Datasets:
Tasks:
Image Classification
Languages:
English
import numpy as np | |
import datasets | |
class BreastMNIST(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
features=datasets.Features({ | |
"image": datasets.Array3D(shape=(28, 28, 1), dtype="uint8"), # Adjust shape if necessary | |
"label": datasets.ClassLabel(names=["benign", "malignant"]) # Adjust based on your labels | |
}), | |
description="BreastMNIST dataset containing medical imaging data", | |
supervised_keys=("image", "label"), | |
) | |
def _split_generators(self, dl_manager): | |
# Provide the URL for downloading your dataset | |
downloaded_file = dl_manager.download_and_extract({ | |
"dataset": "https://huggingface.co/datasets/sanaa13/breastmnist1/raw/main/breastmnist.npz" | |
}) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file["dataset"], "split": "train"}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_file["dataset"], "split": "val"}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_file["dataset"], "split": "test"}), | |
] | |
def _generate_examples(self, filepath, split): | |
# Load the .npz file | |
data = np.load(filepath) | |
if split == "train": | |
images = data['train_images'] | |
labels = data['train_labels'] | |
elif split == "val": | |
images = data['val_images'] | |
labels = data['val_labels'] | |
elif split == "test": | |
images = data['test_images'] | |
labels = data['test_labels'] | |
# Yield examples in index: {image, label} format | |
for idx, (image, label) in enumerate(zip(images, labels)): | |
yield idx, { | |
"image": image, | |
"label": int(label), | |
} | |