label
stringlengths
1
61
code
stringlengths
4k
8k
code_compressed
null
write phenotype file
import csv import hashlib import io import json import requests import shutil from typing import Dict from typing import List from typing import Optional from typing import TextIO import numpy as np from base.webqtlConfig import TMPDIR from base.trait import create_trait from utility.redis_tools import get_redis_conn from utility.tools import locate, get_setting, GN3_LOCAL_URL from wqflask.database import database_connection def run_rqtl(trait_name, vals, samples, dataset, pair_scan, mapping_scale, model, method, num_perm, perm_strata_list, do_control, control_marker, manhattan_plot, cofactors): """Run R/qtl by making a request to the GN3 endpoint and reading in the output file(s)""" pheno_file = METHOD_NAME(trait_name, samples, vals, dataset, cofactors, perm_strata_list) if dataset.group.genofile: geno_file = locate(dataset.group.genofile, "genotype") else: geno_file = locate(dataset.group.name + ".geno", "genotype") post_data = { "pheno_file": pheno_file, "geno_file": geno_file, "model": model, "method": method, "nperm": num_perm, "scale": mapping_scale } if pair_scan: post_data["pairscan"] = True if cofactors: covarstruct_file = write_covarstruct_file(cofactors) post_data["covarstruct"] = covarstruct_file if do_control == "true" and control_marker: post_data["control"] = control_marker if not manhattan_plot and not pair_scan: post_data["interval"] = True if cofactors: post_data["addcovar"] = True if perm_strata_list: post_data["pstrata"] = True rqtl_output = requests.post(GN3_LOCAL_URL + "api/rqtl/compute", data=post_data).json() if num_perm > 0: return rqtl_output['perm_results'], rqtl_output['suggestive'], rqtl_output['significant'], rqtl_output['results'] else: return rqtl_output['results'] def get_hash_of_textio(the_file: TextIO) -> str: """Given a StringIO, return the hash of its contents""" the_file.seek(0) hash_of_file = hashlib.md5(the_file.read().encode()).hexdigest() hash_of_file = hash_of_file.replace("/", "_") # Replace / with _ to prevent issue with filenames being translated to directories return hash_of_file def write_covarstruct_file(cofactors: str) -> str: """ Given list of cofactors (as comma-delimited string), write a comma-delimited file where the first column consists of cofactor names and the second column indicates whether they're numerical or categorical """ trait_datatype_json = None with database_connection(get_setting("SQL_URI")) as conn, conn.cursor() as cursor: cursor.execute("SELECT value FROM TraitMetadata WHERE type='trait_data_type'") trait_datatype_json = json.loads(cursor.fetchone()[0]) covar_struct_file = io.StringIO() writer = csv.writer(covar_struct_file, delimiter="\t", quoting = csv.QUOTE_NONE) for cofactor in cofactors.split(","): datatype = trait_datatype_json[cofactor] if cofactor in trait_datatype_json else "numerical" cofactor_name = cofactor.split(":")[0] writer.writerow([cofactor_name, datatype]) hash_of_file = get_hash_of_textio(covar_struct_file) file_path = TMPDIR + hash_of_file + ".csv" with open(file_path, "w") as fd: covar_struct_file.seek(0) shutil.copyfileobj(covar_struct_file, fd) return file_path def METHOD_NAME(trait_name: str, samples: List[str], vals: List, dataset_ob, cofactors: Optional[str] = None, perm_strata_list: Optional[List] = None) -> TextIO: """Given trait name, sample list, value list, dataset ob, and optional string representing cofactors, return the file's full path/name """ cofactor_data = cofactors_to_dict(cofactors, dataset_ob, samples) pheno_file = io.StringIO() writer = csv.writer(pheno_file, delimiter="\t", quoting=csv.QUOTE_NONE) header_row = ["Samples", trait_name] header_row += [cofactor for cofactor in cofactor_data] if perm_strata_list: header_row.append("Strata") writer.writerow(header_row) for i, sample in enumerate(samples): this_row = [sample] if vals[i] != "x": this_row.append(str(round(float(vals[i]), 3))) else: this_row.append("NA") for cofactor in cofactor_data: this_row.append(cofactor_data[cofactor][i]) if perm_strata_list: this_row.append(perm_strata_list[i]) writer.writerow(this_row) hash_of_file = get_hash_of_textio(pheno_file) file_path = TMPDIR + hash_of_file + ".csv" with open(file_path, "w") as fd: pheno_file.seek(0) shutil.copyfileobj(pheno_file, fd) return file_path def cofactors_to_dict(cofactors: str, dataset_ob, samples) -> Dict: """Given a string of cofactors, the trait being mapped's dataset ob, and list of samples, return cofactor data as a Dict """ cofactor_dict = {} if cofactors: dataset_ob.group.get_samplelist(redis_conn=get_redis_conn()) sample_list = dataset_ob.group.samplelist for cofactor in cofactors.split(","): cofactor_name, cofactor_dataset = cofactor.split(":") if cofactor_dataset == dataset_ob.name: cofactor_dict[cofactor_name] = [] trait_ob = create_trait(dataset=dataset_ob, name=cofactor_name) sample_data = trait_ob.data for index, sample in enumerate(samples): if sample in sample_data: sample_value = str(round(float(sample_data[sample].value), 3)) cofactor_dict[cofactor_name].append(sample_value) else: cofactor_dict[cofactor_name].append("NA") return cofactor_dict
null
set reset address
# # This file is part of LiteX. # # Copyright (c) 2018 Jean-François Nguyen <[email protected]> # Copyright (c) 2018-2019 Florent Kermarrec <[email protected]> # SPDX-License-Identifier: BSD-2-Clause import os import subprocess from migen import * from litex.gen import * from litex import get_data_mod from litex.soc.interconnect import wishbone from litex.soc.cores.cpu import CPU, CPU_GCC_TRIPLE_RISCV32 # Variants ----------------------------------------------------------------------------------------- CPU_VARIANTS = ["standard"] # Minerva ------------------------------------------------------------------------------------------ class Minerva(CPU): category = "softcore" family = "riscv" name = "minerva" human_name = "Minerva" variants = CPU_VARIANTS data_width = 32 endianness = "little" gcc_triple = CPU_GCC_TRIPLE_RISCV32 linker_output_format = "elf32-littleriscv" nop = "nop" io_regions = {0x8000_0000: 0x8000_0000} # Origin, Length. # GCC Flags. @property def gcc_flags(self): flags = "-march=rv32im " flags += "-mabi=ilp32 " flags += "-D__minerva__ " return flags def __init__(self, platform, variant="standard"): self.platform = platform self.variant = variant self.reset = Signal() self.interrupt = Signal(32) self.ibus = ibus = wishbone.Interface() self.dbus = dbus = wishbone.Interface() self.periph_buses = [self.ibus, self.dbus] # Peripheral buses (Connected to main SoC's bus). self.memory_buses = [] # Memory buses (Connected directly to LiteDRAM). # # # self.cpu_params = dict( # Clk / Rst. i_clk = ClockSignal("sys"), i_rst = ResetSignal("sys") | self.reset, # IRQ. i_timer_interrupt = 0, i_software_interrupt = 0, i_external_interrupt = self.interrupt, # Ibus. o_ibus__stb = ibus.stb, o_ibus__cyc = ibus.cyc, o_ibus__cti = ibus.cti, o_ibus__bte = ibus.bte, o_ibus__we = ibus.we, o_ibus__adr = ibus.adr, o_ibus__dat_w = ibus.dat_w, o_ibus__sel = ibus.sel, i_ibus__ack = ibus.ack, i_ibus__err = ibus.err, i_ibus__dat_r = ibus.dat_r, # Dbus. o_dbus__stb = dbus.stb, o_dbus__cyc = dbus.cyc, o_dbus__cti = dbus.cti, o_dbus__bte = dbus.bte, o_dbus__we = dbus.we, o_dbus__adr = dbus.adr, o_dbus__dat_w = dbus.dat_w, o_dbus__sel = dbus.sel, i_dbus__ack = dbus.ack, i_dbus__err = dbus.err, i_dbus__dat_r = dbus.dat_r, ) def METHOD_NAME(self, reset_address): self.reset_address = reset_address @staticmethod def elaborate(reset_address, with_icache, with_dcache, with_muldiv, verilog_filename): cli_params = [] cli_params.append("--reset-addr={}".format(reset_address)) if with_icache: cli_params.append("--with-icache") if with_dcache: cli_params.append("--with-dcache") if with_muldiv: cli_params.append("--with-muldiv") cli_params.append("generate") cli_params.append("--type=v") sdir = get_data_mod("cpu", "minerva").data_location if subprocess.call(["python3", os.path.join(sdir, "cli.py"), *cli_params], stdout=open(verilog_filename, "w")): raise OSError("Unable to elaborate Minerva CPU, please check your Amaranth/Yosys install") def do_finalize(self): assert hasattr(self, "reset_address") verilog_filename = os.path.join(self.platform.output_dir, "gateware", "minerva.v") self.elaborate( reset_address = self.reset_address, with_icache = True, with_dcache = True, with_muldiv = True, verilog_filename = verilog_filename) self.platform.add_source(verilog_filename) self.specials += Instance("minerva_cpu", **self.cpu_params)
null
ishow image2
# -*- coding: utf-8 -*- import logging import utool as ut import wbia.plottool as pt # NOQA from wbia.plottool import interact_annotations print, rrr, profile = ut.inject2(__name__) logger = logging.getLogger('wbia') # DESTROY_OLD_WINDOW = True DESTROY_OLD_WINDOW = False def METHOD_NAME(ibs, gid, fnum=None, dodraw=True): r""" Args: ibs (IBEISController): wbia controller object gid (int): dodraw (bool): CommandLine: python -m wbia.viz.interact.interact_annotations2 --test-ishow_image2 --show Example: >>> # DISABLE_DOCTEST >>> from wbia.viz.interact.interact_annotations2 import * # NOQA >>> import wbia >>> # build test data >>> ibs = wbia.opendb('testdb1') >>> gid = 2 >>> dodraw = True >>> # execute function >>> self = ishow_image2(ibs, gid, dodraw) >>> # verify results >>> result = str(self) >>> print(result) >>> pt.show_if_requested() """ self = ANNOTATION_Interaction2(ibs, gid, fnum=fnum, dodraw=dodraw) return self class ANNOTATION_Interaction2(object): def __init__( self, ibs, gid, next_callback=None, prev_callback=None, rows_updated_callback=None, reset_window=True, dodraw=True, fnum=None, ): """ TODO: rename to interact image annotations? """ self.ibs = ibs self.gid = gid self.rows_updated_callback = rows_updated_callback img = ibs.get_images(self.gid) self.aid_list = ibs.get_image_aids(self.gid) bbox_list = ibs.get_annot_bboxes(self.aid_list) # verts_list = ibs.get_annot_verts(self.aid_list) # TODO theta_list = ibs.get_annot_thetas(self.aid_list) species_list = ibs.get_annot_species_texts(self.aid_list) # valid_species = ibs.get_all_species_texts() valid_species = [tup[1] for tup in ibs.get_working_species()] metadata_list = [ibs.get_annot_lazy_dict(aid) for aid in self.aid_list] for metadata in metadata_list: # eager eval on name metadata['name'] if True: interact_annotations.rrr() self.interact_ANNOTATIONS = interact_annotations.AnnotationInteraction( img, bbox_list=bbox_list, theta_list=theta_list, species_list=species_list, metadata_list=metadata_list, commit_callback=self.commit_callback, # TODO: get default species in a better way default_species=self.ibs.cfg.detect_cfg.species_text, next_callback=next_callback, prev_callback=prev_callback, fnum=fnum, valid_species=valid_species, # figure_to_use=None if reset_window else self.interact_ANNOTATIONS.fig, ) if dodraw: self.interact_ANNOTATIONS.start() # pt.update() def commit_callback( self, unchanged_indices, deleted_indices, changed_indices, changed_annottups, new_annottups, ): """ TODO: Rename to commit_callback Callback from interact_annotations to ibs for when data is modified """ logger.info('[interact_annot2] enter commit_callback') logger.info( '[interact_annot2] nUnchanged=%d, nDelete=%d, nChanged=%d, nNew=%d' % ( len(unchanged_indices), len(deleted_indices), len(changed_indices), len(new_annottups), ) ) rows_updated = False # Delete annotations if len(deleted_indices) > 0: rows_updated = True deleted_aids = [self.aid_list[del_index] for del_index in deleted_indices] logger.info('[interact_annot2] deleted_indexes: {!r}'.format(deleted_indices)) logger.info('[interact_annot2] deleted_aids: {!r}'.format(deleted_aids)) self.ibs.delete_annots(deleted_aids) # Set/Change annotations if len(changed_annottups) > 0: changed_aid = [self.aid_list[index] for index in changed_indices] bbox_list1 = [bbox for (bbox, t, s) in changed_annottups] theta_list1 = [t for (bbox, t, s) in changed_annottups] species_list1 = [s for (bbox, t, s) in changed_annottups] logger.info('[interact_annot2] changed_indexes: {!r}'.format(changed_indices)) logger.info('[interact_annot2] changed_aid: {!r}'.format(changed_aid)) self.ibs.set_annot_species(changed_aid, species_list1) self.ibs.set_annot_thetas(changed_aid, theta_list1, delete_thumbs=False) self.ibs.set_annot_bboxes(changed_aid, bbox_list1, delete_thumbs=True) # Add annotations if len(new_annottups) > 0: # New list returns a list of tuples [(x, y, w, h, theta, species) ...] rows_updated = True bbox_list2 = [bbox for (bbox, t, s) in new_annottups] theta_list2 = [t for (bbox, t, s) in new_annottups] species_list2 = [s for (bbox, t, s) in new_annottups] gid_list = [self.gid] * len(new_annottups) new_aids = self.ibs.add_annots( gid_list, bbox_list=bbox_list2, theta_list=theta_list2, species_list=species_list2, ) logger.info('[interact_annot2] new_indexes: {!r}'.format(new_annottups)) logger.info('[interact_annot2] new_aids: {!r}'.format(new_aids)) logger.info('[interact_annot2] about to exit callback') if rows_updated and self.rows_updated_callback is not None: self.rows_updated_callback() logger.info('[interact_annot2] exit callback') def update_image_and_callbacks(self, gid, nextcb, prevcb, do_save=True): if do_save: # save the current changes when pressing next or previous self.interact_ANNOTATIONS.save_and_exit(None, do_close=False) if DESTROY_OLD_WINDOW: ANNOTATION_Interaction2.__init__( self, self.ibs, gid, next_callback=nextcb, prev_callback=prevcb, rows_updated_callback=self.rows_updated_callback, reset_window=False, ) else: if True: self.interact_ANNOTATIONS.rrr() ibs = self.ibs self.gid = gid img = ibs.get_images(self.gid) self.aid_list = ibs.get_image_aids(self.gid) bbox_list = ibs.get_annot_bboxes(self.aid_list) theta_list = ibs.get_annot_thetas(self.aid_list) species_list = ibs.get_annot_species_texts(self.aid_list) metadata_list = [ibs.get_annot_lazy_dict(aid) for aid in self.aid_list] self.interact_ANNOTATIONS.update_image_and_callbacks( img, bbox_list=bbox_list, theta_list=theta_list, species_list=species_list, metadata_list=metadata_list, next_callback=nextcb, prev_callback=prevcb, )
null
create job
import os import time from typing import Dict, Union from kubernetes import client, config from kubernetes.client.rest import ApiException from mage_ai.services.k8s.config import K8sExecutorConfig from mage_ai.services.k8s.constants import DEFAULT_NAMESPACE, KUBE_POD_NAME_ENV_VAR from mage_ai.shared.hash import merge_dict class JobManager(): def __init__( self, job_name: str = 'mage-job', namespace: str = DEFAULT_NAMESPACE, logger=None, logging_tags: Dict = None, ): self.job_name = job_name self.namespace = namespace self.logger = logger self.logging_tags = logging_tags or dict() self.load_config() self.batch_api_client = client.BatchV1Api() self.api_version = 'batch/v1' self.core_api_client = client.CoreV1Api() self.pod_config = self.core_api_client.read_namespaced_pod( name=os.getenv(KUBE_POD_NAME_ENV_VAR), namespace=self.namespace, ) @classmethod def load_config(cls) -> bool: try: config.load_incluster_config() return True except Exception: pass try: config.load_kube_config() return True except Exception: pass return False def run_job( self, command: str, k8s_config: Union[K8sExecutorConfig, Dict] = None, ): if not self.job_exists(): if type(k8s_config) is dict: k8s_config = K8sExecutorConfig.load(config=k8s_config) job = self.create_job_object( command, k8s_config=k8s_config, ) self.METHOD_NAME(job) api_response = None job_completed = False while not job_completed: api_response = self.batch_api_client.read_namespaced_job_status( name=self.job_name, namespace=self.namespace ) if api_response.status.succeeded is not None or \ api_response.status.failed is not None: job_completed = True time.sleep(5) # self._print(f'Job {self.job_name} status={api_response.status}') self.delete_job() self._print(f'Job {self.job_name} status={api_response.status}') if api_response.status.succeeded is None: raise Exception(f'Failed to execute k8s job {self.job_name}') def create_job_object( self, command: str, k8s_config: K8sExecutorConfig = None, ) -> client.V1Job: # Configureate Pod template container mage_server_container_spec = self.pod_config.spec.containers[0] container_kwargs = dict( name='mage-job-container', image=mage_server_container_spec.image, image_pull_policy='IfNotPresent', command=command.split(' ') if isinstance(command, str) else command, env=mage_server_container_spec.env, volume_mounts=mage_server_container_spec.volume_mounts, ) if k8s_config and (k8s_config.resource_limits or k8s_config.resource_requests): resource_kwargs = dict() if k8s_config.resource_limits: resource_kwargs['limits'] = k8s_config.resource_limits if k8s_config.resource_requests: resource_kwargs['requests'] = k8s_config.resource_requests container_kwargs['resources'] = client.V1ResourceRequirements( **resource_kwargs, ) if k8s_config and k8s_config.container_config: container_kwargs = merge_dict(container_kwargs, k8s_config.container_config) container = client.V1Container( **container_kwargs, ) # Create and configurate a spec section pod_spec = dict( containers=[container], image_pull_secrets=self.pod_config.spec.image_pull_secrets, restart_policy='Never', volumes=self.pod_config.spec.volumes, ) if k8s_config and k8s_config.service_account_name: pod_spec['service_account_name'] = k8s_config.service_account_name template = client.V1PodTemplateSpec( metadata=client.V1ObjectMeta(labels={'name': self.job_name}), spec=client.V1PodSpec(**pod_spec), ) # Create the specification of deployment spec = client.V1JobSpec(template=template, backoff_limit=0) # Instantiate the job object job = client.V1Job( api_version=self.api_version, kind='Job', metadata=client.V1ObjectMeta(name=self.job_name), spec=spec) return job def METHOD_NAME(self, job): api_response = self.batch_api_client.create_namespaced_job( body=job, namespace=self.namespace, ) self._print(f"Job created. status='{api_response.status}'") def delete_job(self): try: api_response = self.batch_api_client.delete_namespaced_job( name=self.job_name, namespace=self.namespace, body=client.V1DeleteOptions( propagation_policy='Foreground', grace_period_seconds=0)) self._print("Job deleted. status='%s'" % str(api_response.status)) except Exception as e: self._print(f'Failed to delete job {self.job_name} with error {e}') def job_exists(self): try: self.batch_api_client.read_namespaced_job( name=self.job_name, namespace=self.namespace ) return True except ApiException: pass return False def _print(self, message, **kwargs): if self.logger is None: print(message, **kwargs) else: self.logger.info(message, **merge_dict(self.logging_tags, kwargs))
