p-values are `peakrpm` and like compressionratio, its relation with price is weak. Lets drop it and observe the difference. # ***Model 4*** # + # Drop the variable with highest p-value X_train_rfe = X_train_rfe.drop(['peakrpm'], axis=1) # Running the linear model lm = sm.OLS(y_train,X_train_rfe).fit() #Let's see the summary of our linear model print(lm.summary()) # - # Next variable with highest p-value is `fuelsystem_other`. Lets drop it and observe the difference. # ***Model 5*** # + # Drop the variable with highest p-value X_train_rfe = X_train_rfe.drop(['fuelsystem_other'], axis=1) # Running the linear model lm = sm.OLS(y_train,X_train_rfe).fit() #Let's see the summary of our linear model print(lm.summary()) # - # After this step, before moving forward, lets also check the VIF for each variable. # + # Calculate the VIFs for the new model from statsmodels.stats.outliers_influence import variance_inflation_factor vif = pd.DataFrame() X = X_train_rfe vif['Features'] = X.columns vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])] vif['VIF'] = round(vif['VIF'], 2) vif = vif.sort_values(by = "VIF", ascending = False).reset_index(drop=True)[1:] vif # - # Again the R-squared value of the model is not affected much. Also, citympg and highwaympg are insignificant because high performance costly cars have low milage and price decreases with increase in milage till certain point but then it levels off and costly family cars are also designed to have high milage. citympg and highwaympg may have higher order relationship. Also, it is evident from their VIF that they are causing multicolinearity. Lets drop them and re run the model. # ***Model 6*** # + # Drop the variable with highest p-value X_train_rfe = X_train_rfe.drop(['citympg','highwaympg'], axis=1) # Running the linear model lm = sm.OLS(y_train,X_train_rfe).fit() #Let's see the summary of our linear model print(lm.summary()) # + # Calculate the VIFs for the new model vif = pd.DataFrame() # leaving const out of this calculation X = X_train_rfe vif['Features'] = X.columns vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])] vif['VIF'] = round(vif['VIF'], 2) vif = vif.sort_values(by = "VIF", ascending = False).reset_index(drop=True)[1:] vif # - # `carlegth` has both high p-value and VIF. Lets drop it and run the model again. # ***Model 7*** # + # Drop the variable with highest p-value X_train_rfe = X_train_rfe.drop(['carlength'], axis=1) # Running the linear model lm = sm.OLS(y_train,X_train_rfe).fit() #Let's see the summary of our linear model print(lm.summary()) # + # Calculate the VIFs for the new model vif = pd.DataFrame() # leaving const out of this calculation X = X_train_rfe vif['Features'] = X.columns vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])] vif['VIF'] = round(vif['VIF'], 2) vif = vif.sort_values(by = "VIF", ascending = False).reset_index(drop=True)[1:] vif # - # `stroke` is at the border as far as the p-value is concerned and its VIF is also in acceptable range but as per the pairplot made earlier, the relation between price and stroke is not significant. Lets drop it and re run the model. # ***Model 7*** # + # Drop the variable with highest p-value X_train_rfe = X_train_rfe.drop(['stroke'], axis=1) # Running the linear model lm = sm.OLS(y_train,X_train_rfe).fit() #Let's see the summary of our linear model print(lm.summary()) # - # Calculate the VIFs for the new model vif = pd.DataFrame() X = X_train_rfe vif['Features'] = X.columns vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])] vif['VIF'] = round(vif['VIF'], 2) vif = vif.sort_values(by = "VIF", ascending = False).reset_index(drop=True)[1:] vif # Now as we can notice, both p-values and VIF of independent variables are in acceptable ranges. Also, statistics such as R-squared, Adjusted R-squared, F-statistic, AIC and BIC are in acceptable ranges. Lets move on to residual analysis to understand our model better. # ### V. Residual Analysis<a id='V'></a> # So, now to check if the error terms are also normally distributed (which is infact, one of the major assumptions of linear regression), let us plot the histogram of the error terms and see what it looks like. # predicting target variable based on our latest model(lm) and our latest independent variables(X_train_rfe) y_train_pred = lm.predict(X_train_rfe) # Plot the histogram of the error terms fig = plt.figure() res = (y_train - y_train_pred) sns.distplot(res, bins = 20) # Plot heading plt.xlabel('Error') # X-label # We can observe that the error terms are ***normally distributed*** with a slight outlier near the right tail. It is also ***centered around zero***. This means that we can safely derive interpretations from our model. # Lets also plot the relation between the predicted variable and residuals. plt.figure() sns.regplot(x=y_train_pred,y=res) plt.xlabel('Predicted value', fontsize=16) plt.ylabel('Residuals', fontsize=16) plt.title('Predicted value vs Residual Plot', fontsize=20) plt.show() # We can observe the following from the above plot - # 1. Mean of Residuals is zero # 2. Scatter of residuals is completely random and also Regression line coincides with y = 0 and hence there is no relation/pattern in the residuals i.e. most of it is explained by our model. ***Error terms are independent of each other.*** # 3. Spread of residuals is mostly contained between 0.10 and -0.10 with a couple of exceptions. This suggests that the ***variance of error terms is constant i.e. homoscedastic*** # ### VI. Making Predictions and Model Evaluation<a id='VI'></a> # Scale the test data using the scaler fitted on train data # applying only transform on test dataset data_test[num_vars] = scaler.transform(data_test[num_vars]) # Dividing test data into X_test and y_test y_test = data_test.pop('price') X_test = data_test # Add constants and keep only those variables in test data that were chosen during the model building step # + # add constant X_test = sm.add_constant(X_test) # filtering columns X_test = X_test[X_train_rfe.columns] # - # Make prediction using the above built X_test y_test_pred = lm.predict(X_test) # Lets evaluate the model's accuracy by ploting the actual y_test and the predicted y_test_pred # + # Plotting y_test and y_pred to understand the spread. fig = plt.figure() ax = sns.regplot(y_test,y_test_pred) # baseline of x = y x = np.arange(0,1.1,0.01) y = x plt.plot(x,y,'r-') plt.title('y_test vs y_test_pred', fontsize=20) # Plot heading plt.xlabel('y_test', fontsize=16) # X-label plt.ylabel('y_test_pred', fontsize=16) # Y-label plt.show() # - # As we can observe, the regression line for y_test_pred vs y_test is very close to our base line of x = y. Also, all the data points are very much close to the baseline and hence the difference between y_test_pred and y_test is very small. # ### Model metrics on test data # + # import required libraries from sklearn.metrics import r2_score, explained_variance_score, max_error, mean_absolute_error, \ mean_squared_error, mean_squared_log_error, median_absolute_error metrics = [explained_variance_score(y_test, y_test_pred), max_error(y_test, y_test_pred), \ mean_absolute_error(y_test, y_test_pred), mean_squared_error(y_test, y_test_pred), \ mean_squared_log_error(y_test, y_test_pred), median_absolute_error(y_test, y_test_pred), \ r2_score(y_test, y_test_pred)] index = ['Explained Variance Score', 'Max Error', 'Mean Absolute Error', 'Mean Squared Error', \ 'Mean Squared Log Error', 'Median Absolute Error', 'r2 Score'] metricsdf = pd.DataFrame({'Metrics': metrics}, index=index) metricsdf # - # ### VII. Interpretation<a id='VII'></a> # With r2 score of 0.95 on train data and 0.91 on test data, our model is: # # <hr> # $ price = 0.6266 + 0.3583 \times curbweight + 0.1631 \times enginesize - 0.4078 \times CarClass\_B - 0.2483 \times CarClass\_A - 0.0356 \times carbody\_wagon - 0.1767 \times enginelocation\_front - 0.1144 \times enginetype\_dohc - 0.1404 \times enginetype\_l - 0.0764 \times enginetype\_ohc - 0.0931 \times enginetype\_ohcf # - 0.1322 \times enginetype\_ohcv + 0.0455 \times fuelsystem\_mpfi $ # <hr> # After creating dummy variables, coefficients of variables derived from the same column can be interpreted relative to each other and considering the eliminated dummy variable as the base. # Following is the interpretation of model: # 1. `curbweight` has a positive coefficient and with increase in curbweight, price increases. curbweight is defined as the weight of a car without occupants or baggage. curbweight can also indirectly be influenced by: # - wheelbase(distance between the centers of the front and rear wheels) which has high correlation with curbweight. # - carlength which has high correlation with curbweight. # - carwidth which has high correlation with curbweight. # - carbody # <hr> # 2. `enginesize` has a positive coefficient and with increase in enginesize, price increases. enginesize can also indirectly be influenced by: # - boreratio(the ratio between cylinder bore diameter and piston stroke) which has high correlation with enginesize. # - stroke(the length that piston travels when moving from bottom position to the top position). # - compressionratio(the ratio of the maximum to minimum volume in the cylinder). # - horsepower which has high correlation with enginesize. # - cylindernumber which has high positive correlation with enginesize. # <hr> # 3. `CarClass_B` has a negative coefficient. It means that it attracts lower price as compared to cars of class S which was dropped. This inference is aligned with the fact that cars of class S are from companies like Jaguar, Buick and Porche which produces costly cars where as cars of class B are from companies like Honda, Nissan and Toyota which produces daily use family cars. # <hr> # 4. `CarClass_A` has a negative coefficient but its absolute value is lower than that of CarClass_B. It means cars of class A(BMW, Audi, Peugeot) are costlier than cars of class B but still attracts lower price than cars of class S. # <hr> # 5. `carbody_wagon` has a negative coefficient. It means that it attracts lower price as compared to cars with carbody type as hardtop and convertible. This is aligned with the fact that high end sports/luxery cars are hardtop or convertible. Also, carbody_wagon is a significant indicator that is it not prefered in the market. Whereas carbody types such as sedan and hatchback doesnot influence price. # <hr> # 6. `enginelocation_front` has a negative coefficient. It means that it attracts lower price as compared to cars with enginelocation rear. Although number of cars with engine location rear are very less in the dataset, it plays a huge role and is aligned with the fact that high perfomace cars have their engine at the rear end to provide higher stability. These cars are also costlier than usual. # <hr> # 7. `enginetype` influence the price in the following order # - (rotor, dohcv) > l > ohcv > dohc > ohcf > ohc # <hr> # 8. `fuelsystem_mpfi` has a positive coefficient and with presence of fuelsystem_mpfi, price increases. It is aligned with the fact that it is the latest and most sofisticated fuelsystem and designed for most appropriate amount of fuel injection. # ***Other important characteristics observed while creating the model*** # # 1. **Manufacturer** of the car i.e. company plays an important role in determining the price of the car as it represents the complete build style starting from engine, carbody, fuelsystem, horsepower etc. # 2. **cylindernumber and horsepower** also have high positive correlation with price and its aligned with the fact that these variable directly affects the performance and as the performance increases, price increases. These parameters however were encapsulated in enginesize. # 3. **citympg and highwaympg** have a strong relation with price but is not linear as is evident from their scatterplot and also price increases with milage till a certain point then family cars with high milage gets cheaper. A higher degree polynomial can fit their relation better.
29,662
/Heaps.ipynb
030d850ab0ec65e20bc22cb853b69b6e99dc3eff
[]
no_license
sagarviveksahu/test
https://github.com/sagarviveksahu/test
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
25,573
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Heaps # ## Overview # # For this assignment you will start by modifying the heap data stucture implemented in class to allow it to keep its elements sorted by an arbitrary priority (identified by a `key` function), then use the augmented heap to efficiently compute the running median of a set of numbers. # ## 1. Augmenting the Heap with a `key` function # # The heap implementation covered in class is for a so-called "max-heap" โ€” i.e., one where elements are organized such that the one with the maximum value can be efficiently extracted. # # This limits our usage of the data structure, however. Our heap can currently only accommodate elements that have a natural ordering (i.e., they can be compared using the '`>`' and '`<`' operators as used in the implementation), and there's no way to order elements based on some partial or computed property. # # To make our heap more flexible, you'll update it to allow a `key` function to be passed to its initializer. This function will be used to extract a value from each element added to the heap; these values, in turn, will be used to order the elements. # # We can now easily create heaps with different semantics, e.g., # # - `Heap(len)` will prioritize elements based on their length (e.g., applicable to strings, sequences, etc.) # - `Heap(lambda x: -x)` can function as a *min-heap* for numbers # - `Heap(lambda x: x.prop)` will prioritize elements based on their `prop` attribute # # If no `key` function is provided, the default max-heap behavior should be used โ€” the "`lambda x:x`" default value for the `__init__` method does just that. # # You will, at the very least, need to update the `_heapify` and `add` methods, below, to complete this assignment. (Note, also, that `pop_max` has been renamed `pop`, while `max` has been renamed `peek`, to reflect their more general nature.) # + nbgrader={"grade": false, "grade_id": "heap", "locked": false, "schema_version": 1, "solution": true} #<GRADED> class Heap: def __init__(self, key=lambda x:x): self.data = [] self.key = key @staticmethod def _parent(idx): return (idx-1)//2 @staticmethod def _left(idx): return idx*2+1 @staticmethod def _right(idx): return idx*2+2 def heapify(self, idx=0): while True: l = Heap._left(idx) r = Heap._right(idx) maxidx = idx if l < len(self) and self.data[l] > self.data[idx]: maxidx = l if r < len(self) and self.data[r] > self.data[maxidx]: maxidx = r if maxidx != idx: self.data[idx], self.data[maxidx] = self.data[maxidx], self.data[idx] idx = maxidx else: break def add(self, x): self.data.append(x) i = len(self.data) - 1 p = Heap._parent(i) while i > 0 and self.data[p] < self.data[i]: self.data[p], self.data[i] = self.data[i], self.data[p] i = p p = Heap._parent(i) def peek(self): return self.data[0] def pop(self): ret = self.data[0] self.data[0] = self.data[len(self.data)-1] del self.data[len(self.data)-1] self.heapify() return ret def __bool__(self): return len(self.data) > 0 def __len__(self): return len(self.data) def __repr__(self): return repr(self.data) #</GRADED> # + nbgrader={"grade": true, "grade_id": "heap_test_1", "locked": true, "points": 1, "schema_version": 1, "solution": false} # (1 point) from unittest import TestCase import random tc = TestCase() h = Heap() random.seed(0) for _ in range(10): h.add(random.randrange(100)) tc.assertEqual(h.data, [97, 61, 65, 49, 51, 53, 62, 5, 38, 33]) # + nbgrader={"grade": true, "grade_id": "heap_test_2", "locked": true, "points": 1, "schema_version": 1, "solution": false} # (1 point) from unittest import TestCase import random tc = TestCase() h = Heap(lambda x:-x) random.seed(0) for _ in range(10): h.add(random.randrange(100)) tc.assertEqual(h.data, [5, 33, 53, 38, 49, 65, 62, 97, 51, 61]) # + nbgrader={"grade": true, "grade_id": "heap_test_3", "locked": true, "points": 2, "schema_version": 1, "solution": false} # (2 points) from unittest import TestCase import random tc = TestCase() h = Heap(lambda s:len(s)) h.add('hello') h.add('hi') h.add('abracadabra') h.add('supercalifragilisticexpialidocious') h.add('0') tc.assertEqual(h.data, ['supercalifragilisticexpialidocious', 'abracadabra', 'hello', 'hi', '0']) # + nbgrader={"grade": true, "grade_id": "heap_test_4", "locked": true, "points": 2, "schema_version": 1, "solution": false} # (2 points) from unittest import TestCase import random tc = TestCase() h = Heap() random.seed(0) lst = list(range(-1000, 1000)) random.shuffle(lst) for x in lst: h.add(x) for x in range(999, -1000, -1): tc.assertEqual(x, h.pop()) # + nbgrader={"grade": true, "grade_id": "heap_test_5", "locked": true, "points": 2, "schema_version": 1, "solution": false} # (2 points) from unittest import TestCase import random tc = TestCase() h = Heap(key=lambda x:abs(x)) random.seed(0) lst = list(range(-1000, 1000, 3)) random.shuffle(lst) for x in lst: h.add(x) for x in reversed(sorted(range(-1000, 1000, 3), key=lambda x:abs(x))): tc.assertEqual(x, h.pop()) # - # ## 2. Computing the Running Median # # The median of a series of numbers is simply the middle term if ordered by magnitude, or, if there is no middle term, the average of the two middle terms. E.g., the median of the series [3, 1, 9, 25, 12] is **9**, and the median of the series [8, 4, 11, 18] is **9.5**. # # If we are in the process of accumulating numerical data, it is useful to be able to compute the *running median* โ€” where, as each new data point is encountered, an updated median is computed. This should be done, of course, as efficiently as possible. # # The following function demonstrates a naive way of computing the running medians based on the series passed in as an iterable. #<GRADED> def running_medians_naive(iterable): values = [] medians = [] for i, x in enumerate(iterable): values.append(x) values.sort() if i%2 == 0: medians.append(values[i//2]) else: medians.append((values[i//2] + values[i//2+1]) / 2) return medians #</GRADED> running_medians_naive([3, 1, 9, 25, 12]) running_medians_naive([8, 4, 11, 18]) # Note that the function keeps track of all the values encountered during the iteration and uses them to compute the running medians, which are returned at the end as a list. The final running median, naturally, is simply the median of the entire series. # # Unfortunately, because the function sorts the list of values during every iteration it is incredibly inefficient. Your job is to implement a version that computes each running median in O(log N) time using, of course, the heap data structure! # # ### Hints # # - You will need to use two heaps for your solution: one min-heap, and one max-heap. # - The min-heap should be used to keep track of all values *greater than* the most recent running median, and the max-heap for all values *less than* the most recent running median โ€” this way, the median will lie between the minimum value on the min-heap and the maximum value on the max-heap (both of which can be efficiently extracted) # - In addition, the difference between the number of values stored in the min-heap and max-heap must never exceed 1 (to ensure the median is being computed). This can be taken care of by intelligently `pop`-ping/`add`-ing elements between the two heaps. # + nbgrader={"grade": false, "grade_id": "running_median", "locked": false, "schema_version": 1, "solution": true} #<GRADED> def running_medians(iterable): return #</GRADED> # + nbgrader={"grade": true, "grade_id": "running_median_1", "locked": true, "points": 2, "schema_version": 1, "solution": false} # (2 points) from unittest import TestCase tc = TestCase() tc.assertEqual([3, 2.0, 3, 6.0, 9], running_medians([3, 1, 9, 25, 12])) # + nbgrader={"grade": true, "grade_id": "running_median_2", "locked": true, "points": 2, "schema_version": 1, "solution": false} # (2 points) import random from unittest import TestCase tc = TestCase() vals = [random.randrange(10000) for _ in range(1000)] tc.assertEqual(running_medians_naive(vals), running_medians(vals)) # + nbgrader={"grade": true, "grade_id": "running_median_3", "locked": true, "points": 4, "schema_version": 1, "solution": false} # (4 points) MUST COMPLETE IN UNDER 10 seconds! import random from unittest import TestCase tc = TestCase() vals = [random.randrange(100000) for _ in range(100001)] m_mid = sorted(vals[:50001])[50001//2] m_final = sorted(vals)[len(vals)//2] running = running_medians(vals) tc.assertEqual(m_mid, running[50000]) tc.assertEqual(m_final, running[-1])
9,297
/notebooks/learning_supervised/lib_lightgbm/notebook-lightgbm-classification.ipynb
58111fb2249eaf41b35aa78796d05a0fad9f2f25
[ "MIT" ]
permissive
jmquintana79/utilsDS
https://github.com/jmquintana79/utilsDS
0
1
MIT
2023-07-06T23:03:58
2022-01-07T16:16:24
Jupyter Notebook
Jupyter Notebook
false
false
.py
5,837
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: prediction # language: python # name: prediction # --- # # Supervised Learning with Light Gradient Boosting - Classification # # Lo que pretendo es sentar las bases para un algoritmo ganador que valga para todo de tal manera que pueda centrar mas esfuerzos en: # - features engineering # - interpretability (SHAP) # - model evaluation (simple train-test is not enough) # # El modelo escogido es Light Gradient Boosting por las siguientes razones: # - Gradient Boosting suele tener un **buen desempeรฑo** en multiples tipos de problemas. En Kaggle el ranking de modelos ganadores es el siguiente: 1-Keras, 2-LightGBM, 3-GBoost. # - Al estar basado en arboles de decision: # - **Es inmune a los missing values** por lo que no hay que preocuparse por su imputaciรณn (sรณlo tener en cuenta de NO admitir missing values en test si no los hay en el training). # - **Simple categorical encoding**: Las variables categoricas pueden ser codificadas como ordinales. El one-hot-encoding no se suele sentar muy bien ante una elevada cardinalidad. # - La libreria lightgbm admite ademas features muy interesantes: # - Pesado de label ante desbalanceo (no necesario under/over-fitting). # - Posible seleccionar en multiples loss functions segun tipo de problema. Tb admite custom. # - Hiperparametros mas interesantes: num de arboles, learning rate. Los demas son para evitar el over-fitting de los propios arboles y los valores por defecto son suficientes. NOTA: no usar random-search para optimizacion de hiperparametros. # - Admite Spark. # - Monotone constrains. # - En el caso de que la mayoria de los features sean categoricos, puede ser usado CatBoost. # # #### References: # - [GitHub - Light Gradient Boosting Machine](https://github.com/microsoft/LightGBM) # - [lightgbm - ReadDocs](https://lightgbm.readthedocs.io/en/latest/index.html) # - [MachineLearningMasgtery - Gradient Boosting with Scikit-Learn, XGBoost, LightGBM, and CatBoost # ](https://machinelearningmastery.com/gradient-boosting-with-scikit-learn-xgboost-lightgbm-and-catboost/) # - [Paper - LightGBM: A Highly Efficient Gradient Boosting Decision Tree](https://papers.nips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html) # %pip freeze > requirements.txt # check lightgbm version import lightgbm print(lightgbm.__version__) # ### Test LightGBM Sklearn API (example by MachineLearningMastery) # lightgbm for classification from numpy import mean from numpy import std from sklearn.datasets import make_classification from lightgbm import LGBMClassifier from sklearn.model_selection import cross_val_score from sklearn.model_selection import RepeatedStratifiedKFold from matplotlib import pyplot # define dataset X, y = make_classification(n_samples=1000, n_features=10, n_informative=5, n_redundant=5, random_state=1) # evaluate the model model = LGBMClassifier() cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1) n_scores = cross_val_score(model, X, y, scoring='f1', cv=cv, n_jobs=-1, error_score='raise') print('F1: %.3f (%.3f)' % (mean(n_scores), std(n_scores))) # fit the model on the whole dataset clf = LGBMClassifier() clf.fit(X, y) # make a single prediction row = [[2.56999479, -0.13019997, 3.16075093, -4.35936352, -1.61271951, -1.39352057, -2.48924933, -1.93094078, 3.26130366, 2.05692145]] yhat = clf.predict(row) print('Prediction: %d' % yhat[0])
3,613
/Basic_Python_Assignment_17.ipynb
c58d9f76f242e1e5326d928206e3b21edaa08803
[]
no_license
eng-nikhil/In-Assignments
https://github.com/eng-nikhil/In-Assignments
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
7,430
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + # 1. Assign the value 7 to the variable guess_me. # Then, write the conditional tests (if, else, and elif) # to print the string 'too low' if guess_me is less than 7, 'too high' if greater than 7, and 'just right' if equal to 7. guess_me = 7 if guess_me < 7: print('too low') elif guess_me ==7: print('just right') else: print('too high') # + # 2. Assign the value 7 to the variable guess_me and the value 1 to the variable start. #Write a while loop that compares start with guess_me. #Print too low if start is less than guess me. #If start equals guess_me, print 'found it!' and exit the loop. #If start is greater than guess_me, print 'oops' and exit the loop. #Increment start at the end of the loop. guess_me=7 start =1 while True: if start < guess_me: print('too low') elif start == guess_me: print('found it!') break elif start > guess_me: print('oops') break start+=1 # + # 3. Print the following values of the list [3, 2, 1, 0] using a for loop. for i in [3, 2, 1, 0]: print(i) # - # 4. Use a list comprehension to make a list of the even numbers in range(10) lst = [x for x in range(10) if x%2==0] print(lst) # 5. Use a dictionary comprehension to create the dictionary squares. #Use range(10) to return the keys, and use the square of each key as its value. dict={x:x**2 for x in range(10)} print(dict) # 6. Construct the set odd from the odd numbers in the range using a set comprehension (10). odd=set(x for x in range(10) if x%2!=0) print(odd) # 7. Use a generator comprehension # to return the string 'Got ' and a number for the numbers in range(10). # Iterate through this by using a for loop. gen_comprehension=('Got ' + str(x) for x in range(10)) for i in gen_comprehension: print(i) # + # 8. Define a function called good that returns the list ['Harry', 'Ron', 'Hermione']. def good(): return ['Harry', 'Ron', 'Hermione'] good() # + # 9. Define a generator function called get_odds that returns the odd numbers from range(10). # Use a for loop to find and print the third value returned. get_odds=(x for x in range(10) if x%2!=0) for i in get_odds: print(i) # + # 10. Define an exception called OopsException. #Raise this exception to see what happens. #Then write the code to catch this exception and print 'Caught an oops'. class OopsException(Exception): pass def with_exception(a): if a < 0: raise OopsException(a) try: with_exception(-1) except OopsException as err: print('Caught an oops') # + # 11. Use zip() to make a dictionary called movies that pairs these lists: titles = ['Creature of Habit', 'Crewel Fate'] and plots = ['A nun turns into a monster', 'A haunted yarn shop']. titles = ['Creature of Habit', 'Crewel Fate'] plots = ['A nun turns into a monster', 'A haunted yarn shop'] movies = {} for title, plot in zip(titles, plots): movies[title] = plot print(movies)
3,248
/chapter_natural-language-processing/beam-search.ipynb
6bd82e1a3d0ef3206ace0d921198179cd44469e0
[]
no_license
middleprince/d2l-zh
https://github.com/middleprince/d2l-zh
0
1
null
2023-03-01T20:35:15
2020-12-04T09:06:43
Jupyter Notebook
Jupyter Notebook
false
false
.py
5,070
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # ๆŸๆœ็ดข # # ไธŠไธ€่Š‚ไป‹็ปไบ†ๅฆ‚ไฝ•่ฎญ็ปƒ่พ“ๅ…ฅๅ’Œ่พ“ๅ‡บๅ‡ไธบไธๅฎš้•ฟๅบๅˆ—็š„็ผ–็ ๅ™จโ€”่งฃ็ ๅ™จใ€‚ๆœฌ่Š‚ๆˆ‘ไปฌไป‹็ปๅฆ‚ไฝ•ไฝฟ็”จ็ผ–็ ๅ™จโ€”่งฃ็ ๅ™จๆฅ้ข„ๆต‹ไธๅฎš้•ฟ็š„ๅบๅˆ—ใ€‚ # # ไธŠไธ€่Š‚้‡Œๅทฒ็ปๆๅˆฐ๏ผŒๅœจๅ‡†ๅค‡่ฎญ็ปƒๆ•ฐๆฎ้›†ๆ—ถ๏ผŒๆˆ‘ไปฌ้€šๅธธไผšๅœจๆ ทๆœฌ็š„่พ“ๅ…ฅๅบๅˆ—ๅ’Œ่พ“ๅ‡บๅบๅˆ—ๅŽ้ขๅˆ†ๅˆซ้™„ไธŠไธ€ไธช็‰นๆฎŠ็ฌฆๅทโ€œ&lt;eos&gt;โ€่กจ็คบๅบๅˆ—็š„็ปˆๆญขใ€‚ๆˆ‘ไปฌๅœจๆŽฅไธ‹ๆฅ็š„่ฎจ่ฎบไธญไนŸๅฐ†ๆฒฟ็”จไธŠไธ€่Š‚็š„ๅ…จ้ƒจๆ•ฐๅญฆ็ฌฆๅทใ€‚ไธบไบ†ไพฟไบŽ่ฎจ่ฎบ๏ผŒๅ‡่ฎพ่งฃ็ ๅ™จ็š„่พ“ๅ‡บๆ˜ฏไธ€ๆฎตๆ–‡ๆœฌๅบๅˆ—ใ€‚่ฎพ่พ“ๅ‡บๆ–‡ๆœฌ่ฏๅ…ธ$\mathcal{Y}$๏ผˆๅŒ…ๅซ็‰นๆฎŠ็ฌฆๅทโ€œ&lt;eos&gt;โ€๏ผ‰็š„ๅคงๅฐไธบ$\left|\mathcal{Y}\right|$๏ผŒ่พ“ๅ‡บๅบๅˆ—็š„ๆœ€ๅคง้•ฟๅบฆไธบ$T'$ใ€‚ๆ‰€ๆœ‰ๅฏ่ƒฝ็š„่พ“ๅ‡บๅบๅˆ—ไธ€ๅ…ฑๆœ‰$\mathcal{O}(\left|\mathcal{Y}\right|^{T'})$็งใ€‚่ฟ™ไบ›่พ“ๅ‡บๅบๅˆ—ไธญๆ‰€ๆœ‰็‰นๆฎŠ็ฌฆๅทโ€œ&lt;eos&gt;โ€ๅŽ้ข็š„ๅญๅบๅˆ—ๅฐ†่ขซ่ˆๅผƒใ€‚ # # # ## ่ดชๅฉชๆœ็ดข # # ่ฎฉๆˆ‘ไปฌๅ…ˆๆฅ็œ‹ไธ€ไธช็ฎ€ๅ•็š„่งฃๅ†ณๆ–นๆกˆ๏ผš่ดชๅฉชๆœ็ดข๏ผˆgreedy search๏ผ‰ใ€‚ๅฏนไบŽ่พ“ๅ‡บๅบๅˆ—ไปปไธ€ๆ—ถ้—ดๆญฅ$t'$๏ผŒๆˆ‘ไปฌไปŽ$|\mathcal{Y}|$ไธช่ฏไธญๆœ็ดขๅ‡บๆกไปถๆฆ‚็Ž‡ๆœ€ๅคง็š„่ฏ # # $$y_{t'} = \operatorname*{argmax}_{y \in \mathcal{Y}} P(y \mid y_1, \ldots, y_{t'-1}, \boldsymbol{c})$$ # # ไฝœไธบ่พ“ๅ‡บใ€‚ไธ€ๆ—ฆๆœ็ดขๅ‡บโ€œ&lt;eos&gt;โ€็ฌฆๅท๏ผŒๆˆ–่€…่พ“ๅ‡บๅบๅˆ—้•ฟๅบฆๅทฒ็ป่พพๅˆฐไบ†ๆœ€ๅคง้•ฟๅบฆ$T'$๏ผŒไพฟๅฎŒๆˆ่พ“ๅ‡บใ€‚ # # ๆˆ‘ไปฌๅœจๆ่ฟฐ่งฃ็ ๅ™จๆ—ถๆๅˆฐ๏ผŒๅŸบไบŽ่พ“ๅ…ฅๅบๅˆ—็”Ÿๆˆ่พ“ๅ‡บๅบๅˆ—็š„ๆกไปถๆฆ‚็Ž‡ๆ˜ฏ$\prod_{t'=1}^{T'} P(y_{t'} \mid y_1, \ldots, y_{t'-1}, \boldsymbol{c})$ใ€‚ๆˆ‘ไปฌๅฐ†่ฏฅๆกไปถๆฆ‚็Ž‡ๆœ€ๅคง็š„่พ“ๅ‡บๅบๅˆ—็งฐไธบๆœ€ไผ˜่พ“ๅ‡บๅบๅˆ—ใ€‚่€Œ่ดชๅฉชๆœ็ดข็š„ไธป่ฆ้—ฎ้ข˜ๆ˜ฏไธ่ƒฝไฟ่ฏๅพ—ๅˆฐๆœ€ไผ˜่พ“ๅ‡บๅบๅˆ—ใ€‚ # # ไธ‹้ขๆฅ็œ‹ไธ€ไธชไพ‹ๅญใ€‚ๅ‡่ฎพ่พ“ๅ‡บ่ฏๅ…ธ้‡Œ้ขๆœ‰โ€œAโ€โ€œBโ€โ€œCโ€ๅ’Œโ€œ&lt;eos&gt;โ€่ฟ™4ไธช่ฏใ€‚ๅ›พ10.9ไธญๆฏไธชๆ—ถ้—ดๆญฅไธ‹็š„4ไธชๆ•ฐๅญ—ๅˆ†ๅˆซไปฃ่กจไบ†่ฏฅๆ—ถ้—ดๆญฅ็”Ÿๆˆโ€œAโ€โ€œBโ€โ€œCโ€ๅ’Œโ€œ&lt;eos&gt;โ€่ฟ™4ไธช่ฏ็š„ๆกไปถๆฆ‚็Ž‡ใ€‚ๅœจๆฏไธชๆ—ถ้—ดๆญฅ๏ผŒ่ดชๅฉชๆœ็ดข้€‰ๅ–ๆกไปถๆฆ‚็Ž‡ๆœ€ๅคง็š„่ฏใ€‚ๅ› ๆญค๏ผŒๅ›พ10.9ไธญๅฐ†็”Ÿๆˆ่พ“ๅ‡บๅบๅˆ—โ€œAโ€โ€œBโ€โ€œCโ€โ€œ&lt;eos&gt;โ€ใ€‚่ฏฅ่พ“ๅ‡บๅบๅˆ—็š„ๆกไปถๆฆ‚็Ž‡ๆ˜ฏ$0.5\times0.4\times0.4\times0.6 = 0.048$ใ€‚ # # # ![ๅœจๆฏไธชๆ—ถ้—ดๆญฅ๏ผŒ่ดชๅฉชๆœ็ดข้€‰ๅ–ๆกไปถๆฆ‚็Ž‡ๆœ€ๅคง็š„่ฏ](../img/s2s_prob1.svg) # # # ๆŽฅไธ‹ๆฅ๏ผŒ่ง‚ๅฏŸๅ›พ10.10ๆผ”็คบ็š„ไพ‹ๅญใ€‚ไธŽๅ›พ10.9ไธญไธๅŒ๏ผŒๅ›พ10.10ๅœจๆ—ถ้—ดๆญฅ2ไธญ้€‰ๅ–ไบ†ๆกไปถๆฆ‚็Ž‡็ฌฌไบŒๅคง็š„่ฏโ€œCโ€ใ€‚็”ฑไบŽๆ—ถ้—ดๆญฅ3ๆ‰€ๅŸบไบŽ็š„ๆ—ถ้—ดๆญฅ1ๅ’Œ2็š„่พ“ๅ‡บๅญๅบๅˆ—็”ฑๅ›พ10.9ไธญ็š„โ€œAโ€โ€œBโ€ๅ˜ไธบไบ†ๅ›พ10.10ไธญ็š„โ€œAโ€โ€œCโ€๏ผŒๅ›พ10.10ไธญๆ—ถ้—ดๆญฅ3็”Ÿๆˆๅ„ไธช่ฏ็š„ๆกไปถๆฆ‚็Ž‡ๅ‘็”Ÿไบ†ๅ˜ๅŒ–ใ€‚ๆˆ‘ไปฌ้€‰ๅ–ๆกไปถๆฆ‚็Ž‡ๆœ€ๅคง็š„่ฏโ€œBโ€ใ€‚ๆญคๆ—ถๆ—ถ้—ดๆญฅ4ๆ‰€ๅŸบไบŽ็š„ๅ‰3ไธชๆ—ถ้—ดๆญฅ็š„่พ“ๅ‡บๅญๅบๅˆ—ไธบโ€œAโ€โ€œCโ€โ€œBโ€๏ผŒไธŽๅ›พ10.9ไธญ็š„โ€œAโ€โ€œBโ€โ€œCโ€ไธๅŒใ€‚ๅ› ๆญค๏ผŒๅ›พ10.10ไธญๆ—ถ้—ดๆญฅ4็”Ÿๆˆๅ„ไธช่ฏ็š„ๆกไปถๆฆ‚็Ž‡ไนŸไธŽๅ›พ10.9ไธญ็š„ไธๅŒใ€‚ๆˆ‘ไปฌๅ‘็Žฐ๏ผŒๆญคๆ—ถ็š„่พ“ๅ‡บๅบๅˆ—โ€œAโ€โ€œCโ€โ€œBโ€โ€œ&lt;eos&gt;โ€็š„ๆกไปถๆฆ‚็Ž‡ๆ˜ฏ$0.5\times0.3\times0.6\times0.6=0.054$๏ผŒๅคงไบŽ่ดชๅฉชๆœ็ดขๅพ—ๅˆฐ็š„่พ“ๅ‡บๅบๅˆ—็š„ๆกไปถๆฆ‚็Ž‡ใ€‚ๅ› ๆญค๏ผŒ่ดชๅฉชๆœ็ดขๅพ—ๅˆฐ็š„่พ“ๅ‡บๅบๅˆ—โ€œAโ€โ€œBโ€โ€œCโ€โ€œ&lt;eos&gt;โ€ๅนถ้žๆœ€ไผ˜่พ“ๅ‡บๅบๅˆ—ใ€‚ # # ![ๅœจๆ—ถ้—ดๆญฅ2้€‰ๅ–ๆกไปถๆฆ‚็Ž‡็ฌฌไบŒๅคง็š„่ฏโ€œCโ€](../img/s2s_prob2.svg) # # ## ็ฉทไธพๆœ็ดข # # ๅฆ‚ๆžœ็›ฎๆ ‡ๆ˜ฏๅพ—ๅˆฐๆœ€ไผ˜่พ“ๅ‡บๅบๅˆ—๏ผŒๆˆ‘ไปฌๅฏไปฅ่€ƒ่™‘็ฉทไธพๆœ็ดข๏ผˆexhaustive search๏ผ‰๏ผš็ฉทไธพๆ‰€ๆœ‰ๅฏ่ƒฝ็š„่พ“ๅ‡บๅบๅˆ—๏ผŒ่พ“ๅ‡บๆกไปถๆฆ‚็Ž‡ๆœ€ๅคง็š„ๅบๅˆ—ใ€‚ # # ่™ฝ็„ถ็ฉทไธพๆœ็ดขๅฏไปฅๅพ—ๅˆฐๆœ€ไผ˜่พ“ๅ‡บๅบๅˆ—๏ผŒไฝ†ๅฎƒ็š„่ฎก็ฎ—ๅผ€้”€$\mathcal{O}(\left|\mathcal{Y}\right|^{T'})$ๅพˆๅฎนๆ˜“่ฟ‡ๅคงใ€‚ไพ‹ๅฆ‚๏ผŒๅฝ“$|\mathcal{Y}|=10000$ไธ”$T'=10$ๆ—ถ๏ผŒๆˆ‘ไปฌๅฐ†่ฏ„ไผฐ$10000^{10} = 10^{40}$ไธชๅบๅˆ—๏ผš่ฟ™ๅ‡ ไนŽไธๅฏ่ƒฝๅฎŒๆˆใ€‚่€Œ่ดชๅฉชๆœ็ดข็š„่ฎก็ฎ—ๅผ€้”€ๆ˜ฏ$\mathcal{O}(\left|\mathcal{Y}\right|T')$๏ผŒ้€šๅธธๆ˜พ่‘—ๅฐไบŽ็ฉทไธพๆœ็ดข็š„่ฎก็ฎ—ๅผ€้”€ใ€‚ไพ‹ๅฆ‚๏ผŒๅฝ“$|\mathcal{Y}|=10000$ไธ”$T'=10$ๆ—ถ๏ผŒๆˆ‘ไปฌๅช้œ€่ฏ„ไผฐ$10000\times10=10^5$ไธชๅบๅˆ—ใ€‚ # # # ## ๆŸๆœ็ดข # # ๆŸๆœ็ดข๏ผˆbeam search๏ผ‰ๆ˜ฏๅฏน่ดชๅฉชๆœ็ดข็š„ไธ€ไธชๆ”น่ฟ›็ฎ—ๆณ•ใ€‚ๅฎƒๆœ‰ไธ€ไธชๆŸๅฎฝ๏ผˆbeam size๏ผ‰่ถ…ๅ‚ๆ•ฐใ€‚ๆˆ‘ไปฌๅฐ†ๅฎƒ่ฎพไธบ$k$ใ€‚ๅœจๆ—ถ้—ดๆญฅ1ๆ—ถ๏ผŒ้€‰ๅ–ๅฝ“ๅ‰ๆ—ถ้—ดๆญฅๆกไปถๆฆ‚็Ž‡ๆœ€ๅคง็š„$k$ไธช่ฏ๏ผŒๅˆ†ๅˆซ็ป„ๆˆ$k$ไธชๅ€™้€‰่พ“ๅ‡บๅบๅˆ—็š„้ฆ–่ฏใ€‚ๅœจไน‹ๅŽ็š„ๆฏไธชๆ—ถ้—ดๆญฅ๏ผŒๅŸบไบŽไธŠไธชๆ—ถ้—ดๆญฅ็š„$k$ไธชๅ€™้€‰่พ“ๅ‡บๅบๅˆ—๏ผŒไปŽ$k\left|\mathcal{Y}\right|$ไธชๅฏ่ƒฝ็š„่พ“ๅ‡บๅบๅˆ—ไธญ้€‰ๅ–ๆกไปถๆฆ‚็Ž‡ๆœ€ๅคง็š„$k$ไธช๏ผŒไฝœไธบ่ฏฅๆ—ถ้—ดๆญฅ็š„ๅ€™้€‰่พ“ๅ‡บๅบๅˆ—ใ€‚ๆœ€็ปˆ๏ผŒๆˆ‘ไปฌไปŽๅ„ไธชๆ—ถ้—ดๆญฅ็š„ๅ€™้€‰่พ“ๅ‡บๅบๅˆ—ไธญ็ญ›้€‰ๅ‡บๅŒ…ๅซ็‰นๆฎŠ็ฌฆๅทโ€œ&lt;eos&gt;โ€็š„ๅบๅˆ—๏ผŒๅนถๅฐ†ๅฎƒไปฌไธญๆ‰€ๆœ‰็‰นๆฎŠ็ฌฆๅทโ€œ&lt;eos&gt;โ€ๅŽ้ข็š„ๅญๅบๅˆ—่ˆๅผƒ๏ผŒๅพ—ๅˆฐๆœ€็ปˆๅ€™้€‰่พ“ๅ‡บๅบๅˆ—็š„้›†ๅˆใ€‚ # # # ![ๆŸๆœ็ดข็š„่ฟ‡็จ‹ใ€‚ๆŸๅฎฝไธบ2๏ผŒ่พ“ๅ‡บๅบๅˆ—ๆœ€ๅคง้•ฟๅบฆไธบ3ใ€‚ๅ€™้€‰่พ“ๅ‡บๅบๅˆ—ๆœ‰$A$ใ€$C$ใ€$AB$ใ€$CE$ใ€$ABD$ๅ’Œ$CED$](../img/beam_search.svg) # # ๅ›พ10.11้€š่ฟ‡ไธ€ไธชไพ‹ๅญๆผ”็คบไบ†ๆŸๆœ็ดข็š„่ฟ‡็จ‹ใ€‚ๅ‡่ฎพ่พ“ๅ‡บๅบๅˆ—็š„่ฏๅ…ธไธญๅชๅŒ…ๅซ5ไธชๅ…ƒ็ด ๏ผŒๅณ$\mathcal{Y} = \{A, B, C, D, E\}$๏ผŒไธ”ๅ…ถไธญไธ€ไธชไธบ็‰นๆฎŠ็ฌฆๅทโ€œ&lt;eos&gt;โ€ใ€‚่ฎพๆŸๆœ็ดข็š„ๆŸๅฎฝ็ญ‰ไบŽ2๏ผŒ่พ“ๅ‡บๅบๅˆ—ๆœ€ๅคง้•ฟๅบฆไธบ3ใ€‚ๅœจ่พ“ๅ‡บๅบๅˆ—็š„ๆ—ถ้—ดๆญฅ1ๆ—ถ๏ผŒๅ‡่ฎพๆกไปถๆฆ‚็Ž‡$P(y_1 \mid \boldsymbol{c})$ๆœ€ๅคง็š„2ไธช่ฏไธบ$A$ๅ’Œ$C$ใ€‚ๆˆ‘ไปฌๅœจๆ—ถ้—ดๆญฅ2ๆ—ถๅฐ†ๅฏนๆ‰€ๆœ‰็š„$y_2 \in \mathcal{Y}$้ƒฝๅˆ†ๅˆซ่ฎก็ฎ—$P(A, y_2 \mid \boldsymbol{c}) = P(A \mid \boldsymbol{c})P(y_2 \mid A, \boldsymbol{c})$ๅ’Œ$P(C, y_2 \mid \boldsymbol{c}) = P(C \mid \boldsymbol{c})P(y_2 \mid C, \boldsymbol{c})$๏ผŒๅนถไปŽ่ฎก็ฎ—ๅ‡บ็š„10ไธชๆกไปถๆฆ‚็Ž‡ไธญๅ–ๆœ€ๅคง็š„2ไธช๏ผŒๅ‡่ฎพไธบ$P(A, B \mid \boldsymbol{c})$ๅ’Œ$P(C, E \mid \boldsymbol{c})$ใ€‚้‚ฃไนˆ๏ผŒๆˆ‘ไปฌๅœจๆ—ถ้—ดๆญฅ3ๆ—ถๅฐ†ๅฏนๆ‰€ๆœ‰็š„$y_3 \in \mathcal{Y}$้ƒฝๅˆ†ๅˆซ่ฎก็ฎ—$P(A, B, y_3 \mid \boldsymbol{c}) = P(A, B \mid \boldsymbol{c})P(y_3 \mid A, B, \boldsymbol{c})$ๅ’Œ$P(C, E, y_3 \mid \boldsymbol{c}) = P(C, E \mid \boldsymbol{c})P(y_3 \mid C, E, \boldsymbol{c})$๏ผŒๅนถไปŽ่ฎก็ฎ—ๅ‡บ็š„10ไธชๆกไปถๆฆ‚็Ž‡ไธญๅ–ๆœ€ๅคง็š„2ไธช๏ผŒๅ‡่ฎพไธบ$P(A, B, D \mid \boldsymbol{c})$ๅ’Œ$P(C, E, D \mid \boldsymbol{c})$ใ€‚ๅฆ‚ๆญคไธ€ๆฅ๏ผŒๆˆ‘ไปฌๅพ—ๅˆฐ6ไธชๅ€™้€‰่พ“ๅ‡บๅบๅˆ—๏ผš๏ผˆ1๏ผ‰$A$๏ผ›๏ผˆ2๏ผ‰$C$๏ผ›๏ผˆ3๏ผ‰$A$ใ€$B$๏ผ›๏ผˆ4๏ผ‰$C$ใ€$E$๏ผ›๏ผˆ5๏ผ‰$A$ใ€$B$ใ€$D$ๅ’Œ๏ผˆ6๏ผ‰$C$ใ€$E$ใ€$D$ใ€‚ๆŽฅไธ‹ๆฅ๏ผŒๆˆ‘ไปฌๅฐ†ๆ นๆฎ่ฟ™6ไธชๅบๅˆ—ๅพ—ๅ‡บๆœ€็ปˆๅ€™้€‰่พ“ๅ‡บๅบๅˆ—็š„้›†ๅˆใ€‚ # # # # ๅœจๆœ€็ปˆๅ€™้€‰่พ“ๅ‡บๅบๅˆ—็š„้›†ๅˆไธญ๏ผŒๆˆ‘ไปฌๅ–ไปฅไธ‹ๅˆ†ๆ•ฐๆœ€้ซ˜็š„ๅบๅˆ—ไฝœไธบ่พ“ๅ‡บๅบๅˆ—๏ผš # # $$ \frac{1}{L^\alpha} \log P(y_1, \ldots, y_{L}) = \frac{1}{L^\alpha} \sum_{t'=1}^L \log P(y_{t'} \mid y_1, \ldots, y_{t'-1}, \boldsymbol{c}),$$ # # ๅ…ถไธญ$L$ไธบๆœ€็ปˆๅ€™้€‰ๅบๅˆ—้•ฟๅบฆ๏ผŒ$\alpha$ไธ€่ˆฌๅฏ้€‰ไธบ0.75ใ€‚ๅˆ†ๆฏไธŠ็š„$L^\alpha$ๆ˜ฏไธบไบ†ๆƒฉ็ฝš่พƒ้•ฟๅบๅˆ—ๅœจไปฅไธŠๅˆ†ๆ•ฐไธญ่พƒๅคš็š„ๅฏนๆ•ฐ็›ธๅŠ ้กนใ€‚ๅˆ†ๆžๅฏ็Ÿฅ๏ผŒๆŸๆœ็ดข็š„่ฎก็ฎ—ๅผ€้”€ไธบ$\mathcal{O}(k\left|\mathcal{Y}\right|T')$ใ€‚่ฟ™ไป‹ไบŽ่ดชๅฉชๆœ็ดขๅ’Œ็ฉทไธพๆœ็ดข็š„่ฎก็ฎ—ๅผ€้”€ไน‹้—ดใ€‚ๆญคๅค–๏ผŒ่ดชๅฉชๆœ็ดขๅฏ็œ‹ไฝœๆ˜ฏๆŸๅฎฝไธบ1็š„ๆŸๆœ็ดขใ€‚ๆŸๆœ็ดข้€š่ฟ‡็ตๆดป็š„ๆŸๅฎฝ$k$ๆฅๆƒ่กก่ฎก็ฎ—ๅผ€้”€ๅ’Œๆœ็ดข่ดจ้‡ใ€‚ # # # ## ๅฐ็ป“ # # * ้ข„ๆต‹ไธๅฎš้•ฟๅบๅˆ—็š„ๆ–นๆณ•ๅŒ…ๆ‹ฌ่ดชๅฉชๆœ็ดขใ€็ฉทไธพๆœ็ดขๅ’ŒๆŸๆœ็ดขใ€‚ # * ๆŸๆœ็ดข้€š่ฟ‡็ตๆดป็š„ๆŸๅฎฝๆฅๆƒ่กก่ฎก็ฎ—ๅผ€้”€ๅ’Œๆœ็ดข่ดจ้‡ใ€‚ # # # ## ็ปƒไน  # # * ็ฉทไธพๆœ็ดขๅฏๅฆ็œ‹ไฝœ็‰นๆฎŠๆŸๅฎฝ็š„ๆŸๆœ็ดข๏ผŸไธบไป€ไนˆ๏ผŸ # * ๅœจ[โ€œๅพช็Žฏ็ฅž็ป็ฝ‘็ปœ็š„ไปŽ้›ถๅผ€ๅง‹ๅฎž็Žฐโ€](../chapter_recurrent-neural-networks/rnn-scratch.ipynb)ไธ€่Š‚ไธญ๏ผŒๆˆ‘ไปฌไฝฟ็”จ่ฏญ่จ€ๆจกๅž‹ๅˆ›ไฝœๆญŒ่ฏใ€‚ๅฎƒ็š„่พ“ๅ‡บๅฑžไบŽๅ“ช็งๆœ็ดข๏ผŸไฝ ่ƒฝๆ”น่ฟ›ๅฎƒๅ—๏ผŸ # # # # # ## ๆ‰ซ็ ็›ด่พพ[่ฎจ่ฎบๅŒบ](https://discuss.gluon.ai/t/topic/6817) # # ![](../img/qr_beam-search.svg)
4,202
/exercise-machine-learning-competitions.ipynb
cf57b42ddf9c61ea515f816cffafd8ecb580c0e6
[]
no_license
meghhhna/INTRO-TO-MACHINE-LEARNING
https://github.com/meghhhna/INTRO-TO-MACHINE-LEARNING
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
11,304
