unarXive_imrad_clf / README.md
saier's picture
minor fixes and adjustments of dataset card info
72487c7
---
annotations_creators:
- machine-generated
language:
- en
language_creators:
- found
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
pretty_name: unarXive IMRaD classification
size_categories:
- 100K<n<1M
tags:
- arXiv.org
- arXiv
- IMRaD
- publication
- paper
- preprint
- section
- physics
- mathematics
- computer science
- cs
task_categories:
- text-classification
task_ids:
- multi-class-classification
source_datasets:
- extended|10.5281/zenodo.7752615
dataset_info:
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 451908280
num_examples: 520053
- name: test
num_bytes: 4650429
num_examples: 5000
- name: validation
num_bytes: 4315597
num_examples: 5001
download_size: 482376743
dataset_size: 460874306
---
# Dataset Card for unarXive IMRaD classification
## Dataset Description
* **Homepage:** [https://github.com/IllDepence/unarXive](https://github.com/IllDepence/unarXive)
* **Paper:** [unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network](https://arxiv.org/abs/2303.14957)
### Dataset Summary
The unarXive IMRaD classification dataset contains 530k paragraphs from computer science papers and the IMRaD section they originate from. The paragraphs are derived from [unarXive](https://github.com/IllDepence/unarXive).
The dataset can be used as follows.
```
from datasets import load_dataset
imrad_data = load_dataset('saier/unarXive_imrad_clf')
imrad_data = imrad_data.class_encode_column('label') # assign target label column
imrad_data = imrad_data.remove_columns('_id') # remove sample ID column
```
## Dataset Structure
### Data Instances
Each data instance contains the paragraph’s text as well as one of the labels ('i', 'm', 'r', 'd', 'w' — for Introduction, Methods, Results, Discussion and Related Work). An example is shown below.
```
{'_id': '789f68e7-a1cc-4072-b07d-ecffc3e7ca38',
'label': 'm',
'text': 'To link the mentions encoded by BERT to the KGE entities, we define '
'an entity linking loss as cross-entropy between self-supervised '
'entity labels and similarities obtained from the linker in KGE '
'space:\n'
'\\(\\mathcal {L}_{EL}=\\sum -\\log \\dfrac{\\exp (h_m^{proj}\\cdot '
'\\textbf {e})}{\\sum _{\\textbf {e}_j\\in \\mathcal {E}} \\exp '
'(h_m^{proj}\\cdot \\textbf {e}_j)}\\) \n'}
```
### Data Splits
The data is split into training, development, and testing data as follows.
* Training: 520,053 instances
* Development: 5000 instances
* Testing: 5001 instances
## Dataset Creation
### Source Data
The paragraph texts are extracted from the data set [unarXive](https://github.com/IllDepence/unarXive).
#### Who are the source language producers?
The paragraphs were written by the authors of the arXiv papers. In file `license_info.jsonl` author and text licensing information can be found for all samples, An example is shown below.
```
{'authors': 'Yusuke Sekikawa, Teppei Suzuki',
'license': 'http://creativecommons.org/licenses/by/4.0/',
'paper_arxiv_id': '2011.09852',
'sample_ids': ['cc375518-347c-43d0-bfb2-f88564d66df8',
'18dc073e-a48e-488e-b34c-e5fc3cb8a4ca',
'0c2e89b3-d863-4bc2-9e11-8f6c48d867cb',
'd85e46cf-b11d-49b6-801b-089aa2dd037d',
'92915cea-17ab-4a98-aad2-417f6cdd53d2',
'e88cb422-47b7-4f69-9b0b-fbddf8140d98',
'4f5094a4-0e6e-46ae-a34d-e15ce0b9803c',
'59003494-096f-4a7c-ad65-342b74eed561',
'6a99b3f5-217e-4d3d-a770-693483ef8670']}
```
### Annotations
Class labels were automatically determined ([see implementation](https://github.com/IllDepence/unarXive/blob/master/src/utility_scripts/ml_tasks_prep_data.py)).
## Considerations for Using the Data
### Discussion and Biases
Because only paragraphs unambiguously assignable to one of the IMRaD classeswere used, a certain selection bias is to be expected in the data.
### Other Known Limitations
Depending on authors’ writing styles as well LaTeX processing quirks, paragraphs can vary in length a significantly.
## Additional Information
### Licensing information
The dataset is released under the Creative Commons Attribution-ShareAlike 4.0.
### Citation Information
```
@inproceedings{Saier2023unarXive,
author = {Saier, Tarek and Krause, Johan and F\"{a}rber, Michael},
title = {{unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network}},
booktitle = {Proceedings of the 23rd ACM/IEEE Joint Conference on Digital Libraries},
year = {2023},
series = {JCDL '23}
}
```