null
check handshake timeout
import ssl import sys from collections import deque from collections.abc import Callable from enum import Enum from typing import Any, ClassVar from typing_extensions import Literal, TypeAlias from . import constants, events, futures, protocols, transports def _create_transport_context(server_side: bool, server_hostname: str | None) -> ssl.SSLContext: ... if sys.version_info >= (3, 11): SSLAgainErrors: tuple[type[ssl.SSLWantReadError], type[ssl.SSLSyscallError]] class SSLProtocolState(Enum): UNWRAPPED: str DO_HANDSHAKE: str WRAPPED: str FLUSHING: str SHUTDOWN: str class AppProtocolState(Enum): STATE_INIT: str STATE_CON_MADE: str STATE_EOF: str STATE_CON_LOST: str def add_flowcontrol_defaults(high: int | None, low: int | None, kb: int) -> tuple[int, int]: ... else: _UNWRAPPED: Literal["UNWRAPPED"] _DO_HANDSHAKE: Literal["DO_HANDSHAKE"] _WRAPPED: Literal["WRAPPED"] _SHUTDOWN: Literal["SHUTDOWN"] if sys.version_info < (3, 11): class _SSLPipe: max_size: ClassVar[int] _context: ssl.SSLContext _server_side: bool _server_hostname: str | None _state: str _incoming: ssl.MemoryBIO _outgoing: ssl.MemoryBIO _sslobj: ssl.SSLObject | None _need_ssldata: bool _handshake_cb: Callable[[BaseException | None], None] | None _shutdown_cb: Callable[[], None] | None def __init__(self, context: ssl.SSLContext, server_side: bool, server_hostname: str | None = None) -> None: ... @property def context(self) -> ssl.SSLContext: ... @property def ssl_object(self) -> ssl.SSLObject | None: ... @property def need_ssldata(self) -> bool: ... @property def wrapped(self) -> bool: ... def do_handshake(self, callback: Callable[[BaseException | None], object] | None = None) -> list[bytes]: ... def shutdown(self, callback: Callable[[], object] | None = None) -> list[bytes]: ... def feed_eof(self) -> None: ... def feed_ssldata(self, data: bytes, only_handshake: bool = False) -> tuple[list[bytes], list[bytes]]: ... def feed_appdata(self, data: bytes, offset: int = 0) -> tuple[list[bytes], int]: ... class _SSLProtocolTransport(transports._FlowControlMixin, transports.Transport): _sendfile_compatible: ClassVar[constants._SendfileMode] _loop: events.AbstractEventLoop if sys.version_info >= (3, 11): _ssl_protocol: SSLProtocol | None else: _ssl_protocol: SSLProtocol _closed: bool def __init__(self, loop: events.AbstractEventLoop, ssl_protocol: SSLProtocol) -> None: ... def get_extra_info(self, name: str, default: Any | None = None) -> dict[str, Any]: ... @property def _protocol_paused(self) -> bool: ... def write(self, data: bytes | bytearray | memoryview) -> None: ... def can_write_eof(self) -> Literal[False]: ... if sys.version_info >= (3, 11): def get_write_buffer_limits(self) -> tuple[int, int]: ... def get_read_buffer_limits(self) -> tuple[int, int]: ... def set_read_buffer_limits(self, high: int | None = None, low: int | None = None) -> None: ... def get_read_buffer_size(self) -> int: ... if sys.version_info >= (3, 11): _SSLProtocolBase: TypeAlias = protocols.BufferedProtocol else: _SSLProtocolBase: TypeAlias = protocols.Protocol class SSLProtocol(_SSLProtocolBase): _server_side: bool _server_hostname: str | None _sslcontext: ssl.SSLContext _extra: dict[str, Any] _write_backlog: deque[tuple[bytes, int]] _write_buffer_size: int _waiter: futures.Future[Any] _loop: events.AbstractEventLoop _app_transport: _SSLProtocolTransport _transport: transports.BaseTransport | None _ssl_handshake_timeout: int | None _app_protocol: protocols.BaseProtocol _app_protocol_is_buffer: bool if sys.version_info >= (3, 11): max_size: ClassVar[int] else: _sslpipe: _SSLPipe | None _session_established: bool _call_connection_made: bool _in_handshake: bool _in_shutdown: bool if sys.version_info >= (3, 11): def __init__( self, loop: events.AbstractEventLoop, app_protocol: protocols.BaseProtocol, sslcontext: ssl.SSLContext, waiter: futures.Future[Any], server_side: bool = False, server_hostname: str | None = None, call_connection_made: bool = True, ssl_handshake_timeout: int | None = None, ssl_shutdown_timeout: float | None = None, ) -> None: ... else: def __init__( self, loop: events.AbstractEventLoop, app_protocol: protocols.BaseProtocol, sslcontext: ssl.SSLContext, waiter: futures.Future[Any], server_side: bool = False, server_hostname: str | None = None, call_connection_made: bool = True, ssl_handshake_timeout: int | None = None, ) -> None: ... def _set_app_protocol(self, app_protocol: protocols.BaseProtocol) -> None: ... def _wakeup_waiter(self, exc: BaseException | None = None) -> None: ... def connection_lost(self, exc: BaseException | None) -> None: ... def eof_received(self) -> None: ... def _get_extra_info(self, name: str, default: Any | None = None) -> Any: ... def _start_shutdown(self) -> None: ... if sys.version_info >= (3, 11): def _write_appdata(self, list_of_data: list[bytes]) -> None: ... else: def _write_appdata(self, data: bytes) -> None: ... def _start_handshake(self) -> None: ... def METHOD_NAME(self) -> None: ... def _on_handshake_complete(self, handshake_exc: BaseException | None) -> None: ... def _fatal_error(self, exc: BaseException, message: str = "Fatal error on transport") -> None: ... def _abort(self) -> None: ... if sys.version_info >= (3, 11): def get_buffer(self, n: int) -> memoryview: ... else: def _finalize(self) -> None: ... def _process_write_backlog(self) -> None: ...
null
test non image upload
# Copyright (c) 2012-2016 Seafile Ltd. import os.path from django.test import TestCase from django.urls import reverse from django.conf import settings from seahub.base.accounts import User from seahub.avatar.settings import AVATAR_DEFAULT_URL, AVATAR_MAX_AVATARS_PER_USER from seahub.avatar.util import get_primary_avatar from seahub.avatar.models import Avatar from seahub.test_utils import Fixtures try: from PIL import Image dir(Image) # Placate PyFlakes except ImportError: import Image def upload_helper(o, filename): f = open(os.path.join(o.testdatapath, filename), "rb") response = o.client.post(reverse('avatar_add'), { 'avatar': f, }, follow=True) f.close() return response class AvatarTestCase(TestCase, Fixtures): """ Helper base class for all the follow test cases. """ def setUp(self): self.testdatapath = os.path.join(os.path.dirname(__file__), "testdata") self.user = self.create_user('[email protected]', 'testpassword', is_active=True) response = self.client.post('/accounts/login/', { 'username': '[email protected]', 'password': 'testpassword', }, ) self.assertEqual(response.status_code, 302) self.assertTrue(response['Location'].endswith(settings.LOGIN_REDIRECT_URL)) Image.init() def tearDown(self): self.user.delete() class AvatarUploadTests(AvatarTestCase): def METHOD_NAME(self): response = upload_helper(self, "nonimagefile") self.assertEqual(response.status_code, 200) self.assertNotEqual(response.context['upload_avatar_form'].errors, {}) def testNormalImageUpload(self): response = upload_helper(self, "test.png") self.assertEqual(response.status_code, 200) self.assertEqual(len(response.redirect_chain), 1) self.assertEqual(response.context['upload_avatar_form'].errors, {}) avatar = get_primary_avatar(self.user) self.assertNotEqual(avatar, None) def testImageWithoutExtension(self): # use with AVATAR_ALLOWED_FILE_EXTS = ('.jpg', '.png') response = upload_helper(self, "imagefilewithoutext") self.assertEqual(response.status_code, 200) self.assertEqual(len(response.redirect_chain), 0) # Redirect only if it worked self.assertNotEqual(response.context['upload_avatar_form'].errors, {}) def testImageWithWrongExtension(self): # use with AVATAR_ALLOWED_FILE_EXTS = ('.jpg', '.png') response = upload_helper(self, "imagefilewithwrongext.ogg") self.assertEqual(response.status_code, 200) self.assertEqual(len(response.redirect_chain), 0) # Redirect only if it worked self.assertNotEqual(response.context['upload_avatar_form'].errors, {}) def testImageTooBig(self): # use with AVATAR_MAX_SIZE = 1024 * 1024 response = upload_helper(self, "testbig.png") self.assertEqual(response.status_code, 200) self.assertEqual(len(response.redirect_chain), 0) # Redirect only if it worked self.assertNotEqual(response.context['upload_avatar_form'].errors, {}) def testDefaultUrl(self): response = self.client.get(reverse('avatar_render_primary', kwargs={ 'user': self.user.username, 'size': 80, })) loc = response['Location'] base_url = getattr(settings, 'STATIC_URL', None) if not base_url: base_url = settings.MEDIA_URL self.assertTrue(base_url in loc) self.assertTrue(loc.endswith(AVATAR_DEFAULT_URL)) def testNonExistingUser(self): a = get_primary_avatar("[email protected]") self.assertEqual(a, None) def testThereCanBeOnlyOnePrimaryAvatar(self): for i in range(1, 10): self.testNormalImageUpload() count = Avatar.objects.filter(emailuser=self.user, primary=True).count() self.assertEqual(count, 1) # def testDeleteAvatar(self): # self.testNormalImageUpload() # avatar = Avatar.objects.filter(emailuser=self.user) # self.failUnlessEqual(len(avatar), 1) # response = self.client.post(reverse('avatar_delete'), { # 'choices': [avatar[0].id], # }, follow=True) # self.failUnlessEqual(response.status_code, 200) # self.failUnlessEqual(len(response.redirect_chain), 1) # count = Avatar.objects.filter(emailuser=self.user).count() # self.failUnlessEqual(count, 0) # def testDeletePrimaryAvatarAndNewPrimary(self): # self.testThereCanBeOnlyOnePrimaryAvatar() # primary = get_primary_avatar(self.emailuser) # oid = primary.id # response = self.client.post(reverse('avatar_delete'), { # 'choices': [oid], # }) # primaries = Avatar.objects.filter(emailuser=self.user, primary=True) # self.failUnlessEqual(len(primaries), 1) # self.failIfEqual(oid, primaries[0].id) # avatars = Avatar.objects.filter(emailuser=self.user) # self.failUnlessEqual(avatars[0].id, primaries[0].id) # def testTooManyAvatars(self): # for i in range(0, AVATAR_MAX_AVATARS_PER_USER): # self.testNormalImageUpload() # count_before = Avatar.objects.filter(emailuser=self.user).count() # response = upload_helper(self, "test.png") # print response.redirect_chain # count_after = Avatar.objects.filter(emailuser=self.user).count() # self.failUnlessEqual(response.status_code, 200) # self.failUnlessEqual(len(response.redirect_chain), 0) # Redirect only if it worked # self.failIfEqual(response.context['upload_avatar_form'].errors, {}) # self.failUnlessEqual(count_before, count_after) # def testAvatarOrder # def testReplaceAvatarWhenMaxIsOne # def testHashFileName # def testHashUserName # def testChangePrimaryAvatar # def testDeleteThumbnailAndRecreation # def testAutomaticThumbnailCreation
null
test time range indicator 114
# Copyright iris-grib contributors # # This file is part of iris-grib and is released under the LGPL license. # See COPYING and COPYING.LESSER in the root of the repository for full # licensing details. """Unit tests for :func:`iris_grib._grib1_load_rules.grib1_convert`.""" # Import iris_grib.tests first so that some things can be initialised before # importing anything else import iris_grib.tests as tests import eccodes from unittest import mock from iris.aux_factory import HybridPressureFactory from iris.exceptions import TranslationError from iris.fileformats.rules import Reference from iris_grib import GribWrapper from iris_grib._grib1_load_rules import grib1_convert from iris_grib.tests.unit import TestField class TestBadEdition(tests.IrisGribTest): def test(self): message = mock.Mock(edition=2) emsg = 'GRIB edition 2 is not supported' with self.assertRaisesRegex(TranslationError, emsg): grib1_convert(message) class TestBoundedTime(TestField): @staticmethod def is_forecast_period(coord): return (coord.standard_name == 'forecast_period' and coord.units == 'hours') @staticmethod def is_time(coord): return (coord.standard_name == 'time' and coord.units == 'hours since epoch') def assert_bounded_message(self, **kwargs): attributes = {'productDefinitionTemplateNumber': 0, 'edition': 1, '_forecastTime': 15, '_forecastTimeUnit': 'hours', 'phenomenon_bounds': lambda u: (80, 120), '_phenomenonDateTime': -1, 'table2Version': 9999, '_originatingCentre': 'xxx', } attributes.update(kwargs) message = mock.Mock(**attributes) self._test_for_coord(message, grib1_convert, self.is_forecast_period, expected_points=[35], expected_bounds=[[15, 55]]) self._test_for_coord(message, grib1_convert, self.is_time, expected_points=[100], expected_bounds=[[80, 120]]) def assert_bounded_message_3hours(self, **kwargs): attributes = {'productDefinitionTemplateNumber': 0, 'edition': 1, '_forecastTime': 252, '_forecastTimeUnit': '3 hours', 'phenomenon_bounds': lambda u: (252, 258), '_phenomenonDateTime': -1, 'table2Version': 9999, '_originatingCentre': 'xxx', } attributes.update(kwargs) message = mock.Mock(**attributes) self._test_for_coord(message, grib1_convert, self.is_forecast_period, expected_points=[255], expected_bounds=[[252, 258]]) self._test_for_coord(message, grib1_convert, self.is_time, expected_points=[255], expected_bounds=[[252, 258]]) def test_time_range_indicator_2(self): self.assert_bounded_message(timeRangeIndicator=2) self.assert_bounded_message_3hours(timeRangeIndicator=2) def test_time_range_indicator_3(self): self.assert_bounded_message(timeRangeIndicator=3) self.assert_bounded_message_3hours(timeRangeIndicator=3) def test_time_range_indicator_4(self): self.assert_bounded_message(timeRangeIndicator=4) self.assert_bounded_message_3hours(timeRangeIndicator=4) def test_time_range_indicator_5(self): self.assert_bounded_message(timeRangeIndicator=5) self.assert_bounded_message_3hours(timeRangeIndicator=5) def test_time_range_indicator_51(self): self.assert_bounded_message(timeRangeIndicator=51) self.assert_bounded_message_3hours(timeRangeIndicator=51) def test_time_range_indicator_113(self): self.assert_bounded_message(timeRangeIndicator=113) self.assert_bounded_message_3hours(timeRangeIndicator=113) def METHOD_NAME(self): self.assert_bounded_message(timeRangeIndicator=114) self.assert_bounded_message_3hours(timeRangeIndicator=114) def test_time_range_indicator_115(self): self.assert_bounded_message(timeRangeIndicator=115) self.assert_bounded_message_3hours(timeRangeIndicator=115) def test_time_range_indicator_116(self): self.assert_bounded_message(timeRangeIndicator=116) self.assert_bounded_message_3hours(timeRangeIndicator=116) def test_time_range_indicator_117(self): self.assert_bounded_message(timeRangeIndicator=117) self.assert_bounded_message_3hours(timeRangeIndicator=117) def test_time_range_indicator_118(self): self.assert_bounded_message(timeRangeIndicator=118) self.assert_bounded_message_3hours(timeRangeIndicator=118) def test_time_range_indicator_123(self): self.assert_bounded_message(timeRangeIndicator=123) self.assert_bounded_message_3hours(timeRangeIndicator=123) def test_time_range_indicator_124(self): self.assert_bounded_message(timeRangeIndicator=124) self.assert_bounded_message_3hours(timeRangeIndicator=124) def test_time_range_indicator_125(self): self.assert_bounded_message(timeRangeIndicator=125) self.assert_bounded_message_3hours(timeRangeIndicator=125) class Test_GribLevels(tests.IrisTest): def test_grib1_hybrid_height(self): gm = eccodes.codes_grib_new_from_samples('regular_gg_ml_grib1') gw = GribWrapper(gm) results = grib1_convert(gw) factory, = results[0] self.assertEqual(factory.factory_class, HybridPressureFactory) delta, sigma, ref = factory.args self.assertEqual(delta, {'long_name': 'level_pressure'}) self.assertEqual(sigma, {'long_name': 'sigma'}) self.assertEqual(ref, Reference(name='surface_pressure')) coords_and_dims = results[8] coord, = [co for co, _ in coords_and_dims if co.name() == 'model_level_number'] self.assertEqual(coord.units, '1') self.assertEqual(coord.attributes['positive'], 'up') coord, = [co for co, _ in coords_and_dims if co.name() == 'level_pressure'] self.assertEqual(coord.units, 'Pa') coord, = [co for co, _ in coords_and_dims if co.name() == 'sigma'] self.assertEqual(coord.units, '1') if __name__ == "__main__": tests.main()
null
get logging