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # <b><font size="5">Face Detetcion and Recognition with CNN</font><br></b> # <font size="4">Introduction:</font><br><br> # <p><font size="3">With the development of deep learning, face recognition technology based on CNN (Convolutional Neural Network) has become the main method adopted in the field of face recognition. A Convolutional Neural Network consists of an input and an output layer, as well as multiple hidden layers. The hidden layers of a CNN typically consist of a series of convolutional layers that convolve with a multiplication. The activation function is most commonly a ReLU layer, and is subsequently followed by additional convolutions such as pooling layers, fully connected layers and normalization layers. CNN can be efficiently used in the field of Computer Vision such as image and video recognition, recommender systems and image classification.</font></p> # <p><font size="3">In this project, we are going to develope and examine the workflow of a face recognition system with CNN. The data used for this project is an open source dataset which can be downloaded from the link below:</font></p> # <a href="https://gitlab.com/knork/data">Click here</a></font></p> # <p><font size="3">The ORL_faces.npz dataset contains 400 images of 20 different person's face which means there are 20 images belonging to every individual.</font></p> # + # Import libraries import keras from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, classification_report, accuracy_score # + # Load dataset data = np.load('ORL_faces.npz') # Load the "Train Images" x_train = data['trainX'] x_train = np.array(x_train, dtype='float32')/255 x_test = data['testX'] x_test = np.array(x_test, dtype='float32')/255 # Load the Label of Images y_train = data['trainY'] y_test = data['testY'] # + # Let's inspect images from 4 different persons (in grayscale) plt.figure(figsize=(12,10)) for count, index in enumerate(range(0, 40, 10)): # Plot images plt.subplot(221+count) plt.imshow(x_train[index].reshape(112, 92), cmap='gray') # - # Let's create a validation set which will be used for validation during the training process x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.2, random_state=42) # + height = 112 width = 92 shape = (height, width, 1) # Change shape of images x_train = x_train.reshape(x_train.shape[0], *shape) x_test = x_test.reshape(x_test.shape[0], *shape) x_val = x_val.reshape(x_val.shape[0], *shape) print('X_train shape: {}'.format(x_train.shape)) print('X_test shape: {}'.format(x_test.shape)) print('X_val shape: {}'.format(x_val.shape)) print('------------------------------------') print('Y_train shape: {}'.format(y_train.shape)) print('Y_test shape: {}'.format(y_test.shape)) print('Y_val shape: {}'.format(y_val.shape)) # + # Create model model = Sequential([ Conv2D(filters=36, kernel_size=7, activation='relu', input_shape=shape), MaxPooling2D(pool_size=2), Conv2D(filters=54, kernel_size=5, activation='relu', input_shape=shape), MaxPooling2D(pool_size=2), Flatten(), Dense(2024, activation='relu'), Dropout(0.4), Dense(1024, activation='relu'), Dropout(0.4), Dense(512, activation='relu'), Dropout(0.4), Dense(20, activation='softmax') ]) model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # - # <p><font size="3">The model has 9 distinct layers. The first one is a 2-dimensional Convolutional Layer with a Rectified Linear Unit activation function. Then, this fed into a 2-dimensional MaxPooling layer which reduces the computational cost by reducing the number of parameters to learn and provides basic translation invariance to the internal representation. The same process is repeated one more time. The next step is to flatten out the previous layer's output. This reshapes the tensor to have the shape that is equal to the number of elements contained in tensor, thus we'll be able to feed into fully connected Dense Layer with 'relu' activation functions. We used Dropout functions to avoid overfitting which means 40% of the nodes will be set to 0 at each update of the training phase. The last layer is our output layer with Softmax activation function for multi-class classification.</font></p> # <p><font size="3">Finally, we compile our model using Adam optimizer and Sparse Categorical Cross Entropy as a cost function. Categorical Cross Entropy loss function shall be used for multi-label classification.</font></p> # Display model model.summary() # Train our model monitoring validation accuracy in the meantime. training = model.fit(x_train, y_train, batch_size=256, epochs=75, verbose=1, validation_data=(x_val, y_val)) # + # Evaluate on test set scores = model.evaluate(x_test, y_test) print('Test loss {:.4f}'.format(scores[0])) print('Test accuaracy {:.4f}'.format(scores[1])) # + plt.figure(figsize=(15,8)) plt.subplot(121) plt.plot(training.history['accuracy']) plt.plot(training.history['val_accuracy']) plt.title('Model accuracy', size=15) plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['train', 'validation'], loc='best') plt.subplot(122) plt.plot(training.history['loss']) plt.plot(training.history['val_loss']) plt.title('Loss function', size=15) plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['train', 'validation'], loc='best') # - # <p><font size="3">The accuracy graph shows that the higher the number of epachs the model was trained the more accurate the model becomes. As we can see there is no sign of overfitting since both validation and training set's accuracy has the same trend. If validation set's accuracy were lower, we'd have talked about overfitting which means the model we trained on training set too much (learned irrelevent features). On the other hand, if validation set's accuracy were higher than training set's accuracy, we'd have talked about underfitting which means the model was not trained enough.</font></p> # <p><font size="3">It seems 75 epochs was enough to train since the curves became constant 35-40 epoch.</font></p> # + # Make predictions on testing set prediction = model.predict_classes(x_test) accuarcy = accuracy_score(y_test, prediction) print("Accuracy:", accuarcy) # - print('Confusin matrix:\n', confusion_matrix(y_test, prediction)) print('') print('Classification report:\n', classification_report(y_test, prediction)) # Create a heatmap of the confusion matrix for a better understanding with visualization cm = confusion_matrix(y_test, prediction) plt.figure(figsize=(12,12)) sns.heatmap(cm, cmap='viridis', annot=True) plt.title('Confusion Matrix', size=16) plt.xlabel('Predicted Label', size=13) plt.ylabel('True Label', size=13) # <font size="3"><p>We can clearly see that most of the images were correctly classified (which are located diagonally represented by 8). The most frequently missclassifed person was with ID of number 4 (was correctly classified only twice). The system mixed up his face with ID number of 8. Let's have a look at them.</font></p> plt.figure(figsize=(10,8)) plt.subplot(121) plt.imshow(x_test[34].reshape(112, 92), cmap='gray') plt.subplot(122) plt.imshow(x_test[66].reshape(112, 92), cmap='gray') # <font size="3"><p>At first glance, no similarities can be noticed. The model probably found similarities between shape of mouths, eye-distnces, shape of noses which might could confuse the face recognition process.</font></p> # <font size="4">Conclusion:</font><br><br> # <p><font size="3">Our face recognition model using deep learning, CNN could reach a 87.5 % accuracy after training the model for 75 epochs. Even if the model's time complexity is pretty high (took roughly half an hour to run) we got a very similar, slighly lower accuracy compared what we got with the LBPH algorithm (88.75 %). Despite of the LBPH algorithm there are many parameters to tune in the developement of a CNN model such as choosing the number of layers, finding appropriate dropout ratio, specifying the batch size etc. Playing around with these parameters might leed a slighly higher accuracy ratio than we got with the LBPH algorithm.</font></p> # <p><font size="3">In overall, CNN face recognition tools are among the most robust and accurate systems available which are still under developement to this day.<font></p>
8,911
/assignment 20 (python basic).ipynb
b725ca64c2db7af9025f60452ecd8518ed6a9479
[]
no_license
coderita/Data-Science-Assignment
https://github.com/coderita/Data-Science-Assignment
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
5,741
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3.7.4 32-bit # name: python374jvsc74a57bd00573fab6c61a770748bfcdda5a22a6f0994280481be73221145b8e05796edb27 # --- # 1. Set the variable test1 to the string 'This is a test of the emergency text system,' and save test1 to a file named test.txt. test1 = 'This is a test of the emergency text system' outfile = open('test.txt', 'wt') outfile.write(test1) outfile.close() # 2. Read the contents of the file test.txt into the variable test2. Is there a difference between test 1 and test 2? # + with open('test.txt', 'rt') as infile: test2 = infile.read() test1==test2 # - # 3. Create a CSV file called books.csv by using these lines: # title,author,year # The Weirdstone of Brisingamen,Alan Garner,1960 # Perdido Street Station,China Miรฉville,2000 # Thud!,Terry Pratchett,2005 # The Spellman Files,Lisa Lutz,2007 # Small Gods,Terry Pratchett,1992 # text = '''title,author,year, The Weirdstone of Brisingamen,Alan Garner,1960 Perdido Street Station,China Miรฉville,2000 Thud!,Terry Pratchett,2005 The Spellman Files,Lisa Lutz,2007 Small Gods,Terry Pratchett,1992''' with open('books.csv', 'w') as outfile: outfile.write(text) # 4. Use the sqlite3 module to create a SQLite database called books.db, and a table called books with these fields: title (text), author (text), and year (integer). # + import sqlite3 db = sqlite3.connect('books.db') curs = db.cursor() curs.execute("DROP TABLE IF EXISTS book") curs.execute('''create table book (title CHAR(20), author CHAR(20), year INT)''') db.commit() # - # 5. Read books.csv and insert its data into the book table. import csv ins_str = 'insert into book values(?, ?, ?)' with open('books.csv', 'rt') as infile: books = csv.DictReader(infile) for book in books: curs.execute(ins_str, (book['title'], book['author'], book['year'])) db.commit() # 6. Select and print the title column from the book table in alphabetical order. sql = 'select title from book order by title asc' for row in db.execute(sql): print(row) # 7. From the book table, select and print all columns in the order of publication. # for row in db.execute('select * from book order by year'): print(row) # 8. Use the sqlalchemy module to connect to the sqlite3 database books.db that you just made in exercise 6. import sqlalchemy conn = sqlalchemy.create_engine('sqlite:///books.db') sql = 'select title from book order by title asc' rows = conn.execute(sql) for row in rows: print(row) # 9. Install the Redis server and the Python redis library (pip install redis) on your computer. Create a Redis hash called test with the fields count (1) and name ('Fester Bestertester'). Print all the fields for test. import redis conn = redis.Redis() conn.delete('test') conn.hmset('test', {'count': 1, 'name': 'Fester Bestertester'}) conn.hgetall('test') # 10. Increment the count field of test and print it. conn.hincrby('test', 'count', 3) conn.hget('test', 'count')
3,155
/Untitled.ipynb
986d0045002d1a5fe74ae6f5cb10d3602fc6d52f
[]
no_license
nitinpathania007/Math-for-Data-Scientists
https://github.com/nitinpathania007/Math-for-Data-Scientists
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
39,892
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + [dot[z[0],z[1] for z in zip(a,x)] a=[col1,col2...] b=smul(x[0],a[0]) for col in range(1,len(x): z=smul(x[i],a[i]) b=vadd(b,z) a=dot(v,w) -computes dot product of two vectors return scalar u=vadd(v,w)-add two vectors return vector w=smul(alpha,v) - multiply vector by scalar and return vector # - # + a=[row1,row2..] b=[col1,col2...] def funct(a,b): [dot[z[0],z[1] for z in zip(a,b)] # - import numpy a=[1,2,3] b=[3,4,5] numpy.dot(a,b) m=5 n=10 [[i*j for i in range(0,n)] for j in range(0,m)] m=5 n=10 [[j*i for i in range(0,n)] for j in range(0,m)] m=5 n=10 s=[] p=[] for i in range(0,m): row=[] for j in range(0,n): row.append(0) p.append(row) for i in p: print(i) import numpy as np b=np.random.randn(5,10) b D=np.random.randn(5,10) D d=b.transpose() d b for i in range(0,6): for j in range(0,10): out=b[i][j]*d[i][j] c=[[]] m=5 n=10 for i in range(0,m): for j in range(0,n): c[i][j]=b[j][i] D b=np.round(10*np.random.randn(5,10)/10) b # + w = np.array([[2,-6],[-1, 4]]) v = np.array([12,46]) w*v # - b 1.29824913*2.89823632 d mvmul(b,d) len(b[0]) len(b) s=[] for i in range(0,5): t=[] for j in range(0,10): t.append(b[i][j]*d[j][i]) s.append(t) s b d # + c=[] for i in range(0,len(b)): e=[] for j in range(0,len(d)): e.append(np.dot(b[i][j]*d[j][i]) c.append(e) c # + def myzeroes(m,n): D=[[0 for i in range(0,n)] for i in range(0,m)] return D def mytranspose(B): m=len(B) n=len(B[0]) D=myzeroes(n,m) for i in range(0,n): for j in range(0,m): D[i][j]=B[j][i] return D # - b mytranspose(b) # + A=np.round(10*np.random.randn(10,5))/10 B=np.round(10*np.random.randn(10,5))/10 BT=mytranspose(b) # + C=[[0 for i in range(0,len(B[0]))] for j in range(0,len(A))] for i in range(0,len(A)): for j in range(0,len(B[0])): for k in range(0,len(A[0])): C[i][j] += A[i][k]*B[k][j] len(C[0]) # + import time t=time.perf_counter() for i in range(0,len(A)): for j in range(0,len(B[0])): for k in range(0,len(A[0])): C[i][j] += A[i][k]*B[k][j] np.round(np.array(C)*10)/10 print(time.perf_counter()-t) # + t-time.perf_counter() np.matmul(A,B) print(time.perf_counter()-t) mvmul # - whos who L=[0] [L*5]*7 np.random.randint(1,10) # + Amys=[] C=[[0 for i in range(0,n)] for j in range(0,m)] #not sparsh approach m=5 n=8 k=6 for ik in range(0,k): row=np.random.randint(1,m) column=np.random.randint(1,n) A[row][column]=np.random.randn() A[(row,column)] = r A[row][column] = r A # - from scipy.sparse import csr_matrix As=csr_matrix(A) A from scipy.sparse import coo_matrix As1=coo_matrix(A) As1
3,084
/feature-engineering/exercise-mutual-information.ipynb
bab000d6ead61e726e5fde9e6eae05d203085337
[]
no_license
MiesnerJacob/kaggle-courses
https://github.com/MiesnerJacob/kaggle-courses
0
0
null
2021-02-14T19:25:22
2021-02-14T19:24:28
Jupyter Notebook
Jupyter Notebook
false
false
.py
446,730
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + [markdown] colab_type="text" id="BOetPxvylfeb" # # Amazon Fine Food Reviews Analysis # # # Data Source: https://www.kaggle.com/snap/amazon-fine-food-reviews <br> # # EDA: https://nycdatascience.com/blog/student-works/amazon-fine-foods-visualization/ # # # The Amazon Fine Food Reviews dataset consists of reviews of fine foods from Amazon.<br> # # Number of reviews: 568,454<br> # Number of users: 256,059<br> # Number of products: 74,258<br> # Timespan: Oct 1999 - Oct 2012<br> # Number of Attributes/Columns in data: 10 # # Attribute Information: # # 1. Id # 2. ProductId - unique identifier for the product # 3. UserId - unqiue identifier for the user # 4. ProfileName # 5. HelpfulnessNumerator - number of users who found the review helpful # 6. HelpfulnessDenominator - number of users who indicated whether they found the review helpful or not # 7. Score - rating between 1 and 5 # 8. Time - timestamp for the review # 9. Summary - brief summary of the review # 10. Text - text of the review # # # #### Objective: # Given a review, determine whether the review is positive (rating of 4 or 5) or negative (rating of 1 or 2). # # <br> # [Q] How to determine if a review is positive or negative?<br> # <br> # [Ans] We could use Score/Rating. A rating of 4 or 5 can be cosnidered as a positive review. A rating of 1 or 2 can be considered as negative one. A review of rating 3 is considered nuetral and such reviews are ignored from our analysis. This is an approximate and proxy way of determining the polarity (positivity/negativity) of a review. # # # # + [markdown] colab_type="text" id="CSLdiilDlfec" # # [1]. Reading Data # + [markdown] colab_type="text" id="l2TPdoDflfed" # ## [1.1] Loading the data # # The dataset is available in two forms # 1. .csv file # 2. SQLite Database # # In order to load the data, We have used the SQLITE dataset as it is easier to query the data and visualise the data efficiently. # <br> # # Here as we only want to get the global sentiment of the recommendations (positive or negative), we will purposefully ignore all Scores equal to 3. If the score is above 3, then the recommendation wil be set to "positive". Otherwise, it will be set to "negative". # + id="QpPFNzD7UJx-" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 51} outputId="43a8e0a0-2b59-4687-a583-63e38f3376e7" # Code to read csv file into Colaboratory: # !pip install -U -q PyDrive from pydrive.auth import GoogleAuth from pydrive.drive import GoogleDrive from google.colab import auth from oauth2client.client import GoogleCredentials # Authenticate and create the PyDrive client. auth.authenticate_user() gauth = GoogleAuth() gauth.credentials = GoogleCredentials.get_application_default() drive = GoogleDrive(gauth) # + id="nDD6P0UdUZFS" colab_type="code" colab={} link = 'https://drive.google.com/open?id=1cpwGHmONMCohLX-EQu9ubkB58ZoVc9pI' # The shareable link # + id="Z2doRsE2UcTv" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 34} outputId="32832d9e-04b8-4a61-81ca-f6d4556da594" fluff, id = link.split('=') print (id) # Verify that you have everything after '=' # + id="gOmU7dPxUecH" colab_type="code" colab={} import pandas as pd downloaded = drive.CreateFile({'id':id}) downloaded.GetContentFile('opendata.csv') df3 = pd.read_csv('opendata.csv') # + colab_type="code" id="JfreTkMblfee" colab={} # %matplotlib inline import warnings warnings.filterwarnings("ignore") import sqlite3 import pandas as pd import numpy as np import nltk import string import matplotlib.pyplot as plt import seaborn as sns from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics import confusion_matrix from sklearn import metrics from sklearn.metrics import roc_curve, auc from nltk.stem.porter import PorterStemmer import re # Tutorial about Python regular expressions: https://pymotw.com/2/re/ import string from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.stem.wordnet import WordNetLemmatizer from gensim.models import Word2Vec from gensim.models import KeyedVectors import pickle from tqdm import tqdm import os # + id="ju92kfH8UnRU" colab_type="code" colab={} filtered_data=df3 # + colab_type="code" id="StXOCb9Glfej" outputId="6e22ef7d-dc9b-44cd-c240-ab609e851500" colab={"base_uri": "https://localhost:8080/", "height": 996} # using SQLite Table to read data. con = sqlite3.connect('database.sqlite') # filtering only positive and negative reviews i.e. # not taking into consideration those reviews with Score=3 # SELECT * FROM Reviews WHERE Score != 3 LIMIT 500000, will give top 500000 data points # you can change the number to any other number based on your computing power filtered_data = pd.read_sql_query(""" SELECT * FROM Reviews WHERE Score != 3 LIMIT 500000""", con) # for tsne assignment you can take 5k data points filtered_data = df3 # Give reviews with Score>3 a positive rating(1), and reviews with a score<3 a negative rating(0). def partition(x): if x < 3: return 0 return 1 #changing reviews with score less than 3 to be positive and vice-versa actualScore = filtered_data['Score'] positiveNegative = actualScore.map(partition) filtered_data['Score'] = positiveNegative print("Number of data points in our data", filtered_data.shape) filtered_data.head(3) # + colab_type="code" id="9rOGfYsAlfe0" colab={} display[display['UserId']=='AZY10LLTJ71NX'] # + colab_type="code" id="CmLfx_WElfe6" colab={} display['COUNT(*)'].sum() # + [markdown] colab_type="text" id="r0kfpBuilfe-" # # [2] Exploratory Data Analysis # + [markdown] colab_type="text" id="gaKEsV7Vlfe_" # ## [2.1] Data Cleaning: Deduplication # # It is observed (as shown in the table below) that the reviews data had many duplicate entries. Hence it was necessary to remove duplicates in order to get unbiased results for the analysis of the data. Following is an example: # + colab_type="code" id="yY3iRtAAlffA" colab={} display= pd.read_sql_query(""" SELECT * FROM Reviews WHERE Score != 3 AND UserId="AR5J8UI46CURR" ORDER BY ProductID """, con) display.head() # + [markdown] colab_type="text" id="Zn4BzyPFlffE" # As it can be seen above that same user has multiple reviews with same values for HelpfulnessNumerator, HelpfulnessDenominator, Score, Time, Summary and Text and on doing analysis it was found that <br> # <br> # ProductId=B000HDOPZG was Loacker Quadratini Vanilla Wafer Cookies, 8.82-Ounce Packages (Pack of 8)<br> # <br> # ProductId=B000HDL1RQ was Loacker Quadratini Lemon Wafer Cookies, 8.82-Ounce Packages (Pack of 8) and so on<br> # # It was inferred after analysis that reviews with same parameters other than ProductId belonged to the same product just having different flavour or quantity. Hence in order to reduce redundancy it was decided to eliminate the rows having same parameters.<br> # # The method used for the same was that we first sort the data according to ProductId and then just keep the first similar product review and delelte the others. for eg. in the above just the review for ProductId=B000HDL1RQ remains. This method ensures that there is only one representative for each product and deduplication without sorting would lead to possibility of different representatives still existing for the same product. # + colab_type="code" id="_QwRW3RFlffF" colab={} #Sorting data according to ProductId in ascending order sorted_data=filtered_data.sort_values('ProductId', axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last') # + colab_type="code" id="loiXzYmzlffK" outputId="aee6eb29-8762-4aa3-dcc4-1d8975bc982b" colab={"base_uri": "https://localhost:8080/", "height": 34} #Deduplication of entries final=sorted_data.drop_duplicates(subset={"UserId","ProfileName","Time","Text"}, keep='first', inplace=False) final.shape # + colab_type="code" id="zJXHGtLqlffP" outputId="e94e71d2-d576-42ad-f143-aa8ebe346e40" colab={"base_uri": "https://localhost:8080/", "height": 34} #Checking to see how much % of data still remains (final['Id'].size*1.0)/(filtered_data['Id'].size*1.0)*100 # + [markdown] colab_type="text" id="6BmtZ8u8lffT" # <b>Observation:-</b> It was also seen that in two rows given below the value of HelpfulnessNumerator is greater than HelpfulnessDenominator which is not practically possible hence these two rows too are removed from calcualtions # + colab_type="code" id="yqjWBOUilffa" colab={} final=final[final.HelpfulnessNumerator<=final.HelpfulnessDenominator] # + colab_type="code" id="3NgUYSqklfff" outputId="ccc51371-dece-4911-cb5b-caaf70427d64" colab={"base_uri": "https://localhost:8080/", "height": 119} #Before starting the next phase of preprocessing lets see the number of entries left print(final.shape) #How many positive and negative reviews are present in our dataset? final['Score'].value_counts() # + [markdown] colab_type="text" id="tEJo2qovlffk" # # [3] Preprocessing # + [markdown] colab_type="text" id="98ogqQNvlffm" # ## [3.1]. Preprocessing Review Text # # Now that we have finished deduplication our data requires some preprocessing before we go on further with analysis and making the prediction model. # # Hence in the Preprocessing phase we do the following in the order below:- # # 1. Begin by removing the html tags # 2. Remove any punctuations or limited set of special characters like , or . or # etc. # 3. Check if the word is made up of english letters and is not alpha-numeric # 4. Check to see if the length of the word is greater than 2 (as it was researched that there is no adjective in 2-letters) # 5. Convert the word to lowercase # 6. Remove Stopwords # 7. Finally Snowball Stemming the word (it was obsereved to be better than Porter Stemming)<br> # # After which we collect the words used to describe positive and negative reviews # + colab_type="code" id="toJT1pm7lffo" outputId="77671bd0-4c09-4e14-8921-f8330c62bcf5" colab={"base_uri": "https://localhost:8080/", "height": 173} # printing some random reviews sent_0 = final['Text'].values[0] print(sent_0) print("="*50) sent_1000 = final['Text'].values[1000] print(sent_1000) print("="*50) sent_1500 = final['Text'].values[1500] print(sent_1500) print("="*50) sent_4900 = final['Text'].values[4900] print(sent_4900) print("="*50) # + colab_type="code" id="veaXSSGSlffu" outputId="27d8d17d-ca45-47b6-f93d-01d9842ea39b" colab={"base_uri": "https://localhost:8080/", "height": 54} # remove urls from text python: https://stackoverflow.com/a/40823105/4084039 sent_0 = re.sub(r"http\S+", "", sent_0) sent_1000 = re.sub(r"http\S+", "", sent_1000) sent_150 = re.sub(r"http\S+", "", sent_1500) sent_4900 = re.sub(r"http\S+", "", sent_4900) print(sent_0) # + colab_type="code" id="PSDTpeZElffx" outputId="627e9701-702e-4c05-cc08-a744b1cfce9d" colab={"base_uri": "https://localhost:8080/", "height": 156} # https://stackoverflow.com/questions/16206380/python-beautifulsoup-how-to-remove-all-tags-from-an-element from bs4 import BeautifulSoup soup = BeautifulSoup(sent_0, 'lxml') text = soup.get_text() print(text) print("="*50) soup = BeautifulSoup(sent_1000, 'lxml') text = soup.get_text() print(text) print("="*50) soup = BeautifulSoup(sent_1500, 'lxml') text = soup.get_text() print(text) print("="*50) soup = BeautifulSoup(sent_4900, 'lxml') text = soup.get_text() print(text) # + colab_type="code" id="P2fiflxxlff1" colab={} # https://stackoverflow.com/a/47091490/4084039 import re def decontracted(phrase): # specific phrase = re.sub(r"won't", "will not", phrase) phrase = re.sub(r"can\'t", "can not", phrase) # general phrase = re.sub(r"n\'t", " not", phrase) phrase = re.sub(r"\'re", " are", phrase) phrase = re.sub(r"\'s", " is", phrase) phrase = re.sub(r"\'d", " would", phrase) phrase = re.sub(r"\'ll", " will", phrase) phrase = re.sub(r"\'t", " not", phrase) phrase = re.sub(r"\'ve", " have", phrase) phrase = re.sub(r"\'m", " am", phrase) return phrase # + colab_type="code" id="YFFhQsI5lff3" outputId="86acde5c-4196-41bd-ef81-f493388ea3a3" colab={"base_uri": "https://localhost:8080/", "height": 71} sent_1500 = decontracted(sent_1500) print(sent_1500) print("="*50) # + colab_type="code" id="tOXUuH2Llff9" outputId="3b8f556b-f5a0-4cd7-cb88-9892b0211d25" colab={"base_uri": "https://localhost:8080/", "height": 54} #remove words with numbers python: https://stackoverflow.com/a/18082370/4084039 sent_0 = re.sub("\S*\d\S*", "", sent_0).strip() print(sent_0) # + colab_type="code" id="Rjbj4y72lfgB" outputId="5f7f99ed-f85b-4da5-c2b8-1c0ece135ca2" colab={"base_uri": "https://localhost:8080/", "height": 54} #remove spacial character: https://stackoverflow.com/a/5843547/4084039 sent_1500 = re.sub('[^A-Za-z0-9]+', ' ', sent_1500) print(sent_1500) # + colab_type="code" id="uvvaKYT0lfgF" colab={} # https://gist.github.com/sebleier/554280 # we are removing the words from the stop words list: 'no', 'nor', 'not' # <br /><br /> ==> after the above steps, we are getting "br br" # we are including them into stop words list # instead of <br /> if we have <br/> these tags would have revmoved in the 1st step stopwords= set(['br', 'the', 'i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've",\ "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', \ 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their',\ 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', \ 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', \ 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', \ 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after',\ 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further',\ 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more',\ 'most', 'other', 'some', 'such', 'only', 'own', 'same', 'so', 'than', 'too', 'very', \ 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', \ 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn',\ "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn',\ "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", \ 'won', "won't", 'wouldn', "wouldn't"]) # + colab_type="code" id="Z9rdZXeFlfgH" outputId="cc71b921-d7b0-4325-ee86-41133bec35da" colab={"base_uri": "https://localhost:8080/", "height": 34} # Combining all the above stundents from tqdm import tqdm preprocessed_reviews = [] # tqdm is for printing the status bar for sentance in tqdm(final['Text'].values): sentance = re.sub(r"http\S+", "", sentance) sentance = BeautifulSoup(sentance, 'lxml').get_text() sentance = decontracted(sentance) sentance = re.sub("\S*\d\S*", "", sentance).strip() sentance = re.sub('[^A-Za-z]+', ' ', sentance) # https://gist.github.com/sebleier/554280 sentance = ' '.join(e.lower() for e in sentance.split() if e.lower() not in stopwords) preprocessed_reviews.append(sentance.strip()) # + colab_type="code" id="eFr9XTF5lfgK" outputId="59dfc26f-d1d7-4e02-d598-2c82d74b8bc3" colab={"base_uri": "https://localhost:8080/", "height": 54} preprocessed_reviews[1500] # + [markdown] colab_type="text" id="zbdUHU_wlfgP" # <h2><font color='red'>[3.2] Preprocessing Review Summary</font></h2> # + colab_type="code" id="bpuHpiSvlfgP" colab={} def func(x): if x>3: return 1 else: return 0 # + colab_type="code" id="UnpnKucKlfgU" colab={} x=preprocessed_reviews y=final['Score'].apply(func) # + colab_type="code" id="LuKLpvllnY23" colab={} from sklearn.model_selection import train_test_split x1,xtest,y1,ytest=train_test_split(x,y,test_size=0.3,random_state=1) # + colab_type="code" id="oNgO3I-fnhll" colab={} xtrain,xcv,ytrain,ycv=train_test_split(x1,y1,test_size=0.2,random_state=1) # + colab_type="code" id="7cXBcvSPncRe" outputId="7be314df-e28a-4bd2-abab-11fb943eadfe" colab={"base_uri": "https://localhost:8080/", "height": 119} print(len(xtrain)) print(ytrain.shape) print(len(xtest)) print(ytest.shape) print(len(xcv)) print(ycv.shape) # + [markdown] colab_type="text" id="sMGUs5illfgT" # # [4] Featurization # + [markdown] colab_type="text" id="gFcnNu9TlfgT" # ## [4.1] BAG OF WORDS # + colab_type="code" id="RYdnb55hnTp7" outputId="f885a3d5-2d3f-4171-e722-61c337902549" colab={"base_uri": "https://localhost:8080/", "height": 68} from sklearn.feature_extraction.text import CountVectorizer count_vect=CountVectorizer() xtrainonehotencoding=count_vect.fit_transform(xtrain) xtestonehotencoding=count_vect.transform(xtest) xcvonehotencoding=count_vect.transform(xcv) print(xtrainonehotencoding.shape) print(xtestonehotencoding.shape) print(xcvonehotencoding.shape) # + id="Eb2ThiAVUEBw" colab_type="code" colab={} vect=CountVectorizer(min_df=10,max_features=50) xtrainonehotencoding1=vect.fit_transform(xtrain) xtestonehotencoding1=vect.transform(xtest) xcvonehotencoding1=vect.transform(xcv) # + colab_type="code" id="Ay2Vha5SHoY7" colab={} xtrainonehotencoding11=xtrainonehotencoding1.toarray() xtestonehotencoding12=xtestonehotencoding1.toarray() xcvonehotencoding13=xcvonehotencoding1.toarray() # + colab_type="code" id="BBpNepNmIKIe" outputId="a2a59e0b-5d31-4271-f939-c0114541fcc3" colab={"base_uri": "https://localhost:8080/", "height": 34} print(type(xtrainonehotencoding11)) # + [markdown] colab_type="text" id="DKgP5yfilfgc" # ## [4.2] Bi-Grams and n-Grams. # + colab_type="code" id="PkxOOKhzlfgc" outputId="7bbf87e2-2174-4b71-859a-93f4d0da201f" colab={"base_uri": "https://localhost:8080/", "height": 68} #bi-gram, tri-gram and n-gram #removing stop words like "not" should be avoided before building n-grams # count_vect = CountVectorizer(ngram_range=(1,2)) # please do read the CountVectorizer documentation http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html # you can choose these numebrs min_df=10, max_features=5000, of your choice count_vect = CountVectorizer(ngram_range=(1,2), min_df=10, max_features=5000) final_bigram_counts = count_vect.fit_transform(preprocessed_reviews) print("the type of count vectorizer ",type(final_bigram_counts)) print("the shape of out text BOW vectorizer ",final_bigram_counts.get_shape()) print("the number of unique words including both unigrams and bigrams ", final_bigram_counts.get_shape()[1]) # + [markdown] colab_type="text" id="nF4vm-sRlfgf" # ## [4.3] TF-IDF # + colab_type="code" id="lqhf01CWlfgg" outputId="6063e4b4-4f51-48db-fc84-65fdaf94a9e8" colab={"base_uri": "https://localhost:8080/", "height": 68} from sklearn.feature_extraction.text import TfidfVectorizer tfidf= TfidfVectorizer() xtraintfidfencoding=tfidf.fit_transform(xtrain) xtesttfidfencoding=tfidf.transform(xtest) xcvtfidfencoding=tfidf.transform(xcv) print(xtraintfidfencoding.shape) print(xtesttfidfencoding.shape) print(xcvtfidfencoding.shape) # + id="fqlIX_Z_UECG" colab_type="code" colab={} vect=CountVectorizer(min_df=10,max_features=50) xtraintfidfencoding1=vect.fit_transform(xtrain) xtesttfidfencoding1=vect.transform(xtest) xcvtfidfencoding1=vect.transform(xcv) # + colab_type="code" id="WpkJanYsV7KN" colab={} xtraintfidfencoding11=xtraintfidfencoding1.toarray() xtesttfidfencoding12=xtesttfidfencoding1.toarray() xcvtfidfencoding13=xcvtfidfencoding1.toarray() # + [markdown] colab_type="text" id="a-3iTpLylfgj" # ## [4.4] Word2Vec # + colab_type="code" id="lCj148PMlfgk" colab={} # Train your own Word2Vec model using your own text corpus i=0 list_of_sentance=[] for sentance in xtrain: list_of_sentance.append(sentance.split()) # + colab_type="code" id="aIhn-P8Tlfgm" outputId="fbde3c6a-420c-4de2-cb62-2623643d684f" colab={"base_uri": "https://localhost:8080/", "height": 34} # Using Google News Word2Vectors # in this project we are using a pretrained model by google # its 3.3G file, once you load this into your memory # it occupies ~9Gb, so please do this step only if you have >12G of ram # we will provide a pickle file wich contains a dict , # and it contains all our courpus words as keys and model[word] as values # To use this code-snippet, download "GoogleNews-vectors-negative300.bin" # from https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit # it's 1.9GB in size. # http://kavita-ganesan.com/gensim-word2vec-tutorial-starter-code/#.W17SRFAzZPY # you can comment this whole cell # or change these varible according to your need is_your_ram_gt_16g=True want_to_use_google_w2v =True want_to_train_w2v = False if want_to_train_w2v: # min_count = 5 considers only words that occured atleast 5 times w2v_model=Word2Vec(list_of_sentance,min_count=5,size=50, workers=4) print(w2v_model.wv.most_similar('great')) print('='*50) print(w2v_model.wv.most_similar('worst')) elif want_to_use_google_w2v and is_your_ram_gt_16g: if os.path.isfile('GoogleNews-vectors-negative300.bin'): w2v_model=KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True) print(w2v_model.wv.most_similar('great')) print(w2v_model.wv.most_similar('worst')) else: print("you don't have gogole's word2vec file, keep want_to_train_w2v = True, to train your own w2v ") # + colab_type="code" id="JFyMseLi4un8" outputId="e6745542-fec8-436f-dd48-aaa8df8bb56d" colab={"base_uri": "https://localhost:8080/", "height": 88} w2v_model=Word2Vec(list_of_sentance,min_count=5,size=50, workers=4) print(w2v_model.wv.most_similar('great')) print('='*50) print(w2v_model.wv.most_similar('worst')) # + colab_type="code" id="Xu-f9IAllfgp" outputId="0b67259b-9ecd-45f1-dde6-b275d0f65b53" colab={"base_uri": "https://localhost:8080/", "height": 71} w2v_words = list(w2v_model.wv.vocab) print("number of words that occured minimum 5 times ",len(w2v_words)) print("sample words ", w2v_words[0:50]) # + [markdown] colab_type="text" id="iODluLuXlfgt" # ## [4.4.1] Converting text into vectors using Avg W2V, TFIDF-W2V # + [markdown] colab_type="text" id="hipow2XSlfgu" # #### [4.4.1.1] Avg W2v # + colab_type="code" id="5HLCdpHwlfgu" outputId="8ff3e1e3-c04a-4a6b-b20e-dd89ef5c797b" colab={"base_uri": "https://localhost:8080/", "height": 68} # average Word2Vec # compute average word2vec for each review. sent_vectors = []; # the avg-w2v for each sentence/review is stored in this list for sent in tqdm(xtrain): # for each review/sentence sent_vec = np.zeros(50) # as word vectors are of zero length 50, you might need to change this to 300 if you use google's w2v cnt_words =0; # num of words with a valid vector in the sentence/review for word in sent: # for each word in a review/sentence if word in w2v_words: vec = w2v_model.wv[word] sent_vec += vec cnt_words += 1 if cnt_words != 0: sent_vec /= cnt_words sent_vectors.append(sent_vec) print(len(sent_vectors)) print(len(sent_vectors[0])) # + colab_type="code" id="e9voeToooI3O" outputId="fa33a9e9-c023-44f7-eb5e-17f251c10cf5" colab={"base_uri": "https://localhost:8080/", "height": 68} # average Word2Vec # compute average word2vec for each review. sent_vectorstest = []; # the avg-w2v for each sentence/review is stored in this list for sent in tqdm(xtest): # for each review/sentence sent_vec = np.zeros(50) # as word vectors are of zero length 50, you might need to change this to 300 if you use google's w2v cnt_words =0; # num of words with a valid vector in the sentence/review for word in sent: # for each word in a review/sentence if word in w2v_words: vec = w2v_model.wv[word] sent_vec += vec cnt_words += 1 if cnt_words != 0: sent_vec /= cnt_words sent_vectorstest.append(sent_vec) print(len(sent_vectorstest)) print(len(sent_vectorstest)) # + colab_type="code" id="onnS8vnboJge" outputId="a0ad67d2-9a75-45c3-b1d9-1df766a33a93" colab={"base_uri": "https://localhost:8080/", "height": 68} # average Word2Vec # compute average word2vec for each review. sent_vectorscv = []; # the avg-w2v for each sentence/review is stored in this list for sent in tqdm(xcv): # for each review/sentence sent_vec = np.zeros(50) # as word vectors are of zero length 50, you might need to change this to 300 if you use google's w2v cnt_words =0; # num of words with a valid vector in the sentence/review for word in sent: # for each word in a review/sentence if word in w2v_words: vec = w2v_model.wv[word] sent_vec += vec cnt_words += 1 if cnt_words != 0: sent_vec /= cnt_words sent_vectorscv.append(sent_vec) print(len(sent_vectorscv)) print(len(sent_vectorscv)) # + colab_type="code" id="4CINjhxDoWAH" colab={} xtrainy=sent_vectors xtesty=sent_vectorstest # + [markdown] colab_type="text" id="wDPAYMGvlfg2" # #### [4.4.1.2] TFIDF weighted W2v # + colab_type="code" id="266lGFcilfg3" colab={} model = TfidfVectorizer() xtraintfidfw2v = model.fit_transform(preprocessed_reviews) #xtesttfidfw2v=model.transform(xtest) #xcvtfidfw2v=model.transform(xcv) tfidf_feat = model.get_feature_names() dictionary = dict(zip(model.get_feature_names(), list(model.idf_))) # + colab_type="code" id="ZCYBu_-Blfg7" outputId="7a6fd4c2-e573-44b9-d1b0-4e6266039ab8" colab={"base_uri": "https://localhost:8080/", "height": 34} xcvtfidf_sent_vectors = []; # the tfidf-w2v for each sentence/review is stored in this list row=0; for sent in tqdm(xcv): # for each review/sentence sent_vec = np.zeros(50) weight_sum =0; # num of words with a valid vector in the sentence/review for word in sent.split(' '): # for each word in a review/sentence if word in w2v_words and word in tfidf_feat: vec = w2v_model.wv[word] tf_idf = dictionary[word]*(sent.count(word)/len(sent)) sent_vec += (vec * tf_idf) weight_sum += tf_idf if weight_sum != 0: sent_vec /= weight_sum xcvtfidf_sent_vectors.append(sent_vec) row += 1 # + colab_type="code" id="oXsYnPSfoHGn" outputId="c780ee9f-88de-424d-c087-8f762065f9f9" colab={"base_uri": "https://localhost:8080/", "height": 34} xtraintfidf_sent_vectors = []; # the tfidf-w2v for each sentence/review is stored in this list row=0; for sent in tqdm(xtrain): # for each review/sentence sent_vec = np.zeros(50) weight_sum =0; # num of words with a valid vector in the sentence/review for word in sent.split(' '): # for each word in a review/sentence if word in w2v_words and word in tfidf_feat: vec = w2v_model.wv[word] tf_idf = dictionary[word]*(sent.count(word)/len(sent)) sent_vec += (vec * tf_idf) weight_sum += tf_idf if weight_sum != 0: sent_vec /= weight_sum xtraintfidf_sent_vectors.append(sent_vec) row += 1 # + colab_type="code" id="4pyQUVvvoiZl" outputId="0fb96722-7659-4273-f6fe-8e9db31dfa51" colab={"base_uri": "https://localhost:8080/", "height": 34} xtesttfidf_sent_vectors = []; # the tfidf-w2v for each sentence/review is stored in this list row=0; for sent in tqdm(xtest): # for each review/sentence sent_vec = np.zeros(50) weight_sum =0; # num of words with a valid vector in the sentence/review for word in sent.split(' '): # for each word in a review/sentence if word in w2v_words and word in tfidf_feat: vec = w2v_model.wv[word] tf_idf = dictionary[word]*(sent.count(word)/len(sent)) sent_vec += (vec * tf_idf) weight_sum += tf_idf if weight_sum != 0: sent_vec /= weight_sum xtesttfidf_sent_vectors.append(sent_vec) row += 1 # + [markdown] colab_type="text" id="2dPesZXslfhD" # # [5] Assignment 3: KNN # + [markdown] colab_type="text" id="jpkZsO0ZlfhF" # <ol> # <li><strong>Apply Knn(brute force version) on these feature sets</strong> # <ul> # <li><font color='red'>SET 1:</font>Review text, preprocessed one converted into vectors using (BOW)</li> # <li><font color='red'>SET 2:</font>Review text, preprocessed one converted into vectors using (TFIDF)</li> # <li><font color='red'>SET 3:</font>Review text, preprocessed one converted into vectors using (AVG W2v)</li> # <li><font color='red'>SET 4:</font>Review text, preprocessed one converted into vectors using (TFIDF W2v)</li> # </ul> # </li> # <br> # <li><strong>Apply Knn(kd tree version) on these feature sets</strong> # <br><font color='red'>NOTE: </font>sklearn implementation of kd-tree accepts only dense matrices, you need to convert the sparse matrices of CountVectorizer/TfidfVectorizer into dense matices. You can convert sparse matrices to dense using .toarray() attribute. For more information please visit this <a href='https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.sparse.csr_matrix.toarray.html'>link</a> # <ul> # <li><font color='red'>SET 5:</font>Review text, preprocessed one converted into vectors using (BOW) but with restriction on maximum features generated. # <pre> # count_vect = CountVectorizer(min_df=10, max_features=500) # count_vect.fit(preprocessed_reviews) # </pre> # </li> # <li><font color='red'>SET 6:</font>Review text, preprocessed one converted into vectors using (TFIDF) but with restriction on maximum features generated. # <pre> # tf_idf_vect = TfidfVectorizer(min_df=10, max_features=500) # tf_idf_vect.fit(preprocessed_reviews) # </pre> # </li> # <li><font color='red'>SET 3:</font>Review text, preprocessed one converted into vectors using (AVG W2v)</li> # <li><font color='red'>SET 4:</font>Review text, preprocessed one converted into vectors using (TFIDF W2v)</li> # </ul> # </li> # <br> # <li><strong>The hyper paramter tuning(find best K)</strong> # <ul> # <li>Find the best hyper parameter which will give the maximum <a href='https://www.appliedaicourse.com/course/applied-ai-course-online/lessons/receiver-operating-characteristic-curve-roc-curve-and-auc-1/'>AUC</a> value</li> # <li>Find the best hyper paramter using k-fold cross validation or simple cross validation data</li> # <li>Use gridsearch cv or randomsearch cv or you can also write your own for loops to do this task of hyperparameter tuning</li> # </ul> # </li> # <br> # <li> # <strong>Representation of results</strong> # <ul> # <li>You need to plot the performance of model both on train data and cross validation data for each hyper parameter, like shown in the figure # <img src='train_cv_auc.JPG' width=300px></li> # <li>Once after you found the best hyper parameter, you need to train your model with it, and find the AUC on test data and plot the ROC curve on both train and test. # <img src='train_test_auc.JPG' width=300px></li> # <li>Along with plotting ROC curve, you need to print the <a href='https://www.appliedaicourse.com/course/applied-ai-course-online/lessons/confusion-matrix-tpr-fpr-fnr-tnr-1/'>confusion matrix</a> with predicted and original labels of test data points # <img src='confusion_matrix.png' width=300px></li> # </ul> # </li> # <br> # <li><strong>Conclusion</strong> # <ul> # <li>You need to summarize the results at the end of the notebook, summarize it in the table format. To print out a table please refer to this prettytable library<a href='http://zetcode.com/python/prettytable/'> link</a> # <img src='summary.JPG' width=400px> # </li> # </ul> # </ol> # + [markdown] colab_type="text" id="h_KKyBkolfhG" # <h4><font color='red'>Note: Data Leakage</font></h4> # # 1. There will be an issue of data-leakage if you vectorize the entire data and then split it into train/cv/test. # 2. To avoid the issue of data-leakag, make sure to split your data first and then vectorize it. # 3. While vectorizing your data, apply the method fit_transform() on you train data, and apply the method transform() on cv/test data. # 4. For more details please go through this <a href='https://soundcloud.com/applied-ai-course/leakage-bow-and-tfidf'>link.