Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
License:
Convert dataset to Parquet
#7
by
albertvillanova
HF staff
- opened
- README.md +14 -5
- data/test-00000-of-00001.parquet +3 -0
- data/train-00000-of-00001.parquet +3 -0
- data/validation-00000-of-00001.parquet +3 -0
- dataset_infos.json +0 -1
- sst2.py +0 -105
README.md
CHANGED
@@ -33,16 +33,25 @@ dataset_info:
|
|
33 |
'1': positive
|
34 |
splits:
|
35 |
- name: train
|
36 |
-
num_bytes:
|
37 |
num_examples: 67349
|
38 |
- name: validation
|
39 |
-
num_bytes:
|
40 |
num_examples: 872
|
41 |
- name: test
|
42 |
-
num_bytes:
|
43 |
num_examples: 1821
|
44 |
-
download_size:
|
45 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
---
|
47 |
|
48 |
# Dataset Card for [Dataset Name]
|
|
|
33 |
'1': positive
|
34 |
splits:
|
35 |
- name: train
|
36 |
+
num_bytes: 4681603
|
37 |
num_examples: 67349
|
38 |
- name: validation
|
39 |
+
num_bytes: 106252
|
40 |
num_examples: 872
|
41 |
- name: test
|
42 |
+
num_bytes: 216640
|
43 |
num_examples: 1821
|
44 |
+
download_size: 3331058
|
45 |
+
dataset_size: 5004495
|
46 |
+
configs:
|
47 |
+
- config_name: default
|
48 |
+
data_files:
|
49 |
+
- split: train
|
50 |
+
path: data/train-*
|
51 |
+
- split: validation
|
52 |
+
path: data/validation-*
|
53 |
+
- split: test
|
54 |
+
path: data/test-*
|
55 |
---
|
56 |
|
57 |
# Dataset Card for [Dataset Name]
|
data/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20d27a86c0c59acb746a41a481ebb1fc71edb72d94b5ccee7f23b9041b17adcf
|
3 |
+
size 147787
|
data/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7921283b75a42e685f50edecb96798607ea0fcbfd0739ee8975f22c12d55f09
|
3 |
+
size 3110458
|
data/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb00fe008f6828f86ba2beda8415a4cf5da0c884f21c5f238c87131b5aa19529
|
3 |
+
size 72813
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "The Stanford Sentiment Treebank consists of sentences from movie reviews and\nhuman annotations of their sentiment. The task is to predict the sentiment of a\ngiven sentence. We use the two-way (positive/negative) class split, and use only\nsentence-level labels.\n", "citation": "@inproceedings{socher2013recursive,\n title={Recursive deep models for semantic compositionality over a sentiment treebank},\n author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},\n booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},\n pages={1631--1642},\n year={2013}\n}\n", "homepage": "https://nlp.stanford.edu/sentiment/", "license": "Unknown", "features": {"idx": {"dtype": "int32", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["negative", "positive"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "sst2", "config_name": "default", "version": {"version_str": "2.0.0", "description": null, "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4690022, "num_examples": 67349, "dataset_name": "sst2"}, "validation": {"name": "validation", "num_bytes": 106361, "num_examples": 872, "dataset_name": "sst2"}, "test": {"name": "test", "num_bytes": 216868, "num_examples": 1821, "dataset_name": "sst2"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/SST-2.zip": {"num_bytes": 7439277, "checksum": "d67e16fb55739c1b32cdce9877596db1c127dc322d93c082281f64057c16deaa"}}, "download_size": 7439277, "post_processing_size": null, "dataset_size": 5013251, "size_in_bytes": 12452528}}
|
|
|
|
sst2.py
DELETED
@@ -1,105 +0,0 @@
|
|
1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
"""SST-2 (Stanford Sentiment Treebank v2) dataset."""
