Datasets:

wikipedia_passage_concept_A
stringlengths
490
29.6k
concept_A
stringlengths
6
37
wikipedia_passage_concept_B
stringlengths
490
29.6k
concept_B
stringlengths
6
37
target
int64
0
1
L’apprendimento automatico (noto anche come machine learning) è una branca dell'intelligenza artificiale che raccoglie un insieme di metodi, sviluppati a partire dagli ultimi decenni del XX secolo in varie comunità scientifiche, sotto diversi nomi quali: statistica computazionale, riconoscimento di pattern, reti neurali artificiali, filtraggio adattivo, teoria dei sistemi dinamici, elaborazione delle immagini, data mining, algoritmi adattivi, ecc; che utilizza metodi statistici per migliorare progressivamente la performance di un algoritmo nell'identificare pattern nei dati. Nell'ambito dell'informatica, l'apprendimento automatico è una variante alla programmazione tradizionale nella quale si predispone in una macchina l'abilità di apprendere qualcosa dai dati in maniera autonoma, senza ricevere istruzioni esplicite a riguardo. Lo stesso Arthur Samuel che coniò il termine nel 1959 in linea di principio identifica due approcci distinti. Il primo metodo, indicato come rete neurale, porta allo sviluppo di macchine ad apprendimento automatico per impiego generale in cui il comportamento è appreso da una rete di commutazione connessa casualmente, a seguito di una routine di apprendimento basata su ricompensa e punizione (apprendimento per rinforzo). Il secondo metodo, più specifico, consiste nel riprodurre l'equivalente di una rete altamente organizzata progettata per imparare solo alcune attività specifiche. La seconda procedura, che necessita di supervisione, richiede la riprogrammazione per ogni nuova applicazione, ma risulta essere molto più efficiente dal punto di vista computazionale. L'apprendimento automatico è strettamente legato al riconoscimento di pattern e alla teoria computazionale dell'apprendimento ed esplora lo studio e la costruzione di algoritmi che possano apprendere da un insieme di dati e fare delle predizioni su questi, costruendo in modo induttivo un modello basato su dei campioni. L'apprendimento automatico viene impiegato in quei campi dell'informatica nei quali progettare e programmare algoritmi espliciti è impraticabile; tra le possibili applicazioni citiamo il filtraggio delle email per evitare spam, l'individuazione di intrusioni in una rete o di intrusi che cercano di violare dati, il riconoscimento ottico dei caratteri, i motori di ricerca e la visione artificiale. L'apprendimento automatico è strettamente collegato, e spesso si sovrappone con la statistica computazionale, che si occupa dell'elaborazione di predizioni tramite l'uso di computer. L'apprendimento automatico è anche fortemente legato all'ottimizzazione matematica, che fornisce metodi, teorie e domini di applicazione a questo campo. Per usi commerciali, l'apprendimento automatico è conosciuto come analisi predittiva. L'apprendimento automatico si sviluppa con lo studio dell'intelligenza artificiale, e vi è strettamente collegato: infatti già dai primi tentativi di definire l'intelligenza artificiale come disciplina accademica, alcuni ricercatori si erano mostrati interessati alla possibilità che le macchine imparassero dai dati. Questi ricercatori, in particolare Marvin Minsky, Arthur Samuel e Frank Rosenblatt, provarono ad avvicinarsi al problema sia attraverso vari metodi formali, sia con quelle che vengono definite reti neurali nei tardi anni '50. Le reti neurali erano allora costituite da singoli percettroni e da modelli matematici derivati dal modello lineare generalizzato della statistica, come l'ADALINE di Widrow. Si provò a sfruttare anche ragionamenti probabilistici, in particolare nelle diagnosi mediche automatiche. Sempre negli anni '50, Alan Turing propose l'idea di una "macchina che apprende", ovvero in grado di imparare e dunque diventare intelligente. La proposta specifica di Turing anticipa gli algoritmi genetici. Tuttavia già dalla metà degli anni '50 lo studio dell'intelligenza artificiale si stava concentrando su approcci logici di tipo "knowledge-based", nota oggi sotto il nome di GOFAI, causando un distacco tra lo studio dell'IA e quello dell'apprendimento automatico. Sistemi di tipo probabilistico erano invasi di problemi sia teoretici sia pratici in termini di acquisizione e rappresentazione dei dati. Negli anni Ottanta, i sistemi esperti dominavano il campo dell'IA, e i sistemi basati sulla statistica non venivano più studiati. Lo studio dell'apprendimento simbolico e "knowledge-based" continuò nell'ambito dell'IA, portando a sviluppare la programmazione logica induttiva, ma ora la ricerca più prettamente statistica si svolgeva al di fuori del campo vero e proprio dell'intelligenza artificiale, nel riconoscimento di pattern e nell'information retrieval. Un altro motivo per cui lo studio dell'apprendimento automatico fu abbandonato fu la pubblicazione del libro "Perceptrons: an introduction to computational geometry" di Marvin Minsky e Seymour Papert, che vi descrivevano alcune delle limitazioni dei percettroni e delle reti neurali. La ricerca sulle reti neurali subì un significativo rallentamento a causa dell'interpretazione del libro, che le descriveva come intrinsecamente limitate. Anche la linea di ricerca sulle reti neurali continuò al di fuori del campo dell'IA, portata avanti da ricercatori provenienti da altre discipline quali Hopfield, Rumelhart, Hinton e Fukushima. Il loro successo principale fu a metà degli anni '80 con la riscoperta della "backpropagation" e della self-organization. L'apprendimento automatico, sviluppatosi come campo di studi separato dall'IA classica, cominciò a rifiorire negli anni '90. Il suo obiettivo cambiò dall'ottenere l'intelligenza artificiale ad affrontare problemi risolvibili di natura pratica. Distolse inoltre la propria attenzione dagli approcci simbolici che aveva ereditato dall'IA, e si diresse verso metodi e modelli presi in prestito dalla statistica e dalla teoria della probabilità. L'apprendimento automatico ha inoltre beneficiato dalla nascita di Internet, che ha reso l'informazione digitale più facilmente reperibile e distribuibile. Tom M. Mitchell ha fornito la definizione più citata di apprendimento automatico nel suo libro ""Machine Learning"": ""Si dice che un programma apprende dall'esperienza E con riferimento a alcune classi di compiti T e con misurazione della performance P, se le sue performance nel compito T, come misurato da P, migliorano con l'esperienza E."" In poche parole, si potrebbe semplificare dicendo che un programma apprende se c'è un miglioramento delle prestazioni dopo un compito svolto. Questa definizione di Mitchell è rilevante poiché fornisce una definizione operativa dell'apprendimento automatico, invece che in termini cognitivi. Fornendo questa definizione, Mitchell di fatto segue la proposta che Alan Turing fece nel suo articolo ""Computing Machinery and Intelligence"", sostituendo la domanda ""Le macchine possono pensare?"" con la domanda ""Le macchine possono fare quello che noi (in quanto entità pensanti) possiamo fare?"". L'obiettivo principe dell'apprendimento automatico è che una macchina sia in grado di generalizzare dalla propria esperienza, ossia che sia in grado di svolgere ragionamenti induttivi. In questo contesto, per generalizzazione si intende l'abilità di una macchina di portare a termine in maniera accurata esempi o compiti nuovi, che non ha mai affrontato, dopo aver fatto esperienza su un insieme di dati di apprendimento. Gli esempi di addestramento (in inglese chiamati "training examples") si assume provengano da una qualche distribuzione di probabilità, generalmente sconosciuta e considerata rappresentativa dello spazio delle occorrenze del fenomeno da apprendere; la macchina ha il compito di costruire un modello probabilistico generale dello spazio delle occorrenze, in maniera tale da essere in grado di produrre previsioni sufficientemente accurate quando sottoposta a nuovi casi. L'analisi computazionale degli algoritmi di apprendimento automatico e delle loro prestazioni è una branca dell'Informatica teorica chiamata teoria dell'apprendimento. Dato che gli esempi di addestramento sono insiemi finiti di dati e non c'è modo di sapere l'evoluzione futura di un modello, la teoria dell'apprendimento non offre alcuna garanzia sulle prestazioni degli algoritmi. D'altro canto, è piuttosto comune che tali prestazioni siano vincolate da limiti probabilistici. Il bias-variance tradeoff è uno dei modi di quantificare l'errore di generalizzazione. Affinché la generalizzazione offra le migliori prestazioni possibili, la complessità dell'ipotesi induttiva deve essere pari alla complessità della funzione sottostante i dati. Se l'ipotesi è meno complessa della funzione, allora il modello manifesta "underfitting". Quando la complessità del modello viene aumentata in risposta, allora l'errore di apprendimento diminuisce. Al contrario invece se l'ipotesi è troppo complessa, allora il modello manifesta overfitting e la generalizzazione sarà più scarsa. Oltre ai limiti di prestazioni, i teorici dell'apprendimento studiano la complessità temporale e la fattibilità dell'apprendimento stesso. Una computazione è considerata fattibile se può essere svolta in tempo polinomiale. I compiti dell'apprendimento automatico vengono tipicamente classificati in tre ampie categorie, a seconda della natura del "segnale" utilizzato per l'apprendimento o del "feedback" disponibile al sistema di apprendimento. Queste categorie, anche dette paradigmi, sono: A metà strada tra l'apprendimento supervisionato e quello non supervisionato c'è l'apprendimento semi-supervisionato, nel quale l'insegnante fornisce un dataset incompleto per l'allenamento, cioè un insieme di dati per l'allenamento tra i quali ci sono dati senza il rispettivo output desiderato. La trasduzione è un caso speciale di questo principio, nel quale l'intero insieme delle istanze del problema è noto durante l'apprendimento, eccetto la parte degli output desiderati che è mancante. Un'altra categorizzazione dei compiti dell'apprendimento automatico si rileva quando si considera l'output desiderato del sistema di apprendimento automatico. L'apprendimento automatico e la statistica sono discipline strettamente collegate. Secondo Michael I. Jordan, le idee dell'apprendimento automatico, dai principi metodologici agli strumenti teorici, sono stati sviluppati prima in statistica. Jordan ha anche suggerito il termine data science come nome con cui chiamare l'intero campo di studi. Leo Breiman ha distinto due paradigmi statistici di modellazione: modello basato sui dati e modello basato sugli algoritmi, dove "modello basato sugli algoritmi" indica approssimativamente algoritmi di apprendimento automatico come la foresta casuale. Alcuni statistici hanno adottato metodi provenienti dall'apprendimento automatico, il che ha portato alla creazione di una disciplina combinata chiamata "apprendimento statistico". L'apprendimento automatico viene a volte unito al data mining, che si focalizza maggiormente sull'analisi esplorativa dei dati ed utilizza principalmente il paradigma di apprendimento chiamato "apprendimento non supervisionato". Invece, l'apprendimento automatico può essere anche supervisionato. L'apprendimento automatico e il "data mining" infatti si sovrappongono in modo significativo, ma mentre l'apprendimento automatico si concentra sulla previsione basata su proprietà note apprese dai dati, il data mining si concentra sulla scoperta di proprietà prima "sconosciute" nei dati. Il data mining sfrutta i metodi dell'apprendimento automatico, ma con obiettivi differenti; d'altro canto, l'apprendimento automatico utilizza i metodi di data mining come metodi di apprendimento non supervisionato o come passi di preprocessing per aumentare l'accuratezza dell'apprendimento. Gran parte della confusione tra le due comunità di ricerca scaturisce dall'assunzione di base del loro operato: nell'apprendimento automatico, le prestazioni sono generalmente valutate in base all'abilità di riprodurre conoscenza già acquisita, mentre in data mining il compito chiave è la scoperta di conoscenza che prima non si aveva. L'apprendimento automatico ha legami molto stretti con l'ottimizzazione: molti problemi di apprendimento sono formulati come la minimizzazione di una qualche funzione di costo su un insieme di esempi di apprendimento. La funzione di costo (o funzione di perdita) rappresenta la discrepanza tra le previsioni del modello che si sta addestrando e le istanze del problema reale. Le differenze tra i due campi (l'apprendimento automatico e l'ottimizzazione) sorgono dall'obiettivo della generalizzazione: mentre gli algoritmi di ottimizzazione possono minimizzare la perdita su un insieme di apprendimento, l'apprendimento automatico si preoccupa di minimizzare la perdita su campioni mai visti dalla macchina. La risoluzione automatica di problemi avviene, nel campo dell'informatica, in due modi differenti: tramite paradigmi di "hard computing" o tramite paradigmi di "soft computing". Per "hard computing" si intende la risoluzione di un problema tramite l'esecuzione di un algoritmo ben definito e decidibile. La maggior parte dei paradigmi di "hard computing" sono metodi ormai consolidati, ma presentano alcuni lati negativi: infatti richiedono sempre un modello analitico preciso e definibile, e spesso un alto tempo di computazione. Le tecniche di "soft computing" d'altro canto antepongono il guadagno nella comprensione del comportamento di un sistema a scapito della precisione, spesso non necessaria. I paradigmi di "soft computing" si basano su due principi: L'apprendimento automatico si avvale delle tecniche di "soft computing". La programmazione logica induttiva (anche ILP, dall'inglese "inductive logic programming") è un approccio all'apprendimento di regole che usa la programmazione logica come rappresentazione uniforme per gli esempi di input, per la conoscenza di base della macchina, e per le ipotesi. Data una codifica della (nota) conoscenza di base e un insieme di esempi rappresentati come fatti in una base di dati logica, un sistema ILP deriva un programma logico ipotetico da cui conseguono tutti gli esempi positivi, e nessuno di quelli negativi. La programmazione induttiva è un campo simile che considera ogni tipo di linguaggio di programmazione per rappresentare le ipotesi invece che soltanto la programmazione logica, come ad esempio programmi funzionali. L'albero di decisione è un metodo di apprendimento per approssimazione di una funzione obiettivo discreta in cui l'elemento che apprende è rappresentato da un albero di decisione. Gli alberi di decisione possono essere rappresentati da un insieme di regole if-else per migliorare la leggibilità umana. L'apprendimento automatico basato su regole di associazione è un metodo di apprendimento che identifica, apprende ed evolve delle "regole" con l'intento di immagazzinare, manipolare e applicare conoscenza. La caratteristica principale di questo tipo di apprendimento è l'identificazione ed utilizzo di un insieme di regole relazionali che rappresenta nel suo insieme la conoscenza catturata dal sistema. Ciò si pone in controtendenza con altri tipi di apprendimento automatico che normalmente identificano un singolo modello che può essere applicato universalmente ad ogni istanza per riuscire a fare su di essa una previsione. Gli approcci dell'apprendimento basato su regole di associazione includono il sistema immunitario artificiale. Una rete neurale artificiale è un sistema adattivo che cambia la sua struttura basata su informazioni esterne o interne che scorrono attraverso la rete durante la fase di apprendimento. In termini pratici le reti neurali sono strutture non-lineari di dati statistici organizzate come strumenti di modellazione. Esse possono essere utilizzate per simulare relazioni complesse tra ingressi e uscite che altre funzioni analitiche non riescono a rappresentare. Inoltre esse sono robuste agli errori presenti nel training data. Gli algoritmi genetici forniscono un approccio all'apprendimento che è liberamente ispirato all'evoluzione simulata. La ricerca di una soluzione del problema inizia con una popolazione di soluzioni iniziale. I membri della popolazione attuale danno luogo a una popolazione di nuova generazione per mezzo di operazioni quali la mutazione casuale e crossover, che sono modellati sui processi di evoluzione biologica. Ad ogni passo, le soluzioni della popolazione attuale sono valutate rispetto a una determinata misura di fitness, con le ipotesi più adatte selezionate probabilisticamente come semi per la produzione della prossima generazione. Gli algoritmi genetici sono stati applicati con successo a una varietà di compiti di apprendimento e di altri problemi di ottimizzazione. Ad esempio, essi sono stati usati per imparare raccolte di norme per il controllo del robot e per ottimizzare la topologia dei parametri di apprendimento per reti neurali artificiali. Il ragionamento bayesiano fornisce un approccio probabilistico di inferenza. Esso si basa sul presupposto che le quantità di interesse sono disciplinate da distribuzioni di probabilità e che le decisioni ottimali possono essere prese a seguito dell'analisi di queste probabilità insieme ai dati osservati. Nell'ambito dell'apprendimento automatico, la teoria Bayesiana è importante perché fornisce un approccio quantitativo per valutare le prove a sostegno dell'ipotesi alternativa. Il Ragionamento bayesiano fornisce la base per l'apprendimento negli algoritmi che manipolano direttamente le probabilità. Macchine a vettori di supporto ("Support Vector Machine", SVM) sono un insieme di metodi di apprendimento supervisionato usati per la classificazione e la regressione di pattern. Dato un insieme di esempi di addestramento, ciascuno contrassegnato come appartenente a due possibili categorie, un algoritmo di addestramento SVM costruisce un modello in grado di prevedere a quale categoria deve appartenere un nuovo esempio di input. La discesa dei prezzi per l'hardware e lo sviluppo di GPU per uso personale negli ultimi anni hanno contribuito allo sviluppo del concetto di apprendimento profondo, che consiste nello sviluppare livelli nascosti multipli nelle reti neurali artificiali. Questo approccio tenta di modellizzare il modo in cui il cervello umano processa luce e suoni e li interpreta in vista e udito. Alcune delle applicazioni più affermate dell'apprendimento profondo sono la visione artificiale e il riconoscimento vocale. La cluster analisi, o clustering, è in grado di rilevare similarità strutturali tra le osservazioni di un dataset attraverso l'assegnazione di un insieme di osservazioni in sottogruppi ("cluster") di elementi tra loro omogenei. Il clustering è un metodo di apprendimento non supervisionato, e una tecnica comune per l'analisi statistica dei dati. Tutti i sistemi di riconoscimento vocale di maggior successo utilizzano metodi di apprendimento automatico. Ad esempio, il SPHINXsystem impara le strategie di altoparlanti specifici per riconoscere i suoni primitivi (fonemi) e le parole del segnale vocale osservato. Metodi di apprendimento basati su reti neurali e su modelli di Markov nascosti sono efficaci per la personalizzazione automatica di vocabolari, caratteristiche del microfono, rumore di fondo, ecc. Metodi di apprendimento automatico sono stati usati per addestrare i veicoli controllati da computer. Ad esempio, il sistema ALVINN ha usato le sue strategie per imparare a guidare senza assistenza a 70 miglia all'ora per 90 miglia su strade pubbliche, tra le altre auto. Con tecniche simili sono possibili applicazioni in molti problemi di controllo basato su sensori. Metodi di apprendimento automatico sono stati applicati ad una varietà di database di grandi dimensioni per imparare regolarità generali implicito nei dati. Ad esempio, algoritmi di apprendimento basati su alberi di decisione sono stati usati dalla NASA per classificare oggetti celesti a partire dal secondo Palomar Observatory Sky Survey. Questo sistema è oggi utilizzato per classificare automaticamente tutti gli oggetti nel Sky Survey, che si compone di tre terabyte di dati immagine. I programmi per computer di maggior successo per il gioco del backgammon sono basati su algoritmi di apprendimento. Ad esempio, il miglior programma di computer al mondo per backgammon, TD-Gammon, ha sviluppato la sua strategia giocando oltre un milione di partite di prova contro se stesso. Tecniche simili hanno applicazioni in molti problemi pratici in cui gli spazi di ricerca molto rilevanti devono essere esaminati in modo efficiente. L'apprendimento automatico solleva un numero di problematiche etiche. I sistemi addestrati con insiemi di dati faziosi o pregiudizievoli possono esibire questi pregiudizi quando vengono interpellati: in questo modo possono essere digitalizzati pregiudizi culturali quali il razzismo istituzionale e il classismo. Di conseguenza la raccolta responsabile dei dati può diventare un aspetto critico dell'apprendimento automatico. In ragione dell'innata ambiguità dei linguaggi naturali, le macchine addestrate su corpi linguistici necessariamente apprenderanno questa ambiguità.
