complexity
int64 1
56
| n_identifiers
int64 1
114
| code
stringlengths 19
12.7k
| path
stringlengths 8
134
| n_ast_nodes
int64 12
2.35k
| ast_errors
stringlengths 0
4.01k
| repo
stringlengths 3
28
| documentation
dict | n_words
int64 2
866
| language
stringclasses 1
value | vocab_size
int64 2
323
| commit_id
stringlengths 40
40
| file_name
stringlengths 5
79
| id
int64 243
338k
| nloc
int64 1
228
| token_counts
int64 5
1.4k
| fun_name
stringlengths 1
77
| url
stringlengths 31
60
| commit_message
stringlengths 3
15.3k
| n_whitespaces
int64 1
3.23k
| n_ast_errors
int64 0
20
| d_id
int64 74
121k
| ast_levels
int64 4
29
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 26 | def functions_df() -> pd.DataFrame:
modules = all_view_models()
all_formatted = []
for module in modules:
if not FORECASTING and "forecast" in str(module):
continue
loaded = load_modules(module)
# Gets all of a module's functions, but ignores imported functions
func_list = [
x[1]
for x in getmembers(loaded, isfunction)
if x[1].__module__ == loaded.__name__
]
formatted_list = [format_function(x) for x in func_list]
all_formatted.extend(formatted_list)
func_df = pd.DataFrame()
func_df["name"] = [x[0] for x in all_formatted]
func_df["docstring"] = [x[1] for x in all_formatted]
func_dups = len(func_df["name"]) - len(func_df["name"].drop_duplicates())
if func_dups > 0:
print(f"Number of duplicate functions found: {func_dups}")
print(
"This may indicate that functions are defined several times in the terminal.\n"
)
func_df = func_df.set_index("name")
return func_df
| openbb_terminal/core/scripts/sdk_audit.py | 286 | OpenBBTerminal | {
"docstring": "Creates a dataframe for all functions in 'models' and 'views'.\n\n Returns:\n ----------\n pd.DataFrame\n Information for all view and model functions\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 20,
"vocab_size": 16
} | 109 | Python | 78 | 963ca9b2b924d0514e0e65243dc8d9d7af023ad1 | sdk_audit.py | 286,657 | 32 | 169 | functions_df | https://github.com/OpenBB-finance/OpenBBTerminal.git | Audit SDK and View/Model functions (#3384)
* Initial commit
* Finalized functionality
* update script
* Allow using it without forecasting
* Update gitignore
* Update `sdk_audit.py`
* Fixed issues, found more
* Added fix for helper functions, and column for SDK type
* Checked one more thing
* Moved file
* Move files ending with models/views
* Added fix of name
* Added file path fixes
* Patch to fix sdk_audit for windows
* fix
Co-authored-by: Chavithra PARANA <[email protected]> | 267 | 0 | 85,962 | 13 |
|
4 | 11 | def train_timer(self, do='start'):
if do == 'start':
self.pair_it_train += 1
self.begin_time_train = time.time()
elif do == 'stop':
end = time.time()
self.train_time += (end - self.begin_time_train)
if self.pair_it_train == self.total_pairs:
logger.info(
f'Total time spent training pairlist {self.train_time:.2f} seconds')
self.pair_it_train = 0
self.train_time = 0
return
# Following methods which are overridden by user made prediction models.
# See freqai/prediction_models/CatboostPredictionModel.py for an example.
| freqtrade/freqai/freqai_interface.py | 147 | freqtrade | {
"docstring": "\n Timer designed to track the cumulative time spent training the full pairlist in\n FreqAI.\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 14,
"vocab_size": 13
} | 61 | Python | 47 | 96d8882f1e6740f6c0a859c6e5f52a5a30ddb007 | freqai_interface.py | 150,527 | 13 | 79 | train_timer | https://github.com/freqtrade/freqtrade.git | Plug mem leak, add training timer | 214 | 0 | 34,788 | 15 |
|
5 | 17 | def caching_device(rnn_cell):
if tf.executing_eagerly():
# caching_device is not supported in eager mode.
return None
if not getattr(rnn_cell, '_enable_caching_device', False):
return None
# Don't set a caching device when running in a loop, since it is possible that
# train steps could be wrapped in a tf.while_loop. In that scenario caching
# prevents forward computations in loop iterations from re-reading the
# updated weights.
if control_flow_util.IsInWhileLoop(tf.compat.v1.get_default_graph()):
logging.warning(
'Variable read device caching has been disabled because the '
'RNN is in tf.while_loop loop context, which will cause '
'reading stalled value in forward path. This could slow down '
'the training due to duplicated variable reads. Please '
'consider updating your code to remove tf.while_loop if possible.')
return None
if (rnn_cell._dtype_policy.compute_dtype !=
rnn_cell._dtype_policy.variable_dtype):
logging.warning(
'Variable read device caching has been disabled since it '
'doesn\'t work with the mixed precision API. This is '
'likely to cause a slowdown for RNN training due to '
'duplicated read of variable for each timestep, which '
'will be significant in a multi remote worker setting. '
'Please consider disabling mixed precision API if '
'the performance has been affected.')
return None
# Cache the value on the device that access the variable.
return lambda op: op.device
| keras/layers/rnn/rnn_utils.py | 178 | keras | {
"docstring": "Returns the caching device for the RNN variable.\n\n This is useful for distributed training, when variable is not located as same\n device as the training worker. By enabling the device cache, this allows\n worker to read the variable once and cache locally, rather than read it every\n time step from remote when it is needed.\n\n Note that this is assuming the variable that cell needs for each time step is\n having the same value in the forward path, and only gets updated in the\n backprop. It is true for all the default cells (SimpleRNN, GRU, LSTM). If the\n cell body relies on any variable that gets updated every time step, then\n caching device will cause it to read the stall value.\n\n Args:\n rnn_cell: the rnn cell instance.\n ",
"language": "en",
"n_whitespaces": 141,
"n_words": 127,
"vocab_size": 79
} | 202 | Python | 119 | 01c906c4178db5ae03b7eb2d298a052c952a0667 | rnn_utils.py | 268,981 | 25 | 92 | caching_device | https://github.com/keras-team/keras.git | Reorganize RNN layers, cells and wrappers into smaller logically organized files hosted under an `rnn` directory.
PiperOrigin-RevId: 428841673 | 323 | 0 | 79,802 | 11 |
|
1 | 5 | def get_tables(self) -> Response:
q = 'SHOW TABLES;'
return self.native_query(q)
| mindsdb/integrations/handlers/tdengine_handler/tdengine_handler.py | 34 | mindsdb | {
"docstring": "\n Get a list with all of the tabels in TDEngine\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 10,
"vocab_size": 10
} | 10 | Python | 10 | 257dfe6bac18d28088c7bfc79ca22cde682f9cd6 | tdengine_handler.py | 116,966 | 6 | 18 | get_tables | https://github.com/mindsdb/mindsdb.git | Added TDENgine Handler | 40 | 0 | 25,874 | 7 |
|
3 | 9 | def get_instance(self) -> t.Optional[AnsibleCoreCI]:
if not self.core_ci and self.core_ci_state:
self.core_ci = self.create_core_ci(load=False)
self.core_ci.load(self.core_ci_state)
return self.core_ci
| test/lib/ansible_test/_internal/host_profiles.py | 80 | ansible | {
"docstring": "Return the current AnsibleCoreCI instance, loading it if not already loaded.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 15 | Python | 13 | 3eb0485dd92c88cc92152d3656d94492db44b183 | host_profiles.py | 268,016 | 6 | 49 | get_instance | https://github.com/ansible/ansible.git | ansible-test - Use more native type hints. (#78435)
* ansible-test - Use more native type hints.
Simple search and replace to switch from comments to native type hints for return types of functions with no arguments.
* ansible-test - Use more native type hints.
Conversion of simple single-line function annotation type comments to native type hints.
* ansible-test - Use more native type hints.
Conversion of single-line function annotation type comments with default values to native type hints.
* ansible-test - Use more native type hints.
Manual conversion of type annotation comments for functions which have pylint directives. | 58 | 0 | 79,290 | 11 |
|
3 | 14 | def sort_line_bbox(g, bg):
xs = [bg_item[0] for bg_item in bg]
xs_sorted = sorted(xs)
g_sorted = [None] * len(xs_sorted)
bg_sorted = [None] * len(xs_sorted)
for g_item, bg_item in zip(g, bg):
idx = xs_sorted.index(bg_item[0])
bg_sorted[idx] = bg_item
g_sorted[idx] = g_item
return g_sorted, bg_sorted
| ppstructure/table/table_master_match.py | 132 | PaddleOCR | {
"docstring": "\n Sorted the bbox in the same line(group)\n compare coord 'x' value, where 'y' value is closed in the same group.\n :param g: index in the same group\n :param bg: bbox in the same group\n :return:\n ",
"language": "en",
"n_whitespaces": 54,
"n_words": 35,
"vocab_size": 22
} | 41 | Python | 26 | ddaa2c2552e19635cd6cdf38619f1f176c358f89 | table_master_match.py | 24,491 | 10 | 85 | sort_line_bbox | https://github.com/PaddlePaddle/PaddleOCR.git | add SLANet | 83 | 0 | 4,742 | 11 |
|
2 | 15 | def get_closed() -> pd.DataFrame:
bursa = all_bursa()
is_open_list = []
for exchange in bursa.index:
is_open = check_if_open(bursa, exchange)
is_open_list.append(is_open)
bursa["open"] = is_open_list
bursa = bursa.loc[~bursa["open"]]
return bursa[["name", "short_name"]]
@log_start_end(log=logger) | openbb_terminal/stocks/tradinghours/bursa_model.py | 125 | @log_start_end(log=logger) | OpenBBTerminal | {
"docstring": "Get closed exchanges.\n\n Parameters\n ----------\n\n Returns\n -------\n pd.DataFrame\n Currently closed exchanges\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 11,
"vocab_size": 10
} | 29 | Python | 23 | 33a041e5bf93ce93ab1a19adbc5ed74c2f1eb337 | bursa_model.py | 284,462 | 19 | 66 | get_closed | https://github.com/OpenBB-finance/OpenBBTerminal.git | Trading hours stock feature (#1697) | 63 | 1 | 84,732 | 10 |
4 | 20 | def get_masks(slen, lengths, causal, padding_mask=None):
bs = shape_list(lengths)[0]
if padding_mask is not None:
mask = padding_mask
else:
# assert lengths.max().item() <= slen
alen = tf.range(slen, dtype=lengths.dtype)
mask = alen < tf.expand_dims(lengths, axis=1)
# attention mask is the same as mask, or triangular inferior attention (causal)
if causal:
attn_mask = tf.less_equal(
tf.tile(tf.reshape(alen, (1, 1, slen)), (bs, slen, 1)), tf.reshape(alen, (1, slen, 1))
)
else:
attn_mask = mask
# sanity check
# assert shape_list(mask) == [bs, slen]
tf.debugging.assert_equal(shape_list(mask), [bs, slen])
if causal:
tf.debugging.assert_equal(shape_list(attn_mask), [bs, slen, slen])
return mask, attn_mask
| src/transformers/models/flaubert/modeling_tf_flaubert.py | 243 | transformers | {
"docstring": "\n Generate hidden states mask, and optionally an attention mask.\n ",
"language": "en",
"n_whitespaces": 16,
"n_words": 9,
"vocab_size": 9
} | 87 | Python | 58 | 31be02f14b1724c677bb2e32a5101c7cb6448556 | modeling_tf_flaubert.py | 33,795 | 17 | 162 | get_masks | https://github.com/huggingface/transformers.git | TF: tf.debugging assertions without tf.running_eagerly() protection (#19030) | 190 | 0 | 6,152 | 15 |
|
2 | 19 | def css_install_check(app_configs, **kwargs):
errors = []
css_path = os.path.join(
os.path.dirname(__file__), 'static', 'wagtailadmin', 'css', 'normalize.css'
)
if not os.path.isfile(css_path):
error_hint = % css_path
errors.append(
Warning(
"CSS for the Wagtail admin is missing",
hint=error_hint,
id='wagtailadmin.W001',
)
)
return errors
@register(Tags.admin) | wagtail/admin/checks.py | 136 | @register(Tags.admin) | wagtail | {
"docstring": "\n Most likely you are running a development (non-packaged) copy of\n Wagtail and have not built the static assets -\n see https://docs.wagtail.org/en/latest/contributing/developing.html\n\n File not found: %s\n ",
"language": "en",
"n_whitespaces": 77,
"n_words": 25,
"vocab_size": 24
} | 38 | Python | 32 | e9183a95c88fe2eaf4c1d3aff9833633509713f3 | checks.py | 70,553 | 21 | 73 | css_install_check | https://github.com/wagtail/wagtail.git | Update docs links to reference new domain | 147 | 1 | 15,519 | 13 |
4 | 4 | async def device_scan(hass, identifier, loop):
| homeassistant/components/apple_tv/config_flow.py | 18 | core | {
"docstring": "Scan for a specific device using identifier as filter.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 5 | Python | 5 | 7112c5b52a1e0016961a725d4ca90b57ddb350de | config_flow.py | 310,881 | 9 | 77 | device_scan | https://github.com/home-assistant/core.git | Use zeroconf for scanning in apple_tv (#64528) | 8 | 0 | 109,552 | 6 |
|
1 | 6 | def __exit__(self, *args) -> None:
raise NotImplementedError(
f"{self.__class__.__name__} does not support context management."
)
| src/prefect/blocks/abstract.py | 40 | prefect | {
"docstring": "\n Context management method for databases.\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 5,
"vocab_size": 5
} | 14 | Python | 14 | e51b790b7717e2603c1ea480c75e9ee02df3c869 | abstract.py | 60,156 | 7 | 17 | __exit__ | https://github.com/PrefectHQ/prefect.git | Abstract database block (#7866)
Co-authored-by: Alexander Streed <[email protected]>
Co-authored-by: Bill Palombi <[email protected]> | 46 | 0 | 11,998 | 11 |
|
2 | 31 | def split_spectrum(H, n, split_point, V0=None):
N, _ = H.shape
H_shift = H - split_point * jnp.eye(N, dtype=H.dtype)
U, _, _, _ = qdwh.qdwh(H_shift, is_hermitian=True, dynamic_shape=(n, n))
P = -0.5 * (U - _mask(jnp.eye(N, dtype=H.dtype), (n, n)))
rank = jnp.round(jnp.trace(P)).astype(jnp.int32)
V_minus, V_plus = _projector_subspace(P, H, n, rank)
H_minus = (V_minus.conj().T @ H) @ V_minus
H_plus = (V_plus.conj().T @ H) @ V_plus
if V0 is not None:
V_minus = jnp.dot(V0, V_minus)
V_plus = jnp.dot(V0, V_plus)
return H_minus, V_minus, H_plus, V_plus, rank
# To help understand the iterative version of the algorithm, the original
# recursive formulation follows.
#
# def _eigh_work(H, V=None, termination_size=128):
#
# if H.shape[0] <= termination_size:
# evals, evecs = jnp_linalg.eigh(H)
# if V is not None:
# evecs = jnp.dot(V, evecs)
# return evals, evecs
#
# split_point = jnp.median(jnp.diag(H)) # TODO: Improve this?
# H_minus, V_minus, H_plus, V_plus = split_spectrum(H, split_point, V0=V)
# H_minus, V_minus = _eigh_work(H_minus, V=V_minus, termination_size=termination_size)
# H_plus, V_plus = _eigh_work(H_plus, V=V_plus, termination_size=termination_size)
#
# evals = jnp.hstack((H_minus, H_plus))
# evecs = jnp.hstack((V_minus, V_plus))
# return evals, evecs
| jax/_src/lax/eigh.py | 323 | jax | {
"docstring": " The Hermitian matrix `H` is split into two matrices `H_minus`\n `H_plus`, respectively sharing its eigenspaces beneath and above\n its `split_point`th eigenvalue.\n\n Returns, in addition, `V_minus` and `V_plus`, isometries such that\n `Hi = Vi.conj().T @ H @ Vi`. If `V0` is not None, `V0 @ Vi` are\n returned instead; this allows the overall isometries mapping from\n an initial input matrix to progressively smaller blocks to be formed.\n\n Args:\n H: The Hermitian matrix to split.\n split_point: The eigenvalue to split along.\n V0: Matrix of isometries to be updated.\n Returns:\n H_minus: A Hermitian matrix sharing the eigenvalues of `H` beneath\n `split_point`.\n V_minus: An isometry from the input space of `V0` to `H_minus`.\n H_plus: A Hermitian matrix sharing the eigenvalues of `H` above\n `split_point`.\n V_plus: An isometry from the input space of `V0` to `H_plus`.\n rank: The dynamic size of the m subblock.\n The main work loop performing the symmetric eigendecomposition of H.\n# Each step recursively computes a projector into the space of eigenvalues\n# above jnp.mean(jnp.diag(H)). The result of the projections into and out of\n# that space, along with the isometries accomplishing these, are then computed.\n# This is performed recursively until the projections have size 1, and thus\n# store an eigenvalue of the original input; the corresponding isometry is\n# the related eigenvector. The results are then composed.\n#\n# Args:\n# H: The Hermitian input.\n# V: Stores the isometries projecting H into its subspaces.\n# precision: :class:`~jax.lax.Precision` object specifying the matmul precision.\n#\n# Returns:\n# H, V: The result of the projection.\n# ",
"language": "en",
"n_whitespaces": 321,
"n_words": 257,
"vocab_size": 138
} | 174 | Python | 95 | b64e36b60fca9661ca2c8ae51a56fae07bf5efe6 | eigh.py | 120,630 | 13 | 197 | split_spectrum | https://github.com/google/jax.git | Make QDWH-eig implementation jit-table.
Move QDWH-eig from jax._src.scipy.eigh to jax._src.lax.eigh, in preparation for using it to back `lax.eigh` in a future change.
PiperOrigin-RevId: 449362382 | 210 | 0 | 26,905 | 15 |
|
2 | 7 | def set_dash_joinstyle(self, s):
js = JoinStyle(s)
if self._dashjoinstyle != js:
self.stale = True
self._dashjoinstyle = js
| lib/matplotlib/lines.py | 52 | matplotlib | {
"docstring": "\n How to join segments of the line if it `~Line2D.is_dashed`.\n\n The default joinstyle is :rc:`lines.dash_joinstyle`.\n\n Parameters\n ----------\n s : `.JoinStyle` or %(JoinStyle)s\n ",
"language": "en",
"n_whitespaces": 65,
"n_words": 22,
"vocab_size": 22
} | 16 | Python | 12 | 4c2662ad6f8c7b3c06554dfa3633f50dd011beb0 | lines.py | 107,221 | 5 | 31 | set_dash_joinstyle | https://github.com/matplotlib/matplotlib.git | DOC: Document default join style
in the same way as the default cap styles. | 55 | 0 | 22,649 | 9 |
|
4 | 22 | def set_omp_num_threads_if_unset() -> bool:
num_threads_from_env = os.environ.get("OMP_NUM_THREADS")
if num_threads_from_env is not None:
# No ops if it's set
return False
# If unset, try setting the correct CPU count assigned.
runtime_ctx = ray.get_runtime_context()
if runtime_ctx.worker.mode != ray._private.worker.WORKER_MODE:
# Non worker mode, no ops.
return False
num_assigned_cpus = runtime_ctx.get_assigned_resources().get("CPU")
if num_assigned_cpus is None:
# This is an actor task w/o any num_cpus specified, set it to 1
logger.debug(
"[ray] Forcing OMP_NUM_THREADS=1 to avoid performance "
"degradation with many workers (issue #6998). You can override this "
"by explicitly setting OMP_NUM_THREADS, or changing num_cpus."
)
num_assigned_cpus = 1
import math
# For num_cpu < 1: Set to 1.
# For num_cpus >= 1: Set to the floor of the actual assigned cpus.
omp_num_threads = max(math.floor(num_assigned_cpus), 1)
os.environ["OMP_NUM_THREADS"] = str(omp_num_threads)
return True
| python/ray/_private/utils.py | 189 | ray | {
"docstring": "Set the OMP_NUM_THREADS to default to num cpus assigned to the worker\n\n This function sets the environment variable OMP_NUM_THREADS for the worker,\n if the env is not previously set and it's running in worker (WORKER_MODE).\n\n Returns True if OMP_NUM_THREADS is set in this function.\n\n ",
"language": "en",
"n_whitespaces": 56,
"n_words": 44,
"vocab_size": 31
} | 129 | Python | 94 | 7c8859f1428224710e4c2db2abf0d9ec28536301 | utils.py | 136,708 | 27 | 105 | set_omp_num_threads_if_unset | https://github.com/ray-project/ray.git | [core] Set OMP_NUM_THREADS to `num_cpus` required by task/actors by default (#30496)
Ray currently sets OMP_NUM_THREADS=1 when the environ variable is not set.
