complexity
int64 1
56
| n_identifiers
int64 1
114
| code
stringlengths 19
12.7k
| path
stringlengths 8
134
| n_ast_nodes
int64 12
2.35k
| ast_errors
stringlengths 0
4.01k
| repo
stringlengths 3
28
| documentation
dict | n_words
int64 2
866
| language
stringclasses 1
value | vocab_size
int64 2
323
| commit_id
stringlengths 40
40
| file_name
stringlengths 5
79
| id
int64 243
338k
| nloc
int64 1
228
| token_counts
int64 5
1.4k
| fun_name
stringlengths 1
77
| url
stringlengths 31
60
| commit_message
stringlengths 3
15.3k
| n_whitespaces
int64 1
3.23k
| n_ast_errors
int64 0
20
| d_id
int64 74
121k
| ast_levels
int64 4
29
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7 | 26 | def set_name_with_model(self, model):
_, table_name = split_identifier(model._meta.db_table)
column_names = [
model._meta.get_field(field_name).column
for field_name, order in self.fields_orders
]
column_names_with_order = [
(("-%s" if order else "%s") % column_name)
for column_name, (field_name, order) in zip(
column_names, self.fields_orders
)
]
# The length of the parts of the name is based on the default max
# length of 30 characters.
hash_data = [table_name] + column_names_with_order + [self.suffix]
self.name = "%s_%s_%s" % (
table_name[:11],
column_names[0][:7],
"%s_%s" % (names_digest(*hash_data, length=6), self.suffix),
)
if len(self.name) > self.max_name_length:
raise ValueError(
"Index too long for multiple database support. Is self.suffix "
"longer than 3 characters?"
)
if self.name[0] == "_" or self.name[0].isdigit():
self.name = "D%s" % self.name[1:]
| django/db/models/indexes.py | 289 | django | {
"docstring": "\n Generate a unique name for the index.\n\n The name is divided into 3 parts - table name (12 chars), field name\n (8 chars) and unique hash + suffix (10 chars). Each part is made to\n fit its size by truncating the excess length.\n ",
"language": "en",
"n_whitespaces": 79,
"n_words": 43,
"vocab_size": 37
} | 109 | Python | 81 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | indexes.py | 205,685 | 25 | 180 | set_name_with_model | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 366 | 0 | 51,168 | 13 |
|
1 | 14 | def test_sparse_matrix():
tpot_obj = TPOTClassifier(
random_state=42,
population_size=1,
offspring_size=2,
generations=1,
verbosity=0,
config_dict='TPOT light'
)
assert_raises(ValueError, tpot_obj.fit, sparse_features, sparse_target)
| tests/tpot_tests.py | 68 | tpot | {
"docstring": "Assert that the TPOT fit function will raise a ValueError in a sparse matrix with config_dict='TPOT light'.",
"language": "en",
"n_whitespaces": 16,
"n_words": 17,
"vocab_size": 16
} | 17 | Python | 17 | 388616b6247ca4ea8de4e2f340d6206aee523541 | tpot_tests.py | 181,800 | 10 | 45 | test_sparse_matrix | https://github.com/EpistasisLab/tpot.git | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | 71 | 0 | 43,586 | 10 |
|
5 | 19 | def check_requirements(self, reqs):
# type: (Iterable[str]) -> Tuple[Set[Tuple[str, str]], Set[str]]
missing = set()
conflicting = set()
if reqs:
ws = WorkingSet(self._lib_dirs)
for req in reqs:
try:
if ws.find(Requirement.parse(req)) is None:
missing.add(req)
except VersionConflict as e:
conflicting.add((str(e.args[0].as_requirement()),
str(e.args[1])))
return conflicting, missing
| .venv/lib/python3.8/site-packages/pip/_internal/build_env.py | 158 | transferlearning | {
"docstring": "Return 2 sets:\n - conflicting requirements: set of (installed, wanted) reqs tuples\n - missing requirements: set of reqs\n ",
"language": "en",
"n_whitespaces": 47,
"n_words": 18,
"vocab_size": 13
} | 40 | Python | 34 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | build_env.py | 60,470 | 13 | 96 | check_requirements | https://github.com/jindongwang/transferlearning.git | upd; format | 231 | 0 | 12,176 | 21 |
|
5 | 16 | def unpack_iterator_input(iterator):
try:
next_element = iterator.get_next()
except tf.errors.OutOfRangeError:
raise RuntimeError(
"Your dataset iterator ran out of data; "
"Make sure that your dataset can generate "
"required number of samples."
)
if isinstance(next_element, (list, tuple)):
if len(next_element) not in [2, 3]:
raise ValueError(
"Please provide model inputs as a list or tuple of 2 or 3 "
"elements: (input, target) or (input, target, sample_weights) "
"Received %s" % next_element
)
if len(next_element) == 2:
x, y = next_element
weights = None
else:
x, y, weights = next_element
else:
x = next_element
y = None
weights = None
return x, y, weights
| keras/engine/training_utils_v1.py | 180 | keras | {
"docstring": "Convert a dataset iterator to a tuple of tensors `x, y, sample_weights`.\n\n Args:\n iterator: Instance of a dataset iterator.\n\n Returns:\n Tuple of tensors `x, y, weights`. `y` and `weights` entry may be None.\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 33,
"vocab_size": 25
} | 101 | Python | 67 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | training_utils_v1.py | 271,843 | 26 | 105 | unpack_iterator_input | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 315 | 0 | 80,862 | 14 |
|
1 | 22 | def test_missing_required_field(self):
cf3 = CustomField(type=CustomFieldTypeChoices.TYPE_TEXT, name='baz', required=True)
cf3.save()
cf3.content_types.set([ContentType.objects.get_for_model(Site)])
site = Site(name='Test Site', slug='test-site')
# Set custom field data with a required field omitted
site.custom_field_data['foo'] = 'abc'
with self.assertRaises(ValidationError):
site.clean()
site.custom_field_data['baz'] = 'def'
site.clean()
| netbox/extras/tests/test_customfields.py | 165 | netbox | {
"docstring": "\n Check that a ValidationError is raised if any required custom fields are not present.\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 14,
"vocab_size": 14
} | 34 | Python | 28 | ea6d86e6c4bb6037465410db6205a7471bc81a6c | test_customfields.py | 266,037 | 10 | 92 | test_missing_required_field | https://github.com/netbox-community/netbox.git | Closes #10052: The cf attribute now returns deserialized custom field data | 115 | 0 | 78,274 | 11 |
|
22 | 38 | def get_annotations(obj, *, globals=None, locals=None, eval_str=False):
if isinstance(obj, type):
# class
obj_dict = getattr(obj, '__dict__', None)
if obj_dict and hasattr(obj_dict, 'get'):
ann = obj_dict.get('__annotations__', None)
if isinstance(ann, types.GetSetDescriptorType):
ann = None
else:
ann = None
obj_globals = None
module_name = getattr(obj, '__module__', None)
if module_name:
module = sys.modules.get(module_name, None)
if module:
obj_globals = getattr(module, '__dict__', None)
obj_locals = dict(vars(obj))
unwrap = obj
elif isinstance(obj, types.ModuleType):
# module
ann = getattr(obj, '__annotations__', None)
obj_globals = getattr(obj, '__dict__')
obj_locals = None
unwrap = None
elif callable(obj):
# this includes types.Function, types.BuiltinFunctionType,
# types.BuiltinMethodType, functools.partial, functools.singledispatch,
# "class funclike" from Lib/test/test_inspect... on and on it goes.
ann = getattr(obj, '__annotations__', None)
obj_globals = getattr(obj, '__globals__', None)
obj_locals = None
unwrap = obj
else:
raise TypeError(f"{obj!r} is not a module, class, or callable.")
if ann is None:
return {}
if not isinstance(ann, dict):
raise ValueError(f"{obj!r}.__annotations__ is neither a dict nor None")
if not ann:
return {}
if not eval_str:
return dict(ann)
if unwrap is not None:
while True:
if hasattr(unwrap, '__wrapped__'):
unwrap = unwrap.__wrapped__
continue
if isinstance(unwrap, functools.partial):
unwrap = unwrap.func
continue
break
if hasattr(unwrap, "__globals__"):
obj_globals = unwrap.__globals__
if globals is None:
globals = obj_globals
if locals is None:
locals = obj_locals
return_value = {key:
value if not isinstance(value, str) else eval(value, globals, locals)
for key, value in ann.items() }
return return_value
# ----------------------------------------------------------- type-checking | python3.10.4/Lib/inspect.py | 573 | XX-Net | {
"docstring": "Compute the annotations dict for an object.\n\n obj may be a callable, class, or module.\n Passing in an object of any other type raises TypeError.\n\n Returns a dict. get_annotations() returns a new dict every time\n it's called; calling it twice on the same object will return two\n different but equivalent dicts.\n\n This function handles several details for you:\n\n * If eval_str is true, values of type str will\n be un-stringized using eval(). This is intended\n for use with stringized annotations\n (\"from __future__ import annotations\").\n * If obj doesn't have an annotations dict, returns an\n empty dict. (Functions and methods always have an\n annotations dict; classes, modules, and other types of\n callables may not.)\n * Ignores inherited annotations on classes. If a class\n doesn't have its own annotations dict, returns an empty dict.\n * All accesses to object members and dict values are done\n using getattr() and dict.get() for safety.\n * Always, always, always returns a freshly-created dict.\n\n eval_str controls whether or not values of type str are replaced\n with the result of calling eval() on those values:\n\n * If eval_str is true, eval() is called on values of type str.\n * If eval_str is false (the default), values of type str are unchanged.\n\n globals and locals are passed in to eval(); see the documentation\n for eval() for more information. If either globals or locals is\n None, this function may replace that value with a context-specific\n default, contingent on type(obj):\n\n * If obj is a module, globals defaults to obj.__dict__.\n * If obj is a class, globals defaults to\n sys.modules[obj.__module__].__dict__ and locals\n defaults to the obj class namespace.\n * If obj is a callable, globals defaults to obj.__globals__,\n although if obj is a wrapped function (using\n functools.update_wrapper()) it is first unwrapped.\n ",
"language": "en",
"n_whitespaces": 468,
"n_words": 290,
"vocab_size": 146
} | 222 | Python | 108 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | inspect.py | 218,384 | 56 | 347 | get_annotations | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 676 | 0 | 55,272 | 15 |
|
4 | 14 | def load_weights(self, filepath, by_name=False, skip_mismatch=False):
if backend.is_tpu_strategy(self._distribution_strategy):
if self._distribution_strategy.extended.steps_per_run > 1 and (
not saving_utils.is_hdf5_filepath(filepath)
):
raise ValueError(
"Load weights is not yet supported with TPUStrategy "
"with steps_per_run greater than 1."
)
return super().load_weights(
filepath, by_name=by_name, skip_mismatch=skip_mismatch
)
| keras/engine/training_v1.py | 113 | keras | {
"docstring": "Loads all layer weights, either from a TensorFlow or an HDF5 file.\n\n If `by_name` is False weights are loaded based on the network's\n topology. This means the architecture should be the same as when the\n weights were saved. Note that layers that don't have weights are not\n taken into account in the topological ordering, so adding or removing\n layers is fine as long as they don't have weights.\n\n If `by_name` is True, weights are loaded into layers only if they share\n the same name. This is useful for fine-tuning or transfer-learning\n models where some of the layers have changed.\n\n Only topological loading (`by_name=False`) is supported when loading\n weights from the TensorFlow format. Note that topological loading\n differs slightly between TensorFlow and HDF5 formats for user-defined\n classes inheriting from `tf.keras.Model`: HDF5 loads based on a\n flattened list of weights, while the TensorFlow format loads based on\n the object-local names of attributes to which layers are assigned in the\n `Model`'s constructor.\n\n Args:\n filepath: String, path to the weights file to load. For weight files\n in TensorFlow format, this is the file prefix (the same as was\n passed to `save_weights`).\n by_name: Boolean, whether to load weights by name or by topological\n order. Only topological loading is supported for weight files in\n TensorFlow format.\n skip_mismatch: Boolean, whether to skip loading of layers where\n there is a mismatch in the number of weights, or a mismatch in\n the shape of the weight (only valid when `by_name=True`).\n\n Returns:\n When loading a weight file in TensorFlow format, returns the same\n status object as `tf.train.Checkpoint.restore`. When graph building,\n restore ops are run automatically as soon as the network is built\n (on first call for user-defined classes inheriting from `Model`,\n immediately if it is already built).\n\n When loading weights in HDF5 format, returns `None`.\n\n Raises:\n ImportError: If h5py is not available and the weight file is in HDF5\n format.\n ValueError: If `skip_mismatch` is set to `True` when `by_name` is\n `False`.\n ",
"language": "en",
"n_whitespaces": 694,
"n_words": 321,
"vocab_size": 159
} | 39 | Python | 35 | e69dd22bc51b28b9f311c81abed92dfe46e82960 | training_v1.py | 280,645 | 12 | 70 | load_weights | https://github.com/keras-team/keras.git | Add ability to do partial reloading of v3 models.
PiperOrigin-RevId: 493123409 | 183 | 0 | 83,407 | 13 |
|
3 | 16 | def get_mode_of_payments(invoice_list):
mode_of_payments = {}
if invoice_list:
inv_mop = frappe.db.sql(
% ", ".join(["%s"] * len(invoice_list)),
tuple(invoice_list),
as_dict=1,
)
for d in inv_mop:
mode_of_payments.setdefault(d.parent, []).append(d.mode_of_payment)
return mode_of_payments
| erpnext/accounts/report/sales_register/sales_register.py | 116 | erpnext | {
"docstring": "select parent, mode_of_payment\n\t\t\tfrom `tabSales Invoice Payment` where parent in (%s) group by parent, mode_of_payment",
"language": "en",
"n_whitespaces": 13,
"n_words": 15,
"vocab_size": 13
} | 26 | Python | 24 | 494bd9ef78313436f0424b918f200dab8fc7c20b | sales_register.py | 65,345 | 13 | 71 | get_mode_of_payments | https://github.com/frappe/erpnext.git | style: format code with black | 15 | 0 | 13,866 | 16 |
|
6 | 11 | def assert_configs_are_equivalent_besides_ids(config1, config2):
assert config1["mode"] == config2["mode"], "Modes are different"
assert config1["theme"] == config2["theme"], "Themes are different"
assert len(config1["components"]) == len(
config2["components"]
), "# of components are different"
mapping = {}
for c1, c2 in zip(config1["components"], config2["components"]):
c1, c2 = deepcopy(c1), deepcopy(c2)
mapping[c1["id"]] = c2["id"]
c1.pop("id")
c2.pop("id")
assert c1 == c2, "{} does not match {}".format(c1, c2)
| gradio/utils.py | 213 | gradio | {
"docstring": "Allows you to test if two different Blocks configs produce the same demo.",
"language": "en",
"n_whitespaces": 12,
"n_words": 13,
"vocab_size": 13
} | 57 | Python | 43 | dc6175a21d7ccf922d53379df5a35111bd1093fd | utils.py | 180,043 | 27 | 310 | assert_configs_are_equivalent_besides_ids | https://github.com/gradio-app/gradio.git | tabbed-interface-rewritten (#958) | 120 | 0 | 43,068 | 11 |
|
22 | 63 | def execute_list_collection(self, artifacts_manager=None):
if artifacts_manager is not None:
artifacts_manager.require_build_metadata = False
output_format = context.CLIARGS['output_format']
collections_search_paths = set(context.CLIARGS['collections_path'])
collection_name = context.CLIARGS['collection']
default_collections_path = AnsibleCollectionConfig.collection_paths
collections_in_paths = {}
warnings = []
path_found = False
collection_found = False
for path in collections_search_paths:
collection_path = GalaxyCLI._resolve_path(path)
if not os.path.exists(path):
if path in default_collections_path:
# don't warn for missing default paths
continue
warnings.append("- the configured path {0} does not exist.".format(collection_path))
continue
if not os.path.isdir(collection_path):
warnings.append("- the configured path {0}, exists, but it is not a directory.".format(collection_path))
continue
path_found = True
if collection_name:
# list a specific collection
validate_collection_name(collection_name)
namespace, collection = collection_name.split('.')
collection_path = validate_collection_path(collection_path)
b_collection_path = to_bytes(os.path.join(collection_path, namespace, collection), errors='surrogate_or_strict')
if not os.path.exists(b_collection_path):
warnings.append("- unable to find {0} in collection paths".format(collection_name))
continue
if not os.path.isdir(collection_path):
warnings.append("- the configured path {0}, exists, but it is not a directory.".format(collection_path))
continue
collection_found = True
try:
collection = Requirement.from_dir_path_as_unknown(
b_collection_path,
artifacts_manager,
)
except ValueError as val_err:
six.raise_from(AnsibleError(val_err), val_err)
if output_format in {'yaml', 'json'}:
collections_in_paths[collection_path] = {
collection.fqcn: {'version': collection.ver}
}
continue
fqcn_width, version_width = _get_collection_widths([collection])
_display_header(collection_path, 'Collection', 'Version', fqcn_width, version_width)
_display_collection(collection, fqcn_width, version_width)
else:
# list all collections
collection_path = validate_collection_path(path)
if os.path.isdir(collection_path):
display.vvv("Searching {0} for collections".format(collection_path))
collections = list(find_existing_collections(
collection_path, artifacts_manager,
))
else:
# There was no 'ansible_collections/' directory in the path, so there
# or no collections here.
display.vvv("No 'ansible_collections' directory found at {0}".format(collection_path))
continue
if not collections:
display.vvv("No collections found at {0}".format(collection_path))
continue
if output_format in {'yaml', 'json'}:
collections_in_paths[collection_path] = {
collection.fqcn: {'version': collection.ver} for collection in collections
}
continue
# Display header
fqcn_width, version_width = _get_collection_widths(collections)
_display_header(collection_path, 'Collection', 'Version', fqcn_width, version_width)
# Sort collections by the namespace and name
for collection in sorted(collections, key=to_text):
_display_collection(collection, fqcn_width, version_width)
# Do not warn if the specific collection was found in any of the search paths
if collection_found and collection_name:
warnings = []
for w in warnings:
display.warning(w)
if not path_found:
raise AnsibleOptionsError("- None of the provided paths were usable. Please specify a valid path with --{0}s-path".format(context.CLIARGS['type']))
if output_format == 'json':
display.display(json.dumps(collections_in_paths))
elif output_format == 'yaml':
display.display(yaml_dump(collections_in_paths))
return 0
| lib/ansible/cli/galaxy.py | 892 | ansible | {
"docstring": "\n List all collections installed on the local system\n\n :param artifacts_manager: Artifacts manager.\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 12,
"vocab_size": 12
} | 332 | Python | 160 | 05608b20e8f875d51866a184f8c579fe60498e05 | galaxy.py | 267,729 | 82 | 529 | execute_list_collection | https://github.com/ansible/ansible.git | Fix listing collections that are missing the metadata required by build (#76596)
* Rethread pr/70185 through the dependency resolver
Hang optional metadata toggle on the ConcreteArtifactsManager instead of threading it through whole list codepath
Don't error while listing collections if a collection's metadata is missing keys required for building a collection.
