File size: 4,701 Bytes
17949b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8652912
 
 
 
 
 
 
 
17949b7
8652912
1885690
8652912
 
 
1885690
8652912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1885690
8652912
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
dataset_info:
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: score
    dtype: float64
  - name: langs
    dtype: string
  splits:
  - name: s1_ar_ar
    num_bytes: 2368220
    num_examples: 11512
  - name: s2_en_en
    num_bytes: 1615474
    num_examples: 11512
  - name: s3_multilingual_1
    num_bytes: 1917019
    num_examples: 5756
  - name: s4_multilingual_2
    num_bytes: 1917019
    num_examples: 5756
  download_size: 3993518
  dataset_size: 7817732
configs:
- config_name: default
  data_files:
  - split: s1_ar_ar
    path: data/s1_ar_ar-*
  - split: s2_en_en
    path: data/s2_en_en-*
  - split: s3_multilingual_1
    path: data/s3_multilingual_1-*
  - split: s4_multilingual_2
    path: data/s4_multilingual_2-*
license: apache-2.0
task_categories:
- sentence-similarity
language:
- ar
- en
size_categories:
- 10K<n<100K
---

# SILMA STS Arabic/English Dataset - v1.0

## Overview

The **SILMA STS Arabic/English Dataset - v1.0** is a dataset designed for training and evaluating sentence embeddings for Arabic and English tasks. It consists of five different splits that cover monolingual and multilingual sentence pairs, with human-annotated similarity scores. The dataset includes both Arabic-to-Arabic and English-to-English pairs, as well as cross-lingual Arabic-English pairs, making it a valuable resource for multilingual and cross-lingual semantic similarity tasks.

## Dataset Structure

The dataset is divided into five splits, each containing sentence pairs and similarity scores.

### Split 1: ar_ar
- **Description:** Contains Arabic-to-Arabic sentence pairs with similarity scores.
- **Size:** 11,512 examples
- **JSON Sample:**
  ```json
  {
    "sentence1": "رجلين يلعبان الشطرنج",
    "sentence2": "ثلاثة رجال يلعبون الشطرنج",
    "score": 0.52,
    "langs": "ar-ar"
  }

### Split 2: en_en
- **Description:** Contains English-to-English sentence pairs with similarity scores.
- **Size:** 11,512 examples
- **JSON Sample:**
  ```json
  {
    "sentence1": "A plane is taking off.",
    "sentence2": "An air plane is taking off.",
    "score": 1.0
  }

### Split 3: multilingual_1
- **Description:** Contains sentence pairs from both Arabic and English, with similarity scores. The sentences are aligned cross-lingually.
- **Size:** 5,756 examples
- **JSON Sample:**
  ```json
  {
    "sentence1": "The man is playing the guitar. | الرجل يعزف على الغيتار",
    "sentence2": "The man is playing the piano. | الرجل يعزف على البيانو",
    "score": 0.32
  }

### Split 4: multilingual_2
- **Description:** Similar to Split 3, but with reversed language pairs.
- **Size:** 5,756 examples
- **JSON Sample:**
  ```json
  {
    "sentence1": "رجل يدخن | A man is smoking.",
    "sentence2": "رجل يتزلج | A man is skating.",
    "score": 0.1
  }

## Column Descriptions

Each split in the dataset contains the following columns:

- *sentence1:* The first sentence in the pair. It can be in Arabic or English depending on the split.
- *sentence2:* The second sentence in the pair. It can also be in Arabic or English depending on the split.
- *score:* A floating-point number between 0 and 1 representing the semantic similarity between the two sentences, where 1 indicates maximum similarity.
- *langs:* Indicates the language pair of the sentences. The possible values are:
  - ar-ar (Arabic-Arabic)
  - en-en (English-English)
  - Multilingual-1 (Multilingual, English-Arabic)
  - Multilingual-2 (Multilingual, Arabic-English)

## Use Cases

The **SILMA STS Arabic/English Dataset - v1.0** can be used in various NLP tasks, including but not limited to:

1. **Sentence Embedding Training:** The dataset is well-suited for training models that generate sentence embeddings, enabling effective comparison of sentence-level semantics in both Arabic and English.
2. **Multilingual and Cross-Lingual STS:** This dataset can be used for evaluating the performance of multilingual and cross-lingual sentence transformers, as it includes both monolingual and multilingual sentence pairs.
3. **Semantic Similarity Tasks:** The dataset can be utilized in semantic similarity benchmarks, particularly for Arabic and English language pairs.
4. **Cross-Lingual Transfer Learning:** The multilingual sentence pairs provide a good opportunity for training models in cross-lingual transfer learning, where knowledge from one language can be transferred to another.

This dataset is a useful resource for researchers and developers working on NLP tasks that involve sentence semantics across different languages, especially for Arabic and English.