This PR:
Sets OMP_NUM_THREADS to the number of cpus assigned to the worker that runs a task before running, and reset it after running.
If num_cpus is a fractional smaller than 1, it will set OMP_NUM_THREADS to 1.
Doesn't override OMP_NUM_THREADS if it's already being specified in runtime env or through os.environ.
Signed-off-by: Ricky Xu <[email protected]>
Co-authored-by: Eric Liang <[email protected]>
Co-authored-by: Simon Mo <[email protected]> | 260 | 0 | 30,974 | 11 |
|
4 | 31 | def grant_instance_level_collection_management_permissions(apps, schema_editor):
Collection = apps.get_model("wagtailcore.Collection")
Group = apps.get_model("auth.Group")
GroupCollectionPermission = apps.get_model("wagtailcore.GroupCollectionPermission")
Permission = apps.get_model("auth.Permission")
groups_w_permissions = Group.objects.filter(
permissions__content_type__app_label="wagtailcore",
permissions__content_type__model="collection",
permissions__codename__in=[
"add_collection",
"change_collection",
"delete_collection",
],
).values("id", "name", "permissions__id", "permissions__codename")
for root_collection in Collection.objects.filter(depth=1).all():
for row in groups_w_permissions:
GroupCollectionPermission.objects.create(
group_id=row["id"],
permission_id=row["permissions__id"],
collection_id=root_collection.id,
)
# Now remove the model-level permissions for collections
collection_permissions = Permission.objects.filter(
content_type__app_label="wagtailcore",
content_type__model="collection",
codename__in=["add_collection", "change_collection", "delete_collection"],
)
for perm in collection_permissions.all():
perm.group_set.clear()
| wagtail/core/migrations/0066_collection_management_permissions.py | 296 | wagtail | {
"docstring": "\n Give the groups who currently manage all collections permission to manage root collections\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 13,
"vocab_size": 11
} | 64 | Python | 52 | d10f15e55806c6944827d801cd9c2d53f5da4186 | 0066_collection_management_permissions.py | 73,773 | 28 | 172 | grant_instance_level_collection_management_permissions | https://github.com/wagtail/wagtail.git | Reformat with black | 263 | 0 | 16,100 | 14 |
|
1 | 9 | def test_no_default_policy(self) -> None:
room_id = self.helper.create_room_as(self.user_id, tok=self.token)
self._test_retention(room_id)
| tests/rest/client/test_retention.py | 53 | synapse | {
"docstring": "Tests that an event doesn't get expired if there is neither a default retention\n policy nor a policy specific to the room.\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 22,
"vocab_size": 20
} | 9 | Python | 9 | 1901cb1d4a8b7d9af64493fbd336e9aa2561c20c | test_retention.py | 247,062 | 6 | 32 | test_no_default_policy | https://github.com/matrix-org/synapse.git | Add type hints to `tests/rest/client` (#12084) | 30 | 0 | 71,472 | 10 |
|
2 | 36 | def dag_bag_ext():
clear_db_runs()
dag_bag = DagBag(dag_folder=DEV_NULL, include_examples=False)
dag_0 = DAG("dag_0", start_date=DEFAULT_DATE, schedule_interval=None)
task_a_0 = EmptyOperator(task_id="task_a_0", dag=dag_0)
task_b_0 = ExternalTaskMarker(
task_id="task_b_0", external_dag_id="dag_1", external_task_id="task_a_1", recursion_depth=3, dag=dag_0
)
task_a_0 >> task_b_0
dag_1 = DAG("dag_1", start_date=DEFAULT_DATE, schedule_interval=None)
task_a_1 = ExternalTaskSensor(
task_id="task_a_1", external_dag_id=dag_0.dag_id, external_task_id=task_b_0.task_id, dag=dag_1
)
task_b_1 = ExternalTaskMarker(
task_id="task_b_1", external_dag_id="dag_2", external_task_id="task_a_2", recursion_depth=2, dag=dag_1
)
task_a_1 >> task_b_1
dag_2 = DAG("dag_2", start_date=DEFAULT_DATE, schedule_interval=None)
task_a_2 = ExternalTaskSensor(
task_id="task_a_2", external_dag_id=dag_1.dag_id, external_task_id=task_b_1.task_id, dag=dag_2
)
task_b_2 = ExternalTaskMarker(
task_id="task_b_2", external_dag_id="dag_3", external_task_id="task_a_3", recursion_depth=1, dag=dag_2
)
task_a_2 >> task_b_2
dag_3 = DAG("dag_3", start_date=DEFAULT_DATE, schedule_interval=None)
task_a_3 = ExternalTaskSensor(
task_id="task_a_3", external_dag_id=dag_2.dag_id, external_task_id=task_b_2.task_id, dag=dag_3
)
task_b_3 = EmptyOperator(task_id="task_b_3", dag=dag_3)
task_a_3 >> task_b_3
for dag in [dag_0, dag_1, dag_2, dag_3]:
dag_bag.bag_dag(dag=dag, root_dag=dag)
yield dag_bag
clear_db_runs()
@pytest.fixture | tests/sensors/test_external_task_sensor.py | 460 | @pytest.fixture | airflow | {
"docstring": "\n Create a DagBag with DAGs looking like this. The dotted lines represent external dependencies\n set up using ExternalTaskMarker and ExternalTaskSensor.\n\n dag_0: task_a_0 >> task_b_0\n |\n |\n dag_1: ---> task_a_1 >> task_b_1\n |\n |\n dag_2: ---> task_a_2 >> task_b_2\n |\n |\n dag_3: ---> task_a_3 >> task_b_3\n ",
"language": "en",
"n_whitespaces": 480,
"n_words": 45,
"vocab_size": 35
} | 111 | Python | 69 | 49e336ae0302b386a2f47269a6d13988382d975f | test_external_task_sensor.py | 47,660 | 35 | 290 | dag_bag_ext | https://github.com/apache/airflow.git | Replace usage of `DummyOperator` with `EmptyOperator` (#22974)
* Replace usage of `DummyOperator` with `EmptyOperator` | 243 | 1 | 9,197 | 10 |
15 | 14 | def deserialize_keras_object(config, custom_objects=None):
| keras/saving/experimental/serialization_lib.py | 49 | """Retrieve the object by deserializing the config dict.
The config dict is a Python dictionary that consists of a set of key-value
pairs, and represents a Keras object, such as an `Optimizer`, `Layer`,
`Metrics`, etc. The saving and loading library uses the following keys to
record information of a Keras object:
- `class_name`: String. This is the name of the class,
as exactly defined in the source
code, such as "LossesContainer".
- `config`: Dict. Library-defined or user-defined key-value pairs that store
the configuration of the object, as obtained by `object.get_config()`.
- `module`: String. The path of the python module, such as
"keras.engine.compile_utils". Built-in Keras classes
expect to have prefix `keras`.
- `registered_name`: String. The key the class is registered under via
`keras.utils.register_keras_serializable(package, name)` API. The key has
the format of '{package}>{name}', where `package` and `name` are the
arguments passed to `register_keras_serializable()`. If `name` is not
provided, it defaults to the class name. If `registered_name` successfully
resolves to a class (that was registered), the `class_name` and `config`
values in the dict will not be used. `registered_name` is only used for
non-built-in classes.
For example, the following dictionary represents the built-in Adam optimizer
with the relevant config:
```python
dict_structure = {
"class_name": "Adam",
"config": {
"amsgrad": false,
"beta_1": 0.8999999761581421,
"beta_2": 0.9990000128746033,
"decay": 0.0,
"epsilon": 1e-07,
"learning_rate": 0.0010000000474974513,
"name": "Adam"
},
"module": "keras.optimizers",
"registered_name": None
}
# Returns an `Adam` instance identical to the original one.
deserialize_keras_object(dict_structure)
```
If the class does not have an exported Keras namespace, the library tracks
it by its `module` and `class_name`. For example:
```python
dict_structure = {
"class_name": "LossesContainer",
"config": {
"losses": [...],
"total_loss_mean": {...},
},
"module": "keras.engine.compile_utils",
"registered_name": "LossesContainer"
}
# Returns a `LossesContainer` instance identical to the original one.
deserialize_keras_object(dict_structure)
```
And the following dictionary represents a user-customized```` | keras | {
"docstring": "Retrieve the object by deserializing the config dict.\n\n The config dict is a Python dictionary that consists of a set of key-value\n pairs, and represents a Keras object, such as an `Optimizer`, `Layer`,\n `Metrics`, etc. The saving and loading library uses the following keys to\n record information of a Keras object:\n\n - `class_name`: String. This is the name of the class,\n as exactly defined in the source\n code, such as \"LossesContainer\".\n - `config`: Dict. Library-defined or user-defined key-value pairs that store\n the configuration of the object, as obtained by `object.get_config()`.\n - `module`: String. The path of the python module, such as\n \"keras.engine.compile_utils\". Built-in Keras classes\n expect to have prefix `keras`.\n - `registered_name`: String. The key the class is registered under via\n `keras.utils.register_keras_serializable(package, name)` API. The key has\n the format of '{package}>{name}', where `package` and `name` are the\n arguments passed to `register_keras_serializable()`. If `name` is not\n provided, it defaults to the class name. If `registered_name` successfully\n resolves to a class (that was registered), the `class_name` and `config`\n values in the dict will not be used. `registered_name` is only used for\n non-built-in classes.\n\n For example, the following dictionary represents the built-in Adam optimizer\n with the relevant config:\n\n ```python\n dict_structure = {\n \"class_name\": \"Adam\",\n \"config\": {\n \"amsgrad\": false,\n \"beta_1\": 0.8999999761581421,\n \"beta_2\": 0.9990000128746033,\n \"decay\": 0.0,\n \"epsilon\": 1e-07,\n \"learning_rate\": 0.0010000000474974513,\n \"name\": \"Adam\"\n },\n \"module\": \"keras.optimizers\",\n \"registered_name\": None\n }\n # Returns an `Adam` instance identical to the original one.\n deserialize_keras_object(dict_structure)\n ```\n\n If the class does not have an exported Keras namespace, the library tracks\n it by its `module` and `class_name`. For example:\n\n ```python\n dict_structure = {\n \"class_name\": \"LossesContainer\",\n \"config\": {\n \"losses\": [...],\n \"total_loss_mean\": {...},\n },\n \"module\": \"keras.engine.compile_utils\",\n \"registered_name\": \"LossesContainer\"\n }\n\n # Returns a `LossesContainer` instance identical to the original one.\n deserialize_keras_object(dict_structure)\n ```\n\n And the following dictionary represents a user-customized `MeanSquaredError`\n loss:\n\n ```python",
"language": "en",
"n_whitespaces": 591,
"n_words": 296,
"vocab_size": 179
} | 3 | Python | 3 | e3e3a428f0a7955040c8a8fb8b2ad6f3e16d29eb | serialization_lib.py | 279,741 | 54 | 281 | deserialize_keras_object | https://github.com/keras-team/keras.git | Remaster serialization logic.
There were several significant flaws, most prominently:
- We had 2 separate serialization systems partially overlapping and interacting with each other: the JSON encoder/decoder one, and serialize/deserialize_keras_objects. The new system is fully standalone.
- We ignored objects passed via `custom_objects` most of the time.
PiperOrigin-RevId: 473794783 | 6 | 3 | 83,118 | 8 |
9 | 41 | def from_arrow(cls, at, index_cols=None, index=None, columns=None):
(
new_frame,
new_lengths,
new_widths,
unsupported_cols,
) = cls._partition_mgr_cls.from_arrow(at, return_dims=True)
if columns is not None:
new_columns = columns
new_index = pd.RangeIndex(at.num_rows) if index is None else index
elif index_cols:
data_cols = [col for col in at.column_names if col not in index_cols]
new_columns = pd.Index(data=data_cols, dtype="O")
new_index = index
else:
assert index is None
new_columns = pd.Index(data=at.column_names, dtype="O")
new_index = pd.RangeIndex(at.num_rows)
new_dtypes = []
for col in at.columns:
if pyarrow.types.is_dictionary(col.type):
new_dtypes.append(LazyProxyCategoricalDtype(at, col._name))
else:
new_dtypes.append(cls._arrow_type_to_dtype(col.type))
if len(unsupported_cols) > 0:
ErrorMessage.single_warning(
f"Frame contain columns with unsupported data-types: {unsupported_cols}. "
+ "All operations with this frame will be default to pandas!"
)
return cls(
partitions=new_frame,
index=new_index,
columns=new_columns,
row_lengths=new_lengths,
column_widths=new_widths,
dtypes=pd.Series(data=new_dtypes, index=at.column_names),
index_cols=index_cols,
has_unsupported_data=len(unsupported_cols) > 0,
)
| modin/experimental/core/execution/native/implementations/hdk_on_native/dataframe/dataframe.py | 396 | modin | {
"docstring": "\n Build a frame from an Arrow table.\n\n Parameters\n ----------\n at : pyarrow.Table\n Source table.\n index_cols : list of str, optional\n List of index columns in the source table which\n are ignored in transformation.\n index : pandas.Index, optional\n An index to be used by the new frame. Should present\n if `index_cols` is not None.\n columns : Index or array-like, optional\n Column labels to use for resulting frame.\n\n Returns\n -------\n HdkOnNativeDataframe\n The new frame.\n ",
"language": "en",
"n_whitespaces": 227,
"n_words": 72,
"vocab_size": 56
} | 117 | Python | 80 | 219edb5fb772609d3fafaac02ded0294ea434aa8 | dataframe.py | 155,368 | 39 | 258 | from_arrow | https://github.com/modin-project/modin.git | FIX-#4859: Add support for PyArrow Dictionary Arrays to type mapping (#5271)
Co-authored-by: Iaroslav Igoshev <[email protected]>
Signed-off-by: Andrey Pavlenko <[email protected]> | 518 | 0 | 36,363 | 15 |
|
1 | 16 | def test_retention_event_purged_with_state_event_outside_allowed(self) -> None:
room_id = self.helper.create_room_as(self.user_id, tok=self.token)
# Set a max_lifetime higher than the maximum allowed value.
self.helper.send_state(
room_id=room_id,
event_type=EventTypes.Retention,
body={"max_lifetime": one_day_ms * 4},
tok=self.token,
)
# Check that the event is purged after waiting for the maximum allowed duration
# instead of the one specified in the room's policy.
self._test_retention_event_purged(room_id, one_day_ms * 1.5)
# Set a max_lifetime lower than the minimum allowed value.
self.helper.send_state(
room_id=room_id,
event_type=EventTypes.Retention,
body={"max_lifetime": one_hour_ms},
tok=self.token,
)
# Check that the event is purged after waiting for the minimum allowed duration
# instead of the one specified in the room's policy.
self._test_retention_event_purged(room_id, one_day_ms * 0.5)
| tests/rest/client/test_retention.py | 174 | synapse | {
"docstring": "Tests that the server configuration can override the policy for a room when\n running the purge jobs.\n ",
"language": "en",
"n_whitespaces": 31,
"n_words": 17,
"vocab_size": 15
} | 100 | Python | 49 | 1901cb1d4a8b7d9af64493fbd336e9aa2561c20c | test_retention.py | 247,058 | 19 | 114 | test_retention_event_purged_with_state_event_outside_allowed | https://github.com/matrix-org/synapse.git | Add type hints to `tests/rest/client` (#12084) | 286 | 0 | 71,468 | 11 |
|
2 | 7 | def raise_for_status(self) -> None:
try:
return super().raise_for_status()
except HTTPStatusError as exc:
raise PrefectHTTPStatusError.from_httpx_error(exc) from None
| src/prefect/client.py | 56 | prefect | {
"docstring": "\n Raise an exception if the response contains an HTTPStatusError.\n\n The `PrefectHTTPStatusError` contains useful additional information that\n is not contained in the `HTTPStatusError`.\n ",
"language": "en",
"n_whitespaces": 51,
"n_words": 22,
"vocab_size": 19
} | 15 | Python | 15 | f166d70fcfcdf4fceeb222f273b8e0eab6fb1b26 | client.py | 55,891 | 11 | 32 | raise_for_status | https://github.com/PrefectHQ/prefect.git | Create PrefectResponse | 58 | 0 | 11,416 | 11 |
|
1 | 2 | def test(self):
| python/ray/tune/tests/test_tune_restore.py | 13 | ray | {
"docstring": "Trainable crashes with fail_fast flag and the original crash message\n should bubble up.",
"language": "en",
"n_whitespaces": 19,
"n_words": 13,
"vocab_size": 13
} | 2 | Python | 2 | b1496d235fce4f19fb53553e7fb78e97e1d19054 | test_tune_restore.py | 146,277 | 4 | 30 | test | https://github.com/ray-project/ray.git | [tune] fix error handling for fail_fast case. (#22982) | 9 | 0 | 33,646 | 6 |
|
8 | 17 | def check_related_objects(self, field, value, opts):
if field.is_relation:
# Check that the field and the queryset use the same model in a
# query like .filter(author=Author.objects.all()). For example, the
# opts would be Author's (from the author field) and value.model
# would be Author.objects.all() queryset's .model (Author also).
# The field is the related field on the lhs side.
if (
isinstance(value, Query)
and not value.has_select_fields
and not check_rel_lookup_compatibility(value.model, opts, field)
):
raise ValueError(
'Cannot use QuerySet for "%s": Use a QuerySet for "%s".'
% (value.model._meta.object_name, opts.object_name)
)
elif hasattr(value, "_meta"):
self.check_query_object_type(value, opts, field)
elif hasattr(value, "__iter__"):
for v in value:
self.check_query_object_type(v, opts, field)
| django/db/models/sql/query.py | 165 | django | {
"docstring": "Check the type of object passed to query relations.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 103 | Python | 71 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | query.py | 205,870 | 16 | 104 | check_related_objects | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 378 | 0 | 51,255 | 16 |
|
1 | 6 | def single_source_dijkstra_path_length(G, source, cutoff=None, weight="weight"):
return multi_source_dijkstra_path_length(G, {source}, cutoff=cutoff, weight=weight)
| networkx/algorithms/shortest_paths/weighted.py | 50 | networkx | {
"docstring": "Find shortest weighted path lengths in G from a source node.\n\n Compute the shortest path length between source and all other\n reachable nodes for a weighted graph.\n\n Parameters\n ----------\n G : NetworkX graph\n\n source : node label\n Starting node for path\n\n cutoff : integer or float, optional\n Length (sum of edge weights) at which the search is stopped.\n If cutoff is provided, only return paths with summed weight <= cutoff.\n\n weight : string or function\n If this is a string, then edge weights will be accessed via the\n edge attribute with this key (that is, the weight of the edge\n joining `u` to `v` will be ``G.edges[u, v][weight]``). If no\n such edge attribute exists, the weight of the edge is assumed to\n be one.\n\n If this is a function, the weight of an edge is the value\n returned by the function. The function must accept exactly three\n positional arguments: the two endpoints of an edge and the\n dictionary of edge attributes for that edge. The function must\n return a number or None to indicate a hidden edge.\n\n Returns\n -------\n length : dict\n Dict keyed by node to shortest path length from source.\n\n Raises\n ------\n NodeNotFound\n If `source` is not in `G`.\n\n Examples\n --------\n >>> G = nx.path_graph(5)\n >>> length = nx.single_source_dijkstra_path_length(G, 0)\n >>> length[4]\n 4\n >>> for node in [0, 1, 2, 3, 4]:\n ... print(f\"{node}: {length[node]}\")\n 0: 0\n 1: 1\n 2: 2\n 3: 3\n 4: 4\n\n Notes\n -----\n Edge weight attributes must be numerical.\n Distances are calculated as sums of weighted edges traversed.\n\n The weight function can be used to hide edges by returning None.\n So ``weight = lambda u, v, d: 1 if d['color']==\"red\" else None``\n will find the shortest red path.\n\n See Also\n --------\n single_source_dijkstra, single_source_bellman_ford_path_length\n\n ",
"language": "en",
"n_whitespaces": 512,
"n_words": 289,
"vocab_size": 174
} | 10 | Python | 10 | d82815dba6c8ddce19cd49f700298dc82a58f066 | weighted.py | 177,506 | 2 | 33 | single_source_dijkstra_path_length | https://github.com/networkx/networkx.git | Hide edges with a weight of None in A*. (#5945)
* Hide edges with a weight of None in A*.
This matches the Dijkstra's weight interface.