Give an informative warning if metadata has been badly formatted.
Co-authored-by: Sam Doran <[email protected]> | 1,630 | 0 | 79,020 | 18 |
|
1 | 2 | def piecolorway(self):
return self["piecolorway"]
| packages/python/plotly/plotly/graph_objs/_layout.py | 22 | plotly.py | {
"docstring": "\n Sets the default pie slice colors. Defaults to the main\n `colorway` used for trace colors. If you specify a new list\n here it can still be extended with lighter and darker colors,\n see `extendpiecolors`.\n\n The 'piecolorway' property is a colorlist that may be specified\n as a tuple, list, one-dimensional numpy array, or pandas Series of valid\n color strings\n\n Returns\n -------\n list\n ",
"language": "en",
"n_whitespaces": 139,
"n_words": 61,
"vocab_size": 55
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _layout.py | 227,384 | 2 | 11 | piecolorway | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 59,057 | 7 |
|
4 | 14 | def _generate_object_paths(object_graph_def):
paths = {0: "root"}
nodes_to_visit = [0]
while nodes_to_visit:
current_node = nodes_to_visit.pop()
current_path = paths[current_node]
for reference in object_graph_def.nodes[current_node].children:
if reference.node_id in paths:
continue
paths[reference.node_id] = "{}.{}".format(
current_path, reference.local_name
)
nodes_to_visit.append(reference.node_id)
return paths
| keras/saving/saved_model/load.py | 133 | keras | {
"docstring": "Traverses through an ObjectGraphDef and builds a map of all node paths.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 12
} | 35 | Python | 29 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | load.py | 276,019 | 14 | 81 | _generate_object_paths | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 145 | 0 | 81,529 | 13 |
|
1 | 2 | def notchwidth(self):
return self["notchwidth"]
| packages/python/plotly/plotly/graph_objs/_box.py | 22 | plotly.py | {
"docstring": "\n Sets the width of the notches relative to the box' width. For\n example, with 0, the notches are as wide as the box(es).\n\n The 'notchwidth' property is a number and may be specified as:\n - An int or float in the interval [0, 0.5]\n\n Returns\n -------\n int|float\n ",
"language": "en",
"n_whitespaces": 106,
"n_words": 47,
"vocab_size": 40
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _box.py | 226,312 | 2 | 11 | notchwidth | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 57,985 | 7 |
|
1 | 16 | def python_slice_replace(funcstr):
# parse the input parameters
pattern = 'torch\.slice\((.*)\)'
parameter_str = re.findall(pattern, funcstr)
parameters = re.split(',', parameter_str[0])
target_tensor = parameters[0]
dim = int(parameters[1])
dim_str = ','.join([':']*(dim) + [':'.join(parameters[2:])])
print('%s[%s]' % (target_tensor, dim_str))
new_str = funcstr.replace(
'torch.slice(%s)' % parameter_str[0], '%s[%s]' % (target_tensor, dim_str))
return new_str
| nni/compression/pytorch/utils/utils.py | 182 | nni | {
"docstring": "\n translate the torch.slice to the appropriate python str that can be replace\n in the forward function string.\n\n Parameters\n ----------\n funcstr: str\n the str that calling the torch.slice, for example:\n _8 = torch.slice(attention_mask, 0, 0, 9223372036854775807, 1)\n\n Returns:\n new_str: str\n the string that should replace the original one\n ",
"language": "en",
"n_whitespaces": 93,
"n_words": 47,
"vocab_size": 34
} | 45 | Python | 33 | 97d067e614243f06ed1f8e2d389512977fff8828 | utils.py | 113,277 | 11 | 107 | python_slice_replace | https://github.com/microsoft/nni.git | Speedup enhancement (#4925) | 85 | 0 | 24,877 | 14 |
|
14 | 43 | def forward(self, input, encoder_state, embedded_input=None, incr_state=None):
encoder_output, encoder_mask = encoder_state
if input is not None:
seq_len = input.size(1)
positions = input.new(seq_len).long()
else:
seq_len = embedded_input.size(1)
positions = embedded_input.new(seq_len).long()
positions = torch.arange(seq_len, out=positions).unsqueeze(0)
if incr_state is not None:
# We're doing incremental decoding, so select only the most recent position
if input is not None:
input = input[:, -1:]
if embedded_input is not None:
embedded_input = embedded_input[:, -1:, :]
if positions is not None:
positions = positions[:, -1:]
else:
incr_state = {}
if embedded_input is not None:
tensor = embedded_input # No need to copy because we only reassign below
else:
tensor = self.embeddings(input)
if self.embeddings_scale:
tensor = tensor * np.sqrt(self.dim)
if self.variant == 'xlm':
tensor = self.norm_embeddings(tensor)
if positions.max().item() > self.n_positions:
warn_once(
'You are inputting a sequence of {x} length, but only have '
'--n-positions {y}. Set --truncate or increase --n-positions'.format(
x=positions.max().item(), y=self.n_positions
)
)
tensor = tensor + self.position_embeddings(positions).expand_as(tensor)
if self.variant == 'bart':
tensor = self.norm_embeddings(tensor)
tensor = self.dropout(tensor) # --dropout
new_incr_state = {}
if getattr(self.layers, 'is_model_parallel', False):
tensor, new_incr_state = self._apply_model_parallel(
tensor, encoder_output, encoder_mask, incr_state=incr_state
)
else:
for idx, layer in enumerate(self.layers):
tensor, new_incr_state[idx] = layer(
x=tensor,
encoder_output=encoder_output,
encoder_mask=encoder_mask,
incr_state=incr_state.get(idx),
)
if self.variant == 'prelayernorm':
tensor = self.norm_embeddings(tensor)
return tensor, new_incr_state
| projects/style_gen/modules.py | 608 | ParlAI | {
"docstring": "\n Forward pass with the ability to pass in token-embedded inputs.\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 10,
"vocab_size": 9
} | 203 | Python | 113 | ecdfbd0bb2ab76876e9fd3817d4502c3938a2ade | modules.py | 195,059 | 53 | 378 | forward | https://github.com/facebookresearch/ParlAI.git | Decoder-Only Transformer (#4329)
* quick and dirty decoder-only implementation
* fix decoder_only incremental decoding
* remove unused code, add some comments, propogate func signature change
* consolidate code in decoder.py
* unify encoder_state
* export PassThroughEncoder
* add missing build_ functions
* defaults in TransformerDecoderLayer __init__
* comments, consolidating more logic, simplified forward_layers args
* resize token embeddings and unit test
* attempt to suppress some unused import warnings
* padded_tensor fp16 friendly
* autoformat
* decoder_only -> decoder
* more documentation
* update name in test
* add missing dict args
* more argument massaging
* update TestBartDistillation::test_narrow_distillation_losses numbers
* update TestTransformerDistillation::test_narrow_distillation_losses numbers
* fix _pad_tensor in seeker
Co-authored-by: klshuster <[email protected]> | 795 | 0 | 47,178 | 16 |
|
2 | 19 | def xkcd(scale=1, length=100, randomness=2):
# This cannot be implemented in terms of contextmanager() or rc_context()
# because this needs to work as a non-contextmanager too.
if rcParams['text.usetex']:
raise RuntimeError(
"xkcd mode is not compatible with text.usetex = True")
stack = ExitStack()
stack.callback(dict.update, rcParams, rcParams.copy())
from matplotlib import patheffects
rcParams.update({
'font.family': ['xkcd', 'xkcd Script', 'Humor Sans', 'Comic Neue',
'Comic Sans MS'],
'font.size': 14.0,
'path.sketch': (scale, length, randomness),
'path.effects': [
patheffects.withStroke(linewidth=4, foreground="w")],
'axes.linewidth': 1.5,
'lines.linewidth': 2.0,
'figure.facecolor': 'white',
'grid.linewidth': 0.0,
'axes.grid': False,
'axes.unicode_minus': False,
'axes.edgecolor': 'black',
'xtick.major.size': 8,
'xtick.major.width': 3,
'ytick.major.size': 8,
'ytick.major.width': 3,
})
return stack
## Figures ##
@_api.make_keyword_only("3.6", "facecolor") | lib/matplotlib/pyplot.py | 281 | @_api.make_keyword_only("3.6", "facecolor") | matplotlib | {
"docstring": "\n Turn on `xkcd <https://xkcd.com/>`_ sketch-style drawing mode. This will\n only have effect on things drawn after this function is called.\n\n For best results, the \"Humor Sans\" font should be installed: it is\n not included with Matplotlib.\n\n Parameters\n ----------\n scale : float, optional\n The amplitude of the wiggle perpendicular to the source line.\n length : float, optional\n The length of the wiggle along the line.\n randomness : float, optional\n The scale factor by which the length is shrunken or expanded.\n\n Notes\n -----\n This function works by a number of rcParams, so it will probably\n override others you have set before.\n\n If you want the effects of this function to be temporary, it can\n be used as a context manager, for example::\n\n with plt.xkcd():\n # This figure will be in XKCD-style\n fig1 = plt.figure()\n # ...\n\n # This figure will be in regular style\n fig2 = plt.figure()\n ",
"language": "en",
"n_whitespaces": 270,
"n_words": 145,
"vocab_size": 93
} | 100 | Python | 92 | 2d918ba09155810194bb4ba136369082ad46c8c8 | pyplot.py | 109,118 | 27 | 158 | xkcd | https://github.com/matplotlib/matplotlib.git | Simplify impl. of functions optionally used as context managers.
We can actually just put the "exit" logic into an ExitStack callback.
If the return value is never `__enter__`'d via a "with" statement, it is
never `__exit__`'d either. | 285 | 1 | 23,441 | 14 |
20 | 40 | def post_validate(self, templar):
# save the omit value for later checking
omit_value = templar.available_variables.get('omit')
for (name, attribute) in self.fattributes.items():
if attribute.static:
value = getattr(self, name)
# we don't template 'vars' but allow template as values for later use
if name not in ('vars',) and templar.is_template(value):
display.warning('"%s" is not templatable, but we found: %s, '
'it will not be templated and will be used "as is".' % (name, value))
continue
if getattr(self, name) is None:
if not attribute.required:
continue
else:
raise AnsibleParserError("the field '%s' is required but was not set" % name)
elif not attribute.always_post_validate and self.__class__.__name__ not in ('Task', 'Handler', 'PlayContext'):
# Intermediate objects like Play() won't have their fields validated by
# default, as their values are often inherited by other objects and validated
# later, so we don't want them to fail out early
continue
try:
# Run the post-validator if present. These methods are responsible for
# using the given templar to template the values, if required.
method = getattr(self, '_post_validate_%s' % name, None)
if method:
value = method(attribute, getattr(self, name), templar)
elif attribute.isa == 'class':
value = getattr(self, name)
else:
# if the attribute contains a variable, template it now
value = templar.template(getattr(self, name))
# if this evaluated to the omit value, set the value back to
# the default specified in the FieldAttribute and move on
if omit_value is not None and value == omit_value:
if callable(attribute.default):
setattr(self, name, attribute.default())
else:
setattr(self, name, attribute.default)
continue
# and make sure the attribute is of the type it should be
if value is not None:
value = self.get_validated_value(name, attribute, value, templar)
# and assign the massaged value back to the attribute field
setattr(self, name, value)
except (TypeError, ValueError) as e:
value = getattr(self, name)
raise AnsibleParserError("the field '%s' has an invalid value (%s), and could not be converted to an %s."
"The error was: %s" % (name, value, attribute.isa, e), obj=self.get_ds(), orig_exc=e)
except (AnsibleUndefinedVariable, UndefinedError) as e:
if templar._fail_on_undefined_errors and name != 'name':
if name == 'args':
msg = "The task includes an option with an undefined variable. The error was: %s" % (to_native(e))
else:
msg = "The field '%s' has an invalid value, which includes an undefined variable. The error was: %s" % (name, to_native(e))
raise AnsibleParserError(msg, obj=self.get_ds(), orig_exc=e)
self._finalized = True
| lib/ansible/playbook/base.py | 611 | ansible | {
"docstring": "\n we can't tell that everything is of the right type until we have\n all the variables. Run basic types (from isa) as well as\n any _post_validate_<foo> functions.\n ",
"language": "en",
"n_whitespaces": 57,
"n_words": 27,
"vocab_size": 24
} | 376 | Python | 187 | 43153c58310d02223f2cb0964f4255ba1ac4ed53 | base.py | 267,571 | 45 | 373 | post_validate | https://github.com/ansible/ansible.git | `FieldAttribute`s as descriptors (#73908) | 1,300 | 0 | 78,953 | 20 |
|
5 | 17 | def wait_for_nodes(self, timeout=30):
start_time = time.time()
while time.time() - start_time < timeout:
clients = self.global_state.node_table()
live_clients = [client for client in clients if client["Alive"]]
expected = len(self.list_all_nodes())
if len(live_clients) == expected:
logger.debug("All nodes registered as expected.")
return
else:
logger.debug(
f"{len(live_clients)} nodes are currently registered, "
f"but we are expecting {expected}"
)
time.sleep(0.1)
raise TimeoutError("Timed out while waiting for nodes to join.")
| python/ray/cluster_utils.py | 182 | ray | {
"docstring": "Waits for correct number of nodes to be registered.\n\n This will wait until the number of live nodes in the client table\n exactly matches the number of \"add_node\" calls minus the number of\n \"remove_node\" calls that have been made on this cluster. This means\n that if a node dies without \"remove_node\" having been called, this will\n raise an exception.\n\n Args:\n timeout (float): The number of seconds to wait for nodes to join\n before failing.\n\n Raises:\n TimeoutError: An exception is raised if we time out while waiting\n for nodes to join.\n ",
"language": "en",
"n_whitespaces": 198,
"n_words": 90,
"vocab_size": 62
} | 61 | Python | 49 | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | cluster_utils.py | 130,567 | 16 | 100 | wait_for_nodes | https://github.com/ray-project/ray.git | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 257 | 0 | 29,306 | 17 |
|
2 | 14 | def rotate_point(pin, r):
if isinstance(r, tuple):
# if r is of the form (vector, angle)
q = Quaternion.from_axis_angle(r[0], r[1])
else:
# if r is a quaternion
q = r.normalize()
pout = q * Quaternion(0, pin[0], pin[1], pin[2]) * conjugate(q)
return (pout.b, pout.c, pout.d)
| sympy/algebras/quaternion.py | 126 | sympy | {
"docstring": "Returns the coordinates of the point pin(a 3 tuple) after rotation.\n\n Parameters\n ==========\n\n pin : tuple\n A 3-element tuple of coordinates of a point which needs to be\n rotated.\n r : Quaternion or tuple\n Axis and angle of rotation.\n\n It's important to note that when r is a tuple, it must be of the form\n (axis, angle)\n\n Returns\n =======\n\n tuple\n The coordinates of the point after rotation.\n\n Examples\n ========\n\n >>> from sympy import Quaternion\n >>> from sympy import symbols, trigsimp, cos, sin\n >>> x = symbols('x')\n >>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))\n >>> trigsimp(Quaternion.rotate_point((1, 1, 1), q))\n (sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)\n >>> (axis, angle) = q.to_axis_angle()\n >>> trigsimp(Quaternion.rotate_point((1, 1, 1), (axis, angle)))\n (sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)\n\n ",
"language": "en",
"n_whitespaces": 322,
"n_words": 123,
"vocab_size": 71
} | 43 | Python | 33 | 498015021131af4dbb07eb110e5badaba8250c7b | quaternion.py | 196,016 | 7 | 83 | rotate_point | https://github.com/sympy/sympy.git | Updated import locations | 122 | 0 | 47,516 | 11 |
|
3 | 16 | def vstack(tup, *, dtype=None, casting="same_kind"):
if not overrides.ARRAY_FUNCTION_ENABLED:
# raise warning if necessary
_arrays_for_stack_dispatcher(tup, stacklevel=2)
arrs = atleast_2d(*tup)
if not isinstance(arrs, list):
arrs = [arrs]
return _nx.concatenate(arrs, 0, dtype=dtype, casting=casting)
@array_function_dispatch(_vhstack_dispatcher) | numpy/core/shape_base.py | 117 | @array_function_dispatch(_vhstack_dispatcher) | numpy | {
"docstring": "\n Stack arrays in sequence vertically (row wise).\n\n This is equivalent to concatenation along the first axis after 1-D arrays\n of shape `(N,)` have been reshaped to `(1,N)`. Rebuilds arrays divided by\n `vsplit`.\n\n This function makes most sense for arrays with up to 3 dimensions. For\n instance, for pixel-data with a height (first axis), width (second axis),\n and r/g/b channels (third axis). The functions `concatenate`, `stack` and\n `block` provide more general stacking and concatenation operations.\n\n Parameters\n ----------\n tup : sequence of ndarrays\n The arrays must have the same shape along all but the first axis.\n 1-D arrays must have the same length.\n\n dtype : str or dtype\n If provided, the destination array will have this dtype. Cannot be\n provided together with `out`.\n\n .. versionadded:: 1.24\n\n casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional\n Controls what kind of data casting may occur. Defaults to 'same_kind'.\n\n .. versionadded:: 1.24\n\n Returns\n -------\n stacked : ndarray\n The array formed by stacking the given arrays, will be at least 2-D.\n\n See Also\n --------\n concatenate : Join a sequence of arrays along an existing axis.\n stack : Join a sequence of arrays along a new axis.\n block : Assemble an nd-array from nested lists of blocks.\n hstack : Stack arrays in sequence horizontally (column wise).\n dstack : Stack arrays in sequence depth wise (along third axis).\n column_stack : Stack 1-D arrays as columns into a 2-D array.\n vsplit : Split an array into multiple sub-arrays vertically (row-wise).\n\n Examples\n --------\n >>> a = np.array([1, 2, 3])\n >>> b = np.array([4, 5, 6])\n >>> np.vstack((a,b))\n array([[1, 2, 3],\n [4, 5, 6]])\n\n >>> a = np.array([[1], [2], [3]])\n >>> b = np.array([[4], [5], [6]])\n >>> np.vstack((a,b))\n array([[1],\n [2],\n [3],\n [4],\n [5],\n [6]])\n\n ",
"language": "en",
"n_whitespaces": 499,
"n_words": 282,
"vocab_size": 175
} | 31 | Python | 26 | 126046f84449fffeb0c75ae88657ce6b90236eee | shape_base.py | 160,599 | 7 | 68 | vstack | https://github.com/numpy/numpy.git | ENH: adding casting option to numpy.stack. (#21627)
np.concatenate and np.stack are similar methods, but only np.concatenate has the casting option.