</a> # + [markdown] colab_type="text" id="yn4mn23HlfhH" # ## [5.1] Applying KNN brute force # + [markdown] colab_type="text" id="8TvNRg20lfhH" # ### [5.1.1] Applying KNN brute force on BOW,<font color='red'> SET 1</font> # + colab_type="code" id="bxwvDPY6lfhI" outputId="f3c8c38a-b71a-43a2-f17c-6884ca4e18c0" colab={"base_uri": "https://localhost:8080/", "height": 551} #with hyper parameter tuning from sklearn.metrics import auc from sklearn.metrics import roc_auc_score from sklearn.neighbors import KNeighborsClassifier cvscores=[] cvscores1=[] alpha=[i for i in range(1,20,2)] for i in alpha: knnx=KNeighborsClassifier(n_neighbors=i,algorithm='brute') knnx.fit(xtrainonehotencoding,ytrain) predict1=knnx.predict_proba(xtrainonehotencoding)[:,1] cvscores.append(roc_auc_score(ytrain,predict1)) predict2=knnx.predict_proba(xcvonehotencoding)[:,1] cvscores1.append(roc_auc_score(ycv,predict2)) optimal_k=np.argmax(cvscores1) fig,ax=plt.subplots(figsize=(10,8)) ax.plot(alpha,cvscores,label='training') for i,txt in enumerate(np.round(cvscores,3)): ax.annotate((alpha[i],str(txt)), (alpha[i],cvscores[i])) plt.grid() ax.legend() ax.plot(alpha,cvscores1,label='cross validation') for i,txt in enumerate(np.round(cvscores1,3)): ax.annotate((alpha[i],str(txt)), (alpha[i],cvscores1[i])) ax.legend() plt.xlabel('hyper parameter') plt.ylabel('auc') plt.show() optimal_k=np.argmax(cvscores1) print(alpha[optimal_k]) print(cvscores1) # + colab_type="code" id="jDhDN1YHzpZe" outputId="cd6fee0e-6023-4836-940b-e537d8fe908d" colab={"base_uri": "https://localhost:8080/", "height": 311} from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import roc_auc_score knne=KNeighborsClassifier(n_neighbors=alpha[optimal_k],algorithm='brute') knne.fit(xtrainonehotencoding,ytrain) predictrain=knne.predict(xtrainonehotencoding) fpr, tpr, thresh = metrics.roc_curve(ytrain, predictrain) auc = metrics.roc_auc_score(ytrain, predictrain) plt.plot(fpr,tpr,label="roc of train") plt.legend() predic=knne.predict(xtestonehotencoding) fpr, tpr, thresh = metrics.roc_curve(ytest, predic) auc = metrics.roc_auc_score(ytest, predic) plt.plot(fpr,tpr,label="roc of test)") plt.legend() plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') print(roc_auc_score(ytest, predic)) # + colab_type="code" id="IC6JQT5kzyMk" outputId="262a512a-8d9d-4288-c6f1-6055eb86a6d2" colab={"base_uri": "https://localhost:8080/", "height": 294} #plotting confusion matrix aftyer performing knn on top of svd data from sklearn.metrics import confusion_matrix rest=confusion_matrix(ytest,predic) import seaborn as sns classlabel=['negative','positive'] frame=pd.DataFrame(rest,index=classlabel,columns=classlabel) sns.heatmap(frame,annot=True,fmt="d") plt.title("confusion matrix") plt.xlabel("predicted label") plt.ylabel("actual label") plt.show() # + id="_aMjw0adnc3l" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 311} outputId="f8ce5e16-45ee-4e86-94a8-b545b0805f21" print('train confusion matrix') rest=confusion_matrix(ytrain,predictrain) classlabel=['negative','positive'] frame=pd.DataFrame(rest,index=classlabel,columns=classlabel) sns.heatmap(frame,annot=True,fmt="d") plt.title("confusion matrix") plt.xlabel("predicted label") plt.ylabel("actual label") plt.show() # + [markdown] colab_type="text" id="ybe1bqMIlfhK" # ### [5.1.2] Applying KNN brute force on TFIDF,<font color='red'> SET 2</font> # + colab_type="code" id="_ysRnbUhlfhL" outputId="aa32275f-f8eb-4510-ab30-d8520ed42376" colab={"base_uri": "https://localhost:8080/", "height": 551} #with hyper parameter tuning from sklearn.metrics import auc from sklearn.metrics import roc_auc_score from sklearn.neighbors import KNeighborsClassifier cvscores=[] cvscores1=[] alpha=[i for i in range(1,30,2)] for i in alpha: knnx=KNeighborsClassifier(n_neighbors=i,algorithm='brute') knnx.fit(xtraintfidfencoding,ytrain) predict1=knnx.predict_proba(xtraintfidfencoding)[:,1] cvscores.append(roc_auc_score(ytrain,predict1)) predict2=knnx.predict_proba(xcvtfidfencoding)[:,1] cvscores1.append(roc_auc_score(ycv,predict2)) optimal_k=np.argmax(cvscores1) fig,ax=plt.subplots(figsize=(10,8)) ax.plot(alpha,cvscores,label='training') for i,txt in enumerate(np.round(cvscores,3)): ax.annotate((alpha[i],str(txt)), (alpha[i],cvscores[i])) plt.grid() ax.legend() ax.plot(alpha,cvscores1,label='cross validation') for i,txt in enumerate(np.round(cvscores1,3)): ax.annotate((alpha[i],str(txt)), (alpha[i],cvscores1[i])) ax.legend() plt.xlabel('hyper parameter') plt.ylabel('auc') plt.show() optimal_k=np.argmax(cvscores1) print(alpha[optimal_k]) print(cvscores1) # + colab_type="code" id="eZ6I8gsCzoWA" outputId="5039a3f4-ae68-440c-d658-c0a1db4071f4" colab={"base_uri": "https://localhost:8080/", "height": 311} from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import roc_auc_score knne=KNeighborsClassifier(n_neighbors=9,algorithm='brute') knne.fit(xtraintfidfencoding,ytrain) predictrain=knne.predict(xtraintfidfencoding) fpr, tpr, thresh = metrics.roc_curve(ytrain, predictrain) auc = metrics.roc_auc_score(ytrain, predictrain) plt.plot(fpr,tpr,label="roc of train") plt.legend() predic=knne.predict(xtesttfidfencoding) fpr, tpr, thresh = metrics.roc_curve(ytest, predic) auc = metrics.roc_auc_score(ytest, predic) plt.plot(fpr,tpr,label="roc of test)") plt.legend() plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') print(roc_auc_score(ytest, predic)) # + colab_type="code" id="-Gi2JmEj0t9b" outputId="717785d7-bf17-4f5e-aabd-4ba9fcaa6a4a" colab={"base_uri": "https://localhost:8080/", "height": 294} #plotting confusion matrix aftyer performing knn on top of svd data from sklearn.metrics import confusion_matrix rest=confusion_matrix(ytest,predic) import seaborn as sns classlabel=['negative','positive'] frame=pd.DataFrame(rest,index=classlabel,columns=classlabel) sns.heatmap(frame,annot=True,fmt="d") plt.title("confusion matrix") plt.xlabel("predicted label") plt.ylabel("actual label") plt.show() # + id="t0daZDD1xZum" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 311} outputId="07295e56-63ad-4106-9c69-341760aa3190" print('train confusion matrix') rest=confusion_matrix(ytrain,predictrain) classlabel=['negative','positive'] frame=pd.DataFrame(rest,index=classlabel,columns=classlabel) sns.heatmap(frame,annot=True,fmt="d") plt.title("confusion matrix") plt.xlabel("predicted label") plt.ylabel("actual label") plt.show() # + [markdown] colab_type="text" id="tsj9D0SSlfhO" # ### [5.1.3] Applying KNN brute force on AVG W2V,<font color='red'> SET 3</font> # + colab_type="code" id="LNsBNTnplfhO" outputId="819dea95-8e00-4a8a-9946-d5d18c28e42d" colab={"base_uri": "https://localhost:8080/", "height": 551} #with hyper parameter tuning from sklearn.metrics import auc from sklearn.metrics import roc_auc_score from sklearn.neighbors import KNeighborsClassifier cvscores=[] cvscores1=[] alpha=[i for i in range(1,20,2)] for i in alpha: knnx=KNeighborsClassifier(n_neighbors=i,algorithm='brute') knnx.fit(sent_vectors,ytrain) predict1=knnx.predict_proba(sent_vectors)[:,1] predictz=knnx.predict(sent_vectors) cvscores.append(roc_auc_score(ytrain,predict1)) predict2=knnx.predict_proba(sent_vectorscv)[:,1] cvscores1.append(roc_auc_score(ycv,predict2)) optimal_k=np.argmax(cvscores1) fig,ax=plt.subplots(figsize=(10,8)) ax.plot(alpha,cvscores,label='training') for i,txt in enumerate(np.round(cvscores,3)): ax.annotate((alpha[i],str(txt)), (alpha[i],cvscores[i])) plt.grid() ax.legend() ax.plot(alpha,cvscores1,label='cross validation') for i,txt in enumerate(np.round(cvscores1,3)): ax.annotate((alpha[i],str(txt)), (alpha[i],cvscores1[i])) ax.legend() plt.xlabel('hyper parameter') plt.ylabel('auc') plt.show() optimal_k=np.argmax(cvscores1) print(alpha[optimal_k]) print(cvscores1) # + colab_type="code" id="7yZzlwzz2CsO" outputId="2af72320-f201-49f4-cd72-6c193a6fff49" colab={"base_uri": "https://localhost:8080/", "height": 311} from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import roc_auc_score knne=KNeighborsClassifier(n_neighbors=15,algorithm='brute') knne.fit(sent_vectors,ytrain) predictrain=knne.predict(sent_vectors) fpr, tpr, thresh = metrics.roc_curve(ytrain, predictrain) auc = metrics.roc_auc_score(ytrain, predictrain) plt.plot(fpr,tpr,label="roc of train") plt.legend() predic=knne.predict(sent_vectorstest) fpr, tpr, thresh = metrics.roc_curve(ytest, predic) auc = metrics.roc_auc_score(ytest, predic) plt.plot(fpr,tpr,label="roc of test)") plt.legend() plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') print(roc_auc_score(ytest, predic)) # + colab_type="code" id="JxL4GVay2Eyq" outputId="91506045-0ac6-4495-bc58-bc6d0273b5f8" colab={"base_uri": "https://localhost:8080/", "height": 294} #plotting confusion matrix aftyer performing knn on top of svd data from sklearn.metrics import confusion_matrix rest=confusion_matrix(ytest,predic) import seaborn as sns classlabel=['negative','positive'] frame=pd.DataFrame(rest,index=classlabel,columns=classlabel) sns.heatmap(frame,annot=True,fmt="d") plt.title("confusion matrix") plt.xlabel("predicted label") plt.ylabel("actual label") plt.show() # + id="gZ8A7I849dAz" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 311} outputId="5cfb3e75-d37b-4bf8-ae86-b0d6daca8071" print('train confusion matrix') rest=confusion_matrix(ytrain,predictrain) classlabel=['negative','positive'] frame=pd.DataFrame(rest,index=classlabel,columns=classlabel) sns.heatmap(frame,annot=True,fmt="d") plt.title("confusion matrix") plt.xlabel("predicted label") plt.ylabel("actual label") plt.show() # + [markdown] colab_type="text" id="weCo7MhNlfhT" # ### [5.1.4] Applying KNN brute force on TFIDF W2V,<font color='red'> SET 4</font> # + colab_type="code" id="9cyy1zkqlfhW" outputId="0931d76e-db60-41c6-ccd1-8557791f012c" colab={"base_uri": "https://localhost:8080/", "height": 551} #with hyper parameter tuning from sklearn.metrics import auc from sklearn.metrics import roc_auc_score from sklearn.neighbors import KNeighborsClassifier cvscores=[] cvscores1=[] alpha=[i for i in range(1,20,2)] for i in alpha: knnx=KNeighborsClassifier(n_neighbors=i,algorithm='brute') knnx.fit( xtraintfidf_sent_vectors,ytrain) predict1=knnx.predict_proba( xtraintfidf_sent_vectors)[:,1] predictz1=knnx.predict(xtraintfidf_sent_vectors) cvscores.append(roc_auc_score(ytrain,predict1)) predict2=knnx.predict_proba( xcvtfidf_sent_vectors)[:,1] cvscores1.append(roc_auc_score(ycv,predict2)) optimal_k=np.argmax(cvscores1) fig,ax=plt.subplots(figsize=(10,8)) ax.plot(alpha,cvscores,label='training') for i,txt in enumerate(np.round(cvscores,3)): ax.annotate((alpha[i],str(txt)), (alpha[i],cvscores[i])) plt.grid() ax.legend() ax.plot(alpha,cvscores1,label='cross validation') for i,txt in enumerate(np.round(cvscores1,3)): ax.annotate((alpha[i],str(txt)), (alpha[i],cvscores1[i])) ax.legend() plt.xlabel('hyper parameter') plt.ylabel('auc') plt.show() optimal_k=np.argmax(cvscores1) print(alpha[optimal_k]) print(cvscores1) # + colab_type="code" id="ykHBmJdU2tPB" outputId="7c9b91f2-5ba8-48e5-9c91-a86665daacde" colab={"base_uri": "https://localhost:8080/", "height": 311} from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import roc_auc_score knne=KNeighborsClassifier(n_neighbors=19,algorithm='brute') knne.fit( xtraintfidf_sent_vectors,ytrain) predictrain=knne.predict( xtraintfidf_sent_vectors) fpr, tpr, thresh = metrics.roc_curve(ytrain, predictrain) auc = metrics.roc_auc_score(ytrain, predictrain) plt.plot(fpr,tpr,label="roc of train") plt.legend() predic=knne.predict( xtesttfidf_sent_vectors) fpr, tpr, thresh = metrics.roc_curve(ytest, predic) auc = metrics.roc_auc_score(ytest, predic) plt.plot(fpr,tpr,label="roc of test)") plt.legend() plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') print(roc_auc_score(ytest, predic)) # + colab_type="code" id="UW0mKd_a2vLa" outputId="8e96de66-8aad-4591-ebb4-37553b158482" colab={"base_uri": "https://localhost:8080/", "height": 294} #plotting confusion matrix aftyer performing knn on top of svd data from sklearn.metrics import confusion_matrix rest=confusion_matrix(ytest,predic) import seaborn as sns classlabel=['negative','positive'] frame=pd.DataFrame(rest,index=classlabel,columns=classlabel) sns.heatmap(frame,annot=True,fmt="d") plt.title("confusion matrix") plt.xlabel("predicted label") plt.ylabel("actual label") plt.show() # + id="mRJuZPIIPyma" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 294} outputId="76eb61ca-f97e-407d-b1d7-ff377f938352" #plotting confusion matrix aftyer performing knn on top of svd data from sklearn.metrics import confusion_matrix rest=confusion_matrix(ytrain,predictrain) import seaborn as sns classlabel=['negative','positive'] frame=pd.DataFrame(rest,index=classlabel,columns=classlabel) sns.heatmap(frame,annot=True,fmt="d") plt.title("confusion matrix") plt.xlabel("predicted label") plt.ylabel("actual label") plt.show() # + [markdown] colab_type="text" id="3CeCeGjZlfhe" # ## [5.2] Applying KNN kd-tree # + [markdown] colab_type="text" id="iXXNWxPDlfhg" # ### [5.2.1] Applying KNN kd-tree on BOW,<font color='red'> SET 5</font> # + colab_type="code" id="kIYpnH0blfhk" outputId="f909ee62-e15c-46a9-99ca-d20911dc045d" colab={"base_uri": "https://localhost:8080/", "height": 34} print(ytrain.shape) # + colab_type="code" id="CLmr0vK7I2Sk" outputId="22d45451-3390-43a7-c101-1bee106886d6" colab={"base_uri": "https://localhost:8080/", "height": 34} print(xtrainonehotencoding11.shape) # + cellView="code" colab_type="code" id="u82l3xRc5H-m" outputId="a0b7ce31-f7d7-4368-a88d-d49a62f0ead9" colab={"base_uri": "https://localhost:8080/", "height": 551} #@title Default title text #with hyper parameter tuning from sklearn.metrics import auc from sklearn.metrics import roc_auc_score from sklearn.neighbors import KNeighborsClassifier cvscores=[] cvscores1=[] alpha=[i for i in range(1,20,2)] for i in alpha: knnx=KNeighborsClassifier(n_neighbors=i,algorithm='kd_tree') knnx.fit(xtrainonehotencoding11,ytrain) predict1=knnx.predict_proba(xtrainonehotencoding11)[:,1] cvscores.append(roc_auc_score(ytrain,predict1)) predict2=knnx.predict_proba(xcvonehotencoding13)[:,1] cvscores1.append(roc_auc_score(ycv,predict2)) optimal_k=np.argmax(cvscores1) fig,ax=plt.subplots(figsize=(10,8)) ax.plot(alpha,cvscores,label='training') for i,txt in enumerate(np.round(cvscores,3)): ax.annotate((alpha[i],str(txt)), (alpha[i],cvscores[i])) plt.grid() ax.legend() ax.plot(alpha,cvscores1,label='cross validation') for i,txt in enumerate(np.round(cvscores1,3)): ax.annotate((alpha[i],str(txt)), (alpha[i],cvscores1[i])) ax.legend() plt.xlabel('hyper parameter') plt.ylabel('auc') plt.show() optimal_k=np.argmax(cvscores1) print(alpha[optimal_k]) print(cvscores1) # + colab_type="code" id="KSoc7QWz5PRR" outputId="33d97817-39ab-4c87-977a-087e1b3a9d36" colab={"base_uri": "https://localhost:8080/", "height": 311} from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import roc_auc_score knne=KNeighborsClassifier(n_neighbors=alpha[optimal_k],algorithm='kd_tree') knne.fit(xtrainonehotencoding11,ytrain) predictrain=knne.predict(xtrainonehotencoding11) fpr, tpr, thresh = metrics.roc_curve(ytrain, predictrain) auc = metrics.roc_auc_score(ytrain, predictrain) plt.plot(fpr,tpr,label="roc of train") plt.legend() predic=knne.predict(xtestonehotencoding12) fpr, tpr, thresh = metrics.roc_curve(ytest, predic) auc = metrics.roc_auc_score(ytest, predic) plt.plot(fpr,tpr,label="roc of test)") plt.legend() plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') print(roc_auc_score(ytest, predic)) # + colab_type="code" id="2mz3kF7I5VK1" outputId="42774c44-917a-4bb4-c42a-c066f21d310b" colab={"base_uri": "https://localhost:8080/", "height": 294} #plotting confusion matrix aftyer performing knn on top of svd data from sklearn.metrics import confusion_matrix rest=confusion_matrix(ytest,predic) import seaborn as sns classlabel=['negative','positive'] frame=pd.DataFrame(rest,index=classlabel,columns=classlabel) sns.heatmap(frame,annot=True,fmt="d") plt.title("confusion matrix") plt.xlabel("predicted label") plt.ylabel("actual label") plt.show() # + id="K1Xx5rt_oTwX" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 311} outputId="8bb81081-4336-4995-9ae8-371a11d96ebe" print('train confusion matrix') rest=confusion_matrix(ytrain,predictrain) classlabel=['negative','positive'] frame=pd.DataFrame(rest,index=classlabel,columns=classlabel) sns.heatmap(frame,annot=True,fmt="d") plt.title("confusion matrix") plt.xlabel("predicted label") plt.ylabel("actual label") plt.show() # + [markdown] colab_type="text" id="jKwI9xo5lfhn" # ### [5.2.2] Applying KNN kd-tree on TFIDF,<font color='red'> SET 6</font> # + colab_type="code" id="L-aY3alalfho" outputId="182c75b4-4ea2-4249-f065-9984827e89f7" colab={"base_uri": "https://localhost:8080/", "height": 551} #with hyper parameter tuning from sklearn.metrics import auc from sklearn.metrics import roc_auc_score from sklearn.neighbors import KNeighborsClassifier cvscores=[] cvscores1=[] alpha=[i for i in range(1,20,2)] for i in alpha: knnx=KNeighborsClassifier(n_neighbors=i,algorithm='kd_tree') knnx.fit(xtraintfidfencoding11,ytrain) predict1=knnx.predict_proba(xtraintfidfencoding11)[:,1] predix=knnx.predict(xtraintfidfencoding11) cvscores.append(roc_auc_score(ytrain,predict1)) predict2=knnx.predict_proba(xcvtfidfencoding13)[:,1] cvscores1.append(roc_auc_score(ycv,predict2)) optimal_k=np.argmax(cvscores1) fig,ax=plt.subplots(figsize=(10,8)) ax.plot(alpha,cvscores,label='training') for i,txt in enumerate(np.round(cvscores,3)): ax.annotate((alpha[i],str(txt)), (alpha[i],cvscores[i])) plt.grid() ax.legend() ax.plot(alpha,cvscores1,label='cross validation') for i,txt in enumerate(np.round(cvscores1,3)): ax.annotate((alpha[i],str(txt)), (alpha[i],cvscores1[i])) ax.legend() plt.xlabel('hyper parameter') plt.ylabel('auc') plt.show() optimal_k=np.argmax(cvscores1) print(alpha[optimal_k]) print(cvscores1) # + colab_type="code" id="NJgzvC2cWayu" outputId="96c6e0dc-a073-412d-be4c-c89921d66f28" colab={"base_uri": "https://localhost:8080/", "height": 311} from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import roc_auc_score knne=KNeighborsClassifier(n_neighbors=19,algorithm='kd_tree') knne.fit(xtraintfidfencoding11,ytrain) predictrain=knne.predict(xtraintfidfencoding11) fpr, tpr, thresh = metrics.roc_curve(ytrain, predictrain) auc = metrics.roc_auc_score(ytrain, predictrain) plt.plot(fpr,tpr,label="roc of train") plt.legend() predic=knne.predict(xtesttfidfencoding12) fpr, tpr, thresh = metrics.roc_curve(ytest, predic) auc = metrics.roc_auc_score(ytest, predic) plt.plot(fpr,tpr,label="roc of test)") plt.legend() plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') print(roc_auc_score(ytest, predic)) # + colab_type="code" id="I30dUCmAWbPY" outputId="c0379747-88e5-48eb-fb89-f347f2fc3223" colab={"base_uri": "https://localhost:8080/", "height": 294} #plotting confusion matrix aftyer performing knn on top of svd data from sklearn.metrics import confusion_matrix rest=confusion_matrix(ytest,predic) import seaborn as sns classlabel=['negative','positive'] frame=pd.DataFrame(rest,index=classlabel,columns=classlabel) sns.heatmap(frame,annot=True,fmt="d") plt.title("confusion matrix") plt.xlabel("predicted label") plt.ylabel("actual label") plt.show() # + id="SM_Uo2hNHWzF" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 294} outputId="4fb56935-fabf-4dee-eb8f-c6a6768972ac" #plotting confusion matrix aftyer performing knn on top of svd data from sklearn.metrics import confusion_matrix rest=confusion_matrix(ytrain,predictrain) import seaborn as sns classlabel=['negative','positive'] frame=pd.DataFrame(rest,index=classlabel,columns=classlabel) sns.heatmap(frame,annot=True,fmt="d") plt.title("confusion matrix") plt.xlabel("predicted label") plt.ylabel("actual label") plt.show() # + [markdown] colab_type="text" id="EO2QgFPtlfhr" # ### [5.2.3] Applying KNN kd-tree on AVG W2V,<font color='red'> SET 7</font> # + colab_type="code" id="3XHxNtYflfhu" outputId="305591ff-ef9d-47c4-ad15-9725aae63eaa" colab={"base_uri": "https://localhost:8080/", "height": 531} #with hyper parameter tuning from sklearn.metrics import auc from sklearn.metrics import roc_auc_score from sklearn.neighbors import KNeighborsClassifier cvscores=[] cvscores1=[] alpha=[i for i in range(1,10,2)] for i in alpha: knnx=KNeighborsClassifier(n_neighbors=i,algorithm='kd_tree') knnx.fit(sent_vectors,ytrain) predict1=knnx.predict_proba(sent_vectors)[:,1] predicq=knnx.predict(sent_vectors) cvscores.append(roc_auc_score(ytrain,predict1)) predict2=knnx.predict_proba(sent_vectorscv)[:,1] cvscores1.append(roc_auc_score(ycv,predict2)) optimal_k=np.argmax(cvscores1) fig,ax=plt.subplots(figsize=(10,8)) ax.plot(alpha,cvscores,label='training') for i,txt in enumerate(np.round(cvscores,3)): ax.annotate((alpha[i],str(txt)), (alpha[i],cvscores[i])) plt.grid() ax.legend() ax.plot(alpha,cvscores1,label='cross validation') for i,txt in enumerate(np.round(cvscores1,3)): ax.annotate((alpha[i],str(txt)), (alpha[i],cvscores1[i])) ax.legend() plt.xlabel('hyper parameter') plt.ylabel('auc') plt.show() optimal_k=np.argmax(cvscores1) print(alpha[optimal_k]) print(cvscores1) # + colab_type="code" id="cF5Dz2x3Otpo" outputId="8c671467-4b66-44b8-b22e-513f782804df" colab={"base_uri": "https://localhost:8080/", "height": 311} from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import roc_auc_score knne=KNeighborsClassifier(n_neighbors=9,algorithm='kd_tree') knne.fit(sent_vectors,ytrain) predictrain=knne.predict(sent_vectors) fpr, tpr, thresh = metrics.roc_curve(ytrain, predictrain) auc = metrics.roc_auc_score(ytrain, predictrain) plt.plot(fpr,tpr,label="roc of train") plt.legend() predic=knne.predict(sent_vectorstest) fpr, tpr, thresh = metrics.roc_curve(ytest, predic) auc = metrics.roc_auc_score(ytest, predic) plt.plot(fpr,tpr,label="roc of test)") plt.legend() plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') print(roc_auc_score(ytest, predic)) # + colab_type="code" id="4ES_cz-tO2fe" outputId="52fbac19-26d9-40d0-9068-f6db3f58479f" colab={"base_uri": "https://localhost:8080/", "height": 294} #plotting confusion matrix aftyer performing knn on top of svd data from sklearn.metrics import confusion_matrix rest=confusion_matrix(ytrain,predictrain) import seaborn as sns classlabel=['negative','positive'] frame=pd.DataFrame(rest,index=classlabel,columns=classlabel) sns.heatmap(frame,annot=True,fmt="d") plt.title("confusion matrix") plt.xlabel("predicted label") plt.ylabel("actual label") plt.show() # + id="RMs8sBydKGlC" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 294} outputId="eaab9107-0e42-4b9e-fdba-38393650ce68" #plotting confusion matrix aftyer performing knn on top of svd data from sklearn.metrics import confusion_matrix rest=confusion_matrix(ytest,predic) import seaborn as sns classlabel=['negative','positive'] frame=pd.DataFrame(rest,index=classlabel,columns=classlabel) sns.heatmap(frame,annot=True,fmt="d") plt.title("confusion matrix") plt.xlabel("predicted label") plt.ylabel("actual label") plt.show() # + [markdown] colab_type="text" id="Dv1cWk-Xlfhx" # ### [5.2.4] Applying KNN kd-tree on TFIDF W2V,<font color='red'> SET 8</font> # + colab_type="code" id="qDN7PvNelfhz" outputId="55f80839-8a9c-44de-baa8-03cb35fb09d7" colab={"base_uri": "https://localhost:8080/", "height": 350} #with hyper parameter tuning from sklearn.metrics import auc from sklearn.metrics import roc_auc_score from sklearn.neighbors import KNeighborsClassifier cvscores=[] cvscores1=[] alpha=[i for i in range(1,20,2)] for i in alpha: knnx=KNeighborsClassifier(n_neighbors=i,algorithm='kd_tree') knnx.fit( xtraintfidf_sent_vectors,ytrain) predict1=knnx.predict_proba( xtraintfidf_sent_vectors)[:,1] predictm=knnx.predict(sent_vectors) cvscores.append(roc_auc_score(ytrain,predict1)) predict2=knnx.predict_proba( xcvtfidf_sent_vectors)[:,1] cvscores1.append(roc_auc_score(ycv,predict2)) optimal_k=np.argmax(cvscores1) fig,ax=plt.subplots() ax.plot(alpha,cvscores,label='training') ax.legend() ax.plot(alpha,cvscores1,label='cross validation') ax.legend() plt.xlabel('hyper parameter') plt.ylabel('auc') plt.show() print(cvscores1) optimal_k=np.argmax(cvscores1) optimal_k=alpha[optimal_k] print(optimal_k) print(cvscores1) # + colab_type="code" id="LWCXs5ldPHIU" outputId="8bed928a-e4ad-4c91-ca49-ba940e256b72" colab={"base_uri": "https://localhost:8080/", "height": 311} from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import roc_auc_score knne=KNeighborsClassifier(n_neighbors=19,algorithm='kd_tree') knne.fit( xtraintfidf_sent_vectors,ytrain) predictrain=knne.predict( xtraintfidf_sent_vectors) fpr, tpr, thresh = metrics.roc_curve(ytrain, predictrain) auc = metrics.roc_auc_score(ytrain, predictrain) plt.plot(fpr,tpr,label="roc of train") plt.legend() predic=knne.predict( xtesttfidf_sent_vectors) fpr, tpr, thresh = metrics.roc_curve(ytest, predic) auc = metrics.roc_auc_score(ytest, predic) plt.plot(fpr,tpr,label="roc of test)") plt.legend() plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') print(roc_auc_score(ytest, predic)) # + colab_type="code" id="NtiuV9KqPP-W" outputId="e3387df7-b159-498c-98f9-d3f0a537aaf7" colab={"base_uri": "https://localhost:8080/", "height": 294} #plotting confusion matrix aftyer performing knn on top of svd data from sklearn.metrics import confusion_matrix rest=confusion_matrix(ytest,predic) import seaborn as sns classlabel=['negative','positive'] frame=pd.DataFrame(rest,index=classlabel,columns=classlabel) sns.heatmap(frame,annot=True,fmt="d") plt.title("confusion matrix") plt.xlabel("predicted label") plt.ylabel("actual label") plt.show() # + id="0P98B-0yQAYJ" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 294} outputId="c864b1de-2a30-43e4-aefd-2bb8a7972109" #plotting confusion matrix aftyer performing knn on top of svd data from sklearn.metrics import confusion_matrix rest=confusion_matrix(ytrain,predictrain) import seaborn as sns classlabel=['negative','positive'] frame=pd.DataFrame(rest,index=classlabel,columns=classlabel) sns.heatmap(frame,annot=True,fmt="d") plt.title("confusion matrix") plt.xlabel("predicted label") plt.ylabel("actual label") plt.show() # + [markdown] colab_type="text" id="IsVgh2Wulfh2" # # [6] Conclusions # + colab_type="code" id="m1TxPE7xlfh3" outputId="02f7bddf-7eb2-45e1-c172-bab36149d3a5" colab={"base_uri": "https://localhost:8080/", "height": 297} data = [['brute',13, 0.555], ['brute',9, 0.5],['brute',15, 0.502],['brute',19, 0.65],['kd_tree',19, 0.55],['kd_tree',19, 0.55],['kd_tree',9, 0.549],['kd_tree',19, 0.65]] pd.DataFrame(data, columns=["model", "hyperparameter",'auc'],index=['bow','tfidf','word2vec','averageword2vec','bow','tfidf','word2vec','averageword2vec']) # + colab_type="code" id="tDFyyBiEqIFD" colab={}
61,294
/lecture_1/1. SPA RSA Introduction.ipynb
7d8f85e0ef562b8dd37ff542f40de1afdec288f6
[]
no_license
hackenbergstefan/securec_ws2021
https://github.com/hackenbergstefan/securec_ws2021
1
0
null
null
null
null
Jupyter Notebook
false
false
.py
6,662
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Lecture 1: Breaking RSA with SPA - Introduction # ## RSA Cryptosystem # # RSA (Rivestโ€“Shamirโ€“Adleman) is a public-key cryptosystem that is widely used for secure data transmission. It is also one of the oldest. The acronym RSA comes from the surnames of Ron Rivest, Adi Shamir, and Leonard Adleman, who publicly described the algorithm in 1977. An equivalent system was developed secretly, in 1973 at GCHQ (the British signals intelligence agency), by the English mathematician Clifford Cocks. That system was declassified in 1997. (from https://en.wikipedia.org/wiki/RSA_(cryptosystem)) # # ### How it works # # #### Parameters # # The parameters defining a RSA cryptosystem are given by a few integers: # * a prime $p$, a prime $q$, the so called _modulus_ $n = p \cdot q$, # * a _public exponent_ $e$ with $\mathrm{gcd}(e, \phi(n)) = 1$, # * a _private exponent_ $d$ with $d \cdot e \equiv 1 \mod \phi(n)$. # # In real applications $n$ has a bit-length of 2k to 4k and $e$ is often set to the 4th Fermat number $F_4 = 2^{2^4} = 65537 = 0x10001$. # # #### Encryption # # Given a message $m \in [0..n]$ the _encryption_ function is given by: # $$ c := m^e \mod n,$$ # where $c$ is the resulting ciphertext. # # #### Decryption # Given a ciphertext $c \in [0..n]$ the _decryption_ fcuntion is given by: # # $$ m := c^d \mod n.$$ # # #### Proof # Fermat's little theorem ;-) # ## How to do in C? # # In C it's not obvious how to do modular exponentiation. But a well-known algorithm called _Square-and-Multiply_ helps: # # ``` # // Calculate x^k # // b: Binary representation of k # // res: Result # # function bin_exp(x,b) # res = 1 # for i = n..0 # res = res^2 # if b_i == 1 # res = res * x # end-if # end-for # return res # end-function # ``` # (Pseudocode from https://de.wikipedia.org/wiki/Bin%C3%A4re_Exponentiation) # ## Capture and Attack! # # ### Implementation # # This leads us to the following concrete implementation in C where we used only integers of size `uint8_t`: # ```c # uint8_t exponent = private_exponent; # uint8_t message = 0xA0; # # uint16_t tmp; # uint8_t result = 1; # while (exponent) # { # if (exponent & 1) # { # tmp = result * message; # result = tmp % modulus; # } # # tmp = message * message; # message = tmp % modulus; # exponent >>= 1; # } # ``` # <div style="background: #f0ffe0; padding: 15px; border: 1px solid slategray;"> # <div class="h2" style="font-variant: small-caps;">Exercise 1</div> # # 1. Explain why the above code works. # 2. Explain why `tmp` is of type `uint16_t`. # # </div> # ### Record a trace import securec import securec.util as util scope, target = util.init() securec.util.compile_and_flash('./1_rsa_uint8_fixed.c') # + import struct import time import warnings scope.default_setup() scope.adc.samples = 5000 def capture(): scope.arm() target.simpleserial_write('r', b'') return util.capture() # - trace = capture() # + from bokeh.plotting import figure, show from bokeh.io import output_notebook from bokeh.models import CrosshairTool from bokeh.palettes import Category10_10 output_notebook() # - p = figure(width=900, height=800) p.add_tools(CrosshairTool()) p.line(range(0, len(trace)), trace) show(p) # <div style="background: #f0ffe0; padding: 15px; border: 1px solid slategray;"> # <div class="h2" style="font-variant: small-caps;">Exercise 2</div> # # 1. Try to explain the picture above! What do you see? Can you tell the exponent? If not, have a look into the code. Do you "see" the exponent now? # 2. Make familiar with the capture code. You'll need it often... # # </div> util.exit()
3,933
/News Classification.ipynb
46612070db7c98c79977f35785f8d05d473cbeef
[]
no_license
gowshi1412/project7th-sem
https://github.com/gowshi1412/project7th-sem
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
1,532,126
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # PIAIC ISLAMABAD CLASS 1 # # My first python program in piaic class. print("hello world") print("pakistan zinda bad") Name = "QUART-UL-AIN" Name = "simba" Father = "GULZEB AKHTAR" University = "BAHRIA UNIVERSITY" message=""" PIAIC ISLAMABAD BTACH3 Name:{} Father:{} University:{} """.format(Name,Father,University) print(message) UNIVERSITY = "UNIVERSITY INSTITUTE OF INFORMATION TECHNOLOGY , ISLAMABAD" Name = input("enter your name: ") Father = (input("enter your father name: ")) Class = int(input("enter your class: ")) Age = int(input("enter your age: ")) x=""" UNIVERSITY:{} Name:{} Class:{} Father:{} Age:{} """.format(UNIVERSITY,Name,Father,Class,Age) print(x)
968
/coursera/ai/AssignmentAnomalyDetection.ipynb
c0d4b7797a184be4f3fe4e0196d9ad5fef89df5c
[]
no_license
jyuan0128/developerWorks
https://github.com/jyuan0128/developerWorks
0
0
null
2018-02-02T10:07:15
2018-01-25T11:11:59
null
Jupyter Notebook
false
false
.py
27,136