|
15 |
-
|
16 |
-
|
17 |
-
import csv
|
18 |
-
import os
|
19 |
-
|
20 |
-
import datasets
|
21 |
-
|
22 |
-
|
23 |
-
_CITATION = """\
|
24 |
-
@inproceedings{socher2013recursive,
|
25 |
-
title={Recursive deep models for semantic compositionality over a sentiment treebank},
|
26 |
-
author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},
|
27 |
-
booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},
|
28 |
-
pages={1631--1642},
|
29 |
-
year={2013}
|
30 |
-
}
|
31 |
-
"""
|
32 |
-
|
33 |
-
_DESCRIPTION = """\
|
34 |
-
The Stanford Sentiment Treebank consists of sentences from movie reviews and
|
35 |
-
human annotations of their sentiment. The task is to predict the sentiment of a
|
36 |
-
given sentence. We use the two-way (positive/negative) class split, and use only
|
37 |
-
sentence-level labels.
|
38 |
-
"""
|
39 |
-
|
40 |
-
_HOMEPAGE = "https://nlp.stanford.edu/sentiment/"
|
41 |
-
|
42 |
-
_LICENSE = "Unknown"
|
43 |
-
|
44 |
-
_URL = "https://dl.fbaipublicfiles.com/glue/data/SST-2.zip"
|
45 |
-
|
46 |
-
|
47 |
-
class Sst2(datasets.GeneratorBasedBuilder):
|
48 |
-
"""SST-2 dataset."""
|
49 |
-
|
50 |
-
VERSION = datasets.Version("2.0.0")
|
51 |
-
|
52 |
-
def _info(self):
|
53 |
-
features = datasets.Features(
|
54 |
-
{
|
55 |
-
"idx": datasets.Value("int32"),
|
56 |
-
"sentence": datasets.Value("string"),
|
57 |
-
"label": datasets.features.ClassLabel(names=["negative", "positive"]),
|
58 |
-
}
|
59 |
-
)
|
60 |
-
return datasets.DatasetInfo(
|
61 |
-
description=_DESCRIPTION,
|
62 |
-
features=features,
|
63 |
-
homepage=_HOMEPAGE,
|
64 |
-
license=_LICENSE,
|
65 |
-
citation=_CITATION,
|
66 |
-
)
|
67 |
-
|
68 |
-
def _split_generators(self, dl_manager):
|
69 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
70 |
-
return [
|
71 |
-
datasets.SplitGenerator(
|
72 |
-
name=datasets.Split.TRAIN,
|
73 |
-
gen_kwargs={
|
74 |
-
"file_paths": dl_manager.iter_files(dl_dir),
|
75 |
-
"data_filename": "train.tsv",
|
76 |
-
},
|
77 |
-
),
|
78 |
-
datasets.SplitGenerator(
|
79 |
-
name=datasets.Split.VALIDATION,
|
80 |
-
gen_kwargs={
|
81 |
-
"file_paths": dl_manager.iter_files(dl_dir),
|
82 |
-
"data_filename": "dev.tsv",
|
83 |
-
},
|
84 |
-
),
|
85 |
-
datasets.SplitGenerator(
|
86 |
-
name=datasets.Split.TEST,
|
87 |
-
gen_kwargs={
|
88 |
-
"file_paths": dl_manager.iter_files(dl_dir),
|
89 |
-
"data_filename": "test.tsv",
|
90 |
-
},
|
91 |
-
),
|
92 |
-
]
|
93 |
-
|
94 |
-
def _generate_examples(self, file_paths, data_filename):
|
95 |
-
for file_path in file_paths:
|
96 |
-
filename = os.path.basename(file_path)
|
97 |
-
if filename == data_filename:
|
98 |
-
with open(file_path, encoding="utf8") as f:
|
99 |
-
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
100 |
-
for idx, row in enumerate(reader):
|
101 |
-
yield idx, {
|
102 |
-
"idx": row["index"] if "index" in row else idx,
|
103 |
-
"sentence": row["sentence"],
|
104 |
-
"label": int(row["label"]) if "label" in row else -1,
|
105 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|