* Update Dijkstra's and A* docs for weights of None.
* Add tests for A* with weight of None.
* Add another test for A* with a weight function.
* Document that None indicates a hidden edge. | 16 | 0 | 42,410 | 8 |
|
1 | 15 | def test_status_error_msg_format(ray_start_stop):
config_file_name = os.path.join(
os.path.dirname(__file__), "test_config_files", "deployment_fail.yaml"
)
subprocess.check_output(["serve", "deploy", config_file_name])
status_response = subprocess.check_output(
["serve", "status", "-a", "http://localhost:52365/"]
)
serve_status = yaml.safe_load(status_response)
print("serve_status", serve_status)
| python/ray/serve/tests/test_cli.py | 123 | ray | {
"docstring": "Deploys a faulty config file and checks its status.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 25 | Python | 22 | b856daebbdc923a216ce412be477c61e6cc5707e | test_cli.py | 125,445 | 12 | 79 | test_status_error_msg_format | https://github.com/ray-project/ray.git | [Serve] Fix Formatting of Error Messages printed in `serve status` (#26578) | 63 | 0 | 27,873 | 11 |
|
21 | 27 | def _get_style_dict(self, gc, rgbFace):
attrib = {}
forced_alpha = gc.get_forced_alpha()
if gc.get_hatch() is not None:
attrib['fill'] = "url(#%s)" % self._get_hatch(gc, rgbFace)
if (rgbFace is not None and len(rgbFace) == 4 and rgbFace[3] != 1.0
and not forced_alpha):
attrib['fill-opacity'] = _short_float_fmt(rgbFace[3])
else:
if rgbFace is None:
attrib['fill'] = 'none'
else:
if tuple(rgbFace[:3]) != (0, 0, 0):
attrib['fill'] = rgb2hex(rgbFace)
if (len(rgbFace) == 4 and rgbFace[3] != 1.0
and not forced_alpha):
attrib['fill-opacity'] = _short_float_fmt(rgbFace[3])
if forced_alpha and gc.get_alpha() != 1.0:
attrib['opacity'] = _short_float_fmt(gc.get_alpha())
offset, seq = gc.get_dashes()
if seq is not None:
attrib['stroke-dasharray'] = ','.join(
_short_float_fmt(val) for val in seq)
attrib['stroke-dashoffset'] = _short_float_fmt(float(offset))
linewidth = gc.get_linewidth()
if linewidth:
rgb = gc.get_rgb()
attrib['stroke'] = rgb2hex(rgb)
if not forced_alpha and rgb[3] != 1.0:
attrib['stroke-opacity'] = _short_float_fmt(rgb[3])
if linewidth != 1.0:
attrib['stroke-width'] = _short_float_fmt(linewidth)
if gc.get_joinstyle() != 'round':
attrib['stroke-linejoin'] = gc.get_joinstyle()
if gc.get_capstyle() != 'butt':
attrib['stroke-linecap'] = _capstyle_d[gc.get_capstyle()]
return attrib
| lib/matplotlib/backends/backend_svg.py | 558 | matplotlib | {
"docstring": "Generate a style string from the GraphicsContext and rgbFace.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 145 | Python | 76 | ec410abbb3a721e31f3aaa61e9e4f941467e35e1 | backend_svg.py | 108,151 | 37 | 342 | _get_style_dict | https://github.com/matplotlib/matplotlib.git | Deprecate functions in backends | 580 | 0 | 23,079 | 17 |
|
5 | 14 | def _get_node_attribute_at_index(self, node_index, attr, attr_name):
if not self._inbound_nodes:
raise RuntimeError(
f"The layer {self.name} has never been called "
f"and thus has no defined {attr_name}."
)
if not len(self._inbound_nodes) > node_index:
raise ValueError(
f"Asked to get {attr_name} at node "
f"{node_index}, but the layer has only "
f"{len(self._inbound_nodes)} inbound nodes."
)
values = getattr(self._inbound_nodes[node_index], attr)
if isinstance(values, list) and len(values) == 1:
return values[0]
else:
return values
| keras/engine/base_layer.py | 165 | keras | {
"docstring": "Private utility to retrieves an attribute (e.g. inputs) from a node.\n\n This is used to implement the methods:\n - get_input_shape_at\n - get_output_shape_at\n - get_input_at\n etc...\n\n Args:\n node_index: Integer index of the node from which\n to retrieve the attribute.\n attr: Exact node attribute name.\n attr_name: Human-readable attribute name, for error messages.\n\n Returns:\n The layer's attribute `attr` at the node of index `node_index`.\n\n Raises:\n RuntimeError: If the layer has no inbound nodes, or if called in Eager\n mode.\n ValueError: If the index provided does not match any node.\n ",
"language": "en",
"n_whitespaces": 257,
"n_words": 86,
"vocab_size": 66
} | 66 | Python | 54 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | base_layer.py | 270,767 | 17 | 84 | _get_node_attribute_at_index | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 249 | 0 | 80,572 | 15 |
|
4 | 21 | def _is_current(self, file_path, zip_path):
timestamp, size = self._get_date_and_size(self.zipinfo[zip_path])
if not os.path.isfile(file_path):
return False
stat = os.stat(file_path)
if stat.st_size != size or stat.st_mtime != timestamp:
return False
# check that the contents match
zip_contents = self.loader.get_data(zip_path)
with open(file_path, 'rb') as f:
file_contents = f.read()
return zip_contents == file_contents
| .venv/lib/python3.8/site-packages/pip/_vendor/pkg_resources/__init__.py | 152 | transferlearning | {
"docstring": "\n Return True if the file_path is current for this zip_path\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 10,
"vocab_size": 10
} | 47 | Python | 36 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | __init__.py | 63,102 | 11 | 92 | _is_current | https://github.com/jindongwang/transferlearning.git | upd; format | 143 | 0 | 13,147 | 11 |
|
4 | 9 | def iter_mapped_dependants(self) -> Iterator["MappedOperator"]:
return (
downstream
for downstream in self._iter_all_mapped_downstreams()
if any(p.node_id == self.node_id for p in downstream.iter_mapped_dependencies())
)
| airflow/models/taskmixin.py | 69 | airflow | {
"docstring": "Return mapped nodes that depend on the current task the expansion.\n\n For now, this walks the entire DAG to find mapped nodes that has this\n current task as an upstream. We cannot use ``downstream_list`` since it\n only contains operators, not task groups. In the future, we should\n provide a way to record an DAG node's all downstream nodes instead.\n ",
"language": "en",
"n_whitespaces": 94,
"n_words": 59,
"vocab_size": 45
} | 20 | Python | 17 | 197cff3194e855b9207c3c0da8ae093a0d5dda55 | taskmixin.py | 47,757 | 13 | 42 | iter_mapped_dependants | https://github.com/apache/airflow.git | Ensure TaskMap only checks "relevant" dependencies (#23053)
When looking for "mapped dependants" of a task, we only want a task if
it not only is a direct downstream of the task, but also it actually
"uses" the task's pushed XCom for task mapping. So we need to peek into
the mapped downstream task's expansion kwargs, and only count it as a
mapped dependant if the upstream is referenced there. | 74 | 0 | 9,246 | 12 |
|
1 | 6 | def device_traits() -> list[str]:
return ["sdm.devices.traits.DoorbellChime"]
@pytest.fixture(autouse=True) | tests/components/nest/test_events.py | 42 | @pytest.fixture(autouse=True) | core | {
"docstring": "Fixture for the present traits of the device under test.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | 7 | Python | 7 | 7a5fa8eb58f49282e73f454826472ba54cd37a30 | test_events.py | 313,498 | 3 | 14 | device_traits | https://github.com/home-assistant/core.git | Update more nest tests to use common fixtures (#73303)
Update nest tests to use fixtures | 12 | 1 | 112,116 | 7 |
4 | 7 | def __getitem__(self, key):
if key in self._layout_map:
return self._layout_map[key]
for k in self._layout_map:
if re.match(k, key):
return self._layout_map[k]
return None
| keras/dtensor/layout_map.py | 74 | keras | {
"docstring": "Retrieve the corresponding layout by the string key.\n\n When there isn't an exact match, all the existing keys in the layout map\n will be treated as a regex and map against the input key again. The first\n match will be returned, based on the key insertion order. Return None if\n there isn't any match found.\n\n Args:\n key: the string key as the query for the layout.\n\n Returns:\n Corresponding layout based on the query.\n ",
"language": "en",
"n_whitespaces": 140,
"n_words": 73,
"vocab_size": 50
} | 20 | Python | 14 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | layout_map.py | 270,587 | 7 | 48 | __getitem__ | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 85 | 0 | 80,488 | 11 |
|
4 | 22 | def load_diabetes(*, return_X_y=False, as_frame=False, scaled=True):
data_filename = "diabetes_data_raw.csv.gz"
target_filename = "diabetes_target.csv.gz"
data = load_gzip_compressed_csv_data(data_filename)
target = load_gzip_compressed_csv_data(target_filename)
if scaled:
data = scale(data, copy=False)
data /= data.shape[0] ** 0.5
fdescr = load_descr("diabetes.rst")
feature_names = ["age", "sex", "bmi", "bp", "s1", "s2", "s3", "s4", "s5", "s6"]
frame = None
target_columns = [
"target",
]
if as_frame:
frame, data, target = _convert_data_dataframe(
"load_diabetes", data, target, feature_names, target_columns
)
if return_X_y:
return data, target
return Bunch(
data=data,
target=target,
frame=frame,
DESCR=fdescr,
feature_names=feature_names,
data_filename=data_filename,
target_filename=target_filename,
data_module=DATA_MODULE,
)
| sklearn/datasets/_base.py | 260 | scikit-learn | {
"docstring": "Load and return the diabetes dataset (regression).\n\n ============== ==================\n Samples total 442\n Dimensionality 10\n Features real, -.2 < x < .2\n Targets integer 25 - 346\n ============== ==================\n\n .. note::\n The meaning of each feature (i.e. `feature_names`) might be unclear\n (especially for `ltg`) as the documentation of the original dataset is\n not explicit. We provide information that seems correct in regard with\n the scientific literature in this field of research.\n\n Read more in the :ref:`User Guide <diabetes_dataset>`.\n\n Parameters\n ----------\n return_X_y : bool, default=False\n If True, returns ``(data, target)`` instead of a Bunch object.\n See below for more information about the `data` and `target` object.\n\n .. versionadded:: 0.18\n\n as_frame : bool, default=False\n If True, the data is a pandas DataFrame including columns with\n appropriate dtypes (numeric). The target is\n a pandas DataFrame or Series depending on the number of target columns.\n If `return_X_y` is True, then (`data`, `target`) will be pandas\n DataFrames or Series as described below.\n\n .. versionadded:: 0.23\n\n scaled : bool, default=True\n If True, the feature variables are mean centered and scaled by the\n standard deviation times the square root of `n_samples`.\n If False, raw data is returned for the feature variables.\n\n .. versionadded:: 1.1\n\n Returns\n -------\n data : :class:`~sklearn.utils.Bunch`\n Dictionary-like object, with the following attributes.\n\n data : {ndarray, dataframe} of shape (442, 10)\n The data matrix. If `as_frame=True`, `data` will be a pandas\n DataFrame.\n target: {ndarray, Series} of shape (442,)\n The regression target. If `as_frame=True`, `target` will be\n a pandas Series.\n feature_names: list\n The names of the dataset columns.\n frame: DataFrame of shape (442, 11)\n Only present when `as_frame=True`. DataFrame with `data` and\n `target`.\n\n .. versionadded:: 0.23\n DESCR: str\n The full description of the dataset.\n data_filename: str\n The path to the location of the data.\n target_filename: str\n The path to the location of the target.\n\n (data, target) : tuple if ``return_X_y`` is True\n Returns a tuple of two ndarray of shape (n_samples, n_features)\n A 2D array with each row representing one sample and each column\n representing the features and/or target of a given sample.\n\n .. versionadded:: 0.18\n ",
"language": "en",
"n_whitespaces": 739,
"n_words": 339,
"vocab_size": 194
} | 80 | Python | 60 | a793c1f0ad7dd63b2a896d2e84087089a11e7fca | _base.py | 258,643 | 30 | 164 | load_diabetes | https://github.com/scikit-learn/scikit-learn.git | DOC Ensures that sklearn.datasets._base.load_breast_cancer passes numpydoc validation (#22346)
Co-authored-by: Guillaume Lemaitre <[email protected]>
Co-authored-by: Arturo Amor <[email protected]> | 234 | 0 | 75,347 | 11 |
|
1 | 5 | def require_pyctcdecode(test_case):
return unittest.skipUnless(is_pyctcdecode_available(), "test requires pyctcdecode")(test_case)
| src/transformers/testing_utils.py | 37 | transformers | {
"docstring": "\n Decorator marking a test that requires pyctcdecode\n ",
"language": "en",
"n_whitespaces": 14,
"n_words": 7,
"vocab_size": 7
} | 7 | Python | 7 | 57e6464ac9a31156f1c93e59107323e6ec01309e | testing_utils.py | 37,487 | 2 | 20 | require_pyctcdecode | https://github.com/huggingface/transformers.git | Update all require decorators to use skipUnless when possible (#16999) | 13 | 0 | 6,794 | 10 |
|
1 | 8 | def test_get_entities_changed(self) -> None:
cache = StreamChangeCache("#test", 1)
cache.entity_has_changed("[email protected]", 2)
cache.entity_has_changed("[email protected]", 3)
cache.entity_has_changed("[email protected]", 4)
# Query all the entries, but mid-way through the stream. We should only
# get the ones after that point.
self.assertEqual(
cache.get_entities_changed(
["[email protected]", "[email protected]", "[email protected]"], stream_pos=2
),
{"[email protected]", "[email protected]"},
)
# Query all the entries mid-way through the stream, but include one
# that doesn't exist in it. We shouldn't get back the one that doesn't
# exist.
self.assertEqual(
cache.get_entities_changed(
[
"[email protected]",
"[email protected]",
"[email protected]",
"[email protected]",
],
stream_pos=2,
),
{"[email protected]", "[email protected]"},
)
# Query all the entries, but before the first known point. We will get
# all the entries we queried for, including ones that don't exist.
self.assertEqual(
cache.get_entities_changed(
[
"[email protected]",
"[email protected]",
"[email protected]",
"[email protected]",
],
stream_pos=0,
),
{"[email protected]", "[email protected]", "[email protected]", "[email protected]"},
)
# Query a subset of the entries mid-way through the stream. We should
# only get back the subset.
self.assertEqual(
cache.get_entities_changed(["[email protected]"], stream_pos=2),
{"[email protected]"},
)
| tests/util/test_stream_change_cache.py | 281 | synapse | {
"docstring": "\n StreamChangeCache.get_entities_changed will return the entities in the\n given list that have changed since the provided stream ID. If the\n stream position is earlier than the earliest known position, it will\n return all of the entities queried for.\n ",
"language": "en",
"n_whitespaces": 74,
"n_words": 37,
"vocab_size": 28
} | 150 | Python | 77 | acea4d7a2ff61b5beda420b54a8451088060a8cd | test_stream_change_cache.py | 250,017 | 45 | 158 | test_get_entities_changed | https://github.com/matrix-org/synapse.git | Add missing types to tests.util. (#14597)
Removes files under tests.util from the ignored by list, then
fully types all tests/util/*.py files. | 682 | 0 | 73,231 | 11 |
|
3 | 7 | def is_hash_allowed(self, hashes):
# type: (Optional[Hashes]) -> bool
if hashes is None or not self.has_hash:
return False
# Assert non-None so mypy knows self.hash_name and self.hash are str.
assert self.hash_name is not None
assert self.hash is not None
return hashes.is_hash_allowed(self.hash_name, hex_digest=self.hash)
# TODO: Relax this comparison logic to ignore, for example, fragments. | .venv/lib/python3.8/site-packages/pip/_internal/models/link.py | 79 | transferlearning | {
"docstring": "\n Return True if the link has a hash and it is allowed.\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 12,
"vocab_size": 12
} | 52 | Python | 40 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | link.py | 60,852 | 6 | 49 | is_hash_allowed | https://github.com/jindongwang/transferlearning.git | upd; format | 111 | 0 | 12,300 | 9 |
|
1 | 3 | def get_paths(self, path): # type: (str) -> t.List[str]
return []
| test/lib/ansible_test/_internal/provider/source/unsupported.py | 21 | ansible | {
"docstring": "Return the list of available content paths under the given path.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 10
} | 10 | Python | 10 | de5f60e374524de13fe079b52282cd7a9eeabd5f | unsupported.py | 266,497 | 2 | 11 | get_paths | https://github.com/ansible/ansible.git | ansible-test - Improve help for unsupported cwd. (#76866)
* ansible-test - Improve help for unsupported cwd.
* The `--help` option is now available when an unsupported cwd is in use.
* The `--help` output now shows the same instructions about cwd as would be shown in error messages if the cwd is unsupported.
* Add `--version` support to show the ansible-core version.
* The explanation about cwd usage has been improved to explain more clearly what is required.
Resolves https://github.com/ansible/ansible/issues/64523
Resolves https://github.com/ansible/ansible/issues/67551 | 25 | 0 | 78,438 | 6 |
|
2 | 9 | def _normalized_keys(self, section, items):
# type: (str, Iterable[Tuple[str, Any]]) -> Dict[str, Any]
normalized = {}
for name, val in items:
key = section + "." + _normalize_name(name)
normalized[key] = val
return normalized
| .venv/lib/python3.8/site-packages/pip/_internal/configuration.py | 65 | transferlearning | {
"docstring": "Normalizes items to construct a dictionary with normalized keys.\n\n This routine is where the names become keys and are made the same\n regardless of source - configuration files or environment.\n ",
"language": "en",
"n_whitespaces": 51,
"n_words": 30,
"vocab_size": 29
} | 32 | Python | 27 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | configuration.py | 60,675 | 6 | 39 | _normalized_keys | https://github.com/jindongwang/transferlearning.git | upd; format | 89 | 0 | 12,240 | 11 |
|
1 | 38 | def check_figures_equal(*, extensions=("png", "pdf", "svg"), tol=0):
| lib/matplotlib/testing/decorators.py | 130 |
"""
Decorator for test cases that generate and compare two figures.
The decorated function must take two keyword arguments, *fig_test*
and *fig_ref*, and draw the test and reference images on them.
After the function returns, the figures are saved and compared.
This decorator should be preferred over `image_comparison` when possible in
order to keep the size of the test suite from ballooning.
Parameters
----------
extensions : list, default: ["png", "pdf", "svg"]The extensions toThe RMS threshold above which thefailedIf any new figures are created (and not subsequently closed) inside
the test function.