This PR puts the casting option into the np.stack method to control what kind of data casting may occur
Closes gh-20959
* ENH: adding casting option to numpy.stack.
See #20959
* ENH: adding dtype option to numpy.stack.
See #20959
* REV: removing auto-generated file loops_modulo.dispatch.c
See numpy#20959
* REV: removing auto-generated file loops_modulo.dispatch.c
See numpy#20959
* REV: removing inserted newlines
See numpy#20959
Co-authored-by: alescrocaro <[email protected]>
Co-authored-by: JessePires <[email protected]>
Co-authored-by: patriarka <[email protected]>
* DOC: inserting versionadded info in dtype and casting parameters.
See numpy#20959
Co-authored-by: alescrocaro <[email protected]>
Co-authored-by: JessePires <[email protected]>
Co-authored-by: patriarka <[email protected]>
* TST: writing tests to stack method with dtype and casting options
See numpy#20959
Co-authored-by: alescrocaro <[email protected]>
Co-authored-by: JessePires <[email protected]>
Co-authored-by: patriarka <[email protected]>
* DOC: adding upcoming_change file for new options casting and dtype in method stack.
See numpy#20959
Co-authored-by: alescrocaro <[email protected]>
Co-authored-by: JessePires <[email protected]>
Co-authored-by: patriarka <[email protected]>
* REV: reverting lint errors.
See numpy#20959
Co-authored-by: alescrocaro <[email protected]>
Co-authored-by: JessePires <[email protected]>
Co-authored-by: patriarka <[email protected]>
* DOC: inserting hstack and vstack methods in upcoming changes
See numpy#20959
Co-authored-by: alescrocaro <[email protected]>
Co-authored-by: JessePires <[email protected]>
Co-authored-by: patriarka <[email protected]>
* ENH: adding dtype and casting keyword arguments to numpy.vstack and numpy.hstack.
See numpy#20959
Co-authored-by: alescrocaro <[email protected]>
Co-authored-by: JessePires <[email protected]>
Co-authored-by: patriarka <[email protected]>
* TST: writing tests to vstack and hstack methods with dtype and casting keyword arguments.
See numpy#20959
Co-authored-by: alescrocaro <[email protected]>
Co-authored-by: JessePires <[email protected]>
Co-authored-by: patriarka <[email protected]>
* REV: reverting the 'out' option type in stack method.
See numpy#20959
Co-authored-by: alescrocaro <[email protected]>
Co-authored-by: JessePires <[email protected]>
Co-authored-by: patriarka <[email protected]>
* REV: Reverting out type changes in overload of shape_base.pyi file.
See numpy#20959
Co-authored-by: alescrocaro <[email protected]>
Co-authored-by: jhonatancunha <[email protected]>
Co-authored-by: patriarka <[email protected]>
* DOC: correcting some english erros in upcoming_changes file.
See numpy#20959
Co-authored-by: alescrocaro <[email protected]>
Co-authored-by: JessePires <[email protected]>
Co-authored-by: patriarka <[email protected]>
Co-authored-by: JessePires <[email protected]>
Co-authored-by: alescrocaro <[email protected]>
Co-authored-by: JessePires <[email protected]>
Co-authored-by: patriarka <[email protected]> | 66 | 1 | 38,662 | 10 |
13 | 8 | def _determine_setitem_axis(self, row_lookup, col_lookup, row_scalar, col_scalar):
if self.df.shape == (1, 1):
return None if not (row_scalar ^ col_scalar) else 1 if row_scalar else 0
| modin/pandas/indexing.py | 61 | modin | {
"docstring": "\n Determine an axis along which we should do an assignment.\n\n Parameters\n ----------\n row_lookup : slice or list\n Indexer for rows.\n col_lookup : slice or list\n Indexer for columns.\n row_scalar : bool\n Whether indexer for rows is scalar or not.\n col_scalar : bool\n Whether indexer for columns is scalar or not.\n\n Returns\n -------\n int or None\n None if this will be a both axis assignment, number of axis to assign in other cases.\n\n Notes\n -----\n axis = 0: column assignment df[col] = item\n axis = 1: row assignment df.loc[row] = item\n axis = None: assignment along both axes\n ",
"language": "en",
"n_whitespaces": 265,
"n_words": 97,
"vocab_size": 62
} | 24 | Python | 21 | 0d9d14e6669be3dd6bb3b72222dbe6a6dffe1bee | indexing.py | 152,952 | 23 | 156 | _determine_setitem_axis | https://github.com/modin-project/modin.git | FIX-#3860: Fix single row Series assignment. (#3894)
Signed-off-by: mvashishtha <[email protected]> | 49 | 0 | 35,201 | 11 |
|
6 | 39 | def _upsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1):
assert isinstance(factor, int) and factor >= 1
# Setup filter kernel.
if kernel is None:
kernel = [1] * factor
# setup kernel
kernel = torch.tensor(kernel, dtype=torch.float32)
if kernel.ndim == 1:
kernel = torch.outer(kernel, kernel)
kernel /= torch.sum(kernel)
kernel = kernel * (gain * (factor**2))
if self.use_conv:
convH = weight.shape[2]
convW = weight.shape[3]
inC = weight.shape[1]
pad_value = (kernel.shape[0] - factor) - (convW - 1)
stride = (factor, factor)
# Determine data dimensions.
output_shape = (
(hidden_states.shape[2] - 1) * factor + convH,
(hidden_states.shape[3] - 1) * factor + convW,
)
output_padding = (
output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH,
output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW,
)
assert output_padding[0] >= 0 and output_padding[1] >= 0
num_groups = hidden_states.shape[1] // inC
# Transpose weights.
weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW))
weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4)
weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW))
inverse_conv = F.conv_transpose2d(
hidden_states, weight, stride=stride, output_padding=output_padding, padding=0
)
output = upfirdn2d_native(
inverse_conv,
torch.tensor(kernel, device=inverse_conv.device),
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1),
)
else:
pad_value = kernel.shape[0] - factor
output = upfirdn2d_native(
hidden_states,
torch.tensor(kernel, device=hidden_states.device),
up=factor,
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
)
return output
| src/diffusers/models/resnet.py | 660 | diffusers | {
"docstring": "Fused `upsample_2d()` followed by `Conv2d()`.\n\n Padding is performed only once at the beginning, not between the operations. The fused op is considerably more\n efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of\n arbitrary order.\n\n Args:\n hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.\n weight: Weight tensor of the shape `[filterH, filterW, inChannels,\n outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.\n kernel: FIR filter of the shape `[firH, firW]` or `[firN]`\n (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.\n factor: Integer upsampling factor (default: 2).\n gain: Scaling factor for signal magnitude (default: 1.0).\n\n Returns:\n output: Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same\n datatype as `hidden_states`.\n ",
"language": "en",
"n_whitespaces": 289,
"n_words": 140,
"vocab_size": 103
} | 220 | Python | 109 | a73f8b725105b12a60a9b22918bda68f8b6d26c3 | resnet.py | 337,070 | 45 | 430 | _upsample_2d | https://github.com/huggingface/diffusers.git | Clean up resnet.py file (#780)
* clean up resnet.py
* make style and quality
* minor formatting | 759 | 0 | 120,955 | 18 |
|
3 | 8 | def validate_thread_sharing(self):
if not (self.allow_thread_sharing or self._thread_ident == _thread.get_ident()):
raise DatabaseError(
"DatabaseWrapper objects created in a "
"thread can only be used in that same thread. The object "
"with alias '%s' was created in thread id %s and this is "
"thread id %s." % (self.alias, self._thread_ident, _thread.get_ident())
)
# ##### Miscellaneous #####
| django/db/backends/base/base.py | 86 | django | {
"docstring": "\n Validate that the connection isn't accessed by another thread than the\n one which originally created it, unless the connection was explicitly\n authorized to be shared between threads (via the `inc_thread_sharing()`\n method). Raise an exception if the validation fails.\n ",
"language": "en",
"n_whitespaces": 74,
"n_words": 38,
"vocab_size": 33
} | 54 | Python | 46 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | base.py | 204,824 | 8 | 48 | validate_thread_sharing | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 153 | 0 | 50,907 | 13 |
|
5 | 14 | def process_response(self, request, response):
# If the given URL is "Not Found", then check if we should redirect to
# a path with a slash appended.
if response.status_code == 404 and self.should_redirect_with_slash(request):
return self.response_redirect_class(self.get_full_path_with_slash(request))
# Add the Content-Length header to non-streaming responses if not
# already set.
if not response.streaming and not response.has_header("Content-Length"):
response.headers["Content-Length"] = str(len(response.content))
return response
| django/middleware/common.py | 117 | django | {
"docstring": "\n When the status code of the response is 404, it may redirect to a path\n with an appended slash if should_redirect_with_slash() returns True.\n ",
"language": "en",
"n_whitespaces": 45,
"n_words": 23,
"vocab_size": 22
} | 58 | Python | 45 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | common.py | 206,137 | 6 | 68 | process_response | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 136 | 0 | 51,379 | 13 |
|
1 | 32 | def test_duplicate_statistics_handle_integrity_error(hass_recorder, caplog):
hass = hass_recorder()
wait_recording_done(hass)
period1 = dt_util.as_utc(dt_util.parse_datetime("2021-09-01 00:00:00"))
period2 = dt_util.as_utc(dt_util.parse_datetime("2021-09-30 23:00:00"))
external_energy_metadata_1 = {
"has_mean": False,
"has_sum": True,
"name": "Total imported energy",
"source": "test",
"state_unit_of_measurement": "kWh",
"statistic_id": "test:total_energy_import_tariff_1",
"unit_of_measurement": "kWh",
}
external_energy_statistics_1 = [
{
"start": period1,
"last_reset": None,
"state": 3,
"sum": 5,
},
]
external_energy_statistics_2 = [
{
"start": period2,
"last_reset": None,
"state": 3,
"sum": 6,
}
]
with patch.object(
statistics, "_statistics_exists", return_value=False
), patch.object(
statistics, "_insert_statistics", wraps=statistics._insert_statistics
) as insert_statistics_mock:
async_add_external_statistics(
hass, external_energy_metadata_1, external_energy_statistics_1
)
async_add_external_statistics(
hass, external_energy_metadata_1, external_energy_statistics_1
)
async_add_external_statistics(
hass, external_energy_metadata_1, external_energy_statistics_2
)
wait_recording_done(hass)
assert insert_statistics_mock.call_count == 3
with session_scope(hass=hass) as session:
tmp = session.query(recorder.db_schema.Statistics).all()
assert len(tmp) == 2
assert "Blocked attempt to insert duplicated statistic rows" in caplog.text
| tests/components/recorder/test_statistics.py | 387 | core | {
"docstring": "Test the recorder does not blow up if statistics is duplicated.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 117 | Python | 79 | dd20a7ea62fc003748c5f0cf99be25c69c9b5a05 | test_statistics.py | 307,759 | 50 | 224 | test_duplicate_statistics_handle_integrity_error | https://github.com/home-assistant/core.git | Display statistics in the source's unit (#78031) | 447 | 0 | 106,525 | 14 |
|
13 | 64 | def save_model(model, filepath, weights_format="h5", use_zip=True):
if not filepath.endswith(".keras"):
raise ValueError(
"Invalid filename: expected a `.keras` extension. "
f"Received: filepath={filepath}"
)
if weights_format == "h5" and h5py is None:
raise ImportError(
"h5py must be installed in order to save a model in hdf5 format."
)
if not model.built:
warnings.warn(
"You are saving a model that has not yet been built. "
"It might not contain any weights yet. "
"Consider building the model first by calling it "
"on some data.",
stacklevel=2,
)
saving_v3_enabled_value = getattr(_SAVING_V3_ENABLED, "value", False)
_SAVING_V3_ENABLED.value = True
serialized_model_dict = serialize_keras_object(model)
config_json = json.dumps(serialized_model_dict)
# TODO(fchollet): consider saving dependencies list / versions in metadata.
metadata_json = json.dumps(
{
"keras_version": keras.__version__,
"date_saved": datetime.datetime.now().strftime("%Y-%m-%d@%H:%M:%S"),
}
)
if use_zip:
# Use a temporary directory for the storing files prior to zipping.
write_path = _get_temp_dir()
else:
tf.io.gfile.makedirs(filepath)
write_path = filepath
try:
# Write files locally before zipping.
with open(tf.io.gfile.join(write_path, _METADATA_FILENAME), "w") as f:
f.write(metadata_json)
with open(tf.io.gfile.join(write_path, _CONFIG_FILENAME), "w") as f:
f.write(config_json)
weights_path = tf.io.gfile.join(write_path, _VARS_FNAME)
assets_path = tf.io.gfile.join(write_path, _ASSETS_DIRNAME)
if weights_format == "h5":
weights_store = H5IOStore(weights_path, mode="w")
elif weights_format == "npz":
weights_store = NpzIOStore(weights_path, mode="w")
else:
raise ValueError(
"Unknown `weights_format`. Expected 'h5' or 'npz'. "
f"Received: {weights_format}"
)
_save_state(
model,
weights_handler=weights_store,
assets_handler=DiskIOStore(assets_path),
inner_path="",
visited_trackables=set(),
)
weights_store.close()
if use_zip:
# Zip local files into an archive.
with zipfile.ZipFile(filepath, "w") as zipfile_to_save:
_write_to_zip_recursively(zipfile_to_save, write_path, "")
except Exception as e:
raise e
finally:
_SAVING_V3_ENABLED.value = saving_v3_enabled_value
if use_zip and tf.io.gfile.exists(write_path):
# Remove the directory temporarily used.
tf.io.gfile.rmtree(write_path)
| keras/saving/experimental/saving_lib.py | 634 | keras | {
"docstring": "Save an archive representing a Keras model to the given filepath.\n\n The zip-based archive contains the following structure:\n\n - JSON configuration file (`config.json`): Records of model, layer, and\n other object configurations.\n - Npz or h5 model variables file (`variables.npz` or `variables.h5`).\n - Assets files (if any) found in the `assets/` directory structure,\n which mirrors the model's inner structure.\n - JSON metadata file (`metdata.json`).\n\n The states of Keras trackables (layers, optimizers, loss, and metrics) are\n automatically saved as long as they can be discovered through the attributes\n returned by `dir(model)`. Typically, the state includes the variables\n associated with the trackable, but some specially purposed layers may\n contain more such as the vocabularies stored in the hashmaps. The trackables\n define how their asset state is saved by exposing `save_assets()` and\n `load_assets()` APIs.\n\n For the case of layer states, the variables will be visited as long as\n they are either 1) referenced via layer attributes, or 2) referenced via a\n container (list, tuple, or dict), and the container is referenced via a\n layer attribute.\n ",
"language": "en",
"n_whitespaces": 236,
"n_words": 171,
"vocab_size": 115
} | 242 | Python | 167 | 0b393d4049afd187ed7d24ea70177a72cf4a3ce2 | saving_lib.py | 280,163 | 66 | 363 | save_model | https://github.com/keras-team/keras.git | New saving: add npz support and make zipping optional.
We should decide which store to go with by default. h5 is faster, but only marginally so. Zip has no speed impact (the long saving/loading time was due to the breakdown into many files/dirs previously). But it has a temporary disk space impact.
Note: Using h5 without zipping will not work with GCS (due to H5 using its own file pointer). This issue could be worked around via special casing.
All other combinations work with GCS.
Saving time for NASNetLarge:
- Legacy h5: 2.8s
- New h5 + zip: 2.6s
- New h5 + no zip: 2.5s
- New npz + zip: 3.2s
- New npz + no zip: 3.0s
- Legacy savedmodel: 142.2s (!)
Loading times are similar across the board (nozip is a bit faster).
PiperOrigin-RevId: 481705383 | 800 | 0 | 83,277 | 16 |
|
2 | 6 | def cleanup(self) -> None:
if self.remove_config:
os.remove(self.config_path)
| test/lib/ansible_test/_internal/commands/integration/cloud/__init__.py | 37 | ansible | {
"docstring": "Clean up the cloud resource and any temporary configuration files after tests complete.",
"language": "en",
"n_whitespaces": 12,
"n_words": 13,
"vocab_size": 13
} | 7 | Python | 7 | 3eb0485dd92c88cc92152d3656d94492db44b183 | __init__.py | 267,825 | 4 | 21 | cleanup | https://github.com/ansible/ansible.git | ansible-test - Use more native type hints. (#78435)
* ansible-test - Use more native type hints.
Simple search and replace to switch from comments to native type hints for return types of functions with no arguments.
* ansible-test - Use more native type hints.
Conversion of simple single-line function annotation type comments to native type hints.
* ansible-test - Use more native type hints.
Conversion of single-line function annotation type comments with default values to native type hints.
* ansible-test - Use more native type hints.
Manual conversion of type annotation comments for functions which have pylint directives. | 32 | 0 | 79,106 | 10 |
|
2 | 9 | def notna(obj): # noqa: PR01, RT01, D200
if isinstance(obj, BasePandasDataset):
return obj.notna()
else:
return pandas.notna(obj)
notnull = notna
@_inherit_docstrings(pandas.merge, apilink="pandas.merge") | modin/pandas/general.py | 75 | @_inherit_docstrings(pandas.merge, apilink="pandas.merge") | modin | {
"docstring": "\n Detect non-missing values for an array-like object.\n ",
"language": "en",
"n_whitespaces": 14,
"n_words": 7,
"vocab_size": 7
} | 20 | Python | 19 | 2809f7c12384e2615390bcb76f2e7f0d88a3fffa | general.py | 153,687 | 5 | 29 | notna | https://github.com/modin-project/modin.git | DOCS-#4336: Reformat general utilities docstrings (#4338)
Co-authored-by: Yaroslav Igoshev <[email protected]>
Signed-off-by: Alexander Myskov <[email protected]> | 42 | 1 | 35,545 | 10 |
14 | 38 | def sample(self) -> SampleBatchType:
if self.fake_sampler and self.last_batch is not None:
return self.last_batch
elif self.input_reader is None:
raise ValueError(
"RolloutWorker has no `input_reader` object! "
"Cannot call `sample()`. You can try setting "
"`create_env_on_driver` to True."