Apprendimento automatico
In matematica, una funzione di densità di probabilità (o PDF dall'inglese "probability density function") è l'analogo della funzione di probabilità di una variabile casuale nel caso in cui la variabile casuale formula_1 sia continua, cioè l'insieme dei possibili valori che ha la potenza del continuo. Essa descrive la "densità" di probabilità in ogni punto nello spazio campionario. La funzione di densità di probabilità di una variabile casuale formula_1 è un'applicazione formula_3 non negativa integrabile secondo Lebesgue e reale di variabile reale tale che la probabilità dell'insieme "A" sia data da per tutti i sottinsiemi "A" dello spazio campionario. Intuitivamente, se una distribuzione di probabilità ha densità formula_3, allora l'intervallo formula_6 ha probabilità formula_7. Da ciò deriva che la funzione formula_3 è un'applicazione definita come Assumendo formula_10, ciò corrisponde al limite della probabilità che formula_11 si trovi nell'intervallo formula_6 per formula_13 che tende a zero. Di qui il nome di funzione di 'densità', in quanto essa rappresenta il rapporto tra una probabilità e un'ampiezza. Per la condizione di normalizzazione l'integrale su tutto lo spazio di formula_3 deve essere 1. Di conseguenza ogni funzione non negativa, integrabile secondo Lebesgue, con integrale su tutto lo spazio uguale a 1, è la funzione densità di probabilità di una ben definita distribuzione di probabilità. Una variabile casuale che possiede densità si dice "variabile casuale continua". Per le variabili casuali multivariate (o vettoriali) la trattazione formale è assolutamente identica: formula_15 si dice assolutamente continua se esiste una funzione a valori reali definita in formula_16, detta densità congiunta, tale che per ogni sottoinsieme "A" dello spazio campionario Essa conserva tutte le proprietà di una densità scalare: è una funzione non negativa a integrale unitario su tutto lo spazio. Una proprietà importante è che se formula_15 è assolutamente continua allora lo è ogni sua componente; il viceversa invece non vale. La densità di una componente, detta densità marginale, si ottiene con un ragionamento analogo al teorema della probabilità assoluta, cioè fissando l'insieme di suoi valori di cui si vuole determinare la probabilità e lasciando libere di variare tutte le altre componenti. Infatti (nel caso bivariato per semplicità) l'evento formula_19 è l'evento formula_20, dunque utilizzando il teorema di Fubini. La densità marginale di formula_1 è data dunque da La funzione di densità della variabile casuale normale di media 0 e varianza 1 (detta "normale standard"), di cui a destra è riportato il grafico e l'espressione analitica della corrispondente densità nel caso generico (media formula_24 e varianza formula_25). Un altro esempio può essere dato dalla densità di probabilità uniforme su un segmento (0,1). Si può verificare immediatamente che è densità di probabilità facendo l'integrale tra (0,1).
Funzione di densità di probabilità
1
In statistica, la regressione di Poisson è una forma di modello lineare generalizzato di analisi di regressione usato per modellare il conteggio dei dati in tabelle contingenti. La regressione di Poisson assume che la variabile di risposta Y ha una distribuzione di Poisson, e assume che il logaritmo del suo valore aspettato possa essere modellato da una combinazione lineare di parametri sconosciuti. La regressione di Poisson è talvolta conosciuta anche come modello log-lineare, specialmente quando viene usato per modellare tabelle contingenti. La regressione binomiale negativa (NB2) è una famosa generalizzazione della regressione di Poisson perché allenta il presupposto altamente restrittivo che la varianza è uguale alla media come nel modello di Poisson La NB2 si basa sulla distribuzione mista Poisson-Gamma. Questo modello è molto usato perché modella l'eterogeneità della Poisson con la distribuzione Gamma.
Regressione di Poisson
L'analisi della regressione è una tecnica usata per analizzare una serie di dati che consistono in una variabile dipendente e una o più variabili indipendenti. Lo scopo è stimare un'eventuale relazione funzionale esistente tra la variabile dipendente e le variabili indipendenti. La variabile dipendente nell'"equazione di regressione" è una funzione delle variabili indipendenti più un "termine d'errore". Quest'ultimo è una variabile casuale e rappresenta una variazione non controllabile e imprevedibile nella variabile dipendente. I parametri sono stimati in modo da descrivere al meglio i dati. Il metodo più comunemente utilizzato per ottenere le migliori stime è il metodo dei "minimi quadrati" (OLS), ma sono utilizzati anche altri metodi. Il "data modeling" può essere usato senza alcuna conoscenza dei processi sottostanti che hanno generato i dati; in questo caso il modello è un modello empirico. Inoltre, nella modellizzazione, non è richiesta la conoscenza della distribuzione di probabilità degli errori. L'analisi della regressione richiede ipotesi riguardanti la distribuzione di probabilità degli errori. Test statistici vengono effettuati sulla base di tali ipotesi. Nell'analisi della regressione il termine "modello" comprende sia la funzione usata per modellare i dati che le assunzioni concernenti la distribuzione di probabilità. L'analisi della regressione può essere usata per effettuare previsioni (ad esempio per prevedere dati futuri di una serie temporale), inferenza statistica, per testare ipotesi o per modellare delle relazioni di dipendenza. Questi usi della regressione dipendono fortemente dal fatto che le assunzioni di partenza siano verificate. L'uso dell'analisi della regressione è stato criticato in diversi casi in cui le ipotesi di partenza non possono essere verificate. Un fattore che contribuisce all'uso improprio della regressione è che richiede più competenze per criticare un modello che per adattarlo. La prima forma di regressione fu il metodo dei minimi quadrati, pubblicato da Legendre nel 1805, e da Gauss nel 1809. Il termine “minimi quadrati” deriva da quello usato da Legendre: "moindres carrés". Tuttavia, Gauss affermò di essere a conoscenza di questo metodo fin dal 1795. Legendre e Gauss applicarono entrambi il metodo al problema di determinare, a partire da osservazioni astronomiche, l'orbita dei pianeti attorno al Sole. Eulero aveva lavorato sullo stesso problema intorno al 1748, ma senza successo. Gauss pubblicò un ulteriore sviluppo della teoria dei minimi quadrati nel 1821, includendo una versione del teorema di Gauss-Markov. Il termine "regressione" venne coniato nel diciannovesimo secolo per descrivere un fenomeno biologico, ovvero che la progenie di individui eccezionali tende in genere ad essere meno eccezionale dei propri genitori e più simile ai loro avi più distanti. Francis Galton, un cugino di Charles Darwin, studiò questo fenomeno e applicò il termine vagamente fuorviante di "regressione verso il centro/regressione verso la media". Per Galton, la regressione aveva solo questo significato biologico, ma il suo lavoro venne in seguito esteso da Udny Yule e Karl Pearson in un contesto statistico più generale. Oggi il termine "regressione" è spesso sinonimo di "curva intercetta dei minimi quadrati". Queste condizioni sono sufficienti (ma non tutte necessarie) perché lo stimatore dei minimi quadrati goda di buone proprietà. In particolare queste assunzioni implicano che lo stimatore sia non distorto, consistente ed efficiente nella classe degli stimatori lineari non distorti. Molte di queste assunzioni possono essere rilassate in analisi più avanzate. Nella regressione lineare, il modello assume che la variabile dipendente, formula_1 sia una combinazione lineare dei "parametri" (ma non è necessario che sia lineare nella "variabile indipendente"). Ad esempio, nella regressione lineare semplice con formula_2 osservazioni ci sono una variabile indipendente: formula_3, e due parametri, formula_4 e formula_5: Nella regressione lineare multipla, ci sono più variabili indipendenti o funzioni di variabili indipendenti. Ad esempio, aggiungendo un termine in formula_7 alla regressione precedente si ottiene: Si tratta ancora di una regressione lineare: sebbene l'espressione sulla destra sia quadratica nella variabile indipendente formula_3, è comunque lineare nei parametri formula_4, formula_5 e formula_12 In entrambi i casi, formula_13 è un termine di errore e l'indice formula_14 identifica una particolare osservazione. Dato un campione casuale della popolazione, stimiamo i parametri della popolazione e otteniamo il modello di regressione lineare semplice: Il termine formula_16 è il residuo, formula_17. Un metodo di stima è quello dei minimi quadrati ordinari. Questo metodo ottiene le stime dei parametri che minimizzano la somma dei quadrati dei residui, SSE: La minimizzazione di questa funzione risulta essere un sistema di equazioni normali, un insieme di equazioni lineari simultanee nei parametri, che vengono risolte per trovare le stime dei parametri, formula_19. Vedi coefficienti di regressione per informazioni sulle proprietà statistiche di tali stimatori. Nel caso della regressione semplice, le formule per le stime dei minimi quadrati sono dove formula_22 è la media (media) dei valori formula_23 e formula_24 è la media dei valori formula_25. Sotto l'ipotesi che il termine di errore della popolazione abbia una varianza costante, la stima di quella varianza è data da: formula_26 Questo è la radice dell'errore quadratico medio (RMSE) della regressione. Gli errori standard delle stime dei parametri sono dati da Sotto l'ulteriore ipotesi che il termine di errore della popolazione abbia distribuzione normale, il ricercatore può usare questi errori standard stimati per creare intervalli di confidenza e condurre test d'ipotesi sui parametri della popolazione. Nel più generale modello di regressione multipla, ci sono formula_29 variabili indipendenti: Le stime dei parametri dei minimi quadrati sono ottenute da formula_29 equazioni normali. Il residuo può essere scritto come Le equazioni normali sono In notazione matriciale, le equazioni normali sono scritte come Una volta costruito un modello di regressione, è importante confermare la bontà di adattamento del modello e la significatività statistica dei parametri stimati. I controlli della bontà di adattamento comunemente usati includono l'indice R-quadro, analisi dei residui e test di ipotesi. La significatività statistica è verificata con un test F dell'adattamento globale, seguito da t-test per ogni singolo parametro. L'interpretazione di questi test dipende fortemente dalle assunzioni sul modello. Nonostante l'analisi dei residui sia usata per determinare la bontà di un modello, i risultati dei test-T e dei test-F sono difficili da interpretare nel caso in cui le assunzioni di partenza non siano soddisfatte. Ad esempio, se la distribuzione degli errori non è normale, può accadere che in campioni di numerosità ridotta le stime dei parametri non seguano una distribuzione normale, cosa che complica l'inferenza. Per grandi campioni, il teorema del limite centrale permette di effettuare i test usando un'approssimazione asintotica delle distribuzioni. La variabile risposta può essere non continua. Per le variabili binarie (zero/uno), si può procedere con un particolare tipo di modello lineare linear probability model. Se si usa un modello non-lineare i modelli più utilizzati sono il probit e il modello logit. Il modello probit multivariato rende possibile stimare congiuntamente la relazione tra più variabili binarie dipendenti e alcune variabili indipendenti. Per variabili categoriche con più di due valori si utilizza il modello logit multinomiale. Per variabili ordinali con più di due valori, si utilizzano i modelli logit cumulativo e probit cumulativo. Un'alternativa a tali procedure è la regressione lineare basata su polychoric o polyserial correlazioni tra le variabili categoriche. Tali procedure differiscono nelle ipotesi fatte sulla distribuzione delle variabili nella popolazione. Se la variabile rappresenta una ripetizione di un evento nel tempo, è positiva e con poche realizzazioni ("eventi rari"), si possono utilizzare modelli di Poisson o binomiale negativa. I modelli di regressione predicono una variabile formula_25 partendo dai valori di altre variabili formula_23. Se i valori della previsione sono compresi nell'intervallo dei valori delle variabili formula_23 utilizzate per la costruzione del modello si parla di interpolazione. Se i valori escono dal range delle variabili esplicative si parla di estrapolazione. In questo caso la previsione diventa più rischiosa. Quando la funzione del modello non è lineare nei parametri la somma dei quadrati deve essere minimizzata da una procedura iterativa. Sebbene i parametri di un modello di regressione siano di solito stimati usando il metodo dei minimi quadrati, altri metodi includono: Tutti i principali pacchetti statistici eseguono i tipi comuni di analisi di regressione correttamente e in modo semplice. La regressione lineare semplice può essere fatta in alcuni fogli elettronici. C'è una quantità di programmi che esegue forme specializzate di regressione, e gli esperti possono scegliere di scrivere il loro proprio codice per usare o software per analisi numerica.
Analisi della regressione
1
La retropropagazione dell'errore (in lingua inglese "backward propagation of errors", solitamente abbreviato in backpropagation), è un algoritmo per l'allenamento delle reti neurali artificiali, usato in combinazione con un metodo di ottimizzazione come per esempio la discesa stocastica del gradiente. La retropropagazione richiede un'uscita desiderata per ogni valore in ingresso per poter calcolare il gradiente della funzione di perdita (funzione di costo). Viene considerato quindi un metodo di apprendimento supervisionato, sebbene venga usato anche in reti non supervisionate come gli autocodificatori o Reti Diabolo. È una generalizzazione della regola delta di reti feed-forward multistrato, resa possibile usando la regola di catena che iterativamente calcola i gradienti per ogni strato. La retropropagazione richiede che la funzione d'attivazione usata dai neuroni artificiali (o "nodi") sia differenziabile. Una delle principali difficoltà nell'uso della retropropagazione dell'errore è il problema noto come scomparsa del gradiente, dovuto all'uso di funzioni di attivazione non lineari che causano una diminuzione esponenziale del valore del gradiente all'aumentare della profondità della rete neurale.
Retropropagazione dell'errore
In matematica, una funzione di densità di probabilità (o PDF dall'inglese "probability density function") è l'analogo della funzione di probabilità di una variabile casuale nel caso in cui la variabile casuale formula_1 sia continua, cioè l'insieme dei possibili valori che ha la potenza del continuo. Essa descrive la "densità" di probabilità in ogni punto nello spazio campionario. La funzione di densità di probabilità di una variabile casuale formula_1 è un'applicazione formula_3 non negativa integrabile secondo Lebesgue e reale di variabile reale tale che la probabilità dell'insieme "A" sia data da per tutti i sottinsiemi "A" dello spazio campionario. Intuitivamente, se una distribuzione di probabilità ha densità formula_3, allora l'intervallo formula_6 ha probabilità formula_7. Da ciò deriva che la funzione formula_3 è un'applicazione definita come Assumendo formula_10, ciò corrisponde al limite della probabilità che formula_11 si trovi nell'intervallo formula_6 per formula_13 che tende a zero. Di qui il nome di funzione di 'densità', in quanto essa rappresenta il rapporto tra una probabilità e un'ampiezza. Per la condizione di normalizzazione l'integrale su tutto lo spazio di formula_3 deve essere 1. Di conseguenza ogni funzione non negativa, integrabile secondo Lebesgue, con integrale su tutto lo spazio uguale a 1, è la funzione densità di probabilità di una ben definita distribuzione di probabilità. Una variabile casuale che possiede densità si dice "variabile casuale continua". Per le variabili casuali multivariate (o vettoriali) la trattazione formale è assolutamente identica: formula_15 si dice assolutamente continua se esiste una funzione a valori reali definita in formula_16, detta densità congiunta, tale che per ogni sottoinsieme "A" dello spazio campionario Essa conserva tutte le proprietà di una densità scalare: è una funzione non negativa a integrale unitario su tutto lo spazio. Una proprietà importante è che se formula_15 è assolutamente continua allora lo è ogni sua componente; il viceversa invece non vale. La densità di una componente, detta densità marginale, si ottiene con un ragionamento analogo al teorema della probabilità assoluta, cioè fissando l'insieme di suoi valori di cui si vuole determinare la probabilità e lasciando libere di variare tutte le altre componenti. Infatti (nel caso bivariato per semplicità) l'evento formula_19 è l'evento formula_20, dunque utilizzando il teorema di Fubini. La densità marginale di formula_1 è data dunque da La funzione di densità della variabile casuale normale di media 0 e varianza 1 (detta "normale standard"), di cui a destra è riportato il grafico e l'espressione analitica della corrispondente densità nel caso generico (media formula_24 e varianza formula_25). Un altro esempio può essere dato dalla densità di probabilità uniforme su un segmento (0,1). Si può verificare immediatamente che è densità di probabilità facendo l'integrale tra (0,1).
Funzione di densità di probabilità
1
In statistica, la regressione di Poisson è una forma di modello lineare generalizzato di analisi di regressione usato per modellare il conteggio dei dati in tabelle contingenti. La regressione di Poisson assume che la variabile di risposta Y ha una distribuzione di Poisson, e assume che il logaritmo del suo valore aspettato possa essere modellato da una combinazione lineare di parametri sconosciuti. La regressione di Poisson è talvolta conosciuta anche come modello log-lineare, specialmente quando viene usato per modellare tabelle contingenti. La regressione binomiale negativa (NB2) è una famosa generalizzazione della regressione di Poisson perché allenta il presupposto altamente restrittivo che la varianza è uguale alla media come nel modello di Poisson La NB2 si basa sulla distribuzione mista Poisson-Gamma. Questo modello è molto usato perché modella l'eterogeneità della Poisson con la distribuzione Gamma.
Regressione di Poisson
In statistica, la funzione di verosimiglianza (o funzione di likelihood) è una funzione di probabilità condizionata, considerata come funzione del suo "secondo" argomento, mantenendo fissato il primo argomento. In gergo colloquiale spesso "verosimiglianza" è usato come sinonimo di "probabilità", ma in campo statistico vi è una distinzione tecnica precisa. Questo esempio chiarisce la differenza tra i due concetti: una persona potrebbe chiedere "Se lanciassi una moneta non truccata 100 volte, qual è la probabilità che esca testa tutte le volte?" oppure "Dato che ho lanciato una moneta 100 volte ed è uscita testa 100 volte, qual è la verosimiglianza che la moneta sia truccata?". Scambiare tra loro, nelle due frasi, i termini "verosimiglianza" e "probabilità" sarebbe errato. Una distribuzione di probabilità che dipende da un parametro può essere considerata in due modi differenti: Formalmente la funzione di verosimiglianza è una funzione: Si definisce ancora funzione di verosimiglianza ogni funzione proporzionale a tale probabilità. Dunque, la funzione di verosimiglianza per formula_2 è la classe delle funzioni: per ogni costante formula_4. A causa di ciò, l'esatto valore di formula_5 non è in generale rilevante; ciò che è importante sono rapporti nella forma: formula_6, invarianti rispetto alla costante di proporzionalità. A livello interpretativo, l'uso di una funzione di verosimiglianza trae giustificazione dal teorema di Bayes, in base al quale, per due qualsiasi eventi formula_7 e formula_2: dove sia formula_10 che formula_11 sono funzioni di verosimiglianza. L'uso di funzioni di verosimiglianza ai fini dell'inferenza statistica costituisce un tratto distintivo dell'inferenza classica, o "frequentista"; esso rappresenta inoltre una fondamentale differenza rispetto alla scuola dell'inferenza bayesiana, in quanto lo statistico bayesiano conduce inferenza tramite la probabilità formula_12 nell'espressione sopra. Alcune idee relative alla funzione di verosimiglianza sembrano essere state introdotte da T. N. Thiele in un lavoro del 1889. Il primo contributo in cui il concetto di funzione di verosimiglianza è esplicitamente formulato è tuttavia dovuto a Ronald Fisher in un suo lavoro del 1922. In tale lavoro, Fisher usa inoltre l'espressione metodo della massima verosimiglianza; argomenta inoltre contro il ricorso alla condizionata nella forma formula_13 nell'espressione sopra, da lui ritenuta ingiustificabile a causa dell'elemento di soggettività introdotto tramite la probabilità "a priori" (nel linguaggio che ora è proprio della statistica bayesiana) formula_14. Il metodo della massima verosimiglianza ha le sue applicazioni più rilevanti nella prassi come metodo di stima di modelli parametrici. Considerando un insieme di osservazioni formula_15, e una famiglia di funzioni di densità (o di massa, nel caso di distribuzioni discrete), parametrizzate tramite il vettore formula_16: la funzione di verosimiglianza associata è: Nel caso in cui, come normalmente si ipotizza, gli formula_19 siano indipendenti e identicamente distribuiti, inoltre: Poiché l'espressione sopra può risultare scarsamente trattabile, specie nei problemi di massimizzazione collegati al metodo della massima verosimiglianza, spesso risulta preferibile lavorare sul logaritmo della funzione di verosimiglianza, in gergo chiamata "log-verosimiglianza":
Funzione di verosimiglianza
1
statistica, quando si stima un parametro, la semplice individuazione di un singolo valore è spesso non sufficiente. È opportuno allora accompagnare la stima di un parametro con un intervallo di valori plausibili per quel parametro, che viene definito intervallo di confidenza (o intervallo di fiducia). Se formula_1 e formula_2 sono variabili casuali con distribuzioni di probabilità che dipendono da qualche parametro formula_3 e formula_4 (dove formula_5 è un numero tra 0 e 1), allora l'intervallo casuale formula_6 è un intervallo di confidenza al formula_7 per formula_8. I valori estremi dell'intervallo di confidenza si chiamano "limiti di confidenza". Ad esso si associa quindi un valore di probabilità cumulativa che caratterizza, indirettamente in termini di probabilità, la sua ampiezza rispetto ai valori massimi assumibili dalla variabile aleatoria misurando cioè la probabilità che l'evento casuale descritto dalla variabile aleatoria in oggetto cada all'interno di tale intervallo, graficamente pari all'area sottesa dalla curva di distribuzione di probabilità della variabile aleatoria nell'intervallo considerato. È bene non confondere l'intervallo di confidenza con la probabilità. Data l'espressione "vi è un livello di confidenza del 95% che formula_9 sia nell'intervallo", nulla si può dire sulla probabilità che l'intervallo ottenuto contenga formula_10 Si ipotizzi di voler calcolare l'età media degli abitanti di un luogo. Supponiamo che non si conosca l'età per ogni singolo abitante. Viene allora estratto un campione casuale di abitanti di cui è possibile sapere l'età, e dal campione si tenta di inferire ("predire") l'età media per tutta la popolazione residente e la variabilità di tale dato. Questo può essere fatto calcolando, ad esempio, l'età media delle persone presenti nel campione e ipotizzando che questo valore coincida con l'età media di tutta la popolazione inclusa quella non scelta nel campione. In questo caso si è fatta una "stima puntuale". Alternativamente, a partire dalle età delle persone nel campione, si può calcolare un intervallo di valori entro il quale si ritenga ci sia il valore della media di tutta la popolazione e, se la procedura è fatta in modo rigoroso e statisticamente corretto, è possibile stabilire un valore di "confidenza" di quanto sia "credibile" che l'intervallo ottenuto contenga effettivamente il valore cercato. In questo caso si è fatta una "stima per intervalli" e l'intervallo ottenuto è detto "intervallo di confidenza". Riassumendo: la stima puntuale fornisce un valore singolo che varia a seconda del campione, e difficilmente coincide con il valore vero della popolazione; la stima per intervalli fornisce un insieme di valori (intervallo) che con una certa "confidenza" contiene il valore vero della popolazione. Se formula_11 è una variabile aleatoria di media formula_9 e varianza formula_13 con formula_14 si indica la variabile campionaria corrispondente che ha media aritmetica degli formula_15 dati osservati nel campione e deviazione standard Il livello di confidenza è fissato dal ricercatore. Il valore scelto più di frequente è 95%. Tuttavia, meno di frequente, viene scelto anche un livello di confidenza del 90%, oppure del 99%. Se il valore di formula_18 non differisce molto dalla variabilità formula_19 della popolazione, può essere assunto come suo stimatore (ad esempio con un numero di soggetti osservati e replicazioni complessivamente maggiore di 60; in alternativa si ipotizza una distribuzione t di Student caratterizzata da una maggiore dispersione rispetto alla normale standard). In questa prima ipotesi, l'intervallo di confidenza per la media formula_9 ("vera media", della popolazione) al 99% (al livello formula_21), è dato da: Al 95% è dato da: Prima della diffusione dei computer si cercava di utilizzare l’approssimazione normale ogni qualvolta possibile. Adesso non è più strettamente necessario, e nella formula possono essere utilizzati percentili di altre distribuzioni, facendo rifierimento a campioni di dimensione più ridotta). Dalle formule risulta che i due intervalli di confidenza possono essere scritti in funzione dei "soli dati campionari" formula_24. Oltre a diminuire con il livello di confidenza, l'ampiezza dell'intervallo dipende dall'errore della stima formula_25 e diminuisce se: Qualora la popolazione non segua il modello gaussiano, se il campione è grande a sufficienza, la variabile campionaria tende a seguire comunque una legge normale (teorema centrale del limite). In altre parole, le due formule precedenti per l'intervallo di confidenza si possono usare anche nel caso in cui non è nota la sua legge di probabilità. Il livello di confidenza o copertura è il complemento a uno del livello di significatività formula_27: ad esempio, un intervallo di confidenza al formula_28 corrisponde a un livello di significatività di formula_29. Gli intervalli di confidenza sono spesso confusi con altri concetti della statistica, e talora oggetto di errate interpretazioni anche da parte di ricercatori professionisti. Alcuni errori comuni: Gli intervalli di confidenza furono introdotti da Jerzy Neyman in un articolo pubblicato nel 1937. C'è un metodo agevole per il calcolo degli intervalli di confidenza attraverso il test di verifica d'ipotesi (secondo l'impostazione di Neyman). Un intervallo di confidenza al 95% si può quindi ricavare da un test di verifica d'ipotesi di significatività 5%.
