|
--- |
|
annotations_creators: |
|
- shibing624 |
|
language_creators: |
|
- shibing624 |
|
language: |
|
- zh |
|
license: |
|
- cc-by-4.0 |
|
multilinguality: |
|
- monolingual |
|
size_categories: |
|
- 100K<n<20M |
|
source_datasets: |
|
- https://github.com/shibing624/text2vec |
|
- https://github.com/IceFlameWorm/NLP_Datasets/tree/master/ATEC |
|
- http://icrc.hitsz.edu.cn/info/1037/1162.htm |
|
- http://icrc.hitsz.edu.cn/Article/show/171.html |
|
- https://arxiv.org/abs/1908.11828 |
|
- https://github.com/pluto-junzeng/CNSD |
|
task_categories: |
|
- text-classification |
|
task_ids: |
|
- natural-language-inference |
|
- semantic-similarity-scoring |
|
- text-scoring |
|
paperswithcode_id: snli |
|
pretty_name: Stanford Natural Language Inference |
|
--- |
|
# Dataset Card for NLI_zh |
|
## Table of Contents |
|
- [Dataset Description](#dataset-description) |
|
- [Dataset Summary](#dataset-summary) |
|
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) |
|
- [Languages](#languages) |
|
- [Dataset Structure](#dataset-structure) |
|
- [Data Instances](#data-instances) |
|
- [Data Fields](#data-fields) |
|
- [Data Splits](#data-splits) |
|
- [Dataset Creation](#dataset-creation) |
|
- [Curation Rationale](#curation-rationale) |
|
- [Source Data](#source-data) |
|
- [Annotations](#annotations) |
|
- [Personal and Sensitive Information](#personal-and-sensitive-information) |
|
- [Considerations for Using the Data](#considerations-for-using-the-data) |
|
- [Social Impact of Dataset](#social-impact-of-dataset) |
|
- [Discussion of Biases](#discussion-of-biases) |
|
- [Other Known Limitations](#other-known-limitations) |
|
- [Additional Information](#additional-information) |
|
- [Dataset Curators](#dataset-curators) |
|
- [Licensing Information](#licensing-information) |
|
- [Citation Information](#citation-information) |
|
- [Contributions](#contributions) |
|
## Dataset Description |
|
- **Repository:** [Chinese NLI dataset](https://github.com/shibing624/text2vec) |
|
- **Leaderboard:** [NLI_zh leaderboard](https://github.com/shibing624/text2vec) (located on the homepage) |
|
- **Size of downloaded dataset files:** 16 MB |
|
- **Total amount of disk used:** 42 MB |
|
### Dataset Summary |
|
|
|
常见中文语义匹配数据集,包含[ATEC](https://github.com/IceFlameWorm/NLP_Datasets/tree/master/ATEC)、[BQ](http://icrc.hitsz.edu.cn/info/1037/1162.htm)、[LCQMC](http://icrc.hitsz.edu.cn/Article/show/171.html)、[PAWSX](https://arxiv.org/abs/1908.11828)、[STS-B](https://github.com/pluto-junzeng/CNSD)共5个任务。 |
|
|
|
数据源: |
|
|
|
- ATEC: https://github.com/IceFlameWorm/NLP_Datasets/tree/master/ATEC |
|
- BQ: http://icrc.hitsz.edu.cn/info/1037/1162.htm |
|
- LCQMC: http://icrc.hitsz.edu.cn/Article/show/171.html |
|
- PAWSX: https://arxiv.org/abs/1908.11828 |
|
- STS-B: https://github.com/pluto-junzeng/CNSD |
|
|
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
Supported Tasks: 支持中文文本匹配任务,文本相似度计算等相关任务。 |
|
|
|
中文匹配任务的结果目前在顶会paper上出现较少,我罗列一个我自己训练的结果: |
|
|
|