)
if log_once("sample_start"):
logger.info(
"Generating sample batch of size {}".format(
self.rollout_fragment_length
)
)
batches = [self.input_reader.next()]
steps_so_far = (
batches[0].count
if self.count_steps_by == "env_steps"
else batches[0].agent_steps()
)
# In truncate_episodes mode, never pull more than 1 batch per env.
# This avoids over-running the target batch size.
if self.batch_mode == "truncate_episodes":
max_batches = self.num_envs
else:
max_batches = float("inf")
while steps_so_far < self.rollout_fragment_length and (
len(batches) < max_batches or self.policy_config.get("offline_sampling")
):
batch = self.input_reader.next()
steps_so_far += (
batch.count
if self.count_steps_by == "env_steps"
else batch.agent_steps()
)
batches.append(batch)
batch = concat_samples(batches)
self.callbacks.on_sample_end(worker=self, samples=batch)
# Always do writes prior to compression for consistency and to allow
# for better compression inside the writer.
self.output_writer.write(batch)
if log_once("sample_end"):
logger.info("Completed sample batch:\n\n{}\n".format(summarize(batch)))
if self.compress_observations:
batch.compress(bulk=self.compress_observations == "bulk")
if self.fake_sampler:
self.last_batch = batch
return batch
| rllib/evaluation/rollout_worker.py | 430 | ray | {
"docstring": "Returns a batch of experience sampled from this worker.\n\n This method must be implemented by subclasses.\n\n Returns:\n A columnar batch of experiences (e.g., tensors).\n\n Examples:\n >>> import gym\n >>> from ray.rllib.evaluation.rollout_worker import RolloutWorker\n >>> from ray.rllib.algorithms.pg.pg_tf_policy import PGTF1Policy\n >>> worker = RolloutWorker( # doctest: +SKIP\n ... env_creator=lambda _: gym.make(\"CartPole-v0\"), # doctest: +SKIP\n ... policy_spec=PGTF1Policy) # doctest: +SKIP\n >>> print(worker.sample()) # doctest: +SKIP\n SampleBatch({\"obs\": [...], \"action\": [...], ...})\n ",
"language": "en",
"n_whitespaces": 198,
"n_words": 67,
"vocab_size": 46
} | 163 | Python | 109 | d6b6dc560dd2920bf8ee1e4de01c4ec25fdab555 | rollout_worker.py | 128,786 | 62 | 249 | sample | https://github.com/ray-project/ray.git | [AIR] Address multiple warnings in AIR examples (#28800)
These changes address warnings and errors in several of the AIR examples. They're all small changes, so I've batched them together in this PR:
- Fixed `concant_samples` deprecation warning, which appears in `rollout_worker.py`
- Fixed call to `randrange` which passed floating point argument; this will generate errors for python>=3.11
- Removed another use of the `object_store_memory` in instantiating an actor
- Replaced a number of strings (docstrings and regexes) which had escape sequences with string literals
- Fixed an issue that broke the `tfx_tabular_train_to_serve` example where data that was being sent to the server was not being encoded as json correctly by `requests`.
- Fixed a deprecated import of `ray.rllib.agents.marwil` in the `rl_offline_example`.
Signed-off-by: pdmurray <[email protected]> | 654 | 0 | 28,809 | 13 |
|
1 | 30 | def benchmark_custom_training_mnist_bs_256(self):
batch_size = 256
run_iters = 5
train_dataset = self.train_dataset.shuffle(buffer_size=1024).batch(
batch_size
)
# Instantiate a loss function.
loss_fn = tf.keras.losses.CategoricalCrossentropy(
reduction=tf.keras.losses.Reduction.NONE
)
# Instantiate an optimizer to train the model.
optimizer = tf.keras.optimizers.Adam()
model = self._build_model()
metrics, wall_time = self.measure_performance(
model,
train_dataset,
loss_fn,
optimizer,
batch_size,
run_iters,
self.epochs,
)
extras = benchmark_util.get_keras_examples_metadata(
"conv", batch_size, ".keras.ctl_graph"
)
self.report_benchmark(
iters=run_iters, wall_time=wall_time, metrics=metrics, extras=extras
)
| keras/benchmarks/keras_examples_benchmarks/mnist_conv_custom_training_benchmark_test.py | 197 | keras | {
"docstring": "Measure performance with batch_size=256 and run_iters=5.",
"language": "en",
"n_whitespaces": 5,
"n_words": 6,
"vocab_size": 6
} | 62 | Python | 46 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | mnist_conv_custom_training_benchmark_test.py | 269,811 | 26 | 126 | benchmark_custom_training_mnist_bs_256 | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 302 | 0 | 80,290 | 13 |
|
21 | 33 | def match_submerged_margins(layoutgrids, fig):
for sfig in fig.subfigs:
match_submerged_margins(layoutgrids, sfig)
axs = [a for a in fig.get_axes()
if a.get_subplotspec() is not None and a.get_in_layout()]
for ax1 in axs:
ss1 = ax1.get_subplotspec()
if ss1.get_gridspec() not in layoutgrids:
axs.remove(ax1)
continue
lg1 = layoutgrids[ss1.get_gridspec()]
# interior columns:
if len(ss1.colspan) > 1:
maxsubl = np.max(
lg1.margin_vals['left'][ss1.colspan[1:]] +
lg1.margin_vals['leftcb'][ss1.colspan[1:]]
)
maxsubr = np.max(
lg1.margin_vals['right'][ss1.colspan[:-1]] +
lg1.margin_vals['rightcb'][ss1.colspan[:-1]]
)
for ax2 in axs:
ss2 = ax2.get_subplotspec()
lg2 = layoutgrids[ss2.get_gridspec()]
if lg2 is not None and len(ss2.colspan) > 1:
maxsubl2 = np.max(
lg2.margin_vals['left'][ss2.colspan[1:]] +
lg2.margin_vals['leftcb'][ss2.colspan[1:]])
if maxsubl2 > maxsubl:
maxsubl = maxsubl2
maxsubr2 = np.max(
lg2.margin_vals['right'][ss2.colspan[:-1]] +
lg2.margin_vals['rightcb'][ss2.colspan[:-1]])
if maxsubr2 > maxsubr:
maxsubr = maxsubr2
for i in ss1.colspan[1:]:
lg1.edit_margin_min('left', maxsubl, cell=i)
for i in ss1.colspan[:-1]:
lg1.edit_margin_min('right', maxsubr, cell=i)
# interior rows:
if len(ss1.rowspan) > 1:
maxsubt = np.max(
lg1.margin_vals['top'][ss1.rowspan[1:]] +
lg1.margin_vals['topcb'][ss1.rowspan[1:]]
)
maxsubb = np.max(
lg1.margin_vals['bottom'][ss1.rowspan[:-1]] +
lg1.margin_vals['bottomcb'][ss1.rowspan[:-1]]
)
for ax2 in axs:
ss2 = ax2.get_subplotspec()
lg2 = layoutgrids[ss2.get_gridspec()]
if lg2 is not None:
if len(ss2.rowspan) > 1:
maxsubt = np.max([np.max(
lg2.margin_vals['top'][ss2.rowspan[1:]] +
lg2.margin_vals['topcb'][ss2.rowspan[1:]]
), maxsubt])
maxsubb = np.max([np.max(
lg2.margin_vals['bottom'][ss2.rowspan[:-1]] +
lg2.margin_vals['bottomcb'][ss2.rowspan[:-1]]
), maxsubb])
for i in ss1.rowspan[1:]:
lg1.edit_margin_min('top', maxsubt, cell=i)
for i in ss1.rowspan[:-1]:
lg1.edit_margin_min('bottom', maxsubb, cell=i)
| lib/matplotlib/_constrained_layout.py | 986 | matplotlib | {
"docstring": "\n Make the margins that are submerged inside an Axes the same size.\n\n This allows axes that span two columns (or rows) that are offset\n from one another to have the same size.\n\n This gives the proper layout for something like::\n fig = plt.figure(constrained_layout=True)\n axs = fig.subplot_mosaic(\"AAAB\\nCCDD\")\n\n Without this routine, the axes D will be wider than C, because the\n margin width between the two columns in C has no width by default,\n whereas the margins between the two columns of D are set by the\n width of the margin between A and B. However, obviously the user would\n like C and D to be the same size, so we need to add constraints to these\n \"submerged\" margins.\n\n This routine makes all the interior margins the same, and the spacing\n between the three columns in A and the two column in C are all set to the\n margins between the two columns of D.\n\n See test_constrained_layout::test_constrained_layout12 for an example.\n ",
"language": "en",
"n_whitespaces": 218,
"n_words": 158,
"vocab_size": 87
} | 190 | Python | 91 | c73f4c455514cf5422d27bf38c93250de8316b21 | _constrained_layout.py | 109,439 | 64 | 623 | match_submerged_margins | https://github.com/matplotlib/matplotlib.git | Merge SubplotBase into AxesBase. | 1,147 | 0 | 23,586 | 26 |
|
1 | 8 | def get_returned_qty_map(delivery_note):
returned_qty_map = frappe._dict(
frappe.db.sql(
,
delivery_note,
)
)
return returned_qty_map
@frappe.whitelist() | erpnext/stock/doctype/delivery_note/delivery_note.py | 56 | @frappe.whitelist() | erpnext | {
"docstring": "returns a map: {so_detail: returned_qty}select dn_item.dn_detail, abs(dn_item.qty) as qty\n\t\tfrom `tabDelivery Note Item` dn_item, `tabDelivery Note` dn\n\t\twhere dn.name = dn_item.parent\n\t\t\tand dn.docstatus = 1\n\t\t\tand dn.is_return = 1\n\t\t\tand dn.return_against = %s\n\t",
"language": "en",
"n_whitespaces": 27,
"n_words": 33,
"vocab_size": 26
} | 13 | Python | 11 | 494bd9ef78313436f0424b918f200dab8fc7c20b | delivery_note.py | 67,600 | 14 | 26 | get_returned_qty_map | https://github.com/frappe/erpnext.git | style: format code with black | 4 | 1 | 14,572 | 11 |
2 | 7 | def set_dash_capstyle(self, s):
cs = CapStyle(s)
if self._dashcapstyle != cs:
self.stale = True
self._dashcapstyle = cs
| lib/matplotlib/lines.py | 52 | matplotlib | {
"docstring": "\n How to draw the end caps if the line is `~Line2D.is_dashed`.\n\n The default capstyle is :rc:`lines.dash_capstyle`.\n\n Parameters\n ----------\n s : `.CapStyle` or %(CapStyle)s\n ",
"language": "en",
"n_whitespaces": 66,
"n_words": 23,
"vocab_size": 21
} | 16 | Python | 12 | b24acb7772e0534f4bcdb0b5b492d9d94954dd91 | lines.py | 107,199 | 5 | 31 | set_dash_capstyle | https://github.com/matplotlib/matplotlib.git | DOC: Document default cap styles
- remove '(default)' from cap style demo as this is only true for Line2D
and the default rcParameters
- document default cap styles for Line2D and Patch in their cap style
setters
- document default cap style for GraphicsContextBase in the same way as
it's already done for joinstyle | 55 | 0 | 22,639 | 9 |
|
6 | 9 | def app_get_relative_path(requests_pathname, path):
if requests_pathname == "/" and path == "":
return "/"
if requests_pathname != "/" and path == "":
return requests_pathname
if not path.startswith("/"):
raise exceptions.UnsupportedRelativePath(
f
)
return "/".join([requests_pathname.rstrip("/"), path.lstrip("/")])
| dash/_get_paths.py | 127 | dash | {
"docstring": "\n Paths that aren't prefixed with a leading / are not supported.\n You supplied: {path}\n ",
"language": "en",
"n_whitespaces": 48,
"n_words": 14,
"vocab_size": 14
} | 33 | Python | 20 | c3c84b9ecf16bcc61ed80ec39d511af92fe07f2c | _get_paths.py | 40,164 | 13 | 67 | app_get_relative_path | https://github.com/plotly/dash.git | f-strings everywhere! fffff | 83 | 0 | 7,331 | 11 |
|
7 | 31 | def translate_exprs_to_base(exprs, base):
new_exprs = dict(exprs)
frames = set()
for k, v in new_exprs.items():
v.collect_frames(frames)
frames.discard(base)
while len(frames) > 0:
mapper = InputMapper()
new_frames = set()
for frame in frames:
frame_base = frame._op.input[0]
if frame_base != base:
new_frames.add(frame_base)
assert isinstance(frame._op, TransformNode)
mapper.add_mapper(frame, TransformMapper(frame._op))
for k, v in new_exprs.items():
new_expr = new_exprs[k].translate_input(mapper)
new_expr.collect_frames(new_frames)
new_exprs[k] = new_expr
new_frames.discard(base)
frames = new_frames
res = OrderedDict()
for col in exprs.keys():
res[col] = new_exprs[col]
return res
| modin/experimental/core/execution/native/implementations/hdk_on_native/df_algebra.py | 282 | modin | {
"docstring": "\n Fold expressions.\n\n Fold expressions with their input nodes until `base`\n frame is the only input frame.\n\n Parameters\n ----------\n exprs : dict\n Expressions to translate.\n base : HdkOnNativeDataframe\n Required input frame for translated expressions.\n\n Returns\n -------\n dict\n Translated expressions.\n ",
"language": "en",
"n_whitespaces": 93,
"n_words": 38,
"vocab_size": 30
} | 71 | Python | 47 | e5b1888cd932909e49194d58035da34b210b91c4 | df_algebra.py | 154,583 | 25 | 176 | translate_exprs_to_base | https://github.com/modin-project/modin.git | FEAT-#4946: Replace OmniSci with HDK (#4947)
Co-authored-by: Iaroslav Igoshev <[email protected]>
Signed-off-by: Andrey Pavlenko <[email protected]> | 246 | 0 | 36,093 | 14 |
|
2 | 13 | def get_http_proxy_names(self) -> bytes:
if self.http_state is None:
return None
from ray.serve.generated.serve_pb2 import ActorNameList
actor_name_list = ActorNameList(
names=self.http_state.get_http_proxy_names().values()
)
return actor_name_list.SerializeToString()
| python/ray/serve/controller.py | 83 | ray | {
"docstring": "Returns the http_proxy actor name list serialized by protobuf.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 21 | Python | 20 | 65d0c0aa48be8f9f7faae857d3ab71444997755a | controller.py | 128,247 | 9 | 51 | get_http_proxy_names | https://github.com/ray-project/ray.git | [Serve] add alpha gRPC support (#28175) | 85 | 0 | 28,646 | 14 |
|
1 | 2 | def decode_crop_and_flip_tf_record_batch(tf_record_batch):
| release/air_tests/air_benchmarks/mlperf-train/resnet50_ray_air.py | 13 | ray | {
"docstring": "\n This version of the preprocessor fuses the load step with the crop and flip\n step, which should have better performance (at the cost of re-executing the\n load step on each epoch):\n - the reference tf.data implementation can use the fused decode_and_crop op\n - ray.data doesn't have to materialize the intermediate decoded batch.\n ",
"language": "en",
"n_whitespaces": 71,
"n_words": 52,
"vocab_size": 40
} | 2 | Python | 2 | 02f911ce78137cb63ecb685a8ef8e56dcb60062c | resnet50_ray_air.py | 134,143 | 5 | 45 | decode_crop_and_flip_tf_record_batch | https://github.com/ray-project/ray.git | Benchmarking Ray Data bulk ingest as input file size changes. (#29296)
This PR adds a benchmark which takes work from https://github.com/anyscale/air-benchmarks and makes it run as a release test.
Full metrics are stored in Databricks.
Signed-off-by: Cade Daniel <[email protected]> | 5 | 0 | 30,203 | 6 |
|
4 | 16 | def all_checks(ctx, connectors=None): # type: ignore[no-untyped-def]
tasks = (
black,
flake,
isort,
mypy,
coverage,
)
for task_ in tasks:
try:
task_(ctx, connectors=connectors)
except Exit as e:
if e.code:
raise
@task(help={"connectors": _arg_help_connectors, "write": "Write changes into the files (runs 'black' without '--check' option)"}) | airbyte-integrations/connectors/tasks.py | 107 | @task(help={"connectors": _arg_help_connectors, "write": "Write changes into the files (runs 'black' without '--check' option)"}) | airbyte | {
"docstring": "\n Run following checks one by one with default parameters: black, flake, isort, mypy, test, coverage.\n Zero exit code indicates about successful passing of all checks.\n Terminate on the first non-zero exit code.\n ",
"language": "en",
"n_whitespaces": 45,
"n_words": 32,
"vocab_size": 30
} | 42 | Python | 42 | e3e05d79655bc0b2b4c3fbc0c05b8d90fce6dcd8 | tasks.py | 3,696 | 14 | 50 | all_checks | https://github.com/airbytehq/airbyte.git | update code-checkers config (#9707)
fix `all-checks` command
Signed-off-by: Sergei Solonitcyn <[email protected]> | 140 | 1 | 518 | 12 |
8 | 25 | def parseString(self, instring, parseAll=False):
ParserElement.resetCache()
if not self.streamlined:
self.streamline()
# ~ self.saveAsList = True
for e in self.ignoreExprs:
e.streamline()
if not self.keepTabs:
instring = instring.expandtabs()
try:
loc, tokens = self._parse(instring, 0)
if parseAll:
loc = self.preParse(instring, loc)
se = Empty() + StringEnd()
se._parse(instring, loc)
except ParseBaseException as exc:
if ParserElement.verbose_stacktrace:
raise
else:
# catch and re-raise exception from here, clearing out pyparsing internal stack trace
if getattr(exc, '__traceback__', None) is not None:
exc.__traceback__ = self._trim_traceback(exc.__traceback__)
raise exc
else:
return tokens
| .venv/lib/python3.8/site-packages/pip/_vendor/pyparsing.py | 233 | transferlearning | {
"docstring": "\n Execute the parse expression with the given string.\n This is the main interface to the client code, once the complete\n expression has been built.\n\n Returns the parsed data as a :class:`ParseResults` object, which may be\n accessed as a list, or as a dict or object with attributes if the given parser\n includes results names.\n\n If you want the grammar to require that the entire input string be\n successfully parsed, then set ``parseAll`` to True (equivalent to ending\n the grammar with ``StringEnd()``).\n\n Note: ``parseString`` implicitly calls ``expandtabs()`` on the input string,\n in order to report proper column numbers in parse actions.\n If the input string contains tabs and\n the grammar uses parse actions that use the ``loc`` argument to index into the\n string being parsed, you can ensure you have a consistent view of the input\n string by:\n\n - calling ``parseWithTabs`` on your grammar before calling ``parseString``\n (see :class:`parseWithTabs`)\n - define your parse action using the full ``(s, loc, toks)`` signature, and\n reference the input string using the parse action's ``s`` argument\n - explictly expand the tabs in your input string before calling\n ``parseString``\n\n Example::\n\n Word('a').parseString('aaaaabaaa') # -> ['aaaaa']\n Word('a').parseString('aaaaabaaa', parseAll=True) # -> Exception: Expected end of text\n ",
"language": "en",
"n_whitespaces": 389,
"n_words": 197,
"vocab_size": 121
} | 80 | Python | 64 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | pyparsing.py | 63,403 | 23 | 141 | parseString | https://github.com/jindongwang/transferlearning.git | upd; format | 359 | 0 | 13,288 | 17 |
|
11 | 36 | def _create_input_dict_and_dummy_batch(self, view_requirements, existing_inputs):
input_dict = {}
for view_col, view_req in view_requirements.items():
# Point state_in to the already existing self._state_inputs.
mo = re.match("state_in_(\d+)", view_col)
if mo is not None:
input_dict[view_col] = self._state_inputs[int(mo.group(1))]
# State-outs (no placeholders needed).
elif view_col.startswith("state_out_"):
continue
# Skip action dist inputs placeholder (do later).
elif view_col == SampleBatch.ACTION_DIST_INPUTS:
continue
# This is a tower: Input placeholders already exist.
elif view_col in existing_inputs:
input_dict[view_col] = existing_inputs[view_col]
# All others.
else:
time_axis = not isinstance(view_req.shift, int)
if view_req.used_for_training:
# Create a +time-axis placeholder if the shift is not an
# int (range or list of ints).
# Do not flatten actions if action flattening disabled.
if self.config.get("_disable_action_flattening") and view_col in [
SampleBatch.ACTIONS,
SampleBatch.PREV_ACTIONS,
]:
flatten = False
# Do not flatten observations if no preprocessor API used.
elif (
view_col in [SampleBatch.OBS, SampleBatch.NEXT_OBS]
and self.config["_disable_preprocessor_api"]
):
flatten = False
# Flatten everything else.
else:
flatten = True
input_dict[view_col] = get_placeholder(
space=view_req.space,
name=view_col,
time_axis=time_axis,
flatten=flatten,
)
dummy_batch = self._get_dummy_batch_from_view_requirements(batch_size=32)
return SampleBatch(input_dict, seq_lens=self._seq_lens), dummy_batch
| rllib/policy/dynamic_tf_policy_v2.py | 346 | ray | {
"docstring": "Creates input_dict and dummy_batch for loss initialization.\n\n Used for managing the Policy's input placeholders and for loss\n initialization.\n Input_dict: Str -> tf.placeholders, dummy_batch: str -> np.arrays.\n\n Args:\n view_requirements (ViewReqs): The view requirements dict.\n existing_inputs (Dict[str, tf.placeholder]): A dict of already\n existing placeholders.\n\n Returns:\n Tuple[Dict[str, tf.placeholder], Dict[str, np.ndarray]]: The\n input_dict/dummy_batch tuple.\n ",
"language": "en",
"n_whitespaces": 155,
"n_words": 50,
"vocab_size": 43
} | 164 | Python | 107 | bc3a1d35cf6e9a5fd7eef908a8e76aefb80ce6a9 | dynamic_tf_policy_v2.py | 139,481 | 35 | 214 | _create_input_dict_and_dummy_batch | https://github.com/ray-project/ray.git | [RLlib] Introduce new policy base classes. (#24742) | 891 | 0 | 31,711 | 18 |
|
8 | 2 | def lock(remote=None):
| salt/fileserver/hgfs.py | 16 | salt | {
"docstring": "\n Place an update.lk\n\n ``remote`` can either be a dictionary containing repo configuration\n information, or a pattern. If the latter, then remotes for which the URL\n matches the pattern will be locked.\n ",
"language": "en",
"n_whitespaces": 47,
"n_words": 31,
"vocab_size": 27
} | 2 | Python | 2 | 06aeefffad82d8f5db43b4429aeae87bad735acf | hgfs.py | 216,569 | 21 | 115 | lock | https://github.com/saltstack/salt.git | Don't leak sub-processes
Signed-off-by: Pedro Algarvio <[email protected]> | 5 | 0 | 54,644 | 6 |
|
5 | 12 | def log_img_scale(img_scale, shape_order='hw', skip_square=False):
if shape_order == 'hw':
height, width = img_scale
elif shape_order == 'wh':
width, height = img_scale
else:
raise ValueError(f'Invalid shape_order {shape_order}.')
if skip_square and (height == width):
return False
logger = get_root_logger()
caller = get_caller_name()
logger.info(f'image shape: height={height}, width={width} in {caller}')
return True
| mmdet/utils/logger.py | 141 | mmdetection | {
"docstring": "Log image size.\n\n Args:\n img_scale (tuple): Image size to be logged.\n shape_order (str, optional): The order of image shape.\n 'hw' for (height, width) and 'wh' for (width, height).\n Defaults to 'hw'.\n skip_square (bool, optional): Whether to skip logging for square\n img_scale. Defaults to False.\n\n Returns:\n bool: Whether to have done logging.\n ",
"language": "en",
"n_whitespaces": 121,
"n_words": 51,
"vocab_size": 41
} | 47 | Python | 37 | 8d7da432af02a52bc5330b30997984335d0930a4 | logger.py | 244,075 | 13 | 72 | log_img_scale | https://github.com/open-mmlab/mmdetection.git | Update YOLOX log for non square input (#7235) | 102 | 0 | 70,229 | 12 |
|
2 | 8 | def get_category(cls):
if hasattr(cls, 'category'):
return cls.category
return cls.model._meta.app_config.verbose_name
| netbox/netbox/search/__init__.py | 48 | netbox | {
"docstring": "\n Return the title of the search category under which this model is registered.\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 13,
"vocab_size": 12
} | 9 | Python | 8 | ffce5d968d8a77c97852999b6ef916e80c1de55f | __init__.py | 265,839 | 4 | 28 | get_category | https://github.com/netbox-community/netbox.git | 8927 plugin search (#10489)
* #7016 base search classes
* 7016 add search indexes
* 7016 add search indexes
* 7016 add search indexes
* 7016 add search indexes
* 7016 add search indexes
* 7016 add search indexes
* 8927 refactor search
* 8927 refactor search
* 8927 refactor search
* 8927 refactor search
* 8927 get search choices working
* 8927 cleanup - optimize
* 8927 use backend search function
* 8927 fix for plugin search
* 8927 add docs
* Move search app to a module under netbox/
* Utilize global registry to register model search classes
* Build search form options from registry
* Determine search categories from model app by default
* Enable dynamic search registration for plugins
* Update docs & improve plugin support
* Clean up search backend class
* Docs for #8927
Co-authored-by: jeremystretch <[email protected]> | 41 | 0 | 78,210 | 9 |
|
5 | 11 | def _get_animated_artists(self):
return tuple(a for ax_ in self.ax.get_figure().get_axes()
for a in ax_.get_children()
if a.get_animated() and a not in self.artists)
| lib/matplotlib/widgets.py | 75 | matplotlib | {
"docstring": "\n Convenience method to get all animated artists of the figure containing\n this widget, excluding those already present in self.artists.\n The returned tuple is not sorted by 'z_order': z_order sorting is\n valid only when considering all artists and not only a subset of all\n artists.\n ",
"language": "en",
"n_whitespaces": 87,
"n_words": 44,
"vocab_size": 37
} | 19 | Python | 15 | 7603999becc00d39f7616ed20e426e776144cda1 | widgets.py | 107,073 | 4 | 46 | _get_animated_artists | https://github.com/matplotlib/matplotlib.git | Improve docstring and add comments | 73 | 0 | 22,587 | 13 |
|
11 | 42 | def fit(self, X, y=None):
subset_df = pd.read_csv(self.subset_list, header=0, index_col=0)
if isinstance(self.sel_subset, int):
self.sel_subset_name = subset_df.index[self.sel_subset]
elif isinstance(self.sel_subset, str):
self.sel_subset_name = self.sel_subset
else: # list or tuple
self.sel_subset_name = []
for s in self.sel_subset:
if isinstance(s, int):
self.sel_subset_name.append(subset_df.index[s])
else:
self.sel_subset_name.append(s)
sel_features = subset_df.loc[self.sel_subset_name, 'Features']
if not isinstance(sel_features, str):
sel_features = ";".join(sel_features.tolist())
sel_uniq_features = set(sel_features.split(';'))
if isinstance(X, pd.DataFrame): # use columns' names
self.feature_names = list(X.columns.values)
self.feat_list = sorted(list(set(sel_uniq_features).intersection(set(self.feature_names))))
self.feat_list_idx = [list(X.columns).index(feat_name) for feat_name in self.feat_list]
elif isinstance(X, np.ndarray): # use index
self.feature_names = list(range(X.shape[1]))
sel_uniq_features = [int(val) for val in sel_uniq_features]
self.feat_list = sorted(list(set(sel_uniq_features).intersection(set(self.feature_names))))
self.feat_list_idx = self.feat_list
if not len(self.feat_list):
raise ValueError('No feature is found on the subset list!')
return self
| tpot/builtins/feature_set_selector.py | 500 | tpot | {
"docstring": "Fit FeatureSetSelector for feature selection\n\n Parameters\n ----------\n X: array-like of shape (n_samples, n_features)\n The training input samples.\n y: array-like, shape (n_samples,)\n The target values (integers that correspond to classes in classification, real numbers in regression).\n\n Returns\n -------\n self: object\n Returns a copy of the estimator\n ",
"language": "en",
"n_whitespaces": 134,
"n_words": 45,
"vocab_size": 40
} | 109 | Python | 69 | 388616b6247ca4ea8de4e2f340d6206aee523541 | feature_set_selector.py | 181,853 | 29 | 313 | fit | https://github.com/EpistasisLab/tpot.git | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | 404 | 0 | 43,622 | 18 |
|
1 | 2 | def removesrc(self):
return self["removesrc"]
| packages/python/plotly/plotly/graph_objs/layout/_modebar.py | 22 | plotly.py | {
"docstring": "\n Sets the source reference on Chart Studio Cloud for `remove`.\n\n The 'removesrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n ",
"language": "en",
"n_whitespaces": 77,
"n_words": 27,
"vocab_size": 25
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _modebar.py | 231,617 | 2 | 11 | removesrc | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 63,061 | 7 |
|
1 | 5 | def __len__(self) -> int:
return len(self._valid_keys)
| rllib/policy/policy_map.py | 27 | ray | {
"docstring": "Returns number of all policies, including the stashed-to-disk ones.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 6 | Python | 6 | ed3f3c08225c7049a96a290b586c67c37e2d0bc0 | policy_map.py | 137,052 | 3 | 15 | __len__ | https://github.com/ray-project/ray.git | [RLlib] PolicyMap LRU cache enhancements: Swap out policies (instead of GC'ing and recreating) + use Ray object store (instead of file system). (#29513) | 20 | 0 | 31,064 | 8 |
|
1 | 8 | def test_copy_keep_live_false_not_emits_signal(self):
homepage = Page.objects.get(url_path="/home/")
signal_fired = False
| wagtail/core/tests/test_page_model.py | 39 | wagtail | {
"docstring": "Test that copying of a live page with keep_live=False not emits a page_published signal.",
"language": "en",
"n_whitespaces": 13,
"n_words": 14,
"vocab_size": 13
} | 8 | Python | 7 | d10f15e55806c6944827d801cd9c2d53f5da4186 | test_page_model.py | 74,351 | 7 | 51 | test_copy_keep_live_false_not_emits_signal | https://github.com/wagtail/wagtail.git | Reformat with black | 29 | 0 | 16,249 | 10 |
|
2 | 7 | def SqueezeAndExciteBlock(filters_in, se_filters, name=None):
if name is None:
name = str(backend.get_uid("squeeze_and_excite"))
| keras/applications/regnet.py | 48 | keras | {
"docstring": "Implements the Squeeze and excite block (https://arxiv.org/abs/1709.01507).\n\n Args:\n filters_in: input filters to the block\n se_filters: filters to squeeze to\n name: name prefix\n\n Returns:\n A function object\n ",
"language": "en",
"n_whitespaces": 55,
"n_words": 26,
"vocab_size": 21
} | 11 | Python | 10 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | regnet.py | 269,416 | 5 | 32 | SqueezeAndExciteBlock | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 24 | 0 | 80,065 | 13 |
|
4 | 16 | def _sanitize_column(self, value) -> ArrayLike:
self._ensure_valid_index(value)
# We should never get here with DataFrame value
if isinstance(value, Series):
return _reindex_for_setitem(value, self.index)
elif isinstance(value, dict):
return _reindex_for_setitem(Series(value), self.index)
if is_list_like(value):
com.require_length_match(value, self.index)
return sanitize_array(value, self.index, copy=True, allow_2d=True)
| pandas/core/frame.py | 132 | pandas | {
"docstring": "\n Ensures new columns (which go into the BlockManager as new blocks) are\n always copied and converted into an array.\n\n Parameters\n ----------\n value : scalar, Series, or array-like\n\n Returns\n -------\n numpy.ndarray or ExtensionArray\n ",
"language": "en",
"n_whitespaces": 96,
"n_words": 32,
"vocab_size": 29
} | 36 | Python | 30 | cd2b8196c519b58c82cccdb8472d86c1c58f9511 | frame.py | 167,519 | 21 | 86 | _sanitize_column | https://github.com/pandas-dev/pandas.git | BUG: DataFrame.loc not aligning dict when setting to a column (#47361)
* BUG: DataFrame.loc not aligning dict when setting to a column
* Add partial case
* Use is_dict_like
* Revert "Use is_dict_like"
This reverts commit d2708512b751c6470690fdff0abc9c99404dc002. | 118 | 0 | 40,030 | 12 |
|
7 | 20 | def get_all_items(date_range, company, field, limit=None):
if field in ("available_stock_qty", "available_stock_value"):
select_field = "sum(actual_qty)" if field == "available_stock_qty" else "sum(stock_value)"
return frappe.db.get_all(
"Bin",
fields=["item_code as name", "{0} as value".format(select_field)],
group_by="item_code",
order_by="value desc",
limit=limit,
)
else:
if field == "total_sales_amount":
select_field = "sum(order_item.base_net_amount)"
select_doctype = "Sales Order"
elif field == "total_purchase_amount":
select_field = "sum(order_item.base_net_amount)"
select_doctype = "Purchase Order"
elif field == "total_qty_sold":
select_field = "sum(order_item.stock_qty)"
select_doctype = "Sales Order"
elif field == "total_qty_purchased":
select_field = "sum(order_item.stock_qty)"
select_doctype = "Purchase Order"
date_condition = get_date_condition(date_range, "sales_order.transaction_date")
return frappe.db.sql(
.format(
select_field, select_doctype, date_condition
),
(company, cint(limit)),
as_dict=1,
) # nosec
@frappe.whitelist() | erpnext/startup/leaderboard.py | 284 | @frappe.whitelist() | erpnext | {
"docstring": "\n\t\t\tselect order_item.item_code as name, {0} as value\n\t\t\tfrom `tab{1}` sales_order join `tab{1} Item` as order_item\n\t\t\t\ton sales_order.name = order_item.parent\n\t\t\twhere sales_order.docstatus = 1\n\t\t\t\tand sales_order.company = %s {2}\n\t\t\tgroup by order_item.item_code\n\t\t\torder by value desc\n\t\t\tlimit %s\n\t\t",
"language": "en",
"n_whitespaces": 29,
"n_words": 37,
"vocab_size": 29
} | 96 | Python | 56 | 494bd9ef78313436f0424b918f200dab8fc7c20b | leaderboard.py | 67,568 | 40 | 152 | get_all_items | https://github.com/frappe/erpnext.git | style: format code with black | 65 | 1 | 14,559 | 14 |
2 | 7 | def _get_reconciled_name_object(self, other) -> MultiIndex:
names = self._maybe_match_names(other)
if self.names != names:
# error: Cannot determine type of "rename"
return self.rename(names) # type: ignore[has-type]
return self
| pandas/core/indexes/multi.py | 58 | pandas | {
"docstring": "\n If the result of a set operation will be self,\n return self, unless the names change, in which\n case make a shallow copy of self.\n ",
"language": "en",
"n_whitespaces": 54,
"n_words": 25,
"vocab_size": 21
} | 26 | Python | 24 | 5c66e65d7b9fef47ccb585ce2fd0b3ea18dc82ea | multi.py | 169,226 | 10 | 34 | _get_reconciled_name_object | https://github.com/pandas-dev/pandas.git | TYP: type all arguments with bool default values (#48624)
* TYP: type all arguments with bool default values
* bool_t
* ignore type error in pandas/core/arrays/sparse/accessor.py | 77 | 0 | 40,404 | 9 |
|
2 | 6 | def is_equilateral(self):
return not has_variety(s.length for s in self.sides)
| sympy/geometry/polygon.py | 34 | sympy | {
"docstring": "Are all the sides the same length?\n\n Returns\n =======\n\n is_equilateral : boolean\n\n See Also\n ========\n\n sympy.geometry.entity.GeometryEntity.is_similar, RegularPolygon\n is_isosceles, is_right, is_scalene\n\n Examples\n ========\n\n >>> from sympy import Triangle, Point\n >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))\n >>> t1.is_equilateral()\n False\n\n >>> from sympy import sqrt\n >>> t2 = Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3)))\n >>> t2.is_equilateral()\n True\n\n ",
"language": "en",
"n_whitespaces": 183,
"n_words": 57,
"vocab_size": 41
} | 9 | Python | 9 | 498015021131af4dbb07eb110e5badaba8250c7b | polygon.py | 196,312 | 2 | 20 | is_equilateral | https://github.com/sympy/sympy.git | Updated import locations | 23 | 0 | 47,812 | 10 |
|
3 | 18 | def makeport(self):
sock = socket.create_server(("", 0), family=self.af, backlog=1)
port = sock.getsockname()[1] # Get proper port
host = self.sock.getsockname()[0] # Get proper host
if self.af == socket.AF_INET:
resp = self.sendport(host, port)
else:
resp = self.sendeprt(host, port)
if self.timeout is not _GLOBAL_DEFAULT_TIMEOUT:
sock.settimeout(self.timeout)
return sock
| python3.10.4/Lib/ftplib.py | 159 | XX-Net | {
"docstring": "Create a new socket and send a PORT command for it.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 10
} | 43 | Python | 30 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | ftplib.py | 217,444 | 11 | 99 | makeport | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 132 | 0 | 54,789 | 11 |
|
2 | 13 | def test_in1d_mixed_boolean(self, kind):
for dtype in np.typecodes["AllInteger"]:
a = np.array([True, False, False], dtype=bool)
b = np.array([1, 1, 1, 1], dtype=dtype)
expected = np.array([True, False, False], dtype=bool)
assert_array_equal(in1d(a, b, kind=kind), expected)
a, b = b, a
expected = np.array([True, True, True, True], dtype=bool)
assert_array_equal(in1d(a, b, kind=kind), expected)
| numpy/lib/tests/test_arraysetops.py | 188 | numpy | {
"docstring": "Test that in1d works as expected for bool/int input.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 46 | Python | 26 | f9bed20bffd88bce06dbc8be200179edfe7580a4 | test_arraysetops.py | 160,860 | 9 | 131 | test_in1d_mixed_boolean | https://github.com/numpy/numpy.git | BUG: Fix numpy.isin for timedelta dtype (#21860)
This PR fixes the issue discussed on #12065 and #21843 where 'timedelta64' was noted to be a subtype of numpy.integer. This in principle should detect any cases where int(np.min(ar2)) fails. This PR also adds unittests for these.
* TST: Create in1d test for timedelta input
* MAINT: fix in1d for timedelta input
* TST: in1d raise ValueError for timedelta input
* MAINT: Clean up type checking for isin kind="table"
* TST: Add test for mixed boolean/integer in1d
* MAINT: Increase readability of in1d type checking
* STY: Apply small code style tweaks
This is probably really mainly my personal opinion...