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from azure.cli.core.profiles import get_sdk from ._client_factory import generic_data_service_factory from .profiles import CUSTOM_DATA_STORAGE class ServiceProperties(object): def __init__(self, cli_ctx, name, service, account_name=None, account_key=None, connection_string=None, sas_token=None): self.cli_ctx = cli_ctx self.name = name self.client = generic_data_service_factory(cli_ctx, service, name=account_name, key=account_key, connection_string=connection_string, sas_token=sas_token) if not self.client: from knack.util import CLIError raise CLIError('Failed to initialize data client.') def get_service_properties(self): return getattr(self.client, 'get_{}_service_properties'.format(self.name)) def set_service_properties(self): return getattr(self.client, 'set_{}_service_properties'.format(self.name)) def METHOD_NAME(self, timeout=None): return self.get_service_properties()(timeout=timeout).__dict__['logging'] def set_logging(self, read, write, delete, retention, timeout=None): t_logging, t_retention_policy = get_sdk(self.cli_ctx, CUSTOM_DATA_STORAGE, 'Logging', 'RetentionPolicy', mod='common.models') retention_policy = t_retention_policy(enabled=retention != 0, days=retention) logging = t_logging(delete, read, write, retention_policy) return self.set_service_properties()(logging=logging, timeout=timeout) def get_cors(self, timeout=None): return self.get_service_properties()(timeout=timeout).__dict__['cors'] def add_cors(self, origins, methods, max_age, exposed_headers=None, allowed_headers=None, timeout=None): from azure.common import AzureHttpError t_cors_rule = get_sdk(self.cli_ctx, CUSTOM_DATA_STORAGE, 'CorsRule', mod='common.models') cors = self.get_cors(timeout) new_rule = t_cors_rule(origins, methods, max_age, exposed_headers, allowed_headers) cors.append(new_rule) try: return self.set_service_properties()(cors=cors, timeout=timeout) except AzureHttpError as ex: # The service issue: https://msazure.visualstudio.com/DefaultCollection/One/_workitems/edit/1247479. # This workaround can be removed once the service is updated. if ex.status_code == 400 and len(cors) > 5: from knack.util import CLIError raise CLIError('Failed to add CORS rules. No more than 5 CORS rule can be added.') raise ex def clear_cors(self, timeout=None): return self.set_service_properties()(cors=[], timeout=timeout) def get_metrics(self, interval, timeout=None): props = self.get_service_properties()(timeout=timeout) metrics = {} if interval == 'both': metrics['hour'] = props.__dict__['hour_metrics'] metrics['minute'] = props.__dict__['minute_metrics'] else: metrics[interval] = props.__dict__['{}_metrics'.format(interval)] return metrics def set_metrics(self, retention, hour, minute, api=None, timeout=None): t_metrics, t_retention_policy = get_sdk(self.cli_ctx, CUSTOM_DATA_STORAGE, 'Metrics', 'RetentionPolicy', mod='common.models') retention_policy = t_retention_policy(enabled=retention != 0, days=retention) hour_metrics = t_metrics(hour, api, retention_policy) if hour is not None else None minute_metrics = t_metrics(minute, api, retention_policy) if minute is not None else None return self.set_service_properties()( hour_metrics=hour_metrics, minute_metrics=minute_metrics, timeout=timeout)
null
check distribution
import copy import unittest import numpy as np from pydrake.common import RandomGenerator import pydrake.common.schema as mut import pydrake.math class TestSchema(unittest.TestCase): def METHOD_NAME(self, dut): """Confirms that a subclass instance of Distribution * binds the base methods, and * supports copy/deepcopy (even though the superclass does not). """ self.assertIsInstance(dut, mut.Distribution) copy.copy(dut) copy.deepcopy(dut) dut.Sample(generator=RandomGenerator()) dut.Mean() dut.ToSymbolic() def test_deterministic(self): mut.Deterministic() mut.Deterministic(0.5) dut = mut.Deterministic(value=1.0) dut.value = 2.0 self.METHOD_NAME(dut) def test_gaussian(self): mut.Gaussian() mut.Gaussian(0.5, 0.2) dut = mut.Gaussian(mean=1.0, stddev=0.1) dut.mean = 2.0 dut.stddev = 0.2 self.METHOD_NAME(dut) def test_uniform(self): mut.Uniform() mut.Uniform(-0.5, 0.5) dut = mut.Uniform(min=-1.0, max=1.0) dut.min = -2.0 dut.max = 2.0 self.METHOD_NAME(dut) def test_uniform_discrete(self): mut.UniformDiscrete() mut.UniformDiscrete([0.0, 1.0]) dut = mut.UniformDiscrete(values=[0.0, 0.1]) dut.values = [0.0, 0.2] self.METHOD_NAME(dut) def test_distribution_variant(self): """Confirms that the free functions that operate on a variant are bound.""" items = [ mut.Deterministic(1.0), mut.Gaussian(1.0, 0.1), mut.Uniform(-1.0, 1.0), mut.UniformDiscrete([0.0, 1.0]), ] for item in items: copied = mut.ToDistribution(item) self.METHOD_NAME(copied) mut.Sample(var=item, generator=RandomGenerator()) mut.Mean(var=item) mut.ToSymbolic(var=item) if mut.IsDeterministic(var=item): mut.GetDeterministicValue(var=item) def _check_distribution_vector(self, dut): """Confirms that a subclass instance of DistributionVector * binds the base methods, and * supports copy/deepcopy (even though the superclass does not). """ self.assertIsInstance(dut, mut.DistributionVector) copy.copy(dut) copy.deepcopy(dut) dut.Sample(generator=RandomGenerator()) dut.Mean() dut.ToSymbolic() def test_deterministic_vector(self): mut.DeterministicVectorX() mut.DeterministicVectorX([0.1, 0.2]) dut = mut.DeterministicVectorX(value=[0.0, 1.0]) dut.value = [0.0, 2.0] self._check_distribution_vector(dut) def test_gaussian_vector(self): mut.GaussianVectorX() mut.GaussianVectorX([-0.5, 0.5], [0.2, 0.2]) dut = mut.GaussianVectorX(mean=[-1.0, 1.0], stddev=[0.1, 0.1]) dut.mean = [-2.0, 2.0] dut.stddev = [0.2, 0.2] self._check_distribution_vector(dut) def test_uniform_vector(self): mut.UniformVectorX() mut.UniformVectorX([-0.5, -5.0], [0.5, 5.0]) dut = mut.UniformVectorX(min=[-1.0, -10.0], max=[1.0, 10.0]) dut.min = [-2.0, -20.0] dut.max = [2.0, 20.0] self._check_distribution_vector(dut) def test_sized_vectors(self): """Spot check the fixed-size stochastic vectors.""" for size in [None, 1, 2, 3, 4, 5, 6]: vec_data = [1.0] * (size or 3) for template in [mut.DeterministicVector, mut.GaussianVector, mut.UniformVector]: with self.subTest(template=template, size=size): dut_cls = template[size] if template == mut.DeterministicVector: init_args = [vec_data] else: init_args = [vec_data, vec_data] dut = dut_cls(*init_args) self._check_distribution_vector(dut) def test_distribution_vector_variant(self): """Confirms that the free functions that operate on a vector variant are bound.""" items = [ mut.DeterministicVectorX(value=[1.0]), mut.GaussianVectorX(mean=[1.0], stddev=[0.1]), mut.UniformVectorX(min=[-1.0], max=[1.0]), mut.DeterministicVector[3](value=[1.0]*3), mut.GaussianVector[3](mean=[1.0]*3, stddev=[0.1]*3), mut.UniformVector[3](min=[-1.0]*3, max=[1.0]*3), ] for item in items: copied = mut.ToDistributionVector(item) self._check_distribution_vector(copied) if mut.IsDeterministic(vec=item): mut.GetDeterministicValue(vec=item) def test_rotation(self): for dut in [mut.Rotation(), mut.Rotation(pydrake.math.RotationMatrix()), mut.Rotation(pydrake.math.RollPitchYaw([0.0, 0.0, 0.0]))]: # The dut should be the identity. self.assertTrue(dut.IsDeterministic()) rotmat = dut.GetDeterministicValue() self.assertTrue(rotmat.IsExactlyIdentity()) # All getter functions work without crashing. dut.ToSymbolic() # The class is copyable and has a real repr. mut.Rotation(other=dut) copy.copy(dut) copy.deepcopy(dut) self.assertIn("value", repr(dut)) # Setters. dut.set_rpy_deg([0.1, 0.2, 0.3]) np.testing.assert_equal(dut.value.deg, [0.1, 0.2, 0.3]) # Attributes. self.assertIsInstance( mut.Rotation(value=mut.Rotation.AngleAxis()).value, mut.Rotation.AngleAxis) def test_rotation_nested_classes(self): # The class is copyable and has a real repr. for dut_cls in [mut.Rotation.Identity, mut.Rotation.Uniform, mut.Rotation.Rpy, mut.Rotation.AngleAxis]: dut = dut_cls() dut_cls(other=dut) copy.copy(dut) copy.deepcopy(dut) self.assertNotIn("0x", repr(dut)) # Properties are bound. np.testing.assert_equal(mut.Rotation.Rpy(deg=[1, 2, 3]).deg, [1, 2, 3]) self.assertEqual(mut.Rotation.AngleAxis(angle_deg=5).angle_deg, 5) def test_transform(self): for dut in [mut.Transform(), mut.Transform(pydrake.math.RigidTransform())]: # The dut should be the identity. self.assertIsNone(dut.base_frame) self.assertTrue(dut.IsDeterministic()) np.testing.assert_equal(dut.translation, [0, 0, 0]) rotmat = dut.rotation.GetDeterministicValue() self.assertTrue(rotmat.IsExactlyIdentity()) # All getter functions work without crashing. dut.ToSymbolic() dut.Mean() dut.Sample(generator=RandomGenerator()) # The class is copyable and has a real repr. mut.Transform(other=dut) copy.copy(dut) copy.deepcopy(dut) self.assertIn("base_frame", repr(dut)) # Setters. dut.base_frame = "name" self.assertEqual(dut.base_frame, "name") dut.translation = [1.0, 2.0, 3.0] np.testing.assert_equal(dut.translation, [1.0, 2.0, 3.0]) dut.set_rotation_rpy_deg([0.1, 0.2, 0.3]) np.testing.assert_equal(dut.rotation.value.deg, [0.1, 0.2, 0.3]) dut.rotation.value.deg = [0.4, 0.5, 0.6] np.testing.assert_equal(dut.rotation.value.deg, [0.4, 0.5, 0.6]) # Attributes. self.assertEqual(mut.Transform(base_frame="base").base_frame, "base")
null
test no optional args
# Copyright Iris contributors # # This file is part of Iris and is released under the LGPL license. # See COPYING and COPYING.LESSER in the root of the repository for full # licensing details. """Unit tests for the :class:`iris.coord_systems.Geostationary` class.""" # Import iris.tests first so that some things can be initialised before # importing anything else. import iris.tests as tests # isort:skip import cartopy.crs as ccrs from iris.coord_systems import GeogCS, Geostationary class Test(tests.IrisTest): def setUp(self): # Set everything to non-default values. self.latitude_of_projection_origin = 0 # For now, Cartopy needs =0. self.longitude_of_projection_origin = 123.0 self.perspective_point_height = 9999.0 self.sweep_angle_axis = "x" self.false_easting = 100.0 self.false_northing = -200.0 self.semi_major_axis = 4000.0 self.semi_minor_axis = 3900.0 self.ellipsoid = GeogCS(self.semi_major_axis, self.semi_minor_axis) self.globe = ccrs.Globe( semimajor_axis=self.semi_major_axis, semiminor_axis=self.semi_minor_axis, ellipse=None, ) # Actual and expected coord system can be re-used for # Geostationary.test_crs_creation and test_projection_creation. self.expected = ccrs.Geostationary( central_longitude=self.longitude_of_projection_origin, satellite_height=self.perspective_point_height, false_easting=self.false_easting, false_northing=self.false_northing, globe=self.globe, sweep_axis=self.sweep_angle_axis, ) self.geo_cs = Geostationary( self.latitude_of_projection_origin, self.longitude_of_projection_origin, self.perspective_point_height, self.sweep_angle_axis, self.false_easting, self.false_northing, self.ellipsoid, ) def test_crs_creation(self): res = self.geo_cs.as_cartopy_crs() self.assertEqual(res, self.expected) def test_projection_creation(self): res = self.geo_cs.as_cartopy_projection() self.assertEqual(res, self.expected) def test_non_zero_lat(self): with self.assertRaisesRegex(ValueError, "Non-zero latitude"): Geostationary( 0.1, self.longitude_of_projection_origin, self.perspective_point_height, self.sweep_angle_axis, self.false_easting, self.false_northing, self.ellipsoid, ) def test_invalid_sweep(self): with self.assertRaisesRegex(ValueError, "Invalid sweep_angle_axis"): Geostationary( self.latitude_of_projection_origin, self.longitude_of_projection_origin, self.perspective_point_height, "a", self.false_easting, self.false_northing, self.ellipsoid, ) def test_set_optional_args(self): # Check that setting the optional (non-ellipse) args works. crs = Geostationary( 0, 0, 1000, "y", false_easting=100, false_northing=-200 ) self.assertEqualAndKind(crs.false_easting, 100.0) self.assertEqualAndKind(crs.false_northing, -200.0) def _check_crs_defaults(self, crs): # Check for property defaults when no kwargs options were set. # NOTE: except ellipsoid, which is done elsewhere. self.assertEqualAndKind(crs.false_easting, 0.0) self.assertEqualAndKind(crs.false_northing, 0.0) def METHOD_NAME(self): # Check expected defaults with no optional args. crs = Geostationary(0, 0, 1000, "y") self._check_crs_defaults(crs) def test_optional_args_None(self): # Check expected defaults with optional args=None. crs = Geostationary( 0, 0, 1000, "y", false_easting=None, false_northing=None ) self._check_crs_defaults(crs) if __name__ == "__main__": tests.main()
null
test preprocess fn returns correct element
# Copyright 2020, Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections from absl.testing import parameterized import tensorflow as tf from tensorflow_federated.python.core.backends.native import execution_contexts from tensorflow_federated.python.simulation.baselines import client_spec from tensorflow_federated.python.simulation.baselines.stackoverflow import tag_prediction_preprocessing TEST_DATA = collections.OrderedDict( creation_date=(['unused date']), score=([tf.constant(0, dtype=tf.int64)]), tags=(['B']), title=(['C']), tokens=(['A']), type=(['unused type']), ) def _compute_length_of_dataset(ds): return ds.reduce(0, lambda x, _: x + 1) class ToIDsFnTest(tf.test.TestCase): def test_word_tokens_to_ids_without_oov(self): word_vocab = ['A', 'B', 'C'] tag_vocab = ['D', 'E', 'F'] to_ids_fn = tag_prediction_preprocessing.build_to_ids_fn( word_vocab, tag_vocab ) data = {'tokens': 'A B C', 'title': '', 'tags': ''} processed = to_ids_fn(data) self.assertAllClose(self.evaluate(processed[0]), [1 / 3, 1 / 3, 1 / 3]) def test_word_tokens_to_ids_with_duplicates_without_oov(self): word_vocab = ['A', 'B', 'C'] tag_vocab = ['D', 'E', 'F'] to_ids_fn = tag_prediction_preprocessing.build_to_ids_fn( word_vocab, tag_vocab ) data = {'tokens': 'A B C A A C B B B', 'title': '', 'tags': ''} processed = to_ids_fn(data) self.assertAllClose(self.evaluate(processed[0]), [1 / 3, 4 / 9, 2 / 9]) def test_word_tokens_to_ids_with_oov(self): word_vocab = ['A', 'B'] tag_vocab = ['D', 'E', 'F'] to_ids_fn = tag_prediction_preprocessing.build_to_ids_fn( word_vocab, tag_vocab ) data = {'tokens': 'A B C', 'title': '', 'tags': ''} processed = to_ids_fn(data) self.assertAllClose(self.evaluate(processed[0]), [1 / 2, 1 / 2]) def test_word_tokens_to_ids_with_duplicates_and_oov(self): word_vocab = ['A', 'B'] tag_vocab = ['D', 'E', 'F'] to_ids_fn = tag_prediction_preprocessing.build_to_ids_fn( word_vocab, tag_vocab ) data = {'tokens': 'A B C A C C A B', 'title': '', 'tags': ''} processed = to_ids_fn(data) self.assertAllClose(self.evaluate(processed[0]), [3 / 5, 2 / 5]) def test_word_tokens_all_oov(self): word_vocab = ['A', 'B'] tag_vocab = ['D', 'E', 'F'] to_ids_fn = tag_prediction_preprocessing.build_to_ids_fn( word_vocab, tag_vocab ) data = {'tokens': 'C D E F G', 'title': '', 'tags': ''} processed = to_ids_fn(data) self.assertAllClose(self.evaluate(processed[0]), [0, 0]) def test_tag_tokens_to_ids_without_oov(self): word_vocab = ['A', 'B', 'C'] tag_vocab = ['D', 'E', 'F'] to_ids_fn = tag_prediction_preprocessing.build_to_ids_fn( word_vocab, tag_vocab ) data = {'tokens': '', 'title': '', 'tags': 'D|E|F'} processed = to_ids_fn(data) self.assertAllClose(self.evaluate(processed[1]), [1, 1, 1]) def test_tag_tokens_to_ids_with_oov(self): word_vocab = ['A', 'B', 'C'] tag_vocab = ['D', 'E'] to_ids_fn = tag_prediction_preprocessing.build_to_ids_fn( word_vocab, tag_vocab ) data = {'tokens': '', 'title': '', 'tags': 'D|E|F'} processed = to_ids_fn(data) self.assertAllClose(self.evaluate(processed[1]), [1, 1]) def test_join_word_tokens_with_title(self): word_vocab = ['A', 'B', 'C'] tag_vocab = ['D', 'E', 'F'] to_ids_fn = tag_prediction_preprocessing.build_to_ids_fn( word_vocab, tag_vocab ) data = {'tokens': 'A B C', 'title': 'A B', 'tags': ''} processed = to_ids_fn(data) self.assertAllClose(self.evaluate(processed[0]), [2 / 5, 2 / 5, 1 / 5]) class PreprocessFnTest(tf.test.TestCase, parameterized.TestCase): def test_preprocess_fn_with_empty_word_vocab_raises(self): preprocess_spec = client_spec.ClientSpec(num_epochs=1, batch_size=1) with self.assertRaisesRegex(ValueError, 'word_vocab must be non-empty'): tag_prediction_preprocessing.create_preprocess_fn( preprocess_spec, word_vocab=[], tag_vocab=['B'] ) def test_preprocess_fn_with_empty_tag_vocab_raises(self): preprocess_spec = client_spec.ClientSpec(num_epochs=1, batch_size=1) with self.assertRaisesRegex(ValueError, 'tag_vocab must be non-empty'): tag_prediction_preprocessing.create_preprocess_fn( preprocess_spec, word_vocab=['A'], tag_vocab=[] ) @parameterized.named_parameters( ('num_epochs_1_batch_size_1', 1, 1), ('num_epochs_4_batch_size_2', 4, 2), ('num_epochs_9_batch_size_3', 9, 3), ('num_epochs_12_batch_size_1', 12, 1), ('num_epochs_3_batch_size_5', 3, 5), ('num_epochs_7_batch_size_2', 7, 2), ) def test_ds_length_is_ceil_num_epochs_over_batch_size( self, num_epochs, batch_size ): ds = tf.data.Dataset.from_tensor_slices(TEST_DATA) preprocess_spec = client_spec.ClientSpec( num_epochs=num_epochs, batch_size=batch_size ) preprocess_fn = tag_prediction_preprocessing.create_preprocess_fn( preprocess_spec, word_vocab=['A'], tag_vocab=['B'] ) preprocessed_ds = preprocess_fn(ds) self.assertEqual( _compute_length_of_dataset(preprocessed_ds), tf.cast(tf.math.ceil(num_epochs / batch_size), tf.int32), ) def METHOD_NAME(self): ds = tf.data.Dataset.from_tensor_slices(TEST_DATA) word_vocab = ['A', 'B', 'C'] word_vocab_size = len(word_vocab) tag_vocab = ['A', 'B'] tag_vocab_size = len(tag_vocab) preprocess_spec = client_spec.ClientSpec( num_epochs=1, batch_size=1, shuffle_buffer_size=1 ) preprocess_fn = tag_prediction_preprocessing.create_preprocess_fn( preprocess_spec, word_vocab=word_vocab, tag_vocab=tag_vocab ) preprocessed_ds = preprocess_fn(ds) expected_element_x_spec_shape = (None, word_vocab_size) expected_element_y_spec_shape = (None, tag_vocab_size) self.assertEqual( preprocessed_ds.element_spec, ( tf.TensorSpec(expected_element_x_spec_shape, dtype=tf.float32), tf.TensorSpec(expected_element_y_spec_shape, dtype=tf.float32), ), ) element = next(iter(preprocessed_ds)) expected_element_x = tf.constant([[0.5, 0.0, 0.5]]) expected_element_y = tf.constant([[0.0, 1.0]]) self.assertAllClose( element, (expected_element_x, expected_element_y), rtol=1e-6 ) @parameterized.named_parameters( ('max_elements1', 1), ('max_elements3', 3), ('max_elements7', 7), ('max_elements11', 11), ('max_elements18', 18), ) def test_ds_length_with_max_elements(self, max_elements): repeat_size = 10 ds = tf.data.Dataset.from_tensor_slices(TEST_DATA) preprocess_spec = client_spec.ClientSpec( num_epochs=repeat_size, batch_size=1, max_elements=max_elements ) preprocess_fn = tag_prediction_preprocessing.create_preprocess_fn( preprocess_spec, word_vocab=['A'], tag_vocab=['B'] ) preprocessed_ds = preprocess_fn(ds) self.assertEqual( _compute_length_of_dataset(preprocessed_ds), min(repeat_size, max_elements), ) if __name__ == '__main__': execution_contexts.set_sync_local_cpp_execution_context() tf.test.main()
null