Examples
--------
Check that calling `.Axes.plot` with a single argument plots it against
``[0, 1, 2, ...]``::and not subsequently closed) inside
the testCheck that calling `.Axes.plot` with a single argument plots it against
`` | matplotlib | {
"docstring": "\n Decorator for test cases that generate and compare two figures.\n\n The decorated function must take two keyword arguments, *fig_test*\n and *fig_ref*, and draw the test and reference images on them.\n After the function returns, the figures are saved and compared.\n\n This decorator should be preferred over `image_comparison` when possible in\n order to keep the size of the test suite from ballooning.\n\n Parameters\n ----------\n extensions : list, default: [\"png\", \"pdf\", \"svg\"]\n The extensions to test.\n tol : float\n The RMS threshold above which the test is considered failed.\n\n Raises\n ------\n RuntimeError\n If any new figures are created (and not subsequently closed) inside\n the test function.\n\n Examples\n --------\n Check that calling `.Axes.plot` with a single argument plots it against\n ``[0, 1, 2, ...]``::\n",
"language": "en",
"n_whitespaces": 200,
"n_words": 121,
"vocab_size": 97
} | 6 | Python | 6 | ca78e3d0eba4d948835c5499e0ff4084b998f28e | decorators.py | 110,184 | 39 | 45 | check_figures_equal | https://github.com/matplotlib/matplotlib.git | [DOC] swapped params in fig_compare_error msg | 9 | 8 | 23,964 | 9 |
2 | 11 | def lowest_common_ancestor(G, node1, node2, default=None):
ans = list(all_pairs_lowest_common_ancestor(G, pairs=[(node1, node2)]))
if ans:
assert len(ans) == 1
return ans[0][1]
else:
return default
@not_implemented_for("undirected")
@not_implemented_for("multigraph") | networkx/algorithms/lowest_common_ancestors.py | 105 | @not_implemented_for("undirected")
@not_implemented_for("multigraph") | networkx | {
"docstring": "Compute the lowest common ancestor of the given pair of nodes.\n\n Parameters\n ----------\n G : NetworkX directed graph\n\n node1, node2 : nodes in the graph.\n\n default : object\n Returned if no common ancestor between `node1` and `node2`\n\n Returns\n -------\n The lowest common ancestor of node1 and node2,\n or default if they have no common ancestors.\n\n Examples\n --------\n >>> G = nx.DiGraph([(0, 1), (0, 2), (2, 3), (2, 4), (1, 6), (4, 5)])\n >>> nx.lowest_common_ancestor(G, 3, 5)\n 2\n\n We can also set `default` argument as below. The value of default is returned\n if there are no common ancestors of given two nodes.\n\n >>> G = nx.DiGraph([(4, 5), (12, 13)])\n >>> nx.lowest_common_ancestor(G, 12, 5, default=\"No common ancestors!\")\n 'No common ancestors!'\n\n Notes\n -----\n Only defined on non-null directed acyclic graphs.\n Takes n log(n) time in the size of the graph.\n See `all_pairs_lowest_common_ancestor` when you have\n more than one pair of nodes of interest.\n\n See Also\n --------\n tree_all_pairs_lowest_common_ancestor\n all_pairs_lowest_common_ancestor\n ",
"language": "en",
"n_whitespaces": 252,
"n_words": 155,
"vocab_size": 107
} | 23 | Python | 22 | abaa68779ccb4cce8d1a5ecade622ab96d01edeb | lowest_common_ancestors.py | 176,975 | 7 | 55 | lowest_common_ancestor | https://github.com/networkx/networkx.git | Add examples to lowest common ancestors algorithms (#5531)
* Add examples to lowest common ancestors documentation
* Fix output style of examples
* Fix output style of example
* Update pre-commit
* Update networkx/algorithms/lowest_common_ancestors.py
Co-authored-by: Ross Barnowski <[email protected]>
* Update networkx/algorithms/lowest_common_ancestors.py
Co-authored-by: Ross Barnowski <[email protected]>
* Indentation fix & pprint dictionary
* Update networkx/algorithms/lowest_common_ancestors.py
Co-authored-by: Ross Barnowski <[email protected]>
* Update networkx/algorithms/lowest_common_ancestors.py
Co-authored-by: Ross Barnowski <[email protected]>
* Update networkx/algorithms/lowest_common_ancestors.py
Co-authored-by: Ross Barnowski <[email protected]>
* Move "import pprint" to the example
Co-authored-by: dtuncturk <[email protected]>
Co-authored-by: Ross Barnowski <[email protected]> | 54 | 1 | 42,203 | 13 |
7 | 23 | def _get_per_session_stats(self):
if self._per_session_stats is None:
logger.debug("Collating per session stats")
compiled = []
for session_id, ts_data in self._time_stats.items():
logger.debug("Compiling session ID: %s", session_id)
if self._state is None:
logger.debug("Session state dict doesn't exist. Most likely task has been "
"terminated during compilation")
return
compiled.append(self._collate_stats(session_id, ts_data))
self._per_session_stats = list(sorted(compiled, key=lambda k: k["session"]))
elif self._session.is_training:
logger.debug("Collating per session stats for latest training data")
session_id = self._session.session_ids[-1]
ts_data = self._time_stats[session_id]
if session_id > len(self._per_session_stats):
self._per_session_stats.append(self._collate_stats(session_id, ts_data))
stats = self._per_session_stats[-1]
stats["start"] = ts_data["start_time"]
stats["end"] = ts_data["end_time"]
stats["elapsed"] = int(stats["end"] - stats["start"])
stats["iterations"] = ts_data["iterations"]
stats["rate"] = (((stats["batch"] * 2) * stats["iterations"])
/ stats["elapsed"] if stats["elapsed"] != 0 else 0)
logger.debug("per_session_stats: %s", self._per_session_stats)
| lib/gui/analysis/stats.py | 425 | faceswap | {
"docstring": " Populate the attribute :attr:`_per_session_stats` with a sorted list by session ID\n of each ID in the training/loaded session. Stats contain the session ID, start, end and\n elapsed times, the training rate, batch size and number of iterations for each session.\n\n If a training session is running, then updates the training sessions stats only.\n ",
"language": "en",
"n_whitespaces": 82,
"n_words": 53,
"vocab_size": 39
} | 107 | Python | 79 | c1512fd41d86ef47a5d1ce618d6d755ef7cbacdf | stats.py | 100,313 | 26 | 249 | _get_per_session_stats | https://github.com/deepfakes/faceswap.git | Update code to support Tensorflow versions up to 2.8 (#1213)
* Update maximum tf version in setup + requirements
* - bump max version of tf version in launcher
- standardise tf version check
* update keras get_custom_objects for tf>2.6
* bugfix: force black text in GUI file dialogs (linux)
* dssim loss - Move to stock tf.ssim function
* Update optimizer imports for compatibility
* fix logging for tf2.8
* Fix GUI graphing for TF2.8
* update tests
* bump requirements.txt versions
* Remove limit on nvidia-ml-py
* Graphing bugfixes
- Prevent live graph from displaying if data not yet available
* bugfix: Live graph. Collect loss labels correctly
* fix: live graph - swallow inconsistent loss errors
* Bugfix: Prevent live graph from clearing during training
* Fix graphing for AMD | 447 | 0 | 19,810 | 18 |
|
1 | 4 | def load_info():
text =
console.print(text)
| gamestonk_terminal/portfolio/portfolio_view.py | 40 | OpenBBTerminal | {
"docstring": "Prints instructions to load a CSV\n\n Returns\n ----------\n text : str\n Information on how to load a csv\n \nIn order to load a CSV do the following:\n\n1. Add headers to the first row, below is data for each column:\\n\n\\t1. Identifier for the asset (such as a stock ticker)\n\\t2. Type of asset (stock, bond, option, crypto)\n\\t3. The volume of the asset transacted\n\\t4. The buy date in yyyy/mm/dd\n\\t5. The Price paid for the asset\n\\t6. Any fees paid during the transaction\n\\t7. A premium paid or received if this was an option\n\\t8. Whether the asset was bought (covered) or sold (shorted)\\n\n2. Place this file in gamestonk_terminal/portfolio/portfolios\\n\n ",
"language": "en",
"n_whitespaces": 128,
"n_words": 112,
"vocab_size": 82
} | 5 | Python | 5 | 82747072c511beb1b2672846ae2ee4aec53eb562 | portfolio_view.py | 281,521 | 16 | 14 | load_info | https://github.com/OpenBB-finance/OpenBBTerminal.git | Terminal Wide Rich (#1161)
* My idea for how we handle Rich moving forward
* remove independent consoles
* FIxed pylint issues
* add a few vars
* Switched print to console
* More transitions
* Changed more prints
* Replaced all prints
* Fixing tabulate
* Finished replace tabulate
* Finished removing rich from Tabulate
* add Panel around menu
* add GST watermark under feature flag
* Fixed 46 tests
* Delete test_screener[False].yaml
* Delete test_screener[True].yaml
* Fixed the rest of the tests
* add help and source color vars and use rgb
* rich on stocks/options
* update rich on disc, dps, sia
* rich in gov, ins and scr menus
* ba and ca menus with rich
* Fixed import issue
* Fixed some tests
* removed termcolor
* Removed prettytable
* add rich to remaining stocks menus
* FIxed linting issue
* Added James' changes
* Updated dependencies
* Add rich to cryptocurrency menu
* refactor economy and forex
* refactor etf with rich
* refactor mfunds
* refactor rich rest
* not specify style so default color works well on any background
* Fixing mypy issues
* Updated tests
* More test fixes
* James' test fixes
* Updating tests : stocks/screener - fix cassettes using BR
* Updating tests : crypto
* Updating tests : disable DEBUG_MODE
* Updating tests : stocks/fa/yfinance
* minor fixes that escape
* Improve the rich table function (that replaces tabulate :D )
* Fixed bad code
* delete rogue file + dcf fix + NoConsole
* sia mypy
* fuck you linter
* fuck you linter pt 2
* skip hehe
* i hate the black linter
* ubuntu mypy attempt
* Update : rich_config + gtff
* Updating tests : conftest
* Updating tests : stocks
* Update : rich_config
* Updating : rich_config
* make panel configurable for Theodore :b
* colors update
* Merged
* Updating : rich_config + feature_flags
* Updating : rich_config
* Updating tests : stocks
* Updating : feature_flags
Co-authored-by: DidierRLopes <[email protected]>
Co-authored-by: Chavithra PARANA <[email protected]>
Co-authored-by: james <[email protected]>
Co-authored-by: jose-donato <[email protected]> | 15 | 0 | 83,824 | 7 |
|
1 | 6 | def MultivariateNormal(name, mu, sigma):
r
return multivariate_rv(MultivariateNormalDistribution, name, mu, sigma)
#-------------------------------------------------------------------------------
# Multivariate Laplace distribution --------------------------------------------
| sympy/stats/joint_rv_types.py | 33 | sympy | {
"docstring": "\n Creates a continuous random variable with Multivariate Normal\n Distribution.\n\n The density of the multivariate normal distribution can be found at [1].\n\n Parameters\n ==========\n\n mu : List representing the mean or the mean vector\n sigma : Positive semidefinite square matrix\n Represents covariance Matrix\n If `\\sigma` is noninvertible then only sampling is supported currently\n\n Returns\n =======\n\n RandomSymbol\n\n Examples\n ========\n\n >>> from sympy.stats import MultivariateNormal, density, marginal_distribution\n >>> from sympy import symbols, MatrixSymbol\n >>> X = MultivariateNormal('X', [3, 4], [[2, 1], [1, 2]])\n >>> y, z = symbols('y z')\n >>> density(X)(y, z)\n sqrt(3)*exp(-y**2/3 + y*z/3 + 2*y/3 - z**2/3 + 5*z/3 - 13/3)/(6*pi)\n >>> density(X)(1, 2)\n sqrt(3)*exp(-4/3)/(6*pi)\n >>> marginal_distribution(X, X[1])(y)\n exp(-(y - 4)**2/4)/(2*sqrt(pi))\n >>> marginal_distribution(X, X[0])(y)\n exp(-(y - 3)**2/4)/(2*sqrt(pi))\n\n The example below shows that it is also possible to use\n symbolic parameters to define the MultivariateNormal class.\n\n >>> n = symbols('n', integer=True, positive=True)\n >>> Sg = MatrixSymbol('Sg', n, n)\n >>> mu = MatrixSymbol('mu', n, 1)\n >>> obs = MatrixSymbol('obs', n, 1)\n >>> X = MultivariateNormal('X', mu, Sg)\n\n The density of a multivariate normal can be\n calculated using a matrix argument, as shown below.\n\n >>> density(X)(obs)\n (exp(((1/2)*mu.T - (1/2)*obs.T)*Sg**(-1)*(-mu + obs))/sqrt((2*pi)**n*Determinant(Sg)))[0, 0]\n\n References\n ==========\n\n .. [1] https://en.wikipedia.org/wiki/Multivariate_normal_distribution\n\n ",
"language": "en",
"n_whitespaces": 325,
"n_words": 193,
"vocab_size": 137
} | 16 | Python | 15 | 9ad8ab9fe58051cf11626ba6654852fcfec60147 | joint_rv_types.py | 196,702 | 58 | 22 | MultivariateNormal | https://github.com/sympy/sympy.git | Documentation cleanup 5 | 19 | 0 | 48,120 | 7 |
|
2 | 7 | def cursor_text_end(self) -> bool:
text_length = len(self.content)
if self.cursor_index == text_length:
return False
self.cursor_index = text_length
return True
| src/textual/_text_backend.py | 54 | textual | {
"docstring": "Move the cursor to the end of the text\n\n Returns:\n bool: True if the cursor moved. False otherwise.\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 18,
"vocab_size": 14
} | 18 | Python | 14 | dd18ecbdbe744812509630935a877424202f2a70 | _text_backend.py | 183,434 | 11 | 32 | cursor_text_end | https://github.com/Textualize/textual.git | Docstring improvements | 64 | 0 | 44,186 | 9 |
|
2 | 7 | def has_perms(self, perm_list, obj=None): # noqa: D205, D212, D400, D415
return all(self.has_perm(perm, obj) for perm in perm_list)
| saleor/permission/models.py | 44 | saleor | {
"docstring": "\n Return True if the user has each of the specified permissions. If\n object is passed, check if the user has all required perms for it.\n ",
"language": "en",
"n_whitespaces": 47,
"n_words": 25,
"vocab_size": 20
} | 17 | Python | 17 | d5ef58653803075849a6a13177e7a6e604aa2f60 | models.py | 30,034 | 2 | 28 | has_perms | https://github.com/saleor/saleor.git | Move PermissionsMixin from django auth | 32 | 0 | 5,285 | 9 |
|
7 | 25 | def get(self):
response = {
'learn': False,
'predict': False,
'analyse': False
}
if os.name != 'posix':
return response
for process_type in response:
processes_dir = Path(tempfile.gettempdir()).joinpath(f'mindsdb/processes/{process_type}/')
if not processes_dir.is_dir():
continue
process_marks = [x.name for x in processes_dir.iterdir()]
for p_mark in process_marks:
pid = int(p_mark.split('-')[0])
try:
psutil.Process(pid)
except Exception:
processes_dir.joinpath(p_mark).unlink()
else:
response[process_type] = True
return response
@ns_conf.route('/telemetry') | mindsdb/api/http/namespaces/util.py | 230 | @ns_conf.route('/telemetry') | mindsdb | {
"docstring": " Checks server use native for learn or analyse.\n Will return right result only on Linux.\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 15,
"vocab_size": 15
} | 55 | Python | 42 | 44d7ef0e08e5144870ad2831ce6e221f9044c47c | util.py | 114,397 | 22 | 125 | get | https://github.com/mindsdb/mindsdb.git | 'files' route | 316 | 1 | 25,182 | 16 |
1 | 6 | def add_suffix(self, suffix): # noqa: PR01, RT01, D200
return self.__constructor__(
query_compiler=self._query_compiler.add_suffix(suffix)
)
| modin/pandas/dataframe.py | 41 | modin | {
"docstring": "\n Suffix labels with string `suffix`.\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 5,
"vocab_size": 5
} | 12 | Python | 12 | b541b6c18e6fb4515e998b9b4f88528490cf69c6 | dataframe.py | 155,480 | 4 | 24 | add_suffix | https://github.com/modin-project/modin.git | REFACTOR-#3948: Use `__constructor__` in `DataFrame` and `Series` classes (#5485)
Signed-off-by: Anatoly Myachev <[email protected]> | 45 | 0 | 36,395 | 11 |
|
5 | 28 | def _broadcasting_select_mhlo(which, x, y):
which_type, x_type, y_type = (
ir.RankedTensorType(v.type) for v in (which, x, y))
out_shape = list(lax_internal.broadcast_shapes(
tuple(which_type.shape), tuple(x_type.shape), tuple(y_type.shape)))
bcast_dims = lambda shape: mlir.dense_int_elements(
range(len(out_shape) - len(shape), len(out_shape)))
if which_type.shape != out_shape:
which = mhlo.BroadcastInDimOp(
ir.RankedTensorType.get(out_shape, which_type.element_type), which,
bcast_dims(which_type.shape))
if x_type.shape != out_shape:
x = mhlo.BroadcastInDimOp(
ir.RankedTensorType.get(out_shape, x_type.element_type), x,
bcast_dims(x_type.shape))
if y_type.shape != out_shape:
y = mhlo.BroadcastInDimOp(
ir.RankedTensorType.get(out_shape, y_type.element_type), y,
bcast_dims(y_type.shape))
return mhlo.SelectOp(which, x, y).result
| jax/_src/lax/linalg.py | 316 | jax | {
"docstring": "Wrapper around XLA `Select` that broadcasts its arguments.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | 68 | Python | 50 | bc658e74567ffa941b31f4e89463dc713d2ecbf4 | linalg.py | 120,043 | 20 | 211 | _broadcasting_select_mhlo | https://github.com/google/jax.git | [MHLO] Add direct MHLO lowerings for most linear algebra kernels.
PiperOrigin-RevId: 439927594 | 140 | 0 | 26,747 | 14 |
|
1 | 4 | def preprocess_input(x, data_format=None):
return x
@keras_export("keras.applications.regnet.decode_predictions") | keras/applications/regnet.py | 32 | @keras_export("keras.applications.regnet.decode_predictions") | keras | {
"docstring": "A placeholder method for backward compatibility.\n\n The preprocessing logic has been included in the regnet model\n implementation. Users are no longer required to call this method to\n normalize the input data. This method does nothing and only kept as a\n placeholder to align the API surface between old and new version of model.\n\n Args:\n x: A floating point `numpy.array` or a `tf.Tensor`.\n data_format: Optional data format of the image tensor/array. Defaults to\n None, in which case the global setting\n `tf.keras.backend.image_data_format()` is used (unless you changed it,\n it defaults to \"channels_last\").{mode}\n\n Returns:\n Unchanged `numpy.array` or `tf.Tensor`.\n ",
"language": "en",
"n_whitespaces": 152,
"n_words": 95,
"vocab_size": 76
} | 6 | Python | 6 | 3613c3defc39c236fb1592c4f7ba1a9cc887343a | regnet.py | 278,618 | 2 | 12 | preprocess_input | https://github.com/keras-team/keras.git | Remove pylint comments.