Intervallo di confidenza
In statistica per popolazione (o collettivo statistico o aggregato) si intende l'insieme degli elementi che sono oggetto di studio, ovvero l'insieme delle unità (dette "unità statistiche") sulle quali viene effettuata la rilevazione delle modalità con le quali il fenomeno studiato si presenta. Tali unità presentano tutte almeno una caratteristica comune, che viene accuratamente definita al fine di delimitare il loro insieme; ad esempio con "italiani" si può intendere sia le persone di nazionalità italiana, anche se residenti all'estero, sia le persone residenti in Italia, indipendentemente da quale sia la loro nazionalità. Una popolazione statistica va definita anche rispetto al tempo; ad esempio si possono considerare gli italiani che risultano residenti in Italia alle ore 12 di un dato giorno (popolazione definita secondo una caratteristica riferita ad un "istante" di tempo), oppure quelli nati dal 1º gennaio al 31 dicembre di un dato anno (popolazione definita secondo una caratteristica riferita ad un "periodo" di tempo). Una popolazione statistica, peraltro, non è sempre un insieme biologico; costituisce una popolazione anche l'insieme delle lampadine prodotte da un'azienda in un dato periodo di tempo, l'insieme delle nazioni del continente europeo in un dato anno o l'insieme degli anni di un dato secolo. I collettivi statistici, o popolazioni, possono essere distinti in: oppure in: o ancora tra:
Popolazione statistica
1
statistica, quando si stima un parametro, la semplice individuazione di un singolo valore è spesso non sufficiente. È opportuno allora accompagnare la stima di un parametro con un intervallo di valori plausibili per quel parametro, che viene definito intervallo di confidenza (o intervallo di fiducia). Se formula_1 e formula_2 sono variabili casuali con distribuzioni di probabilità che dipendono da qualche parametro formula_3 e formula_4 (dove formula_5 è un numero tra 0 e 1), allora l'intervallo casuale formula_6 è un intervallo di confidenza al formula_7 per formula_8. I valori estremi dell'intervallo di confidenza si chiamano "limiti di confidenza". Ad esso si associa quindi un valore di probabilità cumulativa che caratterizza, indirettamente in termini di probabilità, la sua ampiezza rispetto ai valori massimi assumibili dalla variabile aleatoria misurando cioè la probabilità che l'evento casuale descritto dalla variabile aleatoria in oggetto cada all'interno di tale intervallo, graficamente pari all'area sottesa dalla curva di distribuzione di probabilità della variabile aleatoria nell'intervallo considerato. È bene non confondere l'intervallo di confidenza con la probabilità. Data l'espressione "vi è un livello di confidenza del 95% che formula_9 sia nell'intervallo", nulla si può dire sulla probabilità che l'intervallo ottenuto contenga formula_10 Si ipotizzi di voler calcolare l'età media degli abitanti di un luogo. Supponiamo che non si conosca l'età per ogni singolo abitante. Viene allora estratto un campione casuale di abitanti di cui è possibile sapere l'età, e dal campione si tenta di inferire ("predire") l'età media per tutta la popolazione residente e la variabilità di tale dato. Questo può essere fatto calcolando, ad esempio, l'età media delle persone presenti nel campione e ipotizzando che questo valore coincida con l'età media di tutta la popolazione inclusa quella non scelta nel campione. In questo caso si è fatta una "stima puntuale". Alternativamente, a partire dalle età delle persone nel campione, si può calcolare un intervallo di valori entro il quale si ritenga ci sia il valore della media di tutta la popolazione e, se la procedura è fatta in modo rigoroso e statisticamente corretto, è possibile stabilire un valore di "confidenza" di quanto sia "credibile" che l'intervallo ottenuto contenga effettivamente il valore cercato. In questo caso si è fatta una "stima per intervalli" e l'intervallo ottenuto è detto "intervallo di confidenza". Riassumendo: la stima puntuale fornisce un valore singolo che varia a seconda del campione, e difficilmente coincide con il valore vero della popolazione; la stima per intervalli fornisce un insieme di valori (intervallo) che con una certa "confidenza" contiene il valore vero della popolazione. Se formula_11 è una variabile aleatoria di media formula_9 e varianza formula_13 con formula_14 si indica la variabile campionaria corrispondente che ha media aritmetica degli formula_15 dati osservati nel campione e deviazione standard Il livello di confidenza è fissato dal ricercatore. Il valore scelto più di frequente è 95%. Tuttavia, meno di frequente, viene scelto anche un livello di confidenza del 90%, oppure del 99%. Se il valore di formula_18 non differisce molto dalla variabilità formula_19 della popolazione, può essere assunto come suo stimatore (ad esempio con un numero di soggetti osservati e replicazioni complessivamente maggiore di 60; in alternativa si ipotizza una distribuzione t di Student caratterizzata da una maggiore dispersione rispetto alla normale standard). In questa prima ipotesi, l'intervallo di confidenza per la media formula_9 ("vera media", della popolazione) al 99% (al livello formula_21), è dato da: Al 95% è dato da: Prima della diffusione dei computer si cercava di utilizzare l’approssimazione normale ogni qualvolta possibile. Adesso non è più strettamente necessario, e nella formula possono essere utilizzati percentili di altre distribuzioni, facendo rifierimento a campioni di dimensione più ridotta). Dalle formule risulta che i due intervalli di confidenza possono essere scritti in funzione dei "soli dati campionari" formula_24. Oltre a diminuire con il livello di confidenza, l'ampiezza dell'intervallo dipende dall'errore della stima formula_25 e diminuisce se: Qualora la popolazione non segua il modello gaussiano, se il campione è grande a sufficienza, la variabile campionaria tende a seguire comunque una legge normale (teorema centrale del limite). In altre parole, le due formule precedenti per l'intervallo di confidenza si possono usare anche nel caso in cui non è nota la sua legge di probabilità. Il livello di confidenza o copertura è il complemento a uno del livello di significatività formula_27: ad esempio, un intervallo di confidenza al formula_28 corrisponde a un livello di significatività di formula_29. Gli intervalli di confidenza sono spesso confusi con altri concetti della statistica, e talora oggetto di errate interpretazioni anche da parte di ricercatori professionisti. Alcuni errori comuni: Gli intervalli di confidenza furono introdotti da Jerzy Neyman in un articolo pubblicato nel 1937. C'è un metodo agevole per il calcolo degli intervalli di confidenza attraverso il test di verifica d'ipotesi (secondo l'impostazione di Neyman). Un intervallo di confidenza al 95% si può quindi ricavare da un test di verifica d'ipotesi di significatività 5%.
Intervallo di confidenza
Lo scarto quadratico medio (o deviazione standard o scarto tipo) è un indice di dispersione statistico, vale a dire una stima della variabilità di una popolazione di dati o di una variabile casuale. È uno dei modi per esprimere la dispersione dei dati intorno ad un indice di posizione, quale può essere, ad esempio, la media aritmetica o una sua stima. Ha pertanto la stessa unità di misura dei valori osservati (al contrario della varianza che ha come unità di misura il quadrato dell'unità di misura dei valori di riferimento). In statistica la precisione si può esprimere come lo scarto quadratico medio. Il termine ""standard deviation"" è stato introdotto in statistica da Pearson nel 1894 assieme alla lettera greca formula_1 (sigma) che lo rappresenta. Il termine italiano "deviazione standard" ne è la traduzione più utilizzata nel linguaggio comune; il termine dell'Ente Nazionale Italiano di Unificazione è tuttavia "scarto tipo", definito come la radice quadrata positiva della varianza per lo meno fin dal 1984. Se non indicato diversamente, lo scarto quadratico medio è la radice quadrata della varianza, la quale viene coerentemente rappresentata con il quadrato di sigma (formula_2). In statistica lo scarto quadratico medio di un carattere rilevato su una popolazione di formula_3 unità statistiche si definisce esplicitamente come: dove formula_5 è la media aritmetica di formula_6. Formalmente lo scarto quadratico medio di una variabile può essere calcolata a partire dalla funzione generatrice dei momenti, in particolare è la radice quadrata della differenza tra il momento secondo ed il momento primo elevato al quadrato. A partire dallo scarto quadratico medio si definisce anche il coefficiente di variazione o la "deviazione standard relativa" come il rapporto tra lo scarto tipo formula_7 e il valore assoluto della media aritmetica della variabile in esame: Questo indice relativo (che viene spesso espresso in termini percentuali) consente di effettuare confronti tra dispersioni di dati di tipo diverso, indipendentemente dalle loro quantità assolute. Nell'ambito della statistica inferenziale (dove è noto solo un campione della popolazione), soprattutto nell'ambito della teoria della stima, a volte si rimpiazza il denominatore formula_3 con formula_10 ottenendo: Sostanzialmente, poiché non è nota la media dell'intera popolazione, ma solo una sua stima (la media del campione), bisogna utilizzare formula_10 per ottenere uno stimatore corretto formula_13 della varianza incognita formula_7 di formula_6 sull'intera popolazione a partire dai dati del campione. La sua radice quadrata diviene lo scarto quadratico medio "corretto". Questa correzione al denominatore fa sì che la nuova definizione sia un po' più grande della precedente, correggendo così la tendenza della precedente a sottostimare le incertezze soprattutto nel caso in cui si lavori con pochi dati (formula_3 piccolo). Osserviamo il caso limite di formula_17, cioè quando si ha un campione di un solo elemento: la prima definizione dà il risultato formula_18, che ovviamente non è molto ragionevole nell'ambito della statistica inferenziale, mentre quella "corretta" dà un risultato non definito del tipo formula_19, rispecchiando così la totale ignoranza inerente all'incertezza su una singola misura. In questo senso, si dice che la statistica non dice nulla sul singolo caso. Osserviamo che la differenza tra le due definizioni per campioni molto estesi è spesso numericamente insignificante. Il calcolo può essere semplificato come segue: cioè, applicando il tutto alla formula originale: Sia formula_6 una variabile aleatoria, lo scarto quadratico medio è definito come la radice quadrata della varianza di formula_6 Formalmente lo scarto quadratico medio di una variabile aleatoria può essere calcolato a partire dalla funzione generatrice dei momenti, in particolare è la radice quadrata della differenza tra il momento secondo ed il momento primo elevato al quadrato, cioè dove formula_26 è il valore atteso di formula_6. In ambito finanziario, lo scarto quadratico medio viene usato per indicare la variabilità di un'attività finanziaria e dei suoi payoff (rendimenti). Esso fornisce quindi, implicitamente, una misura della volatilità dell'attività, quindi del suo rischio. In fisica, è un ottimo indice dell'errore casuale della misurazione di una grandezza fisica. In ambito sportivo è utilizzato per valutare la prestazione di un giocatore di bowling in riferimento ad un certo numero di partite. Il valore trovato non incide sul punteggio ma sintetizza le capacità e i miglioramenti del giocatore. In ingegneria, è uno dei parametri da considerare per valutare la capacità di un processo produttivo. Nelle applicazioni informatiche, è a volte conveniente utilizzare la formula che consente, con sole tre variabili formula_29, di calcolare lo scarto quadratico medio, oltre che la media, di un flusso di numeri di lunghezza formula_3 senza dover ricorrere ad una memorizzazione degli stessi.
Scarto quadratico medio
1
In statistica, la regressione di Poisson è una forma di modello lineare generalizzato di analisi di regressione usato per modellare il conteggio dei dati in tabelle contingenti. La regressione di Poisson assume che la variabile di risposta Y ha una distribuzione di Poisson, e assume che il logaritmo del suo valore aspettato possa essere modellato da una combinazione lineare di parametri sconosciuti. La regressione di Poisson è talvolta conosciuta anche come modello log-lineare, specialmente quando viene usato per modellare tabelle contingenti. La regressione binomiale negativa (NB2) è una famosa generalizzazione della regressione di Poisson perché allenta il presupposto altamente restrittivo che la varianza è uguale alla media come nel modello di Poisson La NB2 si basa sulla distribuzione mista Poisson-Gamma. Questo modello è molto usato perché modella l'eterogeneità della Poisson con la distribuzione Gamma.
Regressione di Poisson
In teoria della probabilità la probabilità condizionata di un evento "A" rispetto a un evento "B" è la probabilità che si verifichi "A", sapendo che "B" è verificato. Questa probabilità, indicata formula_1 o formula_2, esprime una "correzione" delle aspettative per "A", dettata dall'osservazione di "B". Poiché, come si vedrà nella successiva definizione, formula_3 compare al denominatore, formula_1 ha senso solo se "B" ha una probabilità non nulla di verificarsi. È utile osservare che la notazione con il simbolo "Barra verticale" è comune con la definizione del connettivo logico NAND. Per esempio, la probabilità di ottenere "4" con il lancio di un dado a sei facce (evento "A") ha probabilità "P(A)=1/6" di verificarsi. "Sapendo" però che il risultato del lancio è un numero tra "4", "5" e "6" (evento "B"), la probabilità di "A" diventa Si consideri questo secondo esempio, la probabilità di ottenere "1" con il lancio di un comune dado (evento "A") ha probabilità "P(A)=1/6" di verificarsi. "Sapendo" però che il risultato del lancio è un numero tra "4", "5" e "6" (evento "B"), la probabilità di "A" diventa La probabilità di "A" condizionata da "B" è dove formula_8 è la probabilità congiunta dei due eventi, ovvero la probabilità che si verifichino entrambi. In termini più rigorosi, dato uno spazio misurabile formula_9 di misura "P", ogni evento "B" eredita una struttura di spazio misurato formula_10, restringendo gli insiemi misurabili a quelli contenuti in "B", ed induce una nuova misura formula_11 su formula_9, con formula_13. Se formula_14 è uno spazio probabilizzato (formula_15) e "B" non è trascurabile (formula_16), allora riscalando formula_17 a formula_18 si ottiene lo spazio probabilizzato formula_19 delle probabilità condizionate da "B". La formula della probabilità condizionata permette di descrivere la probabilità congiunta come Ovvero, la probabilità che si verifichino sia "A" sia "B" è pari alla probabilità che si verifichi "B" moltiplicata per la probabilità che si verifichi "A" supponendo che "B" sia verificato. Due eventi "A" e "B" sono indipendenti quando vale una delle tre equazioni equivalenti Per trovare la probabilità dell'evento a destra negato si può usare la seguente formula: formula_24. Se "A" e "B" sono eventi disgiunti, cioè se formula_25, le loro probabilità condizionate sono nulle: sapendo che uno dei due eventi si è verificato, è impossibile che si sia verificato "anche" l'altro. Se l'evento "A" implica l'evento "B", cioè se formula_26, allora la loro intersezione è "A", per cui formula_27 e: Nel caso di una misura di probabilità uniforme su uno spazio Ω finito, questa formula per "P(A|B)" esprime la definizione classica di probabilità come "casi favorevoli ("A") su casi possibili ("B")". Invece, per "P(B|A)" otteniamo il valore 1 che, per un numero finito di valori lo stesso Bayes interpretò in senso lato come la certezza che il tutto sia condizionato dalla parte. La speranza condizionata formula_30 di una variabile aleatoria "X" ad un evento "B" è la speranza di "X" calcolata sulle probabilità formula_31 (condizionate da "B"). La probabilità di un evento "A" può essere condizionata da una variabile aleatoria discreta "X", originando una nuova variabile aleatoria, formula_32, che per "X=x" assume il valore formula_33. Il teorema di Bayes esprime l'uguaglianza simmetrica formula_34 del teorema della probabilità composta come Questo teorema è alla base dell'inferenza bayesiana in statistica, dove "P" è detta "probabilità "a priori" di "B"" e "P" "probabilità "a posteriori" di "B"". Molti paradossi sono legati alla probabilità condizionata e derivano sia da un'errata formulazione del problema sia dalla confusione di "P(A|B)" con "P(A)" o con "P(B|A)". Esempi particolari sono il paradosso delle due buste, il paradosso dei due bambini, il problema di Monty Hall e il paradosso di Simpson.