clone template
# Copyright © Michal Čihař <[email protected]> # # SPDX-License-Identifier: GPL-3.0-or-later """Translate Toolkit based file-format wrappers for multi string support.""" from __future__ import annotations from django.utils.functional import cached_property from django.utils.translation import gettext_lazy from weblate.checks.flags import Flags from weblate.trans.util import get_string from .base import TranslationUnit from .ttkit import CSVUtf8Format class MultiUnit(TranslationUnit): def __init__(self, parent, unit, template=None): super().__init__(parent, None, None) self.units = [unit] def merge(self, unit): self.units.append(unit) self._invalidate_target() @cached_property def locations(self): return ", ".join(unit.locations for unit in self.units) @cached_property def source(self): return get_string(unit.source for unit in self.units) @cached_property def target(self): return get_string(unit.target for unit in self.units) @cached_property def context(self): # Context should be same for all units return self.units[0].context @cached_property def id_hash(self): # Hash should be same for all units return self.units[0].id_hash @cached_property def notes(self): return "\n".join(unit.notes for unit in self.units if unit.notes) def is_translated(self): return any(unit.is_translated() for unit in self.units) def is_fuzzy(self, fallback=False): return any(unit.is_fuzzy(fallback) for unit in self.units) def has_content(self): return any(unit.has_content() for unit in self.units) def is_readonly(self): return any(unit.is_readonly() for unit in self.units) def set_target(self, target: str | list[str]): """Set translation unit target.""" self._invalidate_target() # Mare sure we have a list if isinstance(target, str): target = [target] # Remove any extra units while len(target) < len(self.units): last = self.units.pop() self.parent.store.removeunit(last.unit) # Add missing units while len(target) > len(self.units): new = self.parent.create_unit(self.context, self.units[0].source) self.units.append( self.parent.unit_class(self.parent, new, self.units[0].template) ) self.parent.store.addunit(new) for i, value in enumerate(target): self.units[i].set_target(value) def set_state(self, state): for unit in self.units: unit.set_state(state) @cached_property def flags(self): flags = Flags() for unit in self.units: flags.merge(unit.flags) return flags.format() def has_unit(self) -> bool: return all(unit.has_unit() for unit in self.units) def METHOD_NAME(self): for unit in self.units: if not unit.has_unit(): unit.METHOD_NAME() def untranslate(self, language): for unit in self.units: unit.untranslate(language) class MultiFormatMixin: has_multiple_strings: bool = True def merge_multi(self, iterable): result = {} for unit in iterable: id_hash = unit.id_hash if id_hash in result: result[id_hash].merge(unit) else: if not isinstance(unit, MultiUnit): unit = MultiUnit(unit.parent, unit) result[id_hash] = unit return list(result.values()) @cached_property def template_units(self): return self.merge_multi(super().template_units) def _get_all_bilingual_units(self): return self.merge_multi(super()._get_all_bilingual_units()) def _build_monolingual_unit(self, unit): try: matching = self._template_index[unit.id_hash] except KeyError: return MultiUnit(self, self.unit_class(self, None, unit.units[0].template)) matching_units = [unit.template for unit in matching.units] result = MultiUnit( self, self.unit_class(self, matching_units[0], unit.units[0].template) ) for extra in matching_units[1:]: result.merge(self.unit_class(self, extra, unit.units[0].template)) return result def _get_all_monolingual_units(self): return self.merge_multi(super()._get_all_monolingual_units()) class MultiCSVUtf8Format(MultiFormatMixin, CSVUtf8Format): name = gettext_lazy("Multivalue CSV file (UTF-8)") format_id = "csv-multi-utf-8"
null
id
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'GetParametersByPathResult', 'AwaitableGetParametersByPathResult', 'get_parameters_by_path', 'get_parameters_by_path_output', ] @pulumi.output_type class GetParametersByPathResult: """ A collection of values returned by getParametersByPath. """ def __init__(__self__, arns=None, METHOD_NAME=None, names=None, path=None, recursive=None, types=None, values=None, with_decryption=None): if arns and not isinstance(arns, list): raise TypeError("Expected argument 'arns' to be a list") pulumi.set(__self__, "arns", arns) if METHOD_NAME and not isinstance(METHOD_NAME, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", METHOD_NAME) if names and not isinstance(names, list): raise TypeError("Expected argument 'names' to be a list") pulumi.set(__self__, "names", names) if path and not isinstance(path, str): raise TypeError("Expected argument 'path' to be a str") pulumi.set(__self__, "path", path) if recursive and not isinstance(recursive, bool): raise TypeError("Expected argument 'recursive' to be a bool") pulumi.set(__self__, "recursive", recursive) if types and not isinstance(types, list): raise TypeError("Expected argument 'types' to be a list") pulumi.set(__self__, "types", types) if values and not isinstance(values, list): raise TypeError("Expected argument 'values' to be a list") pulumi.set(__self__, "values", values) if with_decryption and not isinstance(with_decryption, bool): raise TypeError("Expected argument 'with_decryption' to be a bool") pulumi.set(__self__, "with_decryption", with_decryption) @property @pulumi.getter def arns(self) -> Sequence[str]: return pulumi.get(self, "arns") @property @pulumi.getter def METHOD_NAME(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter def names(self) -> Sequence[str]: return pulumi.get(self, "names") @property @pulumi.getter def path(self) -> str: return pulumi.get(self, "path") @property @pulumi.getter def recursive(self) -> Optional[bool]: return pulumi.get(self, "recursive") @property @pulumi.getter def types(self) -> Sequence[str]: return pulumi.get(self, "types") @property @pulumi.getter def values(self) -> Sequence[str]: return pulumi.get(self, "values") @property @pulumi.getter(name="withDecryption") def with_decryption(self) -> Optional[bool]: return pulumi.get(self, "with_decryption") class AwaitableGetParametersByPathResult(GetParametersByPathResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetParametersByPathResult( arns=self.arns, METHOD_NAME=self.METHOD_NAME, names=self.names, path=self.path, recursive=self.recursive, types=self.types, values=self.values, with_decryption=self.with_decryption) def get_parameters_by_path(path: Optional[str] = None, recursive: Optional[bool] = None, with_decryption: Optional[bool] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetParametersByPathResult: """ Provides SSM Parameters by path. ## Example Usage ```python import pulumi import pulumi_aws as aws foo = aws.ssm.get_parameters_by_path(path="/foo") ``` > **Note:** The unencrypted value of a SecureString will be stored in the raw state as plain-text. **Note:** The data source is currently following the behavior of the [SSM API](https://docs.aws.amazon.com/sdk-for-go/api/service/ssm/#Parameter) to return a string value, regardless of parameter type. For type `StringList`, we can use the built-in split() function to get values in a list. Example: `split(",", data.aws_ssm_parameter.subnets.value)` :param str path: Prefix path of the parameter. :param bool recursive: Whether to recursively return parameters under `path`. Defaults to `false`. In addition to all arguments above, the following attributes are exported: :param bool with_decryption: Whether to return decrypted `SecureString` value. Defaults to `true`. """ __args__ = dict() __args__['path'] = path __args__['recursive'] = recursive __args__['withDecryption'] = with_decryption opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('aws:ssm/getParametersByPath:getParametersByPath', __args__, opts=opts, typ=GetParametersByPathResult).value return AwaitableGetParametersByPathResult( arns=pulumi.get(__ret__, 'arns'), METHOD_NAME=pulumi.get(__ret__, 'id'), names=pulumi.get(__ret__, 'names'), path=pulumi.get(__ret__, 'path'), recursive=pulumi.get(__ret__, 'recursive'), types=pulumi.get(__ret__, 'types'), values=pulumi.get(__ret__, 'values'), with_decryption=pulumi.get(__ret__, 'with_decryption')) @_utilities.lift_output_func(get_parameters_by_path) def get_parameters_by_path_output(path: Optional[pulumi.Input[str]] = None, recursive: Optional[pulumi.Input[Optional[bool]]] = None, with_decryption: Optional[pulumi.Input[Optional[bool]]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetParametersByPathResult]: """ Provides SSM Parameters by path. ## Example Usage ```python import pulumi import pulumi_aws as aws foo = aws.ssm.get_parameters_by_path(path="/foo") ``` > **Note:** The unencrypted value of a SecureString will be stored in the raw state as plain-text. **Note:** The data source is currently following the behavior of the [SSM API](https://docs.aws.amazon.com/sdk-for-go/api/service/ssm/#Parameter) to return a string value, regardless of parameter type. For type `StringList`, we can use the built-in split() function to get values in a list. Example: `split(",", data.aws_ssm_parameter.subnets.value)` :param str path: Prefix path of the parameter. :param bool recursive: Whether to recursively return parameters under `path`. Defaults to `false`. In addition to all arguments above, the following attributes are exported: :param bool with_decryption: Whether to return decrypted `SecureString` value. Defaults to `true`. """ ...
null
find docs to be removed
import logging from abc import ABC, abstractmethod from typing import Any, Dict, List, Optional, Type import numpy as np from llama_index.bridge.pydantic import Field from llama_index.schema import BaseNode, MetadataMode, TextNode from llama_index.vector_stores.types import ( VectorStore, VectorStoreQuery, VectorStoreQueryResult, ) from llama_index.vector_stores.utils import ( legacy_metadata_dict_to_node, metadata_dict_to_node, node_to_metadata_dict, ) logger = logging.getLogger(__name__) class DocArrayVectorStore(VectorStore, ABC): """DocArray Vector Store Base Class. This is an abstract base class for creating a DocArray vector store. The subclasses should implement _init_index and _find_docs_to_be_removed methods. """ # for mypy. will get initialized by the subclass. _index: Any _schema: Any _ref_docs: Dict[str, List[str]] stores_text: bool = True flat_metadata: bool = False def _update_ref_docs(self, docs) -> None: # type: ignore[no-untyped-def] pass @abstractmethod def _init_index(self, **kwargs: Any): # type: ignore[no-untyped-def] """Initializes the index. This method should be overridden by the subclasses. """ pass @abstractmethod def METHOD_NAME(self, doc_id: str) -> List[str]: """Finds the documents to be removed from the vector store. Args: doc_id (str): Document ID that should be removed. Returns: List[str]: List of document IDs to be removed. This is an abstract method and needs to be implemented in any concrete subclass. """ pass @property def client(self) -> Any: """Get client.""" return None def num_docs(self) -> int: """Retrieves the number of documents in the index. Returns: int: The number of documents in the index. """ return self._index.num_docs() @staticmethod def _get_schema(**embeddings_params: Any) -> Type: """Fetches the schema for DocArray indices. Args: **embeddings_params: Variable length argument list for the embedding. Returns: DocArraySchema: Schema for a DocArray index. """ from docarray import BaseDoc from docarray.typing import ID, NdArray class DocArraySchema(BaseDoc): id: Optional[ID] = None text: Optional[str] = None metadata: Optional[dict] = None embedding: NdArray = Field(**embeddings_params) return DocArraySchema def add( self, nodes: List[BaseNode], ) -> List[str]: """Adds nodes to the vector store. Args: nodes (List[BaseNode]): List of nodes with embeddings. Returns: List[str]: List of document IDs added to the vector store. """ from docarray import DocList # check to see if empty document list was passed if len(nodes) == 0: return [] docs = DocList[self._schema]( # type: ignore[name-defined] self._schema( id=node.node_id, metadata=node_to_metadata_dict(node, flat_metadata=self.flat_metadata), text=node.get_content(metadata_mode=MetadataMode.NONE), embedding=node.get_embedding(), ) for node in nodes ) self._index.index(docs) logger.info(f"Successfully added {len(docs)} documents to the index") if self._ref_docs is not None: self._update_ref_docs(docs) return [doc.id for doc in docs] def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None: """Deletes a document from the vector store. Args: ref_doc_id (str): Document ID to be deleted. **delete_kwargs (Any): Additional arguments to pass to the delete method. """ docs_to_be_removed = self.METHOD_NAME(ref_doc_id) if not docs_to_be_removed: logger.warning(f"Document with doc_id {ref_doc_id} not found") return del self._index[docs_to_be_removed] logger.info(f"Deleted {len(docs_to_be_removed)} documents from the index") def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult: """Queries the vector store and retrieves the results. Args: query (VectorStoreQuery): Query for the vector store. Returns: VectorStoreQueryResult: Result of the query from vector store. """ if query.filters: # only for ExactMatchFilters filter_query = { "metadata__" + filter.key: {"$eq": filter.value} for filter in query.filters.filters } query = ( self._index.build_query() # get empty query object .find( query=self._schema(embedding=np.array(query.query_embedding)), search_field="embedding", limit=query.similarity_top_k, ) # add vector similarity search .filter(filter_query=filter_query) # add filter search .build() # build the query ) # execute the combined query and return the results docs, scores = self._index.execute_query(query) else: docs, scores = self._index.find( query=self._schema(embedding=np.array(query.query_embedding)), search_field="embedding", limit=query.similarity_top_k, ) nodes, ids = [], [] for doc in docs: try: node = metadata_dict_to_node(doc.metadata) node.text = doc.text except Exception: # TODO: legacy metadata support metadata, node_info, relationships = legacy_metadata_dict_to_node( doc.metadata ) node = TextNode( id_=doc.id, text=doc.text, metadata=metadata, start_char_idx=node_info.get("start", None), end_char_idx=node_info.get("end", None), relationships=relationships, ) nodes.append(node) ids.append(doc.id) logger.info(f"Found {len(nodes)} results for the query") return VectorStoreQueryResult(nodes=nodes, ids=ids, similarities=scores)
null
enhance
import numpy as np import torch import torch.nn.functional as F from torchaudio.transforms import Resample from .nsf_hifigan.nvSTFT import STFT from .nsf_hifigan.models import load_model class Enhancer: def __init__(self, enhancer_type, enhancer_ckpt, device=None): if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" self.device = device if enhancer_type == "nsf-hifigan": self.enhancer = NsfHifiGAN(enhancer_ckpt, device=self.device) else: raise ValueError(f" [x] Unknown enhancer: {enhancer_type}") self.resample_kernel = {} self.enhancer_sample_rate = self.enhancer.sample_rate() self.enhancer_hop_size = self.enhancer.hop_size() def METHOD_NAME(self, audio, sample_rate, f0, hop_size, adaptive_key=0, silence_front=0): # 1, T # 1, n_frames, 1 # enhancer start time start_frame = int(silence_front * sample_rate / hop_size) real_silence_front = start_frame * hop_size / sample_rate audio = audio[:, int(np.round(real_silence_front * sample_rate)) :] f0 = f0[:, start_frame:, :] # adaptive parameters if adaptive_key == "auto": adaptive_key = 12 * np.log2(float(torch.max(f0) / 760)) adaptive_key = max(0, np.ceil(adaptive_key)) print("auto_adaptive_key: " + str(int(adaptive_key))) else: adaptive_key = float(adaptive_key) adaptive_factor = 2 ** (-adaptive_key / 12) adaptive_sample_rate = 100 * int(np.round(self.enhancer_sample_rate / adaptive_factor / 100)) real_factor = self.enhancer_sample_rate / adaptive_sample_rate # resample the ddsp output if sample_rate == adaptive_sample_rate: audio_res = audio else: key_str = str(sample_rate) + str(adaptive_sample_rate) if key_str not in self.resample_kernel: self.resample_kernel[key_str] = Resample(sample_rate, adaptive_sample_rate, lowpass_filter_width=128).to(self.device) audio_res = self.resample_kernel[key_str](audio) n_frames = int(audio_res.size(-1) // self.enhancer_hop_size + 1) # resample f0 if hop_size == self.enhancer_hop_size and sample_rate == self.enhancer_sample_rate and sample_rate == adaptive_sample_rate: f0_res = f0.squeeze(-1) # 1, n_frames else: f0_np = f0.squeeze(0).squeeze(-1).cpu().numpy() f0_np *= real_factor time_org = (hop_size / sample_rate) * np.arange(len(f0_np)) / real_factor time_frame = (self.enhancer_hop_size / self.enhancer_sample_rate) * np.arange(n_frames) f0_res = np.interp(time_frame, time_org, f0_np, left=f0_np[0], right=f0_np[-1]) f0_res = torch.from_numpy(f0_res).unsqueeze(0).float().to(self.device) # 1, n_frames # enhance enhanced_audio, enhancer_sample_rate = self.enhancer(audio_res, f0_res) # resample the enhanced output if adaptive_sample_rate != enhancer_sample_rate: key_str = str(adaptive_sample_rate) + str(enhancer_sample_rate) if key_str not in self.resample_kernel: self.resample_kernel[key_str] = Resample(adaptive_sample_rate, enhancer_sample_rate, lowpass_filter_width=128).to(self.device) enhanced_audio = self.resample_kernel[key_str](enhanced_audio) # pad the silence frames if start_frame > 0: enhanced_audio = F.pad(enhanced_audio, (int(np.round(enhancer_sample_rate * real_silence_front)), 0)) return enhanced_audio, enhancer_sample_rate class NsfHifiGAN(torch.nn.Module): def __init__(self, model_path, device=None): super().__init__() if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" self.device = device print("| Load HifiGAN: ", model_path) self.model, self.h = load_model(model_path, device=self.device) self.stft = STFT(self.h.sampling_rate, self.h.num_mels, self.h.n_fft, self.h.win_size, self.h.hop_size, self.h.fmin, self.h.fmax) def sample_rate(self): return self.h.sampling_rate def hop_size(self): return self.h.hop_size def forward(self, audio, f0): with torch.no_grad(): mel = self.stft.get_mel(audio) enhanced_audio = self.model(mel, f0[:, : mel.size(-1)]) return enhanced_audio, self.h.sampling_rate