**Leaderboard:** [NLI_zh leaderboard](https://github.com/shibing624/text2vec) |
|
|
|
### Languages |
|
|
|
数据集均是简体中文文本。 |
|
|
|
## Dataset Structure |
|
### Data Instances |
|
An example of 'train' looks as follows. |
|
``` |
|
{ |
|
"sentence1": "刘诗诗杨幂谁漂亮", |
|
"sentence2": "刘诗诗和杨幂谁漂亮", |
|
"label": 1, |
|
} |
|
{ |
|
"sentence1": "汇理财怎么样", |
|
"sentence2": "怎么样去理财", |
|
"label": 0, |
|
} |
|
``` |
|
|
|
### Data Fields |
|
The data fields are the same among all splits. |
|
|
|
- `sentence1`: a `string` feature. |
|
- `sentence2`: a `string` feature. |
|
- `label`: a classification label, with possible values including `similarity` (1), `dissimilarity` (0). |
|
|
|
### Data Splits |
|
|
|
#### ATEC |
|
|
|
```shell |
|
$ wc -l ATEC/* |
|
20000 ATEC/ATEC.test.data |
|
62477 ATEC/ATEC.train.data |
|
20000 ATEC/ATEC.valid.data |
|
102477 total |
|
``` |
|
|
|
#### BQ |
|
|
|
```shell |
|
$ wc -l BQ/* |
|
10000 BQ/BQ.test.data |
|
100000 BQ/BQ.train.data |
|
10000 BQ/BQ.valid.data |
|
120000 total |
|
``` |
|
|
|
#### LCQMC |
|
|
|
```shell |
|
$ wc -l LCQMC/* |
|
12500 LCQMC/LCQMC.test.data |
|
238766 LCQMC/LCQMC.train.data |
|
8802 LCQMC/LCQMC.valid.data |
|
260068 total |
|
``` |
|
|
|
#### PAWSX |
|
|
|
```shell |
|
$ wc -l PAWSX/* |
|
2000 PAWSX/PAWSX.test.data |
|
49401 PAWSX/PAWSX.train.data |
|
2000 PAWSX/PAWSX.valid.data |
|
53401 total |
|
``` |
|
|
|
#### STS-B |
|
|
|
```shell |
|
$ wc -l STS-B/* |
|
1361 STS-B/STS-B.test.data |
|
5231 STS-B/STS-B.train.data |
|
1458 STS-B/STS-B.valid.data |
|
8050 total |
|
``` |
|
|
|
## Dataset Creation |
|
### Curation Rationale |
|
作为中文NLI(natural langauge inference)数据集,这里把这个数据集上传到huggingface的datasets,方便大家使用。 |
|
### Source Data |
|
#### Initial Data Collection and Normalization |
|
#### Who are the source language producers? |
|
数据集的版权归原作者所有,使用各数据集时请尊重原数据集的版权。 |
|
|
|
BQ: Jing Chen, Qingcai Chen, Xin Liu, Haijun Yang, Daohe Lu, Buzhou Tang, The BQ Corpus: A Large-scale Domain-specific Chinese Corpus For Sentence Semantic Equivalence Identification EMNLP2018. |
|
### Annotations |
|
#### Annotation process |
|
|
|
#### Who are the annotators? |
|
原作者。 |
|
|
|
### Personal and Sensitive Information |
|
|
|
## Considerations for Using the Data |
|
### Social Impact of Dataset |
|
This dataset was developed as a benchmark for evaluating representational systems for text, especially including those induced by representation learning methods, in the task of predicting truth conditions in a given context. |
|
|
|
Systems that are successful at such a task may be more successful in modeling semantic representations. |
|
### Discussion of Biases |
|
### Other Known Limitations |
|
## Additional Information |
|
### Dataset Curators |
|
|
|
- 苏剑林对文件名称有整理 |
|
- 我上传到huggingface的datasets |
|
|
|
### Licensing Information |
|
|
|
用于学术研究。 |
|
|
|
The BQ corpus is free to the public for academic research. |
|
|
|
|
|
### Contributions |
|
|
|
Thanks to [@shibing624](https://github.com/shibing624) add this dataset. |
|
|