File size: 6,210 Bytes
a361ef5 4d962fc 6818f83 dce486f a361ef5 4d962fc a361ef5 37599eb a361ef5 4d962fc a361ef5 32d7e91 4d962fc a361ef5 4d962fc a361ef5 29b9fa1 a361ef5 4d962fc a361ef5 6818f83 a361ef5 29b9fa1 6818f83 a361ef5 5c740ef 4d962fc a361ef5 37599eb dce486f 37599eb a361ef5 dce486f 37599eb a361ef5 42d8b59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import json
from itertools import product
import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from datasets import Dataset
parameters_min_e_freq = [1, 2, 3, 4]
parameters_max_p_freq = [100, 50, 25, 10]
assert len(parameters_min_e_freq) == 4
assert len(parameters_max_p_freq) == 4
sns.set_theme(style="whitegrid")
def is_entity(token):
return any(i.isupper() for i in token)
# load filtered data
with open(f"data/t_rex.filter_unified.jsonl") as f:
data = Dataset.from_list([json.loads(i) for i in f.read().split('\n') if len(i) > 0])
df_main = data.to_pandas()
# entity frequency filter
c_sub = df_main.groupby("subject")['title'].count()
c_obj = df_main.groupby("object")['title'].count()
key = set(list(c_sub.index) + list(c_obj.index))
count_main = pd.DataFrame(
[{'entity': k, "subject": c_sub[k] if k in c_sub else 0, "object": c_obj[k] if k in c_obj else 0} for k in key])
count_main.index = count_main.pop('entity')
count_main['is_entity'] = [is_entity(i) for i in count_main.index]
count_main['sum'] = count_main['subject'] + count_main['object']
def filtering(row, min_freq: int = 3, target: str = "subject"):
if not row['is_entity']:
return True
return row[target] >= min_freq
def main(min_entity_freq, max_pairs_predicate, min_pairs_predicate: int = 3, random_sampling: bool = True):
df = df_main.copy()
count_filter_sub = count_main[count_main.apply(lambda x: filtering(x, min_freq=min_entity_freq, target='subject'), axis=1)]['subject']
count_filter_obj = count_main[count_main.apply(lambda x: filtering(x, min_freq=min_entity_freq, target='object'), axis=1)]['object']
vocab_sub = set(count_filter_sub.index)
vocab_obj = set(count_filter_obj.index)
df['flag_subject'] = [i in vocab_sub for i in df['subject']]
df['flag_object'] = [i in vocab_obj for i in df['object']]
df['flag'] = df['flag_subject'] & df['flag_object']
df_filter = df[df['flag']]
df_filter.pop("flag")
df_filter.pop("flag_subject")
df_filter.pop("flag_object")
df_filter['count_subject'] = [count_filter_sub.loc[i] for i in df_filter['subject']]
df_filter['count_object'] = [count_filter_obj.loc[i] for i in df_filter['object']]
df_filter['count_sum'] = df_filter['count_subject'] + df_filter['count_object']
# predicate frequency filter
if random_sampling:
df_balanced = pd.concat(
[g if len(g) <= max_pairs_predicate else g.sample(max_pairs_predicate, random_state=0) for _, g in
df_filter.groupby("predicate") if len(g) >= min_pairs_predicate])
else:
df_balanced = pd.concat(
[g if len(g) <= max_pairs_predicate else g.sort_values(by='count_sum', ascending=False).head(max_pairs_predicate) for _, g in
df_filter.groupby("predicate") if len(g) >= min_pairs_predicate])
df_balanced.pop("count_subject")
df_balanced.pop("count_object")
df_balanced.pop("count_sum")
df_balanced = df_balanced.drop_duplicates(subset=['subject', 'object', 'predicate'], keep='last')
# return data
target_data = [i.to_dict() for _, i in df_balanced.iterrows()]
predicate_dist = df_balanced.groupby("predicate")['text'].count().sort_values(ascending=False).to_dict()
entity, count = np.unique(df_balanced['object'].tolist() + df_balanced['subject'].tolist(), return_counts=True)
entity_dist = dict(list(zip(entity.tolist(), count.tolist())))
return predicate_dist, entity_dist, target_data
if __name__ == '__main__':
p_dist_full = []
e_dist_full = []
config = []
candidates = list(product(parameters_min_e_freq, parameters_max_p_freq))
# run filtering with different configs
for min_e_freq, max_p_freq in candidates:
p_dist, e_dist, new_data = main(
min_entity_freq=min_e_freq, max_pairs_predicate=max_p_freq, random_sampling=False)
p_dist_full.append(p_dist)
e_dist_full.append(e_dist)
config.append([min_e_freq, max_p_freq])
# save data
with open(f"data/t_rex.filter_unified.min_entity_{min_e_freq}_max_predicate_{max_p_freq}.jsonl", 'w') as f:
f.write('\n'.join([json.dumps(i) for i in new_data]))
# plot predicate distribution
df_p = pd.DataFrame([dict(enumerate(sorted(p.values(), reverse=True))) for p in p_dist_full]).T
df_p.columns = [f"min entity: {mef}, max predicate: {mpf}" for mef, mpf in candidates]
fig, axes = plt.subplots(2, 2, constrained_layout=True)
fig.suptitle('Predicate Distribution over Different Configurations')
for (x, y), mpf in zip([(0, 0), (0, 1), (1, 0), (1, 1)], parameters_max_p_freq):
_df = df_p[[f"min entity: {mef}, max predicate: {mpf}" for mef in parameters_min_e_freq]]
_df.columns = [f"min entity: {mef}" for mef in parameters_min_e_freq]
ax = sns.lineplot(ax=axes[x, y], data=_df, linewidth=1)
if mpf != 100:
ax.legend_.remove()
axes[x, y].set_title(f'max predicate: {mpf}')
fig.supxlabel('unique predicates sorted by frequency')
fig.supylabel('number of triples')
fig.savefig("data/stats.predicate_distribution.png", bbox_inches='tight')
fig.clf()
# plot entity distribution
df_e = pd.DataFrame([dict(enumerate(sorted(e.values(), reverse=True))) for e in e_dist_full]).T
df_e.columns = [f"min entity: {mef}, max predicate: {mpf}" for mef, mpf in candidates]
fig, axes = plt.subplots(2, 2, constrained_layout=True)
fig.suptitle('Entity Distribution over Different Configurations')
for (x, y), mpf in zip([(0, 0), (0, 1), (1, 0), (1, 1)], parameters_max_p_freq):
_df = df_e[[f"min entity: {mef}, max predicate: {mpf}" for mef in parameters_min_e_freq]]
_df.columns = [f"min entity: {mef}" for mef in parameters_min_e_freq]
ax = sns.lineplot(ax=axes[x, y], data=_df, linewidth=1)
ax.set(xscale='log')
if mpf != 100:
ax.legend_.remove()
axes[x, y].set_title(f'max predicate: {mpf}')
fig.supxlabel('unique entities sorted by frequency')
fig.supylabel('number of triples')
fig.savefig("data/stats.entity_distribution.png", bbox_inches='tight')
fig.clf()
|