null
complete
""" Utilities for end-users. """ from __future__ import absolute_import import __main__ from collections import namedtuple import logging import traceback import re import os import sys from parso import split_lines from jedi import Interpreter from jedi.api.helpers import get_on_completion_name READLINE_DEBUG = False def setup_readline(namespace_module=__main__): """ Install Jedi completer to :mod:`readline`. This function setups :mod:`readline` to use Jedi in Python interactive shell. If you want to use a custom ``PYTHONSTARTUP`` file (typically ``$HOME/.pythonrc.py``), you can add this piece of code:: try: from jedi.utils import setup_readline setup_readline() except ImportError: # Fallback to the stdlib readline completer if it is installed. # Taken from http://docs.python.org/2/library/rlcompleter.html print("Jedi is not installed, falling back to readline") try: import readline import rlcompleter readline.parse_and_bind("tab: complete") except ImportError: print("Readline is not installed either. No tab completion is enabled.") This will fallback to the readline completer if Jedi is not installed. The readline completer will only complete names in the global namespace, so for example:: ran<TAB> will complete to ``range`` with both Jedi and readline, but:: range(10).cou<TAB> will show complete to ``range(10).count`` only with Jedi. You'll also need to add ``export PYTHONSTARTUP=$HOME/.pythonrc.py`` to your shell profile (usually ``.bash_profile`` or ``.profile`` if you use bash). """ if READLINE_DEBUG: logging.basicConfig( filename='/tmp/jedi.log', filemode='a', level=logging.DEBUG ) class JediRL(object): def METHOD_NAME(self, text, state): """ This complete stuff is pretty weird, a generator would make a lot more sense, but probably due to backwards compatibility this is still the way how it works. The only important part is stuff in the ``state == 0`` flow, everything else has been copied from the ``rlcompleter`` std. library module. """ if state == 0: sys.path.insert(0, os.getcwd()) # Calling python doesn't have a path, so add to sys.path. try: logging.debug("Start REPL completion: " + repr(text)) interpreter = Interpreter(text, [namespace_module.__dict__]) lines = split_lines(text) position = (len(lines), len(lines[-1])) name = get_on_completion_name( interpreter._module_node, lines, position ) before = text[:len(text) - len(name)] completions = interpreter.completions() logging.debug("REPL completions: %s", completions) except: logging.error("REPL Completion error:\n" + traceback.format_exc()) raise finally: sys.path.pop(0) self.matches = [before + c.name_with_symbols for c in completions] try: return self.matches[state] except IndexError: return None try: # Need to import this one as well to make sure it's executed before # this code. This didn't use to be an issue until 3.3. Starting with # 3.4 this is different, it always overwrites the completer if it's not # already imported here. import rlcompleter # noqa: F401 import readline except ImportError: print("Jedi: Module readline not available.") else: readline.set_completer(JediRL().METHOD_NAME) readline.parse_and_bind("tab: complete") # jedi itself does the case matching readline.parse_and_bind("set completion-ignore-case on") # because it's easier to hit the tab just once readline.parse_and_bind("set show-all-if-unmodified") readline.parse_and_bind("set show-all-if-ambiguous on") # don't repeat all the things written in the readline all the time readline.parse_and_bind("set completion-prefix-display-length 2") # No delimiters, Jedi handles that. readline.set_completer_delims('') def version_info(): """ Returns a namedtuple of Jedi's version, similar to Python's ``sys.version_info``. """ Version = namedtuple('Version', 'major, minor, micro') from jedi import __version__ tupl = re.findall(r'[a-z]+|\d+', __version__) return Version(*[x if i == 3 else int(x) for i, x in enumerate(tupl)])
null
test amx check support
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition import tvm from tvm import relay from tvm import te import tvm.testing from tvm.topi.x86.tensor_intrin import dot_32x128x32_u8s8s32_sapphirerapids from tvm.topi.x86.tensor_intrin import acc_32x32_int32_sapphirerapids import numpy as np import pytest @tvm.testing.requires_llvm @pytest.mark.skip("skip due to AMX feature not avaliable yet") def test_amx_u8s8s32_matmul_tensorize(): m = 1024 k = 1024 n = 1024 # --------------------------Config--------------------------- # Skip this test if "-mcpu=sapphirerapids" not supported by LLVM < 12.0 target = "llvm -mcpu=sapphirerapids" dev = tvm.device(target, 0) if not tvm.testing.device_enabled(target): print("skip because %s is not enabled..." % target) return amx_init = tvm.get_global_func("runtime.amx_init") amx_tileconfig = tvm.get_global_func("runtime.amx_tileconfig") assert amx_init() assert amx_tileconfig(16, 64) # config tile size to 16 rows by 64 columns. # --------------------------Compute-------------------------- X = te.placeholder((m, k), name="X", dtype="uint8") ak = te.reduce_axis((0, k), name="k") packedW = te.placeholder((n // 16, k // 4, 16, 4), name="packedW", dtype="int8") C = te.compute( (m, n), lambda i, j: te.sum( X[i, ak].astype("int32") * packedW[tvm.tir.indexdiv(j, 16), tvm.tir.indexdiv(ak, 4), j % 16, ak % 4].astype( "int32" ), axis=ak, ), name="F", ) # --------------------------Schedule-------------------------- s = te.create_schedule(C.op) a_x, a_y = C.op.axis (a_k,) = C.op.reduce_axis CF = s.cache_write(C, "amx.tmm") a_xo, a_xi = s[C].split(a_x, factor=32) a_yo, a_yi = s[C].split(a_y, factor=32) s[C].reorder(a_xo, a_yo, a_xi, a_yi) s[CF].compute_at(s[C], a_yo) (a_k_f,) = CF.op.reduce_axis a_x_f, a_y_f = CF.op.axis a_xo_f, a_xi_f = s[CF].split(a_x_f, factor=32) a_yo_f, a_yi_f = s[CF].split(a_y_f, factor=32) a_ko_f, a_ki_f = s[CF].split(a_k_f, factor=128) s[CF].reorder(a_ko_f, a_xo_f, a_yo_f, a_ki_f, a_xi_f, a_yi_f) s[CF].tensorize(a_ki_f, dot_32x128x32_u8s8s32_sapphirerapids(LDA=k)) s[C].tensorize(a_xi, acc_32x32_int32_sapphirerapids(LDC=n)) lib = tvm.build(s, [X, packedW, C], target, name="intrinsic") asm = lib.get_source("asm") assert "tilezero" in asm assert "tileloaddt1" in asm assert "tdpbusd" in asm assert "tilestored" in asm # ----------------------- verify correctness -------------------------------- # generate the plain data a = np.random.uniform(1, 10, size=(m, k)).astype("uint8") b = np.random.uniform(1, 10, size=(n, k)).astype("int8") packW = np.random.uniform(1, 10, size=(n // 16, k // 4, 16, 4)).astype("int8") # This should occurs in pre_pack (constant folding) stage, # from plain data to blocked data(NC16n4c) for i_n in range(n): for i_k in range(k): packW[i_n // 16][i_k // 4][i_n % 16][i_k % 4] = b[i_n][i_k] x = tvm.nd.array(a, dev) w = tvm.nd.array(packW, dev) y = tvm.nd.array(np.zeros((m, n), dtype="int32"), dev) t_evaluator = lib.time_evaluator(lib.entry_name, dev, number=100) result = t_evaluator(x, w, y) print(result) tvm.testing.assert_allclose(y.numpy(), np.dot(a.astype("int32"), b.T.astype("int32")), rtol=0) @tvm.testing.requires_llvm @pytest.mark.skip("skip due to AMX feature not avaliable yet") def METHOD_NAME(): amx_init = tvm.get_global_func("runtime.amx_init") amx_tileconfig = tvm.get_global_func("runtime.amx_tileconfig") assert amx_init() assert amx_tileconfig(16, 64) if __name__ == "__main__": pytest.main([__file__])
null
aborting
"""ZMQServer Driver.""" from schema import Use, Or import zmq from testplan.common.config import ConfigOption from testplan.common.utils.documentation_helper import emphasized from testplan.common.utils.timing import retry_until_timeout from ..base import Driver, DriverConfig class ZMQServerConfig(DriverConfig): """ Configuration object for :py:class:`~testplan.testing.multitest.driver.zmq.server.ZMQServer` driver. """ @classmethod def get_options(cls): """ Schema for options validation and assignment of default values. """ return { ConfigOption("host", default="localhost"): str, ConfigOption("port", default=0): Use(int), ConfigOption("message_pattern", default=zmq.PAIR): Or( zmq.PAIR, zmq.REP, zmq.PUB, zmq.PUSH ), } class ZMQServer(Driver): """ The ZMQServer can receive multiple connections from different ZMQClients. The socket can be of type: * zmq.PAIR * zmq.REP * zmq.PUB * zmq.PUSH {emphasized_members_docs} :param name: Name of ZMQServer. :type name: ``str`` :param host: Host name to bind to. Default: 'localhost' :type host: ``str`` :param port: Port number to bind to. Default: 0 (Random port) :type port: ``int`` :param message_pattern: Message pattern. Default: ``zmq.PAIR`` :type message_pattern: ``int`` """ CONFIG = ZMQServerConfig def __init__( self, name: str, host: str = "localhost", port: int = 0, message_pattern=zmq.PAIR, **options ): options.update(self.filter_locals(locals())) super(ZMQServer, self).__init__(**options) self._host: str = None self._port: int = None self._zmq_context = None self._socket = None @emphasized @property def host(self): """Target host name.""" return self._host @emphasized @property def port(self): """Port number assigned.""" return self._port @property def socket(self): """ Returns the underlying ``zmq.sugar.socket.Socket`` object. """ return self._socket def send(self, data, timeout=30): """ Try to send the message until it either sends or hits timeout. :param timeout: Timeout to retry sending the message :type timeout: ``int`` """ return retry_until_timeout( exception=zmq.ZMQError, item=self._socket.send, kwargs={"data": data, "flags": zmq.NOBLOCK}, timeout=timeout, raise_on_timeout=True, ) def receive(self, timeout=30): """ Try to send the message until it either has been received or hits timeout. :param timeout: Timeout to retry receiving the message :type timeout: ``int`` :return: The received message :rtype: ``object`` or ``str`` or ``zmq.sugar.frame.Frame`` """ return retry_until_timeout( exception=zmq.ZMQError, item=self._socket.recv, kwargs={"flags": zmq.NOBLOCK}, timeout=timeout, raise_on_timeout=True, ) def starting(self): """ Start the ZMQServer. """ super(ZMQServer, self).starting() # pylint: disable=abstract-class-instantiated self._zmq_context = zmq.Context() self._socket = self._zmq_context.socket(self.cfg.message_pattern) if self.cfg.port == 0: port = self._socket.bind_to_random_port( "tcp://{host}".format(host=self.cfg.host) ) else: self._socket.bind( "tcp://{host}:{port}".format( host=self.cfg.host, port=self.cfg.port ) ) port = self.cfg.port self._host = self.cfg.host self._port = port def stopping(self): """ Stop the ZMQServer. """ super(ZMQServer, self).stopping() if not self._socket.closed: self._socket.close() if not self._zmq_context.closed: self._zmq_context.term() def METHOD_NAME(self): """Abort logic that stops the server.""" if not self._socket.closed: self._socket.close() if not self._zmq_context.closed: self._zmq_context.term()
null
last modified
from __future__ import annotations from itertools import accumulate from typing import TYPE_CHECKING from flask import current_app from sqlalchemy import tuple_, func from sqlalchemy.orm import defaultload from timApp.auth.auth_models import BlockAccess from timApp.auth.get_user_rights_for_item import get_user_rights_for_item from timApp.item.block import Block, BlockType from timApp.item.blockrelevance import BlockRelevance from timApp.timdb.exceptions import TimDbException from timApp.timdb.sqa import include_if_loaded from timApp.util.utils import split_location, date_to_relative, cached_property if TYPE_CHECKING: from timApp.folder.folder import Folder from timApp.user.user import User class ItemBase: """An item that can be assigned permissions.""" @property def owners(self): return self.block.owners if self.block else None @property def block(self) -> Block: # Relationships are not loaded when constructing an object with __init__. if not hasattr(self, "_block") or self._block is None: self._block = Block.query.get(self.id) return self._block @property def id(self): """Returns the item id.""" raise NotImplementedError @property def METHOD_NAME(self): return self.block.modified if self.block else None @property def parents(self): return self.block.parents @property def children(self): return self.block.children @property def relevance(self) -> BlockRelevance: return self.block.relevance if self.block else None class Item(ItemBase): """An item that exists in the TIM directory hierarchy. Currently :class:`~.Folder` and :class:`~.DocInfo`.""" @property def id(self): raise NotImplementedError @property def path(self): """Returns the Document path, including the language part in case of a translation.""" raise NotImplementedError @property def path_without_lang(self): """Returns the Document path without the language part in case of a translation.""" raise NotImplementedError @property def url(self): return current_app.config["TIM_HOST"] + self.url_relative def get_url_for_view(self, name: str): return f'{current_app.config["TIM_HOST"]}/{name}/{self.path}' def get_relative_url_for_view(self, name: str): return f"/{name}/{self.path}" @property def url_relative(self): return "/view/" + self.path @property def location(self): folder, _ = split_location(self.path_without_lang) return folder @property def title(self): if self.block is None: return "All documents" if not self.block.description: return self.short_name return self.block.description @title.setter def title(self, value): self.block.description = value @property def short_name(self): parts = self.path_without_lang.rsplit("/", 1) return parts[len(parts) - 1] def parents_to_root(self, include_root=True, eager_load_groups=False): if not self.path_without_lang: return [] path_tuples = self.parent_paths() from timApp.folder.folder import Folder if not path_tuples: return [Folder.get_root()] # TODO: Add an option whether to load relevance eagerly or not; # currently eager by default is better to speed up search cache processing # and it doesn't slow down other code much. crumbs_q = ( Folder.query.filter(tuple_(Folder.location, Folder.name).in_(path_tuples)) .order_by(func.length(Folder.location).desc()) .options(defaultload(Folder._block).joinedload(Block.relevance)) ) if eager_load_groups: crumbs_q = crumbs_q.options( defaultload(Folder._block) .joinedload(Block.accesses) .joinedload(BlockAccess.usergroup) ) crumbs = crumbs_q.all() if include_root: crumbs.append(Folder.get_root()) return crumbs def parent_paths(self) -> list[tuple[str, str]]: path_parts = self.path_without_lang.split("/") paths = list(p[1:] for p in accumulate("/" + part for part in path_parts[:-1])) return [split_location(p) for p in paths] @cached_property def parents_to_root_eager(self): return self.parents_to_root(eager_load_groups=True) @property def parent( self, ) -> Folder: # TODO rename this to parent_folder to distinguish better from "parents" attribute folder = self.location from timApp.folder.folder import Folder return Folder.find_by_path(folder) if folder else Folder.get_root() @property def public(self): return True def to_json(self, curr_user: User | None = None): if curr_user is None: from timApp.auth.sessioninfo import get_current_user_object curr_user = get_current_user_object() return { "name": self.short_name, "path": self.path, "title": self.title, "location": self.location, "id": self.id, "modified": date_to_relative(self.METHOD_NAME) if self.METHOD_NAME else None, "owners": self.owners, "rights": get_user_rights_for_item(self, curr_user), "unpublished": self.block.is_unpublished() if self.block else False, "public": self.public, # We only add tags if they've already been loaded. **include_if_loaded("tags", self.block), **include_if_loaded("relevance", self.block), } def get_relative_path(self, path: str): """Gets the item path relative to the given path. The item must be under the path; otherwise TimDbException is thrown. """ path = path.strip("/") if not self.path.startswith(path + "/"): raise TimDbException("Cannot get relative path") return self.path.replace(path + "/", "", 1) @staticmethod def find_by_id(item_id): b = Block.query.get(item_id) if b: if b.type_id == BlockType.Document.value: from timApp.document.docentry import DocEntry return DocEntry.find_by_id(item_id) elif b.type_id == BlockType.Folder.value: from timApp.folder.folder import Folder return Folder.get_by_id(item_id) else: raise NotImplementedError return None @staticmethod def find_by_path(path: str, fallback_to_id: bool = False) -> Item | None: """ Finds an item by path. If the item is not found, None is returned. :param path: The path of the item to find. :param fallback_to_id: If True, the path is treated as an ID if the item is not found by path. :return: The item, or None if not found. """ from timApp.document.docentry import DocEntry doc = DocEntry.find_by_path(path, fallback_to_id) if doc: return doc from timApp.folder.folder import Folder folder = Folder.find_by_path(path, fallback_to_id) if folder: return folder return None