Probabilità condizionata
1
L'algoritmo K-means è un algoritmo di clustering partizionale che permette di suddividere un insieme di oggetti in K gruppi sulla base dei loro attributi. È una variante dell'algoritmo di aspettativa-massimizzazione (EM) il cui obiettivo è determinare i K gruppi di dati generati da distribuzioni gaussiane. Si assume che gli attributi degli oggetti possano essere rappresentati come vettori, e che quindi formino uno spazio vettoriale. L'obiettivo che l'algoritmo si prepone è di minimizzare la varianza totale intra-cluster. Ogni cluster viene identificato mediante un centroide o punto medio. L'algoritmo segue una procedura iterativa. Inizialmente crea K partizioni e assegna ad ogni partizione i punti d'ingresso o casualmente o usando alcune informazioni euristiche. Quindi calcola il centroide di ogni gruppo. Costruisce quindi una nuova partizione associando ogni punto d'ingresso al cluster il cui centroide è più vicino ad esso. Quindi vengono ricalcolati i centroidi per i nuovi cluster e così via, finché l'algoritmo non converge. Dati N oggetti con formula_1 attributi, modellizzati come vettori in uno spazio vettoriale formula_1-dimensionale, definiamo formula_3 come insieme degli oggetti. Ricordiamo che si definisce partizione degli oggetti il gruppo di insiemi formula_4 che soddisfano le seguenti proprietà: Ovviamente deve valere anche che formula_8; non avrebbe infatti senso né cercare un solo cluster né avere un numero di cluster pari al numero di oggetti. Una partizione viene rappresentata mediante una matrice formula_9, il cui generico elemento formula_10 indica l'appartenenza dell'oggetto formula_11 al cluster formula_1. Indichiamo quindi con formula_13 l'insieme dei formula_14 centroidi. A questo punto definiamo la funzione obiettivo come: e di questa calcoliamo il minimo seguendo la procedura iterativa vista sopra: Tipici criteri di convergenza sono i seguenti: L'algoritmo ha acquistato notorietà dato che converge molto velocemente. Infatti, si è osservato che generalmente il numero di iterazioni è minore del numero di punti. Comunque, l'algoritmo può essere molto lento nel caso peggiore: D. Arthur e S. Vassilvitskii hanno mostrato che esistono certi insiemi di punti per i quali l'algoritmo impiega un tempo superpolinomiale, formula_24, a convergere. Più recentemente, A. Vattani ha migliorato questo risultato mostrando che l'algoritmo può impiegare tempo esponenziale, formula_25, a convergere anche per certi insiemi di punti sul piano. D'altra parte, D. Arthur, B. Manthey e H. Roeglin hanno mostrato che la smoothed complexity dell'algoritmo è polinomiale, la qual cosa è a supporto del fatto che l'algoritmo è veloce in pratica. In termini di qualità delle soluzioni, l'algoritmo non garantisce il raggiungimento dell'ottimo globale. La qualità della soluzione finale dipende largamente dal set di cluster iniziale e può, in pratica, ottenere una soluzione ben peggiore dell'ottimo globale. Dato che l'algoritmo è di solito estremamente veloce, è possibile applicarlo più volte e fra le soluzioni prodotte scegliere quella più soddisfacente. Un altro svantaggio dell'algoritmo è che esso richiede di scegliere il numero di cluster(k) da trovare. Se i dati non sono naturalmente partizionati si ottengono risultati strani. Inoltre l'algoritmo funziona bene solo quando sono individuabili cluster sferici nei dati. È possibile applicare l'algoritmo K-means in Matlab utilizzando la funzione kmeans(DATA, N_CLUSTER), che individua N_CLUSTER numeri di cluster nel data set DATA. Il seguente m-file mostra una possibile applicazione dell'algoritmo per la clusterizzazione di immagini basata sui colori. "img_segm.m" La funzione legge l'immagine utilizzando la funzione Matlab imread, che riceve in ingresso il nome del file contenente l'immagine e restituisce una matrice il cui elemento formula_26 contiene il codice di colore del pixel i,j. Successivamente costruisce la matrice delle osservazioni con due semplici cicli for. Viene infine passata in ingresso all'algoritmo di clustering la matrice delle osservazioni e, dopo aver generato le matrici utili per visualizzare i cluster prodotti in un'immagine, queste vengono mostrate a video con la funzione image. Ad esempio, eseguendo il comando: img_segm('kmeans0.jpg',2); si ottiene il seguente risultato:
K-means
Lo scarto quadratico medio (o deviazione standard o scarto tipo) è un indice di dispersione statistico, vale a dire una stima della variabilità di una popolazione di dati o di una variabile casuale. È uno dei modi per esprimere la dispersione dei dati intorno ad un indice di posizione, quale può essere, ad esempio, la media aritmetica o una sua stima. Ha pertanto la stessa unità di misura dei valori osservati (al contrario della varianza che ha come unità di misura il quadrato dell'unità di misura dei valori di riferimento). In statistica la precisione si può esprimere come lo scarto quadratico medio. Il termine ""standard deviation"" è stato introdotto in statistica da Pearson nel 1894 assieme alla lettera greca formula_1 (sigma) che lo rappresenta. Il termine italiano "deviazione standard" ne è la traduzione più utilizzata nel linguaggio comune; il termine dell'Ente Nazionale Italiano di Unificazione è tuttavia "scarto tipo", definito come la radice quadrata positiva della varianza per lo meno fin dal 1984. Se non indicato diversamente, lo scarto quadratico medio è la radice quadrata della varianza, la quale viene coerentemente rappresentata con il quadrato di sigma (formula_2). In statistica lo scarto quadratico medio di un carattere rilevato su una popolazione di formula_3 unità statistiche si definisce esplicitamente come: dove formula_5 è la media aritmetica di formula_6. Formalmente lo scarto quadratico medio di una variabile può essere calcolata a partire dalla funzione generatrice dei momenti, in particolare è la radice quadrata della differenza tra il momento secondo ed il momento primo elevato al quadrato. A partire dallo scarto quadratico medio si definisce anche il coefficiente di variazione o la "deviazione standard relativa" come il rapporto tra lo scarto tipo formula_7 e il valore assoluto della media aritmetica della variabile in esame: Questo indice relativo (che viene spesso espresso in termini percentuali) consente di effettuare confronti tra dispersioni di dati di tipo diverso, indipendentemente dalle loro quantità assolute. Nell'ambito della statistica inferenziale (dove è noto solo un campione della popolazione), soprattutto nell'ambito della teoria della stima, a volte si rimpiazza il denominatore formula_3 con formula_10 ottenendo: Sostanzialmente, poiché non è nota la media dell'intera popolazione, ma solo una sua stima (la media del campione), bisogna utilizzare formula_10 per ottenere uno stimatore corretto formula_13 della varianza incognita formula_7 di formula_6 sull'intera popolazione a partire dai dati del campione. La sua radice quadrata diviene lo scarto quadratico medio "corretto". Questa correzione al denominatore fa sì che la nuova definizione sia un po' più grande della precedente, correggendo così la tendenza della precedente a sottostimare le incertezze soprattutto nel caso in cui si lavori con pochi dati (formula_3 piccolo). Osserviamo il caso limite di formula_17, cioè quando si ha un campione di un solo elemento: la prima definizione dà il risultato formula_18, che ovviamente non è molto ragionevole nell'ambito della statistica inferenziale, mentre quella "corretta" dà un risultato non definito del tipo formula_19, rispecchiando così la totale ignoranza inerente all'incertezza su una singola misura. In questo senso, si dice che la statistica non dice nulla sul singolo caso. Osserviamo che la differenza tra le due definizioni per campioni molto estesi è spesso numericamente insignificante. Il calcolo può essere semplificato come segue: cioè, applicando il tutto alla formula originale: Sia formula_6 una variabile aleatoria, lo scarto quadratico medio è definito come la radice quadrata della varianza di formula_6 Formalmente lo scarto quadratico medio di una variabile aleatoria può essere calcolato a partire dalla funzione generatrice dei momenti, in particolare è la radice quadrata della differenza tra il momento secondo ed il momento primo elevato al quadrato, cioè dove formula_26 è il valore atteso di formula_6. In ambito finanziario, lo scarto quadratico medio viene usato per indicare la variabilità di un'attività finanziaria e dei suoi payoff (rendimenti). Esso fornisce quindi, implicitamente, una misura della volatilità dell'attività, quindi del suo rischio. In fisica, è un ottimo indice dell'errore casuale della misurazione di una grandezza fisica. In ambito sportivo è utilizzato per valutare la prestazione di un giocatore di bowling in riferimento ad un certo numero di partite. Il valore trovato non incide sul punteggio ma sintetizza le capacità e i miglioramenti del giocatore. In ingegneria, è uno dei parametri da considerare per valutare la capacità di un processo produttivo. Nelle applicazioni informatiche, è a volte conveniente utilizzare la formula che consente, con sole tre variabili formula_29, di calcolare lo scarto quadratico medio, oltre che la media, di un flusso di numeri di lunghezza formula_3 senza dover ricorrere ad una memorizzazione degli stessi.
Scarto quadratico medio
1
In statistica e apprendimento automatico, il clustering gerarchico è un approccio di clustering che mira a costruire una gerarchia di cluster. Le strategie per il clustering gerarchico sono tipicamente di due tipi: Il risultato di un clustering gerarchico è rappresentato in un dendrogramma. Per decidere quali cluster devono essere combinati (approccio agglomerativo) o quale cluster deve essere suddiviso (approccio divisivo) è necessario definire una misura di dissimilarità tra cluster. Nella maggior parte dei metodi di clustering gerarchico si fa uso di metriche specifiche che quantificano la distanza tra coppie di elementi e di un criterio di collegamento che specifica la dissimilarità di due insiemi di elementi (cluster) come funzione della distanza a coppie tra elementi nei due insiemi. La scelta di una metrica appropriata influenza la forma dei cluster, poiché alcuni elementi possono essere più "vicini" utilizzando una distanza e più "lontani" utilizzandone un'altra. Per esempio, in uno spazio a 2 dimensioni, la distanza tra il punto (1, 1) e l'origine (0, 0) è 2, formula_1 or 1 se si utilizzando rispettivamente le norme 1, 2 o infinito. Metriche comuni sono le seguenti: Il criterio di collegamento ("linkage criterion") specifica la distanza tra insiemi di elementi come funzione di distanze tra gli elementi negli insiemi. Dati due insiemi di elementi "A" e "B" alcuni criteri comunemente utilizzati sono: dove "d" è la metrica prescelta per determinare la similarità tra coppie di elementi.
Clustering gerarchico
Nell'ambito della scienza dei dati l'analisi dei dati è un processo di ispezione, pulizia, trasformazione e modellazione di dati con il fine di evidenziare informazioni che suggeriscano conclusioni e supportino le decisioni strategiche aziendali. L'analisi di dati ha molti approcci e sfaccettature, il che comprende tecniche diversissime tra loro che si riconoscono con una serie di definizioni varie nel commercio, le scienze naturali e sociali. Il data mining è una tecnica particolare di analisi dei dati che si focalizza nella modellazione e scoperta di conoscenza per scopi predittivi piuttosto che descrittivi. Il business intelligence identifica l'analisi di dati che si basa fondamentalmente sull'aggregazione, focalizzandosi sulle informazioni aziendali. Nell'ambito dei big data si parla di big data analytics. Nelle applicazioni statistiche, gli studiosi dividono l'analisi dei dati in statistica descrittiva, analisi dei dati esplorativa (ADE) e analisi dei dati di conferma (ADC). L'ADE si concentra sullo scoprire nuove caratteristiche presenti nei dati, mentre l'ADC nel confermare o falsificare le ipotesi esistenti. L'analisi predittiva si concentra sull'applicazione di modelli statistici o strutturali per classificazione o il forecasting predittivo, mentre l'analisi testuale applica tecniche statistiche, linguistiche e strutturali per estrarre e classificare informazioni da fonti testuali, una categoria di dati non-strutturati. L'integrazione di dati è un precursore dell'analisi dei dati, la quale è collegata alla visualizzazione di dati.
Analisi dei dati
1
In statistica, il clustering o analisi dei gruppi (dal termine inglese "cluster analysis" introdotto da Robert Tryon nel 1939) è un insieme di tecniche di analisi multivariata dei dati volte alla selezione e raggruppamento di elementi omogenei in un insieme di dati. Le tecniche di "clustering" si basano su misure relative alla somiglianza tra gli elementi. In molti approcci questa similarità, o meglio, dissimilarità, è concepita in termini di distanza in uno spazio multidimensionale. La bontà delle analisi ottenute dagli algoritmi di "clustering" dipende molto dalla scelta della metrica, e quindi da come è calcolata la distanza. Gli algoritmi di "clustering" raggruppano gli elementi sulla base della loro distanza reciproca, e quindi l'appartenenza o meno ad un insieme dipende da quanto l'elemento preso in esame è distante dall'insieme stesso. Le tecniche di "clustering" si possono basare principalmente su due "filosofie": Esistono varie classificazioni delle tecniche di clustering comunemente utilizzate. Una prima categorizzazione dipende dalla possibilità che un elemento possa o meno essere assegnato a più cluster: Un'altra suddivisione delle tecniche di clustering tiene conto del tipo di algoritmo utilizzato per dividere lo spazio: Queste due suddivisioni sono del tutto trasversali, e molti algoritmi nati come "esclusivi" sono stati in seguito adattati nel caso "non-esclusivo" e viceversa. Gli algoritmi di clustering di questa famiglia creano una partizione delle osservazioni minimizzando una certa funzione di costo: dove formula_2 è il numero dei cluster, formula_3 è il formula_4-esimo cluster e formula_5 è la funzione di costo associata al singolo cluster. L'algoritmo più famoso appartenente a questa famiglia è il k-means, proposto da MacQueen nel 1967. Un altro algoritmo abbastanza conosciuto appartenente a questa classe è il Partitioning Around Medioid (PAM). Le tecniche di clustering gerarchico non producono un partizionamento "flat" dei punti, ma una rappresentazione gerarchica ad albero. Questi algoritmi sono a loro volta suddivisi in due classi: Una rappresentazione grafica del processo di clustering è fornita dal dendrogramma. In entrambi i tipi di clustering gerarchico sono necessarie funzioni per selezionare la coppia di cluster da fondere ("agglomerativo"), oppure il cluster da dividere ("divisivo"). Nel primo caso, sono necessarie funzioni che misurino la "similarità" (o, indistintamente, la "distanza") tra due cluster, in modo da fondere quelli più simili. Le funzioni utilizzate nel caso agglomerativo sono: Nei 4 casi precedenti, formula_10 indica una qualsiasi funzione distanza su uno spazio metrico. Invece nel clustering divisivo è necessario individuare il cluster da suddividere in due sottogruppi. Per questa ragione sono necessarie funzioni che misurino la compattezza del cluster, la densità o la sparsità dei punti assegnati ad un cluster. Le funzioni normalmente utilizzate nel caso divisivo sono: Nel "Clustering density-based", il raggruppamento avviene analizzando l'intorno di ogni punto dello spazio. In particolare, viene considerata la densità di punti in un intorno di raggio fissato. Un esempio è il metodo di clustering Dbscan. Algoritmi di clustering molto usati sono: Il QT ("Quality Threshold") Clustering (Heyer et al., 1999) è un metodo alternativo di partizionare i dati, inventato per il clustering dei geni. Richiede più potenza di calcolo rispetto al "K"-Means, ma non richiede di specificare il numero di cluster "a priori", e restituisce sempre lo stesso risultato quando si ripete diverse volte. L'algoritmo è: La distanza tra un punto ed un gruppo di punti è calcolata usando il concatenamento completo, cioè come la massima distanza dal punto di ciascun membro del gruppo (vedi il "Clustering gerarchico agglomerativo" sulla distanza tra i cluster nella sezione clustering gerarchico).
Clustering
Lo scarto quadratico medio (o deviazione standard o scarto tipo) è un indice di dispersione statistico, vale a dire una stima della variabilità di una popolazione di dati o di una variabile casuale. È uno dei modi per esprimere la dispersione dei dati intorno ad un indice di posizione, quale può essere, ad esempio, la media aritmetica o una sua stima. Ha pertanto la stessa unità di misura dei valori osservati (al contrario della varianza che ha come unità di misura il quadrato dell'unità di misura dei valori di riferimento). In statistica la precisione si può esprimere come lo scarto quadratico medio. Il termine ""standard deviation"" è stato introdotto in statistica da Pearson nel 1894 assieme alla lettera greca formula_1 (sigma) che lo rappresenta. Il termine italiano "deviazione standard" ne è la traduzione più utilizzata nel linguaggio comune; il termine dell'Ente Nazionale Italiano di Unificazione è tuttavia "scarto tipo", definito come la radice quadrata positiva della varianza per lo meno fin dal 1984. Se non indicato diversamente, lo scarto quadratico medio è la radice quadrata della varianza, la quale viene coerentemente rappresentata con il quadrato di sigma (formula_2). In statistica lo scarto quadratico medio di un carattere rilevato su una popolazione di formula_3 unità statistiche si definisce esplicitamente come: dove formula_5 è la media aritmetica di formula_6. Formalmente lo scarto quadratico medio di una variabile può essere calcolata a partire dalla funzione generatrice dei momenti, in particolare è la radice quadrata della differenza tra il momento secondo ed il momento primo elevato al quadrato. A partire dallo scarto quadratico medio si definisce anche il coefficiente di variazione o la "deviazione standard relativa" come il rapporto tra lo scarto tipo formula_7 e il valore assoluto della media aritmetica della variabile in esame: Questo indice relativo (che viene spesso espresso in termini percentuali) consente di effettuare confronti tra dispersioni di dati di tipo diverso, indipendentemente dalle loro quantità assolute. Nell'ambito della statistica inferenziale (dove è noto solo un campione della popolazione), soprattutto nell'ambito della teoria della stima, a volte si rimpiazza il denominatore formula_3 con formula_10 ottenendo: Sostanzialmente, poiché non è nota la media dell'intera popolazione, ma solo una sua stima (la media del campione), bisogna utilizzare formula_10 per ottenere uno stimatore corretto formula_13 della varianza incognita formula_7 di formula_6 sull'intera popolazione a partire dai dati del campione. La sua radice quadrata diviene lo scarto quadratico medio "corretto". Questa correzione al denominatore fa sì che la nuova definizione sia un po' più grande della precedente, correggendo così la tendenza della precedente a sottostimare le incertezze soprattutto nel caso in cui si lavori con pochi dati (formula_3 piccolo). Osserviamo il caso limite di formula_17, cioè quando si ha un campione di un solo elemento: la prima definizione dà il risultato formula_18, che ovviamente non è molto ragionevole nell'ambito della statistica inferenziale, mentre quella "corretta" dà un risultato non definito del tipo formula_19, rispecchiando così la totale ignoranza inerente all'incertezza su una singola misura. In questo senso, si dice che la statistica non dice nulla sul singolo caso. Osserviamo che la differenza tra le due definizioni per campioni molto estesi è spesso numericamente insignificante. Il calcolo può essere semplificato come segue: cioè, applicando il tutto alla formula originale: Sia formula_6 una variabile aleatoria, lo scarto quadratico medio è definito come la radice quadrata della varianza di formula_6 Formalmente lo scarto quadratico medio di una variabile aleatoria può essere calcolato a partire dalla funzione generatrice dei momenti, in particolare è la radice quadrata della differenza tra il momento secondo ed il momento primo elevato al quadrato, cioè dove formula_26 è il valore atteso di formula_6. In ambito finanziario, lo scarto quadratico medio viene usato per indicare la variabilità di un'attività finanziaria e dei suoi payoff (rendimenti). Esso fornisce quindi, implicitamente, una misura della volatilità dell'attività, quindi del suo rischio. In fisica, è un ottimo indice dell'errore casuale della misurazione di una grandezza fisica. In ambito sportivo è utilizzato per valutare la prestazione di un giocatore di bowling in riferimento ad un certo numero di partite. Il valore trovato non incide sul punteggio ma sintetizza le capacità e i miglioramenti del giocatore. In ingegneria, è uno dei parametri da considerare per valutare la capacità di un processo produttivo. Nelle applicazioni informatiche, è a volte conveniente utilizzare la formula che consente, con sole tre variabili formula_29, di calcolare lo scarto quadratico medio, oltre che la media, di un flusso di numeri di lunghezza formula_3 senza dover ricorrere ad una memorizzazione degli stessi.
Scarto quadratico medio
1
Una rete neurale feed-forward ("rete neurale con flusso in avanti") o rete feed-forward è una rete neurale artificiale dove le connessioni tra le unità non formano cicli, differenziandosi dalle reti neurali ricorrenti. Questo tipo di rete neurale fu la prima e più semplice tra quelle messe a punto. In questa rete neurale le informazioni si muovono solo in una direzione, avanti, rispetto a nodi d'ingresso, attraverso nodi nascosti (se esistenti) fino ai nodi d'uscita. Nella rete non ci sono cicli. Le reti feed-forward non hanno memoria di input avvenuti a tempi precedenti, per cui l'output è determinato solamente dall'attuale input. La più semplice rete feed-forward è il "percettrone a singolo strato" (SLP dall'inglese single layer perceptron), utilizzato verso la fine degli anni '60. Un SLP è costituito da un strato in ingresso, seguito direttamente dall'uscita. Ogni unità di ingresso è collegata ad ogni unità di uscita. In pratica questo tipo di rete neurale ha un solo strato che effettua l'elaborazione dei dati, e non presenta nodi nascosti, da cui il nome. Gli SLP sono molto limitati a causa del piccolo numero di connessioni e dell'assenza di gerarchia nelle caratteristiche che la rete può estrarre dai dati (questo significa che è capace di combinare i dati in ingresso una sola volta). Famosa fu la dimostrazione che un SLP non riesce neanche a rappresentare la funzione XOR. Questo risultato, apparso nel 1969, scoraggiò i ricercatori e bloccò la ricerca sulle reti neurali per diversi anni. Questa classe di reti feedforward si distingue dalla precedente dal fatto che tra lo strato di input e quello di output abbiamo uno o più strati di neuroni nascosti (hidden layers). Ogni strato ha connessioni entranti dal precedente strato e uscenti in quello successivo, quindi la propagazione del segnale avviene in avanti senza cicli e senza connessioni trasversali. Questo tipo di architettura fornisce alla rete una prospettiva globale in quanto aumentano le interazioni tra neuroni.
