sst / README.md
lhoestq's picture
lhoestq HF staff
rename configs to config_name
6b03ff1
|
raw
history blame
6.68 kB
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- text-scoring
- sentiment-classification
- sentiment-scoring
paperswithcode_id: sst
pretty_name: Stanford Sentiment Treebank
dataset_info:
- config_name: default
features:
- name: sentence
dtype: string
- name: label
dtype: float32
- name: tokens
dtype: string
- name: tree
dtype: string
splits:
- name: train
num_bytes: 2818768
num_examples: 8544
- name: validation
num_bytes: 366205
num_examples: 1101
- name: test
num_bytes: 730154
num_examples: 2210
download_size: 7162356
dataset_size: 3915127
- config_name: dictionary
features:
- name: phrase
dtype: string
- name: label
dtype: float32
splits:
- name: dictionary
num_bytes: 12121843
num_examples: 239232
download_size: 7162356
dataset_size: 12121843
- config_name: ptb
features:
- name: ptb_tree
dtype: string
splits:
- name: train
num_bytes: 2185694
num_examples: 8544
- name: validation
num_bytes: 284132
num_examples: 1101
- name: test
num_bytes: 566248
num_examples: 2210
download_size: 7162356
dataset_size: 3036074
config_names:
- default
- dictionary
- ptb
---
# Dataset Card for sst
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://nlp.stanford.edu/sentiment/index.html
- **Repository:** [Needs More Information]
- **Paper:** [Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank](https://www.aclweb.org/anthology/D13-1170/)
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
The Stanford Sentiment Treebank is the first corpus with fully labeled parse trees that allows for a complete analysis of the compositional effects of sentiment in language.
### Supported Tasks and Leaderboards
- `sentiment-scoring`: Each complete sentence is annotated with a `float` label that indicates its level of positive sentiment from 0.0 to 1.0. One can decide to use only complete sentences or to include the contributions of the sub-sentences (aka phrases). The labels for each phrase are included in the `dictionary` configuration. To obtain all the phrases in a sentence we need to visit the parse tree included with each example. In contrast, the `ptb` configuration explicitly provides all the labelled parse trees in Penn Treebank format. Here the labels are binned in 5 bins from 0 to 4.
- `sentiment-classification`: We can transform the above into a binary sentiment classification task by rounding each label to 0 or 1.
### Languages
The text in the dataset is in English
## Dataset Structure
### Data Instances
For the `default` configuration:
```
{'label': 0.7222200036048889,
'sentence': 'Yet the act is still charming here .',
'tokens': 'Yet|the|act|is|still|charming|here|.',
'tree': '15|13|13|10|9|9|11|12|10|11|12|14|14|15|0'}
```
For the `dictionary` configuration:
```
{'label': 0.7361099720001221,
'phrase': 'still charming'}
```
For the `ptb` configuration:
```
{'ptb_tree': '(3 (2 Yet) (3 (2 (2 the) (2 act)) (3 (4 (3 (2 is) (3 (2 still) (4 charming))) (2 here)) (2 .))))'}
```
### Data Fields
- `sentence`: a complete sentence expressing an opinion about a film
- `label`: the degree of "positivity" of the opinion, on a scale between 0.0 and 1.0
- `tokens`: a sequence of tokens that form a sentence
- `tree`: a sentence parse tree formatted as a parent pointer tree
- `phrase`: a sub-sentence of a complete sentence
- `ptb_tree`: a sentence parse tree formatted in Penn Treebank-style, where each component's degree of positive sentiment is labelled on a scale from 0 to 4
### Data Splits
The set of complete sentences (both `default` and `ptb` configurations) is split into a training, validation and test set. The `dictionary` configuration has only one split as it is used for reference rather than for learning.
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
Rotten Tomatoes reviewers.
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
```
@inproceedings{socher-etal-2013-recursive,
title = "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank",
author = "Socher, Richard and
Perelygin, Alex and
Wu, Jean and
Chuang, Jason and
Manning, Christopher D. and
Ng, Andrew and
Potts, Christopher",
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
month = oct,
year = "2013",
address = "Seattle, Washington, USA",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/D13-1170",
pages = "1631--1642",
}
```
### Contributions
Thanks to [@patpizio](https://github.com/patpizio) for adding this dataset.