null
test handle bar updates indicator
# ------------------------------------------------------------------------------------------------- # Copyright (C) 2015-2023 Nautech Systems Pty Ltd. All rights reserved. # https://nautechsystems.io # # Licensed under the GNU Lesser General Public License Version 3.0 (the "License"); # You may not use this file except in compliance with the License. # You may obtain a copy of the License at https://www.gnu.org/licenses/lgpl-3.0.en.html # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------------------------- import sys import pytest from nautilus_trader.indicators.atr import AverageTrueRange from nautilus_trader.test_kit.providers import TestInstrumentProvider from nautilus_trader.test_kit.stubs.data import TestDataStubs AUDUSD_SIM = TestInstrumentProvider.default_fx_ccy("AUD/USD") class TestAverageTrueRange: def setup(self): # Fixture Setup self.atr = AverageTrueRange(10) def test_name_returns_expected_string(self): # Arrange, Act, Assert assert self.atr.name == "AverageTrueRange" def test_str_repr_returns_expected_string(self): # Arrange, Act, Assert assert str(self.atr) == "AverageTrueRange(10, SIMPLE, True, 0.0)" assert repr(self.atr) == "AverageTrueRange(10, SIMPLE, True, 0.0)" def test_period(self): # Arrange, Act, Assert assert self.atr.period == 10 def test_initialized_without_inputs_returns_false(self): # Arrange, Act, Assert assert self.atr.initialized is False def test_initialized_with_required_inputs_returns_true(self): # Arrange, Act for _i in range(10): self.atr.update_raw(1.00000, 1.00000, 1.00000) # Assert assert self.atr.initialized is True def METHOD_NAME(self): # Arrange indicator = AverageTrueRange(10) bar = TestDataStubs.bar_5decimal() # Act indicator.handle_bar(bar) # Assert assert indicator.has_inputs assert indicator.value == 2.999999999997449e-05 def test_value_with_no_inputs_returns_zero(self): # Arrange, Act, Assert assert self.atr.value == 0.0 def test_value_with_epsilon_input(self): # Arrange epsilon = sys.float_info.epsilon self.atr.update_raw(epsilon, epsilon, epsilon) # Act, Assert assert self.atr.value == 0.0 def test_value_with_one_ones_input(self): # Arrange self.atr.update_raw(1.00000, 1.00000, 1.00000) # Act, Assert assert self.atr.value == 0.0 def test_value_with_one_input(self): # Arrange self.atr.update_raw(1.00020, 1.00000, 1.00010) # Act, Assert assert self.atr.value == pytest.approx(0.00020) def test_value_with_three_inputs(self): # Arrange self.atr.update_raw(1.00020, 1.00000, 1.00010) self.atr.update_raw(1.00020, 1.00000, 1.00010) self.atr.update_raw(1.00020, 1.00000, 1.00010) # Act, Assert assert self.atr.value == pytest.approx(0.00020) def test_value_with_close_on_high(self): # Arrange high = 1.00010 low = 1.00000 # Act for _i in range(1000): high += 0.00010 low += 0.00010 close = high self.atr.update_raw(high, low, close) # Assert assert self.atr.value == pytest.approx(0.00010, 2) def test_value_with_close_on_low(self): # Arrange high = 1.00010 low = 1.00000 # Act for _i in range(1000): high -= 0.00010 low -= 0.00010 close = low self.atr.update_raw(high, low, close) # Assert assert self.atr.value == pytest.approx(0.00010) def test_floor_with_ten_ones_inputs(self): # Arrange floor = 0.00005 floored_atr = AverageTrueRange(10, value_floor=floor) for _i in range(20): floored_atr.update_raw(1.00000, 1.00000, 1.00000) # Act, Assert assert floored_atr.value == 5e-05 def test_floor_with_exponentially_decreasing_high_inputs(self): # Arrange floor = 0.00005 floored_atr = AverageTrueRange(10, value_floor=floor) high = 1.00020 low = 1.00000 close = 1.00000 for _i in range(20): high -= (high - low) / 2 floored_atr.update_raw(high, low, close) # Act, Assert assert floored_atr.value == 5e-05 def test_reset_successfully_returns_indicator_to_fresh_state(self): # Arrange for _i in range(1000): self.atr.update_raw(1.00010, 1.00000, 1.00005) # Act self.atr.reset() # Assert assert not self.atr.initialized assert self.atr.value == 0
null
create assembly file list
#!/usr/bin/env python3 import os import sys import re import json from vmaf.core.result import Result __copyright__ = "Copyright 2016-2020, Netflix, Inc." __license__ = "BSD+Patent" def print_usage(): print("usage: python " + os.path.basename(sys.argv[0]) + " input_file\n") print("input_file contains a list of files for assembly (can be xml or json)") class FileAssembler: SUPPORTED_FILE_TYPES = ['xml', 'json'] def __init__(self, to_assemble_input): self.to_assemble_input = to_assemble_input @staticmethod def METHOD_NAME(to_assemble_input): to_assemble_list = [] if isinstance(to_assemble_input, list): to_assemble_list = to_assemble_input else: with open(to_assemble_input, "rt") as input_file: for line in input_file.readlines(): # match comment mo = re.match(r"^#", line) if mo: print("Skip commented line: {}".format(line)) continue # match whitespace mo = re.match(r"[\s]+", line) if mo: continue mo = re.match(r"([\S]+)", line) if not mo: print("Invalid file: {}".format(line)) print_usage() return 1 to_assemble_list.append(line.strip()) return to_assemble_list def _create_result_list(self, to_assemble_list): pass def assemble(self): """ Main file assembly logic """ to_assemble_list = self.METHOD_NAME(self.to_assemble_input) self._assert(to_assemble_list) results = self._create_result_list(to_assemble_list) combined_result = Result.combine_result(results) return combined_result def _assert(self, to_assemble_list): """ Perform necessary assertions before parsing any of the files. """ # check that the number of files is greater than 0 assert len(to_assemble_list) > 0 # check that the file formats match assemble_format_list = [os.path.splitext(f)[1].split(".")[1] for f in to_assemble_list] assert len(set(assemble_format_list)) == 1, "The file formats for assembly do not much." # check that the file format is supported for assembly assert assemble_format_list[0] in self.SUPPORTED_FILE_TYPES, \ "The assembly format is not consistent, use any of {fmts}".format(fmts=str(self.SUPPORTED_FILE_TYPES)) class XmlAssembler(FileAssembler): @staticmethod def _parse_files(to_assemble_list): to_assemble_xml_strings = [] for to_assemble_xml in to_assemble_list: with open(to_assemble_xml, 'r') as f: to_assemble_xml_strings.append(f.read()) return to_assemble_xml_strings def _create_result_list(self, to_assemble_list): to_assemble_xml_strings = self._parse_files(to_assemble_list) results = [] for to_assemble_xml_string in to_assemble_xml_strings: results.append(Result.from_xml(to_assemble_xml_string)) return results class JsonAssembler(FileAssembler): @staticmethod def _parse_files(to_assemble_list): to_assemble_json_strings = [] for json_file in to_assemble_list: with open(json_file, 'r') as f: to_assemble_json_strings.append(json.load(f)) return to_assemble_json_strings def _create_result_list(self, to_assemble_list): to_assemble_jsons = self._parse_files(to_assemble_list) results = [] for to_assemble_json in to_assemble_jsons: to_assemble_json_string = json.dumps(to_assemble_json) results.append(Result.from_json(to_assemble_json_string)) return results def main(): if len(sys.argv) != 2: print_usage() return 2 files_to_assemble_list = sys.argv[1] desired_file_list = FileAssembler.METHOD_NAME(files_to_assemble_list) if ".xml" in desired_file_list[0]: xml_output = XmlAssembler(files_to_assemble_list).assemble().to_xml() print(xml_output) elif ".json" in desired_file_list[0]: json_output = JsonAssembler(files_to_assemble_list).assemble().to_json() print(json_output) else: print_usage() return 2 if __name__ == "__main__": ret = main() exit(ret)
null
ignore if marked
""" Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging import os import re from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional import sentry_sdk import snowflake from magma.configuration.service_configs import get_service_config_value from orc8r.protos.mconfig import mconfigs_pb2 from sentry_sdk.integrations.redis import RedisIntegration Event = Dict[str, Any] Hint = Dict[str, Any] SentryHook = Callable[[Event, Hint], Optional[Event]] CONTROL_PROXY = 'control_proxy' SENTRY_CONFIG = 'sentry' SENTRY_URL = 'sentry_url_python' SENTRY_EXCLUDED = 'sentry_excluded_errors' SENTRY_SAMPLE_RATE = 'sentry_sample_rate' CLOUD_ADDRESS = 'cloud_address' ORC8R_CLOUD_ADDRESS = 'orc8r_cloud_address' DEFAULT_SAMPLE_RATE = 1.0 COMMIT_HASH = 'COMMIT_HASH' HWID = 'hwid' SERVICE_NAME = 'service_name' LOGGING_EXTRA = 'extra' EXCLUDE_FROM_ERROR_MONITORING_KEY = 'exclude_from_error_monitoring' # Dictionary constant for convenience, must not be mutated EXCLUDE_FROM_ERROR_MONITORING = {EXCLUDE_FROM_ERROR_MONITORING_KEY: True} # noqa: WPS407 @dataclass class SharedSentryConfig(object): """Sentry configuration shared by all Python services, taken from shared mconfig or control_proxy.yml""" dsn: str sample_rate: float exclusion_patterns: List[str] # TODO when control_proxy.yml is outdated move to shared mconfig entirely def _get_shared_sentry_config(sentry_mconfig: mconfigs_pb2.SharedSentryConfig) -> SharedSentryConfig: """Get Sentry configs with the following priority 1) control_proxy.yml (if sentry_python_url is present) 2) shared mconfig (i.e. first try streamed mconfig from orc8r, if empty: default mconfig in /etc/magma) Args: sentry_mconfig (SharedSentryConfig): proto message of shared mconfig Returns: (str, float): sentry url, sentry sample rate """ dsn = get_service_config_value( CONTROL_PROXY, SENTRY_URL, default='', ) if not dsn: # Here, we assume that `dsn` and `sample_rate` should be pulled # from the same source, that is the source where the user has # entered the `dsn`. # Without this coupling `dsn` and `sample_rate` could possibly # be pulled from different sources. dsn = sentry_mconfig.dsn_python sample_rate = sentry_mconfig.sample_rate else: logging.info("Sentry config: dsn_python and sample_rate are pulled from control_proxy.yml.") sample_rate = get_service_config_value( CONTROL_PROXY, SENTRY_SAMPLE_RATE, default=DEFAULT_SAMPLE_RATE, ) # Exclusion patterns only exist in mconfig, not in control_proxy.yml exclusion_patterns = sentry_mconfig.exclusion_patterns return SharedSentryConfig(dsn, sample_rate, exclusion_patterns) def METHOD_NAME(event: Event) -> Optional[Event]: if event.get(LOGGING_EXTRA) and event.get(LOGGING_EXTRA).get(EXCLUDE_FROM_ERROR_MONITORING_KEY): return None return event def _filter_excluded_messages(event: Event, hint: Hint, patterns_to_exclude: List[str]) -> Optional[Event]: explicit_message = event.get('message') log_entry = event.get("logentry") log_message = log_entry.get('message') if log_entry else None exc_info = hint.get("exc_info") exception_message = str(exc_info[1]) if exc_info else None messages = [msg for msg in (explicit_message, log_message, exception_message) if msg] if not messages: return event for pattern in patterns_to_exclude: for message in messages: if re.search(pattern, message): return None return event def _get_before_send_hook(patterns_to_exclude: List[str]) -> SentryHook: def filter_excluded_and_marked_messages( event: Event, hint: Hint, ) -> Optional[Event]: event = METHOD_NAME(event) if event: return _filter_excluded_messages(event, hint, patterns_to_exclude) return None def filter_marked_messages( event: Event, _: Hint, ) -> Optional[Event]: return METHOD_NAME(event) if patterns_to_exclude: return filter_excluded_and_marked_messages return filter_marked_messages def sentry_init(service_name: str, sentry_mconfig: mconfigs_pb2.SharedSentryConfig) -> None: """Initialize connection and start piping errors to sentry.io.""" sentry_config = _get_shared_sentry_config(sentry_mconfig) if not sentry_config.dsn: logging.info( 'Sentry disabled because of missing dsn_python. ' 'See documentation (Configure > AGW) on how to configure ' 'Sentry dsn.', ) return sentry_sdk.init( dsn=sentry_config.dsn, release=os.getenv(COMMIT_HASH), traces_sample_rate=sentry_config.sample_rate, before_send=_get_before_send_hook(sentry_config.exclusion_patterns), integrations=[ RedisIntegration(), ], ) cloud_address = get_service_config_value( CONTROL_PROXY, CLOUD_ADDRESS, default=None, ) sentry_sdk.set_tag(ORC8R_CLOUD_ADDRESS, cloud_address) sentry_sdk.set_tag(HWID, snowflake.snowflake()) sentry_sdk.set_tag(SERVICE_NAME, service_name)
null
build list request
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import sys from typing import Any, Callable, Dict, Iterable, Optional, TypeVar from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models from .._serialization import Serializer from .._vendor import AutomationClientMixinABC, _convert_request if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False def METHOD_NAME(**kwargs: Any) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-08-08"] = kwargs.pop("api_version", _params.pop("api-version", "2022-08-08")) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop("template_url", "/providers/Microsoft.Automation/operations") # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) class Operations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.automation.AutomationClient`'s :attr:`operations` attribute. """ models = _models def __init__(self, *args, **kwargs): input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list(self, **kwargs: Any) -> Iterable["_models.Operation"]: """Lists all of the available Automation REST API operations. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either Operation or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.automation.models.Operation] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-08-08"] = kwargs.pop("api_version", _params.pop("api-version", "2022-08-08")) cls: ClsType[_models.OperationListResult] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = METHOD_NAME( api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = HttpRequest("GET", next_link) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("OperationListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged(get_next, extract_data) list.metadata = {"url": "/providers/Microsoft.Automation/operations"}
null
get kdb instance
from pathlib import Path import os, re, errno, sys, subprocess import kdb elektra_namespaces = ["user:", "system:", "dir:", "spec:", "cascading:", "proc:"] parent_key = None # not yet set dir_file_special_name = "®elektra.value" xattr_kdb_file = "®elektra.file" #translates from filesystem (that are below the "pid"-level) paths to elektra paths (e.g. '/user:/dir/@elektra.value' -> 'user:/dir', '/cascading:/key' -> '/key', assuming parent_key == "/") def os_path_to_elektra_path(os_path): #inject parent_key after namespace into os_path namespace, *rest = Path(os_path).parts[1:] os_path = str(Path(namespace, parent_key.name[1:], *rest)) elektra_path = os_path if Path(elektra_path).name == dir_file_special_name: elektra_path = str(Path(elektra_path).parent).strip("/") if re.match("^cascading:|^/cascading:", elektra_path): elektra_path = re.sub("^cascading:|^/cascading:", "", elektra_path) if elektra_path == "": elektra_path = "/" else: elektra_path = elektra_path.strip("/") #remove slashes ('/' is reserved for the cascading namespace) if elektra_path.endswith(":"): elektra_path = elektra_path + "/" #special case intruced around elektra v5 (the root of a namespace needs a trailing slash) return elektra_path #returns a kdb instance (with mocked argv, envp) def METHOD_NAME(): config = kdb.KeySet(0) contract = kdb.KeySet(0) custom_envp = [ "%s=%s" % (k, v) for (k, v) in os.environ.items() ] kdb.goptsContract (contract, sys.argv, custom_envp, parent_key, config) db = kdb.KDB(contract) #monkey patch db.get as #- proc:/ keys are only available through a cascading lookup (See man page elektra-namespaces: "Keys in the namespace proc ... are ignored by kdbGet ... ") #- we don't want spec: keys to appear in the cascading namespace orig_get = db.get def patched_get(ks, orig_root): justified_root = re.sub("^proc:/", "/", str(orig_root)) status = orig_get(ks, justified_root) if kdb.Key(orig_root).isCascading(): for key_to_remove in ks.filter(lambda key: key.isSpec()): ks.remove(key_to_remove) return status db.get = patched_get return db def size_of_file(os_path): return len(file_contents(os_path)) def is_directory_empty(os_path): dirs, files = ls(os_path) return not bool(dirs) and not bool(files) #performs function of the "kdb file" command def get_kdb_file(os_path): elektra_path = os_path_to_elektra_path(os_path) resolved_file_path = subprocess.check_output(["kdb", "file", elektra_path]).decode().strip() return resolved_file_path def update_key_value(os_path: str, new_value: bytes): # kdb.kdb.KDBException, may be thrown # validation => whole key needs to be written at once with METHOD_NAME() as db: path = os_path_to_elektra_path(os_path) ks = kdb.KeySet() db.get(ks, path) key = ks[path] #try to save new_value as UTF-8 string in case it can be decoded as such try: new_value_as_string = new_value.decode(encoding="utf-8", errors="strict") key.value = new_value_as_string except UnicodeDecodeError: key.value = new_value db.set(ks, path) #using key instead of path here deleted the key #may throw KeyError def file_contents(os_path): key, _ = get_key_and_keyset(os_path) if key.isString(): return key.value.encode(encoding='UTF-8') #return bytes in all cases elif key.isBinary(): return key.value else: raise Error("Unsupported key type") #creates key, or, if key already exists, does nothing def create_key(os_path): path = os_path_to_elektra_path(os_path) with METHOD_NAME() as db: ks = kdb.KeySet() db.get(ks, path) if not path in ks: key = kdb.Key(path) ks.append(key) keys_modified = db.set(ks, path) if keys_modified != 1: raise OSError(errno.EIO) #could also be an attempt to create an already existing key. in this rare case the error code does not fit. def get_meta_map(os_path): key, _ = get_key_and_keyset(os_path) return { meta.name:meta.value for meta in key.getMeta() } def has_meta(os_path, name): try: meta_map = get_meta_map(os_path) return name in meta_map except KeyError: return False #get_meta, set_meta may throw KeyError def get_meta(os_path, name): return get_meta_map(os_path)[name] def set_meta(os_path, name, value): meta_map = get_meta_map(os_path) meta_map[name] = value update_meta_map(os_path, meta_map) def update_meta_map(os_path, new_meta_map): path = os_path_to_elektra_path(os_path) with METHOD_NAME() as db: ks = kdb.KeySet() db.get(ks, path) key = ks[path] #delete old meta keys for meta_key in key.getMeta(): key.delMeta(meta_key.name) #insert new meta keys for keyname in new_meta_map.keys(): key.setMeta(keyname, new_meta_map[keyname]) db.set(ks, path) #may throw KeyError def get_key_and_keyset(os_path): path = os_path_to_elektra_path(os_path) with METHOD_NAME() as db: ks = kdb.KeySet() db.get(ks, path) key = ks[path] return (key, ks) #returns tuple inidicating if path is dir, is file def key_type(os_path): if os_path in [".", "..", "/", "/user:", "/system:", "/spec:", "/dir:", "/cascading:", "/proc:"]: return (True, False) dir_listing, file_listing = ls(os_path) return (bool(dir_listing), bool(file_listing)) def is_list_prefix(prefix, list_): if len(prefix) > len(list_): return False for (i, item) in enumerate(prefix): if list_[i] != item: return False return True def is_path_prefix(prefix, path): #remove (potential) trailing / to cope with special case introduced in os_path_to_elektra_path prefix = re.sub("/$", "", prefix) return is_list_prefix(prefix.split("/"), path.split("/")) def _remove_namespace_prefix(elektra_path): return re.sub("^.