Rete neurale feed-forward
L’apprendimento automatico (noto anche come machine learning) è una branca dell'intelligenza artificiale che raccoglie un insieme di metodi, sviluppati a partire dagli ultimi decenni del XX secolo in varie comunità scientifiche, sotto diversi nomi quali: statistica computazionale, riconoscimento di pattern, reti neurali artificiali, filtraggio adattivo, teoria dei sistemi dinamici, elaborazione delle immagini, data mining, algoritmi adattivi, ecc; che utilizza metodi statistici per migliorare progressivamente la performance di un algoritmo nell'identificare pattern nei dati. Nell'ambito dell'informatica, l'apprendimento automatico è una variante alla programmazione tradizionale nella quale si predispone in una macchina l'abilità di apprendere qualcosa dai dati in maniera autonoma, senza ricevere istruzioni esplicite a riguardo. Lo stesso Arthur Samuel che coniò il termine nel 1959 in linea di principio identifica due approcci distinti. Il primo metodo, indicato come rete neurale, porta allo sviluppo di macchine ad apprendimento automatico per impiego generale in cui il comportamento è appreso da una rete di commutazione connessa casualmente, a seguito di una routine di apprendimento basata su ricompensa e punizione (apprendimento per rinforzo). Il secondo metodo, più specifico, consiste nel riprodurre l'equivalente di una rete altamente organizzata progettata per imparare solo alcune attività specifiche. La seconda procedura, che necessita di supervisione, richiede la riprogrammazione per ogni nuova applicazione, ma risulta essere molto più efficiente dal punto di vista computazionale. L'apprendimento automatico è strettamente legato al riconoscimento di pattern e alla teoria computazionale dell'apprendimento ed esplora lo studio e la costruzione di algoritmi che possano apprendere da un insieme di dati e fare delle predizioni su questi, costruendo in modo induttivo un modello basato su dei campioni. L'apprendimento automatico viene impiegato in quei campi dell'informatica nei quali progettare e programmare algoritmi espliciti è impraticabile; tra le possibili applicazioni citiamo il filtraggio delle email per evitare spam, l'individuazione di intrusioni in una rete o di intrusi che cercano di violare dati, il riconoscimento ottico dei caratteri, i motori di ricerca e la visione artificiale. L'apprendimento automatico è strettamente collegato, e spesso si sovrappone con la statistica computazionale, che si occupa dell'elaborazione di predizioni tramite l'uso di computer. L'apprendimento automatico è anche fortemente legato all'ottimizzazione matematica, che fornisce metodi, teorie e domini di applicazione a questo campo. Per usi commerciali, l'apprendimento automatico è conosciuto come analisi predittiva. L'apprendimento automatico si sviluppa con lo studio dell'intelligenza artificiale, e vi è strettamente collegato: infatti già dai primi tentativi di definire l'intelligenza artificiale come disciplina accademica, alcuni ricercatori si erano mostrati interessati alla possibilità che le macchine imparassero dai dati. Questi ricercatori, in particolare Marvin Minsky, Arthur Samuel e Frank Rosenblatt, provarono ad avvicinarsi al problema sia attraverso vari metodi formali, sia con quelle che vengono definite reti neurali nei tardi anni '50. Le reti neurali erano allora costituite da singoli percettroni e da modelli matematici derivati dal modello lineare generalizzato della statistica, come l'ADALINE di Widrow. Si provò a sfruttare anche ragionamenti probabilistici, in particolare nelle diagnosi mediche automatiche. Sempre negli anni '50, Alan Turing propose l'idea di una "macchina che apprende", ovvero in grado di imparare e dunque diventare intelligente. La proposta specifica di Turing anticipa gli algoritmi genetici. Tuttavia già dalla metà degli anni '50 lo studio dell'intelligenza artificiale si stava concentrando su approcci logici di tipo "knowledge-based", nota oggi sotto il nome di GOFAI, causando un distacco tra lo studio dell'IA e quello dell'apprendimento automatico. Sistemi di tipo probabilistico erano invasi di problemi sia teoretici sia pratici in termini di acquisizione e rappresentazione dei dati. Negli anni Ottanta, i sistemi esperti dominavano il campo dell'IA, e i sistemi basati sulla statistica non venivano più studiati. Lo studio dell'apprendimento simbolico e "knowledge-based" continuò nell'ambito dell'IA, portando a sviluppare la programmazione logica induttiva, ma ora la ricerca più prettamente statistica si svolgeva al di fuori del campo vero e proprio dell'intelligenza artificiale, nel riconoscimento di pattern e nell'information retrieval. Un altro motivo per cui lo studio dell'apprendimento automatico fu abbandonato fu la pubblicazione del libro "Perceptrons: an introduction to computational geometry" di Marvin Minsky e Seymour Papert, che vi descrivevano alcune delle limitazioni dei percettroni e delle reti neurali. La ricerca sulle reti neurali subì un significativo rallentamento a causa dell'interpretazione del libro, che le descriveva come intrinsecamente limitate. Anche la linea di ricerca sulle reti neurali continuò al di fuori del campo dell'IA, portata avanti da ricercatori provenienti da altre discipline quali Hopfield, Rumelhart, Hinton e Fukushima. Il loro successo principale fu a metà degli anni '80 con la riscoperta della "backpropagation" e della self-organization. L'apprendimento automatico, sviluppatosi come campo di studi separato dall'IA classica, cominciò a rifiorire negli anni '90. Il suo obiettivo cambiò dall'ottenere l'intelligenza artificiale ad affrontare problemi risolvibili di natura pratica. Distolse inoltre la propria attenzione dagli approcci simbolici che aveva ereditato dall'IA, e si diresse verso metodi e modelli presi in prestito dalla statistica e dalla teoria della probabilità. L'apprendimento automatico ha inoltre beneficiato dalla nascita di Internet, che ha reso l'informazione digitale più facilmente reperibile e distribuibile. Tom M. Mitchell ha fornito la definizione più citata di apprendimento automatico nel suo libro ""Machine Learning"": ""Si dice che un programma apprende dall'esperienza E con riferimento a alcune classi di compiti T e con misurazione della performance P, se le sue performance nel compito T, come misurato da P, migliorano con l'esperienza E."" In poche parole, si potrebbe semplificare dicendo che un programma apprende se c'è un miglioramento delle prestazioni dopo un compito svolto. Questa definizione di Mitchell è rilevante poiché fornisce una definizione operativa dell'apprendimento automatico, invece che in termini cognitivi. Fornendo questa definizione, Mitchell di fatto segue la proposta che Alan Turing fece nel suo articolo ""Computing Machinery and Intelligence"", sostituendo la domanda ""Le macchine possono pensare?"" con la domanda ""Le macchine possono fare quello che noi (in quanto entità pensanti) possiamo fare?"". L'obiettivo principe dell'apprendimento automatico è che una macchina sia in grado di generalizzare dalla propria esperienza, ossia che sia in grado di svolgere ragionamenti induttivi. In questo contesto, per generalizzazione si intende l'abilità di una macchina di portare a termine in maniera accurata esempi o compiti nuovi, che non ha mai affrontato, dopo aver fatto esperienza su un insieme di dati di apprendimento. Gli esempi di addestramento (in inglese chiamati "training examples") si assume provengano da una qualche distribuzione di probabilità, generalmente sconosciuta e considerata rappresentativa dello spazio delle occorrenze del fenomeno da apprendere; la macchina ha il compito di costruire un modello probabilistico generale dello spazio delle occorrenze, in maniera tale da essere in grado di produrre previsioni sufficientemente accurate quando sottoposta a nuovi casi. L'analisi computazionale degli algoritmi di apprendimento automatico e delle loro prestazioni è una branca dell'Informatica teorica chiamata teoria dell'apprendimento. Dato che gli esempi di addestramento sono insiemi finiti di dati e non c'è modo di sapere l'evoluzione futura di un modello, la teoria dell'apprendimento non offre alcuna garanzia sulle prestazioni degli algoritmi. D'altro canto, è piuttosto comune che tali prestazioni siano vincolate da limiti probabilistici. Il bias-variance tradeoff è uno dei modi di quantificare l'errore di generalizzazione. Affinché la generalizzazione offra le migliori prestazioni possibili, la complessità dell'ipotesi induttiva deve essere pari alla complessità della funzione sottostante i dati. Se l'ipotesi è meno complessa della funzione, allora il modello manifesta "underfitting". Quando la complessità del modello viene aumentata in risposta, allora l'errore di apprendimento diminuisce. Al contrario invece se l'ipotesi è troppo complessa, allora il modello manifesta overfitting e la generalizzazione sarà più scarsa. Oltre ai limiti di prestazioni, i teorici dell'apprendimento studiano la complessità temporale e la fattibilità dell'apprendimento stesso. Una computazione è considerata fattibile se può essere svolta in tempo polinomiale. I compiti dell'apprendimento automatico vengono tipicamente classificati in tre ampie categorie, a seconda della natura del "segnale" utilizzato per l'apprendimento o del "feedback" disponibile al sistema di apprendimento. Queste categorie, anche dette paradigmi, sono: A metà strada tra l'apprendimento supervisionato e quello non supervisionato c'è l'apprendimento semi-supervisionato, nel quale l'insegnante fornisce un dataset incompleto per l'allenamento, cioè un insieme di dati per l'allenamento tra i quali ci sono dati senza il rispettivo output desiderato. La trasduzione è un caso speciale di questo principio, nel quale l'intero insieme delle istanze del problema è noto durante l'apprendimento, eccetto la parte degli output desiderati che è mancante. Un'altra categorizzazione dei compiti dell'apprendimento automatico si rileva quando si considera l'output desiderato del sistema di apprendimento automatico. L'apprendimento automatico e la statistica sono discipline strettamente collegate. Secondo Michael I. Jordan, le idee dell'apprendimento automatico, dai principi metodologici agli strumenti teorici, sono stati sviluppati prima in statistica. Jordan ha anche suggerito il termine data science come nome con cui chiamare l'intero campo di studi. Leo Breiman ha distinto due paradigmi statistici di modellazione: modello basato sui dati e modello basato sugli algoritmi, dove "modello basato sugli algoritmi" indica approssimativamente algoritmi di apprendimento automatico come la foresta casuale. Alcuni statistici hanno adottato metodi provenienti dall'apprendimento automatico, il che ha portato alla creazione di una disciplina combinata chiamata "apprendimento statistico". L'apprendimento automatico viene a volte unito al data mining, che si focalizza maggiormente sull'analisi esplorativa dei dati ed utilizza principalmente il paradigma di apprendimento chiamato "apprendimento non supervisionato". Invece, l'apprendimento automatico può essere anche supervisionato. L'apprendimento automatico e il "data mining" infatti si sovrappongono in modo significativo, ma mentre l'apprendimento automatico si concentra sulla previsione basata su proprietà note apprese dai dati, il data mining si concentra sulla scoperta di proprietà prima "sconosciute" nei dati. Il data mining sfrutta i metodi dell'apprendimento automatico, ma con obiettivi differenti; d'altro canto, l'apprendimento automatico utilizza i metodi di data mining come metodi di apprendimento non supervisionato o come passi di preprocessing per aumentare l'accuratezza dell'apprendimento. Gran parte della confusione tra le due comunità di ricerca scaturisce dall'assunzione di base del loro operato: nell'apprendimento automatico, le prestazioni sono generalmente valutate in base all'abilità di riprodurre conoscenza già acquisita, mentre in data mining il compito chiave è la scoperta di conoscenza che prima non si aveva. L'apprendimento automatico ha legami molto stretti con l'ottimizzazione: molti problemi di apprendimento sono formulati come la minimizzazione di una qualche funzione di costo su un insieme di esempi di apprendimento. La funzione di costo (o funzione di perdita) rappresenta la discrepanza tra le previsioni del modello che si sta addestrando e le istanze del problema reale. Le differenze tra i due campi (l'apprendimento automatico e l'ottimizzazione) sorgono dall'obiettivo della generalizzazione: mentre gli algoritmi di ottimizzazione possono minimizzare la perdita su un insieme di apprendimento, l'apprendimento automatico si preoccupa di minimizzare la perdita su campioni mai visti dalla macchina. La risoluzione automatica di problemi avviene, nel campo dell'informatica, in due modi differenti: tramite paradigmi di "hard computing" o tramite paradigmi di "soft computing". Per "hard computing" si intende la risoluzione di un problema tramite l'esecuzione di un algoritmo ben definito e decidibile. La maggior parte dei paradigmi di "hard computing" sono metodi ormai consolidati, ma presentano alcuni lati negativi: infatti richiedono sempre un modello analitico preciso e definibile, e spesso un alto tempo di computazione. Le tecniche di "soft computing" d'altro canto antepongono il guadagno nella comprensione del comportamento di un sistema a scapito della precisione, spesso non necessaria. I paradigmi di "soft computing" si basano su due principi: L'apprendimento automatico si avvale delle tecniche di "soft computing". La programmazione logica induttiva (anche ILP, dall'inglese "inductive logic programming") è un approccio all'apprendimento di regole che usa la programmazione logica come rappresentazione uniforme per gli esempi di input, per la conoscenza di base della macchina, e per le ipotesi. Data una codifica della (nota) conoscenza di base e un insieme di esempi rappresentati come fatti in una base di dati logica, un sistema ILP deriva un programma logico ipotetico da cui conseguono tutti gli esempi positivi, e nessuno di quelli negativi. La programmazione induttiva è un campo simile che considera ogni tipo di linguaggio di programmazione per rappresentare le ipotesi invece che soltanto la programmazione logica, come ad esempio programmi funzionali. L'albero di decisione è un metodo di apprendimento per approssimazione di una funzione obiettivo discreta in cui l'elemento che apprende è rappresentato da un albero di decisione. Gli alberi di decisione possono essere rappresentati da un insieme di regole if-else per migliorare la leggibilità umana. L'apprendimento automatico basato su regole di associazione è un metodo di apprendimento che identifica, apprende ed evolve delle "regole" con l'intento di immagazzinare, manipolare e applicare conoscenza. La caratteristica principale di questo tipo di apprendimento è l'identificazione ed utilizzo di un insieme di regole relazionali che rappresenta nel suo insieme la conoscenza catturata dal sistema. Ciò si pone in controtendenza con altri tipi di apprendimento automatico che normalmente identificano un singolo modello che può essere applicato universalmente ad ogni istanza per riuscire a fare su di essa una previsione. Gli approcci dell'apprendimento basato su regole di associazione includono il sistema immunitario artificiale. Una rete neurale artificiale è un sistema adattivo che cambia la sua struttura basata su informazioni esterne o interne che scorrono attraverso la rete durante la fase di apprendimento. In termini pratici le reti neurali sono strutture non-lineari di dati statistici organizzate come strumenti di modellazione. Esse possono essere utilizzate per simulare relazioni complesse tra ingressi e uscite che altre funzioni analitiche non riescono a rappresentare. Inoltre esse sono robuste agli errori presenti nel training data. Gli algoritmi genetici forniscono un approccio all'apprendimento che è liberamente ispirato all'evoluzione simulata. La ricerca di una soluzione del problema inizia con una popolazione di soluzioni iniziale. I membri della popolazione attuale danno luogo a una popolazione di nuova generazione per mezzo di operazioni quali la mutazione casuale e crossover, che sono modellati sui processi di evoluzione biologica. Ad ogni passo, le soluzioni della popolazione attuale sono valutate rispetto a una determinata misura di fitness, con le ipotesi più adatte selezionate probabilisticamente come semi per la produzione della prossima generazione. Gli algoritmi genetici sono stati applicati con successo a una varietà di compiti di apprendimento e di altri problemi di ottimizzazione. Ad esempio, essi sono stati usati per imparare raccolte di norme per il controllo del robot e per ottimizzare la topologia dei parametri di apprendimento per reti neurali artificiali. Il ragionamento bayesiano fornisce un approccio probabilistico di inferenza. Esso si basa sul presupposto che le quantità di interesse sono disciplinate da distribuzioni di probabilità e che le decisioni ottimali possono essere prese a seguito dell'analisi di queste probabilità insieme ai dati osservati. Nell'ambito dell'apprendimento automatico, la teoria Bayesiana è importante perché fornisce un approccio quantitativo per valutare le prove a sostegno dell'ipotesi alternativa. Il Ragionamento bayesiano fornisce la base per l'apprendimento negli algoritmi che manipolano direttamente le probabilità. Macchine a vettori di supporto ("Support Vector Machine", SVM) sono un insieme di metodi di apprendimento supervisionato usati per la classificazione e la regressione di pattern. Dato un insieme di esempi di addestramento, ciascuno contrassegnato come appartenente a due possibili categorie, un algoritmo di addestramento SVM costruisce un modello in grado di prevedere a quale categoria deve appartenere un nuovo esempio di input. La discesa dei prezzi per l'hardware e lo sviluppo di GPU per uso personale negli ultimi anni hanno contribuito allo sviluppo del concetto di apprendimento profondo, che consiste nello sviluppare livelli nascosti multipli nelle reti neurali artificiali. Questo approccio tenta di modellizzare il modo in cui il cervello umano processa luce e suoni e li interpreta in vista e udito. Alcune delle applicazioni più affermate dell'apprendimento profondo sono la visione artificiale e il riconoscimento vocale. La cluster analisi, o clustering, è in grado di rilevare similarità strutturali tra le osservazioni di un dataset attraverso l'assegnazione di un insieme di osservazioni in sottogruppi ("cluster") di elementi tra loro omogenei. Il clustering è un metodo di apprendimento non supervisionato, e una tecnica comune per l'analisi statistica dei dati. Tutti i sistemi di riconoscimento vocale di maggior successo utilizzano metodi di apprendimento automatico. Ad esempio, il SPHINXsystem impara le strategie di altoparlanti specifici per riconoscere i suoni primitivi (fonemi) e le parole del segnale vocale osservato. Metodi di apprendimento basati su reti neurali e su modelli di Markov nascosti sono efficaci per la personalizzazione automatica di vocabolari, caratteristiche del microfono, rumore di fondo, ecc. Metodi di apprendimento automatico sono stati usati per addestrare i veicoli controllati da computer. Ad esempio, il sistema ALVINN ha usato le sue strategie per imparare a guidare senza assistenza a 70 miglia all'ora per 90 miglia su strade pubbliche, tra le altre auto. Con tecniche simili sono possibili applicazioni in molti problemi di controllo basato su sensori. Metodi di apprendimento automatico sono stati applicati ad una varietà di database di grandi dimensioni per imparare regolarità generali implicito nei dati. Ad esempio, algoritmi di apprendimento basati su alberi di decisione sono stati usati dalla NASA per classificare oggetti celesti a partire dal secondo Palomar Observatory Sky Survey. Questo sistema è oggi utilizzato per classificare automaticamente tutti gli oggetti nel Sky Survey, che si compone di tre terabyte di dati immagine. I programmi per computer di maggior successo per il gioco del backgammon sono basati su algoritmi di apprendimento. Ad esempio, il miglior programma di computer al mondo per backgammon, TD-Gammon, ha sviluppato la sua strategia giocando oltre un milione di partite di prova contro se stesso. Tecniche simili hanno applicazioni in molti problemi pratici in cui gli spazi di ricerca molto rilevanti devono essere esaminati in modo efficiente. L'apprendimento automatico solleva un numero di problematiche etiche. I sistemi addestrati con insiemi di dati faziosi o pregiudizievoli possono esibire questi pregiudizi quando vengono interpellati: in questo modo possono essere digitalizzati pregiudizi culturali quali il razzismo istituzionale e il classismo. Di conseguenza la raccolta responsabile dei dati può diventare un aspetto critico dell'apprendimento automatico. In ragione dell'innata ambiguità dei linguaggi naturali, le macchine addestrate su corpi linguistici necessariamente apprenderanno questa ambiguità.
Apprendimento automatico
1
Una foresta casuale (in inglese: "random forest") è un classificatore d'insieme ottenuto dall'aggregazione tramite bagging di alberi di decisione L'algoritmo per la creazione di una una foresta casuale fu sviluppato orignariamente da Leo Breiman e Adele Cutler. Il nome viene dalle foreste di decisione casuali che furono proposte per primo da Tin Kam Ho dei Bell Labs nel 1995. Il metodo combina l'idea dell'insaccamento di Breiman della selezione casuale delle caratteristiche, introdotta indipendentemente da Ho e Amit Geman per costruire una collezione di alberi di decisione con la variazione controllata. La selezione di un sottoinsieme di caratteristiche è un esempio del metodo del sottoinsieme casuale che, nella formulazione di Ho, è un modo di implementare la discriminazione stocastica proposta da Eugene Kleinberg.