Co-authored-by: Sebastian Berg <[email protected]> | 137 | 0 | 38,763 | 12 |
|
1 | 6 | def strip(self, text):
return re.sub(self.puncs_regular_exp, " ", text).strip()
| TTS/tts/utils/text/punctuation.py | 42 | TTS | {
"docstring": "Remove all the punctuations by replacing with `space`.\n\n Args:\n text (str): The text to be processed.\n\n Example::\n\n \"This is. example !\" -> \"This is example \"\n ",
"language": "en",
"n_whitespaces": 69,
"n_words": 26,
"vocab_size": 23
} | 8 | Python | 8 | 8d85af84cd5f1748f979fddcbc4aab1449f61ecb | punctuation.py | 261,971 | 2 | 25 | strip | https://github.com/coqui-ai/TTS.git | Implement Punctuation class | 22 | 0 | 77,086 | 10 |
|
4 | 9 | def dispatch_line(self, frame):
if self.stop_here(frame) or self.break_here(frame):
self.user_line(frame)
if self.quitting: raise BdbQuit
return self.trace_dispatch
| python3.10.4/Lib/bdb.py | 66 | XX-Net | {
"docstring": "Invoke user function and return trace function for line event.\n\n If the debugger stops on the current line, invoke\n self.user_line(). Raise BdbQuit if self.quitting is set.\n Return self.trace_dispatch to continue tracing in this scope.\n ",
"language": "en",
"n_whitespaces": 62,
"n_words": 34,
"vocab_size": 32
} | 14 | Python | 13 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | bdb.py | 221,111 | 5 | 40 | dispatch_line | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 57 | 0 | 56,214 | 9 |
|
2 | 14 | def articles_from_same_day_2(self):
from django.db import connection
with connection.cursor() as cursor:
cursor.execute(
,
[connection.ops.adapt_datefield_value(self.pub_date), self.id],
)
return [self.__class__(*row) for row in cursor.fetchall()]
| tests/custom_methods/models.py | 105 | django | {
"docstring": "\n Verbose version of get_articles_from_same_day_1, which does a custom\n database query for the sake of demonstration.\n \n SELECT id, headline, pub_date\n FROM custom_methods_article\n WHERE pub_date = %s\n AND id != %s",
"language": "en",
"n_whitespaces": 115,
"n_words": 29,
"vocab_size": 26
} | 21 | Python | 21 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | models.py | 202,517 | 12 | 63 | articles_from_same_day_2 | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 105 | 0 | 50,143 | 13 |
|
1 | 8 | def async_create_post_interval_update_cb(self) -> None:
self._post_interval_update_cb_canceller = async_call_later(
self.hass,
get_unavailability_interval(self.ping_interval),
self.async_post_interval_update,
)
| homeassistant/components/sia/sia_entity_base.py | 48 | core | {
"docstring": "Create a port interval update cb and store the callback.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | 11 | Python | 11 | af4e37339a39badd5596e8bc9ba86d6c1994aa1b | sia_entity_base.py | 291,944 | 7 | 30 | async_create_post_interval_update_cb | https://github.com/home-assistant/core.git | Add Connectivity sensor to SIA (#64305)
* implemented connectivity sensor
* further cleanup off update code
* cleanup and tighter behaviour for attributes
* added seperate connectivity class to binary sensor
* callbacks and keys
* redid name and unique_id logic, non-breaking result
* using entry more in inits
* Fix import
* fix ping_interval in sia_entity_base
* added ping_interval default to next
* fixed next
Co-authored-by: Martin Hjelmare <[email protected]> | 65 | 0 | 91,047 | 11 |
|
2 | 22 | def test_rate_reached_perf_issue(self):
snooze = GroupSnooze.objects.create(group=self.perf_group, count=10, window=24 * 60)
for i in range(0, 10):
self.store_transaction(
environment=None,
project_id=self.project.id,
user_id=str(i),
groups=[self.perf_group],
)
assert not snooze.is_valid(test_rates=True)
| tests/sentry/models/test_groupsnooze.py | 124 | sentry | {
"docstring": "Test when a performance issue is ignored until it happens 10 times in a day",
"language": "en",
"n_whitespaces": 14,
"n_words": 15,
"vocab_size": 14
} | 23 | Python | 23 | d745edbd591063f2c3241cd1960c361834058823 | test_groupsnooze.py | 86,308 | 10 | 82 | test_rate_reached_perf_issue | https://github.com/getsentry/sentry.git | ref(perf issues): Enable ignore in a time period (#39120)
Enable ignoring a performance issue in a time period e.g. ignore this
until it happens 10x / hr or ignore until 10 users experience it in an
hour. | 133 | 0 | 18,097 | 12 |
|
1 | 10 | def test_lazy_load_get_prep_value(self):
with self.assertNumQueries(1):
instance = self.model.objects.get(pk=self.with_image.pk)
# Expect a single UPDATE to update the model, without any additional
# SELECT related to the image block that has not been accessed.
with self.assertNumQueries(1):
instance.save()
| wagtail/tests/test_streamfield.py | 82 | wagtail | {
"docstring": "\n Saving a lazy StreamField that hasn't had its data accessed should not\n cause extra database queries by loading and then re-saving block values.\n Instead the initial JSON stream data should be written back for any\n blocks that have not been accessed.\n ",
"language": "en",
"n_whitespaces": 77,
"n_words": 41,
"vocab_size": 37
} | 34 | Python | 29 | dcae64c255f2fe97f658b1a3f438d3644b197661 | test_streamfield.py | 76,619 | 5 | 45 | test_lazy_load_get_prep_value | https://github.com/wagtail/wagtail.git | Allow `StreamField` to use `JSONField` internal type via `use_json_field` kwarg
Add system check for use_json_field in StreamField
Change system check level to Warning
Add use_json_field argument to StreamField in test models
Use RemovedInWagtail219Warning instead of a system check
Handle unpacked values in to_python when use_json_field is True
Duplicate models and tests for JSONField-based StreamField
Add basic tests for JSONField-based StreamField
Add json_field property in StreamField to unify JSONField usage
Add docs
Don't use destructuring for kwargs in deconstruct
Add versionchanged note to StreamField reference | 91 | 0 | 16,555 | 13 |
|
5 | 32 | def gen_quad_from_poly(self, poly):
point_num = poly.shape[0]
min_area_quad = np.zeros((4, 2), dtype=np.float32)
rect = cv2.minAreaRect(poly.astype(
np.int32)) # (center (x,y), (width, height), angle of rotation)
box = np.array(cv2.boxPoints(rect))
first_point_idx = 0
min_dist = 1e4
for i in range(4):
dist = np.linalg.norm(box[(i + 0) % 4] - poly[0]) + \
np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1]) + \
np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2]) + \
np.linalg.norm(box[(i + 3) % 4] - poly[-1])
if dist < min_dist:
min_dist = dist
first_point_idx = i
for i in range(4):
min_area_quad[i] = box[(first_point_idx + i) % 4]
bbox_new = min_area_quad.tolist()
bbox = []
for box in bbox_new:
box = list(map(int, box))
bbox.append(box)
return bbox
| PPOCRLabel/PPOCRLabel.py | 378 | PaddleOCR | {
"docstring": "\n Generate min area quad from poly.\n ",
"language": "en",
"n_whitespaces": 21,
"n_words": 6,
"vocab_size": 6
} | 116 | Python | 64 | 3c6d551207f8eb5d0916404a7eca5e641887047d | PPOCRLabel.py | 23,430 | 24 | 192 | gen_quad_from_poly | https://github.com/PaddlePaddle/PaddleOCR.git | Support multipoint labeling
Support multipoint labeling | 358 | 0 | 4,591 | 18 |
|
6 | 17 | def all_pairs_node_connectivity(G, nbunch=None, cutoff=None):
if nbunch is None:
nbunch = G
else:
nbunch = set(nbunch)
directed = G.is_directed()
if directed:
iter_func = itertools.permutations
else:
iter_func = itertools.combinations
all_pairs = {n: {} for n in nbunch}
for u, v in iter_func(nbunch, 2):
k = local_node_connectivity(G, u, v, cutoff=cutoff)
all_pairs[u][v] = k
if not directed:
all_pairs[v][u] = k
return all_pairs
| networkx/algorithms/approximation/connectivity.py | 177 | networkx | {
"docstring": "Compute node connectivity between all pairs of nodes.\n\n Pairwise or local node connectivity between two distinct and nonadjacent\n nodes is the minimum number of nodes that must be removed (minimum\n separating cutset) to disconnect them. By Menger's theorem, this is equal\n to the number of node independent paths (paths that share no nodes other\n than source and target). Which is what we compute in this function.\n\n This algorithm is a fast approximation that gives an strict lower\n bound on the actual number of node independent paths between two nodes [1]_.\n It works for both directed and undirected graphs.\n\n\n Parameters\n ----------\n G : NetworkX graph\n\n nbunch: container\n Container of nodes. If provided node connectivity will be computed\n only over pairs of nodes in nbunch.\n\n cutoff : integer\n Maximum node connectivity to consider. If None, the minimum degree\n of source or target is used as a cutoff in each pair of nodes.\n Default value None.\n\n Returns\n -------\n K : dictionary\n Dictionary, keyed by source and target, of pairwise node connectivity\n\n Examples\n --------\n A 3 node cycle with one extra node attached has connectivity 2 between all\n nodes in the cycle and connectivity 1 between the extra node and the rest:\n\n >>> G = nx.cycle_graph(3)\n >>> G.add_edge(2, 3)\n >>> import pprint # for nice dictionary formatting\n >>> pprint.pprint(nx.all_pairs_node_connectivity(G))\n {0: {1: 2, 2: 2, 3: 1},\n 1: {0: 2, 2: 2, 3: 1},\n 2: {0: 2, 1: 2, 3: 1},\n 3: {0: 1, 1: 1, 2: 1}}\n\n See Also\n --------\n local_node_connectivity\n node_connectivity\n\n References\n ----------\n .. [1] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for\n Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035\n http://eclectic.ss.uci.edu/~drwhite/working.pdf\n ",
"language": "en",
"n_whitespaces": 440,
"n_words": 272,
"vocab_size": 166
} | 58 | Python | 37 | eae1accf4a4eb8b767e82a45f9aca18785301670 | connectivity.py | 177,419 | 17 | 114 | all_pairs_node_connectivity | https://github.com/networkx/networkx.git | Added an example in all_pairs_node_connectivity (#6126)
* add missing reference in all_node_cuts flow_func parameter
* added example to all_pairs_node_connectivity
* Update networkx/algorithms/approximation/connectivity.py
Added suggestion
Co-authored-by: Ross Barnowski <[email protected]>
* Update networkx/algorithms/approximation/connectivity.py
added pprint
Co-authored-by: Ross Barnowski <[email protected]>
* Update networkx/algorithms/connectivity/kcutsets.py
fix linking
Co-authored-by: Ross Barnowski <[email protected]>
* solved style problems
Co-authored-by: Ross Barnowski <[email protected]> | 145 | 0 | 42,370 | 12 |
|
2 | 9 | def require_torch_multi_gpu(test_case):
if not is_torch_available():
return unittest.skip("test requires PyTorch")(test_case)
import torch
return unittest.skipUnless(torch.cuda.device_count() > 1, "test requires multiple GPUs")(test_case)
| src/transformers/testing_utils.py | 79 | transformers | {
"docstring": "\n Decorator marking a test that requires a multi-GPU setup (in PyTorch). These tests are skipped on a machine without\n multiple GPUs.\n\n To run *only* the multi_gpu tests, assuming all test names contain multi_gpu: $ pytest -sv ./tests -k \"multi_gpu\"\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 39,
"vocab_size": 36
} | 19 | Python | 17 | 57e6464ac9a31156f1c93e59107323e6ec01309e | testing_utils.py | 37,513 | 5 | 44 | require_torch_multi_gpu | https://github.com/huggingface/transformers.git | Update all require decorators to use skipUnless when possible (#16999) | 38 | 0 | 6,818 | 12 |
|
2 | 12 | def send_gstin_reminder(party_type, party):
frappe.has_permission(party_type, throw=True)
email = _send_gstin_reminder(party_type, party)
if email:
frappe.msgprint(_("Reminder to update GSTIN Sent"), title="Reminder sent", indicator="green")
| erpnext/regional/doctype/gst_settings/gst_settings.py | 78 | erpnext | {
"docstring": "Send GSTIN reminder to one party (called from Customer, Supplier form)",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 19 | Python | 19 | 494bd9ef78313436f0424b918f200dab8fc7c20b | gst_settings.py | 67,056 | 5 | 46 | send_gstin_reminder | https://github.com/frappe/erpnext.git | style: format code with black | 14 | 0 | 14,421 | 12 |
|
1 | 10 | async def test_midnight_turnover_before_midnight_outside_period(hass):
config = {
"binary_sensor": [
{"platform": "tod", "name": "Night", "after": "22:00", "before": "5:00"}
]
}
await async_setup_component(hass, "binary_sensor", config)
await hass.async_block_till_done()
state = hass.states.get("binary_sensor.night")
assert state.state == STATE_OFF
@freeze_time("2019-01-10 10:00:00-08:00") | tests/components/tod/test_binary_sensor.py | 131 | @freeze_time("2019-01-10 10:00:00-08:00") | core | {
"docstring": "Test midnight turnover setting before midnight outside period.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 7
} | 33 | Python | 31 | 23a630e0bcbd2aec6a598a19ebaf2929eba97e5b | test_binary_sensor.py | 294,292 | 10 | 62 | test_midnight_turnover_before_midnight_outside_period | https://github.com/home-assistant/core.git | Update Times of the Day tests to use freezegun (#68327) | 78 | 1 | 93,329 | 12 |
2 | 8 | def turn_off(self) -> None:
if self.state != MediaPlayerState.OFF:
self._device.send_key("POWER")
self._attr_state = MediaPlayerState.OFF
| homeassistant/components/panasonic_bluray/media_player.py | 56 | core | {
"docstring": "\n Instruct the device to turn standby.\n\n Sending the \"POWER\" button will turn the device to standby - there\n is no way to turn it completely off remotely. However this works in\n our favour as it means the device is still accepting commands and we\n can thus turn it back on when desired.\n ",
"language": "en",
"n_whitespaces": 95,
"n_words": 52,
"vocab_size": 39
} | 12 | Python | 12 | 9ecbcd2d8fedc4f0a59f231d1f221157d4cfa359 | media_player.py | 291,472 | 12 | 32 | turn_off | https://github.com/home-assistant/core.git | Use _attr_state in panasonic bluray media player (#82834) | 44 | 0 | 90,581 | 10 |
|
1 | 28 | def test_personal_message(self) -> None:
user_profile = self.example_user("hamlet")
self.login_user(user_profile)
othello = self.example_user("othello")
result = self.client_post(
"/json/messages",
{
"type": "private",
"content": "Test message",
"to": orjson.dumps([othello.email]).decode(),
},
)
self.assert_json_success(result)
message_id = orjson.loads(result.content)["id"]
recent_conversations = get_recent_private_conversations(user_profile)
self.assert_length(recent_conversations, 1)
recent_conversation = list(recent_conversations.values())[0]
recipient_id = list(recent_conversations.keys())[0]
self.assertEqual(set(recent_conversation["user_ids"]), {othello.id})
self.assertEqual(recent_conversation["max_message_id"], message_id)
# Now send a message to yourself and see how that interacts with the data structure
result = self.client_post(
"/json/messages",
{
"type": "private",
"content": "Test message",
"to": orjson.dumps([user_profile.email]).decode(),
},
)
self.assert_json_success(result)
self_message_id = orjson.loads(result.content)["id"]
recent_conversations = get_recent_private_conversations(user_profile)
self.assert_length(recent_conversations, 2)
recent_conversation = recent_conversations[recipient_id]
self.assertEqual(set(recent_conversation["user_ids"]), {othello.id})
self.assertEqual(recent_conversation["max_message_id"], message_id)
# Now verify we have the appropriate self-pm data structure
del recent_conversations[recipient_id]
recent_conversation = list(recent_conversations.values())[0]
recipient_id = list(recent_conversations.keys())[0]
self.assertEqual(set(recent_conversation["user_ids"]), set())
self.assertEqual(recent_conversation["max_message_id"], self_message_id)
| zerver/tests/test_message_send.py | 537 | zulip | {
"docstring": "\n Sending a personal message to a valid username is successful.\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 10,
"vocab_size": 9
} | 112 | Python | 66 | bd9a1dc9710293e36d2d47d970d7afb95100c2e6 | test_message_send.py | 84,758 | 43 | 318 | test_personal_message | https://github.com/zulip/zulip.git | tests: Consistently JSON-encode ‘to’ parameter
Although our POST /messages handler accepts the ‘to’ parameter with or
without JSON encoding, there are two problems with passing it as an
unencoded string.
Firstly, you’d fail to send a message to a stream named ‘true’ or
‘false’ or ‘null’ or ‘2022’, as the JSON interpretation is prioritized
over the plain string interpretation.
Secondly, and more importantly for our tests, it violates our OpenAPI
schema, which requires the parameter to be JSON-encoded. This is
because OpenAPI has no concept of a parameter that’s “optionally
JSON-encoded”, nor should it: such a parameter cannot be unambiguously
decoded for the reason above.
Our version of openapi-core doesn’t currently detect this schema
violation, but after the next upgrade it will.
