|
--- |
|
dataset_info: |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: lemma |
|
dtype: string |
|
- name: sentence1 |
|
dtype: string |
|
- name: sentence2 |
|
dtype: string |
|
- name: start1 |
|
dtype: int64 |
|
- name: end1 |
|
dtype: int64 |
|
- name: start2 |
|
dtype: int64 |
|
- name: end2 |
|
dtype: int64 |
|
- name: choices |
|
sequence: string |
|
- name: label |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 1235171 |
|
num_examples: 2805 |
|
- name: validation |
|
num_bytes: 217885 |
|
num_examples: 500 |
|
- name: test |
|
num_bytes: 218696 |
|
num_examples: 500 |
|
download_size: 1037141 |
|
dataset_size: 1671752 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
--- |
|
|
|
# Word in Context (WIC) |
|
|
|
Original Paper: https://wic-ita.github.io/ |
|
|
|
This dataset comes from EVALITA-2023. |
|
|
|
Word in Context task consists of establishing if a word *w* occurring in two different sentences *s1* and *s2* has the same meaning or not. |
|
|
|
We repropose this task to test generative LLMs defining a specific prompting strategy comparing the perplexities of possible continuations to understand the models' capabilities. |
|
|
|
## Example |
|
|
|
Here you can see the structure of the single sample in the present dataset. |
|
|
|
```json |
|
{ |
|
"sentence_1": string, # text of the sentence 1 |
|
"sentence_2": string, # text of the sentence 2 |
|
"lemma": string, # text of the word present in both sentences |
|
"label": int, # 0: Different Mearning, 1: Same Meaning, |
|
} |
|
``` |
|
|
|
## Statistics |
|
|
|
| WIC | 0 | 1 | |
|
| :--------: | :----: | :----: | |
|
| Training | 806 | 1999 | |
|
| Validation | 250 | 250 | |
|
| Test | 250 | 250 | |
|
|
|
## Proposed Prompts |
|
|
|
Here we will describe the prompt given to the model over which we will compute the perplexity score, as model's answer we will chose the prompt with lower perplexity. |
|
Moreover, for each subtask, we define a description that is prepended to the prompts, needed by the model to understand the task. |
|
|
|
Description of the task: "Date due frasi, che contengono un lemma in comune, indica se tale lemma ha o meno lo stesso significato in entrambe le frasi.\n\n" |
|
|
|
### Cloze Style: |
|
|
|
Label (**Different Meaning**): "Frase 1: {{sentence1}}\nFrase 2: {{sentence2}}\nLa parola '{{lemma}}' nelle due frasi precedenti ha un significato differente" |
|
|
|
Label (**Same Meaning**): "Frase 1: {{sentence1}}\nFrase 2: {{sentence2}}\nLa parola '{{lemma}}' nelle due frasi precedenti ha lo stesso significato" |
|
|
|
### MCQA Style: |
|
|
|
```txt |
|
Frase 1: {{sentence1}}\nFrase 2: {{sentence2}}\nDomanda:La parola '{{lemma}}' nelle due frasi precedenti ha lo stesso signicato (Rispondi sì o no)? |
|
``` |
|
|
|
## Some Results |
|
|
|
| WIC | ACCURACY (5-shots) | |
|
| :-----: | :--: | |
|
| Gemma-2B | 48.2 | |
|
| QWEN2-1.5B | 50.4 | |
|
| Mistral-7B | 53.4 | |
|
| ZEFIRO | 54.6 | |
|
| Llama-3-8B | 54.6 | |
|
| Llama-3-8B-IT | 62.8 | |
|
| ANITA | 69.2 | |
|
|
|
## Acknowledge |
|
|
|
We want to thanks the authors of this resource to publicly release such interesting benchmark. |
|
|
|
Further, We want to thanks the student of [MNLP-2024 course](https://naviglinlp.blogspot.com/), where with their first homework tried different interesting prompting strategies. |
|
|
|
The data can be freely downloaded form this [link](https://github.com/wic-ita/data). |
|
|
|
## License |
|
|
|
Original data license not found. |