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # ็ฌฌ9็ซ : RNN, CNN # >ๅ‚่€ƒ: Pytorchใƒใƒฅใƒผใƒˆใƒชใ‚ขใƒซ https://yutaroogawa.github.io/pytorch_tutorials_jp/ # # 80. ID็•ชๅทใธใฎๅค‰ๆ› # >ๅ•้กŒ51ใงๆง‹็ฏ‰ใ—ใŸๅญฆ็ฟ’ใƒ‡ใƒผใ‚ฟไธญใฎๅ˜่ชžใซใƒฆใƒ‹ใƒผใ‚ฏใชID็•ชๅทใ‚’ไป˜ไธŽใ—ใŸใ„๏ผŽๅญฆ็ฟ’ใƒ‡ใƒผใ‚ฟไธญใงๆœ€ใ‚‚้ ปๅ‡บใ™ใ‚‹ๅ˜่ชžใซ1๏ผŒ2็•ช็›ฎใซ้ ปๅ‡บใ™ใ‚‹ๅ˜่ชžใซ2๏ผŒโ€ฆโ€ฆใจใ„ใฃใŸๆ–นๆณ•ใง๏ผŒๅญฆ็ฟ’ใƒ‡ใƒผใ‚ฟไธญใง2ๅ›žไปฅไธŠๅ‡บ็พใ™ใ‚‹ๅ˜่ชžใซID็•ชๅทใ‚’ไป˜ไธŽใ›ใ‚ˆ๏ผŽใใ—ใฆ๏ผŒไธŽใˆใ‚‰ใ‚ŒใŸๅ˜่ชžๅˆ—ใซๅฏพใ—ใฆ๏ผŒID็•ชๅทใฎๅˆ—ใ‚’่ฟ”ใ™้–ขๆ•ฐใ‚’ๅฎŸ่ฃ…ใ›ใ‚ˆ๏ผŽใŸใ ใ—๏ผŒๅ‡บ็พ้ ปๅบฆใŒ2ๅ›žๆœชๆบ€ใฎๅ˜่ชžใฎID็•ชๅทใฏใ™ในใฆ0ใจใ›ใ‚ˆ # !head -3 ../Chap8/train.txt # + import pandas as pd import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import collections import nltk import torch.optim as optim import time nltk.download('punkt') # + first_line = True # 'TITLE CATEGORY'ใฎ่กŒใ‚’่ชญใฟ้ฃ›ใฐใ™ใŸใ‚ใฎๅค‰ๆ•ฐ with open('../Chap8/train.txt') as f: word_count = collections.Counter() for line in f: if first_line: first_line = False continue # ใ†ใพใTITLEใจCATEGORYใฎ2ใคใซ็ตžใ‚Œใฆใ„ใชใ„่กŒใŒใ‚ใ‚‹ใฎใง, ใ‚จใƒฉใƒผๅ›ž้ฟใ™ใ‚‹ใŸใ‚ใซsplitๆ•ฐใงๆกไปถๅˆ†ๅฒ if len(line.split('\t')) != 3: # print('Line excluded.') continue _, title, category = line.strip('\n').split('\t') words = nltk.word_tokenize(title) word_count.update(words) dict_word_to_id = {} c = 1 for word, count in word_count.most_common(): if count >= 2: dict_word_to_id[word] = c c+=1 else: dict_word_to_id[word] = 0 def text_to_ids(text: str) -> list: return [dict_word_to_id[word] if (word in dict_word_to_id.keys()) else 0 for word in nltk.word_tokenize(text)] def list_to_tensor(input_data: list): return torch.tensor([input_data]) # - input_line = 'Gurlitt Wants to Return Nazi-Looted Art' print(text_to_ids(input_line)) print(list_to_tensor(text_to_ids(input_line)).topk(1)) # # 81. RNNใซใ‚ˆใ‚‹ไบˆๆธฌ # >ID็•ชๅทใง่กจ็พใ•ใ‚ŒใŸๅ˜่ชžๅˆ—x=(x1,x2,โ€ฆ,xT) # ใŸใ ใ—๏ผŒTใฏๅ˜่ชžๅˆ—ใฎ้•ทใ•๏ผŒxtโˆˆโ„Vใฏๅ˜่ชžใฎID็•ชๅทใฎone-hot่กจ่จ˜ใงใ‚ใ‚‹๏ผˆVใฏๅ˜่ชžใฎ็ทๆ•ฐใงใ‚ใ‚‹๏ผ‰ # ๅ†ๅธฐๅž‹ใƒ‹ใƒฅใƒผใƒฉใƒซใƒใƒƒใƒˆใƒฏใƒผใ‚ฏ๏ผˆRNN: Recurrent Neural Network๏ผ‰ใ‚’็”จใ„๏ผŒๅ˜่ชžๅˆ—xใ‹ใ‚‰ใ‚ซใƒ†ใ‚ดใƒชyใ‚’ไบˆๆธฌใ™ใ‚‹ใƒขใƒ‡ใƒซใ‚’ๅฎŸ่ฃ…ใ›ใ‚ˆ # + def one_hot_vectorizer(text: str): token_ids = text_to_ids(text) vocab_len = max(word_to_id.values()) + 1 tensor = torch.zeros(len(token_ids), vocab_len) for i, idx in enumerate(token_ids): tensor[i][idx] = 1 return tensor class RNN(nn.Module): def __init__(self, vocab_size, emb_dim, hidden_size, output_size): super(RNN, self).__init__() # ๅค‰ๆ•ฐใฎ่จญๅฎš self.num_layers = 1 self.hidden_size = hidden_size # vocab_sizeใŒ่ชžๅฝ™ใฎใ‚ตใ‚คใ‚บใง, emb_dimใŒๅŸ‹ใ‚่พผใ‚€ๆฌกๅ…ƒๆ•ฐ self.embedding = nn.Embedding(vocab_size, emb_dim) # ๅ…ฅๅŠ›ใŒinput_sizeๆฌกๅ…ƒใง, ้š ใ‚Œ็Šถๆ…‹ใฎ่กจ็พใŒhidden_sizeๆฌกๅ…ƒ, num_layersๅฑคใฎRNN. # biasใงใƒใ‚คใ‚ขใ‚น้ …ใฎๆœ‰็„ก,non_linearityใงๆดปๆ€งๅŒ–้–ขๆ•ฐใฎๆŒ‡ๅฎšใŒใงใใ‚‹(tanh or ReLU) self.rnn = nn.RNN(input_size=emb_dim, hidden_size=hidden_size, num_layers=self.num_layers, bias=True, nonlinearity='tanh', batch_first=True) # ๅ…จ็ตๅˆๅฑค self.fc = nn.Linear(hidden_size, output_size, bias=True) def forward(self, x): embed = self.embedding(x) init_hidden = self.initHidden() # h0ใƒ™ใ‚ฏใƒˆใƒซใฎไฝœๆˆ output, final_hidden = self.rnn(embed, init_hidden) model_output = self.fc(final_hidden[0]) # ๅ•้กŒใฎๆŒ‡็คบใซใ‚ˆใ‚Š, ไฝฟ็”จใ™ใ‚‹ใฎใฏ้š ใ‚Œๅฑคใƒ™ใ‚ฏใƒˆใƒซ model_output = F.softmax(model_output, dim=-1) return model_output def initHidden(self): return torch.zeros(1, self.num_layers, self.hidden_size) # + # ใƒขใƒ‡ใƒซใฎๅ‡บๅŠ›ใŒใฉใฎใ‚ซใƒ†ใ‚ดใƒชใ‹ใ‚’่ฟ”ใ™้–ขๆ•ฐ def category_from_output(output): idx = torch.argmax(output).item() all_categories = {0:'b', 1:'t', 2:'e', 3:'m'} return all_categories[idx] params = { 'vocab_size': max(dict_word_to_id.values()) + 1, 'emb_dim': 300, 'hidden_size': 50, 'output_size': 4 } my_rnn = RNN(**params) input_x = 'Gurlitt Wants to Return Nazi-Looted Art, Sueddeutsche Reports' input_x = text_to_ids(input_x) input_x = list_to_tensor(input_x) pred_y = my_rnn(input_x) print(f'ใƒขใƒ‡ใƒซไบˆๆธฌ: {category_from_output(pred_y)}') # ใชใŠใ“ใฎไบˆๆธฌใฏใƒ‡ใ‚ฟใƒฉใƒกใชใ‚‚ใฎ print(pred_y) print('ๆญฃ่งฃ: e') # print(f'topk: {y.dim.topk(1)}') # - # # 82. ็ขบ็Ž‡็š„ๅ‹พ้…้™ไธ‹ๆณ•ใซใ‚ˆใ‚‹ๅญฆ็ฟ’ # >็ขบ็Ž‡็š„ๅ‹พ้…้™ไธ‹ๆณ•๏ผˆSGD: Stochastic Gradient Descent๏ผ‰ใ‚’็”จใ„ใฆ๏ผŒๅ•้กŒ81ใงๆง‹็ฏ‰ใ—ใŸใƒขใƒ‡ใƒซใ‚’ๅญฆ็ฟ’ใ›ใ‚ˆ๏ผŽ่จ“็ทดใƒ‡ใƒผใ‚ฟไธŠใฎๆๅคฑใจๆญฃ่งฃ็Ž‡๏ผŒ่ฉ•ไพกใƒ‡ใƒผใ‚ฟไธŠใฎๆๅคฑใจๆญฃ่งฃ็Ž‡ใ‚’่กจ็คบใ—ใชใŒใ‚‰ใƒขใƒ‡ใƒซใ‚’ๅญฆ็ฟ’ใ—๏ผŒ้ฉๅฝ“ใชๅŸบๆบ–๏ผˆไพ‹ใˆใฐ10ใ‚จใƒใƒƒใ‚ฏใชใฉ๏ผ‰ใง็ต‚ไบ†ใ•ใ›ใ‚ˆ # !head -3 ../Chap8/valid.txt # + def get_data(file): titles = [] categories = [] first_line = True with open(file) as f: for line in f: if first_line: first_line=False continue if len(line.split('\t')) != 3: continue contents = line.strip('\n').split('\t') titles.append(contents[1]) categories.append(contents[2]) return titles, categories def get_accuracy(net, x_list, y_list): acc = 0.0 for x, y in zip(x_list, y_list): output = category_from_output(net(list_to_tensor(text_to_ids(x)))) if output == y: acc += 1.0 return acc / len(x_list) def get_dataset_acc_loss(net, criterion, x_data, y_data): y_pred = [] running_loss = 0.0 for x, y in zip(x_data, y_data): pred = net(list_to_tensor(text_to_ids(x))) y_pred.append(pred) running_loss += criterion(pred, category_to_num(y)).item() acc = 0.0 for pred, true in zip(y_pred, y_data): if category_from_output(pred) == true: acc += 1.0 return acc/len(y_data), running_loss/len(y_data) def category_to_num(category:str): all_categories = {'b':0, 't':1, 'e':2, 'm':3} return torch.tensor([all_categories[category]]) def category_to_vec(category:str): all_categories = {'b':0, 't':1, 'e':2, 'm':3} vec = torch.zeros(4) vec[all_categories[category]] = 1.0 return vec # + # ใƒ‡ใƒผใ‚ฟใฎๅ–ๅพ— train_x, train_y = get_data('../Chap8/train.txt') valid_x, valid_y = get_data('../Chap8/valid.txt') # ๆœ€้ฉๅŒ–ๆ‰‹ๆณ•ใฎๆŒ‡ๅฎš optimizer = optim.SGD(my_rnn.parameters(), lr=0.01) criterion = nn.CrossEntropyLoss() epoch_size = 10 train_loss = list() train_acc = list() valid_loss = list() valid_acc = list() for epoch in range(epoch_size): # ใ‚จใƒใƒƒใ‚ฏๆ•ฐๅˆ†ใƒซใƒผใƒ—ใ‚’ๅ›žใ™ print(f'epoch{epoch}') running_loss = 0.0 for input_x, label_y in zip(train_x, train_y): # print(input_x, label_y) # ใƒ‘ใƒฉใƒกใƒผใ‚ฟใฎๅ‹พ้…ใ‚’ใƒชใ‚ปใƒƒใƒˆ optimizer.zero_grad() # ้ †ไผๆฌ output = my_rnn(list_to_tensor(text_to_ids(input_x))) loss = criterion(output, category_to_num(label_y)) # ้€†ไผๆฌ loss.backward() # ใƒ‘ใƒฉใƒกใƒผใ‚ฟๆ›ดๆ–ฐ optimizer.step() running_loss += loss.item() # ๅญฆ็ฟ’ใฎ่จ˜้Œฒ train_loss.append(running_loss/len(train_x)) train_acc.append(get_accuracy(my_rnn, train_x, train_y)) acc, loss = get_dataset_acc_loss(my_rnn, criterion, valid_x, valid_y) valid_loss.append(loss) valid_acc.append(acc) print('Done.') # - from pprint import pprint pprint(valid_acc) # + import matplotlib.pyplot as plt # %matplotlib inline plt.figure(figsize=(16, 8)) epoch_size = range(1, 11) plt.subplot(1,2,1) plt.plot(epoch_size, train_loss, label='Train Loss') plt.plot(epoch_size, valid_loss, label='Valid Loss') plt.xlabel('epoch') plt.ylabel('Loss') plt.title('Loss') plt.legend() plt.subplot(1,2,2) plt.plot(epoch_size, train_acc, label='Train Acc') plt.plot(epoch_size, valid_acc, label='Valid Acc') plt.xlabel('epoch') plt.ylabel('Acc') plt.title('Acc') plt.legend() plt.tight_layout() plt.show(); # - # # 83. ใƒŸใƒ‹ใƒใƒƒใƒๅŒ–ใƒปGPUไธŠใงใฎๅญฆ็ฟ’ # >ๅ•้กŒ82ใฎใ‚ณใƒผใƒ‰ใ‚’ๆ”นๅค‰ใ—๏ผŒB # ไบ‹ไพ‹ใ”ใจใซๆๅคฑใƒปๅ‹พ้…ใ‚’่จˆ็ฎ—ใ—ใฆๅญฆ็ฟ’ใ‚’่กŒใˆใ‚‹ใ‚ˆใ†ใซใ›ใ‚ˆ๏ผˆB # ใฎๅ€คใฏ้ฉๅฝ“ใซ้ธใน๏ผ‰๏ผŽใพใŸ๏ผŒGPUไธŠใงๅญฆ็ฟ’ใ‚’ๅฎŸ่กŒใ›ใ‚ˆ # `torch.tensor(train_x_vec)`ใฎใ‚ณใƒผใƒ‰ใ‚’ๅฎŸ่กŒใ™ใ‚‹ใจ # `ValueError: expected sequence of length 12 at dim 1 (got 9)`ใจใชใ‚‹. # ใ“ใ‚Œใฏ`torch.tensor([[1], [2, 0, 2], [8, 8]])`ใฟใŸใ„ใชใฎใŒใ‚ใฃใŸๆ™‚, # `torch.tensor([[1, 0, 0], [2, 0, 2], [8, 8, 0]])`ใจใ—ใฆๅ„่ฆ็ด ใฎ้•ทใ•ใ‚’ๆƒใˆใฆใ‚ใ’ใชใ„ใจใ ใ‚ def batch_trainee(batch_size): # Dataloaderใ‚’ไฝฟใฃใฆtrain_x, train_yใ‚’ใพใจใ‚ใฆๆ‰ฑใ† [[x_vec, y], ...[x_vec, y]] train_y_vec = [category_to_num(y) for y in train_y] train_x_vec = [text_to_ids(x) for x in train_x] dataset = torch.utils.data.TensorDataset(list_to_tensor(train_x_vec), train_y_vec) # ใƒใƒƒใƒใ‚ตใ‚คใ‚บใฎๆŒ‡ๅฎš data_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True) # ๆœ€้ฉๅŒ–ๆ‰‹ๆณ•ใฎๆŒ‡ๅฎš optimizer = optim.SGD(my_rnn.parameters(), lr=0.01) criterion = nn.CrossEntropyLoss() epoch_size = 10 train_loss = list() train_acc = list() valid_loss = list() valid_acc = list() start_time = time.time() for epoch in range(epoch_size): # ใ‚จใƒใƒƒใ‚ฏๆ•ฐๅˆ†ใƒซใƒผใƒ—ใ‚’ๅ›žใ™ print(f'epoch{epoch}') running_loss = 0.0 for input_x, label_y in data_loader: # print(input_x, label_y) # ใƒ‘ใƒฉใƒกใƒผใ‚ฟใฎๅ‹พ้…ใ‚’ใƒชใ‚ปใƒƒใƒˆ optimizer.zero_grad() # ้ †ไผๆฌ output = my_rnn(input_x) loss = criterion(output, label_y) # ้€†ไผๆฌ loss.backward() # ใƒ‘ใƒฉใƒกใƒผใ‚ฟๆ›ดๆ–ฐ optimizer.step() running_loss += loss.item() run_time = time.time() - start_time # ๅญฆ็ฟ’ใฎ่จ˜้Œฒ train_loss.append(running_loss/len(train_x)) train_acc.append(get_accuracy(my_rnn, train_x, train_y)) acc, loss = get_dataset_acc_loss(my_rnn, criterion, valid_x, valid_y) valid_loss.append(loss) valid_acc.append(acc) print('Done.') print(f'Run Time : {run_time}') print(f'Train_Acc: {train_acc.mean()}') print(f'Valid_Acc: {valid_acc.mean()}') batch_trainee(100) train_x_vec = [text_to_ids(input_x) for input_x in train_x] list_to_tensor(train_x_vec)
9,762
/topic-modeling-for-custom-data.ipynb
d2d83ac1bc611bfc4972f2c902d8b4694ad10d3f
[ "CC-BY-4.0" ]
permissive
gmorse11/intro_text_mining
https://github.com/gmorse11/intro_text_mining
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
15,843
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # SPARQL Index Pipeline Dev # + import sys # !{sys.executable} -m pip install SPARQLWrapper from SPARQLWrapper import SPARQLWrapper, JSON import pandas as pd import numpy as np import datetime # import func_lib endpoint_url = "https://query.wikidata.org/sparql" item = "item" class Relation: """ The class returned when createRelation is called. It contains string field with query. We call Relation.query when we need to do the query. """ def __init__(self, entity_id: str, property_id: str, isSubject: bool, rowVerbose: bool, colVerbose: bool, time_property: str, time: str, name: str, label: bool, limit=10000): self.entity_id = entity_id self.query_str = "" self.dic = {} self.result_dic = {"Entity ID": []} self.df = pd.DataFrame() self.count = 0 self.time_property = time_property self.time = time self.limit = limit self.focus = "Entity ID" if property_id: self.extend(property_id, isSubject, name, rowVerbose, colVerbose, limit, time_property, time, label) def generate_html(self, name: str): html = (self.df).to_html() text_file = open(name, "w", encoding='utf-8') text_file.write(html) text_file.close() def query(self, require=None): if self.query_str == "": self.result_dic = {"Entity ID": ['http://www.wikidata.org/entity/' + str(self.entity_id)]} return self.result_dic results = get_results(endpoint_url, self.query_str) result_dict = {"Entity ID": ['http://www.wikidata.org/entity/' + str(self.entity_id)]} for i in range(1, self.count + 1): result_dict[self.dic[i]["name"] + '_' + self.dic[i]['property_id']] = [] if self.dic[i]["colVerbose"]: result_dict[self.dic[i]["name"] + '_rank_' + self.dic[i]['property_id'] + '_rank'] = [] for key, value in self.dic[i]["property_name_dic"].items(): result_dict[ self.dic[i]["name"] + "_" + value + '_' + self.dic[i]['property_id'] + '_' + str(key)] = [] for key, value in self.dic[i]["ref_dic"].items(): result_dict[self.dic[i]["name"] + "_ref_" + self.dic[i]['property_id'] + '_' + str(key)] = [] if self.dic[i]["label"]: result_dict[self.dic[i]["name"] + '_' + self.dic[i]['property_id'] + 'Label'] = [] for result in results['results']['bindings']: for key, value in result_dict.items(): if key in result.keys(): result_dict[key].append(result[key]['value']) else: result_dict[key].append('NA') result_dict["Entity ID"] = ['http://www.wikidata.org/entity/' + str(self.entity_id)] * len( result_dict[self.dic[self.count]["name"] + '_' + self.dic[self.count]["property_id"]]) self.result_dic = result_dict self.df = pd.DataFrame.from_dict(self.result_dic) for i in range(1, self.count + 1): if self.dic[i]["colVerbose"] and not self.dic[i]["rowVerbose"]: col = self.dic[i]['name'] + '_rank_' + self.dic[i]['property_id'] + '_rank' if any(self.df[col] == 'http://wikiba.se/ontology#PreferredRank'): self.df = self.df.loc[self.df[col] == 'http://wikiba.se/ontology#PreferredRank'] else: self.df = self.df.loc[self.df[col] == 'http://wikiba.se/ontology#NormalRank'] # if require is not None: # for r in require: # self.df = self.df.loc[self.df[r] != 'NA'] self.df = pd.DataFrame(data=self.df) # if self.df.shape[0] >= 10000: # print("Warning: Your query leads to too many results. Only 10,000 returned.") return self.df def extend(self, property_id: str, isSubject: bool, name: str, rowVerbose=False, colVerbose=False, limit=None, time_property=None, time=None, search=None, label=False): self.count += 1 self.dic[self.count] = {} self.dic[self.count]["name"] = name self.dic[self.count]["focus"] = self.focus self.dic[self.count]["property_id"] = property_id self.dic[self.count]["isSubject"] = isSubject self.dic[self.count]["limit"] = limit self.dic[self.count]["rowVerbose"] = rowVerbose self.dic[self.count]["colVerbose"] = colVerbose self.dic[self.count]['time_property'] = time_property self.dic[self.count]['time'] = time self.dic[self.count]['search'] = search self.dic[self.count]['label'] = label if rowVerbose or colVerbose: self.dic[self.count]["property_name_dic"], self.dic[self.count][ "ref_dic"] = self.search_property_for_verbose() if time_property and time: self.time_property = time_property self.time = time if limit: self.limit = limit self.query_str = self.define_query_relation() def changeFocus(self, name="Entity ID"): self.focus = name def applyFunction(self, objcolumn, func, name): if type(func) == str: if func.startswith('F'): try: func_id = int(func[1:]) if func_id == 0: self.df[name] = self.df[objcolumn] else: if func_id >= func_lib.func_num(): print("Not available.") else: self.df[name] = self.df[objcolumn].apply(func_lib.func_list[func_id]) except: raise Exception("Not a valid function id, a valid function id should be 'Fn', n is an integer.") else: raise Exception("Not a valid function id, a valid function id should be 'Fn', n is an integer.") else: self.df[name] = self.df[objcolumn].apply(func) def define_query_relation(self): rdf_triple, time_filter, limit_statement = """""", """""", """""" if self.count < 1: return None focusChanges = 0 for i in range(1, self.count + 1): if self.dic[i]["rowVerbose"] or self.dic[i]["colVerbose"]: if self.dic[i]["search"] is None and not self.dic[i]["isSubject"]: rdf_triple += """OPTIONAL {""" if self.dic[i]["focus"] == "Entity ID": # if self.dic[i]["search"] is None: # rdf_triple += """OPTIONAL {""" rdf_triple += """wd:""" + self.entity_id + """ p:""" + self.dic[i][ 'property_id'] + """ ?statement_""" + str(i) + """. """ \ + """?statement_""" + str(i) + """ ps:""" + self.dic[i][ 'property_id'] + """ ?""" + \ self.dic[i]['name'] \ + """_""" + self.dic[i]['property_id'] + """. """ else: rdf_triple += """?""" + self.dic[i]["focus"] + """ p:""" + self.dic[i][ 'property_id'] + """ ?statement_""" + str(i) + """. """ \ + """?statement_""" + str(i) + """ ps:""" + self.dic[i][ 'property_id'] + """ ?""" + \ self.dic[i]['name'] \ + """_""" + self.dic[i]['property_id'] + """. """ for key, value in self.dic[i]["property_name_dic"].items(): rdf_triple += """OPTIONAL { """ + """?statement_""" + str(i) + """ pq:""" + str(key) \ + """ ?""" + self.dic[i]['name'] + """_""" + value + """_""" + self.dic[i][ 'property_id'] + """_""" + str(key) + """.} """ for key, value in self.dic[i]["ref_dic"].items(): rdf_triple += """OPTIONAL { ?statement_""" + str( i) + """ prov:wasDerivedFrom ?refnode_""" + str( i) + """. ?refnode_""" + str(i) \ + """ pr:""" + str(key) + """ ?""" + self.dic[i]['name'] + """_ref_""" + \ self.dic[i][ 'property_id'] + """_""" + str(key) + """.} """ rdf_triple += """OPTIONAL { ?statement_""" + str(i) + """ wikibase:rank ?""" + self.dic[i][ 'name'] + """_rank_""" + self.dic[i]['property_id'] + """_rank. } """ # none-verbose version else: if self.dic[i]["focus"] == "Entity ID": if self.dic[i]["isSubject"]: # if self.dic[i]["search"] is None: # rdf_triple += """OPTIONAL {""" rdf_triple += """?""" + self.dic[i]["name"] + """_""" + self.dic[i][ 'property_id'] + """ wdt:""" + self.dic[i][ "property_id"] + """ wd:""" + self.entity_id + """. """ else: if self.dic[i]["search"] is None: rdf_triple += """OPTIONAL {""" rdf_triple += """wd:""" + self.entity_id + """ wdt:""" + self.dic[i][ "property_id"] + """ ?""" + \ self.dic[i]["name"] + """_""" + self.dic[i]['property_id'] + """. """ else: if self.dic[i]["isSubject"]: # if self.dic[i]["search"] is None: # rdf_triple += """OPTIONAL {""" rdf_triple += """?""" + self.dic[i]["name"] + """_""" + self.dic[i][ 'property_id'] + """ wdt:""" + self.dic[i]["property_id"] + """ ?""" + self.dic[i][ 'focus'] + """. """ else: if self.dic[i]["search"] is None: rdf_triple += """OPTIONAL {""" rdf_triple += """?""" + self.dic[i]['focus'] + """ wdt:""" + self.dic[i][ "property_id"] + """ ?""" + self.dic[i]["name"] + """_""" + self.dic[i][ 'property_id'] + """. """ if not self.dic[i]["isSubject"]: if i < self.count and self.dic[i]["focus"] != self.dic[i + 1]["focus"] and self.dic[i]["search"] is None: focusChanges += 1 elif self.dic[i]["search"] is None: rdf_triple += """} """ for i in range(focusChanges): rdf_triple += """} """ for i in range(1, self.count + 1): if self.dic[i]['search'] is not None and self.dic[i]["search"] != '!NA': if isinstance(self.dic[i]['search'], tuple): if isinstance(self.dic[i]['search'][0], str): rdf_triple += """FILTER (YEAR(?""" + self.dic[i]['name'] + """_""" + self.dic[i][ 'property_id'] + """) >= """ + \ self.dic[i]['search'][0] + """ && YEAR(?""" + self.dic[i]['name'] + \ """_""" + self.dic[i]['property_id'] + """) <= """ + self.dic[i]['search'][ 1] + """) """ else: rdf_triple += """FILTER (?""" + self.dic[i]['name'] + """_""" + self.dic[i]['property_id'] + \ """ >= """ + str(self.dic[i]['search'][0]) + """ && ?""" + self.dic[i]['name'] + \ """_""" + self.dic[i]['property_id'] + """ <= """ + str( self.dic[i]['search'][1]) + """) """ else: rdf_triple += """FILTER (?""" + self.dic[i]['name'] + """_""" + self.dic[i][ 'property_id'] + """ = """ + \ """wd:""" + self.dic[i]['search'] + """) """ if self.time_property is not None: time_filter = """?""" + self.dic[1]["name"] + """ p:""" + self.time_property + """ ?pubdateStatement. ?pubdateStatement ps:""" + self.time_property + """ ?date FILTER (YEAR(?date) = """ + self.time + """)""" if self.limit is not None: limit_statement = """LIMIT """ + str(self.limit) label_statement = """Service wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en" }""" query = """SELECT DISTINCT""" for i in range(1, self.count + 1): if self.dic[i]["rowVerbose"] or self.dic[i]["colVerbose"]: query += """ ?""" + self.dic[i]["name"] + """_""" + self.dic[i]['property_id'] if self.dic[i]["label"]: query += """ ?""" + self.dic[i]["name"] + """_""" + self.dic[i]['property_id'] + """Label""" for key, value in self.dic[i]["property_name_dic"].items(): query += """ ?""" + self.dic[i]["name"] + """_""" + value + """_""" + self.dic[i][ 'property_id'] + """_""" + str(key) for key, value in self.dic[i]["ref_dic"].items(): query += """ ?""" + self.dic[i]["name"] + """_ref_""" + self.dic[i]['property_id'] + """_""" + str( key) query += """ ?""" + self.dic[i]["name"] + """_rank_""" + self.dic[i]['property_id'] + """_rank""" else: query += """ ?""" + self.dic[i]["name"] + """_""" + self.dic[i]['property_id'] if self.dic[i]["label"]: query += """ ?""" + self.dic[i]["name"] + """_""" + self.dic[i]['property_id'] + """Label""" query += """ WHERE {""" + rdf_triple + time_filter + label_statement + """} """ + limit_statement return query def search_property_for_verbose(self): property_to_name = {} ref_to_name = {} rdf_triple, time_filter, limit_statement = """""", """""", """""" if self.dic[self.count]["rowVerbose"] or self.dic[self.count]["colVerbose"]: for i in range(1, self.count): if self.dic[i]["focus"] == "Entity ID": if self.dic[i]["isSubject"]: rdf_triple += """?""" + self.dic[i]["name"] + """ wdt:""" + self.dic[i][ "property_id"] + """ wd:""" + self.entity_id + """ .""" else: rdf_triple += """wd:""" + self.entity_id + """ wdt:""" + self.dic[i]["property_id"] + """ ?""" + \ self.dic[i]["name"] + """ .""" else: last = self.dic[i]["focus"].rfind('_') focus = self.dic[i]["focus"][:last] if self.dic[i]["isSubject"]: rdf_triple += """?""" + self.dic[i]["name"] + """ wdt:""" + self.dic[i][ "property_id"] + """ ?""" + focus + """ .""" else: rdf_triple += """?""" + focus + """ wdt:""" + self.dic[i][ "property_id"] + """ ?""" + self.dic[i]["name"] + """ .""" if self.dic[self.count]["focus"] == "Entity ID": rdf_triple += """wd:""" + self.entity_id + """ p:""" + self.dic[self.count][ 'property_id'] + """ ?statement.""" + \ """?statement """ + """ps:""" + self.dic[self.count]['property_id'] + """ ?item.""" + \ """?statement """ + """?pq """ + """?obj.""" + \ """?qual wikibase:qualifier ?pq.""" + \ """OPTIONAL{ ?statement prov:wasDerivedFrom ?refnode. ?refnode ?pr ?r.}""" else: last = self.dic[self.count]["focus"].rfind('_') focus = self.dic[self.count]["focus"][:last] rdf_triple += """?""" + focus + """ p:""" + self.dic[self.count][ 'property_id'] + """ ?statement.""" + \ """?statement """ + """ps:""" + self.dic[self.count]['property_id'] + """ ?item.""" + \ """?statement """ + """?pq """ + """?obj.""" + \ """?qual wikibase:qualifier ?pq.""" + \ """OPTIONAL{ ?statement prov:wasDerivedFrom ?refnode. ?refnode ?pr ?r.}""" if self.time_property is not None: time_filter = """?""" + self.dic[1]["name"] + """ p:""" + self.time_property + """ ?pubdateStatement. ?pubdateStatement ps:""" + self.time_property + """ ?date FILTER (YEAR(?date) = """ + self.time + """)""" if self.limit is not None: limit_statement = """LIMIT """ + str(self.limit) label_statement = """Service wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en" }""" query = """SELECT DISTINCT """ if self.dic[self.count]["rowVerbose"] or self.dic[self.count]["colVerbose"]: query += """?item""" + """ ?qual""" + """ ?qualLabel""" + """ ?obj """ + """?pr ?prLabel""" query += """ WHERE {""" + rdf_triple + time_filter + label_statement + """} """ + limit_statement query_result = get_results(endpoint_url, query) for result in query_result['results']['bindings']: if 'qual' in result: property_to_name[result['qual']['value'].split('/')[-1]] = result['qualLabel']['value'].replace(' ', '_') if 'pr' in result: ref_to_name[result['pr']['value'].split('/')[-1]] = result['prLabel']['value'].replace(' ', '_') else: query += """?""" + self.dic[self.count]["name"] + """ """ return property_to_name, ref_to_name def __str__(self): return str(self.df) def __getattr__(self, col_name): if col_name in self.df.columns: return self.df[col_name] else: print(col_name + " has not been found.") return None def createRelation(entity_id: str, property_id=None, isSubject=None, rowVerbose=None, colVerbose=None, time_property=None, time=None, name=None, label=False, limit=None): if property_id and not name: print("Please specify the name of the first column") return None return Relation(entity_id, property_id, isSubject, rowVerbose, colVerbose, time_property, time, name, label, limit) def get_Firstname(name: str): return name.split(' ')[0] def get_Lastname(name: str): return name.split(' ')[-1] def remove_prefix(text, prefix): if text.startswith(prefix): return text[len(prefix):] return text def get_results(endpoint_url, query): user_agent = "WDQS-example Python/%s.%s" % (sys.version_info[0], sys.version_info[1]) # TODO adjust user agent; see https://w.wiki/CX6 sparql = SPARQLWrapper(endpoint_url, agent=user_agent) sparql.setQuery(query) sparql.setReturnFormat(JSON) return sparql.query().convert() def get_name(id: str): query = """PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX wd: <http://www.wikidata.org/entity/> select * where { wd:""" + id + """ rdfs:label ?label . FILTER (langMatches( lang(?label), "EN" ) ) } LIMIT 1""" results = get_results(endpoint_url, query) result = '' for res in results["results"]["bindings"]: result = res['label']['value'] return result # - # # Query US Gov Buildings # ### Find every direct subclass of `government building` in the world. gov_building_class = 'Gov_Building' qnum = 'Q16831714' # qnum of government building r = createRelation(qnum, label=True) r.extend('P279', True, gov_building_class, label=True) # extend via property P279 = is subclass of r.query() r.df # ### Find every instance of each of these subclasses of government buildings. # # I don't actually need to do the operations to check whether lon and lat are in the US because these instances tend to have country as an attribute. # # ### Concatenate all these dataframes together. # # Maybe when this is working for real, it is likely we would publish each individual subclass's dataframe to the KNP individually and then union them as another step later. # + column_names = [ 'Entity ID', 'gov_building_subclass_P31', 'gov_building_subclass_P31Label', 'Country_P17', 'Country_P17Label', 'State_P131', 'State_P131Label', 'Lon_Lat_P625' ] df_total = pd.DataFrame(columns=column_names) for ind in range(len(r.df)): gov_building_subclass = r.df.Gov_Building_P279Label[ind] qnum = r.df.Gov_Building_P279[ind].split('/')[-1] r2 = createRelation(qnum, label=True) r2.extend('P31', True, 'gov_building_subclass', label=True) # extend via property P31 = is instance of r2.changeFocus('gov_building_subclass_P31') r2.extend('P17', False, 'Country',label=True, search="Q30") # extend via property P17 = is in country r2.extend('P131', False, 'State', label=True) r2.extend('P625', False, 'Lon_Lat') r2.query() df2 = r2.df df2['building_type_label'] = [gov_building_subclass for _ in range(len(df2))] print('There are %s instances of %s in the US.' % (str(len(df2)), gov_building_subclass)) df_total = pd.concat([df_total, df2], axis=0, ignore_index=True) # - df_result = df_total.rename(columns={"Entity ID": "building_type", "gov_building_subclass_P31": "building", "gov_building_subclass_P31Label": "building_label", "Country_P17": "country", "Country_P17Label":"country_label", "State_P131":"administrative_entity", "State_P131Label": "administrative_entity_label", "Lon_Lat_P625": "lon_lat", }) df_result = df_result[columns] df_result
22,834
/.ipynb_checkpoints/hospitals-checkpoint.ipynb
b2324e09531b44e4fe242373e8f5d6c774da350f
[]
no_license
corneliusagrippa/hospitals
https://github.com/corneliusagrippa/hospitals
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
750,133
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + import pandas as pd import numpy as np import matplotlib as plt # %matplotlib inline hospitals_data = pd.read_csv('hospitals.csv') hospitals_data # - hospitals_data.index = np.arange(1, len(hospitals_data)+1) hospitals_data hospitals_data.ix[1] hospitals_data.sort_values(by = 'City', ascending = True) hospitals_data.sort_values(by = 'State', ascending = True) hospitals_city = hospitals_data.groupby(['City'])[['City']].count() hospitals_city hospitals_name = hospitals_data.groupby(['Hospital Name'])[['Hospital Name']].count() hospitals_name hospitals_state = hospitals_data.groupby(['State'])[['State']].count() hospitals_state hospitals_state.plot(kind='pie', autopct = '%.00f', subplots = True, figsize= (18, 18), fontsize = 10) hospitals_state.plot(kind = 'bar', figsize= (12, 8), color = 'violet') hospitals_state.sum(axis=0) len(hospitals_data) len(hospitals_data.columns) hospitals_data.City.value_counts() hospitals_data.State.value_counts() hospitals_data.State.describe() hospitals_data.rename(columns={'Hospital Type': 'hospital_type'}, inplace=True) hospitals_data hospitals_data.hospital_type.value_counts() state = hospitals_data[hospitals_data.State == 'MA'] state len(state) state.ix[1966] state.City.value_counts() state.hospital_type.value_counts() state.to_csv('state_test.csv', sep='\t', encoding='utf-8') state.head()
1,644
/bilder/Natural Language Processing/Vector model and methods for reducing dimensionality in it. Information Search. Thematic Modeling (LSA, LDA, HDP) paraphrase.ipynb
2f3719559d5eb09f8e3134c4dba4f26f7acf070f
[ "MIT" ]
permissive
sibalex/introduction_neural_network
https://github.com/sibalex/introduction_neural_network
2
1
MIT
2023-07-06T21:27:28
2021-12-13T18:45:41
Jupyter Notebook
Jupyter Notebook
false
false
.py
14,463
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # ## ะŸะฐั€ะฐั„ั€ะฐะท # # ะ—ะฐะณั€ัƒะทะธะผ [ะดะฐะฝะฝั‹ะต](http://paraphraser.ru/download/get?file_id=1). # !unzip paraphraser.zip with open('paraphrases.xml') as f: data = f.read() # ะšะฐะบ ัั‚ะพ ะฒั‹ะณะปัะดะธั‚: # !tail paraphrases.xml # ### ะกะพะทะดะฐั‘ะผ ะดะฐั‚ะฐัะตั‚ ะดะปั ะพะฑัƒั‡ะตะฝะธั import pandas as pd from xml.etree import ElementTree root = ElementTree.XML(data) par_data = {'text1': [], 'text2': [], 'class': []} for par in root[1]: par_data['text1'].append(par[3].text) par_data['text2'].append(par[4].text) par_data['class'].append(int(par[6].text)) parphrase_df = pd.DataFrame(par_data) parphrase_df.head(10) # ะ ั‚ะตะฟะตั€ัŒ ะดะฐะฒะฐะนั‚ะต: # * ะฒะตะบั‚ะพั€ะธะทัƒะตะผ ะบะฐะถะดั‹ะน ะดะพะบัƒะผะตะฝั‚ # * ะฟะพัั‡ะธั‚ะฐะตะผ ั€ะฐััั‚ะพัะฝะธะต ะผะตะถะดัƒ ะบะฐะถะดะพะน ะฟะฐั€ะพะน # * ะฝะฐ ัั‚ะพะผ ะพะฑัƒั‡ะธะผ ะบะปะฐััะธั„ะธะบะฐั‚ะพั€ from sklearn.feature_extraction.text import TfidfVectorizer tfidf_vec = TfidfVectorizer() text1_vecs = tfidf_vec.fit_transform(parphrase_df.text1) text2_vecs = tfidf_vec.transform(parphrase_df.text2) from sklearn.decomposition import TruncatedSVD from gensim import similarities index = similarities.MatrixSimilarity(text1_vecs)
1,331
/Taxi tip prediction.ipynb
9e6c381324250a4498b0c1095dad9072d34acb9f
[]
no_license
RosaChaves/NYC-taxi-tip-predictor
https://github.com/RosaChaves/NYC-taxi-tip-predictor
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
212,955
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # @author: Rosa Chaves # # TASK 1: DATA EXPLORATION AND CLEANING # # 1. DOWNLOAD AND ASSES THE DATA # Yellow cab data from the months of March, June and November (2017) has been used. Data from these files is concatenated in the dataframe named "df". First lines of raw data are shown. # # + from glob import glob import os import sys import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set(font='sans') all_files=glob("/Users/rosa/Desktop/CARTOTask/*.csv") #it grabs all the csv files from the directory f1=all_files[0] f2=all_files[1] f3=all_files[2] df=pd.concat(pd.read_csv(f) for f in all_files) df.head() #it depicts the first lines of code # - # # 2. IDENTIFY AND DOCUMENT ANY ISSUES WITH THE DATA # In order to make a first exploration of data, some bar diagrams are shown. # For example, as the vendor is concerned the number of trips is similarly distributed. ax = df.groupby(['VendorID']).size().plot(kind='bar') ax.set_xlabel('vendor_id', fontsize=18) ax.set_ylabel('Number of trips', fontsize=18) ax.tick_params(labelsize=12) # With regards to the "payment_type", the records come from credit card, followed by cash. It is interesting to observe that the payment type "card" has a tip amount while this feature is always 0 in the case of cash. We will use this information for building and testing the model as explained in next sections. The reality is that cash tip might induce to fraud. # + ax = df.groupby(['payment_type']).size().plot(kind='bar') ax.set_xlabel('payment_type', fontsize=18) ax.set_ylabel('Number of trips', fontsize=18) ax.tick_params(labelsize=12) # - # In the following, a raw data description with some statistical measurements as the mean, std, min, max, quantiles etc df.describe() # For example, it is observed that the toll quantity can have a variability of 6.32 dollards that indicates a possible correlation between the regions of pickup and dropoff (PULocationID, DOLocationID) that could be studied. Maybe if the toll is high, the tip decreases (things like that) tolls = df.groupby(['tolls_amount']).size() tolls.describe() # 0.30 dollars of improvement surcharge assessed trips at the flag drop. The improvement surcharge began being lived in 2015. As data is of 2017, every taxi should have 0.30 or 0 (possible fraud). The rest of values must me cleaned in the following section. isurcharge = df.groupby(['improvement_surcharge']).size() isurcharge # Store_and_fwd_flag is a feature that can be eliminated as it does not add any interesting information for the model (it is always "no") # + ax = df.groupby(['store_and_fwd_flag']).size().plot(kind='bar') ax.set_xlabel('storefwdflag', fontsize=18) ax.set_ylabel('Number of trips', fontsize=18) ax.tick_params(labelsize=12) # - fares=df.groupby(['fare_amount']).size() # Fare_amount contains negative values. This must be cleaned in the next section mtax=df.groupby(['mta_tax']).size() mtax.head() # As mta_tax is concerned, 0.5 dollars is automatically triggered for a meter rate in use. In order to construct a clean model in which it does exist a correlation with the trip duration, regions of picking and dropoff etc. just 0.5 will be considered. One can see more details in the cleaning part. # # Date and time obtaining # The date and time format is not easy to drive with the raw format. The function calculate_datetime_extra, obtains the pick and drop hour (this can be interesting for further studies of busy hour in New York). The month is also interesting (maybe in a summer month there is less traffic or the tips are higher for some reason. This correlations could be studied in more detail, for instance). # + column_pickup='tpep_pickup_datetime' column_dropoff='tpep_dropoff_datetime' def calculate_datetime_extra(column_pickup, column_dropoff): rng=pd.DataFrame() rng['date']=df[column_pickup] df['Time'] = pd.to_datetime(rng['date']) month1=df['Time'].dt.month day1=df['Time'].dt.day hour1=df['Time'].dt.hour minute1=df['Time'].dt.minute rng['date']=df[column_dropoff] df['Time'] = pd.to_datetime(rng['date']) month2=df['Time'].dt.month day2=df['Time'].dt.day hour2=df['Time'].dt.hour minute2=df['Time'].dt.minute newdate = pd.concat([hour1,minute1,hour2,minute2,month1],axis=1, join='inner') newdate.columns=['hpick','mpick','hdrop','mdrop','month'] return newdate # - times=calculate_datetime_extra(column_pickup, column_dropoff) times.head(2) # This new feature will be added to the cleaned dataset: trip duration. Maybe, a busy executive appreciates to arrive at his destiny in a shorter period. #this function calculates the duration of a taxi ride in minutes def calculate_duration(times): duration=abs(times['hdrop']-times['hpick'])*60+abs(times['mdrop']-times['mpick']) nextday = ((times['hpick'] >12) & (times['hdrop'] < 12)) duration[nextday]=abs(times['hdrop']+24-times['hpick'])*60+abs(times['mdrop']-times['mpick']) return duration duration=calculate_duration(times) durationdate=pd.concat([times,duration],axis=1, join='inner') durationdate.columns=['hpick','mpick','hdrop','mdrop','month','duration'] durationdate.head(3) newdf=pd.concat([durationdate,df],axis=1, join='inner') newdf.head(2) # # 3. DOCUMENT HOW YOU RESOLVED THESE ISSUES # Taking into account all the analysis done above, we can clean the database with the range explained in the following.In order to construct a reliable model, i will just use payment_type card because we have registered the tip. And in a test phase, I will use cash data to see performance results, possible causes of fraud etc. # + payment_type = (newdf.payment_type == 1) #payment_type=2 (cash) has a tip of 0 always, so it will add noise to the model fare_amount = ((newdf.fare_amount >= 5.0) & (newdf.fare_amount <= 500.0)) surcharge = ((newdf.improvement_surcharge == 0.0) | (newdf.improvement_surcharge == 0.3)) mta_tax = (newdf.mta_tax == 0.5) tip_amount = ((newdf.tip_amount >= 0.0) & (newdf.tip_amount <= 100.0)) tolls_amount = ((newdf.tolls_amount >= 0.0) & (newdf.tolls_amount <= 30.0)) newdf.describe() # - # In the clean dataframe named "newdf", columns as minutes of picking/dropoff, store_and_fwd_flag etc will not be considered. The month, duration, hour of picking/dropping will be added. The day information has not been added as I am not considering holidays, weekends or workdays in my studies. Undoubtedly this could be interesting to take into account in the future. # + # Let's save it in another variable. newdf.drop(newdf.columns[[1,3,7,8,12,23]],axis=1,inplace=True) data_aux = newdf[payment_type & fare_amount & surcharge & mta_tax & tip_amount & tolls_amount] payment_type = None fare_amount = None surcharge = None mta_tax = None tip_amount = None tolls_amount = None data_aux.head(3) # - # # TASK 2: DATA SUMMARY # Taking into account all the comments done above we can appreciate that the different feature show a better structured and cleaner statistical meaning. data_aux.describe() # # Map representation # As previously commented, location information is important to understand and correlate which are the busy regions in which the most of the traffic happens: for this database Manhattan seems to be the one in which more pickings and dropoffs happen. ax = df.groupby(['PULocationID']).size() newax=(ax>=1159313) #50% of the histogram is the PULocationIDs most repeated ax[newax] ax2 = df.groupby(['DOLocationID']).size() ax2.describe() newax2=(ax2>=1090510) ax2[newax2] # Location 236 (the most repeated DOLocationID) and 237 (the most repeated PULocationID) correspond to Manhattan (as shown below in the arc file). We depict in a map the areas inside Manhattan Location. import geopandas as gpd gdf = gpd.read_file('/Users/rosa/Desktop/CARTOTask/taxi_zones.shp') print (gdf) # + import matplotlib # %matplotlib inline gdf.plot() # - # Paint areas in region of Manhattan (the most of the taxi traffic) gdf = gdf[(gdf.borough=="Manhattan")] gdf.plot(column='Shape_Area', cmap='OrRd'); # # TASK 3: MODEL BUILDING # # SELECTION OF A CLASSIFIER # Random Forests is a flexible, easy to use machine learning algorithm that produces great results. It can be used as regressor or classifier. It is a supervised learning algorithm. The forest it builds is an ensemble of decision trees trained with the bagging method. We can conclude that the combination of learning models increases the overall result. # + import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from matplotlib import cm as cmap from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, precision_recall_curve, roc_curve, auc from sklearn.preprocessing import LabelEncoder sns.set(font='sans') # - # I will use classification in two classes taking into account the tip distribution obtained in the model description for credit card payment: bad tip ('0' label, 0-3 dollars) or good tip ('1' label, more that 3 dollars). In this sense there is higher probability of building a reliable model that with many classes or the values or the tips (regression). # + feature_columns = ['hpick','hdrop','month','duration','VendorID','passenger_count','trip_distance','RatecodeID','PULocationID','DOLocationID','fare_amount','extra','mta_tax','tolls_amount','improvement_surcharge','total_amount'] label_column = 'tip_amount' # - class1 = ((data_aux[label_column] >= 0.0) & (data_aux[label_column] < 3)) class2 = (data_aux[label_column] >= 3.0) # + y=(data_aux[label_column] >= 0.0) y[class1]='0' y[class2]='1' X=data_aux[feature_columns] # - # When analysing big datasets, it is important to reduce dimensionality. Principal component analysis is a well established mathematical technique for reducing the dimensionaliyty of data, while keeping as much variation as possible. I have used 10 components. Feature Ranking with Random Forest gini index would have been an interesting possibility to know which features are more correlated with a tip recommender tool. from sklearn.decomposition import PCA pca = PCA(n_components=10) principalComponents = pca.fit_transform(X) principalDf = pd.DataFrame(data = principalComponents,columns = ['1', '2','3','4','5','6','7','8','9','10']) # Train (70%) and test (30%) have been randomly selected from card data. 100 estimators for building the RF model. from sklearn.model_selection import train_test_split # + train, test, train_labels, test_labels = train_test_split(principalDf, y, stratify = y, test_size = 0.3, random_state = 42) # - model = RandomForestClassifier(n_estimators=100, random_state=42, max_features = 'sqrt', n_jobs=-1, verbose = 1) # + model.fit(train, train_labels) # - # # MODEL PERFORMANCE # In the following, the performance of the algorithm is analysed. 