Signed-off-by: Anders Kaseorg <[email protected]> | 478 | 0 | 17,867 | 16 |
|
1 | 2 | def external_ray_cluster_activity_hook4():
raise Exception("Error in external cluster activity hook")
| python/ray/_private/test_utils.py | 22 | ray | {
"docstring": "\n Example external hook for test_component_activities_hook.\n\n Errors during execution.\n ",
"language": "en",
"n_whitespaces": 18,
"n_words": 8,
"vocab_size": 8
} | 9 | Python | 9 | 56716a1c1b6f9aae3967b910a799bb6af9f2c5d9 | test_utils.py | 124,497 | 2 | 10 | external_ray_cluster_activity_hook4 | https://github.com/ray-project/ray.git | [dashboard] Add `RAY_CLUSTER_ACTIVITY_HOOK` to `/api/component_activities` (#26297)
Add external hook to /api/component_activities endpoint in dashboard snapshot router
Change is_active field of RayActivityResponse to take an enum RayActivityStatus instead of bool. This is a backward incompatible change, but should be ok because [dashboard] Add component_activities API #25996 wasn't included in any branch cuts. RayActivityResponse now supports informing when there was an error getting the activity observation and the reason. | 15 | 0 | 27,614 | 8 |
|
6 | 18 | def get_item_warehouse_projected_qty(items_to_consider):
item_warehouse_projected_qty = {}
for item_code, warehouse, projected_qty in frappe.db.sql(
.format(
", ".join(["%s"] * len(items_to_consider))
),
items_to_consider,
):
if item_code not in item_warehouse_projected_qty:
item_warehouse_projected_qty.setdefault(item_code, {})
if warehouse not in item_warehouse_projected_qty.get(item_code):
item_warehouse_projected_qty[item_code][warehouse] = flt(projected_qty)
warehouse_doc = frappe.get_doc("Warehouse", warehouse)
while warehouse_doc.parent_warehouse:
if not item_warehouse_projected_qty.get(item_code, {}).get(warehouse_doc.parent_warehouse):
item_warehouse_projected_qty.setdefault(item_code, {})[warehouse_doc.parent_warehouse] = flt(
projected_qty
)
else:
item_warehouse_projected_qty[item_code][warehouse_doc.parent_warehouse] += flt(projected_qty)
warehouse_doc = frappe.get_doc("Warehouse", warehouse_doc.parent_warehouse)
return item_warehouse_projected_qty
| erpnext/stock/reorder_item.py | 265 | erpnext | {
"docstring": "select item_code, warehouse, projected_qty\n\t\tfrom tabBin where item_code in ({0})\n\t\t\tand (warehouse != \"\" and warehouse is not null)",
"language": "en",
"n_whitespaces": 16,
"n_words": 19,
"vocab_size": 18
} | 60 | Python | 44 | 494bd9ef78313436f0424b918f200dab8fc7c20b | reorder_item.py | 67,844 | 24 | 166 | get_item_warehouse_projected_qty | https://github.com/frappe/erpnext.git | style: format code with black | 38 | 0 | 14,639 | 16 |
|
1 | 5 | def affine_matrix(self) -> np.ndarray:
assert self._affine_matrix is not None
return self._affine_matrix
| lib/align/detected_face.py | 35 | faceswap | {
"docstring": " :class: `numpy.ndarray`: The affine matrix to transpose the mask to a full frame. ",
"language": "en",
"n_whitespaces": 14,
"n_words": 13,
"vocab_size": 12
} | 11 | Python | 10 | 5e73437be47f2410439a3c6716de96354e6a0c94 | detected_face.py | 101,231 | 4 | 21 | affine_matrix | https://github.com/deepfakes/faceswap.git | lib.align updates:
- alignments.py
- Add typed dicts for imported alignments
- Explicitly check for presence of thumb value in alignments dict
- linting
- detected_face.py
- Typing
- Linting
- Legacy support for pre-aligned face
- Update dependencies to new property names | 32 | 0 | 20,651 | 7 |
|
6 | 26 | def predict(self, X):
if self.weights == "uniform":
# In that case, we do not need the distances to perform
# the weighting so we do not compute them.
neigh_ind = self.kneighbors(X, return_distance=False)
neigh_dist = None
else:
neigh_dist, neigh_ind = self.kneighbors(X)
weights = _get_weights(neigh_dist, self.weights)
_y = self._y
if _y.ndim == 1:
_y = _y.reshape((-1, 1))
if weights is None:
y_pred = np.mean(_y[neigh_ind], axis=1)
else:
y_pred = np.empty((X.shape[0], _y.shape[1]), dtype=np.float64)
denom = np.sum(weights, axis=1)
for j in range(_y.shape[1]):
num = np.sum(_y[neigh_ind, j] * weights, axis=1)
y_pred[:, j] = num / denom
if self._y.ndim == 1:
y_pred = y_pred.ravel()
return y_pred
| sklearn/neighbors/_regression.py | 310 | scikit-learn | {
"docstring": "Predict the target for the provided data.\n\n Parameters\n ----------\n X : array-like of shape (n_queries, n_features), \\\n or (n_queries, n_indexed) if metric == 'precomputed'\n Test samples.\n\n Returns\n -------\n y : ndarray of shape (n_queries,) or (n_queries, n_outputs), dtype=int\n Target values.\n ",
"language": "en",
"n_whitespaces": 126,
"n_words": 40,
"vocab_size": 33
} | 99 | Python | 65 | fb082b223dc9f1dd327f48dc9b830ee382d6f661 | _regression.py | 258,546 | 21 | 199 | predict | https://github.com/scikit-learn/scikit-learn.git | MAINT Do not compute distances for uniform weighting (#22280) | 320 | 0 | 75,287 | 15 |
|
1 | 5 | def handle_m2m_field(self, obj, field):
raise NotImplementedError(
"subclasses of Serializer must provide a handle_m2m_field() method"
)
| django/core/serializers/base.py | 27 | django | {
"docstring": "\n Called to handle a ManyToManyField.\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 5,
"vocab_size": 5
} | 15 | Python | 15 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | base.py | 204,741 | 4 | 15 | handle_m2m_field | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 47 | 0 | 50,868 | 8 |
|
2 | 13 | def get_user_timezone() -> str:
filename = os.path.join(
os.path.dirname(os.path.abspath(__file__)),
"timezone.openbb",
)
if os.path.isfile(filename):
with open(filename) as f:
return f.read()
return ""
| openbb_terminal/helper_funcs.py | 105 | OpenBBTerminal | {
"docstring": "Get user timezone if it is a valid one\n\n Returns\n -------\n str\n user timezone based on timezone.openbb file\n ",
"language": "en",
"n_whitespaces": 37,
"n_words": 18,
"vocab_size": 16
} | 20 | Python | 19 | b71abcfbf4d7e8ac1855522aff0378e13c8b5362 | helper_funcs.py | 283,270 | 16 | 60 | get_user_timezone | https://github.com/OpenBB-finance/OpenBBTerminal.git | Updating some names (#1575)
* quick econ fix
* black
* keys and feature flags
* terminal name :eyes:
* some more replacements
* some more replacements
* edit pyproject
* gst -> openbb
* add example portfolios back to git
* Update api from gst
* sorry. skipping some tests
* another round of names
* another round of test edits
* Missed some .gst refs and update timezone
* water mark stuff
* Fixing Names in terminal.spec and name of GTFF_DEFAULTS to OBBFF_DEFAULTS
* fix more GST to OpenBB Terminal
* Logging : merge conflicts with main
* Revert wrong files
Co-authored-by: Andrew <[email protected]>
Co-authored-by: DidierRLopes <[email protected]>
Co-authored-by: Chavithra PARANA <[email protected]> | 67 | 0 | 84,512 | 13 |
|
2 | 6 | def require_sqlalchemy(test_case):
try:
import sqlalchemy # noqa
except ImportError:
test_case = unittest.skip("test requires sqlalchemy")(test_case)
return test_case
| tests/utils.py | 50 | datasets | {
"docstring": "\n Decorator marking a test that requires SQLAlchemy.\n\n These tests are skipped when SQLAlchemy isn't installed.\n\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 15,
"vocab_size": 15
} | 16 | Python | 15 | d7dfbc83d68e87ba002c5eb2555f7a932e59038a | utils.py | 105,788 | 6 | 26 | require_sqlalchemy | https://github.com/huggingface/datasets.git | Add ability to read-write to SQL databases. (#4928)
* Add ability to read-write to SQL databases.
* Fix issue where pandas<1.4.0 doesn't return the number of rows
* Fix issue where connections were not closed properly
* Apply suggestions from code review
Co-authored-by: Quentin Lhoest <[email protected]>
* Change according to reviews
* Change according to reviews
* Inherit from AbstractDatasetInputStream in SqlDatasetReader
* Revert typing in SQLDatasetReader as we do not support Connexion
* Align API with Pandas/Daskk
* Update tests
* Update docs
* Update some more tests
* Missing comma
* Small docs fix
* Style
* Update src/datasets/arrow_dataset.py
Co-authored-by: Quentin Lhoest <[email protected]>
* Update src/datasets/packaged_modules/sql/sql.py
Co-authored-by: Quentin Lhoest <[email protected]>
* Address some comments
* Address the rest
* Improve tests
* sqlalchemy required tip
Co-authored-by: Quentin Lhoest <[email protected]>
Co-authored-by: mariosasko <[email protected]> | 43 | 0 | 22,204 | 13 |
|
2 | 7 | def make_tempfile(name):
open(name, 'w', encoding='utf-8').close()
try:
yield
finally:
os.unlink(name)
| IPython/testing/tools.py | 59 | ipython | {
"docstring": " Create an empty, named, temporary file for the duration of the context.\n ",
"language": "en",
"n_whitespaces": 16,
"n_words": 12,
"vocab_size": 11
} | 9 | Python | 9 | 23276ac4770f380ce1d5808950dd412a35594af1 | tools.py | 208,534 | 6 | 31 | make_tempfile | https://github.com/ipython/ipython.git | Fix EncodingWarning on Python 3.10 | 35 | 0 | 52,377 | 11 |
|
2 | 14 | def findall(dir=os.curdir):
files = _find_all_simple(dir)
if dir == os.curdir:
make_rel = functools.partial(os.path.relpath, start=dir)
files = map(make_rel, files)
return list(files)
| python3.10.4/Lib/distutils/filelist.py | 84 | XX-Net | {
"docstring": "\n Find all files under 'dir' and return the list of full filenames.\n Unless dir is '.', return full filenames with dir prepended.\n ",
"language": "en",
"n_whitespaces": 32,
"n_words": 22,
"vocab_size": 19
} | 19 | Python | 16 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | filelist.py | 222,940 | 6 | 52 | findall | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 45 | 0 | 56,821 | 12 |
|
1 | 29 | async def test_ip_ban_manager_never_started(hass, aiohttp_client, caplog):
app = web.Application()
app["hass"] = hass
setup_bans(hass, app, 5)
set_real_ip = mock_real_ip(app)
with patch(
"homeassistant.components.http.ban.load_yaml_config_file",
side_effect=FileNotFoundError,
):
client = await aiohttp_client(app)
# Mock the manager never being started
del app[KEY_BAN_MANAGER]
set_real_ip("4.3.2.1")
resp = await client.get("/")
assert resp.status == HTTPStatus.NOT_FOUND
assert "IP Ban middleware loaded but banned IPs not loaded" in caplog.text
@pytest.mark.parametrize(
"remote_addr, bans, status",
list(
zip(
BANNED_IPS_WITH_SUPERVISOR,
[1, 1, 0],
[HTTPStatus.FORBIDDEN, HTTPStatus.FORBIDDEN, HTTPStatus.UNAUTHORIZED],
)
),
) | tests/components/http/test_ban.py | 209 | @pytest.mark.parametrize(
"remote_addr, bans, status",
list(
zip(
BANNED_IPS_WITH_SUPERVISOR,
[1, 1, 0],
[HTTPStatus.FORBIDDEN, HTTPStatus.FORBIDDEN, HTTPStatus.UNAUTHORIZED],
)
),
) | core | {
"docstring": "Test we handle the ip ban manager not being started.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | 72 | Python | 65 | 0c29b68cf82c777ec6fd70ce38911f1d1e39d26a | test_ban.py | 315,611 | 15 | 87 | test_ip_ban_manager_never_started | https://github.com/home-assistant/core.git | Switch linear search to a dict lookup for ip bans (#74482) | 186 | 1 | 114,189 | 12 |
10 | 32 | def remove_field(self, model, field):
# Special-case implicit M2M tables
if field.many_to_many and field.remote_field.through._meta.auto_created:
return self.delete_model(field.remote_field.through)
# It might not actually have a column behind it
if field.db_parameters(connection=self.connection)["type"] is None:
return
# Drop any FK constraints, MySQL requires explicit deletion
if field.remote_field:
fk_names = self._constraint_names(model, [field.column], foreign_key=True)
for fk_name in fk_names:
self.execute(self._delete_fk_sql(model, fk_name))
# Delete the column
sql = self.sql_delete_column % {
"table": self.quote_name(model._meta.db_table),
"column": self.quote_name(field.column),
}
self.execute(sql)
# Reset connection if required
if self.connection.features.connection_persists_old_columns:
self.connection.close()
# Remove all deferred statements referencing the deleted column.
for sql in list(self.deferred_sql):
if isinstance(sql, Statement) and sql.references_column(
model._meta.db_table, field.column
):
self.deferred_sql.remove(sql)
| django/db/backends/base/schema.py | 304 | django | {
"docstring": "\n Remove a field from a model. Usually involves deleting a column,\n but for M2Ms may involve deleting a table.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 19,
"vocab_size": 15
} | 97 | Python | 79 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | schema.py | 204,933 | 21 | 190 | remove_field | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 346 | 0 | 50,985 | 13 |
|
2 | 8 | def test_basic(push_channel):
msgs = [
{"foo": "bar"},
{"bar": "baz"},
{"baz": "qux", "list": [1, 2, 3]},
]
for msg in msgs:
ret = push_channel.send(msg, timeout=5, tries=1)
assert ret["load"] == msg
| tests/pytests/functional/transport/server/test_req_channel.py | 112 | salt | {
"docstring": "\n Test a variety of messages, make sure we get the expected responses\n ",
"language": "en",
"n_whitespaces": 19,
"n_words": 12,
"vocab_size": 12
} | 29 | Python | 27 | 3c7e1ec1f08abd7cd1ba78ad7880acb6ba6fdce7 | test_req_channel.py | 216,279 | 9 | 66 | test_basic | https://github.com/saltstack/salt.git | Fix minion unit tests, specifically .../tests/pytests/test_minion.py | 76 | 0 | 54,497 | 11 |
|
5 | 16 | def test_upgrade_allow_downgrades(uninstall_var, upgrade_var):
with patch("salt.utils.pkg.clear_rtag", MagicMock()):
with patch(
"salt.modules.aptpkg.list_pkgs", MagicMock(return_value=uninstall_var)
):
mock_cmd = MagicMock(return_value={"retcode": 0, "stdout": upgrade_var})
patch_kwargs = {
"__salt__": {
"config.get": MagicMock(return_value=True),
"cmd.run_all": mock_cmd,
},
}
with patch.multiple(aptpkg, **patch_kwargs):
aptpkg.upgrade()
args_matching = [
True
for args in patch_kwargs["__salt__"]["cmd.run_all"].call_args[0]
if "--allow-downgrades" in args
]
# Here we shouldn't see the parameter and args_matching should be empty.
assert any(args_matching) is False
aptpkg.upgrade(allow_downgrades=True)
args_matching = [
True
for args in patch_kwargs["__salt__"]["cmd.run_all"].call_args[0]
if "--allow-downgrades" in args
]
# --allow-downgrades should be in the args list and we should have at least on True in the list.
assert any(args_matching) is True
| tests/pytests/unit/modules/test_aptpkg.py | 270 | salt | {
"docstring": "\n Tests the allow_downgrades option for upgrade.\n ",
"language": "en",
"n_whitespaces": 13,
"n_words": 6,
"vocab_size": 6
} | 98 | Python | 61 | 9e1ca8b5b9e7006fea28f473711917755cf5a262 | test_aptpkg.py | 216,508 | 27 | 155 | test_upgrade_allow_downgrades | https://github.com/saltstack/salt.git | Add --allow-downgrades capability for apt upgrade | 505 | 0 | 54,619 | 19 |
|
4 | 12 | def srs(self):
# TODO: Is caching really necessary here? Is complexity worth it?
if hasattr(self, "_srs"):
# Returning a clone of the cached SpatialReference object.
return self._srs.clone()
else:
# Attempting to cache a SpatialReference object.
# Trying to get from WKT first.
try:
self._srs = gdal.SpatialReference(self.wkt)
return self.srs
except Exception as e:
msg = e
try:
self._srs = gdal.SpatialReference(self.proj4text)
return self.srs
except Exception as e:
msg = e
raise Exception(
"Could not get OSR SpatialReference from WKT: %s\nError:\n%s"
% (self.wkt, msg)
)
| django/contrib/gis/db/backends/base/models.py | 157 | django | {
"docstring": "\n Return a GDAL SpatialReference object.\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 5,
"vocab_size": 5
} | 82 | Python | 57 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | models.py | 203,770 | 18 | 89 | srs | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 341 | 0 | 50,533 | 14 |
|
1 | 2 | def set_package(fxn):
| python3.10.4/Lib/importlib/util.py | 13 | XX-Net | {
"docstring": "Set __package__ on the returned module.\n\n This function is deprecated.\n\n ",
"language": "en",
"n_whitespaces": 16,
"n_words": 10,
"vocab_size": 10
} | 2 | Python | 2 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | util.py | 218,358 | 4 | 17 | set_package | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 5 | 0 | 55,256 | 6 |
|
1 | 9 | def get_subsidiary_companies(company):
lft, rgt = frappe.get_cached_value("Company", company, ["lft", "rgt"])
return frappe.db.sql_list(
.format(
lft, rgt
)
)
| erpnext/accounts/report/consolidated_financial_statement/consolidated_financial_statement.py | 66 | erpnext | {
"docstring": "select name from `tabCompany`\n\t\twhere lft >= {0} and rgt <= {1} order by lft, rgt",
"language": "en",
"n_whitespaces": 14,
"n_words": 16,
"vocab_size": 15
} | 16 | Python | 13 | 494bd9ef78313436f0424b918f200dab8fc7c20b | consolidated_financial_statement.py | 65,209 | 8 | 39 | get_subsidiary_companies | https://github.com/frappe/erpnext.git | style: format code with black | 9 | 0 | 13,823 | 10 |
|
4 | 4 | def from_dict(cls, other, name=None):
| .venv/lib/python3.8/site-packages/pip/_vendor/pyparsing.py | 20 | transferlearning | {
"docstring": "\n Helper classmethod to construct a ParseResults from a dict, preserving the\n name-value relations as results names. If an optional 'name' argument is\n given, a nested ParseResults will be returned\n ",
"language": "en",
"n_whitespaces": 58,
"n_words": 29,
"vocab_size": 26
} | 4 | Python | 4 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | pyparsing.py | 63,361 | 11 | 93 | from_dict | https://github.com/jindongwang/transferlearning.git | upd; format | 11 | 0 | 13,268 | 6 |
|
1 | 7 | def create_view(self, request):
kwargs = {"model_admin": self}
view_class = self.create_view_class
return view_class.as_view(**kwargs)(request)
| wagtail/contrib/modeladmin/options.py | 54 | wagtail | {
"docstring": "\n Instantiates a class-based view to provide 'creation' functionality for\n the assigned model, or redirect to Wagtail's create view if the\n assigned model extends 'Page'. The view class used can be overridden by\n changing the 'create_view_class' attribute.\n ",
"language": "en",
"n_whitespaces": 72,
"n_words": 36,
"vocab_size": 30
} | 12 | Python | 11 | d10f15e55806c6944827d801cd9c2d53f5da4186 | options.py | 73,170 | 4 | 31 | create_view | https://github.com/wagtail/wagtail.git | Reformat with black | 40 | 0 | 15,968 | 9 |
|
3 | 10 | def get_viewname(model, action=None):
viewname = f'{model._meta.app_label}:{model._meta.model_name}'
# Determine whether this is a plugin view and adjust the namespace appropriately
if isinstance(model._meta.app_config, PluginConfig):
viewname = f'plugins:{viewname}'
# Append the action, if any
if action:
viewname = f'{viewname}_{action}'
return viewname
| netbox/utilities/utils.py | 99 | netbox | {
"docstring": "\n Return the view name for the given model and action, if valid.\n\n :param model: The model or instance to which the view applies\n :param action: A string indicating the desired action (if any); e.g. \"add\" or \"list\"\n ",
"language": "en",
"n_whitespaces": 50,
"n_words": 37,
"vocab_size": 30
} | 38 | Python | 29 | 10e6ae20949028171fdfcc50fde78bf289f41d5f | utils.py | 264,426 | 7 | 39 | get_viewname | https://github.com/netbox-community/netbox.git | Introduce get_viewname() as a standard utility | 73 | 0 | 77,721 | 10 |
|
1 | 7 | def plus(self, a):
a = _convert_other(a, raiseit=True)
return a.__pos__(context=self)
| python3.10.4/Lib/_pydecimal.py | 44 | XX-Net | {
"docstring": "Plus corresponds to unary prefix plus in Python.\n\n The operation is evaluated using the same rules as add; the\n operation plus(a) is calculated as add('0', a) where the '0'\n has the same exponent as the operand.\n\n >>> ExtendedContext.plus(Decimal('1.3'))\n Decimal('1.3')\n >>> ExtendedContext.plus(Decimal('-1.3'))\n Decimal('-1.3')\n >>> ExtendedContext.plus(-1)\n Decimal('-1')\n ",
"language": "en",
"n_whitespaces": 115,
"n_words": 45,
"vocab_size": 34
} | 9 | Python | 9 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | _pydecimal.py | 219,635 | 3 | 27 | plus | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 30 | 0 | 55,667 | 9 |
|
1 | 11 | def get_tables(self) -> Response:
q = f"SHOW TABLES FROM {self.connection_data['database']}"
result = self.native_query(q)
df = result.data_frame
result.data_frame = df.rename(columns={df.columns[0]: 'table_name'})
return result
| mindsdb/integrations/handlers/clickhouse_handler/clickhouse_handler.py | 94 | mindsdb | {
"docstring": "\n Get a list with all of the tabels in ClickHouse db\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 11,
"vocab_size": 11
} | 22 | Python | 17 | 149ae900c62910a480f8af70daa98362d513a350 | clickhouse_handler.py | 115,562 | 9 | 48 | get_tables | https://github.com/mindsdb/mindsdb.git | CH handler implementation | 64 | 0 | 25,491 | 13 |
|
1 | 4 | def uses_before_args(self) -> Namespace:
return self.pod_args['uses_before']
| jina/orchestrate/deployments/__init__.py | 28 | jina | {
"docstring": "Get the arguments for the `uses_before` of this Deployment.\n\n\n .. # noqa: DAR201\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 13,
"vocab_size": 12
} | 6 | Python | 6 | 13edc16d806fb5d77a6849551178ccc75937f25f | __init__.py | 10,853 | 7 | 15 | uses_before_args | https://github.com/jina-ai/jina.git | refactor: rename pod to deployment (#4230)
* refactor: rename pod to deployment
* style: fix overload and cli autocomplete
* fix: undo daemon mistake
* refactor: leftover cleanup
* fix: more test fixes
* fix: more fixes
* fix: more fixes
* fix: more fixes
* fix: more tests
* fix: fix more tests
* refactor: fix more tests
* refactor: more tests fixes
* refactor: rename pea to pod
* refactor: adjust docs
* refactor: complete pea renaming
* refactor: more fixes
* fix: pea_type in k8s yamls
* fix: adjust pod args name
* refactor: rename peapods parser folder
* fix: da init
Co-authored-by: Jina Dev Bot <[email protected]> | 20 | 0 | 1,951 | 7 |
|
5 | 12 | def user_config_dir(appname=None, appauthor=None, version=None, roaming=False):
r
if system in ["win32", "darwin"]:
path = user_data_dir(appname, appauthor, None, roaming)
else:
path = os.getenv('XDG_CONFIG_HOME', os.path.expanduser("~/.config"))
if appname:
path = os.path.join(path, appname)
if appname and version:
path = os.path.join(path, version)
return path
# for the discussion regarding site_config_dir locations
# see <https://github.com/pypa/pip/issues/1733> | .venv/lib/python3.8/site-packages/pip/_vendor/appdirs.py | 152 | transferlearning | {
"docstring": "Return full path to the user-specific config dir for this application.\n\n \"appname\" is the name of application.\n If None, just the system directory is returned.\n \"appauthor\" (only used on Windows) is the name of the\n appauthor or distributing body for this application. Typically\n it is the owning company name. This falls back to appname. You may\n pass False to disable it.\n \"version\" is an optional version path element to append to the\n path. You might want to use this if you want multiple versions\n of your app to be able to run independently. If used, this\n would typically be \"<major>.<minor>\".\n Only applied when appname is present.\n \"roaming\" (boolean, default False) can be set True to use the Windows\n roaming appdata directory. That means that for users on a Windows\n network setup for roaming profiles, this user data will be\n sync'd on login. See\n <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx>\n for a discussion of issues.\n\n Typical user config directories are:\n Mac OS X: same as user_data_dir\n Unix: ~/.config/<AppName> # or in $XDG_CONFIG_HOME, if defined\n Win *: same as user_data_dir\n\n For Unix, we follow the XDG spec and support $XDG_CONFIG_HOME.\n That means, by default \"~/.config/<AppName>\".\n ",
"language": "en",
"n_whitespaces": 445,
"n_words": 188,
"vocab_size": 131
} | 48 | Python | 37 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | appdirs.py | 61,443 | 38 | 95 | user_config_dir | https://github.com/jindongwang/transferlearning.git | upd; format | 99 | 0 | 12,578 | 14 |
|
1 | 31 | def test_page_token_expired_retry_fails(mock_ads_client, test_config):
stream_slice = {"start_date": "2021-01-01", "end_date": "2021-01-15"}
google_api = MockGoogleAdsFails(credentials=test_config["credentials"], customer_id=test_config["customer_id"])
incremental_stream_config = dict(
api=google_api,
conversion_window_days=test_config["conversion_window_days"],
start_date=test_config["start_date"],
time_zone="local",
end_date="2021-04-04",
)
stream = ClickView(**incremental_stream_config)
stream.get_query = Mock()
stream.get_query.return_value = "query"
with pytest.raises(GoogleAdsException):
list(stream.read_records(sync_mode=SyncMode.incremental, cursor_field=["segments.date"], stream_slice=stream_slice))
stream.get_query.assert_called_with({"start_date": "2021-01-03", "end_date": "2021-01-15"})
assert stream.get_query.call_count == 2
| airbyte-integrations/connectors/source-google-ads/unit_tests/test_streams.py | 251 | airbyte | {
"docstring": "\n Page token has expired while reading records within date \"2021-01-03\", it should raise error,\n because Google Ads API doesn't allow filter by datetime.\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 23,
"vocab_size": 23
} | 44 | Python | 38 | 359fcd801128239b39297828d39821f631ce00c0 | test_streams.py | 3,683 | 17 | 144 | test_page_token_expired_retry_fails | https://github.com/airbytehq/airbyte.git | Source Google Ads: handle page token expired exception (#9812)
* dynamic date range
* raise exception if exites the cycle without error
* if range days is 1 already do not retry
* added unit tests
* added comments
* added comments
* common mock classes are moved to common module
* change read_records
* refactored get_date_params
* handle corner case
* added parse_dates function
* added test_streams
* check mock calls
* fix unit tests for chunk date range refactoring
* removed commented codes
* remove commented line
* refactor test_streams
* refactor CustomQuery.get_query
* remove TODO
* deleted unused json
* format
* fix chunk_date_range
* added docstring
* set range_days to 15 for ShoppingPerformanceReport
* refactor chunk_date_range
* format code 2
* call parent read_records method
* add return type in get_date_params
* change e to exception
* set start_date as end_date
* log page token has expired
* bump version
* updated spec and def yaml
Co-authored-by: auganbay <[email protected]> | 119 | 0 | 515 | 14 |
|
1 | 5 | def get_favorite_articles_by_page_view():
return frappe.db.sql(
,
as_dict=True,
)
| erpnext/www/support/index.py | 30 | erpnext | {
"docstring": "\n\t\t\tSELECT\n\t\t\t\tt1.name as name,\n\t\t\t\tt1.title as title,\n\t\t\t\tt1.content as content,\n\t\t\t\tt1.route as route,\n\t\t\t\tt1.category as category,\n\t\t\t\tcount(t1.route) as count\n\t\t\tFROM `tabHelp Article` AS t1\n\t\t\t\tINNER JOIN\n\t\t\t\t`tabWeb Page View` AS t2\n\t\t\tON t1.route = t2.path\n\t\t\tWHERE t1.published = 1\n\t\t\tGROUP BY route\n\t\t\tORDER BY count DESC\n\t\t\tLIMIT 6;\n\t\t\t",
"language": "en",
"n_whitespaces": 33,
"n_words": 48,
"vocab_size": 38
} | 7 | Python | 7 | 494bd9ef78313436f0424b918f200dab8fc7c20b | index.py | 68,185 | 21 | 18 | get_favorite_articles_by_page_view | https://github.com/frappe/erpnext.git | style: format code with black | 2 | 0 | 14,733 | 8 |
|
1 | 15 | def test_previous_pods_ignored_for_reattached(self):
k = KubernetesPodOperator(
namespace="default",
image="ubuntu:16.04",
name="test",
task_id="task",
)
self.run_pod(k)
k.client.list_namespaced_pod.assert_called_once()
_, kwargs = k.client.list_namespaced_pod.call_args
assert 'already_checked!=True' in kwargs['label_selector']
| tests/providers/cncf/kubernetes/operators/test_kubernetes_pod.py | 106 | airflow | {
"docstring": "\n When looking for pods to possibly reattach to,\n ignore pods from previous tries that were properly finished\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 17,
"vocab_size": 16
} | 20 | Python | 19 | 60eb9e106f5915398eafd6aa339ec710c102dc09 | test_kubernetes_pod.py | 42,808 | 11 | 60 | test_previous_pods_ignored_for_reattached | https://github.com/apache/airflow.git | Use KubernetesHook to create api client in KubernetesPodOperator (#20578)
Add support for k8s hook in KPO; use it always (even when no conn id); continue to consider the core k8s settings that KPO already takes into account but emit deprecation warning about them.
KPO historically takes into account a few settings from core airflow cfg (e.g. verify ssl, tcp keepalive, context, config file, and in_cluster). So to use the hook to generate the client, somehow the hook has to take these settings into account. But we don't want the hook to consider these settings in general. So we read them in KPO and if necessary patch the hook and warn. | 113 | 0 | 7,739 | 10 |
|
3 | 20 | def tight_layout(self, *, pad=1.08, h_pad=None, w_pad=None, rect=None):
from contextlib import nullcontext
from ._tight_layout import (
get_subplotspec_list, get_tight_layout_figure)
subplotspec_list = get_subplotspec_list(self.axes)
if None in subplotspec_list:
_api.warn_external("This figure includes Axes that are not "
"compatible with tight_layout, so results "
"might be incorrect.")
renderer = _get_renderer(self)
with getattr(renderer, "_draw_disabled", nullcontext)():
kwargs = get_tight_layout_figure(
self, self.axes, subplotspec_list, renderer,
pad=pad, h_pad=h_pad, w_pad=w_pad, rect=rect)
if kwargs:
self.subplots_adjust(**kwargs)
| lib/matplotlib/figure.py | 186 | matplotlib | {
"docstring": "\n Adjust the padding between and around subplots.\n\n To exclude an artist on the Axes from the bounding box calculation\n that determines the subplot parameters (i.e. legend, or annotation),\n set ``a.set_in_layout(False)`` for that artist.\n\n Parameters\n ----------\n pad : float, default: 1.08\n Padding between the figure edge and the edges of subplots,\n as a fraction of the font size.\n h_pad, w_pad : float, default: *pad*\n Padding (height/width) between edges of adjacent subplots,\n as a fraction of the font size.\n rect : tuple (left, bottom, right, top), default: (0, 0, 1, 1)\n A rectangle in normalized figure coordinates into which the whole\n subplots area (including labels) will fit.\n\n See Also\n --------\n .Figure.set_tight_layout\n .pyplot.tight_layout\n ",
"language": "en",
"n_whitespaces": 275,
"n_words": 110,
"vocab_size": 81
} | 62 | Python | 55 | 2d8bd625813e4c513bbe8bedddca45da368bca9b | figure.py | 107,057 | 16 | 118 | tight_layout | https://github.com/matplotlib/matplotlib.git | Recreated deprecated files and changed references | 252 | 0 | 22,574 | 11 |
|
5 | 19 | def test_load_files_allowed_extensions(tmp_path, allowed_extensions):
d = tmp_path / "sub"
d.mkdir()
files = ("file1.txt", "file2.json", "file3.json", "file4.md")
paths = [d / f for f in files]
for p in paths:
p.touch()
res = load_files(tmp_path, allowed_extensions=allowed_extensions)
assert set([str(p) for p in paths if p.suffix in allowed_extensions]) == set(
res.filenames
)
@pytest.mark.parametrize(
"filename, expected_n_samples, expected_n_features, expected_target_names",
[
("wine_data.csv", 178, 13, ["class_0", "class_1", "class_2"]),
("iris.csv", 150, 4, ["setosa", "versicolor", "virginica"]),
("breast_cancer.csv", 569, 30, ["malignant", "benign"]),
],
) | sklearn/datasets/tests/test_base.py | 240 | @pytest.mark.parametrize(
"filename, expected_n_samples, expected_n_features, expected_target_names",
[
("wine_data.csv", 178, 13, ["class_0", "class_1", "class_2"]),
("iris.csv", 150, 4, ["setosa", "versicolor", "virginica"]),
("breast_cancer.csv", 569, 30, ["malignant", "benign"]),
],
) | scikit-learn | {
"docstring": "Check the behaviour of `allowed_extension` in `load_files`.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | 72 | Python | 59 | fc72ebe61c833f227560bd9d0dcf88cdda6c6adb | test_base.py | 258,977 | 11 | 87 | test_load_files_allowed_extensions | https://github.com/scikit-learn/scikit-learn.git | ENH Adds file extension selection to load_files (#22498)
Co-authored-by: Thomas J. Fan <[email protected]>
Co-authored-by: Tony <[email protected]>
Co-authored-by: Kazim <[email protected]>
Co-authored-by: Tony Attalla <[email protected]>
Co-authored-by: Guillaume Lemaitre <[email protected]> | 141 | 1 | 75,505 | 12 |
1 | 9 | def test_rolling_non_monotonic(method, expected):
# Based on an example found in computation.rst
use_expanding = [True, False, True, False, True, True, True, True]
df = DataFrame({"values": np.arange(len(use_expanding)) ** 2})
| pandas/tests/window/test_rolling.py | 72 | pandas | {
"docstring": "\n Make sure the (rare) branch of non-monotonic indices is covered by a test.\n\n output from 1.1.3 is assumed to be the expected output. Output of sum/mean has\n manually been verified.\n\n GH 36933.\n ",
"language": "en",
"n_whitespaces": 48,
"n_words": 32,
"vocab_size": 29
} | 27 | Python | 22 | 6caefb19f4d7c05451fafca182c6eb39fe9901ed | test_rolling.py | 165,326 | 9 | 100 | test_rolling_non_monotonic | https://github.com/pandas-dev/pandas.git | ENH: Rolling window with step size (GH-15354) (#45765) | 39 | 0 | 39,660 | 15 |
|
1 | 9 | def test_remember_collapsed(self):
# Sidebar should not be collapsed
self.client.cookies["wagtail_sidebar_collapsed"] = "0"
response = self.client.get(reverse("wagtailadmin_home"))
self.assertNotContains(response, "sidebar-collapsed")
# Sidebar should be collapsed
self.client.cookies["wagtail_sidebar_collapsed"] = "1"
response = self.client.get(reverse("wagtailadmin_home"))
self.assertContains(response, "sidebar-collapsed")
| wagtail/admin/tests/test_menu.py | 127 | wagtail | {
"docstring": "Sidebar should render with collapsed class applied.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | 29 | Python | 17 | d10f15e55806c6944827d801cd9c2d53f5da4186 | test_menu.py | 72,022 | 7 | 68 | test_remember_collapsed | https://github.com/wagtail/wagtail.git | Reformat with black | 92 | 0 | 15,818 | 11 |
|
1 | 8 | def _get_index_and_columns(df):
return len(df.index), len(df.columns)
@ray.remote(num_returns=4) | modin/core/execution/ray/implementations/pandas_on_ray/partitioning/partition.py | 50 | @ray.remote(num_returns=4) | modin | {
"docstring": "\n Get the number of rows and columns of a pandas DataFrame.\n\n Parameters\n ----------\n df : pandas.DataFrame\n A pandas DataFrame which dimensions are needed.\n\n Returns\n -------\n int\n The number of rows.\n int\n The number of columns.\n ",
"language": "en",
"n_whitespaces": 84,
"n_words": 35,
"vocab_size": 27
} | 6 | Python | 6 | e7cb2e82f8b9c7a68f82abdd3b6011d661230b7e | partition.py | 153,345 | 2 | 20 | get_index_and_columns | https://github.com/modin-project/modin.git | REFACTOR-#4251: define public interfaces in `modin.core.execution.ray` module (#3868)
Signed-off-by: Anatoly Myachev <[email protected]> | 11 | 1 | 35,381 | 9 |
1 | 6 | def explain(self) -> Tuple[List[Explanation], List[float]]:
| ludwig/explain/explainer.py | 30 | ludwig | {
"docstring": "Explain the model's predictions.\n\n # Return\n\n :return: (Tuple[List[Explanation], List[float]]) `(explanations, expected_values)`\n `explanations`: (List[Explanation]) A list of explanations, one for each row in the input data. Each\n explanation contains the feature attributions for each label in the target feature's vocab.\n\n `expected_values`: (List[float]) of length [output feature cardinality] Expected value for each label in\n the target feature's vocab.\n ",
"language": "en",
"n_whitespaces": 121,
"n_words": 56,
"vocab_size": 40
} | 5 | Python | 5 | 1caede3a2da4ec71cb8650c7e45120c26948a5b9 | explainer.py | 8,248 | 12 | 19 | explain | https://github.com/ludwig-ai/ludwig.git | Explanation API and feature importance for GBM (#2564)
* add docstring for explain_ig
* solidify Explainer API
* add gbm explainer
* add dataclasses for typed explanations
* add GBM feature importance
* remove unused imports
* add tests
* fix test
* extract explanation into file
* rename base to explainer
* remove unused kwargs
* remove device placement from base explainer
* use proper field from gbm | 12 | 0 | 1,382 | 6 |