Foresta casuale
Nella teoria delle decisioni (per esempio nella gestione dei rischi), un albero di decisione è un grafo di decisioni e delle loro possibili conseguenze, (incluso i relativi costi, risorse e rischi) utilizzato per creare un 'piano di azioni' ("plan") mirato ad uno scopo ("goal"). Un albero di decisione è costruito al fine di supportare l'azione decisionale ("decision making"). Nel machine learning un albero di decisione è un modello predittivo, dove ogni nodo interno rappresenta una variabile, un arco verso un nodo figlio rappresenta un possibile valore per quella proprietà e una foglia il valore predetto per la variabile obiettivo a partire dai valori delle altre proprietà, che nell'albero è rappresentato dal cammino ("path") dal nodo radice ("root") al nodo foglia. Normalmente un albero di decisione viene costruito utilizzando tecniche di apprendimento a partire dall'insieme dei dati iniziali ("data set"), il quale può essere diviso in due sottoinsiemi: il "training set" sulla base del quale si crea la struttura dell'albero e il "test set" che viene utilizzato per testare l'accuratezza del modello predittivo così creato. Nel data mining un albero di decisione viene utilizzato per classificare le istanze di grandi quantità di dati (per questo viene anche chiamato albero di classificazione). In questo ambito un albero di decisione descrive una struttura ad albero dove i nodi foglia rappresentano le classificazioni e le ramificazioni l'insieme delle proprietà che portano a quelle classificazioni. Di conseguenza ogni nodo interno risulta essere una macro-classe costituita dall'unione delle classi associate ai suoi nodi figli. Il predicato che si associa ad ogni nodo interno (sulla base del quale avviene la ripartizione dei dati) è chiamato "condizione di split". In molte situazioni è utile definire un criterio di arresto ("halting"), o anche "criterio di potatura" ("pruning") al fine di determinarne la profondità massima. Questo perché il crescere della profondità di un albero (ovvero della sua dimensione) non influisce direttamente sulla bontà del modello. Infatti, una crescita eccessiva della dimensione dell'albero potrebbe portare solo ad aumento sproporzionato della complessità computazionale rispetto ai benefici riguardanti l'accuratezza delle previsioni/classificazioni. Una sua evoluzione è la tecnica foresta casuale ("random forest"). I parametri più largamente usati per le condizioni di split sono: formula_1 L'indice di Gini raggiunge il suo minimo (zero) quando il nodo appartiene ad una singola categoria. formula_2 In entrambe le formule "f" rappresenta la frequenza del valore "j" nel nodo "i". L'indice di Gini e la variazione di entropia sono i parametri che vengono usualmente utilizzati per guidare la costruzione dell'albero, mentre la valutazione del tasso di errore nella classificazione viene utilizzato per effettuare una ottimizzazione dell'albero nota come processo di "pruning" ("potatura" dei nodi superflui). Poiché, in generale, in un buon albero di decisione i nodi foglia dovrebbero essere il più possibile "puri" (ovvero contenere solo istanze di dati che appartengono ad una sola classe), un'ottimizzazione dell'albero consiste nel cercare di minimizzare il livello di entropia man mano che si scende dalla radice verso le foglie. In tal senso, la valutazione dell'entropia determina quali sono, fra le varie scelte a disposizione, le condizioni di split ottimali per l'albero di classificazione.
Albero di decisione
1
L'analisi delle componenti principali (in inglese "principal component analysis" o abbreviata "PCA"), anche nota come trasformata di Karhunen-Loève, trasformata di Hotelling o decomposizione ortogonale propria, è una tecnica per la semplificazione dei dati utilizzata nell'ambito della statistica multivariata. Questo metodo fu proposto per la prima volta nel 1901 da Karl Pearson e sviluppato poi da Harold Hotelling nel 1933, e fa parte dell'analisi fattoriale. Lo scopo della tecnica è quello di ridurre il numero più o meno elevato di variabili che descrivono un insieme di dati a un numero minore di variabili latenti, limitando il più possibile la perdita di informazioni. Ciò avviene tramite una trasformazione lineare delle variabili che proietta quelle originarie in un nuovo sistema cartesiano in cui la nuova variabile con la maggiore varianza viene proiettata sul primo asse, la variabile nuova, seconda per dimensione della varianza, sul secondo asse e così via. La riduzione della complessità avviene limitandosi ad analizzare le principali, per varianza, tra le nuove variabili. Diversamente da altre trasformazioni lineari di variabili praticate nell'ambito della statistica, in questa tecnica sono gli stessi dati che determinano i vettori di trasformazione. Assumendo che a ciascuna delle variabili originarie venga sottratta la loro media e pertanto la nuova variabile (X) abbia media nulla, Dove arg max indica l'insieme degli argomenti "w" in cui è raggiunto il massimo. Con i primi (k-1) componenti, il k-esimo componente può essere trovato sottraendo i primi (k-1) componenti principali a "X" e sostituendo questo Un metodo più semplice per calcolare la componente w utilizza la matrice delle covarianze di x. La stessa operazione può essere eseguita partendo dalla matrice dei coefficienti di correlazione anziché dalla matrice di varianza-covarianza delle variabili "x". Innanzitutto si devono trovare gli autovalori della matrice di covarianza o della matrice dei coefficienti di correlazione. Si ottengono tanti autovalori quante sono le variabili x. Se viene utilizzata la matrice di correlazione, l'autovalore relativo alla prima componente principale, ossia quella con varianza massima, sarà pari ad 1. In ogni caso l'autovalore con il maggiore valore corrisponde alla dimensione w che ha la maggiore varianza: esso sarà dunque la varianza della componente principale 1. In ordine decrescente, il secondo autovalore sarà la varianza della componente principale 2, e così via per gli n autovalori. Per ciascun autovalore viene calcolato il corrispondente autovettore, ossia la matrice (riga vettore) dei coefficienti che moltiplicano le vecchie variabili x nella combinazione lineare per l'ottenimento delle nuove variabili w. Questi coefficienti sono anche definiti loading. La matrice degli autovettori, ossia la matrice che ha per riga ciascun autovettore prima calcolato, è la cosiddetta matrice di rotazione V. Eseguendo l'operazione matriciale formula_4, dove W è il vettore colonna avente come elementi le nuove variabili w1, w2, ..., wn e X è il vettore colonna avente come elementi le "vecchie variabili" x1, x2, ..., xn, si possono trovare le coordinate di ciascun punto nel nuovo spazio vettoriale. Utilizzando le coordinate per ciascun punto relative alle componenti principali si costruisce il grafico denominato score plot. Se le componenti principali sono 3 si avrà un grafico tridimensionale, se sono 2 sarà bidimensionale, se invece si è scelta una sola componente principale lo score plot sarà allora monodimensionale. Mediante lo score plot è possibile verificare quali dati sono simili tra di loro e quindi si può ad esempio dedurre quali campioni presentano la medesima composizione. In PCA esiste anche un altro tipo di grafico, definito loading plot, in cui sono le variabili x ad essere riportate nel nuovo sistema avente per assi le componenti principali. Con questo tipo di grafico è possibile osservare se due variabili sono simili, e pertanto forniscono lo stesso tipo di informazione, oppure se sono distanti (e quindi non sono simili). Quindi gli elementi dell'autovettore colonna corrispondente a un autovalore esprimono il legame tra le variabili di partenza e la componente considerata attraverso dei pesi. Il numero di variabili latenti da considerare come componenti principali si fonda sulla grandezza relativa di un autovalore rispetto agli altri. Invece nel caso in cui sia l'operatore a scegliere le componenti principali senza considerare la relativa varianza espressa dai rispettivi autovalori, si ha un supervised pattern recognition. Si può costruire la matrice dei fattori, in pratica una matrice modale, che elenca per riga le variabili originarie e per colonna le variabili latenti: ogni valore, compreso tra 0 e 1, dice quanto le seconde incidano sulle prime. Invece la matrice del punteggio fattoriale ha la stessa struttura della precedente, ma dice quanto le singole variabili originarie abbiano pesato sulla determinazione della grandezza di quelle latenti. Si supponga di disporre di un'indagine che riporta per 10 soggetti: voto medio (da 0 a 33), intelligenza (da 0 a 10), media ore studiate in un giorno e zona d'origine, che varia da 1 a 3. Si standardizzino i valori con la formula: formula_5 E(x) è il valore atteso di X, ovvero il valor medio, SD è la deviazione standard. La matrice dei coefficienti di correlazione è: La diagonale principale è composta da valori uguali ad 1 perché è il coefficiente di correlazione di una variabile con se stessa. È pure una matrice simmetrica perché il coefficiente di correlazione tra la variabile "x" e la variabile "y" è uguale a quello tra "y" e "x". Si vede come ci sia un forte legame tra voto, media ore studio e intelligenza. Dall'analisi degli autovalori si possono trarre conclusioni: Gli autovalori sono in ordine decrescente e il loro rapporto con la somma degli autovalori dà la percentuale di varianza che spiegano. Sono stati selezionati arbitrariamente solo quelli che hanno valore maggiore di 1 in quanto più significativi, che spiegano il 70,708% e il 26,755% rispettivamente. Si osservi alla matrice delle componenti principali: Il fattore 1 pesa fortemente sul voto medio. Sembrerebbe pure che pesi in maniera negativa sulla variabile della zona di origine; chiaramente questa affermazione non ha senso perché inverte il nesso di causalità: spetta allo statistico dare una spiegazione e una lettura sensate. Si calcoli quindi la matrice di punteggio fattoriale: Come si vede la variabile provenienza continua ad avere un influsso di segno negativo sull'autovalore principale. Le altre variabili invece hanno peso positivo.
Analisi delle componenti principali
In statistica, una correlazione è una relazione tra due variabili tale che a ciascun valore della prima corrisponda un valore della seconda, seguendo una certa regolarità . Il termine apparve per la prima volta in un'opera di Francis Galton, "Hereditary Genius" (1869). Non fu definita in modo più approfondito (la moralità di un individuo e la sua instabilità morale sono non correlate). Otto anni dopo, nel 1877, lo stesso Galton scoprì che i coefficienti di regressione lineare tra X e Y sono gli stessi se - ad entrambe le variabili - viene applicata la deviazione standard σ e σ: Galton utilizzò in realtà lo scarto interquartile, definendo il parametro "coefficiente di co-relazione" e abbreviando "regressione" in "r". In base alle caratteristiche presentate, la correlazione può definirsi: Inoltre, le correlazioni possono essere: Il grado di correlazione tra due variabili viene espresso tramite l'indice di correlazione. Il valore che esso assume è compreso tra −1 (correlazione inversa) e 1 (correlazione diretta e assoluta), con un indice pari a 0 che comporta l'assenza di correlazione; il valore nullo dell'indice non implica, tuttavia, che le variabili siano indipendenti. I coefficienti di correlazione sono derivati dagli indici, tenendo presenti le grandezze degli scostamenti dalla media. In particolare, l'indice di correlazione di Pearson è calcolato come rapporto tra la covarianza delle due variabili e il prodotto delle loro deviazioni standard.: Va comunque notato che gli indici e i coefficienti di correlazione siano da ritenersi sempre approssimativi, a causa dell'arbitrarietà con cui sono scelti gli elementi: ciò è vero, in particolare, nei casi di correlazioni multiple. Contrariamente a quanto si potrebbe intuire, la correlazione non dipende da un rapporto di causa-effetto quanto dalla tendenza di una variabile a cambiare in funzione di un'altra. Le variabili possono essere tra loro dipendenti (per esempio la relazione tra stature dei padri e dei figli) oppure comuni (relazione tra altezza e peso di una persona). Nel cercare una correlazione statistica tra due grandezze, per determinare un possibile rapporto di causa-effetto, essa non deve risultare una correlazione spuria.
Correlazione (statistica)
1
Il DBSCAN ("Density-Based Spatial Clustering of Applications with Noise") è un metodo di clustering proposto nel 1996 da Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu. È basato sulla densità perché connette regioni di punti con densità sufficientemente alta. DBSCAN è l'algoritmo più comunemente usato ed è anche il più citato nella letteratura scientifica. DBSCAN usa una definizione di cluster basata sulla nozione di "density-reachability". Un punto formula_1 è direttamente raggiungibile da un punto formula_2 se la loro distanza è minore di un assegnato formula_3 (cioè, è parte del suo formula_3-vicinato) e se formula_2 è circondato da un sufficiente numero di punti, allora formula_2 e formula_1 possono essere considerati parti di un cluster. Il punto formula_1 è "density-reachable" da formula_2 se c'è una sequenza formula_10 di punti con formula_11 e formula_12 dove ogni formula_13 è density-reachable direttamente da formula_14. Si osservi che la relazione density-reachable non è simmetrica dato che formula_1 potrebbe situarsi su una periferia del cluster, avendo un numero insufficiente di vicini per considerarlo un elemento genuino del cluster. Di conseguenza la nozione "density-connected" diventa: due punti formula_2 e formula_1 sono density-connected se c'è un punto formula_18 tale che sia formula_18 e formula_2 sia formula_18 e formula_1 sono density-reachable. Un cluster, che è un sotto-insieme dei punti del database, soddisfa due proprietà: DBSCAN necessita di due parametri: formula_3 (eps) e del numero minimo di punti richiesti per formare un cluster (minPts). Si comincia con un punto casuale che non è stato ancora visitato. Viene calcolato il suo formula_3-vicinato e se contiene un numero sufficiente di punti viene creato un nuovo cluster. Se ciò non avviene il punto viene etichettato come rumore e successivamente potrebbe essere ritrovato in un formula_3-vicinato sufficientemente grande riconducibile ad un punto differente entrando a far parte di un cluster. Se un punto è associato ad un cluster anche i punti del suo formula_3-vicinato sono parte del cluster. Conseguentemente tutti i punti trovati all'interno del suo formula_3-vicinato sono aggiunti al cluster, così come i loro formula_3-vicinati. Questo processo continua fino a quando il cluster viene completato. Il processo continua fino a quando non sono stati visitati tutti i punti. DBSCAN(D, eps, MinPts) DBSCAN visita ogni punto del database, anche più volte nel caso di punti candidati a cluster differenti. Tuttavia per considerazioni pratiche la complessità temporale è per lo più governata dal numero di invocazioni a getVicini, in riferimento allo pseudo codice di cui sopra. DBSCAN esegue esattamente una invocazione per ogni punto e se viene utilizzata una struttura indicizzata che esegue un'interrogazione del vicinato in formula_29, si ottiene un tempo globale di esecuzione pari a formula_30. Senza l'uso di strutture indicizzate, il tempo di esecuzione è pari a formula_31. Spesso la matrice delle distanze di dimensione formula_32 viene creata per evitare appunto il ricalcolo delle distanze riducendo il tempo di elaborazione a spese della memoria utilizzata pari a formula_31. DBSCAN presenta i seguenti vantaggi: Il rilevamento del vicinato più vicino avviene nella funzione getVicini(P,epsilon). Per ogni punto P vengono determinati tutti gli altri punti che sono all'interno dell'intervallo epsilon, basandosi sulla funzione della distanza usata nell'algoritmo. L'analisi richiede che sia calcolata una matrice delle distanze per l'intero data set. La generazione della matrice delle distanze ha una complessità di formula_34dato che è necessaria solo una matrice triangolare superiore. All'interno della matrice delle distanze il vicinato più vicino può essere calcolato selezionando la tupla che ha come valori il minimo delle funzioni su riga e colonna. La ricerca ha spinto il rilevamento del vicinato, nei database tradizionali, per migliorare la velocità. Questi ultimi risolvono il problema utilizzando indici specificamente progettati per questo tipo di applicazioni. Ogni processo di data mining ha il problema dei parametri. Ogni parametro influenza l'algoritmo in modo specifico. Per il DBSCAN i parametri epsilon e MinPnts sono necessari. I parametri devono essere specificati dall'utente dato che ogni data set richiede parametri differenti. Un valore iniziale per formula_3 può essere determinato come un k-distance graph. Come per le regole del pollice, formula_36 può essere derivato dal numero di dimensioni nel data set formula_37 come formula_38. Tuttavia valori maggiori sono usualmente migliori per data set con rumore. Anche se questa stima dei parametri restituisce un insieme sufficiente di parametri, la classificazione risultante può rivelarsi diversa da ciò che si aspetta, pertanto la ricerca ha realizzato un'incrementale ottimizzazione dei parametri su particolari valori. Per ogni oggetto vengono trovati i vicini che ricadono in un raggio dato come parametro in ingresso; se il numero di questi vicini è superiore ad un fattore di soglia, anch'esso fornito in input all'algoritmo, allora questi punti fanno parte del medesimo cluster di quello dell'oggetto che si sta osservando e in questo caso il punto è denominato core point. Al termine dell'algoritmo ci potrebbero essere alcuni punti non appartenenti a cluster catalogati come "rumore". Se c'è una catena di oggetti da attraversare (con i consueti vincoli) per raggiungere un punto "q" da uno "p", allora "q" sarà detto semplicemente rintracciabile. Ultimo caso è quello in cui due oggetti "p" e "q" sono detti connessi: per essere definiti in tal modo, deve esistere un terzo punto "o", per cui "p" e "q" sono entrambi rintracciabili.
Dbscan
Lo scarto quadratico medio (o deviazione standard o scarto tipo) è un indice di dispersione statistico, vale a dire una stima della variabilità di una popolazione di dati o di una variabile casuale. È uno dei modi per esprimere la dispersione dei dati intorno ad un indice di posizione, quale può essere, ad esempio, la media aritmetica o una sua stima. Ha pertanto la stessa unità di misura dei valori osservati (al contrario della varianza che ha come unità di misura il quadrato dell'unità di misura dei valori di riferimento). In statistica la precisione si può esprimere come lo scarto quadratico medio. Il termine ""standard deviation"" è stato introdotto in statistica da Pearson nel 1894 assieme alla lettera greca formula_1 (sigma) che lo rappresenta. Il termine italiano "deviazione standard" ne è la traduzione più utilizzata nel linguaggio comune; il termine dell'Ente Nazionale Italiano di Unificazione è tuttavia "scarto tipo", definito come la radice quadrata positiva della varianza per lo meno fin dal 1984. Se non indicato diversamente, lo scarto quadratico medio è la radice quadrata della varianza, la quale viene coerentemente rappresentata con il quadrato di sigma (formula_2). In statistica lo scarto quadratico medio di un carattere rilevato su una popolazione di formula_3 unità statistiche si definisce esplicitamente come: dove formula_5 è la media aritmetica di formula_6. Formalmente lo scarto quadratico medio di una variabile può essere calcolata a partire dalla funzione generatrice dei momenti, in particolare è la radice quadrata della differenza tra il momento secondo ed il momento primo elevato al quadrato. A partire dallo scarto quadratico medio si definisce anche il coefficiente di variazione o la "deviazione standard relativa" come il rapporto tra lo scarto tipo formula_7 e il valore assoluto della media aritmetica della variabile in esame: Questo indice relativo (che viene spesso espresso in termini percentuali) consente di effettuare confronti tra dispersioni di dati di tipo diverso, indipendentemente dalle loro quantità assolute. Nell'ambito della statistica inferenziale (dove è noto solo un campione della popolazione), soprattutto nell'ambito della teoria della stima, a volte si rimpiazza il denominatore formula_3 con formula_10 ottenendo: Sostanzialmente, poiché non è nota la media dell'intera popolazione, ma solo una sua stima (la media del campione), bisogna utilizzare formula_10 per ottenere uno stimatore corretto formula_13 della varianza incognita formula_7 di formula_6 sull'intera popolazione a partire dai dati del campione. La sua radice quadrata diviene lo scarto quadratico medio "corretto". Questa correzione al denominatore fa sì che la nuova definizione sia un po' più grande della precedente, correggendo così la tendenza della precedente a sottostimare le incertezze soprattutto nel caso in cui si lavori con pochi dati (formula_3 piccolo). Osserviamo il caso limite di formula_17, cioè quando si ha un campione di un solo elemento: la prima definizione dà il risultato formula_18, che ovviamente non è molto ragionevole nell'ambito della statistica inferenziale, mentre quella "corretta" dà un risultato non definito del tipo formula_19, rispecchiando così la totale ignoranza inerente all'incertezza su una singola misura. In questo senso, si dice che la statistica non dice nulla sul singolo caso. Osserviamo che la differenza tra le due definizioni per campioni molto estesi è spesso numericamente insignificante. Il calcolo può essere semplificato come segue: cioè, applicando il tutto alla formula originale: Sia formula_6 una variabile aleatoria, lo scarto quadratico medio è definito come la radice quadrata della varianza di formula_6 Formalmente lo scarto quadratico medio di una variabile aleatoria può essere calcolato a partire dalla funzione generatrice dei momenti, in particolare è la radice quadrata della differenza tra il momento secondo ed il momento primo elevato al quadrato, cioè dove formula_26 è il valore atteso di formula_6. In ambito finanziario, lo scarto quadratico medio viene usato per indicare la variabilità di un'attività finanziaria e dei suoi payoff (rendimenti). Esso fornisce quindi, implicitamente, una misura della volatilità dell'attività, quindi del suo rischio. In fisica, è un ottimo indice dell'errore casuale della misurazione di una grandezza fisica. In ambito sportivo è utilizzato per valutare la prestazione di un giocatore di bowling in riferimento ad un certo numero di partite. Il valore trovato non incide sul punteggio ma sintetizza le capacità e i miglioramenti del giocatore. In ingegneria, è uno dei parametri da considerare per valutare la capacità di un processo produttivo. Nelle applicazioni informatiche, è a volte conveniente utilizzare la formula che consente, con sole tre variabili formula_29, di calcolare lo scarto quadratico medio, oltre che la media, di un flusso di numeri di lunghezza formula_3 senza dover ricorrere ad una memorizzazione degli stessi.