PiperOrigin-RevId: 452353044 | 11 | 1 | 82,631 | 7 |
4 | 10 | def setDebugActions(self, startAction, successAction, exceptionAction):
self.debugActions = (startAction or _defaultStartDebugAction,
successAction or _defaultSuccessDebugAction,
exceptionAction or _defaultExceptionDebugAction)
self.debug = True
return self
| .venv/lib/python3.8/site-packages/pip/_vendor/pyparsing.py | 54 | transferlearning | {
"docstring": "\n Enable display of debugging messages while doing pattern matching.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 9,
"vocab_size": 9
} | 21 | Python | 18 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | pyparsing.py | 63,461 | 6 | 36 | setDebugActions | https://github.com/jindongwang/transferlearning.git | upd; format | 105 | 0 | 13,314 | 8 |
|
1 | 4 | def preferred_batch_format(cls) -> BatchFormat:
return BatchFormat.PANDAS
| python/ray/train/predictor.py | 22 | ray | {
"docstring": "Batch format hint for upstream producers to try yielding best block format.\n\n The preferred batch format to use if both `_predict_pandas` and\n `_predict_numpy` are implemented. Defaults to Pandas.\n\n Can be overriden by predictor classes depending on the framework type,\n e.g. TorchPredictor prefers Numpy and XGBoostPredictor prefers Pandas as\n native batch format.\n\n ",
"language": "en",
"n_whitespaces": 93,
"n_words": 51,
"vocab_size": 44
} | 6 | Python | 6 | 326d84f1149319809191e7887155df7f04f6f46a | predictor.py | 136,395 | 12 | 12 | preferred_batch_format | https://github.com/ray-project/ray.git | [AIR][Predictor] Enable numpy based predictor (#28917)
Co-authored-by: Clark Zinzow <[email protected]>
Co-authored-by: Amog Kamsetty <[email protected]> | 20 | 0 | 30,906 | 6 |
|
1 | 20 | def test_song_from_data_dump():
# Loads from str
song = Song.from_data_dump(
)
assert song.name == "Ropes"
assert song.artists == ["Dirty Palm", "Chandler Jewels"]
assert song.album_name == "Ropes"
assert song.album_artist == "Dirty Palm"
assert song.genres == ["gaming edm", "melbourne bounce international"]
assert song.disc_number == 1
assert song.duration == 188
assert song.year == 2021
assert song.date == "2021-10-28"
assert song.track_number == 1
assert song.tracks_count == 1
assert song.isrc == "GB2LD2110301"
assert song.song_id == "1t2qKa8K72IBC8yQlhD9bU"
assert (
song.cover_url
== "https://i.scdn.co/image/ab67616d0000b273fe2cb38e4d2412dbb0e54332"
)
assert song.explicit == False
assert song.download_url == None
| tests/types/test_song.py | 207 | spotify-downloader | {
"docstring": "\n Tests if Song.from_data_dump() works correctly.\n \n {\n \"name\": \"Ropes\",\n \"artists\": [\"Dirty Palm\", \"Chandler Jewels\"],\n \"album_name\": \"Ropes\",\n \"album_artist\": \"Dirty Palm\",\n \"genres\": [\"gaming edm\", \"melbourne bounce international\"],\n \"disc_number\": 1,\n \"duration\": 188,\n \"year\": 2021,\n \"date\": \"2021-10-28\",\n \"track_number\": 1,\n \"tracks_count\": 1,\n \"isrc\": \"GB2LD2110301\",\n \"song_id\": \"1t2qKa8K72IBC8yQlhD9bU\",\n \"cover_url\": \"https://i.scdn.co/image/ab67616d0000b273fe2cb38e4d2412dbb0e54332\",\n \"explicit\": false,\n \"download_url\": null,\n \"artist\" : \"Dirty Palm\",\n \"disc_count\": 1,\n \"copyright\": \"\",\n \"publisher\": \"\",\n \"url\": \"https://open.spotify.com/track/1t2qKa8K72IBC8yQlhD9bU\"\n }\n ",
"language": "en",
"n_whitespaces": 319,
"n_words": 59,
"vocab_size": 51
} | 84 | Python | 50 | fa2ad657482aca9dc628e6d7062b8badf2706bb6 | test_song.py | 30,144 | 47 | 119 | test_song_from_data_dump | https://github.com/spotDL/spotify-downloader.git | v4 init | 169 | 0 | 5,345 | 9 |
|
8 | 21 | def _dedupe_indices_in_rule(self, rule):
index_rules = {k:v for k,v in rule.items() if isinstance(k, TensorIndex)}
other_rules = {k:v for k,v in rule.items() if k not in index_rules.keys()}
exclude = set(self.get_indices())
newrule = {}
newrule.update(index_rules)
exclude.update(index_rules.keys())
exclude.update(index_rules.values())
for old, new in other_rules.items():
new_renamed = self._dedupe_indices(new, exclude)
if old == new or new_renamed is None:
newrule[old] = new
else:
newrule[old] = new_renamed
exclude.update(get_indices(new_renamed))
return newrule
| sympy/tensor/tensor.py | 245 | sympy | {
"docstring": "\n rule: dict\n\n This applies self._dedupe_indices on all values of rule.\n ",
"language": "en",
"n_whitespaces": 32,
"n_words": 10,
"vocab_size": 10
} | 61 | Python | 39 | 1eee7b6ba5b4903ac889a73feab130572d232554 | tensor.py | 200,567 | 16 | 153 | _dedupe_indices_in_rule | https://github.com/sympy/sympy.git | Add TensMul._dedupe_indices_in_rule
This applies self._dedupe_indices on all values of `rule`. | 209 | 0 | 49,702 | 14 |
|
1 | 28 | def test_delete_media_never_accessed(self) -> None:
# upload and do not access
server_and_media_id = self._create_media()
self.pump(1.0)
# test that the file exists
media_id = server_and_media_id.split("/")[1]
local_path = self.filepaths.local_media_filepath(media_id)
self.assertTrue(os.path.exists(local_path))
# timestamp after upload/create
now_ms = self.clock.time_msec()
channel = self.make_request(
"POST",
self.url + "?before_ts=" + str(now_ms),
access_token=self.admin_user_tok,
)
self.assertEqual(200, channel.code, msg=channel.json_body)
self.assertEqual(1, channel.json_body["total"])
self.assertEqual(
media_id,
channel.json_body["deleted_media"][0],
)
self._access_media(server_and_media_id, False)
| tests/rest/admin/test_media.py | 236 | synapse | {
"docstring": "\n Tests that media deleted if it is older than `before_ts` and never accessed\n `last_access_ts` is `NULL` and `created_ts` < `before_ts`\n ",
"language": "en",
"n_whitespaces": 42,
"n_words": 20,
"vocab_size": 17
} | 56 | Python | 48 | c97042f7eef3748e17c90e48a4122389a89c4735 | test_media.py | 249,114 | 23 | 146 | test_delete_media_never_accessed | https://github.com/matrix-org/synapse.git | Use literals in place of `HTTPStatus` constants in tests (#13469) | 230 | 0 | 72,621 | 11 |
|
7 | 11 | def parseline(self, line):
line = line.strip()
if not line:
return None, None, line
elif line[0] == '?':
line = 'help ' + line[1:]
elif line[0] == '!':
if hasattr(self, 'do_shell'):
line = 'shell ' + line[1:]
else:
return None, None, line
i, n = 0, len(line)
while i < n and line[i] in self.identchars: i = i+1
cmd, arg = line[:i], line[i:].strip()
return cmd, arg, line
| python3.10.4/Lib/cmd.py | 211 | XX-Net | {
"docstring": "Parse the line into a command name and a string containing\n the arguments. Returns a tuple containing (command, args, line).\n 'command' and 'args' may be None if the line couldn't be parsed.\n ",
"language": "en",
"n_whitespaces": 54,
"n_words": 32,
"vocab_size": 24
} | 66 | Python | 41 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | cmd.py | 221,346 | 15 | 129 | parseline | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 203 | 0 | 56,361 | 14 |
|
11 | 39 | def filter_queryset(self, request, queryset, view):
fields = set(view.get_available_fields(queryset.model, db_fields_only=True))
# Locale is a database field, but we provide a separate filter for it
if "locale" in fields:
fields.remove("locale")
for field_name, value in request.GET.items():
if field_name in fields:
try:
field = queryset.model._meta.get_field(field_name)
except LookupError:
field = None
# Convert value into python
try:
if isinstance(
field, (models.BooleanField, models.NullBooleanField)
):
value = parse_boolean(value)
elif isinstance(field, (models.IntegerField, models.AutoField)):
value = int(value)
elif isinstance(field, models.ForeignKey):
value = field.target_field.get_prep_value(value)
except ValueError as e:
raise BadRequestError(
"field filter error. '%s' is not a valid value for %s (%s)"
% (value, field_name, str(e))
)
if isinstance(field, TaggableManager):
for tag in value.split(","):
queryset = queryset.filter(**{field_name + "__name": tag})
# Stick a message on the queryset to indicate that tag filtering has been performed
# This will let the do_search method know that it must raise an error as searching
# and tag filtering at the same time is not supported
queryset._filtered_by_tag = True
else:
queryset = queryset.filter(**{field_name: value})
return queryset
| wagtail/api/v2/filters.py | 359 | wagtail | {
"docstring": "\n This performs field level filtering on the result set\n Eg: ?title=James Joyce\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 12,
"vocab_size": 12
} | 162 | Python | 108 | d10f15e55806c6944827d801cd9c2d53f5da4186 | filters.py | 72,652 | 31 | 220 | filter_queryset | https://github.com/wagtail/wagtail.git | Reformat with black | 758 | 0 | 15,909 | 21 |
|
1 | 4 | def _generate_examples(self, **kwargs):
raise NotImplementedError()
| src/datasets/builder.py | 24 | datasets | {
"docstring": "Default function generating examples for each `SplitGenerator`.\n\n This function preprocess the examples from the raw data to the preprocessed\n dataset files.\n This function is called once for each `SplitGenerator` defined in\n `_split_generators`. The examples yielded here will be written on\n disk.\n\n Args:\n **kwargs (additional keyword arguments): Arguments forwarded from the SplitGenerator.gen_kwargs\n\n Yields:\n key: `str` or `int`, a unique deterministic example identification key.\n * Unique: An error will be raised if two examples are yield with the\n same key.\n * Deterministic: When generating the dataset twice, the same example\n should have the same key.\n Good keys can be the image id, or line number if examples are extracted\n from a text file.\n The key will be hashed and sorted to shuffle examples deterministically,\n such as generating the dataset multiple times keep examples in the\n same order.\n example: `dict<str feature_name, feature_value>`, a feature dictionary\n ready to be encoded and written to disk. The example will be\n encoded with `self.info.features.encode_example({...})`.\n ",
"language": "en",
"n_whitespaces": 419,
"n_words": 157,
"vocab_size": 98
} | 5 | Python | 5 | 5669b8c8d75b8c3106abd23f21d902d1f020e25d | builder.py | 105,068 | 2 | 13 | _generate_examples | https://github.com/huggingface/datasets.git | Add missing kwargs to docstrings (#4446) | 19 | 0 | 22,061 | 7 |
|
2 | 8 | def get_delayed_update_fields(self):
self.extra_update_fields['emitted_events'] = self.event_ct
if 'got an unexpected keyword argument' in self.extra_update_fields.get('result_traceback', ''):
self.delay_update(result_traceback=ANSIBLE_RUNNER_NEEDS_UPDATE_MESSAGE)
return self.extra_update_fields
| awx/main/tasks/callback.py | 76 | awx | {
"docstring": "Return finalized dict of all fields that should be saved along with the job status change",
"language": "en",
"n_whitespaces": 15,
"n_words": 16,
"vocab_size": 16
} | 17 | Python | 17 | 452744b67e02823879e722fe574984a2d760ed60 | callback.py | 81,164 | 5 | 42 | get_delayed_update_fields | https://github.com/ansible/awx.git | Delay update of artifacts and error fields until final job save (#11832)
* Delay update of artifacts until final job save
Save tracebacks from receptor module to callback object
Move receptor traceback check up to be more logical
Use new mock_me fixture to avoid DB call with me method
Update the special runner message to the delay_update pattern
* Move special runner message into post-processing of callback fields | 56 | 0 | 17,165 | 10 |
|
3 | 33 | def forward_train(self, feat, out_enc, targets, valid_ratios):
tgt_embedding = self.embedding(targets)
n, c_enc, h, w = out_enc.shape
assert c_enc == self.dim_model
_, c_feat, _, _ = feat.shape
assert c_feat == self.dim_input
_, len_q, c_q = tgt_embedding.shape
assert c_q == self.dim_model
assert len_q <= self.max_seq_len
query, _ = self.sequence_layer(tgt_embedding)
query = paddle.transpose(query, (0, 2, 1))
key = paddle.reshape(out_enc, [n, c_enc, h * w])
if self.encode_value:
value = key
else:
value = paddle.reshape(feat, [n, c_feat, h * w])
# mask = None
# if valid_ratios is not None:
# mask = paddle.zeros(shape=[n, len_q, h, w], dtype='bool')
# for i, valid_ratio in enumerate(valid_ratios):
# valid_width = min(w, math.ceil(w * valid_ratio))
# if valid_width < w:
# mask[i, :, :, valid_width:] = True
# # mask = mask.view(n, h * w)
# mask = paddle.reshape(mask, (n, len_q, h * w))
attn_out = self.attention_layer(query, key, value, h, w, valid_ratios)
# attn_out = attn_out.permute(0, 2, 1).contiguous()
attn_out = paddle.transpose(attn_out, (0, 2, 1))
if self.return_feature:
return attn_out
out = self.prediction(attn_out)
return out
| ppocr/modeling/heads/rec_robustscanner_head.py | 300 | PaddleOCR | {
"docstring": "\n Args:\n feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.\n out_enc (Tensor): Encoder output of shape\n :math:`(N, D_m, H, W)`.\n targets (Tensor): a tensor of shape :math:`(N, T)`. Each element is the index of a\n character.\n valid_ratios (Tensor): valid length ratio of img.\n Returns:\n Tensor: A raw logit tensor of shape :math:`(N, T, C-1)` if\n ``return_feature=False``. Otherwise it would be the hidden feature\n before the prediction projection layer, whose shape is\n :math:`(N, T, D_m)`.\n ",
"language": "en",
"n_whitespaces": 214,
"n_words": 74,
"vocab_size": 50
} | 163 | Python | 91 | 63484257442362057ab4ea4acd769d52d42da9f1 | rec_robustscanner_head.py | 23,815 | 22 | 200 | forward_train | https://github.com/PaddlePaddle/PaddleOCR.git | add robustscanner | 443 | 0 | 4,647 | 13 |
|
6 | 15 | def normalize_path_patterns(patterns):
patterns = [os.path.normcase(p) for p in patterns]
dir_suffixes = {"%s*" % path_sep for path_sep in {"/", os.sep}}
norm_patterns = []
for pattern in patterns:
for dir_suffix in dir_suffixes:
if pattern.endswith(dir_suffix):
norm_patterns.append(pattern[: -len(dir_suffix)])
break
else:
norm_patterns.append(pattern)
return norm_patterns
| django/core/management/utils.py | 141 | django | {
"docstring": "Normalize an iterable of glob style patterns based on OS.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | 39 | Python | 29 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | utils.py | 204,719 | 12 | 86 | normalize_path_patterns | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 123 | 0 | 50,851 | 18 |
|
2 | 4 | def details(self):
return self._details if self._details else self.og_exception.details()
| jina/excepts.py | 37 | jina | {
"docstring": "\n :return: details of this exception\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 5,
"vocab_size": 5
} | 8 | Python | 7 | 072a47a4fa97aca68203882e1ef809681a523097 | excepts.py | 12,341 | 2 | 22 | details | https://github.com/jina-ai/jina.git | feat: better error messages when gateway can't connect to other deployment (#4677) | 22 | 0 | 2,262 | 9 |
|
1 | 6 | def bind(self, *args, **kwargs) -> DeploymentNode:
raise NotImplementedError()
| python/ray/serve/api.py | 31 | ray | {
"docstring": "Bind the provided arguments and return a DeploymentNode.\n\n The returned bound deployment can be deployed or bound to other\n deployments to create a multi-deployment application.\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 25,
"vocab_size": 22
} | 8 | Python | 8 | f646d3fc312f63a6cf3e59a00ae1b3d6ab40393a | api.py | 146,461 | 7 | 18 | bind | https://github.com/ray-project/ray.git | [serve] Add unimplemented interfaces for Deployment DAG APIs (#23125)
Adds the following interfaces (without implementation, for discussion / approval):
- `serve.Application`
- `serve.DeploymentNode`
- `serve.DeploymentMethodNode`, `serve.DAGHandle`, and `serve.drivers.PipelineDriver`
- `serve.run` & `serve.build`
In addition to these Python APIs, we will also support the following CLI commands:
- `serve run [--blocking=true] my_file:my_node_or_app # Uses Ray client, blocking by default.`
- `serve build my_file:my_node output_path.yaml`
- `serve deploy [--blocking=false] # Uses REST API, non-blocking by default.`
- `serve status [--watch=false] # Uses REST API, non-blocking by default.` | 22 | 0 | 33,689 | 7 |
|
1 | 3 | def _inflate_g(g, n):
# TODO should this be a method of meijerg?
# See: [L, page 150, equation (5)] | sympy/integrals/meijerint.py | 17 | sympy | {
"docstring": " Return C, h such that h is a G function of argument z**n and\n g = C*h. ",
"language": "en",
"n_whitespaces": 25,
"n_words": 17,
"vocab_size": 16
} | 19 | Python | 18 | e94a7b45d7b033ccbd57395dca28b654f875c54c | meijerint.py | 198,410 | 8 | 118 | _inflate_g | https://github.com/sympy/sympy.git | Improve loop performance | 28 | 0 | 48,919 | 6 |
|
56 | 66 | def paramToDict(place, parameters=None):
testableParameters = OrderedDict()
if place in conf.parameters and not parameters:
parameters = conf.parameters[place]
parameters = re.sub(r"&(\w{1,4});", r"%s\g<1>%s" % (PARAMETER_AMP_MARKER, PARAMETER_SEMICOLON_MARKER), parameters)
if place == PLACE.COOKIE:
splitParams = parameters.split(conf.cookieDel or DEFAULT_COOKIE_DELIMITER)
else:
splitParams = parameters.split(conf.paramDel or DEFAULT_GET_POST_DELIMITER)
for element in splitParams:
element = re.sub(r"%s(.+?)%s" % (PARAMETER_AMP_MARKER, PARAMETER_SEMICOLON_MARKER), r"&\g<1>;", element)
parts = element.split("=")
if len(parts) >= 2:
parameter = urldecode(parts[0].replace(" ", ""))
if not parameter:
continue
if conf.paramDel and conf.paramDel == '\n':
parts[-1] = parts[-1].rstrip()
condition = not conf.testParameter
condition |= conf.testParameter is not None and parameter in conf.testParameter
condition |= place == PLACE.COOKIE and len(intersect((PLACE.COOKIE,), conf.testParameter, True)) > 0
if condition:
value = "=".join(parts[1:])
if parameter in (conf.base64Parameter or []):
try:
kb.base64Originals[parameter] = oldValue = value
value = urldecode(value, convall=True)
value = decodeBase64(value, binary=False, encoding=conf.encoding or UNICODE_ENCODING)
parameters = re.sub(r"\b%s(\b|\Z)" % re.escape(oldValue), value, parameters)
except:
errMsg = "parameter '%s' does not contain " % parameter
errMsg += "valid Base64 encoded value ('%s')" % value
raise SqlmapValueException(errMsg)
testableParameters[parameter] = value
if not conf.multipleTargets and not (conf.csrfToken and re.search(conf.csrfToken, parameter, re.I)):
_ = urldecode(testableParameters[parameter], convall=True)
if (_.endswith("'") and _.count("'") == 1 or re.search(r'\A9{3,}', _) or re.search(r'\A-\d+\Z', _) or re.search(DUMMY_USER_INJECTION, _)) and not parameter.upper().startswith(GOOGLE_ANALYTICS_COOKIE_PREFIX):
warnMsg = "it appears that you have provided tainted parameter values "
warnMsg += "('%s') with most likely leftover " % element
warnMsg += "chars/statements from manual SQL injection test(s). "
warnMsg += "Please, always use only valid parameter values "
warnMsg += "so sqlmap could be able to run properly"
logger.warning(warnMsg)
message = "are you really sure that you want to continue (sqlmap could have problems)? [y/N] "
if not readInput(message, default='N', boolean=True):
raise SqlmapSilentQuitException
elif not _:
warnMsg = "provided value for parameter '%s' is empty. " % parameter
warnMsg += "Please, always use only valid parameter values "
warnMsg += "so sqlmap could be able to run properly"
logger.warning(warnMsg)
if place in (PLACE.POST, PLACE.GET):
for regex in (r"\A((?:<[^>]+>)+\w+)((?:<[^>]+>)+)\Z", r"\A([^\w]+.*\w+)([^\w]+)\Z"):
match = re.search(regex, testableParameters[parameter])
if match:
try:
candidates = OrderedDict()
| lib/core/common.py | 868 | def paramToDict(place, parameters=None):
"""
Split the parameters into names and values, check if these parameters
are within the testable parameters and return in a dictionary.