98% of accuracy. As the classes are well ballanced, we can see a similar performance for recomending to the client if the taxi driver deserved a good tip or a bad tip (F1 score is a good indicative). We leave some flexibility to the client as a tip is always subjective. # + active="" # predictions = model.predict(test) # - y_pred=model.predict(test) from sklearn import metrics metrics.accuracy_score(test_labels, y_pred) from pandas_ml import ConfusionMatrix confusion_matrix = ConfusionMatrix(list(map(int, test_labels)), list(map(int, y_pred))) confusion_matrix.print_stats() # # LIMITATIONS OR CAVEATS OF THE MODEL WHICH MIGHT BE AN ISSUE # this model created for the card sample size will be tested with the "cash" payment_type in which the tip is set to 0 # (this could be a possible cause of fraud) # + payment_type = (newdf.payment_type == 2) #payment_type=2 (cash) has a tip of 0 always, so it will add noise to the model fare_amount = ((newdf.fare_amount >= 5.0) & (newdf.fare_amount <= 500.0)) surcharge = ((newdf.improvement_surcharge == 0.0) | (newdf.improvement_surcharge == 0.3)) mta_tax = (newdf.mta_tax == 0.5) tip_amount = ((newdf.tip_amount >= 0.0) & (newdf.tip_amount <= 100.0)) tolls_amount = ((newdf.tolls_amount >= 0.0) & (newdf.tolls_amount <= 30.0)) data_cash = newdf[payment_type & fare_amount & surcharge & mta_tax & tip_amount & tolls_amount] payment_type = None fare_amount = None surcharge = None mta_tax = None tip_amount = None tolls_amount = None feature_columns = ['hpick','hdrop','month','duration','VendorID','passenger_count','trip_distance','RatecodeID','PULocationID','DOLocationID','fare_amount','extra','mta_tax','tolls_amount','improvement_surcharge','total_amount'] label_column = 'tip_amount' class1 = ((data_cash[label_column] >= 0.0) & (data_cash[label_column] < 3)) class2 = (data_cash[label_column] >= 3.0) ycash=(data_cash[label_column] >= 0.0) ycash[class1]='0' ycash[class2]='1' testcash=data_cash[feature_columns] pca = PCA(n_components=10) principalComponentscash = pca.fit_transform(testcash) principalDfcash = pd.DataFrame(data = principalComponentscash,columns = ['1', '2','3','4','5','6','7','8','9','10']) # + predictionscash = model.predict(principalDfcash) metrics.accuracy_score(ycash, predictionscash) # - # As expected, the accuracy for the cash model has decreased due to the fraud cases (and not just fraud, the taxi driver can not ask more money he deserved if the client is a bit miserly). By default the tip is "bad"(=0) for cash dataset. But the algorithm predicts that 35% of tips should be good and it's not the case. Additionally, they are not being declared (fraud cases). Confusion matrix supports the accuracy results. confusion_matrixcash = ConfusionMatrix(list(map(int, ycash)), list(map(int, predictionscash))) confusion_matrixcash.print_stats() # # POSSIBLE IMPROVEMENTS OF THE ALGORITHM # Some of the improvements have been commented during this analysis. For example, use more geolocation information to know the shorter trajectories between two points. Use calendar information: work days, holidays dates, weekends etc. Add more months and in the case of big data use new technologies as spark or cloudera etc. Study in depth the features we have, establish correlation analysis. Make some feature engineering, combine and create new KPIs that can improve models. Use different machine learning algorithms, for example deep learning to establish with more accuracy what could be a tip with more accuracy (than just good/bad tip). Improve models with label noise reduction, study fraud techniques based on anomaly detection. Use a semi supervised learning to predict non-labeled data (cash for example) etc etc # # HOW TURN A MODEL INTO AN API THE COMPANY CAN USE # Training a machine learning model is a heavy task for a mobile device and not all ML libraries have APIs build for accessing the model stored on the mobile phone. # The best possibility consists in using a Client-Server architecture where the trained model is stored on the server and the web server accepts requests from the client (taxi driver) which is the input for the model and the model predicts the response that is sent to the driver. Client can be a web browser or a mobile app (the latter i think is the best from the business point of view). In this case, GPS should be connected to the app to introduce automatically the features just pressing one button when the trip starts and ends. # # -A way of making a model is as in the following: # # 1.Write the machine learning code. It can be a scikit-learn, Tensorflow, Keras, Theano or just using Numpy code, whatever you choose for the task. # # 2.Train the model on your system or any cloud. # # 3.Create a web server. You can use Flask/Django/php or any other framework. # # 3.1. You loaded the dataset and selected the best features. # # 3.2.You did the necessary data preprocessing. # # 3.3.You built a RF classifier and serialized it.You also serialized all the columns from training as a solution to the less than expected number of columns is to persist the list of columns from training. I think this with an automatic connection to GPS could be solved automatically. # # 3.4. You then wrote a simple API using Flask that would predict if a tip should be good or bad. # # 4.Store your model onto the server and extract input parameters from incoming requests and feed it to the model. # # 5.The model predicts the result which is sent back to the client. # #
16,996
/analyticsvidhya.ipynb
fcd02bf81be84d0688f01151c804f383a6bcc9cb
[]
no_license
vgramu/AnalyticsVidhya
https://github.com/vgramu/AnalyticsVidhya
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
3,184
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # name: python3 # --- # + id="Ll2HI0d3aQHR" colab_type="code" colab={} #Import Libraries from bs4 import BeautifulSoup import requests import csv # + id="R0vgrD19xlHb" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 34} outputId="d0da2cfc-0070-4f11-e736-1988d695a84c" executionInfo={"status": "ok", "timestamp": 1551261222746, "user_tz": -330, "elapsed": 1028, "user": {"displayName": "ramu vadlagattu", "photoUrl": "", "userId": "17027593844500865040"}} ## Open and write to a file av_file = open('av.csv','w') av_writer = csv.writer(av_file) av_writer.writerow(['Category','Date','Article','Link','Tags','Author']) # + id="VTH9qcSMjhdJ" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 52} outputId="6c0cdac7-4ec6-4f74-b037-9b011b2dd123" executionInfo={"status": "ok", "timestamp": 1551261321028, "user_tz": -330, "elapsed": 91520, "user": {"displayName": "ramu vadlagattu", "photoUrl": "", "userId": "17027593844500865040"}} # Read article category, created date, article title, link, tag associated to title and Author and write to file #Reading two categories category =['machine-learning','deep-learning'] for cat in category: # Articles spread to total no. of pages for i in range(0,26): av_source='' # Retrieve articles from first page of a category if i == 1: av_source = requests.get('https://www.analyticsvidhya.com/blog/category/'+cat+'/').text else: # Retrieve articles from second page onwards... av_source = requests.get('https://www.analyticsvidhya.com/blog/category/'+cat+'/page/'+str(i)+'/').text av_soup = BeautifulSoup(av_source) # Read only page has articles if av_soup: av_article = av_soup.find_all('article', class_='item-medium post-box-big') for article in av_article: #Read article name, url, entry date and author av_text=article.find('h3',class_='entry-title').text av_url = article.find('a')['href'] av_author = article.find('span',class_='entry-author').text av_entry_date =article.find('time',class_='entry-date').text # Read tag names av_span = article.find_all('span',class_='mh-cat-item') span_text=[] for span in av_span: span_text.append(span.find('a').text) av_writer.writerow([cat,av_entry_date,av_text, url, span_text,av_author]) av_file.close()
2,685
/LS_DS_111_A_First_Look_at_Data.ipynb
9ff2e27206803a8c239c4d081745ac34be624dcb
[ "MIT" ]
permissive
tallywiesenberg/DS-Unit-1-Sprint-1-Dealing-With-Data
https://github.com/tallywiesenberg/DS-Unit-1-Sprint-1-Dealing-With-Data
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
260,682
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="view-in-github" colab_type="text" # <a href="https://colab.research.google.com/github/twiesenb/DS-Unit-1-Sprint-1-Dealing-With-Data/blob/master/LS_DS_111_A_First_Look_at_Data.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # + [markdown] id="Okfr_uhwhS1X" colab_type="text" # # Lambda School Data Science - A First Look at Data # # # + [markdown] id="9dtJETFRhnOG" colab_type="text" # ## Lecture - let's explore Python DS libraries and examples! # # The Python Data Science ecosystem is huge. You've seen some of the big pieces - pandas, scikit-learn, matplotlib. What parts do you want to see more of? # + id="WiBkgmPJhmhE" colab_type="code" outputId="6ce2aa73-bde6-4daa-b0a4-3af3654ebb13" colab={"base_uri": "https://localhost:8080/", "height": 212} import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # %matplotlib inline #reading dataset drinks = pd.read_csv('https://raw.githubusercontent.com/fivethirtyeight/data/master/alcohol-consumption/drinks.csv') print(drinks.shape) drinks.head() # + id="_OY8k4Oou6mT" colab_type="code" outputId="efe88e2f-02c8-41d0-b4d2-6356a616b547" colab={"base_uri": "https://localhost:8080/", "height": 343} drinks.columns drinks.sort_values('beer_servings', ascending = False).head(10) # + id="6CxAoPIAyxdq" colab_type="code" outputId="1bc5a1cc-b5b6-4321-86aa-ea8165e891e3" colab={"base_uri": "https://localhost:8080/", "height": 195} #creating new column drinks['drinks_alcohol'] = np.where(drinks['total_litres_of_pure_alcohol'] > 9, 'High', np.where(drinks['total_litres_of_pure_alcohol'] > 6, 'Medium', np.where(drinks['total_litres_of_pure_alcohol'] == 0, 'None', 'Low'))) drinks.head() # + id="eIveifI8LqcV" colab_type="code" outputId="4c2c09c1-f9df-4f51-9c42-e89919140639" colab={"base_uri": "https://localhost:8080/", "height": 330} ##joining new dataset #read countries csv countries = pd.read_csv('https://raw.githubusercontent.com/lukes/ISO-3166-Countries-with-Regional-Codes/master/all/all.csv') print(countries.shape) #rename usa drinks.at[184, 'country'] = 'United States of America' #time to merge ---use merge function, best practice df = pd.merge(drinks, countries[['name', 'region', 'sub-region']], how='left', left_on='country', right_on='name') #merge into left df, merge name into country df.head() # + id="CF1wvMY-QIvh" colab_type="code" outputId="06159457-22fb-4fdb-c10d-8d3f32cd4e66" colab={"base_uri": "https://localhost:8080/", "height": 821} #which countries did not get joined properly? df[df.region.isna()] # + id="sMKIIgbqQoNV" colab_type="code" outputId="8a245be3-7bd7-4d94-c268-da322d8bc2bc" colab={"base_uri": "https://localhost:8080/", "height": 596} ## plot time #plot subregions df.groupby('sub-region').beer_servings.mean().plot(kind='bar', figsize =(20,6)) plt.title('Average Beer Servings Per Region') plt.ylabel('Average Beer Serving') plt.xlabel('World Subregion') # + id="mRaN4UjQSzRu" colab_type="code" outputId="db18c0f9-2865-40d2-9991-b1aa553d4b4b" colab={"base_uri": "https://localhost:8080/", "height": 437} ##still plotting #box plot df.boxplot(column='beer_servings', by='region', figsize = (10,6)) # + id="9vjP6DQ0TOjE" colab_type="code" outputId="d584fa0c-2303-4609-c18e-96a54f7869ef" colab={"base_uri": "https://localhost:8080/", "height": 458} #sns color sorted plot sns.pairplot(x_vars=["beer_servings"], y_vars=["wine_servings"], data=df, hue="region", height= 6) # + [markdown] id="lOqaPds9huME" colab_type="text" # ## Assignment - now it's your turn # # Pick at least one Python DS library, and using documentation/examples reproduce in this notebook something cool. It's OK if you don't fully understand it or get it 100% working, but do put in effort and look things up. # + id="TGUS79cOhPWj" colab_type="code" outputId="4b72899e-7366-420b-caa6-af0583e41889" colab={"resources": {"http://localhost:8080/nbextensions/google.colab/files.js": {"data": "Ly8gQ29weXJpZ2h0IDIwMTcgR29vZ2xlIExMQwovLwovLyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKLy8geW91IG1heSBub3QgdXNlIHRoaXMgZmlsZSBleGNlcHQgaW4gY29tcGxpYW5jZSB3aXRoIHRoZSBMaWNlbnNlLgovLyBZb3UgbWF5IG9idGFpbiBhIGNvcHkgb2YgdGhlIExpY2Vuc2UgYXQKLy8KLy8gICAgICBodHRwOi8vd3d3LmFwYWNoZS5vcmcvbGljZW5zZXMvTElDRU5TRS0yLjAKLy8KLy8gVW5sZXNzIHJlcXVpcmVkIGJ5IGFwcGxpY2FibGUgbGF3IG9yIGFncmVlZCB0byBpbiB3cml0aW5nLCBzb2Z0d2FyZQovLyBkaXN0cmlidXRlZCB1bmRlciB0aGUgTGljZW5zZSBpcyBkaXN0cmlidXRlZCBvbiBhbiAiQVMgSVMiIEJBU0lTLAovLyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KLy8gU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZAovLyBsaW1pdGF0aW9ucyB1bmRlciB0aGUgTGljZW5zZS4KCi8qKgogKiBAZmlsZW92ZXJ2aWV3IEhlbHBlcnMgZm9yIGdvb2dsZS5jb2xhYiBQeXRob24gbW9kdWxlLgogKi8KKGZ1bmN0aW9uKHNjb3BlKSB7CmZ1bmN0aW9uIHNwYW4odGV4dCwgc3R5bGVBdHRyaWJ1dGVzID0ge30pIHsKICBjb25zdCBlbGVtZW50ID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnc3BhbicpOwogIGVsZW1lbnQudGV4dENvbnRlbnQgPSB0ZXh0OwogIGZvciAoY29uc3Qga2V5IG9mIE9iamVjdC5rZXlzKHN0eWxlQXR0cmlidXRlcykpIHsKICAgIGVsZW1lbnQuc3R5bGVba2V5XSA9IHN0eWxlQXR0cmlidXRlc1trZXldOwogIH0KICByZXR1cm4gZWxlbWVudDsKfQoKLy8gTWF4IG51bWJlciBvZiBieXRlcyB3aGljaCB3aWxsIGJlIHVwbG9hZGVkIGF0IGEgdGltZS4KY29uc3QgTUFYX1BBWUxPQURfU0laRSA9IDEwMCAqIDEwMjQ7Ci8vIE1heCBhbW91bnQgb2YgdGltZSB0byBibG9jayB3YWl0aW5nIGZvciB0aGUgdXNlci4KY29uc3QgRklMRV9DSEFOR0VfVElNRU9VVF9NUyA9IDMwICogMTAwMDsKCmZ1bmN0aW9uIF91cGxvYWRGaWxlcyhpbnB1dElkLCBvdXRwdXRJZCkgewogIGNvbnN0IHN0ZXBzID0gdXBsb2FkRmlsZXNTdGVwKGlucHV0SWQsIG91dHB1dElkKTsKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIC8vIENhY2hlIHN0ZXBzIG9uIHRoZSBvdXRwdXRFbGVtZW50IHRvIG1ha2UgaXQgYXZhaWxhYmxlIGZvciB0aGUgbmV4dCBjYWxsCiAgLy8gdG8gdXBsb2FkRmlsZXNDb250aW51ZSBmcm9tIFB5dGhvbi4KICBvdXRwdXRFbGVtZW50LnN0ZXBzID0gc3RlcHM7CgogIHJldHVybiBfdXBsb2FkRmlsZXNDb250aW51ZShvdXRwdXRJZCk7Cn0KCi8vIFRoaXMgaXMgcm91Z2hseSBhbiBhc3luYyBnZW5lcmF0b3IgKG5vdCBzdXBwb3J0ZWQgaW4gdGhlIGJyb3dzZXIgeWV0KSwKLy8gd2hlcmUgdGhlcmUgYXJlIG11bHRpcGxlIGFzeW5jaHJvbm91cyBzdGVwcyBhbmQgdGhlIFB5dGhvbiBzaWRlIGlzIGdvaW5nCi8vIHRvIHBvbGwgZm9yIGNvbXBsZXRpb24gb2YgZWFjaCBzdGVwLgovLyBUaGlzIHVzZXMgYSBQcm9taXNlIHRvIGJsb2NrIHRoZSBweXRob24gc2lkZSBvbiBjb21wbGV0aW9uIG9mIGVhY2ggc3RlcCwKLy8gdGhlbiBwYXNzZXMgdGhlIHJlc3VsdCBvZiB0aGUgcHJldmlvdXMgc3RlcCBhcyB0aGUgaW5wdXQgdG8gdGhlIG5leHQgc3RlcC4KZnVuY3Rpb24gX3VwbG9hZEZpbGVzQ29udGludWUob3V0cHV0SWQpIHsKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIGNvbnN0IHN0ZXBzID0gb3V0cHV0RWxlbWVudC5zdGVwczsKCiAgY29uc3QgbmV4dCA9IHN0ZXBzLm5leHQob3V0cHV0RWxlbWVudC5sYXN0UHJvbWlzZVZhbHVlKTsKICByZXR1cm4gUHJvbWlzZS5yZXNvbHZlKG5leHQudmFsdWUucHJvbWlzZSkudGhlbigodmFsdWUpID0+IHsKICAgIC8vIENhY2hlIHRoZSBsYXN0IHByb21pc2UgdmFsdWUgdG8gbWFrZSBpdCBhdmFpbGFibGUgdG8gdGhlIG5leHQKICAgIC8vIHN0ZXAgb2YgdGhlIGdlbmVyYXRvci4KICAgIG91dHB1dEVsZW1lbnQubGFzdFByb21pc2VWYWx1ZSA9IHZhbHVlOwogICAgcmV0dXJuIG5leHQudmFsdWUucmVzcG9uc2U7CiAgfSk7Cn0KCi8qKgogKiBHZW5lcmF0b3IgZnVuY3Rpb24gd2hpY2ggaXMgY2FsbGVkIGJldHdlZW4gZWFjaCBhc3luYyBzdGVwIG9mIHRoZSB1cGxvYWQKICogcHJvY2Vzcy4KICogQHBhcmFtIHtzdHJpbmd9IGlucHV0SWQgRWxlbWVudCBJRCBvZiB0aGUgaW5wdXQgZmlsZSBwaWNrZXIgZWxlbWVudC4KICogQHBhcmFtIHtzdHJpbmd9IG91dHB1dElkIEVsZW1lbnQgSUQgb2YgdGhlIG91dHB1dCBkaXNwbGF5LgogKiBAcmV0dXJuIHshSXRlcmFibGU8IU9iamVjdD59IEl0ZXJhYmxlIG9mIG5leHQgc3RlcHMuCiAqLwpmdW5jdGlvbiogdXBsb2FkRmlsZXNTdGVwKGlucHV0SWQsIG91dHB1dElkKSB7CiAgY29uc3QgaW5wdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoaW5wdXRJZCk7CiAgaW5wdXRFbGVtZW50LmRpc2FibGVkID0gZmFsc2U7CgogIGNvbnN0IG91dHB1dEVsZW1lbnQgPSBkb2N1bWVudC5nZXRFbGVtZW50QnlJZChvdXRwdXRJZCk7CiAgb3V0cHV0RWxlbWVudC5pbm5lckhUTUwgPSAnJzsKCiAgY29uc3QgcGlja2VkUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICBpbnB1dEVsZW1lbnQuYWRkRXZlbnRMaXN0ZW5lcignY2hhbmdlJywgKGUpID0+IHsKICAgICAgcmVzb2x2ZShlLnRhcmdldC5maWxlcyk7CiAgICB9KTsKICB9KTsKCiAgY29uc3QgY2FuY2VsID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnYnV0dG9uJyk7CiAgaW5wdXRFbGVtZW50LnBhcmVudEVsZW1lbnQuYXBwZW5kQ2hpbGQoY2FuY2VsKTsKICBjYW5jZWwudGV4dENvbnRlbnQgPSAnQ2FuY2VsIHVwbG9hZCc7CiAgY29uc3QgY2FuY2VsUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICBjYW5jZWwub25jbGljayA9ICgpID0+IHsKICAgICAgcmVzb2x2ZShudWxsKTsKICAgIH07CiAgfSk7CgogIC8vIENhbmNlbCB1cGxvYWQgaWYgdXNlciBoYXNuJ3QgcGlja2VkIGFueXRoaW5nIGluIHRpbWVvdXQuCiAgY29uc3QgdGltZW91dFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgc2V0VGltZW91dCgoKSA9PiB7CiAgICAgIHJlc29sdmUobnVsbCk7CiAgICB9LCBGSUxFX0NIQU5HRV9USU1FT1VUX01TKTsKICB9KTsKCiAgLy8gV2FpdCBmb3IgdGhlIHVzZXIgdG8gcGljayB0aGUgZmlsZXMuCiAgY29uc3QgZmlsZXMgPSB5aWVsZCB7CiAgICBwcm9taXNlOiBQcm9taXNlLnJhY2UoW3BpY2tlZFByb21pc2UsIHRpbWVvdXRQcm9taXNlLCBjYW5jZWxQcm9taXNlXSksCiAgICByZXNwb25zZTogewogICAgICBhY3Rpb246ICdzdGFydGluZycsCiAgICB9CiAgfTsKCiAgaWYgKCFmaWxlcykgewogICAgcmV0dXJuIHsKICAgICAgcmVzcG9uc2U6IHsKICAgICAgICBhY3Rpb246ICdjb21wbGV0ZScsCiAgICAgIH0KICAgIH07CiAgfQoKICBjYW5jZWwucmVtb3ZlKCk7CgogIC8vIERpc2FibGUgdGhlIGlucHV0IGVsZW1lbnQgc2luY2UgZnVydGhlciBwaWNrcyBhcmUgbm90IGFsbG93ZWQuCiAgaW5wdXRFbGVtZW50LmRpc2FibGVkID0gdHJ1ZTsKCiAgZm9yIChjb25zdCBmaWxlIG9mIGZpbGVzKSB7CiAgICBjb25zdCBsaSA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ2xpJyk7CiAgICBsaS5hcHBlbmQoc3BhbihmaWxlLm5hbWUsIHtmb250V2VpZ2h0OiAnYm9sZCd9KSk7CiAgICBsaS5hcHBlbmQoc3BhbigKICAgICAgICBgKCR7ZmlsZS50eXBlIHx8ICduL2EnfSkgLSAke2ZpbGUuc2l6ZX0gYnl0ZXMsIGAgKwogICAgICAgIGBsYXN0IG1vZGlmaWVkOiAkewogICAgICAgICAgICBmaWxlLmxhc3RNb2RpZmllZERhdGUgPyBmaWxlLmxhc3RNb2RpZmllZERhdGUudG9Mb2NhbGVEYXRlU3RyaW5nKCkgOgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnbi9hJ30gLSBgKSk7CiAgICBjb25zdCBwZXJjZW50ID0gc3BhbignMCUgZG9uZScpOwogICAgbGkuYXBwZW5kQ2hpbGQocGVyY2VudCk7CgogICAgb3V0cHV0RWxlbWVudC5hcHBlbmRDaGlsZChsaSk7CgogICAgY29uc3QgZmlsZURhdGFQcm9taXNlID0gbmV3IFByb21pc2UoKHJlc29sdmUpID0+IHsKICAgICAgY29uc3QgcmVhZGVyID0gbmV3IEZpbGVSZWFkZXIoKTsKICAgICAgcmVhZGVyLm9ubG9hZCA9IChlKSA9PiB7CiAgICAgICAgcmVzb2x2ZShlLnRhcmdldC5yZXN1bHQpOwogICAgICB9OwogICAgICByZWFkZXIucmVhZEFzQXJyYXlCdWZmZXIoZmlsZSk7CiAgICB9KTsKICAgIC8vIFdhaXQgZm9yIHRoZSBkYXRhIHRvIGJlIHJlYWR5LgogICAgbGV0IGZpbGVEYXRhID0geWllbGQgewogICAgICBwcm9taXNlOiBmaWxlRGF0YVByb21pc2UsCiAgICAgIHJlc3BvbnNlOiB7CiAgICAgICAgYWN0aW9uOiAnY29udGludWUnLAogICAgICB9CiAgICB9OwoKICAgIC8vIFVzZSBhIGNodW5rZWQgc2VuZGluZyB0byBhdm9pZCBtZXNzYWdlIHNpemUgbGltaXRzLiBTZWUgYi82MjExNTY2MC4KICAgIGxldCBwb3NpdGlvbiA9IDA7CiAgICB3aGlsZSAocG9zaXRpb24gPCBmaWxlRGF0YS5ieXRlTGVuZ3RoKSB7CiAgICAgIGNvbnN0IGxlbmd0aCA9IE1hdGgubWluKGZpbGVEYXRhLmJ5dGVMZW5ndGggLSBwb3NpdGlvbiwgTUFYX1BBWUxPQURfU0laRSk7CiAgICAgIGNvbnN0IGNodW5rID0gbmV3IFVpbnQ4QXJyYXkoZmlsZURhdGEsIHBvc2l0aW9uLCBsZW5ndGgpOwogICAgICBwb3NpdGlvbiArPSBsZW5ndGg7CgogICAgICBjb25zdCBiYXNlNjQgPSBidG9hKFN0cmluZy5mcm9tQ2hhckNvZGUuYXBwbHkobnVsbCwgY2h1bmspKTsKICAgICAgeWllbGQgewogICAgICAgIHJlc3BvbnNlOiB7CiAgICAgICAgICBhY3Rpb246ICdhcHBlbmQnLAogICAgICAgICAgZmlsZTogZmlsZS5uYW1lLAogICAgICAgICAgZGF0YTogYmFzZTY0LAogICAgICAgIH0sCiAgICAgIH07CiAgICAgIHBlcmNlbnQudGV4dENvbnRlbnQgPQogICAgICAgICAgYCR7TWF0aC5yb3VuZCgocG9zaXRpb24gLyBmaWxlRGF0YS5ieXRlTGVuZ3RoKSAqIDEwMCl9JSBkb25lYDsKICAgIH0KICB9CgogIC8vIEFsbCBkb25lLgogIHlpZWxkIHsKICAgIHJlc3BvbnNlOiB7CiAgICAgIGFjdGlvbjogJ2NvbXBsZXRlJywKICAgIH0KICB9Owp9CgpzY29wZS5nb29nbGUgPSBzY29wZS5nb29nbGUgfHwge307CnNjb3BlLmdvb2dsZS5jb2xhYiA9IHNjb3BlLmdvb2dsZS5jb2xhYiB8fCB7fTsKc2NvcGUuZ29vZ2xlLmNvbGFiLl9maWxlcyA9IHsKICBfdXBsb2FkRmlsZXMsCiAgX3VwbG9hZEZpbGVzQ29udGludWUsCn07Cn0pKHNlbGYpOwo=", "ok": true, "headers": [["content-type", "application/javascript"]], "status": 200, "status_text": ""}}, "base_uri": "https://localhost:8080/", "height": 74} # TODO - your code here # Use what we did live in lecture as an example from google.colab import files uploaded = files.upload() # + id="LY0CmGhUYjoS" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 414} outputId="2df83ca3-f606-4daf-9606-57a948629cfb" df = pd.read_csv('Behavior of the urban traffic of the city of Sao Paulo in Brazil.csv', sep=";") df.head(10) #when I printed the head, it appeared I might have loaded the data incorrectly. #However, when I asked python for some statistical facts about each column, #I discovered that many values are 0 because the columns measure rare events: #road accidents such as a broken-down bus, an accident injury, or an electricity blackout. df.describe() # + id="sAopKZF0b23o" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 34} outputId="ccd8f156-6bbd-4d4f-f59e-e0e797685d86" df.boxplot() # + id="QbnzTsWobvkU" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 336} outputId="fe32508c-5fc6-4906-a43d-593153489a7b" #checking for nan values df.isna().sum() #I looked for NaN values, but there were none in the dataset. # + id="fFRMqswedqXW" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 579} outputId="f1a1fd41-2588-4c8d-8ee3-ba62248e6489" ###plot time -- I want to make a boxplot of each column in the dataset, without the Hour or Slowness columns because their range is much larger than the ranges of the other columns, which will make the chart less readable. ##box plot #drop the slowness and hour columns df1 = df.drop(['Hour (Coded)', 'Slowness in traffic (%)'], axis=1) #axis=1 tells python to look at columns #plot box plot df1.plot(kind='box', figsize=(30,6)) plt.xticks(rotation=60) #rotating the xticks plt.title('Frequency of Road Malfunctions in Sao Paolo') plt.xlabel('Type of Road Malfunction') plt.ylabel('Frequency of Malfunction') plt.show() # + id="UkIwvcE2lVqv" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 695} outputId="a4256ae8-9e23-453b-9d7d-195d74e0d49a" ##line plot df.plot.line(x='Hour (Coded)', y='Lack of electricity', figsize=(10,6)) df.plot.line(x='Hour (Coded)', y='Slowness in traffic (%)', figsize=(10,6)) #I tried to plot instances of "Lack of Electricity" against "Slowness in Traffic", but because the data collectors culturally use commas in decimals where we use periods, python does not think that the numbers are floats or ints. An interesting case where Python is eurocentric! #The line graph I did make did not seem to connect the scatterpoints in a readable fashion. # + [markdown] id="BT9gdS7viJZa" colab_type="text" # ### Assignment questions # # After you've worked on some code, answer the following questions in this text block: # # 1. Describe in a paragraph of text what you did and why, as if you were writing an email to somebody interested but nontechnical. # # In this project I sought to explore a dataset on traffic slowness in Sao Paolo, Brazil. I found this dataset to be important because traffic is a serious probelm in megacities around the world. First, I looked at the shape of the dataset, and I noticed that the dataset is indexed by consecutive hours over the course of roughly a week. The first peculiarity I noticed was that many of the values in the dataset are 0. However, when I asked python for some statistical facts about each column, I discovered that many values are 0 because the columns measure rare road events such as a broken-down bus, an accident injury, or an electricity blackout. This indicates that most of the time, there was no reported accident for many of the indexed hours. # After I looked at the shape of the data, I checked for empty (Nan) values to make sure I did not need to impute data. The data required no imputing; all the values were filled. # After checking for missing values, I decided to make a box plot of each column in the dataset to demonstrate the rarity of each event. # Finally, I tried to plot on a line graph the correlation over time between electricity outages and traffic slowness. However, I ran into trouble because the writers of the dataset denote decimals with a comma, which Python does not understand. # # 2. What was the most challenging part of what you did? # # I ran into four roadblocks while I worked on this assignment: semicolons seraprating values in the csv, and overlapping ticks on the x axis, non-American denotation of decimals, and an unreadable line graph. I was able to find code online that fixed the first two problems. # The third problem was that the writers of the CSV denotated decimals with commas instead of periods like Americans and Python. I did't know how to fix this problem, because it seemed I would have to replace in that column every comma with a period. # The fourth problem was that the dots of my scatterplot that make up my line graph were connected incorrectly. I think I had a similar problem during the Precourse, but I don't remember the solution. # # 3. What was the most interesting thing you learned? # # The most interesting thing I learned from this project was how to learn through troubleshooting. I feel like each time I complete an assignment I learn one part from online troubleshooting and two parts from the lecture. # 4. What area would you like to explore with more time? # # I'd like to explore more time understanding the difference between pandas plotting and matplotlib plotting, especially the differences in syntax. # # # + [markdown] id="_XXg2crAipwP" colab_type="text" # ## Stretch goals and resources # # Following are *optional* things for you to take a look at. Focus on the above assignment first, and make sure to commit and push your changes to GitHub (and since this is the first assignment of the sprint, open a PR as well). # # - [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/) # - [scikit-learn documentation](http://scikit-learn.org/stable/documentation.html) # - [matplotlib documentation](https://matplotlib.org/contents.html) # - [Awesome Data Science](https://github.com/bulutyazilim/awesome-datascience) - a list of many types of DS resources # # Stretch goals: # # - Find and read blogs, walkthroughs, and other examples of people working through cool things with data science - and share with your classmates! # - Write a blog post (Medium is a popular place to publish) introducing yourself as somebody learning data science, and talking about what you've learned already and what you're excited to learn more about. # + id="-J-_qpiE-qZU" colab_type="code" colab={} joe = { 'name': 'Joe', 'is_female': False, 'age': 19 } alice = { 'name': 'Alice', 'is_female': True, 'age': 20 } sarah = { 'name': 'Sarah', 'is_female': True, 'age': 20 } students = [joe, alice, sarah] for s in students: print(s.values()) # + id="J8NChWgaEw6h" colab_type="code" colab={} GM = {'name': 'Grow Mart', 'founding year' : 1973, 'revenue' : 2.65e5, 'expenses' : 1.83e5} PD = {'name': 'Plant Depot', 'founding year' : 1973,'revenue' : 3.02e5, 'expenses' : 2.4e5 } TRU = {'name': 'Trees R Us', 'founding year': 1985, 'revenue': 1.23e5, 'expenses': 1.3e5 } stores = [GM, PD, TRU] for s in stores: print(s['expenses'] > s['revenue']) s.update( {'is_profitable' : (s['expenses'] > s['revenue'])} ) #use update to add new key/value pair to dictionary print(stores) # + [markdown] id="UgDb72Ha-r1P" colab_type="text" # ^ Following along with Training Kit # + id="iU1qQ7WtbaKk" colab_type="code" colab={} import random words = [ 'supplant', 'undulate', 'xenon', 'asymptote', # โ† rotates here! 'babushka', 'kart', 'other'] def rotate_point(s = words): sorted_words = sorted(s) first_word = sorted_words[0] print(first_word) index_number = words.index(first_word) print('The index in the unsorted list of the first word of the sorted list is', index_number) rotate_point(words) words_shuffled = random.shuffle(words) print(words_shuffled) rotate_point(s = words_shuffled) # + id="8LsckX2-bfp7" colab_type="code" colab={}
19,844
/notebooks/CoronaLSTM.ipynb
b06725f9c7fe2127bc0f23d9cf54198a11c3cb7a
[]
no_license
adzuci/task-ts
https://github.com/adzuci/task-ts
0
0
null
2020-04-27T21:22:46
2020-04-27T16:34:00
null
Jupyter Notebook
false
false
.py
222,144
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # https://pl.wikipedia.org/wiki/Dyskretna_transformacja_kosinusowa # # http://grzegorzsokol.name/blog/dct/ # # https://pl.wikipedia.org/wiki/JPEG import matplotlib.pyplot as plt import scipy.fftpack as ff import math import numpy as np # + from skimage import io, color lena = io.imread("../images/001.jpg") plt.imshow(lena) plt.axis('off') plt.show() lenagray = color.rgb2gray(lena) print(lenagray.shape, lenagray.dtype) plt.imshow(lenagray, cmap="gray") plt.axis('off') plt.show() # + image = lenagray windowsize = 8 counter = 0 windows = [] for r in range(0,image.shape[0] - windowsize, windowsize): for c in range(0,image.shape[0] - windowsize, windowsize): windows.append(image[r:r+windowsize,c:c+windowsize]) counter += 1 print(counter) # - len(list(range(0,image.shape[0] - windowsize, windowsize))) len(windows) # + frag = windows[0] plt.imshow(frag, cmap="gray") plt.axis('off') plt.show() # - res = ff.dct(ff.dct(frag,norm='ortho').T,norm='ortho').T np.set_printoptions(suppress=True, precision=2) print(res) # + res2 = np.round(res[:],2) bias = .03 # windowsize = 8 counter = 0 for i in range(windowsize): for j in range(windowsize): if res2[i,j]>-bias and res2[i,j]<bias: res2[i,j]=0 counter += 1 print('Liczba modyfikacji: ', counter) np.set_printoptions(suppress=True, precision=2) print(res2) print('Wartoล›ci niezerowe: ', np.sum(res2 != 0), ' na ', res2.size) # - orig = ff.idct(ff.idct(res2,norm='ortho').T,norm='ortho').T print(orig) plt.imshow(frag, cmap="gray") plt.axis('off') plt.show() print(np.mean(frag == orig)) np.set_printoptions(suppress=True, precision=2) print("%.2f %.2f %.2f" % (np.mean(frag - orig), np.max(frag - orig), np.sum(frag - orig))) def show2imgs(im1, im2, title1='Obraz pierwszy', title2='Obraz drugi', size=(10,10)): import matplotlib.pyplot as plt f, (ax1, ax2) = plt.subplots(1,2, figsize=size) ax1.imshow(im1, cmap='gray') ax1.axis('off') ax1.set_title(title1) ax2.imshow(im2, cmap='gray') ax2.axis('off') ax2.set_title(title2) plt.show() show2imgs(frag, orig, 'Oryginaล‚', 'Obraz odtworzony') ight": 137} # !pip install tsaug # + id="aXNkSdTFvZ1g" colab_type="code" colab={} from tsaug.visualization import plot from tsaug import TimeWarp, Crop, Quantize, Drift, Reverse my_augmenter = (TimeWarp() * 5, # random time warping 5 times in parallel Crop(size=300), # random crop subsequences with length 300 Quantize(n_levels=[10, 20, 30]), # random quantize to 10-, 20-, or 30- level sets Drift(max_drift=(0.1, 0.5)), # with 80% probability, random drift the signal up to 10% - 50% Reverse()) #0.5 # with 50% probability, reverse the sequence) # + id="VdVWNhk2XRJw" colab_type="code" colab={} #X_aug = my_augmenter[0].augment(antwerp_relevant) print(antwerp_relevant.shape) X_aug = TimeWarp(antwerp[:70]) # + [markdown] id="-A6ICggnYBlX" colab_type="text" # ## Models and Forecasting # We will now define some simple models in Keras for forecasting. # + id="VO7ZOB41az1W" colab_type="code" colab={} import numpy as np from sklearn.preprocessing import RobustScaler scaler_dict = {} config_default = {"epochs":30, "validation_split":0.1, "loss":"mean_squared_error", "optimizer":'adam', "geo_segment":"antwerp", "seq_len":7, "train_steps":70, "test_steps":27, "scaler":"RobustScaler", "beta":0.899} r = RobustScaler() x_train_full = antwerp_df[['deaths', 'cases']][:config_default["train_steps"]] x_train_full = pd.DataFrame(r.fit_transform(x_train_full)) y_train_full = x_train_full r_test = RobustScaler() test_orig = antwerp_df[['deaths', 'cases']][70:] test = pd.DataFrame(r_test.fit_transform(test_orig)) # + id="eUR6eM4MZZJJ" colab_type="code" colab={} def create_dataset(X, y, time_steps=1): Xs, ys = [], [] for i in range(len(X) - time_steps): v = X.iloc[i:(i + time_steps)].values Xs.append(v) ys.append(y.iloc[i + time_steps]) return np.array(Xs), np.array(ys) X_train, Y_train = create_dataset(x_train_full, y_train_full, config_default["seq_len"]) X_test, y_test = create_dataset(test, test, config_default["seq_len"]) # + id="-OOG9RAp4-ap" colab_type="code" outputId="d37f1d49-1f45-45dc-ea11-d21c5e1de166" colab={"base_uri": "https://localhost:8080/", "height": 71} sweep_config = { "name": "Default sweep", "method": "grid", "parameters": { "batch_size": { "values": [2, 3, 4, 5] }, "learn":{ "values":[0.001, 0.0015, 0.002, 0.003, 0.004, 0.01] } } } sweep_id = wandb.sweep(sweep_config) # + id="nXhSxkqdYJbd" colab_type="code" colab={} def train(): run = wandb.init(project="covid-forecast", config=config_default, magic=True) config = wandb.config opt = keras.optimizers.Adam(learning_rate=config["learn"], beta_1=config["beta"], beta_2=0.999, amsgrad=False) model = keras.Sequential() model.add( keras.layers.Bidirectional( keras.layers.LSTM( units=128, input_shape=(X_train.shape[1], X_train.shape[2]) ) ) ) model.add(keras.layers.Dropout(rate=0.2)) model.add(keras.layers.Dense(units=2)) model.compile(loss=config["loss"], optimizer=opt) history = model.fit( X_train, Y_train, epochs=config["epochs"], batch_size=config["batch_size"], validation_split=config["validation_split"], callbacks=[WandbCallback()], shuffle=False ) evaluate_single(model, X_test, y_test, r) evaluate_plot_multi(model, test, config, X_test, r_test) return model def evaluate_single(model, x_test, y_test, scaler): y_preds = model.predict(x_test) y_preds = scaler.inverse_transform(y_preds) y_test = scaler.inverse_transform(y_test) complete_mse = tf.keras.losses.MSE( y_preds[:, 1], y_test[:, 1]) wandb.run.summary["test_mse"] = complete_mse return complete_mse def evaluate_plot_multi(model, test_df, config, x_test, scaler): arr = predict_multi(model, len(test)-config["seq_len"], x_test[0, :, :]) test_orig['predicted_cases'] = 0 test_orig['predicted_cases'][config["seq_len"]:] = scaler.inverse_transform(arr.squeeze(0))[:, 1] plt.plot(test_orig['predicted_cases'], label='predicted_cases') plt.plot(test_orig['cases'], label='actual_cases') plt.legend(); wandb.log({"test":plt}) large_mse = tf.keras.losses.MSE( y_multi[:, 1], test_orig['predicted_cases'][config["seq_len"]:].values ) wandb.run.summary["test_mse_full"] = large_mse return large_mse # + id="Q0N5tLiZB_IE" colab_type="code" outputId="cbca51a1-6556-49cc-d222-a96d1d007d5a" colab={"base_uri": "https://localhost:8080/", "height": 1000} wandb.agent(sweep_id, function=train) #train() # + id="tR_vweL-bOD1" colab_type="code" outputId="f6d40e8b-d959-48ff-85d9-d828cd00779b" colab={"base_uri": "https://localhost:8080/", "height": 286} import matplotlib.pyplot as plt # %matplotlib inline # %config InlineBackend.figure_format='retina' plt.plot(history.history['loss'], label='train') plt.plot(history.history['val_loss'], label='test') plt.legend(); # + [markdown] id="zPaMFelHjm-m" colab_type="text" # ### Examining Results # We will now predict both one step ahead and 20 steps ahead. # + id="F5zjK1JYf52W" colab_type="code" outputId="00fa37da-16a3-428d-bb6c-e6f10371bb94" colab={"base_uri": "https://localhost:8080/", "height": 319} res = model.predict(X_test) res = r_test.inverse_transform(res) res # + id="Z_9dG21n1bJC" colab_type="code" outputId="aee9ba88-9e6e-4ec8-ad2c-a114d299538a" colab={"base_uri": "https://localhost:8080/", "height": 319} y_true = r_test.inverse_transform(y_test) y_true # + id="JVKR-Hw_1lQ8" colab_type="code" outputId="7e86523f-421b-47f5-a08a-8c5aaaa057b3" colab={"base_uri": "https://localhost:8080/", "height": 368} def predict_multi(model, time_steps, start_rows): start_rows=np.expand_dims(start_rows, axis=0) for i in range(0, time_steps): out = model.predict(start_rows[:, i:, :]) out = out[np.newaxis, ...] start_rows = np.concatenate((start_rows, out), axis=1) return start_rows[:, config["seq_len"]:, :] arr = predict_multi(model, len(test)-config["seq_len"], X_test[0, :, :]) test_orig['predicted_cases'] = 0 test_orig['predicted_cases'][config["seq_len"]:] = r_test.inverse_transform(arr.squeeze(0))[:, 1] plt.plot(test_orig['predicted_cases'], label='predicted_cases') plt.plot(test_orig['cases'], label='actual_cases') plt.legend(); wandb.log({"test":plt}) # + id="aoIE9nyy3gVB" colab_type="code" outputId="fccf7eb0-be54-446c-f780-611b7b7d1e37" colab={"base_uri": "https://localhost:8080/", "height": 153} r_test.inverse_transform(X_test[0, :, :]) # + id="nW4Nwm9yWPia" colab_type="code" outputId="76a383f0-a538-4098-9806-a3f3806f353b" colab={"base_uri": "https://localhost:8080/", "height": 319} y_multi = r_test.inverse_transform(arr.squeeze(0)) y_multi # + id="5x_QvIsutf1a" colab_type="code" colab={} import tensorflow as tf x_test = y_true[:, 1] wandb.run.summary["test_mse"] = tf.keras.losses.MSE( x_test, res[:, 1] ) # + id="6BiFffVB3Jc1" colab_type="code" colab={} wandb.run.summary["test_mse_full"] = tf.keras.losses.MSE( y_multi[:, 1], x_test ) # + [markdown] id="bkob-4bnYdeT" colab_type="text" # ### PyTorch models # # + id="aGXjVazoJ9i3" colab_type="code" colab={} import torch import math from torch.nn.modules import Transformer, TransformerEncoder, TransformerDecoder, TransformerDecoderLayer, TransformerEncoderLayer, LayerNorm class CustomTransformerDecoder(torch.nn.Module): def __init__(self, seq_length, output_seq_length, n_time_series, d_model=128, output_dim=1): super().__init__() self.dense_shape = torch.nn.Linear(n_time_series, d_model) self.pe = SimplePositionalEncoding(d_model) encoder_layer = TransformerEncoderLayer(d_model, 8) encoder_norm = LayerNorm(d_model) self.transformer_enc = TransformerEncoder(encoder_layer, 6, encoder_norm) self.output_dim_layer = torch.nn.Linear(d_model, output_dim) self.output_seq_length = output_seq_length self.out_length_lay = torch.nn.Linear(seq_length, output_seq_length) self.mask = generate_square_subsequent_mask(seq_length) def forward(self, x): """""" x = self.dense_shape(x) x = self.pe(x) x = x.permute(1,0,2) x = self.transformer_enc(x, mask=self.mask) x = self.output_dim_layer(x) x = x.permute(1, 2, 0) x = self.out_length_lay(x) return x.view(-1, self.output_seq_length) class SimplePositionalEncoding(torch.nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(SimplePositionalEncoding, self).__init__() self.dropout = torch.nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x:torch.Tensor)->torch.Tensor: """Creates a basic positional encoding""" x = x + self.pe[:x.size(0), :] return self.dropout(x) def generate_square_subsequent_mask(sz:int)->torch.Tensor: r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0). """ mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) return mask # + id="RK-U7-QhfP5b" colab_type="code" colab={} c = CustomTransformerDecoder(50, 1, 3) # + id="VtZbZ55tfe0i" colab_type="code" outputId="8e42b01b-303a-4fbf-f55e-217198c364e0" colab={"base_uri": "https://localhost:8080/", "height": 71} c(torch.rand(2, 50, 3)) # + id="7mFCWLbkktra" colab_type="code" colab={} class LSTMForecast(torch.nn.Module): def __init__(self, seq_length: int, n_time_series: int, output_seq_len=1, hidden_states=20, num_layers=2, bias=True): super().__init__() self.num_layers = num_layers self.forecast_history = seq_length self.n_time_series = n_time_series self.hidden_dim = hidden_states self.lstm = torch.nn.LSTM(n_time_series, hidden_states, num_layers, bias, batch_first=True) self.final_layer = torch.nn.Linear(seq_length*hidden_states, output_seq_len) def init_hidden(self, batch_size): # even with batch_first = True this remains same as docs hidden_state = torch.zeros(self.num_layers,batch_size,self.hidden_dim) cell_state = torch.zeros(self.num_layers,batch_size,self.hidden_dim) self.hidden = (hidden_state, cell_state) def forward(self, x: torch.Tensor) -> torch.Tensor: print(x.size()[0]) batch_size = x.size()[0] out_x,self.hidden = self.lstm(x, self.hidden) x = self.final_layer(out_x.contiguous().view(batch_size, -1)) return x
