Datasets:
File size: 9,132 Bytes
9de948e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import csv
import os
import datasets
_CITATION = """\
@inproceedings{socher-etal-2013-recursive,
title = "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank",
author = "Socher, Richard and Perelygin, Alex and Wu, Jean and
Chuang, Jason and Manning, Christopher D. and Ng, Andrew and Potts, Christopher",
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
month = oct,
year = "2013",
address = "Seattle, Washington, USA",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/D13-1170",
pages = "1631--1642",
}
"""
_DESCRIPTION = """\
The Stanford Sentiment Treebank, the first corpus with fully labeled parse trees that allows for a
complete analysis of the compositional effects of sentiment in language.
"""
_HOMEPAGE = "https://nlp.stanford.edu/sentiment/"
_LICENSE = ""
_DEFAULT_URL = "https://nlp.stanford.edu/~socherr/stanfordSentimentTreebank.zip"
_PTB_URL = "https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip"
class Sst(datasets.GeneratorBasedBuilder):
"""The Stanford Sentiment Treebank"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="default",
version=VERSION,
description="Sentences and relative parse trees annotated with sentiment labels.",
),
datasets.BuilderConfig(
name="dictionary",
version=VERSION,
description="List of all possible sub-sentences (phrases) with their sentiment label.",
),
datasets.BuilderConfig(
name="ptb", version=VERSION, description="Penn Treebank-formatted trees with labelled sub-sentences."
),
]
DEFAULT_CONFIG_NAME = "default"
def _info(self):
if self.config.name == "default":
features = datasets.Features(
{
"sentence": datasets.Value("string"),
"label": datasets.Value("float"),
"tokens": datasets.Value("string"),
"tree": datasets.Value("string"),
}
)
elif self.config.name == "dictionary":
features = datasets.Features({"phrase": datasets.Value("string"), "label": datasets.Value("float")})
else:
features = datasets.Features(
{
"ptb_tree": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
default_dir = dl_manager.download_and_extract(_DEFAULT_URL)
ptb_dir = dl_manager.download_and_extract(_PTB_URL)
file_paths = {}
for split_index in range(0, 4):
file_paths[split_index] = {
"phrases_path": os.path.join(default_dir, "stanfordSentimentTreebank/dictionary.txt"),
"labels_path": os.path.join(default_dir, "stanfordSentimentTreebank/sentiment_labels.txt"),
"tokens_path": os.path.join(default_dir, "stanfordSentimentTreebank/SOStr.txt"),
"trees_path": os.path.join(default_dir, "stanfordSentimentTreebank/STree.txt"),
"splits_path": os.path.join(default_dir, "stanfordSentimentTreebank/datasetSplit.txt"),
"sentences_path": os.path.join(default_dir, "stanfordSentimentTreebank/datasetSentences.txt"),
"ptb_filepath": None,
"split_id": str(split_index),
}
ptb_file_paths = {}
for ptb_split in ["train", "dev", "test"]:
ptb_file_paths[ptb_split] = {
"phrases_path": None,
"labels_path": None,
"tokens_path": None,
"trees_path": None,
"splits_path": None,
"sentences_path": None,
"ptb_filepath": os.path.join(ptb_dir, "trees/" + ptb_split + ".txt"),
"split_id": None,
}
if self.config.name == "default":
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=file_paths[1]),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs=file_paths[3]),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=file_paths[2]),
]
elif self.config.name == "dictionary":
return [datasets.SplitGenerator(name="dictionary", gen_kwargs=file_paths[0])]
else:
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=ptb_file_paths["train"]),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs=ptb_file_paths["dev"]),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=ptb_file_paths["test"]),
]
def _generate_examples(
self, phrases_path, labels_path, tokens_path, trees_path, splits_path, sentences_path, split_id, ptb_filepath
):
if self.config.name == "ptb":
with open(ptb_filepath, encoding="utf-8") as fp:
ptb_reader = csv.reader(fp, delimiter="\t", quoting=csv.QUOTE_NONE)
for id_, row in enumerate(ptb_reader):
yield id_, {"ptb_tree": row[0]}
else:
labels = {}
phrases = {}
with open(labels_path, encoding="utf-8") as g, open(phrases_path, encoding="utf-8") as f:
label_reader = csv.DictReader(g, delimiter="|", quoting=csv.QUOTE_NONE)
for row in label_reader:
labels[row["phrase ids"]] = float(row["sentiment values"])
phrase_reader = csv.reader(f, delimiter="|", quoting=csv.QUOTE_NONE)
if self.config.name == "dictionary":
for id_, row in enumerate(phrase_reader):
yield id_, {"phrase": row[0], "label": labels[row[1]]}
else:
for row in phrase_reader:
phrases[row[0]] = labels[row[1]]
# Case config=="default"
# Read parse trees for each complete sentence
trees = {}
with open(tokens_path, encoding="utf-8") as tok, open(trees_path, encoding="utf-8") as tr:
tok_reader = csv.reader(tok, delimiter="\t", quoting=csv.QUOTE_NONE)
tree_reader = csv.reader(tr, delimiter="\t", quoting=csv.QUOTE_NONE)
for i, row in enumerate(tok_reader, start=1):
trees[i] = {}
trees[i]["tokens"] = row[0]
for i, row in enumerate(tree_reader, start=1):
trees[i]["tree"] = row[0]
with open(splits_path, encoding="utf-8") as spl, open(sentences_path, encoding="utf-8") as snt:
splits_reader = csv.DictReader(spl, delimiter=",", quoting=csv.QUOTE_NONE)
splits = {row["sentence_index"]: row["splitset_label"] for row in splits_reader}
sentence_reader = csv.DictReader(snt, delimiter="\t", quoting=csv.QUOTE_NONE)
for id_, row in enumerate(sentence_reader):
# fix encoding, see https://github.com/huggingface/datasets/pull/1961#discussion_r585969890
row["sentence"] = (
row["sentence"]
.encode("utf-8")
.replace(b"\xc3\x83\xc2", b"\xc3")
.replace(b"\xc3\x82\xc2", b"\xc2")
.decode("utf-8")
)
row["sentence"] = row["sentence"].replace("-LRB-", "(").replace("-RRB-", ")")
if splits[row["sentence_index"]] == split_id:
tokens = trees[int(row["sentence_index"])]["tokens"]
parse_tree = trees[int(row["sentence_index"])]["tree"]
yield id_, {
"sentence": row["sentence"],
"label": phrases[row["sentence"]],
"tokens": tokens,
"tree": parse_tree,
}
|