Scarto quadratico medio
1
Nel campo dell'apprendimento automatico, una rete neurale artificiale (in inglese "artificial neural network", abbreviato in ANN o anche come NN) è un modello computazionale composto di "neuroni" artificiali, ispirato vagamente dalla semplificazione di una rete neurale biologica. Questi modelli matematici sono troppo semplici per ottenere una comprensione delle reti neurali biologiche, ma sono utilizzati per tentare di risolvere problemi ingegneristici di intelligenza artificiale come quelli che si pongono in diversi ambiti tecnologici (in elettronica, informatica, simulazione, e altre discipline). Una rete neurale artificiale può essere realizzata sia da programmi software che da hardware dedicato (DSP, "Digital Signal Processing"). Questa branca può essere utilizzata in congiunzione alla logica fuzzy. L'ampia varietà di modelli non può prescindere dal costituente di base, il neurone artificiale proposto da W.S. McCulloch e Walter Pitts in un famoso lavoro del 1943: ""A logical calculus of the ideas immanent in nervous activity"", il quale schematizza un combinatore lineare a soglia, con dati binari multipli in entrata e un singolo dato binario in uscita: un numero opportuno di tali elementi, connessi in modo da formare una rete, è in grado di calcolare semplici funzioni booleane. Le prime ipotesi di apprendimento furono introdotte da D. O. Hebb nel libro del 1949: ""The organization of behavior"", nel quale vengono proposti collegamenti con i modelli complessi del cervello. Nel 1958, J. Von Neumann nella sua opera ""The computer and the brain"" esamina le soluzioni proposte dai precedenti autori sottolineando la scarsa precisione che queste strutture possedevano per potere svolgere operazioni complesse. Nello stesso anno, Frank Rosenblatt nel libro "Psychological review" introduce il primo schema di rete neurale, detto "Perceptron" (percettrone), antesignano delle attuali reti neurali, per il riconoscimento e la classificazione di forme, allo scopo di fornire un'interpretazione dell'organizzazione generale dei sistemi biologici. Il modello probabilistico di Rosenblatt è quindi mirato all'analisi, in forma matematica, di funzioni quali l'immagazzinamento delle informazioni, e della loro influenza sul riconoscimento dei pattern; esso costituisce un progresso decisivo rispetto al modello binario di McCulloch e Pitts, perché i suoi pesi sinaptici sono variabili e quindi il percettrone è in grado di apprendere. L'opera di Rosenblatt stimola una quantità di studi e ricerche che dura per un decennio, e suscita un vivo interesse e notevoli aspettative nella comunità scientifica, destinate tuttavia ad essere notevolmente ridimensionate allorché nel 1969 Marvin Minsky e Seymour A. Papert, nell'opera ""An introduction to computational geometry"", mostrano i limiti operativi delle semplici reti a due strati basate sul percettrone, e dimostrano l'impossibilità di risolvere per questa via molte classi di problemi, ossia tutti quelli non caratterizzati da separabilità lineare delle soluzioni: questo tipo di rete neurale non è abbastanza potente: non è infatti neanche in grado di calcolare la funzione "or esclusivo" (XOR). A causa di queste limitazioni, al periodo di euforia dovuto ai primi risultati della cibernetica (come veniva chiamata negli anni sessanta) segue un periodo di diffidenza durante il quale tutte le ricerche in questo campo non ricevono più alcun finanziamento dal governo degli Stati Uniti d'America; le ricerche sulle reti tendono, di fatto, a ristagnare per oltre un decennio, e l'entusiasmo iniziale risulta fortemente ridimensionato. Il contesto matematico per addestrare le reti MLP ("Multi-Layers Perceptron", ossia percettrone multistrato) fu stabilito dal matematico americano Paul Werbos nella sua tesi di dottorato (Ph.D.) del 1974. Non fu dato molto peso al suo lavoro tanto fu forte la confutazione dimostrata da Minsky e Papert anni prima, e solo l'intervento di J. J. Hopfield, nel 1982, che in un suo lavoro studia dei modelli di riconoscimento di pattern molto generali, si oppose in modo diretto alla confutazione di Minsky riaprendo così degli spiragli per la ricerca in questo campo. Uno dei metodi più noti ed efficaci per l'addestramento di tale classe di reti neurali è il cosiddetto algoritmo di retropropagazione dell'errore (error backpropagation), proposto nel 1986 da David E. Rumelhart, G. Hinton e R. J. Williams, il quale modifica sistematicamente i pesi delle connessioni tra i nodi, così che la risposta della rete si avvicini sempre di più a quella desiderata. Tale lavoro fu prodotto riprendendo il modello creato da Werbos. L'algoritmo di retropropagazione ("backpropagation" o BP) è una tecnica d'apprendimento tramite esempi, costituente una generalizzazione dell'algoritmo d'apprendimento per il percettrone sviluppato da Rosenblatt nei primi anni '60. Mediante questa tecnica era possibile, come detto, trattare unicamente applicazioni caratterizzabili come funzioni booleane linearmente separabili. L'algoritmo di apprendimento si basa sul metodo della discesa del gradiente che permette di trovare un minimo locale di una funzione in uno spazio a N dimensioni. I pesi associati ai collegamenti tra gli strati di neuroni si inizializzano a valori piccoli (ovvero molto inferiori ai valori reali che poi assumeranno) e casuali e poi si applica la regola di apprendimento presentando alla rete dei pattern di esempio. Queste reti neurali sono poi capaci di generalizzare in modo appropriato, cioè di dare risposte plausibili per input che non hanno mai visto. L'addestramento di une rete neurale di tipo BP avviene in due diversi stadi: "forward-pass" e "backward-pass". Nella prima fase i vettori in input sono applicati ai nodi in ingresso con una propagazione in avanti dei segnali attraverso ciascun livello della rete ("forward-pass"). Durante questa fase i valori dei pesi sinaptici sono tutti fissati. Nella seconda fase la risposta della rete viene confrontata con l'uscita desiderata ottenendo il segnale d'errore. L'errore calcolato è propagato nella direzione inversa rispetto a quella delle connessioni sinaptiche. I pesi sinaptici infine sono modificati in modo da minimizzare la differenza tra l'uscita attuale e l'uscita desiderata ("backward-pass"). Tale algoritmo consente di superare le limitazioni del percettrone e di risolvere il problema della separabilità non lineare (e quindi di calcolare la funzione XOR), segnando il definitivo rilancio delle reti neurali, come testimoniato anche dall'ampia varietà d'applicazioni commerciali: attualmente la BP rappresenta un algoritmo di largo uso in molti campi applicativi. Una rete neurale artificiale (ANN ""Artificial Neural Network"" in inglese), normalmente chiamata solo "rete neurale" (NN ""Neural Network"" in inglese), è un modello matematico/informatico di calcolo basato sulle reti neurali biologiche. Tale modello è costituito da un gruppo di interconnessioni di informazioni costituite da neuroni artificiali e processi che utilizzano un approccio di connessionismo di calcolo. Nella maggior parte dei casi una rete neurale artificiale è un sistema adattivo che cambia la propria struttura in base a informazioni esterne o interne che scorrono attraverso la rete stessa durante la fase di apprendimento. In termini pratici le reti neurali sono strutture non-lineari di dati statistici organizzate come strumenti di modellazione. Esse possono essere utilizzate per simulare relazioni complesse tra ingressi e uscite che altre funzioni analitiche non riescono a rappresentare. Una rete neurale artificiale riceve segnali esterni su uno strato di nodi (unità di elaborazione) d'ingresso, ciascuno dei quali è collegato con numerosi nodi interni, organizzati in più livelli. Ogni nodo elabora i segnali ricevuti e trasmette il risultato a nodi successivi. Il concetto di rete neurale si pone perché una funzione formula_1 è definita come una composizione di altre funzioni formula_2, che possono a loro volta essere ulteriormente definite come composizione di altre funzioni. Questo può essere comodamente rappresentato come una struttura di reti, con le frecce raffiguranti le dipendenze tra variabili. Una rappresentazione ampiamente utilizzata è la somma ponderata non lineare, dove formula_3, dove formula_4 è una funzione predefinita, come ad esempio la tangente iperbolica. Sarà conveniente per le seguenti far riferimento ad un insieme di funzioni come un vettore formula_5. La Figura 1 esemplifica una decomposizione della funzione formula_6, con dipendenze tra le variabili indicate dalle frecce. Queste possono essere interpretate in due modi: I due punti di vista sono in gran parte equivalenti. In entrambi i casi, per questa particolare architettura di rete, i componenti dei singoli strati sono indipendenti l'uno dall'altro (ad esempio, le componenti di formula_8 sono indipendenti l'una dall'altra, dato il loro ingresso formula_15). Questo, naturalmente, permette un certo grado di parallelismo nella costruzione del sistema. Reti, come ad esempio quelle precedenti vengono comunemente chiamate ""feedforward"", perché il loro è un grafico aciclico diretto. Reti con cicli al loro interno sono comunemente chiamati reti ricorrenti. Tali reti sono comunemente raffigurate nel modo indicato nella parte superiore della Figura 2, dove la funzione formula_6 è mostrata come dipendente su se stessa. Tuttavia, vi è una dipendenza temporale implicita che non è possibile dimostrare. Questo significa in pratica che il valore di formula_6 ad un certo punto nel tempo formula_18 dipende dai valori di formula_6 al tempo zero o su uno o più altri punti temporali. Il modello del grafico nella parte inferiore della Figura 2 illustra il caso in cui il valore di formula_6 al tempo formula_18 dipende solo dal suo valore finale. Tuttavia la funzionalità più interessante di queste funzioni, ciò che ha attirato l'interesse e lo studio per la maggior parte delle reti neurali, è la possibilità di apprendimento, che in pratica significa la seguente: Ciò comporta la definizione di una funzione di costo formula_24 tale che, per la soluzione ottimale formula_25 formula_26 nessuna soluzione ha un costo inferiore al costo della soluzione ottimale. La funzione di costo formula_27 è un concetto importante nell'apprendimento, poiché si tratta di una misura di quanto è lontana da noi la soluzione ottimale del problema che vogliamo risolvere. Quindi vi sono una serie di algoritmi di apprendimento che cercano nello spazio delle soluzioni al fine di trovare una funzione che abbia il minor costo possibile. Per applicazioni in cui la soluzione dipende da alcuni dati, il costo deve essere necessariamente funzione delle osservazioni. Mentre è possibile definire per alcune reti una funzione di costo ad hoc, spesso si può utilizzare una particolare funzione di costo poiché gode delle proprietà desiderate (ad esempio, la convessità), o perché proviene da una particolare formulazione del problema (vale a dire, in una formulazione probabilistica, la probabilità a posteriori del modello può essere utilizzata come l'inverso del costo). In ultima analisi, la funzione di costo dipenderà dal compito. Vi sono tre grandi paradigmi di apprendimento, ciascuno corrispondente ad un particolare compito astratto di apprendimento. Si tratta dell'apprendimento supervisionato, apprendimento non supervisionato e l'apprendimento per rinforzo. Di solito un tipo di architettura di rete può essere impiegato in qualsiasi di tali compiti. L'algoritmo di apprendimento hebbiano (1984) si basa sul semplice principio che se due neuroni si attivano contemporaneamente, la loro interconnessione deve essere rafforzata. formula_28 dove formula_29, dove formula_30 è l'formula_31 ingresso e formula_32 è il tasso di apprendimento formula_33. La regola di Hebb è la seguente: l'efficacia di una particolare sinapsi cambia se e solo se c'è un'intensa attività simultanea dei due neuroni, con un'alta trasmissione di input nella sinapsi in questione. Esempio di procedura: In questo modo le connessioni possono solo irrobustirsi. Le connessioni si considerano irrobustite quando le unità presinaptica e postsinaptica sono d'accordo, altrimenti si indeboliscono. Si considerano funzioni bipolari (-1,1) invece che booleane (0,1). Le reti neurali si basano principalmente sulla simulazione di neuroni artificiali opportunamente collegati. Il modello rappresentato in figura è quello proposto da McCulloch e Pitts. I suddetti neuroni ricevono in ingresso degli stimoli e li elaborano. L'elaborazione può essere anche molto sofisticata ma in un caso semplice si può pensare che i singoli ingressi vengano moltiplicati per un opportuno valore detto peso, il risultato delle moltiplicazioni viene sommato e se la somma supera una certa soglia il neurone si attiva attivando la sua uscita. Il peso indica l'efficacia sinaptica della linea di ingresso e serve a quantificarne l'importanza, un ingresso molto importante avrà un peso elevato, mentre un ingresso poco utile all'elaborazione avrà un peso inferiore. Si può pensare che se due neuroni comunicano fra loro utilizzando maggiormente alcune connessioni allora tali connessioni avranno un peso maggiore, fino a che non si creeranno delle connessioni tra l'ingresso e l'uscita della rete che sfruttano "percorsi preferenziali". Tuttavia è sbagliato pensare che la rete finisca col produrre un unico percorso di connessione: tutte le combinazioni infatti avranno un certo peso, e quindi contribuiscono al collegamento ingresso/uscita. Il modello in figura rappresenta una classica rete neurale pienamente connessa. I singoli neuroni vengono collegati alla schiera di neuroni successivi, in modo da formare una rete di neuroni. Normalmente una rete è formata da tre strati. Nel primo abbiamo gli ingressi (I), questo strato si preoccupa di trattare gli ingressi in modo da adeguarli alle richieste dei neuroni. Se i segnali in ingresso sono già trattati può anche non esserci. Il secondo strato è quello nascosto (H, "hidden"), si preoccupa dell'elaborazione vera e propria e può essere composto anche da più colonne di neuroni. Il terzo strato è quello di uscita (O) e si preoccupa di raccogliere i risultati ed adattarli alle richieste del blocco successivo della rete neurale. Queste reti possono essere anche molto complesse e coinvolgere migliaia di neuroni e decine di migliaia di connessioni. Per costruire la struttura di una rete neurale multistrato si possono inserire formula_38 strati "hidden." L'efficacia di generalizzare di una rete neurale multistrato dipende ovviamente dall'addestramento che ha ricevuto e dal fatto di essere riuscita o meno ad entrare in un minimo locale buono. L'algoritmo di retropropagazione dell'errore ("backpropagation") è utilizzato nell'apprendimento con supervisione. Esso permette di modificare i pesi delle connessioni in modo tale che si minimizzi una certa funzione errore E. Tale funzione dipende dal vettore h-esimo di output formula_39 restituito dalla rete, dato il vettore h-esimo di ingresso formula_40 e dal vettore h-esimo di output formula_41che noi desideriamo (che fa parte del training set). Il training set è dunque un insieme di N coppie di vettori formula_42, con formula_43. La funzione errore che si deve minimizzare si può scrivere come: formula_44 dove l'indice k rappresenta il valore corrispondente al k-esimo neurone di output. E(w) è una funzione dipendente dai pesi (che in generale variano nel tempo), per minimizzarla si può usare l'algoritmo della discesa del gradiente ("gradient descent"). L'algoritmo parte da un punto generico formula_45 e calcola il gradiente formula_46. Il gradiente dà la direzione verso cui muoversi lungo la quale si ha il massimo incremento (o decremento se considero formula_47). Definita la direzione ci si muove di una distanza formula_32 predefinita a priori e si trova un nuovo punto formula_49 sul quale è calcolato nuovamente il gradiente. Si continua iterativamente finché il gradiente non è nullo. L'algoritmo di backpropagation può essere diviso in due passi: I passi logici per addestrare una rete neurale con apprendimento supervisionato sono i seguenti: Per l'addestramento di reti neurali profonde, impiegando dataset molto vasti, la discesa del gradiente classica risulta computazionalmente proibitiva, per cui nell'ottimizzare i parametri del modello si fa tipicamente uso dell'algoritmo di discesa stocastica del gradiente. Nel 1982, il fisico John J. Hopfield pubblica un articolo fondamentale in cui presenta un modello matematico comunemente noto appunto come rete di Hopfield: tale rete si distingue per "l'emergere spontaneo di nuove capacità computazionali dal comportamento collettivo di un gran numero di semplici elementi d'elaborazione". Le proprietà collettive del modello producono una memoria associativa per il riconoscimento di configurazioni corrotte e il recupero di informazioni mancanti. Inoltre, Hopfield ritiene che ogni sistema fisico possa essere considerato come un potenziale dispositivo di memoria, qualora esso disponga di un certo numero di stati stabili, i quali fungano da attrattore per il sistema stesso. Sulla base di tale considerazione, egli si spinge a formulare la tesi secondo cui la stabilità e la collocazione di tali attrattori sono proprietà spontanee di sistemi costituiti, come accennato, da considerevoli quantità di neuroni reciprocamente interagenti. Le applicazioni delle reti di Hopfield riguardano principalmente la realizzazione di memorie associative, resistenti all'alterazione delle condizioni operative, e la soluzione di problemi d'ottimizzazione combinatoriale. Da un punto di vista strutturale, la rete di Hopfield costituisce una rete neurale ricorrente simmetrica, di cui è garantita la convergenza. Una rete ricorrente è un modello neurale in cui è presente un flusso bidirezionale d'informazioni; in altri termini, mentre nelle reti di tipo feedforward la propagazione dei segnali avviene unicamente, in maniera continua, nella direzione che conduce dagli ingressi alle uscite, nelle reti ricorrenti tale propagazione può anche manifestarsi da uno strato neurale successivo ad uno precedente, oppure tra neuroni appartenenti ad uno stesso strato, e persino tra un neurone e sé stesso. Un significativo e noto esempio di semplice rete ricorrente è dovuto a Jeffrey L. Elman (1990). Essa costituisce una variazione sul tema del percettrone multistrato, con esattamente tre strati e l'aggiunta di un insieme di neuroni "contestuali" nello strato d'ingresso. Le connessioni retroattive si propagano dallo strato intermedio (e nascosto) a tali unità contestuali, alle quali si assegna peso costante e pari all'unità. In ciascun istante, gli ingressi si propagano nel modo tradizionale e tipico delle reti feedforward, compresa l'applicazione dell'algoritmo d'apprendimento (solitamente la "backpropagation"). Le connessioni retroattive fisse hanno come effetto quello di mantenere una copia dei precedenti valori dei neuroni intermedi, dal momento che tale flusso avviene sempre prima della fase d'apprendimento. In questo modo la rete di Elman tiene conto del suo stato precedente, cosa che le consente di svolgere compiti di previsione di sequenze temporali che sono difficilmente alla portata dei percettroni multistrato convenzionali. Infine, un ultimo interessante tipo di rete è costituita dalla cosiddetta mappa auto-organizzante o rete SOM ("Self-Organizing Map"). Tale innovativo tipo di rete neurale è stata elaborata da Teuvo Kohonen dell'Università Tecnologica di Helsinki; il suo algoritmo d'apprendimento è senza dubbio una brillante formulazione di apprendimento non supervisionato, e ha dato luogo a un gran numero di applicazioni nell'ambito dei problemi di classificazione. Una mappa o rete SOM è basata essenzialmente su un reticolo o griglia di neuroni artificiali i cui pesi sono continuamente adattati ai vettori presentati in ingresso nel relativo insieme di addestramento. Tali vettori possono essere di dimensione generica, anche se nella maggior parte delle applicazioni essa è piuttosto alta. Per ciò che riguarda le uscite della rete, al contrario, ci si limita di solito ad una dimensione massima pari a tre, il che consente di dare luogo a mappe 2D o 3D. In termini più analitici, l'algoritmo può essere agevolmente descritto, come accennato, nei termini di un insieme di neuroni artificiali, ciascuno con una precisa collocazione sulla mappa rappresentativa degli "output", che prendono parte ad un processo noto come "winner takes all" ("Il vincitore piglia tutto"), al termine del quale il nodo avente un vettore di pesi più vicino ad un certo "input" è dichiarato vincitore, mentre i pesi stessi sono aggiornati in modo da avvicinarli al vettore in ingresso. Ciascun nodo ha un certo numero di nodi adiacenti. Quando un nodo vince una competizione, anche i pesi dei nodi adiacenti sono modificati, secondo la regola generale che più un nodo è lontano dal nodo vincitore, meno marcata deve essere la variazione dei suoi pesi. Il processo è quindi ripetuto per ogni vettore dell'insieme di "training", per un certo numero, solitamente grande, di cicli. Va da sé che ingressi diversi producono vincitori diversi. Operando in tal modo, la mappa riesce alfine ad associare i nodi d'uscita con i gruppi o schemi ricorrenti nell'insieme dei dati in ingresso. Se questi schemi sono riconoscibili, essi possono essere associati ai corrispondenti nodi della rete addestrata. In maniera analoga a quella della maggioranza delle reti neurali artificiali, anche la mappa o rete SOM può operare in due distinte modalità: In generale una ANN ("Attractor Neural Network") è una rete di nodi (es: biologicamente ispirati), spesso interconnessi in modo ricorsivo, la cui dinamica nel tempo stabilisce un assestamento in un particolare modo di oscillazione. Questo modo di oscillazione può essere stazionario, variante nel tempo o di tipo stocastico ed è chiamato il suo 'attrattore'. In neuroscienza teorica diversi tipi di reti ad attrattori sono state associate a differenti funzioni, come: memoria, attenzione, condotta del moto e classificazione. Più precisamente, una rete ad attrattori è una rete di N nodi connessi in modo che la loro intera dinamica diventi stabile in uno spazio D dimensionale, dove solitamente N»D. Ciò assume che non vi sia più input dall'esterno del sistema. La stabilità nello stato ad attrattore indica l'esistenza di uno stato stabile in una qualche varietà algebrica (es: linea, cerchio, piano, toroide). L'utilità dei modelli di rete neurale sta nel fatto che queste possono essere usate per comprendere una funzione utilizzando solo le osservazioni sui dati. Ciò è particolarmente utile nelle applicazioni in cui la complessità dei dati o la difficoltà di elaborazione rende la progettazione di una tale funzione impraticabile con i normali procedimenti di analisi manuale. I compiti a cui le reti neurali sono applicate possono essere classificate nelle seguenti grandi categorie di applicazioni: Le aree di applicazione includono i sistemi di controllo (controllo di veicoli, controllo di processi), simulatori di giochi e processi decisionali (backgammon, scacchi), riconoscimento di pattern (sistemi radar, identificazione di volti, riconoscimento di oggetti, ecc), riconoscimenti di sequenze (riconoscimento di gesti, riconoscimento vocale, OCR), diagnosi medica, applicazioni finanziarie, data mining, filtri spam per e-mail. Le reti neurali per come sono costruite lavorano in parallelo e sono quindi in grado di trattare molti dati. Si tratta in sostanza di un sofisticato sistema di tipo statistico dotato di una buona immunità al rumore; se alcune unità del sistema dovessero funzionare male, la rete nel suo complesso avrebbe delle riduzioni di prestazioni ma difficilmente andrebbe incontro ad un blocco del sistema. I software di ultima generazione dedicati alle reti neurali richiedono comunque buone conoscenze statistiche; il grado di apparente utilizzabilità immediata non deve trarre in inganno, pur permettendo all'utente di effettuare subito previsioni o classificazioni, seppure con i limiti del caso. Da un punto di vista industriale, risultano efficaci quando si dispone di dati storici che possono essere trattati con gli algoritmi neurali. Ciò è di interesse per la produzione perché permette di estrarre dati e modelli senza effettuare ulteriori prove e sperimentazioni. I modelli prodotti dalle reti neurali, anche se molto efficienti, non sono spiegabili in linguaggio simbolico umano: i risultati vanno accettati "così come sono", da cui anche la definizione inglese delle reti neurali come "black box": in altre parole, a differenza di un sistema algoritmico, dove si può esaminare passo-passo il percorso che dall'input genera l'output, una rete neurale è in grado di generare un risultato valido, o comunque con una alta probabilità di essere accettabile, ma non è possibile spiegare come e perché tale risultato sia stato generato. Come per qualsiasi algoritmo di modellazione, anche le reti neurali sono efficienti solo se le variabili predittive sono scelte con cura. Non sono in grado di trattare in modo efficiente variabili di tipo categorico (per esempio, il nome della città) con molti valori diversi. Necessitano di una fase di addestramento del sistema che fissi i pesi dei singoli neuroni e questa fase può richiedere molto tempo, se il numero dei record e delle variabili analizzate è molto grande. Non esistono teoremi o modelli che permettano di definire la rete ottima, quindi la riuscita di una rete dipende molto dall'esperienza del creatore. Le reti neurali vengono solitamente usate in contesti dove i dati possono essere parzialmente errati oppure dove non esistano modelli analitici in grado di affrontare il problema. Un loro tipico utilizzo è nei software di OCR, nei sistemi di riconoscimento facciale e più in generale nei sistemi che si occupano di trattare dati soggetti a errori o rumore. Esse sono anche uno degli strumenti maggiormente utilizzati nelle analisi di Data mining. Le reti neurali vengono anche utilizzate come mezzo per previsioni nell'analisi finanziaria o meteorologica. Negli ultimi anni è aumentata notevolmente la loro importanza anche nel campo della bioinformatica nel quale vengono utilizzate per la ricerca di pattern funzionali e/o strutturali in proteine e acidi nucleici. Mostrando opportunamente una lunga serie di input (fase di training o apprendimento), la rete è in grado di fornire l'output più probabile. Negli ultimi anni inoltre sono in corso studi per il loro utilizzo nella previsione degli attacchi Epilettici (Analisi dei Dati provenienti dall' EEG). Recenti studi hanno dimostrato buone potenzialità delle reti neurali in sismologia per la localizzazione di epicentri di terremoti e predizione della loro intensità.