13,489
/T-Student.ipynb
71ab6ef5fec0d14ad8acd1e44dad3984629b2449
[]
no_license
hcpassos/Python-practice
https://github.com/hcpassos/Python-practice
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
2,691
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 (ipykernel) # language: python # name: python3 # --- # # Crop Yield Prediction # ### Md. Rubel Rana 1712661642 # ### Navid Al - Musabbir 1721853042 # + import graphviz import sklearn import numpy as np import pandas as pd import seaborn as sns import plotly.io as pio import plotly.express as px from sklearn import metrics import matplotlib.pyplot as plt from scipy import stats import autosklearn.regression import autogluon.core as ag from tpot import TPOTRegressor from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.datasets import make_classification from hpsklearn import HyperoptEstimator from hpsklearn import any_classifier from hpsklearn import any_preprocessing from hyperopt import tpe import autosklearn import sklearn.metrics from lightgbm.sklearn import LGBMRegressor from sklearn.metrics import mean_squared_error from sklearn.model_selection import KFold, cross_val_score from autosklearn.classification import AutoSklearnClassifier from supervised.automl import AutoML from supervised.preprocessing.eda import EDA from autogluon.tabular import TabularDataset, TabularPredictor from sklearn.metrics import accuracy_score # - # Dataset dataset = 'dataset/Aus/aus.csv' # Load dataset into dataframe data = pd.read_csv(dataset) # ## Data Exploration data.shape data.columns data.head() data.tail() data.info() data.describe() # ## Data Preprocessing # #### a. Removing 0's and NaN values # Checking 0 values (data == 0).sum(axis=0) # Replace 0's with NaN data.replace(0, np.nan, inplace=True) data.isnull().sum().sum() # Drop all NaN values data = data.dropna() data = data.reset_index(drop=True) data.isnull().values.any() # Be ensure about 0's and NaN values (data == 0).sum(axis=0) data['Area'] = data.Area.astype(int) data['Productions'] = data.Area.astype(int) data['PPH'] = pd.to_numeric(data['PPH']) data.shape data.head() data.tail() data.info() # #### b. Removing Outliers z = np.abs(stats.zscore(data)) np.where(z > 4) Q1 = data.quantile(0.25) Q3 = data.quantile(0.75) IQR = Q3 - Q1 (data < (Q1 - 1.5 * IQR)) | (data > (Q3 + 1.5 * IQR)) data.shape data = data[(z < 4).all(axis=1)] data.shape # ## Spliting Data X = data[['District', 'Year', 'Max_Temp', 'Min_Temp', 'Rainfall', 'Humidity', 'Wind', 'Cloud', 'Sunshine', 'ALT']] y = data['PPH'] # #### a. Train data & Test data X_train, X_rem, y_train, y_rem = train_test_split(X, y, train_size=0.3) # #### a. Train data & Validation data X_train, X_test, y_valid, y_test = train_test_split(X_rem, y_rem, test_size=0.3) # ## 1. Performing Automating EDA EDA.extensive_eda(X_train,y_valid,save_path="content/mljar-supervised/aus") # ## Creating AutoML Models automl = AutoML(mode='Compete', total_time_limit=10, results_path="AutoML_classifier/Aus") automl.fit(X_train, y_valid) predictions = automl.predict(X_test) # #### a. RMSE metrics.mean_squared_error(y_test, predictions) # #### b. MAE metrics.mean_absolute_error(y_test, predictions) # #### c. R2 metrics.r2_score(y_test, predictions) y_pred = automl.predict(X_train) plt.figure(figsize=(15,10)) plt.scatter(y_pred, y_valid, label="Train", color='#d95f02') plt.scatter(predictions, y_test, label="Test", color='#7570b3') plt.title('AUS EDA AutoML Scatter Plot') plt.xlabel("Predicted value") plt.ylabel("Actual value") plt.legend() plt.savefig("fig_content/aus_automl_scatter.png") plt.show() plt.figure(figsize=(15,10)) sns.regplot(x=predictions, y = y_test, data = data) plt.title('AUS EDA AutoML Reg Plot') plt.xlabel("Predicted value") plt.ylabel("Actual value") plt.savefig("reg_content/aus_eda_automl_reg.png") # ## 2. AutoSklearn Regression autosk = autosklearn.regression.AutoSklearnRegressor( time_left_for_this_task=120, per_run_time_limit=30, tmp_folder='autosklearn_regression/aus', resampling_strategy='holdout', resampling_strategy_arguments={'folds': 5}, ) autosk.fit(X_train, y_valid, dataset_name='data') autosk.leaderboard() print(autosk.show_models()) predictions = autosk.predict(X_test) # #### a. RMSE metrics.mean_squared_error(y_test, predictions) # #### b. MAE metrics.mean_absolute_error(y_test, predictions) # #### c. R2 metrics.r2_score(y_test, predictions) y_pred = autosk.predict(X_train) plt.figure(figsize=(15,10)) plt.scatter(y_pred, y_valid, label="Train", color='#d95f02') plt.scatter(predictions, y_test, label="Test", color='#7570b3') plt.title('AUS AutoSk Scatter Plot') plt.xlabel("Predicted value") plt.ylabel("Actual value") plt.legend() plt.savefig("fig_content/aus_autosk_scatter.png") plt.show() plt.figure(figsize=(15,10)) sns.regplot(x=predictions, y = y_test, data = data) plt.title('AUS AutoSk Reg Plot') plt.xlabel("Predicted value") plt.ylabel("Actual value") plt.savefig("reg_content/aus_autosk_reg.png") # ## 3. AutoGluon train_data = TabularDataset('dataset/Aus/train_data.csv') test_data = TabularDataset('dataset/Aus/test_data.csv') # Checking 0 values (train_data == 0).sum(axis=0) (test_data == 0).sum(axis=0) # Replace 0's with NaN train_data.replace(0, np.nan, inplace=True) test_data.replace(0, np.nan, inplace=True) train_data.isnull().sum().sum() test_data.isnull().sum().sum() # Drop all NaN values train_data = train_data.dropna() train_data = train_data.reset_index(drop=True) test_data = test_data.dropna() test_data = test_data.reset_index(drop=True) train_data.isnull().values.any() test_data.isnull().values.any() # Be ensure about 0's and NaN values (train_data == 0).sum(axis=0) (test_data == 0).sum(axis=0) train_data['Area'] = train_data.Area.astype(int) train_data['Productions'] = train_data.Area.astype(int) train_data['PPH'] = pd.to_numeric(train_data['PPH']) test_data['Area'] = test_data.Area.astype(int) test_data['Productions'] = test_data.Area.astype(int) test_data['PPH'] = pd.to_numeric(test_data['PPH']) label = 'PPH' data[label].describe() save_path = 'autogluon/aus' hyperparameters = { 'NN': {'num_epochs': 10, 'activation': 'relu', 'dropout_prob': ag.Real(0.0, 0.5)}, 'GBM': {'num_boost_round': 1000, 'learning_rate': ag.Real(0.01, 0.1, log=True)}, 'XGB': {'n_estimators': 1000, 'learning_rate': ag.Real(0.01, 0.1, log=True)} } predictor = TabularPredictor(label=label, path=save_path).fit( train_data, hyperparameters=hyperparameters, hyperparameter_tune_kwargs='auto', time_limit=60 ) predictor.fit_summary() perf = predictor.evaluate(test_data) y_pred = predictor.predict_proba(test_data) perf = predictor.evaluate_predictions(y_true=test_data[label], y_pred=y_pred, auxiliary_metrics=True) perf # ## 4. Hyperopt n_iter=10 num_folds=2 kf = KFold(n_splits=num_folds, random_state=None) model = LGBMRegressor(random_state=42) # #### a. RMSE abs(cross_val_score(model, X, y, scoring='neg_mean_squared_error')).mean() # #### b. MAE abs(cross_val_score(model, X, y, scoring='neg_mean_absolute_error')).mean() # #### c. R2 abs(cross_val_score(model, X, y, scoring='r2')).mean() # ## 5. TPOT X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.75, test_size=0.25, random_state=42) tpot = TPOTRegressor(generations=5, population_size=50, verbosity=2, random_state=42) tpot.fit(X_train, y_train) predictions = tpot.predict(X_test) # #### b. RMSE metrics.mean_squared_error(y_test, predictions) # #### b. MAE metrics.mean_absolute_error(y_test, predictions) # #### c. R2 metrics.r2_score(y_test, predictions) y_pred = tpot.predict(X_train) plt.figure(figsize=(15,10)) plt.scatter(y_pred, y_train, label="Train", color='#d95f02') plt.scatter(predictions, y_test, label="Test", color='#7570b3') plt.title('AUS TPOT Scatter Plot') plt.xlabel("Predicted value") plt.ylabel("Actual value") plt.legend() plt.savefig("fig_content/aus_tpot_scatter.png") plt.show() plt.figure(figsize=(15,10)) sns.regplot(x=predictions, y = y_test, data = data) plt.title('AUS TPOT Reg Plot') plt.xlabel("Predicted value") plt.ylabel("Actual value") plt.savefig("reg_content/aus_tpot_reg.png") # ## 6. EvalML => AutoMLSearch import evalml from evalml import AutoMLSearch X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(X, y, problem_type='regression', test_size=0.3, random_seed=0) automl = AutoMLSearch(X_train = X_train, y_train=y_train, problem_type = "regression",max_batches=1,optimize_thresholds=True) automl.search() automl.rankings best_pipeline = automl.best_pipeline best_pipeline automl.describe_pipeline(automl.rankings.iloc[0]["id"]) automl.describe_pipeline(1) automl.results evalml.objectives.get_all_objective_names() # ## Graphical Representation # + correlation_data=data.select_dtypes(include=[np.number]).corr() mask = np.zeros_like(correlation_data) mask[np.triu_indices_from(mask)] = True f, ax = plt.subplots(figsize=(11, 9)) # Generate a custom diverging colormap cmap = sns.palette="vlag" # Draw the heatmap with the mask and correct aspect ratio sns.heatmap(correlation_data, mask=mask, cmap=cmap, vmax=.3, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}); # - plt.figure(figsize=(10, 10)) sns.pairplot(data, hue='PPH'); pio.templates.default = "seaborn" plt.figure(figsize=(16, 16)) fig = px.line(data, x = "Year", y = "Rainfall", color = "Year") fig.show() pio.templates.default = "seaborn" plt.figure(figsize=(10, 10)) fig = px.line(data, x = "Cloud", y = "Rainfall", color = "Cloud") fig.show() pio.templates.default = "seaborn" plt.figure(figsize=(16, 16)) fig = px.line(data, x = "Humidity", y = "Rainfall", color = "Humidity") fig.show() pio.templates.default = "seaborn" plt.figure(figsize=(16, 16)) fig = px.line(data, x = "Year", y = "PPH", color = "Year") fig.show() guments for name in range(1,n): # print(name) proc = Process(target=create_n_threads, args=(name,)) procs.append(proc) proc.start() # complete the processes for proc in procs: proc.join() # - # ## Merging all three table to create final dataset ######################merging the three tables create final dataset and normalize it ds=pd.read_sql_query("SELECT a.* , b.size , c.Class FROM id_ngram a INNER JOIN id_size b ON a.Id=b.id INNER JOIN id_Class c ON a.Id=c.id ",conn) data_y=ds['Class'] ds.head() ######normalize above table def normalize(df): result1 = df.copy() for feature_name in df.columns: if (str(feature_name) != str('Id') and str(feature_name)!=str('Class')): max_value = df[feature_name].max() min_value = df[feature_name].min() result1[feature_name] = (df[feature_name] - min_value) / (max_value - min_value) return result1 ds_n = normalize(ds) # ## Normalize the dataset # + ds_n.head() # - # ## Multivariate analysis using t-sne # + #########Multivariate analysis of datset using T-SNE xtsne=TSNE(perplexity=50) dims=xtsne.fit_transform(ds_n.drop(['Id','Class'], axis=1)) vis_x = dims[:, 0] ####first priniciple component vis_y = dims[:, 1] #####second principle component plt.scatter(vis_x, vis_y, c=data_y, cmap=plt.cm.get_cmap("jet", 9)) plt.colorbar(ticks=range(10)) plt.clim(0.5, 9) plt.show() # - #xtsne=TSNE(perplexity=20) xtsne = TSNE(n_components=2, verbose=1, perplexity=30) dims=xtsne.fit_transform(ds_n.drop(['Id','Class'], axis=1)) vis_x = dims[:, 0] ####first priniciple component vis_y = dims[:, 1] #####second principle component plt.scatter(vis_x, vis_y, c=data_y, cmap=plt.cm.get_cmap("jet", 9)) plt.colorbar(ticks=range(10)) plt.clim(0.5, 9) plt.show() xtsne=TSNE(perplexity=100) dims=xtsne.fit_transform(ds_n.drop(['Id','Class'], axis=1)) vis_x = dims[:, 0] ####first priniciple component vis_y = dims[:, 1] #####second principle component plt.scatter(vis_x, vis_y, c=data_y, cmap=plt.cm.get_cmap("jet", 9)) plt.colorbar(ticks=range(10)) plt.clim(0.5, 9) plt.show() # ## Split the data in to test and train datasets ###############Test Train split data_y = ds_n['Class'] # split the data into test and train by maintaining same distribution of output varaible 'y_true' [stratify=y_true] X_train, X_test, y_train, y_test = train_test_split(ds_n.drop(['Id','Class'], axis=1), data_y,stratify=data_y,test_size=0.25) #stratify maintains same proportion/classis ratio acroos the splits # split the train data into train and cross validation by maintaining same distribution of output varaible 'y_train' [stratify=y_train] X_train, X_cv, y_train, y_cv = train_test_split(X_train, y_train,stratify=y_train,test_size=0.25) print('Number of data points in train data:', X_train.shape[0]) print('Number of data points in test data:', X_test.shape[0]) print('Number of data points in cross validation data:', X_cv.shape[0]) # ## Class distrubution in test and train data sets # + #######distribution of data points in train dataset df_y_train=pd.DataFrame({'id':y_train.index, 'Class':y_train.values}) sns.set(style="darkgrid") ax = sns.countplot(x="Class", data=df_y_train) plt.title('Class counts in Train dataset') plt.show() # + Y=df_y_train total = len(Y)*1. ax=sns.countplot(x="Class", data=Y) for p in ax.patches: ax.annotate('{:.1f}%'.format(100*p.get_height()/total), (p.get_x()+0.1, p.get_height()+5)) #put 11 ticks (therefore 10 steps), from 0 to the total number of rows in the dataframe ax.yaxis.set_ticks(np.linspace(0, total, 11)) #adjust the ticklabel to the desired format, without changing the position of the ticks. ax.set_yticklabels(map('{:.1f}%'.format, 100*ax.yaxis.get_majorticklocs()/total)) plt.title("Class distribution in Train dataset") plt.show() # + df_y_test=pd.DataFrame({'id':y_test.index, 'Class':y_test.values}) sns.set(style="darkgrid") ax = sns.countplot(x="Class", data=df_y_test) plt.title('Class counts in Test dataset') plt.show() # + Y=df_y_test total = len(Y)*1. ax=sns.countplot(x="Class", data=Y) for p in ax.patches: ax.annotate('{:.1f}%'.format(100*p.get_height()/total), (p.get_x()+0.1, p.get_height()+5)) #put 11 ticks (therefore 10 steps), from 0 to the total number of rows in the dataframe ax.yaxis.set_ticks(np.linspace(0, total, 11)) #adjust the ticklabel to the desired format, without changing the position of the ticks. ax.set_yticklabels(map('{:.1f}%'.format, 100*ax.yaxis.get_majorticklocs()/total)) plt.title("Class distribution in Test dataset") plt.show() # + df_y_cv=pd.DataFrame({'id':y_cv.index, 'Class':y_cv.values}) sns.set(style="darkgrid") ax = sns.countplot(x="Class", data=df_y_train) plt.title('Class counts in cv dataset') plt.show() # + Y=df_y_cv total = len(Y)*1. ax=sns.countplot(x="Class", data=Y) for p in ax.patches: ax.annotate('{:.1f}%'.format(100*p.get_height()/total), (p.get_x()+0.1, p.get_height()+5)) #put 11 ticks (therefore 10 steps), from 0 to the total number of rows in the dataframe ax.yaxis.set_ticks(np.linspace(0, total, 11)) #adjust the ticklabel to the desired format, without changing the position of the ticks. ax.set_yticklabels(map('{:.1f}%'.format, 100*ax.yaxis.get_majorticklocs()/total)) plt.title("Class distribution in cv dataset") plt.show() # - # ## ML Models def plot_confusion_matrix(test_y, predict_y): C = confusion_matrix(test_y, predict_y) print("Number of misclassified points ",(len(test_y)-np.trace(C))/len(test_y)*100) A =(((C.T)/(C.sum(axis=1))).T) B =(C/C.sum(axis=0)) labels = [1,2,3,4,5,6,7,8,9] cmap=sns.light_palette("blue") # representing A in heatmap format print("="*50, "Confusion matrix", "="*50) plt.figure(figsize=(10,5)) sns.heatmap(C, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels) plt.xlabel('Predicted Class') plt.ylabel('Original Class') plt.show() print("-"*50, "Precision matrix", "-"*50) plt.figure(figsize=(10,5)) sns.heatmap(B, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels) plt.xlabel('Predicted Class') plt.ylabel('Original Class') plt.show() print("Sum of columns in precision matrix",B.sum(axis=0)) # representing B in heatmap format print("-"*50, "Recall matrix" , "-"*50) plt.figure(figsize=(10,5)) sns.heatmap(A, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels) plt.xlabel('Predicted Class') plt.ylabel('Original Class') plt.show() print("Sum of rows in precision matrix",A.sum(axis=1)) # + ###############################KNN####################### alpha = [x for x in range(1, 15, 2)] cv_log_error_array=[] for i in alpha: k_cfl=KNeighborsClassifier(n_neighbors=i) k_cfl.fit(X_train,y_train) sig_clf = CalibratedClassifierCV(k_cfl, method="sigmoid") sig_clf.fit(X_train, y_train) predict_y = sig_clf.predict_proba(X_cv) cv_log_error_array.append(log_loss(y_cv, predict_y, labels=k_cfl.classes_, eps=1e-15)) for i in range(len(cv_log_error_array)): print ('log_loss for k = ',alpha[i],'is',cv_log_error_array[i]) best_alpha = np.argmin(cv_log_error_array) fig, ax = plt.subplots() ax.plot(alpha, cv_log_error_array,c='g') for i, txt in enumerate(np.round(cv_log_error_array,3)): ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],cv_log_error_array[i])) plt.grid() plt.title("Cross Validation Error for each alpha") plt.xlabel("Alpha i's") plt.ylabel("Error measure") plt.show() k_cfl=KNeighborsClassifier(n_neighbors=alpha[best_alpha]) k_cfl.fit(X_train,y_train) sig_clf = CalibratedClassifierCV(k_cfl, method="sigmoid") sig_clf.fit(X_train, y_train) predict_y = sig_clf.predict_proba(X_train) print ('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss(y_train, predict_y)) predict_y = sig_clf.predict_proba(X_cv) print('For values of best alpha = ', alpha[best_alpha], "The cross validation log loss is:",log_loss(y_cv, predict_y)) predict_y = sig_clf.predict_proba(X_test) print('For values of best alpha = ', alpha[best_alpha], "The test log loss is:",log_loss(y_test, predict_y)) plot_confusion_matrix(y_test, sig_clf.predict(X_test)) # + ######## alpha=[10,50,100,500,1000,2000,3000] cv_log_error_array=[] train_log_error_array=[] from sklearn.ensemble import RandomForestClassifier for i in alpha: r_cfl=RandomForestClassifier(n_estimators=i,random_state=42,n_jobs=-1) r_cfl.fit(X_train,y_train) sig_clf = CalibratedClassifierCV(r_cfl, method="sigmoid") sig_clf.fit(X_train, y_train) predict_y = sig_clf.predict_proba(X_cv) cv_log_error_array.append(log_loss(y_cv, predict_y, labels=r_cfl.classes_, eps=1e-15)) for i in range(len(cv_log_error_array)): print ('log_loss for c = ',alpha[i],'is',cv_log_error_array[i]) best_alpha = np.argmin(cv_log_error_array) fig, ax = plt.subplots() ax.plot(alpha, cv_log_error_array,c='g') for i, txt in enumerate(np.round(cv_log_error_array,3)): ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],cv_log_error_array[i])) plt.grid() plt.title("Cross Validation Error for each alpha") plt.xlabel("Alpha i's") plt.ylabel("Error measure") plt.show() r_cfl=RandomForestClassifier(n_estimators=alpha[best_alpha],random_state=42,n_jobs=-1) r_cfl.fit(X_train,y_train) sig_clf = CalibratedClassifierCV(r_cfl, method="sigmoid") sig_clf.fit(X_train, y_train) predict_y = sig_clf.predict_proba(X_train) print('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss(y_train, predict_y)) predict_y = sig_clf.predict_proba(X_cv) print('For values of best alpha = ', alpha[best_alpha], "The cross validation log loss is:",log_loss(y_cv, predict_y)) predict_y = sig_clf.predict_proba(X_test) print('For values of best alpha = ', alpha[best_alpha], "The test log loss is:",log_loss(y_test, predict_y)) plot_confusion_matrix(y_test, sig_clf.predict(X_test)) # + #####################Gradient boosting(XGBOOST) alpha=[10,50,100,500,1000,2000] cv_log_error_array=[] for i in alpha: x_cfl=XGBClassifier(n_estimators=i,nthread=-1) x_cfl.fit(X_train,y_train) sig_clf = CalibratedClassifierCV(x_cfl, method="sigmoid") sig_clf.fit(X_train, y_train) predict_y = sig_clf.predict_proba(X_cv) cv_log_error_array.append(log_loss(y_cv, predict_y, labels=x_cfl.classes_, eps=1e-15)) for i in range(len(cv_log_error_array)): print ('log_loss for c = ',alpha[i],'is',cv_log_error_array[i]) best_alpha = np.argmin(cv_log_error_array) fig, ax = plt.subplots() ax.plot(alpha, cv_log_error_array,c='g') for i, txt in enumerate(np.round(cv_log_error_array,3)): ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],cv_log_error_array[i])) plt.grid() plt.title("Cross Validation Error for each alpha") plt.xlabel("Alpha i's") plt.ylabel("Error measure") plt.show() x_cfl=XGBClassifier(n_estimators=alpha[best_alpha],nthread=-1) x_cfl.fit(X_train,y_train) sig_clf = CalibratedClassifierCV(x_cfl, method="sigmoid") sig_clf.fit(X_train, y_train) predict_y = sig_clf.predict_proba(X_train) print ('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss(y_train, predict_y)) predict_y = sig_clf.predict_proba(X_cv) print('For values of best alpha = ', alpha[best_alpha], "The cross validation log loss is:",log_loss(y_cv, predict_y)) predict_y = sig_clf.predict_proba(X_test) print('For values of best alpha = ', alpha[best_alpha], "The test log loss is:",log_loss(y_test, predict_y)) plot_confusion_matrix(y_test, sig_clf.predict(X_test)) # -
21,586
/examples/benchmark/logreg.ipynb
5953a6c51c3bd5da04e2465e1920f03cd846f4af
[]
no_license
skale-me/skale-ml
https://github.com/skale-me/skale-ml
6
4
null
2016-05-20T09:51:06
2016-05-06T09:16:20
JavaScript
Jupyter Notebook
false
false
.js
5,437
// --- // jupyter: // jupytext: // text_representation: // extension: .js // format_name: light // format_version: '1.5' // jupytext_version: 1.15.2 // kernelspec: // display_name: Javascript (Node.js) // language: javascript // name: javascript // --- // # Logistic regression with Skale // In this example we will: // * Load a SVM data file // * Parse the file data to produce a label/features dataset // * Compute a logistic regression model from the cleaned-up data // We first establish a connection to our local skale cluster. var sc = require('skale-engine').context(); // Later we will use LogisticRegression from skale-ml package. var LogisticRegressionWithSGD = require('skale-ml').LogisticRegressionWithSGD; // We will process SVM data from the following file. var file = '1MB.dat'; // Let's configure now the number of iterations of the Gradient Descent. var nIterations = 100; // Next step is to load the file, parse its data and make it persistent to speedup SGD computation. // Here we have to: // * declare a parse function to apply on each line of file // * read, parse and make data persistent // * Instantiate the logistic regression model // + function featurize(line) { var tmp = line.split(' ').map(Number); var label = tmp.shift(); // in the current implementatuon we use [-1,1] labels var features = tmp; return [label, features]; } var points = sc.textFile(file).map(featurize).persist(); var model = new LogisticRegressionWithSGD(points); // - // We can now train the logistic regression model, display the corresponding weights and end the skale context session. // + $$async$$ = true; console.log('Training the model') model.train(nIterations, function() { $$done$$('Model weihgts'); console.log(model.weights); // sc.end(); });
1,831
/04.1-modulos.ipynb
eae2a98926b6df5305607126f5870eb3b53c82ec
[]
no_license
javipena21/introduccion-a-python
https://github.com/javipena21/introduccion-a-python
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
5,167
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import numpy as np import matplotlib.pyplot as plt def poly(x): #return (3*x**2 - 1)/2. return x**x - 100 # + xi, xf, Npoints = 0.1,4,10 h = (xf-xi)/float(Npoints) x = np.linspace(xi,xf,Npoints) y = poly(x) #print(x) # - plt.plot(x,y) #plt.plot(x,np.zeros(len(x)),'--') def Derivada(f,x,h): d = 0. if h!=0: d = (f(x+h)-f(x-h))/(2*h) return d # + # Definamos el metodo def NewtonMethod(f,df,xn,error,it,precision=0.001,iterations=1000): h = 1.0e-4 while error > precision and it < iterations: try: xn1 = xn - f(xn)/df(f,xn,h) error = np.abs( (xn1- xn)/xn1 ) #print(error) except ZeroDivisionError: print('Hay una division por cero') xn = xn1 it += 1 return xn1 # - root = NewtonMethod(poly, Derivada, 2, 10, it = 1) print(root) # + Xtest = np.linspace(1,6,10) print(Xtest) for i in Xtest: print(NewtonMethod(poly, Derivada, i, 10, it = 1)) # - list() # ### Splitting the data into train, test and validation sets # # We will train RDSM on 70% of the Data, use a Validation set of 10% for Model Selection and report performance on the remaining 20% held out test set. # + n = len(x) tr_size = int(n*0.70) vl_size = int(n*0.10) te_size = int(n*0.20) x_train, x_test, x_val = np.array(x[:tr_size], dtype = object), np.array(x[-te_size:], dtype = object), np.array(x[tr_size:tr_size+vl_size], dtype = object) t_train, t_test, t_val = np.array(t[:tr_size], dtype = object), np.array(t[-te_size:], dtype = object), np.array(t[tr_size:tr_size+vl_size], dtype = object) e_train, e_test, e_val = np.array(e[:tr_size], dtype = object), np.array(e[-te_size:], dtype = object), np.array(e[tr_size:tr_size+vl_size], dtype = object) # - # ### Setting the parameter grid # # Lets set up the parameter grid to tune hyper-parameters. We will tune the number of underlying survival distributions, # ($K$), the distribution choices (Log-Normal or Weibull), the learning rate for the Adam optimizer between $1\times10^{-3}$ and $1\times10^{-4}$, the number of hidden nodes per layer $50, 100$ and $2$, the number of layers $3, 2$ and $1$ and the type of recurrent cell (LSTM, GRU, RNN). from sklearn.model_selection import ParameterGrid param_grid = {'k' : [3, 4, 6], 'distribution' : ['LogNormal', 'Weibull'], 'learning_rate' : [1e-4, 1e-3], 'hidden': [50, 100], 'layers': [3, 2, 1], 'typ': ['LSTM', 'GRU', 'RNN'], } params = ParameterGrid(param_grid) # ### Model Training and Selection from dsm import DeepRecurrentSurvivalMachines # + models = [] for param in params: model = DeepRecurrentSurvivalMachines(k = param['k'], distribution = param['distribution'], hidden = param['hidden'], typ = param['typ'], layers = param['layers']) # The fit method is called to train the model model.fit(x_train, t_train, e_train, iters = 1, learning_rate = param['learning_rate']) models.append([[model.compute_nll(x_val, t_val, e_val), model]]) best_model = min(models) model = best_model[0][1] # - # ### Inference out_risk = model.predict_risk(x_test, times) out_survival = model.predict_survival(x_test, times) # ### Evaluation # # We evaluate the performance of RDSM in its discriminative ability (Time Dependent Concordance Index and Cumulative Dynamic AUC) as well as Brier Score on the concatenated temporal data. from sksurv.metrics import concordance_index_ipcw, brier_score, cumulative_dynamic_auc # + cis = [] brs = [] et_train = np.array([(e_train[i][j], t_train[i][j]) for i in range(len(e_train)) for j in range(len(e_train[i]))], dtype = [('e', bool), ('t', float)]) et_test = np.array([(e_test[i][j], t_test[i][j]) for i in range(len(e_test)) for j in range(len(e_test[i]))], dtype = [('e', bool), ('t', float)]) et_val = np.array([(e_val[i][j], t_val[i][j]) for i in range(len(e_val)) for j in range(len(e_val[i]))], dtype = [('e', bool), ('t', float)]) for i, _ in enumerate(times): cis.append(concordance_index_ipcw(et_train, et_test, out_risk[:, i], times[i])[0]) brs.append(brier_score(et_train, et_test, out_survival, times)[1]) roc_auc = [] for i, _ in enumerate(times): roc_auc.append(cumulative_dynamic_auc(et_train, et_test, out_risk[:, i], times[i])[0]) for horizon in enumerate(horizons): print(f"For {horizon[1]} quantile,") print("TD Concordance Index:", cis[horizon[0]]) print("Brier Score:", brs[0][horizon[0]]) print("ROC AUC ", roc_auc[horizon[0]][0], "\n") # -
5,105
/Image/find_image_by_path_row.ipynb
26ae77e6bb90acec3e329b020cd4c3161d890d3d
[ "MIT" ]
permissive
levi-manley/earthengine-py-notebooks
https://github.com/levi-manley/earthengine-py-notebooks
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
13,828
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # <table class="ee-notebook-buttons" align="left"> # <td><a target="_blank" href="https://github.com/giswqs/earthengine-py-notebooks/tree/master/Image/find_image_by_path_row.ipynb"><img width=32px src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" /> View source on GitHub</a></td> # <td><a target="_blank" href="https://nbviewer.jupyter.org/github/giswqs/earthengine-py-notebooks/blob/master/Image/find_image_by_path_row.ipynb"><img width=26px src="https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Jupyter_logo.svg/883px-Jupyter_logo.svg.png" />Notebook Viewer</a></td> # <td><a target="_blank" href="https://mybinder.org/v2/gh/giswqs/earthengine-py-notebooks/master?filepath=Image/find_image_by_path_row.ipynb"><img width=58px src="https://mybinder.org/static/images/logo_social.png" />Run in binder</a></td> # <td><a target="_blank" href="https://colab.research.google.com/github/giswqs/earthengine-py-notebooks/blob/master/Image/find_image_by_path_row.