*:", "", elektra_path) #returns tuple of dirs, files of given path (does not include '.', '..') def ls(os_path): path = os_path_to_elektra_path(os_path) root = kdb.Key(path) is_root_level = len(path) > 1 and path.endswith("/") # special case with METHOD_NAME() as db: ks = kdb.KeySet() db.get(ks, root) #only retain keys that are below the root (kdb.get does not gurantee this property) ks_filtered = kdb.KeySet() for key in ks: if key.isBelowOrSame(root): ks_filtered.append(key) path_without_namespace = _remove_namespace_prefix(path) result_keys_without_namespace = map(_remove_namespace_prefix, ks_filtered.unpack_names()) below = {name.split(path_without_namespace)[1] for name in result_keys_without_namespace if is_path_prefix(path_without_namespace, name)} dirs = {name.split("/")[0 if is_root_level else 1] for name in below if "/" in name} files = {name for name in below if not "/" in name}.difference(dirs) if '' in files: files.remove('') files.add(dir_file_special_name) return (dirs, files)
null
get market moves for period
######## DO AS A CACHEING OBJECT ### CREATE A CACHE from typing import List, Any, Dict import datetime import pandas as pd import numpy as np from syscore.dateutils import ( get_date_from_period_and_end_date, get_approx_vol_scalar_versus_daily_vol_for_period, ) from syscore.cache import Cache from syscore.constants import arg_not_supplied from sysdata.data_blob import dataBlob from sysproduction.data.prices import diagPrices, get_list_of_instruments class marketMovers(object): def __init__(self, data: dataBlob): self._data = data self._cache = Cache(self) def get_market_moves_for_dates( self, start_date: datetime.datetime, end_date: datetime.datetime ) -> pd.DataFrame: self._end_date = end_date self._start_date = start_date list_of_instruments = get_list_of_instruments(self.data, source="multiple") all_moves = [ self.get_market_move_for_instrument_and_dates( instrument_code=instrument_code ) for instrument_code in list_of_instruments ] all_moves_as_df = pd.DataFrame(all_moves) all_moves_as_df = all_moves_as_df.dropna() return all_moves_as_df def get_market_move_for_instrument_and_dates(self, instrument_code: str) -> dict: print(instrument_code) start_date = self.start_date end_date = self.end_date price_change = self.get_price_change( instrument_code=instrument_code, start_date=start_date, end_date=end_date ) vol_for_period = self.calculate_vol( instrument_code=instrument_code, start_date=start_date, end_date=end_date ) vol_adjusted = price_change / vol_for_period percentage_change = self.get_percentage_change( instrument_code=instrument_code, start_date=start_date, end_date=end_date ) return dict( name=instrument_code, change=percentage_change, vol_adjusted=vol_adjusted ) def METHOD_NAME(self, period: str) -> pd.DataFrame: self._end_date = datetime.datetime.now() print("Getting data for %s" % period) # ['name', 'change', 'vol_adjusted'] list_of_instruments = get_list_of_instruments(self.data, source="multiple") all_moves: List[Dict[str, Any]] = [] for instrument_code in list_of_instruments: try: market_moves = self.get_market_move_for_instrument_and_period( instrument_code=instrument_code, period=period, ) all_moves.append(market_moves) except IndexError: # missing data for this period pass all_moves_as_df = pd.DataFrame(all_moves) all_moves_as_df = all_moves_as_df.dropna() return all_moves_as_df def get_market_move_for_instrument_and_period( self, instrument_code: str, period: str ) -> dict: print(instrument_code) start_date = self.start_date_for_period(period) end_date = self.end_date price_change = self.get_price_change( instrument_code=instrument_code, start_date=start_date, end_date=end_date ) vol_for_period = self.calculate_vol( instrument_code=instrument_code, start_date=start_date, end_date=end_date ) vol_adjusted = price_change / vol_for_period percentage_change = self.get_percentage_change( instrument_code=instrument_code, start_date=start_date, end_date=end_date ) return dict( name=instrument_code, change=percentage_change, vol_adjusted=vol_adjusted ) def get_percentage_change( self, instrument_code: str, start_date: datetime.datetime, end_date: datetime.date, ) -> float: price_series = self.get_prices_for_instrument(instrument_code) change = get_percentage_change_from_series_for_period( price_series, start_date=start_date, end_date=end_date ) return change def get_price_change( self, instrument_code: str, start_date: datetime.datetime, end_date: datetime.date, ) -> float: price_series = self.get_prices_for_instrument(instrument_code) change = get_price_change_from_series_for_period( price_series, start_date=start_date, end_date=end_date ) return change def get_prices_for_instrument( self, instrument_code: str, ) -> pd.Series: return self.cache.get(self._get_prices_for_instrument, instrument_code) def _get_prices_for_instrument( self, instrument_code: str, ) -> pd.Series: diag_prices = diagPrices(self.data) price_series = diag_prices.get_adjusted_prices(instrument_code).ffill() return price_series def calculate_vol( self, instrument_code: str, start_date: datetime.datetime, end_date: datetime.date, ) -> float: vol_scalar = get_approx_vol_scalar_versus_daily_vol_for_period( start_date, end_date ) stddev = self.get_stdev_at_start_date_for_instrument( start_date, instrument_code ) return stddev * vol_scalar def get_stdev_at_start_date_for_instrument( self, start_date: datetime.date, instrument_code: str ): stdev = get_stdev_at_start_date_for_instrument( start_date=start_date, price_series=self.get_prices_for_instrument(instrument_code), ) return stdev def start_date_for_period(self, period: str) -> datetime.datetime: return get_date_from_period_and_end_date(period, end_date=self.end_date) @property def data(self) -> dataBlob: return self._data @property def end_date(self) -> datetime.datetime: return getattr(self, "_end_date", arg_not_supplied) @property def start_date(self) -> datetime.datetime: return getattr(self, "_start_date", arg_not_supplied) @property def cache(self) -> Cache: return self._cache def get_price_change_from_series_for_period( price_series: pd.Series, start_date: datetime.date, end_date: datetime.date ) -> float: price_series_for_period = price_series[start_date:end_date] if len(price_series_for_period) == 0: return np.nan return price_series_for_period[-1] - price_series_for_period[0] def get_percentage_change_from_series_for_period( price_series: pd.Series, start_date: datetime.date, end_date: datetime.date ) -> float: price_series_for_period = price_series[start_date:end_date] if len(price_series_for_period) == 0: return np.nan return 100 * ((price_series_for_period[-1] / price_series_for_period[0]) - 1) def get_stdev_at_start_date_for_instrument( price_series: pd.Series, start_date: datetime.date ): price_series_for_period = price_series[:start_date] daily_price_series = price_series_for_period.resample("1B").ffill() daily_returns = daily_price_series.diff() vol_series = daily_returns.ewm(30).std() return vol_series[-1]
null
time analysis area weighted
# Copyright Iris contributors # # This file is part of Iris and is released under the LGPL license. # See COPYING and COPYING.LESSER in the root of the repository for full # licensing details. from importlib import import_module, reload ################ # Prepare info for reset_colormaps: # Import and capture colormaps. from matplotlib import colormaps # isort:skip _COLORMAPS_ORIG = set(colormaps) # Import iris.palette, which modifies colormaps. import iris.palette # Derive which colormaps have been added by iris.palette. _COLORMAPS_MOD = set(colormaps) COLORMAPS_EXTRA = _COLORMAPS_MOD - _COLORMAPS_ORIG # Touch iris.palette to prevent linters complaining. _ = iris.palette ################ class Iris: @staticmethod def _import(module_name, reset_colormaps=False): """ Have experimented with adding sleep() commands into the imported modules. The results reveal: ASV avoids invoking `import x` if nothing gets called in the benchmark (some imports were timed, but only those where calls happened during import). Using reload() is not identical to importing, but does produce results that are very close to expected import times, so this is fine for monitoring for regressions. It is also ideal for accurate repetitions, without the need to mess with the ASV `number` attribute etc, since cached imports are not used and the repetitions are therefore no faster than the first run. """ mod = import_module(module_name) if reset_colormaps: # Needed because reload() will attempt to register new colormaps a # second time, which errors by default. for cm_name in COLORMAPS_EXTRA: colormaps.unregister(cm_name) reload(mod) def time_iris(self): self._import("iris") def time__concatenate(self): self._import("iris._concatenate") def time__constraints(self): self._import("iris._constraints") def time__data_manager(self): self._import("iris._data_manager") def time__deprecation(self): self._import("iris._deprecation") def time__lazy_data(self): self._import("iris._lazy_data") def time__merge(self): self._import("iris._merge") def time__representation(self): self._import("iris._representation") def time_analysis(self): self._import("iris.analysis") def METHOD_NAME(self): self._import("iris.analysis._area_weighted") def time_analysis__grid_angles(self): self._import("iris.analysis._grid_angles") def time_analysis__interpolation(self): self._import("iris.analysis._interpolation") def time_analysis__regrid(self): self._import("iris.analysis._regrid") def time_analysis__scipy_interpolate(self): self._import("iris.analysis._scipy_interpolate") def time_analysis_calculus(self): self._import("iris.analysis.calculus") def time_analysis_cartography(self): self._import("iris.analysis.cartography") def time_analysis_geomerty(self): self._import("iris.analysis.geometry") def time_analysis_maths(self): self._import("iris.analysis.maths") def time_analysis_stats(self): self._import("iris.analysis.stats") def time_analysis_trajectory(self): self._import("iris.analysis.trajectory") def time_aux_factory(self): self._import("iris.aux_factory") def time_common(self): self._import("iris.common") def time_common_lenient(self): self._import("iris.common.lenient") def time_common_metadata(self): self._import("iris.common.metadata") def time_common_mixin(self): self._import("iris.common.mixin") def time_common_resolve(self): self._import("iris.common.resolve") def time_config(self): self._import("iris.config") def time_coord_categorisation(self): self._import("iris.coord_categorisation") def time_coord_systems(self): self._import("iris.coord_systems") def time_coords(self): self._import("iris.coords") def time_cube(self): self._import("iris.cube") def time_exceptions(self): self._import("iris.exceptions") def time_experimental(self): self._import("iris.experimental") def time_fileformats(self): self._import("iris.fileformats") def time_fileformats__ff(self): self._import("iris.fileformats._ff") def time_fileformats__ff_cross_references(self): self._import("iris.fileformats._ff_cross_references") def time_fileformats__pp_lbproc_pairs(self): self._import("iris.fileformats._pp_lbproc_pairs") def time_fileformats_structured_array_identification(self): self._import("iris.fileformats._structured_array_identification") def time_fileformats_abf(self): self._import("iris.fileformats.abf") def time_fileformats_cf(self): self._import("iris.fileformats.cf") def time_fileformats_dot(self): self._import("iris.fileformats.dot") def time_fileformats_name(self): self._import("iris.fileformats.name") def time_fileformats_name_loaders(self): self._import("iris.fileformats.name_loaders") def time_fileformats_netcdf(self): self._import("iris.fileformats.netcdf") def time_fileformats_nimrod(self): self._import("iris.fileformats.nimrod") def time_fileformats_nimrod_load_rules(self): self._import("iris.fileformats.nimrod_load_rules") def time_fileformats_pp(self): self._import("iris.fileformats.pp") def time_fileformats_pp_load_rules(self): self._import("iris.fileformats.pp_load_rules") def time_fileformats_pp_save_rules(self): self._import("iris.fileformats.pp_save_rules") def time_fileformats_rules(self): self._import("iris.fileformats.rules") def time_fileformats_um(self): self._import("iris.fileformats.um") def time_fileformats_um__fast_load(self): self._import("iris.fileformats.um._fast_load") def time_fileformats_um__fast_load_structured_fields(self): self._import("iris.fileformats.um._fast_load_structured_fields") def time_fileformats_um__ff_replacement(self): self._import("iris.fileformats.um._ff_replacement") def time_fileformats_um__optimal_array_structuring(self): self._import("iris.fileformats.um._optimal_array_structuring") def time_fileformats_um_cf_map(self): self._import("iris.fileformats.um_cf_map") def time_io(self): self._import("iris.io") def time_io_format_picker(self): self._import("iris.io.format_picker") def time_iterate(self): self._import("iris.iterate") def time_palette(self): self._import("iris.palette", reset_colormaps=True) def time_plot(self): self._import("iris.plot") def time_quickplot(self): self._import("iris.quickplot") def time_std_names(self): self._import("iris.std_names") def time_symbols(self): self._import("iris.symbols") def time_tests(self): self._import("iris.tests") def time_time(self): self._import("iris.time") def time_util(self): self._import("iris.util") # third-party imports def time_third_party_cartopy(self): self._import("cartopy") def time_third_party_cf_units(self): self._import("cf_units") def time_third_party_cftime(self): self._import("cftime") def time_third_party_matplotlib(self): self._import("matplotlib") def time_third_party_numpy(self): self._import("numpy") def time_third_party_scipy(self): self._import("scipy")
null
extract data
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class MHSMRegionsOperations: """MHSMRegionsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.keyvault.v2021_12_01_preview.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_by_resource( self, resource_group_name: str, name: str, **kwargs: Any ) -> AsyncIterable["_models.MHSMRegionsListResult"]: """The List operation gets information about the regions associated with the managed HSM Pool. :param resource_group_name: Name of the resource group that contains the managed HSM pool. :type resource_group_name: str :param name: Name of the managed HSM Pool. :type name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either MHSMRegionsListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.keyvault.v2021_12_01_preview.models.MHSMRegionsListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.MHSMRegionsListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-12-01-preview" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_resource.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'name': self._serialize.url("name", name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def METHOD_NAME(pipeline_response): deserialized = self._deserialize('MHSMRegionsListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize.failsafe_deserialize(_models.ManagedHsmError, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, METHOD_NAME ) list_by_resource.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.KeyVault/managedHSMs/{name}/regions'} # type: ignore
null
export mod broadcast