"""
testableParameters = OrderedDict()
if place in conf.parameters and not parameters:
parameters = conf.parameters[place]
parameters = re.sub(r"&(\w{1,4});", r"%s\g<1>%s" % (PARAMETER_AMP_MARKER, PARAMETER_SEMICOLON_MARKER), parameters)
if place == PLACE.COOKIE:
splitParams = parameters.split(conf.cookieDel or DEFAULT_COOKIE_DELIMITER)
else:
splitParams = parameters.split(conf.paramDel or DEFAULT_GET_POST_DELIMITER)
for element in splitParams:
element = re.sub(r"%s(.+?)%s" % (PARAMETER_AMP_MARKER, PARAMETER_SEMICOLON_MARKER), r"&\g<1>;", element)
parts = element.split("=")
if len(parts) >= 2:
parameter = urldecode(parts[0].replace(" ", ""))
if not parameter:
continue
if conf.paramDel and conf.paramDel == '\n':
parts[-1] = parts[-1].rstrip()
condition = not conf.testParameter
condition |= conf.testParameter is not None and parameter in conf.testParameter
condition |= place == PLACE.COOKIE and len(intersect((PLACE.COOKIE,), conf.testParameter, True)) > 0
if condition:
value = "=".join(parts[1:])
if parameter in (conf.base64Parameter or []):
try:
kb.base64Originals[parameter] = oldValue = value
value = urldecode(value, convall=True)
value = decodeBase64(value, binary=False, encoding=conf.encoding or UNICODE_ENCODING)
parameters = re.sub(r"\b%s(\b|\Z)" % re.escape(oldValue), value, parameters)
except:
errMsg = "parameter '%s' does not contain " % parameter
errMsg += "valid Base64 encoded value ('%s')" % value
raise SqlmapValueException(errMsg)
testableParameters[parameter] = value
if not conf.multipleTargets and not (conf.csrfToken and re.search(conf.csrfToken, parameter, re.I)):
_ = urldecode(testableParameters[parameter], convall=True)
if (_.endswith("'") and _.count("'") == 1 or re.search(r'\A9{3,}', _) or re.search(r'\A-\d+\Z', _) or re.search(DUMMY_USER_INJECTION, _)) and not parameter.upper().startswith(GOOGLE_ANALYTICS_COOKIE_PREFIX):
warnMsg = "it appears that you have provided tainted parameter values "
warnMsg += "('%s') with most likely leftover " % element
warnMsg += "chars/statements from manual SQL injection test(s). "
warnMsg += "Please, always use only valid parameter values "
warnMsg += "so sqlmap could be able to run properly"
logger.warning(warnMsg)
message = "are you really sure that you want to continue (sqlmap could have problems)? [y/N] "
if not readInput(message, default='N', boolean=True):
raise SqlmapSilentQuitException
elif not _:
warnMsg = "provided value for parameter '%s' is empty. " % parameter
warnMsg += "Please, always use only valid parameter values "
warnMsg += "so sqlmap could be able to run properly"
logger.warning(warnMsg)
if place in (PLACE.POST, PLACE.GET):
for regex in (r"\A((?:<[^>]+>)+\w+)((?:<[^>]+>)+)\Z", r"\A([^\w]+.*\w+)([^\w]+)\Z"):
match = re.search(regex, testableParameters[parameter])
if match:
try:
candidates = OrderedDict()
| sqlmap | {
"docstring": "\n Split the parameters into names and values, check if these parameters\n are within the testable parameters and return in a dictionary.\n ",
"language": "en",
"n_whitespaces": 31,
"n_words": 21,
"vocab_size": 17
} | 325 | Python | 170 | df4293473d2fb6e887e31522cab5aff95e201581 | common.py | 123,469 | 110 | 979 | paramToDict | https://github.com/sqlmapproject/sqlmap.git | Fixing DeprecationWarning (logger.warn) | 1,252 | 1 | 27,381 | 15 |
19 | 29 | def getcolor(self, color, image=None):
if self.rawmode:
raise ValueError("palette contains raw palette data")
if isinstance(color, tuple):
if self.mode == "RGB" and len(color) == 4:
if color[3] == 255:
color = color[:3]
else:
raise ValueError(
"RGB ImagePalette can't handle non-opaque RGBA colors"
)
elif self.mode == "RGBA":
if len(color) == 3:
color += (255,)
try:
return self.colors[color]
except KeyError as e:
# allocate new color slot
if not isinstance(self.palette, bytearray):
self._palette = bytearray(self.palette)
index = len(self.palette) // 3
special_colors = ()
if image:
special_colors = (
image.info.get("background"),
image.info.get("transparency"),
)
while index in special_colors:
index += 1
if index >= 256:
if image:
# Search for an unused index
for i, count in reversed(list(enumerate(image.histogram()))):
if count == 0 and i not in special_colors:
index = i
break
if index >= 256:
raise ValueError("cannot allocate more than 256 colors") from e
self.colors[color] = index
if index * 3 < len(self.palette):
self._palette = (
self.palette[: index * 3]
+ bytes(color)
+ self.palette[index * 3 + 3 :]
)
else:
self._palette += bytes(color)
self.dirty = 1
return index
else:
raise ValueError(f"unknown color specifier: {repr(color)}")
| src/PIL/ImagePalette.py | 500 | Pillow | {
"docstring": "Given an rgb tuple, allocate palette entry.\n\n .. warning:: This method is experimental.\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 13,
"vocab_size": 13
} | 178 | Python | 102 | f9a3178bb34e6b28bc46d42ef88f5069ebabde32 | ImagePalette.py | 243,502 | 49 | 299 | getcolor | https://github.com/python-pillow/Pillow.git | Fix #6652: Handle translucent color used in RGB ImagePallete | 1,055 | 0 | 70,038 | 22 |
|
7 | 38 | def draw_masks(ax, img, masks, color=None, with_edge=True, alpha=0.8):
taken_colors = set([0, 0, 0])
if color is None:
random_colors = np.random.randint(0, 255, (masks.size(0), 3))
color = [tuple(c) for c in random_colors]
color = np.array(color, dtype=np.uint8)
polygons = []
for i, mask in enumerate(masks):
if with_edge:
contours, _ = bitmap_to_polygon(mask)
polygons += [Polygon(c) for c in contours]
color_mask = color[i]
while tuple(color_mask) in taken_colors:
color_mask = _get_bias_color(color_mask)
taken_colors.add(tuple(color_mask))
mask = mask.astype(bool)
img[mask] = img[mask] * (1 - alpha) + color_mask * alpha
p = PatchCollection(
polygons, facecolor='none', edgecolors='w', linewidths=1, alpha=0.8)
ax.add_collection(p)
return ax, img
| mmdet/core/visualization/image.py | 325 | mmdetection | {
"docstring": "Draw masks on the image and their edges on the axes.\n\n Args:\n ax (matplotlib.Axes): The input axes.\n img (ndarray): The image with the shape of (3, h, w).\n masks (ndarray): The masks with the shape of (n, h, w).\n color (ndarray): The colors for each masks with the shape\n of (n, 3).\n with_edge (bool): Whether to draw edges. Default: True.\n alpha (float): Transparency of bounding boxes. Default: 0.8.\n\n Returns:\n matplotlib.Axes: The result axes.\n ndarray: The result image.\n ",
"language": "en",
"n_whitespaces": 153,
"n_words": 77,
"vocab_size": 47
} | 91 | Python | 66 | 301d4a2d4cfe1cdb62608e2892924be3e67e3098 | image.py | 243,968 | 21 | 217 | draw_masks | https://github.com/open-mmlab/mmdetection.git | [Feature] Support visualization for Panoptic Segmentation (#7041)
* First commit of v2
* split the functions
* Support to show panoptic result
* temp
* Support to show gt
* support show gt
* fix lint
* Support to browse datasets
* Fix unit tests
* Fix findContours
* fix comments
* Fix pre-commit
* fix lint
* Add the type of an argument | 218 | 0 | 70,170 | 13 |
|
9 | 19 | def convert_to_experiment_list(experiments):
exp_list = experiments
# Transform list if necessary
if experiments is None:
exp_list = []
elif isinstance(experiments, Experiment):
exp_list = [experiments]
elif type(experiments) is dict:
exp_list = [
Experiment.from_json(name, spec) for name, spec in experiments.items()
]
# Validate exp_list
if type(exp_list) is list and all(isinstance(exp, Experiment) for exp in exp_list):
if len(exp_list) > 1:
logger.info(
"Running with multiple concurrent experiments. "
"All experiments will be using the same SearchAlgorithm."
)
else:
raise TuneError("Invalid argument: {}".format(experiments))
return exp_list
| python/ray/tune/experiment.py | 188 | ray | {
"docstring": "Produces a list of Experiment objects.\n\n Converts input from dict, single experiment, or list of\n experiments to list of experiments. If input is None,\n will return an empty list.\n\n Arguments:\n experiments (Experiment | list | dict): Experiments to run.\n\n Returns:\n List of experiments.\n ",
"language": "en",
"n_whitespaces": 75,
"n_words": 43,
"vocab_size": 32
} | 79 | Python | 59 | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | experiment.py | 132,194 | 19 | 112 | convert_to_experiment_list | https://github.com/ray-project/ray.git | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 214 | 0 | 29,694 | 13 |
|
1 | 23 | def test_approx_iou_assigner_with_empty_boxes_and_gt(self):
assigner = ApproxMaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
)
bboxes = torch.empty((0, 4))
gt_bboxes = torch.empty((0, 4))
gt_labels = torch.LongTensor([])
pred_instances = InstanceData()
pred_instances.priors = bboxes
pred_instances.approxs = bboxes[:, None, :]
gt_instances = InstanceData()
gt_instances.bboxes = gt_bboxes
gt_instances.labels = gt_labels
assign_result = assigner.assign(pred_instances, gt_instances)
self.assertEqual(len(assign_result.gt_inds), 0)
| tests/test_core/test_bbox/test_assigners/test_approx_max_iou_assigner.py | 178 | mmdetection | {
"docstring": "Test corner case where an network might predict no boxes and no\n gt.",
"language": "en",
"n_whitespaces": 19,
"n_words": 13,
"vocab_size": 12
} | 45 | Python | 29 | bb7239ff635c4d9afd9c37a6e432251029aafb51 | test_approx_max_iou_assigner.py | 245,072 | 16 | 116 | test_approx_iou_assigner_with_empty_boxes_and_gt | https://github.com/open-mmlab/mmdetection.git | Refactor SABL RetinaNet | 165 | 0 | 70,644 | 10 |
|
1 | 20 | def test_remove_not_installed():
name = "foo"
list_pkgs_mock = MagicMock(return_value={})
cmd_mock = MagicMock(
return_value={"pid": 12345, "retcode": 0, "stdout": "", "stderr": ""}
)
salt_mock = {
"cmd.run_all": cmd_mock,
"lowpkg.version_cmp": rpm.version_cmp,
"pkg_resource.parse_targets": MagicMock(
return_value=({name: None}, "repository")
),
}
with patch.object(yumpkg, "list_pkgs", list_pkgs_mock), patch(
"salt.utils.systemd.has_scope", MagicMock(return_value=False)
), patch.dict(yumpkg.__salt__, salt_mock):
# Test yum
with patch.dict(yumpkg.__context__, {"yum_bin": "yum"}), patch.dict(
yumpkg.__grains__, {"os": "CentOS", "osrelease": 7}
):
yumpkg.remove(name)
cmd_mock.assert_not_called()
# Test dnf
yumpkg.__context__.pop("yum_bin")
cmd_mock.reset_mock()
with patch.dict(yumpkg.__context__, {"yum_bin": "dnf"}), patch.dict(
yumpkg.__grains__, {"os": "Fedora", "osrelease": 27}
):
yumpkg.remove(name)
cmd_mock.assert_not_called()
| tests/pytests/unit/modules/test_yumpkg.py | 379 | salt | {
"docstring": "\n Tests that no exception raised on removing not installed package\n ",
"language": "en",
"n_whitespaces": 17,
"n_words": 10,
"vocab_size": 10
} | 78 | Python | 60 | 8ea5342cbde034383938e244cdb16a0bf8a777e8 | test_yumpkg.py | 216,118 | 28 | 212 | test_remove_not_installed | https://github.com/saltstack/salt.git | Fix exception in yumpkg.remove for not installed package | 280 | 0 | 54,409 | 14 |
|
10 | 25 | def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, cache=None):
r
tgt_mask = _convert_attention_mask(tgt_mask, tgt.dtype)
memory_mask = _convert_attention_mask(memory_mask, memory.dtype)
residual = tgt
if self.normalize_before:
tgt = self.norm1(tgt)
if cache is None:
tgt = self.self_attn(tgt, tgt, tgt, tgt_mask, None)
else:
tgt, incremental_cache = self.self_attn(tgt, tgt, tgt, tgt_mask,
cache[0])
tgt = residual + self.dropout1(tgt)
if not self.normalize_before:
tgt = self.norm1(tgt)
residual = tgt
if self.normalize_before:
tgt = self.norm2(tgt)
if cache is None:
tgt = self.cross_attn(tgt, memory, memory, memory_mask, None)
else:
tgt, static_cache = self.cross_attn(tgt, memory, memory,
memory_mask, cache[1])
tgt = residual + self.dropout2(tgt)
if not self.normalize_before:
tgt = self.norm2(tgt)
residual = tgt
if self.normalize_before:
tgt = self.norm3(tgt)
tgt = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = residual + self.dropout3(tgt)
if not self.normalize_before:
tgt = self.norm3(tgt)
return tgt if cache is None else (tgt, (incremental_cache,
static_cache))
| examples/model_interpretation/task/transformer.py | 437 | PaddleNLP | {
"docstring": "\n Applies a Transformer decoder layer on the input.\n\n Parameters:\n tgt (Tensor): The input of Transformer decoder layer. It is a tensor\n with shape `[batch_size, target_length, d_model]`. The data type\n should be float32 or float64.\n memory (Tensor): The output of Transformer encoder. It is a tensor\n with shape `[batch_size, source_length, d_model]`. The data type\n should be float32 or float64.\n tgt_mask (Tensor, optional): A tensor used in self attention\n to prevents attention to some unwanted positions, usually the\n the subsequent positions. It is a tensor with shape broadcasted\n to `[batch_size, n_head, target_length, target_length]`.\n When the data type is bool, the unwanted positions have `False` \n values and the others have `True` values. When the data type is \n int, the unwanted positions have 0 values and the others have 1 \n values. When the data type is float, the unwanted positions have \n `-INF` values and the others have 0 values. It can be None when \n nothing wanted or needed to be prevented attention to. Default None.\n memory_mask (Tensor, optional): A tensor used in decoder-encoder\n cross attention to prevents attention to some unwanted positions,\n usually the paddings. It is a tensor with shape broadcasted to \n `[batch_size, n_head, target_length, source_length]`. When the \n data type is bool, the unwanted positions have `False` values \n and the others have `True` values. When the data type is int, \n the unwanted positions have 0 values and the others have 1 \n values. When the data type is float, the unwanted positions have \n `-INF` values and the others have 0 values. It can be None when \n nothing wanted or needed to be prevented attention to. Default None.\n cache (tuple, optional): It is a tuple( :code:`(incremental_cache, static_cache)` ),\n `incremental_cache` is an instance of `MultiHeadAttention.Cache`,\n `static_cache` is an instance of `MultiHeadAttention.StaticCache.\n See `TransformerDecoderLayer.gen_cache` for more details. It is\n only used for inference and should be None for training. Default\n None.\n\n Returns:\n Tensor|tuple: It is a tensor that has the same shape and data type \\\n as `tgt`, representing the output of Transformer decoder layer. \\\n Or a tuple if `cache` is not None, except for decoder layer output, \\\n the tuple includes the new cache which is same as input `cache` \\\n argument but `incremental_cache` in it has an incremental length. \\\n See `MultiHeadAttention.gen_cache` and `MultiHeadAttention.forward` \\\n for more details.\n ",
"language": "en",
"n_whitespaces": 976,
"n_words": 374,
"vocab_size": 130
} | 126 | Python | 47 | 93cae49c0c572b5c1ac972759140fbe924b0374d | transformer.py | 323,000 | 80 | 290 | forward | https://github.com/PaddlePaddle/PaddleNLP.git | Add NLP model interpretation (#1752)
* upload NLP interpretation
* fix problems and relocate project
* remove abandoned picture
* remove abandoned picture
* fix dead link in README
* fix dead link in README
* fix code style problems
* fix CR round 1
* remove .gitkeep files
* fix code style
* fix file encoding problem
* fix code style
* delete duplicated files due to directory rebuild
* fix CR round 2
* fix code style
* fix ernie tokenizer
* fix code style
* fix problem from CR round 1
* fix bugs
* fix README
* remove duplicated files
* deal with diff of old and new tokenizer results
* fix CR round 4
* fix code style
* add missing dependence
* fix broken import path
* move some data file to cloud
* MRC upper case to lower case
Co-authored-by: Zeyu Chen <[email protected]>
Co-authored-by: binlinquge <xxx>
Co-authored-by: Guo Sheng <[email protected]> | 527 | 0 | 118,328 | 14 |
|
2 | 10 | def forgiving_int(value, default=_SENTINEL, base=10):
result = jinja2.filters.do_int(value, default=default, base=base)
if result is _SENTINEL:
raise_no_default("int", value)
return result
| homeassistant/helpers/template.py | 71 | core | {
"docstring": "Try to convert value to an int, and raise if it fails.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 11
} | 17 | Python | 15 | 4885331509eeffe50f42d76b234996467b06170f | template.py | 300,603 | 5 | 45 | forgiving_int | https://github.com/home-assistant/core.git | Fail template functions when no default specified (#71687) | 36 | 0 | 99,463 | 10 |
|
36 | 55 | def norm(x, ord=None, axis=None, keepdims=False):
x = asarray(x)
if not issubclass(x.dtype.type, (inexact, object_)):
x = x.astype(float)
# Immediately handle some default, simple, fast, and common cases.
if axis is None:
ndim = x.ndim
if ((ord is None) or
(ord in ('f', 'fro') and ndim == 2) or
(ord == 2 and ndim == 1)):
x = x.ravel(order='K')
if isComplexType(x.dtype.type):
sqnorm = dot(x.real, x.real) + dot(x.imag, x.imag)
else:
sqnorm = dot(x, x)
ret = sqrt(sqnorm)
if keepdims:
ret = ret.reshape(ndim*[1])
return ret
# Normalize the `axis` argument to a tuple.
nd = x.ndim
if axis is None:
axis = tuple(range(nd))
elif not isinstance(axis, tuple):
try:
axis = int(axis)
except Exception as e:
raise TypeError("'axis' must be None, an integer or a tuple of integers") from e
axis = (axis,)
if len(axis) == 1:
if ord == Inf:
return abs(x).max(axis=axis, keepdims=keepdims)
elif ord == -Inf:
return abs(x).min(axis=axis, keepdims=keepdims)
elif ord == 0:
# Zero norm
return (x != 0).astype(x.real.dtype).sum(axis=axis, keepdims=keepdims)
elif ord == 1:
# special case for speedup
return add.reduce(abs(x), axis=axis, keepdims=keepdims)
elif ord is None or ord == 2:
# special case for speedup
s = (x.conj() * x).real
return sqrt(add.reduce(s, axis=axis, keepdims=keepdims))
# None of the str-type keywords for ord ('fro', 'nuc')
# are valid for vectors
elif isinstance(ord, str):
raise ValueError(f"Invalid norm order '{ord}' for vectors")
else:
absx = abs(x)
absx **= ord
ret = add.reduce(absx, axis=axis, keepdims=keepdims)
ret **= reciprocal(ord, dtype=ret.dtype)
return ret
elif len(axis) == 2:
row_axis, col_axis = axis
row_axis = normalize_axis_index(row_axis, nd)
col_axis = normalize_axis_index(col_axis, nd)
if row_axis == col_axis:
raise ValueError('Duplicate axes given.')
if ord == 2:
ret = _multi_svd_norm(x, row_axis, col_axis, amax)
elif ord == -2:
ret = _multi_svd_norm(x, row_axis, col_axis, amin)
elif ord == 1:
if col_axis > row_axis:
col_axis -= 1
ret = add.reduce(abs(x), axis=row_axis).max(axis=col_axis)
elif ord == Inf:
if row_axis > col_axis:
row_axis -= 1
ret = add.reduce(abs(x), axis=col_axis).max(axis=row_axis)
elif ord == -1:
if col_axis > row_axis:
col_axis -= 1
ret = add.reduce(abs(x), axis=row_axis).min(axis=col_axis)
elif ord == -Inf:
if row_axis > col_axis:
row_axis -= 1
ret = add.reduce(abs(x), axis=col_axis).min(axis=row_axis)
elif ord in [None, 'fro', 'f']:
ret = sqrt(add.reduce((x.conj() * x).real, axis=axis))
elif ord == 'nuc':
ret = _multi_svd_norm(x, row_axis, col_axis, sum)
else:
raise ValueError("Invalid norm order for matrices.")
if keepdims:
ret_shape = list(x.shape)
ret_shape[axis[0]] = 1
ret_shape[axis[1]] = 1
ret = ret.reshape(ret_shape)
return ret
else:
raise ValueError("Improper number of dimensions to norm.")