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" /> Run in Google Colab</a></td> # </table> # ## Install Earth Engine API # Install the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geehydro](https://github.com/giswqs/geehydro). The **geehydro** Python package builds on the [folium](https://github.com/python-visualization/folium) package and implements several methods for displaying Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, `Map.centerObject()`, and `Map.setOptions()`. # The magic command `%%capture` can be used to hide output from a specific cell. Uncomment these lines if you are running this notebook for the first time. # + # # %%capture # # !pip install earthengine-api # # !pip install geehydro # - # Import libraries import ee import folium import geehydro # Authenticate and initialize Earth Engine API. You only need to authenticate the Earth Engine API once. Uncomment the line `ee.Authenticate()` # if you are running this notebook for the first time or if you are getting an authentication error. # ee.Authenticate() ee.Initialize() # ## Create an interactive map # This step creates an interactive map using [folium](https://github.com/python-visualization/folium). The default basemap is the OpenStreetMap. Additional basemaps can be added using the `Map.setOptions()` function. # The optional basemaps can be `ROADMAP`, `SATELLITE`, `HYBRID`, `TERRAIN`, or `ESRI`. Map = folium.Map(location=[40, -100], zoom_start=4) Map.setOptions('HYBRID') # ## Add Earth Engine Python script # + # Load an image collection, filtered so it's not too much data. collection = ee.ImageCollection('LANDSAT/LT05/C01/T1') \ .filterDate('2008-01-01', '2008-12-31') \ .filter(ee.Filter.eq('WRS_PATH', 44)) \ .filter(ee.Filter.eq('WRS_ROW', 34)) # Compute the median in each band, each pixel. # Band names are B1_median, B2_median, etc. median = collection.reduce(ee.Reducer.median()) # The output is an Image. Add it to the map. vis_param = {'bands': ['B4_median', 'B3_median', 'B2_median'], 'gamma': 1.6} Map.setCenter(-122.3355, 37.7924, 9) Map.addLayer(median, vis_param, 'Median Image') # - # ## Display Earth Engine data layers Map.setControlVisibility(layerControl=True, fullscreenControl=True, latLngPopup=True) Map lor(str(al), title) markersize=10 eporange = np.arange(len(list(acclist[al]))+1) thelist = np.insert(acclist[al],0,0) subplot.plot(eporange, thelist , modshape, color = colmap ,label=str(al), alpha=0.8,linewidth=linewidth,markersize=markersize) subplot.legend(loc='lower right',fontsize=legend_size) # + def bar_plot_acc(labels, cen, fl1, fl2, fl3): x = np.arange(len(labels)) # the label locations width = 0.2 #plt.figure(figsize=(10, 8)) fig, ax = plt.subplots(figsize=(12, 8)) rects1 = ax.bar(x - width, cen, width, label='BSP',color=next_color(cm.get_cmap('Set2'), 1)) rects2 = ax.bar(x , fl1, width, label='FedAvg with 8 clients and 40% skewness',color=next_color(cm.get_cmap('Set2'), 2)) rects3 = ax.bar(x + width, fl2, width, label='FedAvg with 8 clients and 60% skewness',color=next_color(cm.get_cmap('Set2'), 3)) rects4 = ax.bar(x + 2*width, fl3, width, label='FedAvg with 8 clients and 80% skewness',color=next_color(cm.get_cmap('Set2'), 4)) # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('F1 Score %',fontsize=18) #ax.set_title('Max F1 score achieved by FedAvg for the different skewness in compare to BSP',fontsize=20) ax.set_xticks(x) ax.set_xticklabels(labels,fontsize=18) ax.legend(loc='lower right') ax.set_ylim(bottom=.6) def autolabel(rects): for rect in rects: height = rect.get_height() ax.annotate('{:0.3f}'.format(height), xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), # 3 points vertical offset textcoords="offset points", ha='center', va='bottom') autolabel(rects1) def autolabel2(rectcent, rects): for reo, rect in zip(rectcent, rects): height_dif = reo.get_height() - rect.get_height() height = rect.get_height() ax.annotate('- {:0.2f}%'.format(height_dif), xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), # 3 points vertical offset textcoords="offset points", ha='center', va='bottom') autolabel2(rects1, rects2) autolabel2(rects1, rects3) autolabel2(rects1, rects4) _=plt.show() #cen = [list(acc_dic.values())[0][24]*100,list(acc_dic2.values())[0][24]*100,list(acc_dic3.values())[0][24]*100] #fl1 = [list(acc_dic.values())[1][24]*100,list(acc_dic2.values())[1][24]*100,list(acc_dic3.values())[1][24]*100] #fl2 = [list(acc_dic.values())[2][24]*100,list(acc_dic2.values())[2][24]*100,list(acc_dic3.values())[2][24]*100] labels = ['ResNet34', 'Alexnet', 'LeNet'] #bar_plot_acc(labels, cen, fl1, fl2) # + def bar_plot_comumication(labels, cen, fl1, fl2, bsp_ideal=None): x = np.arange(len(labels)) # the label locations width = 0.2 #plt.figure(figsize=(10, 8)) #collist1 = [next_color(cm.get_cmap('tab10'), 0),] fig, ax = plt.subplots(figsize=(12, 8)) rects1 = ax.bar(x - width, cen, width, label='BSP',color=next_color(cm.get_cmap('Set1'), 1)) rects2 = ax.bar(x , fl1, width, label='FedAvg/FedProx with c=0.75',color=next_color(cm.get_cmap('Set1'), 2)) rects3 = ax.bar(x + width, fl2, width, label='FedAvg/FedProx with c=0.5',color=next_color(cm.get_cmap('Set1'), 3)) if bsp_ideal: rects1 = ax.bar(x - 2* width, bsp_ideal, width, label='BSP - Max Communication',color=next_color(cm.get_cmap('Set1'), 0)) # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('KiloBytes',fontsize=14) #ax.set_title('model communication cost on our dataset',fontsize=20) ax.set_xticks(x) ax.set_xticklabels(labels,fontsize=14) #ax.set_ylim() ax.set_axisbelow(True) ax.grid(axis='y',color=next_color(cm.get_cmap('gist_rainbow'),6), linestyle='dashed') ax.legend() #plt.ylim(top=.5e9) _=plt.show() ep = 1 cln = 8 btchnr = 1000 bsp_ideal = [222954*btchnr*2*80,17587*btchnr*2*50,83332*btchnr*2*80] bsp = [222954*2*cln*80,17587*2*cln*50,83332*cln*2*80,] #fl1 = [list(acc_dic.values())[1][24]*100,list(acc_dic2.values())[1][24]*100,list(acc_dic3.values())[1][24]*100] frackl = 6 fl2 = [222954*frackl*ep*2*100,17587*frackl*ep*2*50,83332*frackl*ep*2*100] frackl = 4 fl1 = [222954*frackl*ep*2*100,17587*frackl*ep*2*80, 83332*frackl*ep*2*100] labels = [ 'Alexnet', 'LeNet','ResNet34'] bar_plot_comumication(labels, bsp, fl2, fl1, bsp_ideal=bsp_ideal) bar_plot_comumication(labels, bsp, fl2, fl1) # + import pandas as pd df = pd.read_excel ('./multilabels/LandUse_Multilabeled.xlsx') df_label = np.array(df) image_perlabel = np.sum(df_label[:, 1:], axis=0) class_names = np.array(["airplane", "bare-soil", "buildings", "cars", "chaparral", "court", "dock", "field", "grass", "mobile-home", "pavement", "sand", "sea", "ship", "tanks", "trees", "water"]) x = np.arange(17) fig, ax = plt.subplots(figsize=(12, 6)) ax.set_axisbelow(True) ax.grid(axis='y',color='red', linestyle='dashed') plt.bar(x, image_perlabel) ax.set_ylabel('Image Number',fontsize=14) plt.xticks(x, class_names, rotation=60, fontsize = 14) plt.show() # + fig, ax = plt.subplots(2, 2, figsize=(25,15)) #fig.suptitle("Centralised and Federated Learning ALgorithms comparison with 8 clients and 40% skewness", fontsize=24) bsp_results ={"AlexNet" : np.genfromtxt('cfrac_results/BSP_CNN_alexnet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_22_02_22_27.csv',delimiter=',')[2,:], "LeNet" : np.genfromtxt('cfrac_results/BSP_CNN_lenet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_22_02_15_49.csv',delimiter=',')[2,:], "ResNet34" : np.genfromtxt('cfrac_results/BSP_CNN_resnet34_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_22_02_18_45.csv',delimiter=',')[2,:] } fedavg_results = { "AlexNet": np.genfromtxt('cfrac_results/FedAvg_CNN_alexnet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.5_bs_4_23_02_07_50.csv',delimiter=',')[2,:], "LeNet": np.genfromtxt('cfrac_results/FedAvg_CNN_lenet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.5_bs_4_22_02_18_03.csv',delimiter=',')[2,:], "ResNet34": np.genfromtxt('cfrac_results/FedAvg_CNN_resnet34_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.5_bs_4_22_02_23_38.csv',delimiter=',')[2,:] } fedprox_results = {"AlexNet": np.genfromtxt('FedProx_runs/FedProx_CNN_alexnet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_24_02_09_18.csv',delimiter=',')[2,:], "LeNet": np.genfromtxt('FedProx_runs/FedProx_CNN_lenet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_24_02_03_39.csv',delimiter=',')[2,:], "ResNet34": np.genfromtxt('FedProx_runs/FedProx_CNN_resnet34_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_24_02_07_17.csv',delimiter=',')[2,:]} centralised_results ={ "AlexNet": np.genfromtxt('centralised_runs/Centralised_CNN_alexnet_bs_4_epochs_100_01_03_17_42.csv',delimiter=',')[2,:], "LeNet": np.genfromtxt('centralised_runs/Centralised_CNN_lenet_bs_4_epochs_100_01_03_16_11.csv',delimiter=',')[2,:], "ResNet34": np.genfromtxt('centralised_runs/Centralised_CNN_resnet34_bs_4_epochs_100_01_03_17_06.csv',delimiter=',')[2,:]} restart_colors() plot_curves(bsp_results, ax[0][1], ' BSP', 0, 1, "F1 Score", axis_size = 18) restart_colors() plot_curves(fedavg_results, ax[1][0], 'FedAvg', 0, 1, "F1 Score", axis_size = 18) restart_colors() plot_curves(fedprox_results, ax[1][1], 'FedProx', 0, 1, "F1 Score", axis_size = 18) restart_colors() plot_curves(centralised_results, ax[0][0], 'Centralised', 0, 1, "F1 Score", axis_size = 18) # + fig, ax = plt.subplots(figsize=(25,15)) #fig.suptitle("Federated ALgorithms comparison with 8 clients and 40% skewness", fontsize=24) results ={ #"AlexNetBSP" : np.genfromtxt('cfrac_results/BSP_CNN_alexnet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_22_02_22_27.csv',delimiter=',')[2,:], #"LeNetBSP" : np.genfromtxt('cfrac_results/BSP_CNN_lenet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_22_02_15_49.csv',delimiter=',')[2,:], # "ResNet34BSP" : np.genfromtxt('cfrac_results/BSP_CNN_resnet34_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_22_02_18_45.csv',delimiter=',')[2,:], #"AlexNet_Centralised": np.genfromtxt('centralised_runs/Centralised_CNN_alexnet_bs_4_epochs_100_01_03_17_42.csv',delimiter=',')[2,:], "AlexNet_FedAvg": np.genfromtxt('cfrac_results/FedAvg_CNN_alexnet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.5_bs_4_23_02_07_50.csv',delimiter=',')[2,:], "AlexNet_FedProx": np.genfromtxt('FedProx_runs/FedProx_CNN_alexnet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_24_02_09_18.csv',delimiter=',')[2,:], #"LeNet_Centralised": np.genfromtxt('centralised_runs/Centralised_CNN_lenet_bs_4_epochs_100_01_03_16_11.csv',delimiter=',')[2,:], "LeNet_FedAvg": np.genfromtxt('cfrac_results/FedAvg_CNN_lenet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.5_bs_4_22_02_18_03.csv',delimiter=',')[2,:], "LeNet_FedProx": np.genfromtxt('FedProx_runs/FedProx_CNN_lenet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_24_02_03_39.csv',delimiter=',')[2,:], #"ResNet34_Centralised": np.genfromtxt('centralised_runs/Centralised_CNN_resnet34_bs_4_epochs_100_01_03_17_06.csv',delimiter=',')[2,:], "ResNet34_FedAvg": np.genfromtxt('cfrac_results/FedAvg_CNN_resnet34_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.5_bs_4_22_02_23_38.csv',delimiter=',')[2,:], "ResNet34_FedProx": np.genfromtxt('FedProx_runs/FedProx_CNN_resnet34_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_24_02_07_17.csv',delimiter=',')[2,:], } restart_colors() plot_curves(results, ax, ' ', 0, 1, "F1 Score",True,22,3,20) # + restart_colors() lenet_cfrac_results = {"0.5": np.genfromtxt('cfrac_results/FedAvg_CNN_lenet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.5_bs_4_22_02_18_03.csv',delimiter=',')[2,:], "0.75": np.genfromtxt('cfrac_results/FedAvg_CNN_lenet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_22_02_19_36.csv',delimiter=',')[2,:], "1": np.genfromtxt('cfrac_results/FedAvg_CNN_lenet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_1.0_bs_4_22_02_21_35.csv',delimiter=',')[2,:]} resnet_cfrac_results = {"0.5": np.genfromtxt('cfrac_results/FedAvg_CNN_resnet34_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.5_bs_4_22_02_23_38.csv',delimiter=',')[2,:], "0.75": np.genfromtxt('cfrac_results/FedAvg_CNN_resnet34_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_23_02_02_40.csv',delimiter=',')[2,:], "1": np.genfromtxt('cfrac_results/FedAvg_CNN_resnet34_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_1.0_bs_4_23_02_06_39.csv',delimiter=',')[2,:]} alexnet_cfrac_results = {"0.5": np.genfromtxt('cfrac_results/FedAvg_CNN_alexnet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.5_bs_4_23_02_07_50.csv',delimiter=',')[2,:], "0.75": np.genfromtxt('cfrac_results/FedAvg_CNN_alexnet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_23_02_09_37.csv',delimiter=',')[2,:], "1": np.genfromtxt('cfrac_results/FedAvg_CNN_alexnet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_1.0_bs_4_23_02_12_02.csv',delimiter=',')[2,:]} fig, ax = plt.subplots(3, 1, figsize=(12,16)) #fig.suptitle("FedAvg with 8 clients and 40% skewness with varying C_fraction", fontsize=24) plot_curves(lenet_cfrac_results,ax[1],'LeNet',0.0,1.0,"F1 Score", axis_size = 18) plot_curves(resnet_cfrac_results,ax[2],'ResNet',0.0,1.0, "F1 Score", axis_size = 18) plot_curves(alexnet_cfrac_results,ax[0],'AlexNet',0.0,1.0, "F1 Score", axis_size = 18) # + restart_colors() lenet_clients_results = {"10 clients": np.genfromtxt('nclients_results/FedAvg_CNN_lenet_clients_10_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.5_bs_4_23_02_15_38.csv',delimiter=',')[2,:], "25 clients": np.genfromtxt('nclients_results/FedAvg_CNN_lenet_clients_25_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.5_bs_4_23_02_16_36.csv',delimiter=',')[2,:], "50 clients": np.genfromtxt('nclients_results/FedAvg_CNN_lenet_clients_50_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.5_bs_4_23_02_17_35.csv',delimiter=',')[2,:],} resnet_clients_results = {"10 clients": np.genfromtxt('nclients_results/FedAvg_CNN_resnet34_clients_10_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.5_bs_4_23_02_19_39.csv',delimiter=',')[2,:], "25 clients": np.genfromtxt('nclients_results/FedAvg_CNN_resnet34_clients_25_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.5_bs_4_23_02_21_42.csv',delimiter=',')[2,:], "50 clients": np.genfromtxt('nclients_results/FedAvg_CNN_resnet34_clients_50_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.5_bs_4_23_02_23_48.csv',delimiter=',')[2,:],} alexnet_clients_results = {"10 clients": np.genfromtxt('nclients_results/FedAvg_CNN_alexnet_clients_10_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.5_bs_4_24_02_01_00.csv',delimiter=',')[2,:], "25 clients": np.genfromtxt('nclients_results/FedAvg_CNN_alexnet_clients_25_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.5_bs_4_24_02_02_10.csv',delimiter=',')[2,:], } fig, ax = plt.subplots(3, 1, figsize=(12,16)) #fig.suptitle("FedAvg with 8 clients and 40% skewness with varying number of clients", fontsize=24) plot_curves(lenet_clients_results,ax[1],'LeNet',0.0,1.0,"F1 Score", axis_size = 18) plot_curves(resnet_clients_results,ax[2],'ResNet',0.0,1.0, "F1 Score", axis_size = 18) plot_curves(alexnet_clients_results,ax[0],'AlexNet',0.0,1.0, "F1 Score", axis_size = 18) # + restart_colors() batch_size_comparision = {"1":np.genfromtxt('batchsize_results/FedAvg_CNN_lenet_clients_4_skew_40_smallskew_False_epochs_100_cepochs_5_cfrac_0.75_bs_1_26_02_01_27.csv',delimiter=',')[2,:], "4":np.genfromtxt('batchsize_results/FedAvg_CNN_lenet_clients_4_skew_40_smallskew_False_epochs_100_cepochs_5_cfrac_0.75_bs_4_26_02_15_25.csv',delimiter=',')[2,:], "8":np.genfromtxt('batchsize_results/FedAvg_CNN_lenet_clients_4_skew_40_smallskew_False_epochs_100_cepochs_5_cfrac_0.75_bs_8_25_02_23_02.csv',delimiter=',')[2,:], "16":np.genfromtxt('batchsize_results/FedAvg_CNN_lenet_clients_4_skew_40_smallskew_False_epochs_100_cepochs_5_cfrac_0.75_bs_16_25_02_21_49.csv',delimiter=',')[2,:], "32":np.genfromtxt('batchsize_results/FedAvg_CNN_lenet_clients_4_skew_40_smallskew_False_epochs_100_cepochs_5_cfrac_0.75_bs_32_25_02_20_41.csv',delimiter=',')[2,:], "64":np.genfromtxt('batchsize_results/FedAvg_CNN_lenet_clients_4_skew_40_smallskew_False_epochs_100_cepochs_5_cfrac_0.75_bs_64_25_02_19_24.csv',delimiter=',')[2,:], "128":np.genfromtxt('batchsize_results/FedAvg_CNN_lenet_clients_4_skew_40_smallskew_False_epochs_100_cepochs_5_cfrac_0.75_bs_128_26_02_12_42.csv',delimiter=',')[2,:], "256":np.genfromtxt('batchsize_results/FedAvg_CNN_lenet_clients_4_skew_40_smallskew_False_epochs_100_cepochs_5_cfrac_0.75_bs_256_26_02_13_50.csv',delimiter=',')[2,:],} fig, ax = plt.subplots(figsize=(15,10)) #fig.suptitle("FedAvg with 4 clients and 40% skewness with varying batch size", fontsize=24) plot_curves(batch_size_comparision,ax,'LeNet',0.0,1.0,"F1 Score", axis_size = 18) # + x = np.arange(8) # the label locations width = 0.5 #plt.figure(figsize=(10, 8)) fig, ax = plt.subplots(figsize=(12,8)) rects1 = ax.bar(x, [150,100,75,56,57,71,74,78], width, label='FedAvg for LeNet',color=next_color(cm.get_cmap('gist_rainbow'), 3)) ax.set_ylabel('Runtime (in mins)',fontsize=14) #ax.set_title('Run Time for Different Batch Sizes',fontsize=20) ax.set_xlabel('Batch Size',fontsize=14) ax.set_xticks(x) ax.set_axisbelow(True) ax.grid(axis='y',color='red', linestyle='dashed') ax.set_xticklabels(["1","4","8","16","32","64","128","256"],fontsize=14) ax.legend() _=plt.show() # + restart_colors() lenet_skewness_results = {"0 % (IID)": np.genfromtxt('large_skewness_results/FedAvg_CNN_lenet_clients_4_skew_0_smallskew_False_epochs_100_cepochs_5_cfrac_0.75_bs_4_26_02_22_39.csv',delimiter=',')[2,:], "20 %": np.genfromtxt('large_skewness_results/FedAvg_CNN_lenet_clients_4_skew_20_smallskew_False_epochs_100_cepochs_5_cfrac_0.75_bs_4_25_02_17_13.csv',delimiter=',')[2,:], "40 %": np.genfromtxt('large_skewness_results/FedAvg_CNN_lenet_clients_4_skew_40_smallskew_False_epochs_100_cepochs_5_cfrac_0.75_bs_4_23_02_20_11.csv',delimiter=',')[2,:], #"LENET_60": np.genfromtxt('skewness_runs/FedAvg_CNN_lenet_clients_4_skew_60_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_28_02_03_07.csv',delimiter=',')[2,:], #"LENET_80": np.genfromtxt('skewness_runs/FedAvg_CNN_lenet_clients_4_skew_80_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_28_02_04_31.csv',delimiter=',')[2,:], } resnet_skewness_results = {"0 % (IID)": np.genfromtxt('large_skewness_results/FedAvg_CNN_resnet34_clients_4_skew_0_smallskew_False_epochs_100_cepochs_5_cfrac_0.75_bs_4_26_02_21_14.csv',delimiter=',')[2,:], "20 %": np.genfromtxt('large_skewness_results/FedAvg_CNN_resnet34_clients_4_skew_20_smallskew_False_epochs_100_cepochs_5_cfrac_0.75_bs_4_26_02_02_32.csv',delimiter=',')[2,:], "40 %": np.genfromtxt('large_skewness_results/FedAvg_CNN_resnet34_clients_4_skew_40_smallskew_False_epochs_100_cepochs_5_cfrac_0.75_bs_4_24_02_04_45.csv',delimiter=',')[2,:], #"RESNET_60": np.genfromtxt('skewness_runs/FedAvg_CNN_resnet34_clients_4_skew_60_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_27_02_22_41.csv',delimiter=',')[2,:], #"RESNET_80": np.genfromtxt('skewness_runs/FedAvg_CNN_resnet34_clients_4_skew_80_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_28_02_01_42.csv',delimiter=',')[2,:], } alexnet_skewness_results = {"0 % (IID)": np.genfromtxt('large_skewness_results/FedAvg_CNN_alexnet_clients_4_skew_0_smallskew_False_epochs_100_cepochs_5_cfrac_0.75_bs_4_27_02_00_25.csv',delimiter=',')[2,:], "20 %": np.genfromtxt('large_skewness_results/FedAvg_CNN_alexnet_clients_4_skew_20_smallskew_False_epochs_100_cepochs_5_cfrac_0.75_bs_4_27_02_02_12.csv',delimiter=',')[2,:], "40 %": np.genfromtxt('large_skewness_results/FedAvg_CNN_alexnet_clients_4_skew_40_smallskew_False_epochs_100_cepochs_5_cfrac_0.75_bs_4_24_02_17_52.csv',delimiter=',')[2,:], #"ALEXNET_60": np.genfromtxt('skewness_runs/FedAvg_CNN_alexnet_clients_4_skew_60_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_28_02_06_17.csv',delimiter=',')[2,:], #"ALEXNET_80": np.genfromtxt('skewness_runs/FedAvg_CNN_alexnet_clients_4_skew_80_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_28_02_08_04.csv',delimiter=',')[2,:], } fig, ax = plt.subplots(3, 1, figsize=(12,16)) #fig.suptitle("FedAvg with 4 clients with varying amount of data skew % on common label", fontsize=24) plot_curves(lenet_skewness_results,ax[1],'LeNet',0,1,"F1 Score", axis_size = 18) plot_curves(resnet_skewness_results,ax[2],'ResNet',0,1, "F1 Score", axis_size = 18) plot_curves(alexnet_skewness_results,ax[0],'AlexNet',0,1, "F1 Score", axis_size = 18) # + restart_colors() lenet_skewness_results = { "40 %": np.genfromtxt('cfrac_results/FedAvg_CNN_lenet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_22_02_19_36.csv',delimiter=',')[2,:], "60 %": np.genfromtxt('large_skewness_results/FedAvg_CNN_lenet_clients_8_skew_60_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_02_03_05_13.csv',delimiter=',')[2,:], "80 %": np.genfromtxt('large_skewness_results/FedAvg_CNN_lenet_clients_8_skew_80_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_02_03_06_39.csv',delimiter=',')[2,:], } resnet_skewness_results = { "40 %": np.genfromtxt('cfrac_results/FedAvg_CNN_resnet34_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_23_02_02_40.csv',delimiter=',')[2,:], "60 %": np.genfromtxt('large_skewness_results/FedAvg_CNN_resnet34_clients_8_skew_60_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_02_03_00_39.csv',delimiter=',')[2,:], "80 %": np.genfromtxt('large_skewness_results/FedAvg_CNN_resnet34_clients_8_skew_80_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_02_03_03_46.csv',delimiter=',')[2,:], } alexnet_skewness_results = { "40 %": np.genfromtxt('cfrac_results/FedAvg_CNN_alexnet_clients_8_skew_40_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_23_02_09_37.csv',delimiter=',')[2,:], "60 %": np.genfromtxt('large_skewness_results/FedAvg_CNN_alexnet_clients_8_skew_60_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_02_03_08_28.csv',delimiter=',')[2,:], "80 %": np.genfromtxt('large_skewness_results/FedAvg_CNN_alexnet_clients_8_skew_80_smallskew_True_epochs_100_cepochs_5_cfrac_0.75_bs_4_02_03_10_18.csv',delimiter=',')[2,:], } fig, ax = plt.subplots(3, 1, figsize=(12,16)) #fig.suptitle("FedAvg with 8 clients with varying high amount of data skew % on less common label", fontsize=24) plot_curves(lenet_skewness_results,ax[1],'LeNet',0,1,"F1 Score", axis_size = 18) plot_curves(resnet_skewness_results,ax[2],'ResNet',0,1, "F1 Score", axis_size = 18) plot_curves(alexnet_skewness_results,ax[0],'AlexNet',0,1, "F1 Score", axis_size = 18) # + cen = np.array([0.902,0.9475,0.938])*100 fl1 = np.array([0.824,0.924,0.911])*100 fl2 = np.array([0.809,0.9217,0.887])*100 fl3 = np.array([0.804,0.903,0.891])*100 labels = ['Alexnet', 'LeNet','ResNet34' ] bar_plot_acc(labels, cen, fl1, fl2, fl3) # -
26,246
/Preprocess/rating.ipynb
037b5f2f1996980d2d506f94cd9d20e2816033ac
[]
no_license
parkchanghyup/2020bigcontest
https://github.com/parkchanghyup/2020bigcontest
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
30,656
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ # --- ํ‰๊ฐ€๋ฐ์ดํ„ฐ = pd.read_excel ('ํ‰๊ฐ€๋ฐ์ดํ„ฐ.xlsx') ํ‰๊ฐ€๋ฐ์ดํ„ฐ.head() nan = list(np.where(ํ‰๊ฐ€๋ฐ์ดํ„ฐ['๋…ธ์ถœ(๋ถ„)'].isna())[0]) for i in nan: ํ‰๊ฐ€๋ฐ์ดํ„ฐ.iloc[i,1] = int(ํ‰๊ฐ€๋ฐ์ดํ„ฐ.iloc[i-1,1]) ํ‰๊ฐ€๋ฐ์ดํ„ฐ.head() ํ‰๊ฐ€๋ฐ์ดํ„ฐ = ํ‰๊ฐ€๋ฐ์ดํ„ฐ[ํ‰๊ฐ€๋ฐ์ดํ„ฐ['์ƒํ’ˆ๊ตฐ']!='๋ฌดํ˜•'] ํ‰๊ฐ€๋ฐ์ดํ„ฐ.reset_index(drop=True,inplace=True) # ### ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ์— ์ƒˆ๋กœ์šด ์ปฌ๋Ÿผ ์ถ”๊ฐ€ # --- # + # ํŒ๋งค ๋‹จ๊ฐ€ ๋ฒ”์œ„ํ˜• ์ปฌ๋Ÿผ def get_str(num): if num<50000: return '5๋งŒ์›์ดํ•˜' elif num < 100000: return '10๋งŒ์›์ดํ•˜' elif num <300000: return '30๋งŒ์›์ดํ•˜' elif num <500000: return '50๋งŒ์›์ดํ•˜' elif num <1000000: return '100๋งŒ์›์ดํ•˜' else : return '100๋งŒ์›์ด์ƒ' ํŒ๋งค๋‹จ๊ฐ€๋ฒ”์œ„ = [ get_str(x) for x in ํ‰๊ฐ€๋ฐ์ดํ„ฐ['ํŒ๋งค๋‹จ๊ฐ€'] ] ํ‰๊ฐ€๋ฐ์ดํ„ฐ['ํŒ๋งค๋‹จ๊ฐ€๋ฒ”์œ„'] = ํŒ๋งค๋‹จ๊ฐ€๋ฒ”์œ„ # - ํ‰๊ฐ€๋ฐ์ดํ„ฐ.head() def get_time(n): ๋ช‡์‹œ = str(ํ‰๊ฐ€๋ฐ์ดํ„ฐ['๋ฐฉ์†ก์ผ์‹œ'][n])[11:13] ๋ฌด์Šจ์š”์ผ = datetime.date(int(str(ํ‰๊ฐ€๋ฐ์ดํ„ฐ['๋ฐฉ์†ก์ผ์‹œ'][n])[:4]),int(str(ํ‰๊ฐ€๋ฐ์ดํ„ฐ['๋ฐฉ์†ก์ผ์‹œ'][n])[5:7]),int(str(ํ‰๊ฐ€๋ฐ์ดํ„ฐ['๋ฐฉ์†ก์ผ์‹œ'][n])[8:10])).strftime('%A') time = [๋ช‡์‹œ, ๋ฌด์Šจ์š”์ผ] return time ํ‰๊ฐ€๋ฐ์ดํ„ฐ.reset_index(drop=True,inplace=True) ํ‰๊ฐ€๋ฐ์ดํ„ฐ.head() # + import datetime def get_time(n): ๋ช‡์‹œ = str(ํ‰๊ฐ€๋ฐ์ดํ„ฐ['๋ฐฉ์†ก์ผ์‹œ'][n])[11:13] ๋ฌด์Šจ์š”์ผ = datetime.date(int(str(ํ‰๊ฐ€๋ฐ์ดํ„ฐ['๋ฐฉ์†ก์ผ์‹œ'][n])[:4]),int(str(ํ‰๊ฐ€๋ฐ์ดํ„ฐ['๋ฐฉ์†ก์ผ์‹œ'][n])[5:7]),int(str(ํ‰๊ฐ€๋ฐ์ดํ„ฐ['๋ฐฉ์†ก์ผ์‹œ'][n])[8:10])).strftime('%A') time = [๋ช‡์‹œ, ๋ฌด์Šจ์š”์ผ] return time ๋ช‡์‹œ =[] ๋ฌด์Šจ์š”์ผ = [] for i in range(len(ํ‰๊ฐ€๋ฐ์ดํ„ฐ)): time = get_time(i) ๋ช‡์‹œ.append(time[0]) ๋ฌด์Šจ์š”์ผ.append(time[1]) ํ‰๊ฐ€๋ฐ์ดํ„ฐ['๋ช‡์‹œ']= ๋ช‡์‹œ ํ‰๊ฐ€๋ฐ์ดํ„ฐ['๋ฌด์Šจ์š”์ผ']=๋ฌด์Šจ์š”์ผ ํ‰๊ฐ€๋ฐ์ดํ„ฐ.head() # - ํ‰๊ฐ€_์ „์ฒ˜๋ฆฌ = ํ‰๊ฐ€๋ฐ์ดํ„ฐ[['๋…ธ์ถœ(๋ถ„)','์ƒํ’ˆ๊ตฐ','ํŒ๋งค๋‹จ๊ฐ€๋ฒ”์œ„','๋ช‡์‹œ','๋ฌด์Šจ์š”์ผ']] ํ‰๊ฐ€_์ „์ฒ˜๋ฆฌ.head() # ### ์›ํ•ซ์ธ์ฝ”๋”ฉ # + ํ‰๊ฐ€_์ „์ฒ˜๋ฆฌ = pd.get_dummies(ํ‰๊ฐ€_์ „์ฒ˜๋ฆฌ) ํ‰๊ฐ€_์ „์ฒ˜๋ฆฌ.info() # - # ### ์•ž์„œ ๊ฐœ๋ฐœํ•œ ์‹œ์ฒญ๋ฅ  ์˜ˆ์ธก ํšŒ๊ท€ ๋ชจ๋ธ๋กœ ์‹œ์ฒญ๋ฅ  ์˜ˆ์ธก # --- ์‹œ์ฒญ๋ฅ ํ‰๊ท  = list(ridge_reg.predict(np.array(ํ‰๊ฐ€_์ „์ฒ˜๋ฆฌ ))) ํ‰๊ฐ€๋ฐ์ดํ„ฐ['์‹œ์ฒญ๋ฅ ํ‰๊ท ']=์‹œ์ฒญ๋ฅ ํ‰๊ท  ํ‰๊ฐ€๋ฐ์ดํ„ฐ.to_csv('ํ‰๊ฐ€.csv',index=False) ํ‰๊ฐ€๋ฐ์ดํ„ฐ = pd.read_csv('ํ‰๊ฐ€.csv')
1,994
/03_classification.ipynb
55076439ba94fe886ef27dbead706f8a184a4412
[ "Apache-2.0" ]
permissive
wangruinju/handson-ml
https://github.com/wangruinju/handson-ml
0
1
null
2017-08-25T20:27:10
2017-08-25T18:00:49
null
Jupyter Notebook
false
false
.py
351,808
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python [default] # language: python # name: python3 # --- # **Chapter 3 โ€“ Classification** # # _This notebook contains all the sample code and solutions to the exercices in chapter 3._ # # Setup # First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures: # + # To support both python 2 and python 3 from __future__ import division, print_function, unicode_literals # Common imports import numpy as np import os # to make this notebook's output stable across runs np.random.seed(42) # To plot pretty figures # %matplotlib inline import matplotlib import matplotlib.pyplot as plt plt.rcParams['axes.labelsize'] = 14 plt.rcParams['xtick.labelsize'] = 12 plt.rcParams['ytick.labelsize'] = 12 # Where to save the figures PROJECT_ROOT_DIR = "." CHAPTER_ID = "classification" def save_fig(fig_id, tight_layout=True): path = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID, fig_id + ".png") print("Saving figure", fig_id) if tight_layout: plt.tight_layout() plt.savefig(path, format='png', dpi=300) # - # # MNIST from sklearn.datasets import fetch_mldata mnist = fetch_mldata('MNIST original') mnist X, y = mnist["data"], mnist["target"] X.shape y.shape 28*28 # + # %matplotlib inline import matplotlib import matplotlib.pyplot as plt some_digit = X[36000] some_digit_image = some_digit.reshape(28, 28) plt.imshow(some_digit_image, cmap = matplotlib.cm.binary, interpolation="nearest") plt.axis("off") save_fig("some_digit_plot") plt.show() # - def plot_digit(data): image = data.reshape(28, 28) plt.imshow(image, cmap = matplotlib.cm.binary, interpolation="nearest") plt.axis("off") # EXTRA def plot_digits(instances, images_per_row=10, **options): size = 28 images_per_row = min(len(instances), images_per_row) images = [instance.reshape(size,size) for instance in instances] n_rows = (len(instances) - 1) // images_per_row + 1 row_images = [] n_empty = n_rows * images_per_row - len(instances) images.append(np.zeros((size, size * n_empty))) for row in range(n_rows): rimages = images[row * images_per_row : (row + 1) * images_per_row] row_images.append(np.concatenate(rimages, axis=1)) image = np.concatenate(row_images, axis=0) plt.imshow(image, cmap = matplotlib.cm.binary, **options) plt.axis("off") plt.figure(figsize=(9,9)) example_images = np.r_[X[:12000:600], X[13000:30600:600], X[30600:60000:590]] plot_digits(example_images, images_per_row=10) save_fig("more_digits_plot") plt.show() y[36000] X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:] # + import numpy as np shuffle_index = np.random.permutation(60000) X_train, y_train = X_train[shuffle_index], y_train[shuffle_index] # - # # Binary classifier y_train_5 = (y_train == 5) y_test_5 = (y_test == 5) # + from sklearn.linear_model import SGDClassifier sgd_clf = SGDClassifier(random_state=42) sgd_clf.fit(X_train, y_train_5) # - sgd_clf.predict([some_digit]) from sklearn.model_selection import cross_val_score cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy") # + from sklearn.model_selection import StratifiedKFold from sklearn.base import clone skfolds = StratifiedKFold(n_splits=3, random_state=42) for train_index, test_index in skfolds.split(X_train, y_train_5): clone_clf = clone(sgd_clf) X_train_folds = X_train[train_index] y_train_folds = (y_train_5[train_index]) X_test_fold = X_train[test_index] y_test_fold = (y_train_5[test_index]) clone_clf.fit(X_train_folds, y_train_folds) y_pred = clone_clf.predict(X_test_fold) n_correct = sum(y_pred == y_test_fold) print(n_correct / len(y_pred)) # - from sklearn.base import BaseEstimator class Never5Classifier(BaseEstimator): def fit(self, X, y=None): pass def predict(self, X): return np.zeros((len(X), 1), dtype=bool) never_5_clf = Never5Classifier() cross_val_score(never_5_clf, X_train, y_train_5, cv=3, scoring="accuracy") # + from sklearn.model_selection import cross_val_predict y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3) # + from sklearn.metrics import confusion_matrix confusion_matrix(y_train_5, y_train_pred) # - y_train_perfect_predictions = y_train_5 confusion_matrix(y_train_5, y_train_perfect_predictions) # + from sklearn.metrics import precision_score, recall_score precision_score(y_train_5, y_train_pred) # - 4344 / (4344 + 1307) recall_score(y_train_5, y_train_pred) 4344 / (4344 + 1077) from sklearn.metrics import f1_score f1_score(y_train_5, y_train_pred) 4344 / (4344 + (1077 + 1307)/2) y_scores = sgd_clf.decision_function([some_digit]) y_scores threshold = 0 y_some_digit_pred = (y_scores > threshold) y_some_digit_pred threshold = 200000 y_some_digit_pred = (y_scores > threshold) y_some_digit_pred y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3, method="decision_function") y_scores = y_scores[:,1] # + from sklearn.metrics import precision_recall_curve precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores) # + def plot_precision_recall_vs_threshold(precisions, recalls, thresholds): plt.plot(thresholds, precisions[:-1], "b--", label="Precision", linewidth=2) plt.plot(thresholds, recalls[:-1], "g-", label="Recall", linewidth=2) plt.xlabel("Threshold", fontsize=16) plt.legend(loc="upper left", fontsize=16) plt.ylim([0, 1]) plt.figure(figsize=(8, 4)) plot_precision_recall_vs_threshold(precisions, recalls, thresholds) plt.xlim([-700000, 700000]) save_fig("precision_recall_vs_threshold_plot") plt.show() # - (y_train_pred == (y_scores > 0)).all() y_train_pred_90 = (y_scores > 70000) precision_score(y_train_5, y_train_pred_90) recall_score(y_train_5, y_train_pred_90) # + def plot_precision_vs_recall(precisions, recalls): plt.plot(recalls, precisions, "b-", linewidth=2) plt.xlabel("Recall", fontsize=16) plt.ylabel("Precision", fontsize=16) plt.axis([0, 1, 0, 1]) plt.figure(figsize=(8, 6)) plot_precision_vs_recall(precisions, recalls) save_fig("precision_vs_recall_plot") plt.show() # - # # ROC curves # + from sklearn.metrics import roc_curve fpr, tpr, thresholds = roc_curve(y_train_5, y_scores) # + def plot_roc_curve(fpr, tpr, label=None): plt.plot(fpr, tpr, linewidth=2, label=label) plt.plot([0, 1], [0, 1], 'k--') plt.axis([0, 1, 0, 1]) plt.xlabel('False Positive Rate', fontsize=16) plt.ylabel('True Positive Rate', fontsize=16) plt.figure(figsize=(8, 6)) plot_roc_curve(fpr, tpr) save_fig("roc_curve_plot") plt.show() # + from sklearn.metrics import roc_auc_score roc_auc_score(y_train_5, y_scores) # - from sklearn.ensemble import RandomForestClassifier forest_clf = RandomForestClassifier(random_state=42) y_probas_forest = cross_val_predict(forest_clf, X_train, y_train_5, cv=3, method="predict_proba") y_scores_forest = y_probas_forest[:, 1] # score = proba of positive class fpr_forest, tpr_forest, thresholds_forest = roc_curve(y_train_5,y_scores_forest) plt.figure(figsize=(8, 6)) plt.plot(fpr, tpr, "b:", linewidth=2, label="SGD") plot_roc_curve(fpr_forest, tpr_forest, "Random Forest") plt.legend(loc="lower right", fontsize=16) save_fig("roc_curve_comparison_plot") plt.show() roc_auc_score(y_train_5, y_scores_forest) y_train_pred_forest = cross_val_predict(forest_clf, X_train, y_train_5, cv=3) precision_score(y_train_5, y_train_pred_forest) recall_score(y_train_5, y_train_pred_forest) # # Multiclass classification sgd_clf.fit(X_train, y_train) sgd_clf.predict([some_digit]) some_digit_scores = sgd_clf.decision_function([some_digit]) some_digit_scores np.argmax(some_digit_scores) sgd_clf.classes_ sgd_clf.classes_[5] from sklearn.multiclass import OneVsOneClassifier ovo_clf = OneVsOneClassifier(SGDClassifier(random_state=42)) ovo_clf.fit(X_train, y_train) ovo_clf.predict([some_digit]) len(ovo_clf.estimators_) forest_clf.fit(X_train, y_train) forest_clf.predict([some_digit]) forest_clf.predict_proba([some_digit]) cross_val_score(sgd_clf, X_train, y_train, cv=3, scoring="accuracy") from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train.astype(np.float64)) cross_val_score(sgd_clf, X_train_scaled, y_train, cv=3, scoring="accuracy") y_train_pred = cross_val_predict(sgd_clf, X_train_scaled, y_train, cv=3) conf_mx = confusion_matrix(y_train, y_train_pred) conf_mx def plot_confusion_matrix(matrix): """If you prefer color and a colorbar""" fig = plt.figure(figsize=(8,8)) ax = fig.add_subplot(111) cax = ax.matshow(matrix) fig.colorbar(cax) plt.matshow(conf_mx, cmap=plt.cm.gray) save_fig("confusion_matrix_plot", tight_layout=False) plt.show() row_sums = conf_mx.sum(axis=1, keepdims=True) norm_conf_mx = conf_mx / row_sums np.fill_diagonal(norm_conf_mx, 0) plt.matshow(norm_conf_mx, cmap=plt.cm.gray) save_fig("confusion_matrix_errors_plot", tight_layout=False) plt.show() # + cl_a, cl_b = 3, 5 X_aa = X_train[(y_train == cl_a) & (y_train_pred == cl_a)] X_ab = X_train[(y_train == cl_a) & (y_train_pred == cl_b)] X_ba = X_train[(y_train == cl_b) & (y_train_pred == cl_a)] X_bb = X_train[(y_train == cl_b) & (y_train_pred == cl_b)] plt.figure(figsize=(8,8)) plt.subplot(221); plot_digits(X_aa[:25], images_per_row=5) plt.subplot(222); plot_digits(X_ab[:25], images_per_row=5) plt.subplot(223); plot_digits(X_ba[:25], images_per_row=5) plt.subplot(224); plot_digits(X_bb[:25], images_per_row=5) save_fig("error_analysis_digits_plot") plt.show() # - # # Multilabel classification # + from sklearn.neighbors import KNeighborsClassifier y_train_large = (y_train >= 7) y_train_odd = (y_train % 2 == 1) y_multilabel = np.c_[y_train_large, y_train_odd] knn_clf = KNeighborsClassifier() knn_clf.fit(X_train, y_multilabel) # - knn_clf.predict([some_digit]) y_train_knn_pred = cross_val_predict(knn_clf, X_train, y_multilabel, cv=3) f1_score(y_multilabel, y_train_knn_pred, average="macro") # # Multioutput classification noise = np.random.randint(0, 100, (len(X_train), 784)) X_train_mod = X_train + noise noise = np.random.randint(0, 100, (len(X_test), 784)) X_test_mod = X_test + noise y_train_mod = X_train y_test_mod = X_test some_index = 5500 plt.subplot(121); plot_digit(X_test_mod[some_index]) plt.subplot(122); plot_digit(y_test_mod[some_index]) save_fig("noisy_digit_example_plot") plt.show() knn_clf.fit(X_train_mod, y_train_mod) clean_digit = knn_clf.predict([X_test_mod[some_index]]) plot_digit(clean_digit) save_fig("cleaned_digit_example_plot") # # Extra material # ## Dummy (ie. random) classifier from sklearn.dummy import DummyClassifier dmy_clf = DummyClassifier() y_probas_dmy = cross_val_predict(dmy_clf, X_train, y_train_5, cv=3, method="predict_proba") y_scores_dmy = y_probas_dmy[:, 1] fprr, tprr, thresholdsr = roc_curve(y_train_5, y_scores_dmy) plot_roc_curve(fprr, tprr) # ## KNN classifier from sklearn.neighbors import KNeighborsClassifier knn_clf = KNeighborsClassifier(n_jobs=-1, weights='distance', n_neighbors=4) knn_clf.fit(X_train, y_train) y_knn_pred = knn_clf.predict(X_test) from sklearn.metrics import accuracy_score accuracy_score(y_test, y_knn_pred) # + from scipy.ndimage.interpolation import shift def shift_digit(digit_array, dx, dy, new=0): return shift(digit_array.reshape(28, 28), [dy, dx], cval=new).reshape(784) plot_digit(shift_digit(some_digit, 5, 1, new=100)) # + X_train_expanded = [X_train] y_train_expanded = [y_train] for dx, dy in ((1, 0), (-1, 0), (0, 1), (0, -1)): shifted_images = np.apply_along_axis(shift_digit, axis=1, arr=X_train, dx=dx, dy=dy) X_train_expanded.append(shifted_images) y_train_expanded.append(y_train) X_train_expanded = np.concatenate(X_train_expanded) y_train_expanded = np.concatenate(y_train_expanded) X_train_expanded.shape, y_train_expanded.shape # - knn_clf.fit(X_train_expanded, y_train_expanded) y_knn_expanded_pred = knn_clf.predict(X_test) accuracy_score(y_test, y_knn_expanded_pred) ambiguous_digit = X_test[2589] knn_clf.predict_proba([ambiguous_digit]) plot_digit(ambiguous_digit) # # Exercise solutions # **Coming soon**
12,595
/optional/ml_foundation/04 Training and Testing Data.ipynb
093b5d8216e6a513eacf7780363bb95c8b4bf329
[]
no_license
ifishlin/sprintdeeplearning
https://github.com/ifishlin/sprintdeeplearning
2
2
null
null
null
null
Jupyter Notebook
false
false
.py
9,050
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python [tensorflow] # language: python # name: Python [tensorflow] # --- # %load_ext watermark # %watermark -d -u -a 'Andreas Mueller, Kyle Kastner, Sebastian Raschka' -v -p numpy,scipy,matplotlib # %matplotlib inline import matplotlib.pyplot as plt import numpy as np # # SciPy 2016 Scikit-learn Tutorial # Training and Testing Data # ===================================== # # To evaluate how well our supervised models generalize, we can split our data into a training and a test set: # # <img src="figures/train_test_split_matrix.svg" width="100%"> # + from sklearn.datasets import load_iris from sklearn.neighbors import KNeighborsClassifier iris = load_iris() X, y = iris.data, iris.target classifier = KNeighborsClassifier() # - # Thinking about how machine learning is normally performed, the idea of a train/test split makes sense. Real world systems train on the data they have, and as other data comes in (from customers, sensors, or other sources) the classifier that was trained must predict on fundamentally *new* data. We can simulate this during training using a train/test split - the test data is a simulation of "future data" which will come into the system during production. # # Specifically for iris, the 150 labels in iris are sorted, which means that if we split the data using a proportional split, this will result in fudamentally altered class distributions. For instance, if we'd perform a common 2/3 training data and 1/3 test data split, our training dataset will only consists of flower classes 0 and 1 (Setosa and Versicolor), and our test set will only contain samples with class label 2 (Virginica flowers). # # Under the assumption that all samples are independent of each other (in contrast time series data), we want to **randomly shuffle the dataset before we split the dataset** as illustrated above. y # Now we need to split the data into training and testing. Luckily, this is a common pattern in machine learning and scikit-learn has a pre-built function to split data into training and testing sets for you. Here, we use 50% of the data as training, and 50% testing. 80% and 20% is another common split, but there are no hard and fast rules. The most important thing is to fairly evaluate your system on data it *has not* seen during training! # + from sklearn.cross_validation import train_test_split train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.5, random_state=123) print("Labels for training and testing data") print(train_y) print(test_y) # - # --- # **Tip: Stratified Split** # # Especially for relatively small datasets, it's better to stratify the split. Stratification means that we maintain the original class proportion of the dataset in the test and training sets. For example, after we randomly split the dataset as shown in the previous code example, we have the following class proportions in percent: print('All:', np.bincount(y) / float(len(y)) * 100.0) print('Training:', np.bincount(train_y) / float(len(train_y)) * 100.0) print('Test:', np.bincount(test_y) / float(len(test_y)) * 100.0) # So, in order to stratify the split, we can pass the label array as an additional option to the `train_test_split` function: # + train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.5, random_state=123, stratify=y) print('All:', np.bincount(y) / float(len(y)) * 100.0) print('Training:', np.bincount(train_y) / float(len(train_y)) * 100.0) print('Test:', np.bincount(test_y) / float(len(test_y)) * 100.0) # - # --- # By evaluating our classifier performance on data that has been seen during training, we could get false confidence in the predictive power of our model. In the worst case, it may simply memorize the training samples but completely fails classifying new, similar samples -- we really don't want to put such a system into production! # # Instead of using the same dataset for training and testing (this is called "resubstitution evaluation"), it is much much better to use a train/test split in order to estimate how well your trained model is doing on new data. # + classifier.fit(train_X, train_y) pred_y = classifier.predict(test_X) print("Fraction Correct [Accuracy]:") print(np.sum(pred_y == test_y) / float(len(test_y))) # - # We can also visualize the correct and failed predictions # + print('Samples correctly classified:') correct_idx = np.where(pred_y == test_y)[0] print(correct_idx) print('\nSamples incorrectly classified:') incorrect_idx = np.where(pred_y != test_y)[0] print(incorrect_idx) # - print('Predicted label of sample 23 ->', pred_y[23]) print('True label of sample 23 ->', test_y[23]) # + # Plot two dimensions colors = ["darkblue", "darkgreen", "gray"] for n, color in enumerate(colors): idx = np.where(test_y == n)[0] plt.scatter(test_X[idx, 0], test_X[idx, 1], color=color, label="Class %s" % str(n)) plt.scatter(test_X[incorrect_idx, 0], test_X[incorrect_idx, 1], color="darkred") # Make xlim larger to accommodate legend plt.xlim(3, 9) plt.legend(loc=3) plt.title("Iris Classification results") plt.show() # - # We can see that the errors occur in the area where green (class 1) and gray (class 2) overlap. This gives us insight about what features to add - any feature which helps separate class 1 and class 2 should improve classifier performance.