Rete neurale artificiale
In probabilità, date due variabili aleatorie "X" e "Y", definite sullo stesso spazio di probabilità, si definisce la loro distribuzione congiunta come la distribuzione di probabilità associata al vettore formula_1. Nel caso di due sole variabili, si parla di distribuzione bivariata, mentre nel caso di più variabili si parla di distribuzione multivariata. La funzione di ripartizione di una distribuzione congiunta è definita come o più generalmente Nel caso di variabili aleatorie discrete, la densità discreta congiunta (o funzione di massa di probabilità congiunta) è data da Siccome la densità congiunta è anch'essa una densità, è soddisfatta la seguente equazione: Nel caso di variabili aleatorie continue, la densità congiunta è data da dove "f"("y"|"x") e "f"("x"|"y") sono le distribuzioni condizionate di Y dato X=x e di X dato Y=y, mentre "f"("x") e "f"("y") sono le distribuzioni marginali della densità congiunta, rispettivamente per X e Y. Anche in questo caso, è soddisfatto
Distribuzione congiunta
1
Il test t (o, dall'inglese, t-test) è un test statistico di tipo parametrico con lo scopo di verificare se il valore medio di una distribuzione si discosta significativamente da un certo valore di riferimento. Differisce dal test z per il fatto che la varianza formula_1 è sconosciuta. Se la varianza della popolazione non è nota, la verifica d'ipotesi sulla media della popolazione si effettua sostituendo alla varianza di universo la sua stima ottenuta a partire dallo stimatore varianza corretta del campione: In questo modo la statistica test è: la cui distribuzione è quella della formula_4 di Student con formula_5 gradi di libertà. Ad ogni modo, all'aumentare dei gradi di libertà, per il teorema del limite centrale, la variabile casuale formula_4 tende alla distribuzione normale e quindi alla formula_4 si può sostituire la formula_8 diciamo per una soglia campionaria formula_9 maggiore di 30. Se il test è bidirezionale, si rifiuterà l'ipotesi nulla se la formula_10 empirica è maggiore della formula_10 teorica di formula_12 con formula_5 gradi di libertà e si accetterà l'ipotesi alternativa formula_14 con un errore formula_15 di I specie. In econometria la statistica formula_10 ha la seguente forma:
Test t
Un'ipotesi nulla (in inglese "null hypothesis," che significa letteralmente ipotesi zero) è un'affermazione sulla distribuzione di probabilità di una o più variabili casuali. Si intende per ipotesi nulla l'affermazione secondo la quale non ci sia differenza oppure non vi sia relazione tra due fenomeni misurati, o associazione tra due gruppi. Solitamente viene assunta vera finché non si trova evidenza che la confuti. Nel test statistico viene verificata in termini probabilistici la validità di un'ipotesi statistica, detta appunto ipotesi nulla, di solito indicata con "H". Attraverso una funzione dei dati campionari si decide se accettare l'ipotesi nulla o meno. Nel caso l'ipotesi nulla venga rifiutata si accetterà l'ipotesi alternativa, indicata con "H". Se si rifiuta un'ipotesi nulla che nella realtà è vera allora si dice che si è commesso un errore di prima specie (o falso positivo). Accettando invece un'ipotesi nulla falsa si commette un errore di seconda specie (o falso negativo). L'ipotesi può essere di tipo funzionale se riferita alla forma della f (x;θ) con f funzione di densità o di probabilità, o parametrica se riferita al vettore incognito θ. L'ipotesi è semplice quando specifica completamente la f (x;θ). Nel caso un'ipotesi non sia semplice si dirà composta. Quando si considera un solo parametro l'ipotesi semplice è del tipo θ=θ, dove θ è un valore particolare. Un'ipotesi è unilaterale se è del tipo θ > θ oppure del tipo θ < θ. Un'ipotesi è bilaterale se è del tipo θ ≠ θ oppure del tipo θ < θ e θ > θ.
Ipotesi nulla
1
Una rete bayesiana (BN, "Bayesian network") è un modello grafico probabilistico che rappresenta un insieme di variabili stocastiche con le loro dipendenze condizionali attraverso l'uso di un grafo aciclico diretto (DAG). Per esempio una rete Bayesiana potrebbe rappresentare la relazione probabilistica esistente tra i sintomi e le malattie. Dati i sintomi, la rete può essere usata per calcolare la probabilità della presenza di diverse malattie. Il termine "modello gerarchico" è talvolta considerato un particolare tipo di rete Bayesiana, ma non ha nessuna definizione formale. Qualche volta viene usato per modelli con tre o più livelli di variabili stocastiche; in altri casi viene usato per modelli con variabili latenti. Comunque in generale qualsiasi rete Bayesiana moderatamente complessa viene usualmente detta "gerarchica". Formalmente le reti Bayesiane sono grafi diretti aciclici i cui nodi rappresentano variabili casuali in senso Bayesiano: possono essere quantità osservabili, variabili latenti, parametri sconosciuti o ipotesi. Gli archi rappresentano condizioni di dipendenza; i nodi che non sono connessi rappresentano variabili che sono condizionalmente indipendenti tra di loro. Ad ogni nodo è associata una funzione di probabilità che prende in input un particolare insieme di valori per le variabili del nodo genitore e restituisce la probabilità della variabile rappresentata dal nodo. Per esempio, se i genitori del nodo sono variabili booleane allora la funzione di probabilità può essere rappresentata da una tabella in cui ogni entry rappresenta una possibile combinazione di valori vero o falso che i suoi genitori possono assumere. Esistono algoritmi efficienti che effettuano inferenza e apprendimento a partire dalle reti Bayesiane. Le reti Bayesiane che modellano sequenze di variabili che variano nel tempo sono chiamate reti Bayesiane dinamiche. Matematicamente, una rete bayesiana è un grafo aciclico orientato in cui: Una rete bayesiana rappresenta la distribuzione della probabilità congiunta di un insieme di variabili.
Rete bayesiana
In probabilità, date due variabili aleatorie "X" e "Y", definite sullo stesso spazio di probabilità, si definisce la loro distribuzione congiunta come la distribuzione di probabilità associata al vettore formula_1. Nel caso di due sole variabili, si parla di distribuzione bivariata, mentre nel caso di più variabili si parla di distribuzione multivariata. La funzione di ripartizione di una distribuzione congiunta è definita come o più generalmente Nel caso di variabili aleatorie discrete, la densità discreta congiunta (o funzione di massa di probabilità congiunta) è data da Siccome la densità congiunta è anch'essa una densità, è soddisfatta la seguente equazione: Nel caso di variabili aleatorie continue, la densità congiunta è data da dove "f"("y"|"x") e "f"("x"|"y") sono le distribuzioni condizionate di Y dato X=x e di X dato Y=y, mentre "f"("x") e "f"("y") sono le distribuzioni marginali della densità congiunta, rispettivamente per X e Y. Anche in questo caso, è soddisfatto
Distribuzione congiunta
1
Nell'analisi statistica della classificazione binaria, lF score (nota anche come F-score o F-measure, letteralmente "misura F") è una misura dell'accuratezza di un test. La misura tiene in considerazione precisione e recupero del test, dove la precisione è il numero di veri positivi diviso il numero di tutti i risultati positivi, mentre il recupero è il numero di veri positivi diviso il numero di tutti i test che sarebbero dovuti risultare positivi (ovvero veri positivi più falsi negativi). L'F viene calcolato tramite la media armonica di precisione e recupero: Può assumere valori compresi fra 0 e 1. Assume valore 0 solo se almeno uno dei due vale 0, mentre assume valore 1 sia precisione che recupero valgono 1. L'F score è anche noto come coefficiente di Sørensen-Dice (DSC), o semplicemente coefficiente di Dice. La formula generale è: per valori di β reali positivi. La formula in termini di errori di primo e secondo tipo: Due particolari istanze della formula solitamente utilizzate sono la misura formula_4 (che pone maggiore enfasi sui falsi negativi) ed formula_5 (la quale attenua l'influenza dei falsi negativi). In generale, formula_6 "misura l'efficacia del recupero rispetto ad un utente attribuisce al recupero un'importanza di β volte quella della precisione". L'F-score è solitamente usata nel campo del recupero dell'informazione per misurare l'accuratezza delle ricerche o della classificazione dei documenti. Inizialmente l'F score era l'unica misura ad essere considerata, ma con la proliferazione in larga scala di motori di ricerca gli obiettivi di prestazione iniziarono a variare, divenendo necessario porre maggiore enfasi su precisione o recupero. L'F-score è usata anche nel campo dell'apprendimento automatico ed è vastamente impiegata nella letteratura sull'elaborazione del linguaggio naturale. Da notare, comunque, che non viene mai preso in considerazione il numero di veri negativi. In tal senso, misure come il coefficiente di correlazione di Matthews o il Kappa di Cohen possono generare risultati più adeguati alle proprie esigenze. Mentre l'F-measure è una media armonica di recupero e precisione, la cosiddetta G-measure è una media geometrica: Dove "PPV" sta per "Positive Predictive Value" ("valore predittivo positivo") e "TPR" per "True Positive Rate" (o indice di sensibilità). È nota anche come indice di Fowlkes-Mallows.
F1 score
Il test di verifica d'ipotesi si utilizza per verificare la bontà di un'ipotesi. Per ipotesi è da intendersi un'affermazione che ha come oggetto accadimenti nel mondo reale, che si presta ad essere confermata o smentita dai dati osservati sperimentalmente. Il metodo con cui si valuta l'attendibilità di un'ipotesi è il metodo sperimentale. Quest'ultimo consiste nel determinare le conseguenze di un'ipotesi in termini di eventi osservabili, e di valutare se la realtà effettivamente osservata si accorda o meno con l'ipotesi su di essa fatta. A tal riguardo si distinguono due ambiti in cui tale attività si esplica: Nell'ambito statistico, a seconda delle ipotesi si distingue tra: Nel primo caso, si tende a pervenire a delle conclusioni più sicure possibili. Ad esempio volendo provare se in un circuito elettrico passa corrente si inserirà una lampadina o un amperometro e si constaterà l'accensione o l'attivazione dello strumento. In tal caso si perviene con maggior sicurezza alla conclusione. Se la lampadina si accende allora passa corrente; in caso contrario il circuito non è predisposto correttamente. In questo ambito, se nel circuito passa corrente la maggior parte delle volte che si inserisce una lampadina questa si accende. In caso contrario il ripetuto inserimento della lampadina darà sempre esito negativo. Nel secondo caso la situazione è modificata in quanto interviene un elemento nuovo, ovvero il caso e/o l'errore di misura. Si supponga di avere una moneta recante due facce contrassegnate con testa e croce. Volendo verificare l'ipotesi di bilanciamento della moneta si eseguono 20 lanci e si contano quelli che danno esito testa. La conseguenza del bilanciamento consiste nell'osservare un valore di teste attorno a 10. Tuttavia anche in ipotesi di bilanciamento non si può escludere di osservare 20 teste. D'altronde, l'ipotesi di bilanciamento è logicamente compatibile con un numero di teste variante da 0 a 20. In tale contesto una qualsiasi decisione in merito all'ipotesi da verificare comporta un rischio di errore. Ad esempio rigettare l'ipotesi di bilanciamento della moneta avendo osservato 20 teste su 20 lanci comporta il rischio di prendere una decisione errata. Nel procedere alla verifica dell'ipotesi di bilanciamento della moneta, si ricorre a una variabile casuale X. Tale variabile casuale X è una variabile aleatoria discreta con distribuzione binomiale B(20; 0,5), dove 20 indica il numero di lanci e 0,5 la probabilità che si verifichi l'evento "testa". Il risultato sperimentale si deve quindi confrontare con tale distribuzione: quanto è distante tale risultato dal valore medio della distribuzione B(20; 0,5)? Per rispondere alla domanda si deve individuare un valore caratteristico della distribuzione B(20; 0,5). Nel nostro caso tale valore caratteristico è il valore medio 20/2 = 10. Per valutare la distanza tra il valore sperimentale e quello atteso si valuta la probabilità di ottenere un valore sperimentale lontano dal valore medio di B(20; 0,5), ossìa nel caso che dal nostro esperimento risulti X=15 (15 teste dopo 20 lanci), si calcola P{|X-10|>=15-10} quindi P{X<=5 oppure X>=15}=0,041. Quindi, usando una moneta ben bilanciata, la probabilità di ottenere un numero di teste X >= 15 (oppure X <= 5) dopo 20 lanci è pari a 0,041 ossia al 4,1%. Giudicando bassa tale probabilità si rifiuterà l'ipotesi di bilanciamento della moneta in esame, accettando quindi il rischio del 4,1% di compiere un errore nel rifiutarla. Di solito, il valore della probabilità adottato per rifiutare l'ipotesi nulla è < 0,05. Tale valore è detto livello di significatività ed è definibile come segue: il livello di significatività sotto l'ipotesi nulla è la probabilità di cadere nella zona di rifiuto quando l'ipotesi nulla è vera. Tale livello di significatività si indica convenzionalmente con α. Il livello di significatività osservato α del test per il quale si rifiuterebbe l'ipotesi nulla è detto valore-p ("p-value"). Riprendendo l'esempio sopra riportato il valore-p è pari a 0,041. Adottando nell'esempio α = 0,05, si rifiuterà l'ipotesi se P{|X-10|>=x}<0,05. Tale condizione si raggiunge appunto se X<6 oppure X>14. Tale insieme di valori si definisce convenzionalmente come regione di rifiuto. Viceversa l'insieme { 6,7…14} si definisce regione di accettazione. In questo modo si è costruita una regola di comportamento per verificare l'ipotesi di bilanciamento della moneta. Tale regola definisce il test statistico. In termini tecnici l'ipotesi da verificare si chiama ipotesi nulla e si indica con "H", mentre l'ipotesi alternativa con "H". Nel caso della moneta, se "p" è la probabilità di ottenere testa in un lancio la verifica di ipotesi si traduce nel seguente sistema: Come già osservato, il modo di condurre un test statistico comporta un rischio di errore. Nella pratica statistica si individuano due tipi di errori: Tornando all'esempio della moneta in cui la regione di accettazione è data dall'insieme di valori {6..14}, la probabilità di rifiutare H quando è vera è stato calcolato pari a 0,041.Tale probabilità rappresenta il rischio di incorrere in un errore di primo tipo e si indica con α. Per valutare la probabilità di un errore di secondo tipo è necessario specificare un valore di "p" in caso di verità di H. Si supponga che p=0,80, in tal caso la distribuzione di X è una B(20;0,80) Con tale distribuzione di probabilità, l'errore di tipo "2" si calcola sommando le probabilità relative ai valori di X della zona di accettazione, ciò supponendo H vera. Si trova quindi che la probabilità cercata è pari a circa 0,20. Tale probabilità quantifica il rischio di incorrere nell'errore di tipo "2." e si indica convenzionalmente con β. La quantità 1-β si chiama "potenza del test" ed esprime quindi la capacità di un test statistico di riconoscere la falsità di H quando questa è effettivamente falsa. La potenza del test trova applicazione nella pratica statistica in fase di pianificazione di un esperimento.
Test di verifica d'ipotesi
1