# multi_dot
| numpy/linalg/linalg.py | 1,183 | numpy | {
"docstring": "\n Matrix or vector norm.\n\n This function is able to return one of eight different matrix norms,\n or one of an infinite number of vector norms (described below), depending\n on the value of the ``ord`` parameter.\n\n Parameters\n ----------\n x : array_like\n Input array. If `axis` is None, `x` must be 1-D or 2-D, unless `ord`\n is None. If both `axis` and `ord` are None, the 2-norm of\n ``x.ravel`` will be returned.\n ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional\n Order of the norm (see table under ``Notes``). inf means numpy's\n `inf` object. The default is None.\n axis : {None, int, 2-tuple of ints}, optional.\n If `axis` is an integer, it specifies the axis of `x` along which to\n compute the vector norms. If `axis` is a 2-tuple, it specifies the\n axes that hold 2-D matrices, and the matrix norms of these matrices\n are computed. If `axis` is None then either a vector norm (when `x`\n is 1-D) or a matrix norm (when `x` is 2-D) is returned. The default\n is None.\n\n .. versionadded:: 1.8.0\n\n keepdims : bool, optional\n If this is set to True, the axes which are normed over are left in the\n result as dimensions with size one. With this option the result will\n broadcast correctly against the original `x`.\n\n .. versionadded:: 1.10.0\n\n Returns\n -------\n n : float or ndarray\n Norm of the matrix or vector(s).\n\n See Also\n --------\n scipy.linalg.norm : Similar function in SciPy.\n\n Notes\n -----\n For values of ``ord < 1``, the result is, strictly speaking, not a\n mathematical 'norm', but it may still be useful for various numerical\n purposes.\n\n The following norms can be calculated:\n\n ===== ============================ ==========================\n ord norm for matrices norm for vectors\n ===== ============================ ==========================\n None Frobenius norm 2-norm\n 'fro' Frobenius norm --\n 'nuc' nuclear norm --\n inf max(sum(abs(x), axis=1)) max(abs(x))\n -inf min(sum(abs(x), axis=1)) min(abs(x))\n 0 -- sum(x != 0)\n 1 max(sum(abs(x), axis=0)) as below\n -1 min(sum(abs(x), axis=0)) as below\n 2 2-norm (largest sing. value) as below\n -2 smallest singular value as below\n other -- sum(abs(x)**ord)**(1./ord)\n ===== ============================ ==========================\n\n The Frobenius norm is given by [1]_:\n\n :math:`||A||_F = [\\\\sum_{i,j} abs(a_{i,j})^2]^{1/2}`\n\n The nuclear norm is the sum of the singular values.\n\n Both the Frobenius and nuclear norm orders are only defined for\n matrices and raise a ValueError when ``x.ndim != 2``.\n\n References\n ----------\n .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,\n Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15\n\n Examples\n --------\n >>> from numpy import linalg as LA\n >>> a = np.arange(9) - 4\n >>> a\n array([-4, -3, -2, ..., 2, 3, 4])\n >>> b = a.reshape((3, 3))\n >>> b\n array([[-4, -3, -2],\n [-1, 0, 1],\n [ 2, 3, 4]])\n\n >>> LA.norm(a)\n 7.745966692414834\n >>> LA.norm(b)\n 7.745966692414834\n >>> LA.norm(b, 'fro')\n 7.745966692414834\n >>> LA.norm(a, np.inf)\n 4.0\n >>> LA.norm(b, np.inf)\n 9.0\n >>> LA.norm(a, -np.inf)\n 0.0\n >>> LA.norm(b, -np.inf)\n 2.0\n\n >>> LA.norm(a, 1)\n 20.0\n >>> LA.norm(b, 1)\n 7.0\n >>> LA.norm(a, -1)\n -4.6566128774142013e-010\n >>> LA.norm(b, -1)\n 6.0\n >>> LA.norm(a, 2)\n 7.745966692414834\n >>> LA.norm(b, 2)\n 7.3484692283495345\n\n >>> LA.norm(a, -2)\n 0.0\n >>> LA.norm(b, -2)\n 1.8570331885190563e-016 # may vary\n >>> LA.norm(a, 3)\n 5.8480354764257312 # may vary\n >>> LA.norm(a, -3)\n 0.0\n\n Using the `axis` argument to compute vector norms:\n\n >>> c = np.array([[ 1, 2, 3],\n ... [-1, 1, 4]])\n >>> LA.norm(c, axis=0)\n array([ 1.41421356, 2.23606798, 5. ])\n >>> LA.norm(c, axis=1)\n array([ 3.74165739, 4.24264069])\n >>> LA.norm(c, ord=1, axis=1)\n array([ 6., 6.])\n\n Using the `axis` argument to compute matrix norms:\n\n >>> m = np.arange(8).reshape(2,2,2)\n >>> LA.norm(m, axis=(1,2))\n array([ 3.74165739, 11.22497216])\n >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :])\n (3.7416573867739413, 11.224972160321824)\n\n ",
"language": "en",
"n_whitespaces": 1267,
"n_words": 581,
"vocab_size": 322
} | 395 | Python | 178 | 0d13f9f747887b290108a909dd92c3cb47239921 | linalg.py | 160,203 | 87 | 746 | norm | https://github.com/numpy/numpy.git | BUG: Consistent promotion for norm for all values of ord (#17709)
Previously, numpy.linalg.norm would return values with the same floating-point
type as input arrays for most values of the ``ord`` parameter, but not all.
This PR fixes this so that the output dtype matches the input for all (valid) values
of ``ord``.
Co-authored-by: Kenichi Maehashi <[email protected]>
Co-authored-by: Ross Barnowski <[email protected]> | 1,233 | 0 | 38,571 | 21 |
|
1 | 38 | def test_multiple_tags_return_distinct_objects_with_seperate_config_contexts(self):
site = Site.objects.first()
platform = Platform.objects.first()
tenant = Tenant.objects.first()
tag1, tag2 = list(Tag.objects.all())
tag_context_1 = ConfigContext.objects.create(
name="tag-1",
weight=100,
data={
"tag": 1
}
)
tag_context_1.tags.add(tag1)
tag_context_2 = ConfigContext.objects.create(
name="tag-2",
weight=100,
data={
"tag": 1
}
)
tag_context_2.tags.add(tag2)
device = Device.objects.create(
name="Device 3",
site=site,
tenant=tenant,
platform=platform,
device_role=DeviceRole.objects.first(),
device_type=DeviceType.objects.first()
)
device.tags.set([tag1, tag2])
annotated_queryset = Device.objects.filter(name=device.name).annotate_config_context_data()
self.assertEqual(ConfigContext.objects.get_for_object(device).count(), 2)
self.assertEqual(device.get_config_context(), annotated_queryset[0].get_config_context())
| netbox/extras/tests/test_models.py | 358 | netbox | {
"docstring": "\n Tagged items use a generic relationship, which results in duplicate rows being returned when queried.\n This is combatted by by appending distinct() to the config context querysets. This test creates a config\n context assigned to two tags and ensures objects related by those same two tags result in only a single\n config context record being returned.\n\n This test case is seperate from the above in that it deals with multiple config context objects in play.\n\n See https://github.com/netbox-community/netbox/issues/5387\n ",
"language": "en",
"n_whitespaces": 127,
"n_words": 77,
"vocab_size": 54
} | 57 | Python | 42 | d4a231585ac9a25d9739552d8c9e433dbf9398af | test_models.py | 266,200 | 33 | 223 | test_multiple_tags_return_distinct_objects_with_seperate_config_contexts | https://github.com/netbox-community/netbox.git | Clean up tests | 360 | 0 | 78,334 | 12 |
|
1 | 11 | def test_recorder_pool(caplog):
engine = create_engine("sqlite://", poolclass=RecorderPool)
get_session = sessionmaker(bind=engine)
shutdown = False
connections = []
| tests/components/recorder/test_pool.py | 55 | core | {
"docstring": "Test RecorderPool gives the same connection in the creating thread.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | 15 | Python | 12 | bc862e97ed68cce8c437327651f85892787e755e | test_pool.py | 293,727 | 34 | 234 | test_recorder_pool | https://github.com/home-assistant/core.git | Use a dedicated executor pool for database operations (#68105)
Co-authored-by: Erik Montnemery <[email protected]>
Co-authored-by: Franck Nijhof <[email protected]> | 30 | 0 | 92,782 | 9 |
|
8 | 37 | def apply_infer_dtype(func, args, kwargs, funcname, suggest_dtype="dtype", nout=None):
from dask.array.utils import meta_from_array
# make sure that every arg is an evaluated array
args = [
np.ones_like(meta_from_array(x), shape=((1,) * x.ndim), dtype=x.dtype)
if is_arraylike(x)
else x
for x in args
]
try:
with np.errstate(all="ignore"):
o = func(*args, **kwargs)
except Exception as e:
exc_type, exc_value, exc_traceback = sys.exc_info()
tb = "".join(traceback.format_tb(exc_traceback))
suggest = (
(
"Please specify the dtype explicitly using the "
"`{dtype}` kwarg.\n\n".format(dtype=suggest_dtype)
)
if suggest_dtype
else ""
)
msg = (
f"`dtype` inference failed in `{funcname}`.\n\n"
f"{suggest}"
"Original error is below:\n"
"------------------------\n"
f"{e!r}\n\n"
"Traceback:\n"
"---------\n"
f"{tb}"
)
else:
msg = None
if msg is not None:
raise ValueError(msg)
return o.dtype if nout is None else tuple(e.dtype for e in o)
| dask/array/core.py | 341 | dask | {
"docstring": "\n Tries to infer output dtype of ``func`` for a small set of input arguments.\n\n Parameters\n ----------\n func: Callable\n Function for which output dtype is to be determined\n\n args: List of array like\n Arguments to the function, which would usually be used. Only attributes\n ``ndim`` and ``dtype`` are used.\n\n kwargs: dict\n Additional ``kwargs`` to the ``func``\n\n funcname: String\n Name of calling function to improve potential error messages\n\n suggest_dtype: None/False or String\n If not ``None`` adds suggestion to potential error message to specify a dtype\n via the specified kwarg. Defaults to ``'dtype'``.\n\n nout: None or Int\n ``None`` if function returns single output, integer if many.\n Deafults to ``None``.\n\n Returns\n -------\n : dtype or List of dtype\n One or many dtypes (depending on ``nout``)\n ",
"language": "en",
"n_whitespaces": 231,
"n_words": 121,
"vocab_size": 86
} | 119 | Python | 92 | cccb9d8d8e33a891396b1275c2448c352ef40c27 | core.py | 156,008 | 37 | 192 | apply_infer_dtype | https://github.com/dask/dask.git | absolufy-imports - No relative - PEP8 (#8796)
Conversation in https://github.com/dask/distributed/issues/5889 | 413 | 0 | 36,503 | 16 |
|
2 | 8 | def _cursor(self) -> Optional[Cursor]:
if self._provided_cursor is None:
return cursor.get_container_cursor(self._root_container)
else:
return self._provided_cursor
| lib/streamlit/delta_generator.py | 55 | streamlit | {
"docstring": "Return our Cursor. This will be None if we're not running in a\n ScriptThread - e.g., if we're running a \"bare\" script outside of\n Streamlit.\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 25,
"vocab_size": 21
} | 13 | Python | 11 | 704eab3478cf69847825b23dabf15813a8ac9fa2 | delta_generator.py | 118,556 | 9 | 33 | _cursor | https://github.com/streamlit/streamlit.git | Rename and refactor `Report` machinery (#4141)
This refactor renames (almost) everything related to the outdated "report" concept with more precise concepts that we use throughout our code, primarily "script run", "session", and "app". | 56 | 0 | 26,289 | 10 |
|
3 | 10 | def _mysql_tables_where_indexes_already_present(conn):
to_check = [
('xcom', 'idx_xcom_task_instance'),
('task_reschedule', 'idx_task_reschedule_dag_run'),
('task_fail', 'idx_task_fail_task_instance'),
]
tables = set()
for tbl, idx in to_check:
if conn.execute(f"show indexes from {tbl} where Key_name = '{idx}'").first():
tables.add(tbl)
return tables
| airflow/migrations/versions/0111_2_3_3_add_indexes_for_cascade_deletes.py | 115 | airflow | {
"docstring": "\n If user downgraded and is upgrading again, we have to check for existing\n indexes on mysql because we can't (and don't) drop them as part of the\n downgrade.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 28,
"vocab_size": 27
} | 32 | Python | 29 | 677c42227c08f705142f298ab88915f133cd94e5 | 0111_2_3_3_add_indexes_for_cascade_deletes.py | 43,184 | 11 | 61 | _mysql_tables_where_indexes_already_present | https://github.com/apache/airflow.git | Add indexes for CASCADE deletes for task_instance (#24488)
When we add foreign keys with ON DELETE CASCADE, and we delete rows in the foreign table, the database needs to join back to the referencing table. If there's no suitable index, then it can be slow to perform the deletes. | 89 | 0 | 7,856 | 13 |
|
1 | 5 | def fit(self, X, y=None):
# param validation is done in fit_transform
self.fit_transform(X)
return self
| sklearn/decomposition/_truncated_svd.py | 34 | scikit-learn | {
"docstring": "Fit model on training data X.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training data.\n\n y : Ignored\n Not used, present here for API consistency by convention.\n\n Returns\n -------\n self : object\n Returns the transformer object.\n ",
"language": "en",
"n_whitespaces": 129,
"n_words": 40,
"vocab_size": 37
} | 14 | Python | 14 | 7da7ba603d42398c6e7cf89ea5336b8aabac7bae | _truncated_svd.py | 260,585 | 3 | 20 | fit | https://github.com/scikit-learn/scikit-learn.git | MNT TrucatedSVD uses _validate_parameters (#23987)
Co-authored-by: jeremiedbb <[email protected]> | 42 | 0 | 76,359 | 7 |
|
2 | 16 | def apply_channel_shift(x, intensity, channel_axis=0):
x = np.rollaxis(x, channel_axis, 0)
min_x, max_x = np.min(x), np.max(x)
channel_images = [
np.clip(x_channel + intensity, min_x, max_x) for x_channel in x]
x = np.stack(channel_images, axis=0)
x = np.rollaxis(x, 0, channel_axis + 1)
return x
@keras_export('keras.preprocessing.image.random_channel_shift') | keras/preprocessing/image.py | 144 | @keras_export('keras.preprocessing.image.random_channel_shift') | keras | {
"docstring": "Performs a channel shift.\n\n Args:\n x: Input tensor. Must be 3D.\n intensity: Transformation intensity.\n channel_axis: Index of axis for channels in the input tensor.\n\n Returns:\n Numpy image tensor.\n ",
"language": "en",
"n_whitespaces": 51,
"n_words": 28,
"vocab_size": 26
} | 40 | Python | 29 | 373ad97c72ed1ac4b6898e85b2cfd7b016e4b469 | image.py | 268,943 | 8 | 89 | apply_channel_shift | https://github.com/keras-team/keras.git | Copy image utils from keras_preprocessing directly into core keras
This is not new code, we are just moving these utilities directly
into keras from keras-preprocessing.
For the library code, just fixed linting errors.
For the test code, had to do more major changes to port from pytest, but
hopefully any errors have been caught by the tests themselves.
PiperOrigin-RevId: 427274651 | 51 | 1 | 79,775 | 10 |
1 | 19 | def _requeue_trial(self, trial):
self._scheduler_alg.on_trial_error(self, trial)
self.trial_executor.set_status(trial, Trial.PENDING)
# TODO(rliaw): Right now, this pushes the trial to the end of queue
# because restoration can be expensive. However, this is not
# ideal since it just hides the issue - a better fix would
# be to use an actor table to detect the IP of the Trainable
# and rsync the files there.
# See https://github.com/ray-project/ray/issues/5168
self._trials.pop(self._trials.index(trial))
self._trials.append(trial)
self._live_trials.add(trial)
with warn_if_slow("scheduler.on_trial_add"):
self._scheduler_alg.on_trial_add(
TrialRunnerWrapper(self, runner_whitelist_attr={"search_alg"}), trial
)
| python/ray/tune/trial_runner.py | 148 | ray | {
"docstring": "Notification to TrialScheduler and requeue trial.\n\n This does not notify the SearchAlgorithm because the function\n evaluation is still in progress.\n\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 20,
"vocab_size": 19
} | 76 | Python | 60 | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | trial_runner.py | 132,862 | 10 | 86 | _requeue_trial | https://github.com/ray-project/ray.git | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 204 | 0 | 29,841 | 14 |
|
1 | 43 | def test_room_state_returned_when_knocking(self):
user_id = self.register_user("u1", "you the one")
user_token = self.login("u1", "you the one")
fake_knocking_user_id = "@user:other.example.com"
# Create a room with a room version that includes knocking
room_id = self.helper.create_room_as(
"u1",
is_public=False,
room_version=RoomVersions.V7.identifier,
tok=user_token,
)
# Update the join rules and add additional state to the room to check for later
expected_room_state = self.send_example_state_events_to_room(
self.hs, room_id, user_id
)
channel = self.make_signed_federation_request(
"GET",
"/_matrix/federation/v1/make_knock/%s/%s?ver=%s"
% (
room_id,
fake_knocking_user_id,
# Inform the remote that we support the room version of the room we're
# knocking on
RoomVersions.V7.identifier,
),
)
self.assertEquals(200, channel.code, channel.result)
# Note: We don't expect the knock membership event to be sent over federation as
# part of the stripped room state, as the knocking homeserver already has that
# event. It is only done for clients during /sync
# Extract the generated knock event json
knock_event = channel.json_body["event"]
# Check that the event has things we expect in it
self.assertEquals(knock_event["room_id"], room_id)
self.assertEquals(knock_event["sender"], fake_knocking_user_id)
self.assertEquals(knock_event["state_key"], fake_knocking_user_id)
self.assertEquals(knock_event["type"], EventTypes.Member)
self.assertEquals(knock_event["content"]["membership"], Membership.KNOCK)
# Turn the event json dict into a proper event.
# We won't sign it properly, but that's OK as we stub out event auth in `prepare`
signed_knock_event = builder.create_local_event_from_event_dict(
self.clock,
self.hs.hostname,
self.hs.signing_key,
room_version=RoomVersions.V7,
event_dict=knock_event,
)
# Convert our proper event back to json dict format
signed_knock_event_json = signed_knock_event.get_pdu_json(
self.clock.time_msec()
)
# Send the signed knock event into the room
channel = self.make_signed_federation_request(
"PUT",
"/_matrix/federation/v1/send_knock/%s/%s"
% (room_id, signed_knock_event.event_id),
signed_knock_event_json,
)
self.assertEquals(200, channel.code, channel.result)
# Check that we got the stripped room state in return
room_state_events = channel.json_body["knock_state_events"]
# Validate the stripped room state events
self.check_knock_room_state_against_room_state(
room_state_events, expected_room_state
)
| tests/federation/transport/test_knocking.py | 454 | synapse | {
"docstring": "\n Tests that specific, stripped state events from a room are returned after\n a remote homeserver successfully knocks on a local room.\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 21,
"vocab_size": 19
} | 259 | Python | 149 | c3db7a0b59d48b8872bc24096f9a2467ef35f703 | test_knocking.py | 246,318 | 50 | 276 | test_room_state_returned_when_knocking | https://github.com/matrix-org/synapse.git | Tests: replace mocked Authenticator with the real thing (#11913)
If we prepopulate the test homeserver with a key for a remote homeserver, we
can make federation requests to it without having to stub out the
authenticator. This has two advantages:
* means that what we are testing is closer to reality (ie, we now have
complete tests for the incoming-request-authorisation flow)
* some tests require that other objects be signed by the remote server (eg,
the event in `/send_join`), and doing that would require a whole separate
set of mocking out. It's much simpler just to use real keys. | 834 | 0 | 71,151 | 12 |
|
3 | 7 | def should_overwrite(filepath, overwrite):