5,814
/ud120-projects-master/svm/Mini-Project2.ipynb
59dba00d6f4365c527d2f12cc327793f6da4fd91
[]
no_license
alitabet/Udacity-Introduction-to-Machine-Learning
https://github.com/alitabet/Udacity-Introduction-to-Machine-Learning
1
0
null
null
null
null
Jupyter Notebook
false
false
.py
11,126
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 2 # language: python # name: python2 # --- # ## Mini-Project 2 # %run svm_author_id.py # %run svm_author_id.py # + # # %load ../tools/email_preprocess # #!/usr/bin/python import pickle import cPickle import numpy from sklearn import cross_validation from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_selection import SelectPercentile, f_classif def preprocess(words_file = "../tools/word_data.pkl", authors_file="../tools/email_authors.pkl"): """ this function takes a pre-made list of email texts (by default word_data.pkl) and the corresponding authors (by default email_authors.pkl) and performs a number of preprocessing steps: -- splits into training/testing sets (10% testing) -- vectorizes into tfidf matrix -- selects/keeps most helpful features after this, the feaures and labels are put into numpy arrays, which play nice with sklearn functions 4 objects are returned: -- training/testing features -- training/testing labels """ ### the words (features) and authors (labels), already largely preprocessed ### this preprocessing will be repeated in the text learning mini-project authors_file_handler = open(authors_file, "r") authors = pickle.load(authors_file_handler) authors_file_handler.close() words_file_handler = open(words_file, "r") word_data = cPickle.load(words_file_handler) words_file_handler.close() ### test_size is the percentage of events assigned to the test set (remainder go into training) features_train, features_test, labels_train, labels_test = cross_validation.train_test_split(word_data, authors, test_size=0.1, random_state=42) ### text vectorization--go from strings to lists of numbers vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5, stop_words='english') features_train_transformed = vectorizer.fit_transform(features_train) features_test_transformed = vectorizer.transform(features_test) ### feature selection, because text is super high dimensional and ### can be really computationally chewy as a result selector = SelectPercentile(f_classif, percentile=10) selector.fit(features_train_transformed, labels_train) features_train_transformed = selector.transform(features_train_transformed).toarray() features_test_transformed = selector.transform(features_test_transformed).toarray() ### info on the data print "no. of Chris training emails:", sum(labels_train) print "no. of Sara training emails:", len(labels_train)-sum(labels_train) return features_train_transformed, features_test_transformed, labels_train, labels_test # + # # %load svm_author_id.py # #!/usr/bin/python """ this is the code to accompany the Lesson 2 (SVM) mini-project use an SVM to identify emails from the Enron corpus by their authors Sara has label 0 Chris has label 1 """ import sys from time import time #sys.path.append("../tools/") #from email_preprocess import preprocess ### features_train and features_test are the features for the training ### and testing datasets, respectively ### labels_train and labels_test are the corresponding item labels features_train, features_test, labels_train, labels_test = preprocess() #features_train = features_train[:len(features_train)/100] #labels_train = labels_train[:len(labels_train)/100] print len(labels_train) print len(labels_test) print labels_train[0:10] print labels_test[0:10] # + # # %load svm_author_id.py # #!/usr/bin/python """ this is the code to accompany the Lesson 2 (SVM) mini-project use an SVM to identify emails from the Enron corpus by their authors Sara has label 0 Chris has label 1 """ import sys from time import time sys.path.append("../tools/") from email_preprocess import preprocess ### features_train and features_test are the features for the training ### and testing datasets, respectively ### labels_train and labels_test are the corresponding item labels features_train, features_test, labels_train, labels_test = preprocess() features_train = features_train[:len(features_train)/100] labels_train = labels_train[:len(labels_train)/100] ######################################################### ### your code goes here ### from sklearn import svm clf = svm.SVC(kernel="rbf") to = time() clf.fit(features_train, labels_train) print "training time: ",round(time()-to,3),"s" t1 = time() pred = clf.predict(features_test) print "testing time: ",round(time()-t1,3),"s" from sklearn.metrics import accuracy_score print accuracy_score(pred,labels_test) # + # # %load svm_author_id.py # #!/usr/bin/python """ this is the code to accompany the Lesson 2 (SVM) mini-project use an SVM to identify emails from the Enron corpus by their authors Sara has label 0 Chris has label 1 """ import sys from time import time sys.path.append("../tools/") from email_preprocess import preprocess ### features_train and features_test are the features for the training ### and testing datasets, respectively ### labels_train and labels_test are the corresponding item labels features_train, features_test, labels_train, labels_test = preprocess() #features_train = features_train[:len(features_train)/100] #labels_train = labels_train[:len(labels_train)/100] print len(labels_train) print len(labels_test) ######################################################### ### your code goes here ### from sklearn import svm C_list = [10000.0]#[10.0,100.0,1000.0,10000.0] for C_val in C_list: print "C = ",C_val clf = svm.SVC(C=C_val,kernel="rbf") to = time() clf.fit(features_train, labels_train) print "training time: ",round(time()-to,3),"s" t1 = time() pred = clf.predict(features_test) print "testing time: ",round(time()-t1,3),"s" from sklearn.metrics import accuracy_score print accuracy_score(pred,labels_test) ######################################################### # - print pred[10]," ",pred[9] print pred[26]," ",pred[25] print pred[50]," ",pred[49] #list(pred) print len(pred) print "Sarah: ",list(pred).count(0) print "Chris: ",list(pred).count(1) print len(pred) print "Sarah: ",list(pred).count(0) print "Chris: ",list(pred).count(1)
6,612
/rsna/colab_RSNA_pneumonia_detecion.ipynb
1213f7e683ee63ed7686ce02d2388c184f217a14
[]
no_license
samik-saha/kaggle
https://github.com/samik-saha/kaggle
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
274,853
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # %matplotlib inline # load dataframes properties = pd.read_csv('./properties_2016.csv') train = pd.read_csv('./train_2016.csv') # throw away all properties that aren't listed as sold in train_2016.csv joined = train.merge(properties,on='parcelid', how='left') joined.to_csv('./sold_properties_2016.csv') # new df containing only sold properties soldprop_df = pd.read_csv('./sold_properties_2016.csv', index_col=0) # looking at the data soldprop_df.head() # defining a helper function to see the NaN ratio in our df sold_count = soldprop_df.shape[0] def nan_ratio(rec): nan_count = sum(pd.isnull(rec)) return (nan_count/sold_count)*100 # + # soldprop_df.apply(nan_ratio).sort_values().plot(kind='bar', figsize=(17, 5)) # - soldprop_df.apply(nan_ratio) # we want to keep the rows with 50% or less are NaNs nan_df = soldprop_df.dropna(thresh=len(soldprop_df) - soldprop_df.shape[0]/2, axis=1) nan_df.apply(nan_ratio).sort_values() # make a preliminary correlation map corrmat = nan_df.corr() f, ax = plt.subplots(figsize=(12,9)) sns.heatmap(corrmat, vmax = 0.8, square=True) # ### Fill NaN values with the mean of that column # features with < 6% of NaNs col_mean = ['parcelid', 'logerror', 'transactiondate','propertylandusetypeid', 'longitude', 'latitude', 'roomcnt', 'fips', 'rawcensustractandblock', 'assessmentyear', 'bedroomcnt', 'bathroomcnt', 'regionidcounty','taxvaluedollarcnt', 'landtaxvaluedollarcnt', 'taxamount', 'regionidzip', 'structuretaxvaluedollarcnt', 'censustractandblock', 'calculatedfinishedsquarefeet', 'yearbuilt', 'fullbathcnt', 'calculatedbathnbr', 'regionidcity', 'finishedsquarefeet12', 'lotsizesquarefeet', 'unitcnt'] # creating new df with those features full_df = nan_df[col_mean] full_df # filling the missing values with the mean of the column full_df = full_df.fillna(full_df.mean()) full_df.isnull().sum() full_df.to_csv('clean_data_zillow.csv') new = pd.read_csv('./clean_data_zillow.csv',index_col=0) new
2,390
/6.3/Activities/10-Bank_Heatmap/Scripts/Untitled.ipynb
d3ef6d8715c04366a61699b30bad2b932eee9227
[]
no_license
MariaSorensen/APIs
https://github.com/MariaSorensen/APIs
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
569
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python (pandas_env) # language: python # name: pandas_env # --- Natalie Olowokere # ## Matric no.: 19100111227 # ### School Email: [email protected] # # # Exercise 1 # ## _Write a Python program to get the difference between a given number and 17, if the number is greater than 17, return double the absolute difference._ # # ![image.png](attachment:image.png) # # # # + def subtraction(b): if b>17: print(abs(17 - b)*2) else: print(17 - b) subtraction(56) subtraction(12) # - # # Exercise 2 # ## _Write a Python Program to calculate the sum of three given numbers, if the values are equal then return thrice their sum._ # # ![image.png](attachment:image.png) a = input("Enter desired num 1:") b = input("Enter desired num 2:") c = input("Enter desired num 3:") addd = int(a) + int(b) + int(c) if a==b==c: print(addd*3) else: print (addd) # # Exercise 3 # ## _Write a Python Program which return true if two given integer values are equal or their sum or difference is 5._ # # ![image.png](attachment:image.png) a = input("Enter desired num 1:") b = input("Enter desired num 2:") if a==b: print (True) elif a + b == 5: print (true) elif a - b == 5: print (true) else: print(false) # # Exercise 4 # ## _Write a Python Program to sort three integers without using conditional statements and loops._ # # ![image.png](attachment:image.png) x = [2,1,5] print(min(x)) print(max(x)) Middle = sum(x) - max(x) - min(x) print(Middle) # # Exercise 5 # ## _Write a Python Program that takes a positive integer and returns the sum of the cube of all the positive integers smaller than the specified number._ # # ![image.png](attachment:image.png) sum = 0 for p in range(0,7): sum = sum + p^3 print (sum)
2,000
/gratbot_client/notebooks/dev_nncalib_gyrus.ipynb
badaa495ec0f4282737403d4a4ccad160f7e597a
[]
no_license
grybka/gratbot
https://github.com/grybka/gratbot
0
0
null
null
null
null
Jupyter Notebook
false
false
.py
460,954
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + import json import yaml import sys, os #path2add = os.path.normpath(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir, 'dir1'))) #print(os.getcwd()) parent_path = os.path.normpath(os.path.abspath(os.path.join(os.getcwd(), os.path.pardir))) #print(path2add) sys.path.append(parent_path) sys.path.append(os.path.normpath(os.path.join(parent_path,"gyrii"))) sys.path.append(os.path.normpath(os.path.join(parent_path,"gyrii","underpinnings"))) from Gyrus import Gyrus def dict_array_upend(mydict,key,elem): if key not in mydict: mydict[key]=[] mydict[key.append(elem)] def load_sensor_log_file(fname): response=[] first_timestamp=0 f=open(fname,'r') for line in f.readlines(): dat=json.loads(line) timestamp=dat["timestamp"]-first_timestamp response.append(dat) if first_timestamp==0: first_timestamp=timestamp return response,first_timestamp #sensor_log1,first_timestamp1=load_sensor_log_file("../to_study/initial_chase_calib.txt") #sensor_log2,first_timestamp2=load_sensor_log_file("../to_study/random_move_test.txt") sensor_log,first_timestamp=load_sensor_log_file("../to_study/calibration_motion.txt") #sensor_log=sensor_log1 #sensor_log.extend(sensor_log2) #sensor_log,first_timestamp=load_sensor_log_file("../to_study/track_stop_sign.txt") # + import torch from torch.utils.data import Dataset,DataLoader,TensorDataset,random_split import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import random import numpy as np #Todo: see if I can implement policytrainer as the same as StatePredictor, but with output_state and decision swapped! #I then need to add the ability to dream class WeightedLeakyMemoryWithDecision(Dataset): def __init__(self,max_len,weight_bounds=[0,1]): self.max_len=max_len self.weight_bounds=weight_bounds self.experiences=[] #[ input_state, decision, target_state, weight] self.min_weight=np.inf def get_average_weight(self): thesum=0 for x in self.experiences: thesum+=x[3] return thesum/len(self.experiences) def get_average_inv_weight(self): thesum=0 for x in self.experiences: thesum+=1/x[3] return thesum/len(self.experiences) def update_weight(self,index,weight): self.experiences[index][3]=weight if weight<self.min_weight: self.min_weight=weight def choose_by_inv_weight(self): weights=[ x[3] for x in self.experiences] return random.choices(self.experiences, weights=weights)[0] def choose_by_weight(self): weights=[ 1/x[3] for x in self.experiences] return random.choices(self.experiences, weights=weights)[0] def forget(self): while len(self)>self.max_len: self.experiences.remove(self.choose_by_weight()) def add_experience(self,experience_input,experience_decision,experience_target,weight): #your chance of forgetting is propotional to the experience weight #only record experience if it has a greater weight than the smallest weights if len(self)<self.max_len or weight>self.min_weight: if weight<self.min_weight: self.min_weight=weight self.experiences.append([experience_input,experience_decision,experience_target,weight]) self.forget() return True return False def get_as_batches(self): inp=[] dec=[] tar=[] for i in range(len(self)): a,b,c=self[i] inp.append(a) dec.append(b) tar.append(c) return torch.stack(inp),torch.stack(dec),torch.stack(tar) def __getitem__(self,index): return torch.tensor(self.experiences[index][0]).float(),torch.tensor(self.experiences[index][1]).float(),torch.tensor(self.experiences[index][2]).float() def __len__(self): return len(self.experiences) class ScatteredLeakyMemory(Dataset): def __init__(self,max_len,input_unc=[],decision_unc=[],output_unc=[]): self.max_len=max_len self.experiences=[] #[ input_state, decision, target_state, nearest_neighbor_dist,nearest_neighbor_triple] self.input_unc=np.array(input_unc) self.decision_unc=np.array(decision_unc) self.final_unc=np.array(output_unc) def add_experience(self,initial,decision,final,forget=True): min_dist=np.inf elem=[initial,decision,final] #print("elem is {}".format(elem)) for x in self.experiences: #print("initial {}".format(final)) #print("input_unc {}".format(self.final_unc)) #print("xzero {}".format(x[1])) #dist=np.sum(((np.array(initial)-np.array(x[0]))/self.input_unc)**2)+np.sum(((np.array(decision)-np.array(x[1]))/self.decision_unc)**2)+np.sum(((np.array(final)-np.array(x[3]))/self.final_unc)**2) dist=np.sum(((np.array(initial)-np.array(x[0]))/self.input_unc)**2)+np.sum(((np.array(decision)-np.array(x[1]))/self.decision_unc)**2)+np.sum(((np.array(final)-np.array(x[2]))/self.final_unc)**2) #print("dist {} to {}".format(dist)) #print("dist is {}".format(dist)) if dist<x[3]: #if I'm adding something closer, update that x[3]=dist if dist<min_dist: min_dist=dist elem=[x[0],x[1],x[2]] self.experiences.append([ initial,decision,final,min_dist,elem]) if forget: todel=self.forget() if todel is not None and todel[0:3]==elem: return False return True def get_as_batches(self): inp=[] dec=[] tar=[] for i in range(len(self)): a,b,c=self[i] inp.append(a) dec.append(b) tar.append(c) return torch.stack(inp),torch.stack(dec),torch.stack(tar) def forget(self): if len(self)>self.max_len: toresort=[] dists=[ x[3] for x in self.experiences ] min_ind=dists.index(min(dists)) todel=self.experiences.pop(min_ind) for x in self.experiences: if x[4][0]==todel[0] and x[4][1]==todel[1] and x[4][2]==todel[2]: toresort.append([ x[0],x[1],x[2] ]) self.experiences.remove(x) for x in toresort: self.add_experience(x[0],x[1],x[2],forget=False) return todel return None def __getitem__(self,index): return torch.tensor(self.experiences[index][0]).float(),torch.tensor(self.experiences[index][1]).float(),torch.tensor(self.experiences[index][2]).float() def __len__(self): return len(self.experiences) def weighted_mse_loss(inputs, target, weight): #print("weight shape {}".format(weight.shape)) #print("input shape {}".format(inputs.shape)) #print("target shape {}".format(target.shape)) return torch.sum( ( (inputs - target)/weight ) ** 2) class StatePredictorWithPolicy: def __init__(self,predictor,policy,loss_bounds=[1,100],decision_bounds=[ [-1,1] ],memory_size=64,input_unc=None,decision_unc=None,output_unc=None): #predictor is a module that given in input state and action state, predicts the output state self.predictor=predictor self.policy=policy self.input_unc=torch.tensor(input_unc) self.output_unc=torch.tensor(output_unc) self.decision_unc=torch.tensor(decision_unc) self.experience_memory=ScatteredLeakyMemory(memory_size,input_unc=input_unc,decision_unc=decision_unc,output_unc=output_unc) self.loss_bounds=loss_bounds self.decision_bounds=decision_bounds #array of [min,max] self.train_batch_size=64 self.train_epochs=64 self.fresh_memories=0 self.target_bounds=[ [-2.0,2.0],[-1.0,1.0] ] def fantasy_train_policy(self): #generate a bunch of scenarios from real starting points, but with different targets loader=DataLoader(self.experience_memory,batch_size=64,shuffle=True) optimizer = optim.Adam(self.policy.parameters(), lr=0.01) for epoch in range(self.train_epochs): for inputs,decisions,targets in loader: #generate new target here new_targets=[] for i in range(targets.shape[0]): newtarget=[] for d in self.target_bounds: newtarget.append(random.uniform(d[0],d[1])) new_targets.append(torch.tensor(newtarget)) new_targets=torch.stack(new_targets) #the_input=torch.cat( (inputs,targets),1) the_input=torch.cat( (inputs,new_targets),1) policy_out=self.policy(the_input) predicted_out=self.predictor( torch.cat( (inputs,policy_out),1)) loss=weighted_mse_loss(predicted_out,new_targets,self.output_unc) optimizer.zero_grad() loss.backward() optimizer.step() def loss_to_weight(self,loss): return 1/np.clip(loss,self.loss_bounds[0],self.loss_bounds[1]) def predict_output(self,input_state,decision): function_input=[ *input_state,*decision] predicted_output=self.predictor(torch.unsqueeze(torch.tensor(function_input).float(),0))[0] return predicted_output.detach().numpy() def predict_decision(self,input_state,output_state): function_input=[ *input_state,*output_state] predicted_output=self.policy(torch.unsqueeze(torch.tensor(function_input).float(),0))[0] return predicted_output.detach().numpy() def observe(self,input_state,decision,output_state): with torch.set_grad_enabled(False): #loss_function = torch.nn.MSELoss() motion_function_input=[ *input_state,*decision] decision_function_input=[ *input_state, *output_state] predicted_output=self.predictor(torch.unsqueeze(torch.tensor(motion_function_input).float(),0))[0] predicted_decision=self.policy(torch.unsqueeze(torch.tensor(decision_function_input).float(),0))[0] output_loss=weighted_mse_loss(predicted_output,torch.tensor(output_state).float(),self.output_unc) decision_loss=weighted_mse_loss(predicted_decision,torch.tensor(decision).float(),self.decision_unc) loss=(output_loss+decision_loss).item() #if self.experience_memory.add_experience(input_state,decision,output_state,self.loss_to_weight(loss)): if self.experience_memory.add_experience(input_state,decision,output_state): self.fresh_memories+=1 # def decide_random(self,input_state): # my_decision=[] # for d in self.decision_bounds: # my_decision.append(random.uniform(d[0],d[1])) # return my_decision # def decide_by_probing(self,input_state,desired_output_state,pts_per_dim): # pts=[ input_state ] # for i in range(len(self.decision_bounds)): # toadd=np.linspace(self.decision_bounds[i][0],self.decision_bounds[i][1],pts_per_dim) # newpts=[] # for i in range(len(toadd)): # for j in range(len(pts)): # newpts.append( [*(pts[j]),toadd[i]] ) # pts=newpts # inputs=torch.tensor(pts).float() # predictions=self.predictor(inputs) # loss_function = torch.nn.MSELoss() # best_inv_loss=0 # best_index=0 # for i in range(predictions.shape[0]): # loss=loss_function(predictions[i],torch.tensor(desired_output_state).float()) #print("action {} loss {}".format(inputs[i],loss)) # if 1/loss > best_inv_loss: # best_index=i # best_inv_loss=1/loss # return pts[best_index][len(input_state):] def train(self): self.train_decision_predictor() self.train_motion_predictor() self.fresh_memories=0 #self.reweight_memory() def reweight_memory(self): loss_function = torch.nn.MSELoss() with torch.set_grad_enabled(False): inputs,decisions,targets=self.experience_memory.get_as_batches() predictor_out=self.predictor( torch.cat( (inputs,decisions),1) ) policy_out=self.policy( torch.cat( (inputs,targets),1)) for i in range(len(self.experience_memory)): output_loss=weighted_mse_loss(predictor_out,targets,self.output_unc) decision_loss=weighted_mse_loss(policy_out,decisions,self.decision_unc) loss=(output_loss+decision_loss).item() self.experience_memory.update_weight(i,self.loss_to_weight(loss)) self.fresh_memories=0 def train_decision_predictor(self): print("training") loader=DataLoader(self.experience_memory,batch_size=64,shuffle=True) #loss_function = torch.nn.MSELoss() optimizer = optim.Adam(self.policy.parameters(), lr=0.01) for epoch in range(self.train_epochs): for inputs,decisions,targets in loader: the_input=torch.cat( (inputs,targets),1) out=self.policy( the_input ) #loss=loss_function(out,decisions ) loss=weighted_mse_loss(out,decisions,self.decision_unc) optimizer.zero_grad() loss.backward() optimizer.step() def train_motion_predictor(self): loader=DataLoader(self.experience_memory,batch_size=64,shuffle=True) #loss_function = torch.nn.MSELoss() optimizer = optim.Adam(self.predictor.parameters(), lr=0.01) for epoch in range(self.train_epochs): for inputs,decisions,targets in loader: the_input=torch.cat( (inputs,decisions),1) out=self.predictor( the_input ) #loss=loss_function(out,targets ) loss=weighted_mse_loss(out,targets,self.output_unc) optimizer.zero_grad() loss.backward() optimizer.step() #now recalculate everything in memory #with torch.set_grad_enabled(False): #inputs,targets=self.experience_memory.get_as_batches() #out=self.predictor( inputs ) #for i in range(len(self.experience_memory)): # self.experience_memory.update_weight(i,self.loss_to_weight(loss_function(out[i],targets[i]).item())) # self.fresh_memories=0 # return loss_function(out,targets).item()/len(self.experience_memory) # + from Gyrus import ThreadedGyrus from NNCalibration import StatePredictor import torch import torch.nn as nn import numpy as np class VisualMotionCalibGyrus(ThreadedGyrus): def __init__(self,broker): #self.motionpredictor=nn.Sequential(nn.Linear(5,5), #nn.Tanh(), #nn.Linear(5,2)) self.policy=nn.Sequential(nn.Linear(4,4), nn.Tanh(), nn.Linear(4,2), nn.Tanh()) self.motionpredictor=nn.Sequential(nn.Linear(4,2,bias=False)) #self.policy=nn.Sequential(nn.Linear(4,3,bias=False)) decision_bounds=[ [-0.8,0.8], [-0.8,0.8], [0.1,0.5]] #self.state_predictor=StatePredictor(self.motionpredictor,decision_bounds=decision_bounds,memory_size=128) self.state_predictor=StatePredictorWithPolicy(self.motionpredictor,self.policy,decision_bounds=decision_bounds,memory_size=128,input_unc=[0.01,0.1],output_unc=[0.01,0.1],decision_unc=[0.02,0.02]) #constants self.min_update_interval=0.1 #don't record experiences more than this often self.objects_to_watch=["sports ball","stop sign","chair"] self.object_heights={ "stop sign": [0.081,0.005], "sports ball": [0.115,0.01], "chair": [1.0,0.5]} self.fresh_memories_to_train=16 self.camera_focal_length_pixels=630 #V1 raspicam self.camera_x_pixels=640 self.camera_y_pixels=480 #scales of things #self.position_scale=640 #temporary storage self.last_unique_objects={} self.last_gyro_z=[0,0] #value, stdev self.last_motors_active=[1,1] #left, right self.last_frame_motion_command=[0,0,0] #left,right, duration self.next_update_time=0 self.last_motor_command={} #debugging storage self.all_input_vectors=[] self.all_target_vectors=[] self.all_decision_vectors=[] super().__init__(broker) def get_keys(self): return [ "drive/motors_active","position_sensor/gyro", "tagged_objects", "motor_command", "clock_pulse" ] def get_name(self): return "VisualMotionCalibGyrus" def holding_still(self,timestamp): #return true if I think I'm holding still if abs(self.last_gyro_z[0])> 0.05 or abs(self.last_gyro_z[0])>0.05: return False if self.last_motors_active[0]!=0 or self.last_motors_active[1]!=0: return False if timestamp<self.next_update_time: return False return True def get_unique_tagged_objects(self,tagged_objects): ret={} label_list=[ x["label"] for x in tagged_objects] for key in self.objects_to_watch: if label_list.count(key)>1 or label_list.count(key)==0: continue elem=next(filter(lambda x: x["label"]==key,tagged_objects)) ret[key]=elem return ret def read_message(self,message): if "clock_pulse" in message: #don't think about training if not holding still if not self.holding_still(message["timestamp"]): return if self.state_predictor.fresh_memories>self.fresh_memories_to_train: self.state_predictor.train() #print("training") if "motion_request" in message: m=message["motion_request"] if m["motion_type"]=="turn": input_vector=[m["from_angle"]] output_vector=[m["to_angle"]] decision=self.state_predictor.decide_by_probing(input_vector,output_vector,10) self.last_motor_command={"timestamp": time.time(),"motor_command": {"lr_throttle": [decision[0],decision[1]], "duration":decision[2] } } #broker.publish({"timestamp": time.time(),"motor_command": {"lr_throttle": [decision[0],decision[1]], "duration":decision[2] } },"motor_command") if "position_sensor/gyro" in message: gyro_z=message["position_sensor/gyro"][2] gyro_z_stdev=message["position_sensor/gyro_stdev"][2] self.last_gyro_z=[gyro_z,gyro_z_stdev] if "drive/motors_active" in message: left_motor=message["drive/motors_active"][0] right_motor=message["drive/motors_active"][1] self.last_motors_active=[left_motor,right_motor] if "motor_command" in message: m=message["motor_command"] if m["lr_throttle"][0] or m["lr_throttle"][1]!=0: #self.last_motion_time=message["timestamp"] self.last_frame_motion_command=[ m["lr_throttle"][0],m["lr_throttle"][1],m["duration"]] self.next_update_time=message["timestamp"]+m["duration"] if "tagged_objects" in message: #only check if holding still if not self.holding_still(message["timestamp"]): return unique_objects=self.get_unique_tagged_objects(message["tagged_objects"]) for key in unique_objects: if key in self.last_unique_objects: #exists in both this and last set obj_height=self.object_heights[key][0] #get 'center of mass' x f prev_startx=self.last_unique_objects[key]["startx"] prev_endx=self.last_unique_objects[key]["endx"] prev_starty=self.last_unique_objects[key]["starty"] prev_endy=self.last_unique_objects[key]["endy"] #prev_x=0.5*(prev_startx+prev_endx) next_startx=unique_objects[key]["startx"] next_endx=unique_objects[key]["endx"] next_starty=unique_objects[key]["starty"] next_endy=unique_objects[key]["endy"] #next_x=0.5*(next_startx+next_endx) startx_cut=5 endx_cut=self.camera_x_pixels-startx_cut starty_cut=5 endy_cut=self.camera_y_pixels-starty_cut #I have to have some notion of distance from object if prev_starty>starty_cut and next_starty>starty_cut and prev_endy<endy_cut and next_endy<endy_cut: #hpx / focal = height/dist # dist = focal * (height) / hpx #TODO far future, I could make the object hight per class a free parameter that is fit. Ha! #print("height {}".format(obj_height)) prev_objdist=obj_height*self.camera_focal_length_pixels/(prev_endy-prev_starty) next_objdist=obj_height*self.camera_focal_length_pixels/(next_endy-next_starty) delta_dist=next_objdist-prev_objdist startx_good=prev_startx>startx_cut and next_startx>startx_cut endx_good=prev_endx<endx_cut and next_endx<endx_cut if startx_good and endx_good: prev_heading=np.arctan( 0.5*(prev_startx+prev_endx-self.camera_x_pixels/2)/self.camera_focal_length_pixels ) next_heading=np.arctan( 0.5*(next_startx+next_endx-self.camera_x_pixels/2)/self.camera_focal_length_pixels ) elif startx_good and not endx_good: prev_heading=np.arctan( (prev_startx-self.camera_x_pixels/2)/self.camera_focal_length_pixels ) next_heading=np.arctan( (next_startx-self.camera_x_pixels/2)/self.camera_focal_length_pixels ) elif endx_good and not startx_good: prev_heading=np.arctan( (prev_endx-self.camera_x_pixels/2)/self.camera_focal_length_pixels ) next_heading=np.arctan( (next_endx-self.camera_x_pixels/2)/self.camera_focal_length_pixels ) else: #neither are good continue delta_heading=next_heading-prev_heading last_input_vector=[ prev_heading,prev_objdist ] #decision_vector=self.last_frame_motion_command decision_vector=[self.last_frame_motion_command[0],self.last_frame_motion_command[1]] target_vector=[ delta_heading,delta_dist ] self.state_predictor.observe(last_input_vector,decision_vector,target_vector) self.all_input_vectors.append(last_input_vector) self.all_decision_vectors.append(decision_vector) self.all_target_vectors.append(target_vector) self.last_unique_objects=unique_objects self.last_frame_motion_command=[0,0,0] self.next_update_time=message["timestamp"]+self.min_update_interval from tqdm import tqdm import time vmgyrus=VisualMotionCalibGyrus(None) for message in tqdm(sensor_log): vmgyrus.read_message(message) vmgyrus.read_message({"timestamp": time.time(),"clock_pulse": 0.1}) # - print(len(vmgyrus.state_predictor.experience_memory)) # + from matplotlib import pyplot as plt import numpy as np all_input_vectors=np.array(vmgyrus.all_input_vectors) all_decision_vectors=np.array(vmgyrus.all_decision_vectors) all_target_vectors=np.array(vmgyrus.all_target_vectors) fig, ax = plt.subplots() plt.title("decision") ax.plot( all_decision_vectors,'*') plt.show() fig, ax = plt.subplots() plt.title("input_vectors") ax.plot( all_input_vectors,'*') plt.show() fig, ax = plt.subplots() plt.title("input_vectors -heading") ax.plot( all_input_vectors[:,0],'*') plt.show() fig, ax = plt.subplots() plt.title("input_vectors -distance") ax.plot( all_input_vectors[:,1],'*') plt.show() fig, ax = plt.subplots() plt.title("target_vectors - heading") ax.plot( all_target_vectors[:,0],'*') plt.show() fig, ax = plt.subplots() plt.title("target_vectors - distance") ax.plot( all_target_vectors[:,1],'*') plt.show() inputs,decisions,targets=vmgyrus.state_predictor.experience_memory.get_as_batches() motion_out=vmgyrus.motionpredictor( torch.cat( (inputs,decisions),1 )) decision_out=vmgyrus.policy( torch.cat( (inputs,targets),1)) motion_out=motion_out.detach().numpy() decision_out=decision_out.detach().numpy() inputs=inputs.detach().numpy() decisions=decisions.detach().numpy() targets=targets.detach().numpy() fig, ax=plt.subplots() plt.title("weights in memory") plt.plot( [x[3] for x in vmgyrus.state_predictor.experience_memory.experiences],'*') plt.show() fig, ax = plt.subplots() plt.title("inputs in memory") ax.plot(inputs,'*') plt.show() fig, ax = plt.subplots() plt.title("decisions in memory") ax.plot(decisions,'*') plt.show() fig, ax = plt.subplots() plt.title("targets in memory") ax.plot(targets,'*') plt.show() fig, ax = plt.subplots() plt.title("Motion Predictor Targets and Predictions") ax.plot( targets[:],'*') ax.plot( motion_out[:],'*') plt.show() fig, ax = plt.subplots() plt.title("Decision Predictor Targets and Predictions") ax.plot( decisions[:],'*') ax.plot( decision_out[:],'*') plt.show() fig, ax = plt.subplots() plt.title("Err") ax.plot( targets[:,0]-motion_out[:,0],'*',label="heading") ax.plot( targets[:,1]-motion_out[:,1],'*',label="distance") plt.legend() plt.show() fig, ax = plt.subplots() plt.title("Heading Decision Time*Mag vs delta p") ax.plot( (decisions[:,0]-decisions[:,1]),targets[:,0],'*',label='truth') ax.plot( (decisions[:,0]-decisions[:,1]),motion_out[:,0],'*',label='predictions') plt.legend() plt.show() fig, ax = plt.subplots() plt.title("Distance Decision Time*Mag vs delta p") ax.plot( (decisions[:,0]+decisions[:,1]),targets[:,1],'*',label='truth') ax.plot( (decisions[:,0]+decisions[:,1]),motion_out[:,1],'*',label='predictions') plt.legend() plt.show() fig, ax = plt.subplots() plt.title("Decision Prediction") ax.plot( targets[:,0],decisions[:,0],'*',label='l truth') ax.plot( targets[:,0],decision_out[:,0],'*',label='l pred') #ax.plot( targets[:,0],decisions[:,0]-decisions[:,1],'*',label='lminusr truth') #ax.plot( targets[:,0],decision_out[:,0]-decision_out[:,1],'*',label='lminusr pred') plt.legend() plt.show() fig, ax = plt.subplots() plt.title("Decision Prediction") ax.plot( targets[:,0],decisions[:,1],'*',label='r truth') ax.plot( targets[:,0],decision_out[:,1],'*',label='r pred') #ax.plot( targets[:,0],decisions[:,0]-decisions[:,1],'*',label='lminusr truth') #ax.plot( targets[:,0],decision_out[:,0]-decision_out[:,1],'*',label='lminusr pred') plt.legend() plt.show() # + #let's make a plot of just heading changes and just distance changes presumably #turns first turn_inputs=[] turn_outputs=[] for t in np.linspace(-0.6,0.6,100): turn_inputs.append(t) input_vector=[0,1.0] decision=[ t,-t] out=vmgyrus.state_predictor.predict_output(input_vector,decision) turn_outputs.append(out) turn_outputs=np.array(turn_outputs) fig, ax = plt.subplots() plt.title("Turn Results") ax.plot( turn_inputs,turn_outputs[:,0],'*',label="dHeading") ax.plot( turn_inputs,turn_outputs[:,1],'*',label="dDistance") plt.legend() plt.show() # - # + #now forward backward turn_inputs=[] turn_outputs=[] for t in np.linspace(-0.6,0.6,100): turn_inputs.append(t) input_vector=[0,1.0] decision=[ t,t] out=vmgyrus.state_predictor.predict_output(input_vector,decision) turn_outputs.append(out) turn_outputs=np.array(turn_outputs) fig, ax = plt.subplots() plt.title("Forward Backward Results") ax.plot( turn_inputs,turn_outputs[:,0],'*',label="dHeading") ax.plot( turn_inputs,turn_outputs[:,1],'*',label="dDistance") plt.legend() plt.show() # + #Driving prediction decisions=[] turn_inputs=[] for deltat in np.linspace(-1.0,1.0,100): input_state=[0,1.0] output_state=[deltat,0.0] decision=vmgyrus.state_predictor.predict_decision(input_state,output_state) decisions.append(decision) turn_inputs.append(deltat) decisions=np.array(decisions) fig, ax = plt.subplots() plt.title("Turn Decision") plt.xlabel("desired turn") ax.plot( turn_inputs,decisions[:,0],'*',label="Left") ax.plot( turn_inputs,decisions[:,1],'*',label="Right") plt.legend() plt.show() # - vmgyrus.state_predictor.fantasy_train_policy() vmgyrus.state_predictor.train() # + #Driving prediction decisions=[] turn_inputs=[] for deltat in np.linspace(-1.0,1.0,100): input_state=[0,1.0] output_state=[deltat,0.0] decision=vmgyrus.state_predictor.predict_decision(input_state,output_state) decisions.append(decision) turn_inputs.append(deltat) decisions=np.array(decisions) fig, ax = plt.subplots() plt.title("Turn Decision") plt.xlabel("desired turn") ax.plot( turn_inputs,decisions[:,0],'*',label="Left") ax.plot( turn_inputs,decisions[:,1],'*',label="Right") plt.legend() plt.show() # + #Driving prediction decisions=[] turn_inputs=[] for deltat in np.linspace(-1.0,1.0,100): input_state=[0,1.0] output_state=[0,deltat] decision=vmgyrus.state_predictor.predict_decision(input_state,output_state) decisions.append(decision) turn_inputs.append(deltat) decisions=np.array(decisions) fig, ax = plt.subplots() plt.title("FB Decision") plt.xlabel("desired motor") ax.plot( turn_inputs,decisions[:,0],'*',label="Left") ax.plot( turn_inputs,decisions[:,1],'*',label="Right") plt.legend() plt.show() # -
31,217