# If file exists and should not be overwritten.
if not overwrite and os.path.isfile(filepath):
return ask_to_proceed_with_overwrite(filepath)
return True
| keras/saving/saving_utils.py | 48 | keras | {
"docstring": "Returns whether the filepath should be overwritten.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | 21 | Python | 18 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | saving_utils.py | 276,251 | 4 | 28 | should_overwrite | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 40 | 0 | 81,607 | 9 |
|
17 | 14 | def make_system(A, M, x0, b):
A_ = A
A = aslinearoperator(A)
if A.shape[0] != A.shape[1]:
raise ValueError(f'expected square matrix, but got shape={(A.shape,)}')
N = A.shape[0]
b = asanyarray(b)
if not (b.shape == (N,1) or b.shape == (N,)):
raise ValueError(f'shapes of A {A.shape} and b {b.shape} are '
'incompatible')
if b.dtype.char not in 'fdFD':
b = b.astype('d') # upcast non-FP types to double
| scipy/sparse/linalg/_isolve/utils.py | 194 | scipy | {
"docstring": "Make a linear system Ax=b\n\n Parameters\n ----------\n A : LinearOperator\n sparse or dense matrix (or any valid input to aslinearoperator)\n M : {LinearOperator, Nones}\n preconditioner\n sparse or dense matrix (or any valid input to aslinearoperator)\n x0 : {array_like, str, None}\n initial guess to iterative method.\n ``x0 = 'Mb'`` means using the nonzero initial guess ``M @ b``.\n Default is `None`, which means using the zero initial guess.\n b : array_like\n right hand side\n\n Returns\n -------\n (A, M, x, b, postprocess)\n A : LinearOperator\n matrix of the linear system\n M : LinearOperator\n preconditioner\n x : rank 1 ndarray\n initial guess\n b : rank 1 ndarray\n right hand side\n postprocess : function\n converts the solution vector to the appropriate\n type and dimensions (e.g. (N,1) matrix)\n\n ",
"language": "en",
"n_whitespaces": 303,
"n_words": 123,
"vocab_size": 77
} | 62 | Python | 48 | 5628849933f1ba002f34b88b4d3af24f68008b39 | utils.py | 241,795 | 51 | 379 | make_system | https://github.com/scipy/scipy.git | MAINT: sparse.linalg: Remove unnecessary operations | 132 | 0 | 69,699 | 13 |
|
3 | 11 | def news(xml_news_url, counter):
| Google_News.py | 23 | """Print select details from a html response containing xmla html response containing | Python | {
"docstring": "Print select details from a html response containing xml",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 3 | Python | 3 | f0af0c43340763724f139fa68aa1e5a9ffe458b4 | Google_News.py | 22,452 | 16 | 95 | news | https://github.com/geekcomputers/Python.git | refactor: clean code
Signed-off-by: slowy07 <[email protected]> | 6 | 2 | 4,346 | 5 |
4 | 16 | def _estimator_with_converted_arrays(estimator, converter):
from sklearn.base import clone
new_estimator = clone(estimator)
for key, attribute in vars(estimator).items():
if hasattr(attribute, "__array_namespace__") or isinstance(
attribute, numpy.ndarray
):
attribute = converter(attribute)
setattr(new_estimator, key, attribute)
return new_estimator
| sklearn/utils/_array_api.py | 107 | scikit-learn | {
"docstring": "Create new estimator which converting all attributes that are arrays.\n\n Parameters\n ----------\n estimator : Estimator\n Estimator to convert\n\n converter : callable\n Callable that takes an array attribute and returns the converted array.\n\n Returns\n -------\n new_estimator : Estimator\n Convert estimator\n ",
"language": "en",
"n_whitespaces": 84,
"n_words": 39,
"vocab_size": 32
} | 31 | Python | 27 | 2710a9e7eefd2088ce35fd2fb6651d5f97e5ef8b | _array_api.py | 261,018 | 10 | 67 | _estimator_with_converted_arrays | https://github.com/scikit-learn/scikit-learn.git | ENH Adds Array API support to LinearDiscriminantAnalysis (#22554)
Co-authored-by: Olivier Grisel <[email protected]>
Co-authored-by: Julien Jerphanion <[email protected]> | 89 | 0 | 76,626 | 12 |
|
1 | 3 | def variables(self):
return self._weights
| keras/optimizers/optimizer_v2/optimizer_v2.py | 19 | keras | {
"docstring": "Returns variables of this Optimizer based on the order created.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | 4 | Python | 4 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | optimizer_v2.py | 275,487 | 2 | 10 | variables | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 18 | 0 | 81,391 | 6 |
|
1 | 9 | def _get_link_annotation(gc, x, y, width, height):
link_annotation = {
'Type': Name('Annot'),
'Subtype': Name('Link'),
'Rect': (x, y, x + width, y + height),
'Border': [0, 0, 0],
'A': {
'S': Name('URI'),
'URI': gc.get_url(),
},
}
return link_annotation
| lib/matplotlib/backends/backend_pdf.py | 132 | matplotlib | {
"docstring": "\n Create a link annotation object for embedding URLs.\n ",
"language": "en",
"n_whitespaces": 15,
"n_words": 8,
"vocab_size": 8
} | 36 | Python | 31 | 02c7ae22b4b1e7cc4fb70e18b208115f438f8f7b | backend_pdf.py | 108,704 | 12 | 80 | _get_link_annotation | https://github.com/matplotlib/matplotlib.git | Refactor URL handling | 112 | 0 | 23,311 | 13 |
|
6 | 11 | def exclude_from_weight_decay(self, var_list=None, var_names=None):
if hasattr(self, "_built") and self._built:
raise ValueError(
"`exclude_from_weight_decay()` can only be configued before "
"the optimizer is built."
)
if var_list:
self._exclude_from_weight_decay = [
self._var_key(variable) for variable in var_list
]
else:
self._exclude_from_weight_decay = []
self._exclude_from_weight_decay_names = var_names or []
| keras/optimizers/optimizer_experimental/optimizer.py | 113 | keras | {
"docstring": "Exclude variables from weight decay.\n\n This method must be called before the optimizer's `build` method is\n called. You can set specific variables to exclude out, or set a list of\n strings as the anchor words, if any of which appear in a variable's\n name, then the variable is excluded.\n\n Args:\n var_list: A list of `tf.Variable`s to exclude from weight decay.\n var_names: A list of strings. If any string in `var_names` appear\n in the model variable's name, then this model variable is\n excluded from weight decay. For example, `var_names=['bias']`\n excludes all bias variables from weight decay.\n ",
"language": "en",
"n_whitespaces": 204,
"n_words": 95,
"vocab_size": 59
} | 43 | Python | 38 | 38b618ad90d669c85cccee521ad73cc0630cf750 | optimizer.py | 280,005 | 13 | 67 | exclude_from_weight_decay | https://github.com/keras-team/keras.git | Add general `weight_decay` support in optimizer.
We still keep adamw optimizer in case people want an explicit adamw. We can delete it in a followup cl.
PiperOrigin-RevId: 477043911 | 178 | 0 | 83,214 | 11 |
|
12 | 14 | def render(pieces, style):
if pieces["error"]:
return {
"version": "unknown",
"full-revisionid": pieces.get("long"),
"dirty": None,
"error": pieces["error"],
"date": None,
}
if not style or style == "default":
style = "pep440" # the default
if style == "pep440":
rendered = render_pep440(pieces)
elif style == "pep440-branch":
rendered = render_pep440_branch(pieces)
elif style == "pep440-pre":
rendered = render_pep440_pre(pieces)
elif style == "pep440-post":
rendered = render_pep440_post(pieces)
elif style == "pep440-post-branch":
rendered = render_pep440_post_branch(pieces)
elif style == "pep440-old":
rendered = render_pep440_old(pieces)
elif style == "git-describe":
rendered = render_git_describe(pieces)
elif style == "git-describe-long":
rendered = render_git_describe_long(pieces)
else:
raise ValueError(f"unknown style '{style}'")
return {
"version": rendered,
"full-revisionid": pieces["long"],
"dirty": pieces["dirty"],
"error": None,
"date": pieces.get("date"),
}
| pandas/_version.py | 347 | pandas | {
"docstring": "Render the given version pieces into the requested style.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 8
} | 105 | Python | 53 | e2df99823758210fb2b7c4aba39e23f3445f7cd3 | _version.py | 171,634 | 36 | 186 | render | https://github.com/pandas-dev/pandas.git | BLD: use nonvendor versioneer (#49924)
* BLD: remove vendored versioneer
* run vis
* move config to pyproject.toml
* add versioneer to deps
* run pyupgrade
* fix isort and pylint
* fix ci
* fix env | 322 | 0 | 40,701 | 12 |
|
3 | 10 | def get_local_agent_user_id(self, webhook_id):
found_agent_user_id = None
for agent_user_id, agent_user_data in self._store.agent_user_ids.items():
if agent_user_data[STORE_GOOGLE_LOCAL_WEBHOOK_ID] == webhook_id:
found_agent_user_id = agent_user_id
break
return found_agent_user_id
| homeassistant/components/google_assistant/helpers.py | 65 | core | {
"docstring": "Return the user ID to be used for actions received via the local SDK.\n\n Return None is no agent user id is found.\n ",
"language": "en",
"n_whitespaces": 37,
"n_words": 23,
"vocab_size": 19
} | 21 | Python | 18 | 25fe213f222f8f49a8126130a8e507fa15e63c83 | helpers.py | 308,771 | 7 | 40 | get_local_agent_user_id | https://github.com/home-assistant/core.git | Enable local fulfillment google assistant (#63218)
Co-authored-by: Paulus Schoutsen <[email protected]> | 90 | 0 | 107,509 | 10 |
|
49 | 8 | def factor_nc(expr):
from sympy.simplify.simplify import powsimp
from sympy.polys import gcd, factor
| sympy/core/exprtools.py | 36 | sympy | {
"docstring": "Return the factored form of ``expr`` while handling non-commutative\n expressions.\n\n Examples\n ========\n\n >>> from sympy import factor_nc, Symbol\n >>> from sympy.abc import x\n >>> A = Symbol('A', commutative=False)\n >>> B = Symbol('B', commutative=False)\n >>> factor_nc((x**2 + 2*A*x + A**2).expand())\n (x + A)**2\n >>> factor_nc(((x + A)*(x + B)).expand())\n (x + A)*(x + B)\n ",
"language": "en",
"n_whitespaces": 89,
"n_words": 53,
"vocab_size": 36
} | 11 | Python | 9 | 498015021131af4dbb07eb110e5badaba8250c7b | exprtools.py | 196,233 | 132 | 983 | factor_nc | https://github.com/sympy/sympy.git | Updated import locations | 20 | 0 | 47,733 | 6 |
|
1 | 5 | def on_template_context(self, context, template_name, config):
return context
| mkdocs/plugins.py | 22 | mkdocs | {
"docstring": "\n The `template_context` event is called immediately after the context is created\n for the subject template and can be used to alter the context for that specific\n template only.\n\n Parameters:\n context: dict of template context variables\n template_name: string filename of template\n config: global configuration object\n\n Returns:\n dict of template context variables\n ",
"language": "en",
"n_whitespaces": 137,
"n_words": 50,
"vocab_size": 35
} | 7 | Python | 7 | f79b34d174e41084391868e7b503f5c61b8b1bdf | plugins.py | 224,448 | 2 | 14 | on_template_context | https://github.com/mkdocs/mkdocs.git | Move plugin events docs into source code + refactor
* Create real (no-op) methods for each event in the base class.
* Refactor event dispatcher to not check for methods' existence, instead just call them.
* Move documentation from Markdown into docstrings of these methods.
* Activate the 'mkdocstrings' plugin.
* Use 'mkdocstrings' to insert documentation from those docstrings into the site. | 21 | 0 | 57,293 | 6 |
|
7 | 16 | def _download_and_process(self, kaggle_username=None, kaggle_key=None):
if self.state == DatasetState.NOT_LOADED:
try:
self.download(kaggle_username=kaggle_username, kaggle_key=kaggle_key)
except Exception:
logger.exception("Failed to download dataset")
self.verify()
if self.state == DatasetState.DOWNLOADED:
# Extract dataset
try:
self.extract()
except Exception:
logger.exception("Failed to extract dataset")
if self.state == DatasetState.EXTRACTED:
# Transform dataset
try:
self.transform()
except Exception:
logger.exception("Failed to transform dataset")
| ludwig/datasets/loaders/dataset_loader.py | 175 | ludwig | {
"docstring": "Loads the dataset, downloaded and processing it if needed.\n\n If dataset is already processed, does nothing.\n ",
"language": "en",
"n_whitespaces": 30,
"n_words": 16,
"vocab_size": 16
} | 48 | Python | 28 | e4fc06f986e03919d9aef3ab55c05fee5a6b9d3a | dataset_loader.py | 8,071 | 17 | 101 | _download_and_process | https://github.com/ludwig-ai/ludwig.git | Config-first Datasets API (ludwig.datasets refactor) (#2479)
* Adds README and stub for reading dataset configs.
* Adds __init__.py for configs, moves circular import into function scope in ludwig/datasets/__init__.py
* Print config files in datasets folder.
* First pass at automatic archive extraction.
* Implemented downloading and extract.
* Refactor DatasetConfig into its own file.
* Fixed bugs downloading kaggle dataset.
* Makes registry store dataset instances, not classes. Also comments out import_submodules for testing.
* Typo fix.
* Only pass data files on to load_unprocessed_dataframe, symlink directories.
* Downloading dataset files into existing directory if exists.
* Refactor: make datasets fully config-first, lazy load dataset loaders.
* Implemented agnews custom loader.
* Implements train/validation/test split by files, and globbing support
* Adds _glob_multiple
* Adds adult_census_income, agnews, allstate_claims_severity.
* Implements sha256 verification, adds more datasets up to creditcard_fraud.
* Adds checksums, dbpedia, electricity
* Fixes gzip file name returned as string not list, adds up to forest_cover dataset.
* Adds datasets up to reuters_r8
* Adds all datasets which don't require a custom class.
* Restore dataset import behavior by implementing module __getattr__
* Adds KDD datasets.
* Adds ieee_fraud.
* Adds imbalanced_insurance, insurance_lite.
* Adds mnist.
* Completes implementation of all of the built-in datasets.
* Made cache_dir optional, read from environment variable if set.
* Upgrades datasets tests.
* Adds test for new dataset config API. Also adds scripts for dataset link checking.
* Fixes loading allstate claims severity dataset.
* Use @lru_cache(1), @cache not supported in python < 3.9
* Deletes dataset registry, updates automl test utils
* Fix imports of datasets API.
* Adds more detail to sha256: docstring and basic README
* Copy-paste link oops.
* Fixes handling of nested archive types like .tar.bz Also adds a LUDWIG_CACHE and export to the README
* Adds link for twitter bots.
* Fix order of splits in README.md
* typo
* Adds verify as a phase in doc string.
* Support .pqt, .pq extensions for parquet.
* Handle nested archives with longer file extensions like .csv.zip
* Handle nested .gz types properly too. Check all extensions with .endswith
* Handle all archive types with .endswith
* Update ludwig/datasets/loaders/split_loaders.py
Co-authored-by: Joppe Geluykens <[email protected]>
* Adds explanation for export, fixes preserve_paths (should be relative to processed_dataset_dir)
* Resolve preserved paths relative to raw dataset dir before move.
* Catch runtime exception from extracting sub-archives.
Co-authored-by: Daniel Treiman <[email protected]>
Co-authored-by: Joppe Geluykens <[email protected]> | 261 | 0 | 1,324 | 13 |
|
2 | 6 | def fromkeys(cls, iterable, value=None):
d = cls()
for key in iterable:
d[key] = value
return d
| .venv/lib/python3.8/site-packages/pip/_vendor/distlib/compat.py | 48 | transferlearning | {
"docstring": "OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S\n and values equal to v (which defaults to None).\n\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 19,
"vocab_size": 18
} | 16 | Python | 14 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | compat.py | 61,896 | 5 | 30 | fromkeys | https://github.com/jindongwang/transferlearning.git | upd; format | 75 | 0 | 12,743 | 9 |
|
1 | 5 | def _get_permission_name(self, action):
return "%s.%s_%s" % (self.app_label, action, self.model_name)
| wagtail/core/permission_policies/base.py | 36 | wagtail | {
"docstring": "\n Get the full app-label-qualified permission name (as required by\n user.has_perm(...) ) for the given action on this model\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 18,
"vocab_size": 17
} | 9 | Python | 9 | d10f15e55806c6944827d801cd9c2d53f5da4186 | base.py | 73,922 | 2 | 22 | _get_permission_name | https://github.com/wagtail/wagtail.git | Reformat with black | 23 | 0 | 16,177 | 8 |
|
1 | 7 | def get_children(self, request, parent):
raise NotImplementedError(f'{self.__class__.__name__} must implement get_children()')
| netbox/netbox/views/generic/object_views.py | 37 | netbox | {
"docstring": "\n Return a QuerySet of child objects.\n\n Args:\n request: The current request\n parent: The parent object\n ",
"language": "en",
"n_whitespaces": 59,
"n_words": 15,
"vocab_size": 14
} | 9 | Python | 9 | c5770392e32aeeaed9bd8dcf907a11c7df352b6c | object_views.py | 265,243 | 2 | 16 | get_children | https://github.com/netbox-community/netbox.git | Refactor ObjectChildrenView | 23 | 0 | 78,045 | 11 |
|
1 | 6 | def fit(self, X, y=None):
X = check_array(X, accept_sparse='csr')
return self
| tpot/builtins/feature_transformers.py | 40 | tpot | {
"docstring": "Do nothing and return the estimator unchanged\n This method is just there to implement the usual API and hence\n work in pipelines.\n Parameters\n ----------\n X : array-like\n ",
"language": "en",
"n_whitespaces": 69,
"n_words": 27,
"vocab_size": 25
} | 10 | Python | 10 | 388616b6247ca4ea8de4e2f340d6206aee523541 | feature_transformers.py | 181,860 | 3 | 24 | fit | https://github.com/EpistasisLab/tpot.git | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | 31 | 0 | 43,629 | 10 |
|
1 | 7 | def get_hidden_input_context(self, name, value, attrs):
return super().get_context(name, value, attrs)
| wagtail/admin/widgets/chooser.py | 38 | wagtail | {
"docstring": "\n Return the context variables required to render the underlying hidden input element\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 12,
"vocab_size": 11
} | 9 | Python | 8 | 0f7a365bf8bf72a4894c1ca447cf52ba67f40b0c | chooser.py | 77,527 | 2 | 25 | get_hidden_input_context | https://github.com/wagtail/wagtail.git | Avoid calling super().render() in BaseChooser
This frees us up to redefine template_name and get_context in subclasses without it interfering with the rendering of the hidden input. | 23 | 0 | 16,669 | 9 |
|
1 | 15 | def test_with_no_current_site(self):
self.default_site.is_default_site = False
self.default_site.save()
start_url = reverse("wagtailsettings:edit", args=["tests", "testsetting"])
response = self.client.get(
start_url, follow=True, HTTP_HOST="noneoftheabove.example.com"
)
self.assertEqual(302, response.redirect_chain[0][1])
| wagtail/contrib/settings/tests/test_admin.py | 113 | wagtail | {
"docstring": "\n Redirection should not break if the current request does not correspond to a site\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 14,
"vocab_size": 13
} | 20 | Python | 18 | d10f15e55806c6944827d801cd9c2d53f5da4186 | test_admin.py | 73,489 | 8 | 68 | test_with_no_current_site | https://github.com/wagtail/wagtail.git | Reformat with black | 80 | 0 | 16,026 | 11 |
|
2 | 8 | def get_fiscal_year_data(from_fiscal_year, to_fiscal_year):
fiscal_year = frappe.db.sql(
,
{"from_fiscal_year": from_fiscal_year, "to_fiscal_year": to_fiscal_year},
as_dict=1,
)
return fiscal_year[0] if fiscal_year else {}
| erpnext/accounts/report/financial_statements.py | 66 | erpnext | {
"docstring": "select min(year_start_date) as year_start_date,\n\t\tmax(year_end_date) as year_end_date from `tabFiscal Year` where\n\t\tname between %(from_fiscal_year)s and %(to_fiscal_year)s",
"language": "en",
"n_whitespaces": 13,
"n_words": 16,
"vocab_size": 15
} | 19 | Python | 18 | 494bd9ef78313436f0424b918f200dab8fc7c20b | financial_statements.py | 65,238 | 9 | 42 | get_fiscal_year_data | https://github.com/frappe/erpnext.git | style: format code with black | 12 | 0 | 13,830 | 11 |
|
3 | 12 | def _test_Qt_QtWebEngineQuick(pyi_builder, qt_flavor):
if is_darwin:
# QtWebEngine on Mac OS only works with a onedir build -- onefile builds do not work.
# Skip the test execution for onefile builds.
if pyi_builder._mode != 'onedir':
pytest.skip('QtWebEngine on macOS is supported only in onedir mode.')
source =
import QtQuick 2.0
import QtQuick.Window 2.0
import QtWebEngine 1.0
Window {{
visible: true
WebEngineView {{
id: view
anchors.fill: parent
Component.onCompleted: loadHtml('
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Test web page</title>
</head>
<body>
<p>This is a test web page.</p>
</body>
</html>
')
}}
Connections {{
target: view
function onLoadingChanged(loadRequest) {{
if (loadRequest.status !== WebEngineView.LoadStartedStatus) {{
Qt.quit()
}}
}}
}}
}}
.format(qt_flavor)
pyi_builder.test_source(source, **USE_WINDOWED_KWARG)
@requires('PyQt5')
@requires('PyQtWebEngine') | tests/functional/test_qt.py | 93 | @requires('PyQt5')
@requires('PyQtWebEngine') | pyinstaller | {
"docstring": "\n import sys\n\n from {0}.QtGui import QGuiApplication\n from {0}.QtQml import QQmlApplicationEngine\n\n is_qt6 = '{0}' in {{'PyQt6', 'PySide6'}}\n\n if is_qt6:\n from {0}.QtWebEngineQuick import QtWebEngineQuick\n else:\n from {0}.QtWebEngine import QtWebEngine as QtWebEngineQuick\n QtWebEngineQuick.initialize()\n\n app = QGuiApplication([])\n engine = QQmlApplicationEngine()\n engine.loadData(b)\n\n if not engine.rootObjects():\n sys.exit(-1)\n\n if is_qt6:\n # Qt6: exec_() is deprecated in PySide6 and removed from PyQt6 in favor of exec()\n res = app.exec()\n else:\n res = app.exec_()\n del engine\n sys.exit(res)\n ",
"language": "en",
"n_whitespaces": 247,
"n_words": 68,
"vocab_size": 47
} | 110 | Python | 86 | 947a96a8d2fc80bb76a4492fc9b631d642cf5065 | test_qt.py | 262,817 | 66 | 40 | _test_Qt_QtWebEngineQuick | https://github.com/pyinstaller/pyinstaller.git | tests: fixup QtWebEngine Qml/Quick test | 762 | 1 | 77,384 | 12 |