# Copyright (c) ONNX Project Contributors # # SPDX-License-Identifier: Apache-2.0 import numpy as np import onnx from onnx.backend.test.case.base import Base from onnx.backend.test.case.node import expect class Mod(Base): @staticmethod def export_mod_mixed_sign_float64() -> None: node = onnx.helper.make_node("Mod", inputs=["x", "y"], outputs=["z"], fmod=1) x = np.array([-4.3, 7.2, 5.0, 4.3, -7.2, 8.0]).astype(np.float64) y = np.array([2.1, -3.4, 8.0, -2.1, 3.4, 5.0]).astype(np.float64) z = np.fmod(x, y) # expected output [-0.1, 0.4, 5. , 0.1, -0.4, 3.] expect(node, inputs=[x, y], outputs=[z], name="test_mod_mixed_sign_float64") @staticmethod def export_mod_mixed_sign_float32() -> None: node = onnx.helper.make_node("Mod", inputs=["x", "y"], outputs=["z"], fmod=1) x = np.array([-4.3, 7.2, 5.0, 4.3, -7.2, 8.0]).astype(np.float32) y = np.array([2.1, -3.4, 8.0, -2.1, 3.4, 5.0]).astype(np.float32) z = np.fmod( x, y ) # expected output [-0.10000038, 0.39999962, 5. , 0.10000038, -0.39999962, 3.] expect(node, inputs=[x, y], outputs=[z], name="test_mod_mixed_sign_float32") @staticmethod def export_mod_mixed_sign_float16() -> None: node = onnx.helper.make_node("Mod", inputs=["x", "y"], outputs=["z"], fmod=1) x = np.array([-4.3, 7.2, 5.0, 4.3, -7.2, 8.0]).astype(np.float16) y = np.array([2.1, -3.4, 8.0, -2.1, 3.4, 5.0]).astype(np.float16) z = np.fmod( x, y ) # expected output [-0.10156, 0.3984 , 5. , 0.10156, -0.3984 , 3.] expect(node, inputs=[x, y], outputs=[z], name="test_mod_mixed_sign_float16") @staticmethod def export_mod_mixed_sign_int64() -> None: node = onnx.helper.make_node( "Mod", inputs=["x", "y"], outputs=["z"], ) x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int64) y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int64) z = np.mod(x, y) # expected output [ 0, -2, 5, 0, 2, 3] expect(node, inputs=[x, y], outputs=[z], name="test_mod_mixed_sign_int64") @staticmethod def export_mod_mixed_sign_int32() -> None: node = onnx.helper.make_node( "Mod", inputs=["x", "y"], outputs=["z"], ) x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int32) y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int32) z = np.mod(x, y) # expected output [ 0, -2, 5, 0, 2, 3] expect(node, inputs=[x, y], outputs=[z], name="test_mod_mixed_sign_int32") @staticmethod def export_mod_mixed_sign_int16() -> None: node = onnx.helper.make_node( "Mod", inputs=["x", "y"], outputs=["z"], ) x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int16) y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int16) z = np.mod(x, y) # expected output [ 0, -2, 5, 0, 2, 3] expect(node, inputs=[x, y], outputs=[z], name="test_mod_mixed_sign_int16") @staticmethod def export_mod_mixed_sign_int8() -> None: node = onnx.helper.make_node( "Mod", inputs=["x", "y"], outputs=["z"], ) x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int8) y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int8) z = np.mod(x, y) # expected output [ 0, -2, 5, 0, 2, 3] expect(node, inputs=[x, y], outputs=[z], name="test_mod_mixed_sign_int8") @staticmethod def export_mod_uint8() -> None: node = onnx.helper.make_node( "Mod", inputs=["x", "y"], outputs=["z"], ) x = np.array([4, 7, 5]).astype(np.uint8) y = np.array([2, 3, 8]).astype(np.uint8) z = np.mod(x, y) # expected output [0, 1, 5] expect(node, inputs=[x, y], outputs=[z], name="test_mod_uint8") @staticmethod def export_mod_uint16() -> None: node = onnx.helper.make_node( "Mod", inputs=["x", "y"], outputs=["z"], ) x = np.array([4, 7, 5]).astype(np.uint16) y = np.array([2, 3, 8]).astype(np.uint16) z = np.mod(x, y) # expected output [0, 1, 5] expect(node, inputs=[x, y], outputs=[z], name="test_mod_uint16") @staticmethod def export_mod_uint32() -> None: node = onnx.helper.make_node( "Mod", inputs=["x", "y"], outputs=["z"], ) x = np.array([4, 7, 5]).astype(np.uint32) y = np.array([2, 3, 8]).astype(np.uint32) z = np.mod(x, y) # expected output [0, 1, 5] expect(node, inputs=[x, y], outputs=[z], name="test_mod_uint32") @staticmethod def export_mod_uint64() -> None: node = onnx.helper.make_node( "Mod", inputs=["x", "y"], outputs=["z"], ) x = np.array([4, 7, 5]).astype(np.uint64) y = np.array([2, 3, 8]).astype(np.uint64) z = np.mod(x, y) # expected output [0, 1, 5] expect(node, inputs=[x, y], outputs=[z], name="test_mod_uint64") @staticmethod def export_mod_int64_fmod() -> None: node = onnx.helper.make_node("Mod", inputs=["x", "y"], outputs=["z"], fmod=1) x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int64) y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int64) z = np.fmod(x, y) # expected output [ 0, 1, 5, 0, -1, 3] expect(node, inputs=[x, y], outputs=[z], name="test_mod_int64_fmod") @staticmethod def METHOD_NAME() -> None: node = onnx.helper.make_node( "Mod", inputs=["x", "y"], outputs=["z"], ) x = np.arange(0, 30).reshape([3, 2, 5]).astype(np.int32) y = np.array([7]).astype(np.int32) z = np.mod(x, y) # array([[[0, 1, 2, 3, 4], # [5, 6, 0, 1, 2]], # [[3, 4, 5, 6, 0], # [1, 2, 3, 4, 5]], # [[6, 0, 1, 2, 3], # [4, 5, 6, 0, 1]]], dtype=int32) expect(node, inputs=[x, y], outputs=[z], name="test_mod_broadcast")
null
test support mech
# --- BEGIN COPYRIGHT BLOCK --- # Copyright (C) 2017 Red Hat, Inc. # All rights reserved. # # License: GPL (version 3 or any later version). # See LICENSE for details. # --- END COPYRIGHT BLOCK --- from lib389.topologies import topology_st_gssapi, gssapi_ack from lib389.idm.user import UserAccounts from lib389.saslmap import SaslMappings from lib389._constants import DEFAULT_SUFFIX import ldap import subprocess import os import pytest pytestmark = pytest.mark.tier1 @pytest.fixture(scope='module') def testuser(topology_st_gssapi): # Create a user users = UserAccounts(topology_st_gssapi.standalone, DEFAULT_SUFFIX) user = users.create(properties={ 'uid': 'testuser', 'cn' : 'testuser', 'sn' : 'user', 'uidNumber' : '1000', 'gidNumber' : '2000', 'homeDirectory' : '/home/testuser' }) # Give them a krb princ user.create_keytab() return user @gssapi_ack def test_gssapi_bind(topology_st_gssapi, testuser): """Test that we can bind with GSSAPI :id: 894a4c27-3d4c-4ba3-aa33-2910032e3783 :setup: standalone gssapi instance :steps: 1. Bind with sasl/gssapi :expectedresults: 1. Bind succeeds """ conn = testuser.bind_gssapi() assert(conn.whoami_s() == "dn: %s" % testuser.dn.lower()) @gssapi_ack def test_invalid_sasl_map(topology_st_gssapi, testuser): """Test that auth fails when we can not map a user. :id: dd4218eb-9237-4611-ba2f-1781391cadd1 :setup: standalone gssapi instance :steps: 1. Invalidate a sasl map 2. Attempt to bind :expectedresults: 1. The sasl map is invalid. 2. The bind fails. """ saslmaps = SaslMappings(topology_st_gssapi.standalone) saslmap = saslmaps.get('suffix map') saslmap.set('nsSaslMapFilterTemplate', '(invalidattr=\\1)') with pytest.raises(ldap.INVALID_CREDENTIALS): conn = testuser.bind_gssapi() saslmap.set('nsSaslMapFilterTemplate', '(uid=\\1)') @gssapi_ack def test_missing_user(topology_st_gssapi): """Test that binding with no user does not work. :id: 109b5ab8-6556-4222-92d6-398476a50d30 :setup: standalone gssapi instance :steps: 1. Create a principal with a name that is not mappable 2. Attempt to bind :expectedresults: 1. The principal is created 2. The bind fails. """ # Make a principal and bind with no user. st = topology_st_gssapi.standalone st.realm.create_principal("doesnotexist") st.realm.create_keytab("doesnotexist", "/tmp/doesnotexist.keytab") # Now try to bind. subprocess.call(['kdestroy', '-A']) os.environ["KRB5_CLIENT_KTNAME"] = "/tmp/doesnotexist.keytab" conn = ldap.initialize(st.toLDAPURL()) sasltok = ldap.sasl.gssapi() with pytest.raises(ldap.INVALID_CREDENTIALS): conn.sasl_interactive_bind_s('', sasltok) @gssapi_ack def METHOD_NAME(topology_st_gssapi, testuser): """Test allowed sasl mechs works when GSSAPI is allowed :id: 6ec80aca-00c4-4141-b96b-3ae8837fc751 :setup: standalone gssapi instance :steps: 1. Add GSSAPI to allowed sasl mechanisms. 2. Attempt to bind :expectedresults: 1. The allowed mechs are changed. 2. The bind succeeds. """ topology_st_gssapi.standalone.config.set('nsslapd-allowed-sasl-mechanisms', 'GSSAPI EXTERNAL ANONYMOUS') conn = testuser.bind_gssapi() assert(conn.whoami_s() == "dn: %s" % testuser.dn.lower()) @gssapi_ack def test_rejected_mech(topology_st_gssapi, testuser): """Test allowed sasl mechs fail when GSSAPI is not allowed. :id: 7896c756-6f65-4390-a844-12e2eec19675 :setup: standalone gssapi instance :steps: 1. Add GSSAPI to allowed sasl mechanisms. 2. Attempt to bind :expectedresults: 1. The allowed mechs are changed. 2. The bind fails. """ topology_st_gssapi.standalone.config.set('nsslapd-allowed-sasl-mechanisms', 'EXTERNAL ANONYMOUS') with pytest.raises(ldap.STRONG_AUTH_NOT_SUPPORTED): conn = testuser.bind_gssapi() topology_st_gssapi.standalone.config.set('nsslapd-allowed-sasl-mechanisms', 'GSSAPI EXTERNAL ANONYMOUS')
null
xy of hex
import inspect import numpy as np import pytest from pytest import approx from scipy.spatial import Delaunay, Voronoi from landlab.graph.voronoi.voronoi_to_graph import ( VoronoiDelaunay, VoronoiDelaunayToGraph, ) XY_OF_NODE = { "rect-horizontal-3-3": [ [0.0, 0.0], [1.0, 0.0], [2.0, 0.0], [0.5, 1.0], [1.5, 1.0], [2.5, 1.0], [0.0, 2.0], [1.0, 2.0], [2.0, 2.0], ], "rect-horizontal-4-3": [ [0.0, 0.0], [1.0, 0.0], [2.0, 0.0], [0.5, 1.0], [1.5, 1.0], [2.5, 1.0], [0.0, 2.0], [1.0, 2.0], [2.0, 2.0], [0.0, 3.0], [1.0, 3.0], [2.0, 3.0], ], "rect-vertical-3-3": [ [0.0, 0.0], [2.0, 0.0], [1.0, 0.5], [0.0, 1.0], [2.0, 1.0], [1.0, 1.5], [0.0, 2.0], [2.0, 2.0], [1.0, 2.5], ], "rect-vertical-3-4": [ [0.0, 0.0], [2.0, 0.0], [1.0, 0.5], [3.0, 0.5], [0.0, 1.0], [2.0, 1.0], [1.0, 1.5], [3.0, 1.5], [0.0, 2.0], [2.0, 2.0], [1.0, 2.5], [3.0, 2.5], ], } @pytest.fixture def hex_graph(): return VoronoiDelaunayToGraph(XY_OF_NODE["rect-horizontal-3-3"]) @pytest.fixture def METHOD_NAME(): return XY_OF_NODE["rect-horizontal-3-3"] def pytest_generate_tests(metafunc): if "at_property" in metafunc.fixturenames: props = dict( inspect.getmembers( VoronoiDelaunayToGraph, lambda o: isinstance(o, property) ) ) metafunc.parametrize( "at_property", [name for name in props.keys() if "_at_" in name] ) if "of_property" in metafunc.fixturenames: props = dict( inspect.getmembers( VoronoiDelaunayToGraph, lambda o: isinstance(o, property) ) ) metafunc.parametrize( "of_property", [ name for name in props.keys() if "_of_" in name and not name.startswith("number") ], ) def test_voronoi_name_mapping(METHOD_NAME): """Test scipy Voronoi names are mapped to landlab-style names.""" voronoi = Voronoi(METHOD_NAME) delaunay = Delaunay(METHOD_NAME) graph = VoronoiDelaunay(METHOD_NAME) voronoi.regions, voronoi.point_region = VoronoiDelaunay._remove_empty_regions( voronoi.regions, voronoi.point_region ) assert np.all(graph.x_of_node == approx(voronoi.points[:, 0])) assert np.all(graph.y_of_node == approx(voronoi.points[:, 1])) assert np.all(graph.x_of_corner == approx(voronoi.vertices[:, 0])) assert np.all(graph.y_of_corner == approx(voronoi.vertices[:, 1])) assert np.all(graph.nodes_at_link == voronoi.ridge_points) assert tuple(graph.n_corners_at_cell) == tuple( len(region) for region in voronoi.regions ) for cell, corners in enumerate(graph.corners_at_cell): assert np.all(corners[: graph.n_corners_at_cell[cell]] == voronoi.regions[cell]) assert np.all(corners[graph.n_corners_at_cell[cell] :] == -1) assert np.all(graph.corners_at_face == voronoi.ridge_vertices) assert np.all(graph.nodes_at_face == voronoi.ridge_points) assert np.all(graph.cell_at_node == voronoi.point_region) assert np.all(graph.nodes_at_patch == delaunay.simplices) def test_at_array_is_int(hex_graph, at_property): """Test that _at_ properties are arrays of int.""" assert getattr(hex_graph, at_property).dtype == int def test_degenerate_case(): xy_of_node = np.array( [[0, 0], [1, 0], [2, 0], [0, 1], [1, 1], [2, 1], [0, 2], [1, 2], [2, 2]], dtype=float, ) VoronoiDelaunay(xy_of_node) # VoronoiDelaunayToGraph(xy_of_node) def test_of_array_is_float(hex_graph, of_property): """Test that _of_ properties are arrays of float.""" xy_of_node = np.array( [[0, 0], [2, 0], [4, 0], [1, 1], [3, 1], [5, 1], [0, 2], [2, 2], [4, 2]], dtype=float, ) # hex_graph = VoronoiDelaunayToGraph(xy_of_node) hex_graph = VoronoiDelaunay(xy_of_node) assert getattr(hex_graph, of_property).dtype == float @pytest.mark.parametrize( "element,expected", [ ("nodes", 9), ("links", 17), ("patches", 9), ("corners", 9), ("faces", 10), ("cells", 2), ], ) def test_element_count_without_perimeter_nodes(hex_graph, element, expected): assert getattr(hex_graph, f"number_of_{element}") == expected @pytest.mark.parametrize( "element,expected", [ ("nodes", 9), ("links", 16), ("patches", 8), ("corners", 8), ("faces", 8), ("cells", 1), ], ) def test_element_count_with_perimeter_nodes(METHOD_NAME, element, expected): perimeter_links = [[0, 1], [1, 2], [2, 5], [5, 8], [8, 7], [7, 6], [6, 3], [3, 0]] graph = VoronoiDelaunayToGraph(METHOD_NAME, perimeter_links=perimeter_links) assert getattr(graph, f"number_of_{element}") == expected @pytest.mark.parametrize("at", ("node", "link", "cell", "corner", "face", "cell")) def test_compact_ids_without_perimeter_nodes(hex_graph, at): ids = [] for name in hex_graph.ids_with_prefix(at): ids.append(np.sort(np.unique(getattr(hex_graph, name).reshape((-1,))))) ids = np.sort(np.unique(np.concatenate(ids))) ids = ids[ids >= 0] assert ids[0] >= 0 assert ids[-1] <= hex_graph._mesh.dims[at] @pytest.mark.parametrize("at", ("node", "link", "cell", "corner", "face", "cell")) def test_compact_ids_with_perimeter_nodes(METHOD_NAME, at): perimeter_links = [[0, 1], [1, 2], [2, 5], [5, 8], [8, 7], [7, 6], [6, 3], [3, 0]] graph = VoronoiDelaunayToGraph(METHOD_NAME, perimeter_links=perimeter_links) ids = [] for name in graph.ids_with_prefix(at): ids.append(np.sort(np.unique(getattr(graph, name).reshape((-1,))))) ids = np.sort(np.unique(np.concatenate(ids))) ids = ids[ids >= 0] assert ids[0] >= 0 assert ids[-1] <= graph._mesh.dims[at] @pytest.mark.parametrize("at", ["node", "link", "patch", "corner", "face", "cell"]) def test_has_prefix(hex_graph, at): expected = { "node": ("nodes_at_patch", "nodes_at_face", "node_at_cell", "nodes_at_link"), "link": ("links_at_patch",), "patch": (), "corner": ("corners_at_face", "corners_at_cell"), "face": ("faces_at_cell",), "cell": ("cell_at_node",), } assert hex_graph.ids_with_prefix(at) == set(expected[at]) @pytest.mark.parametrize("at", ["node", "link", "patch", "corner", "face", "cell"]) def test_has_suffix(hex_graph, at): expected = { "node": ("cell_at_node",), "link": ("nodes_at_link",), "patch": ("nodes_at_patch", "links_at_patch"), "corner": (), "face": ("corners_at_face", "nodes_at_face"), "cell": ( "n_corners_at_cell", "faces_at_cell", "node_at_cell", "corners_at_cell", ), } assert hex_graph.ids_with_suffix(at) == set(expected[at]) @pytest.mark.parametrize( "n_nodes", [2**10, 2**11, 2**12, 2**13, 2**14, 2**15], # , 2 ** 16, 2 ** 20] ) def test_big_graph(n_nodes): xy_of_node = np.random.rand(2 * n_nodes).reshape((-1, 2)) graph = VoronoiDelaunayToGraph(xy_of_node) assert graph.number_of_nodes == n_nodes
null
show bss
#!/usr/bin/python import dbus import sys, os import time import gobject from dbus.mainloop.glib import DBusGMainLoop WPAS_DBUS_SERVICE = "fi.w1.wpa_supplicant1" WPAS_DBUS_INTERFACE = "fi.w1.wpa_supplicant1" WPAS_DBUS_OPATH = "/fi/w1/wpa_supplicant1" WPAS_DBUS_INTERFACES_INTERFACE = "fi.w1.wpa_supplicant1.Interface" WPAS_DBUS_INTERFACES_OPATH = "/fi/w1/wpa_supplicant1/Interfaces" WPAS_DBUS_BSS_INTERFACE = "fi.w1.wpa_supplicant1.BSS" def byte_array_to_string(s): import urllib r = "" for c in s: if c >= 32 and c < 127: r += "%c" % c else: r += urllib.quote(chr(c)) return r def list_interfaces(wpas_obj): ifaces = wpas_obj.Get(WPAS_DBUS_INTERFACE, 'Interfaces', dbus_interface=dbus.PROPERTIES_IFACE) for path in ifaces: if_obj = bus.get_object(WPAS_DBUS_SERVICE, path) ifname = if_obj.Get(WPAS_DBUS_INTERFACES_INTERFACE, 'Ifname', dbus_interface=dbus.PROPERTIES_IFACE) print ifname def propertiesChanged(properties): if properties.has_key("State"): print "PropertiesChanged: State: %s" % (properties["State"]) def METHOD_NAME(bss): net_obj = bus.get_object(WPAS_DBUS_SERVICE, bss) net = dbus.Interface(net_obj, WPAS_DBUS_BSS_INTERFACE) # Convert the byte-array for SSID and BSSID to printable strings val = net_obj.Get(WPAS_DBUS_BSS_INTERFACE, 'BSSID', dbus_interface=dbus.PROPERTIES_IFACE) bssid = "" for item in val: bssid = bssid + ":%02x" % item bssid = bssid[1:] val = net_obj.Get(WPAS_DBUS_BSS_INTERFACE, 'SSID', dbus_interface=dbus.PROPERTIES_IFACE) ssid = byte_array_to_string(val) val = net_obj.Get(WPAS_DBUS_BSS_INTERFACE, 'WPA', dbus_interface=dbus.PROPERTIES_IFACE) wpa = "no" if len(val["KeyMgmt"]) > 0: wpa = "yes" val = net_obj.Get(WPAS_DBUS_BSS_INTERFACE, 'RSN', dbus_interface=dbus.PROPERTIES_IFACE) wpa2 = "no" if len(val["KeyMgmt"]) > 0: wpa2 = "yes" freq = net_obj.Get(WPAS_DBUS_BSS_INTERFACE, 'Frequency', dbus_interface=dbus.PROPERTIES_IFACE) signal = net_obj.Get(WPAS_DBUS_BSS_INTERFACE, 'Signal', dbus_interface=dbus.PROPERTIES_IFACE) val = net_obj.Get(WPAS_DBUS_BSS_INTERFACE, 'Rates', dbus_interface=dbus.PROPERTIES_IFACE) if len(val) > 0: maxrate = val[0] / 1000000 else: maxrate = 0 print " %s :: ssid='%s' wpa=%s wpa2=%s signal=%d rate=%d freq=%d" % (bssid, ssid, wpa, wpa2, signal, maxrate, freq) def scanDone(success): print "Scan done: success=%s" % success res = if_obj.Get(WPAS_DBUS_INTERFACES_INTERFACE, 'BSSs', dbus_interface=dbus.PROPERTIES_IFACE) print "Scanned wireless networks:" for opath in res: print opath METHOD_NAME(opath) def bssAdded(bss, properties): print "BSS added: %s" % (bss) METHOD_NAME(bss) def bssRemoved(bss): print "BSS removed: %s" % (bss) def main(): dbus.mainloop.glib.DBusGMainLoop(set_as_default=True) global bus bus = dbus.SystemBus() wpas_obj = bus.get_object(WPAS_DBUS_SERVICE, WPAS_DBUS_OPATH) if len(sys.argv) != 2: list_interfaces(wpas_obj) os._exit(1) wpas = dbus.Interface(wpas_obj, WPAS_DBUS_INTERFACE) bus.add_signal_receiver(scanDone, dbus_interface=WPAS_DBUS_INTERFACES_INTERFACE, signal_name="ScanDone") bus.add_signal_receiver(bssAdded, dbus_interface=WPAS_DBUS_INTERFACES_INTERFACE, signal_name="BSSAdded") bus.add_signal_receiver(bssRemoved, dbus_interface=WPAS_DBUS_INTERFACES_INTERFACE, signal_name="BSSRemoved") bus.add_signal_receiver(propertiesChanged, dbus_interface=WPAS_DBUS_INTERFACES_INTERFACE, signal_name="PropertiesChanged") ifname = sys.argv[1] # See if wpa_supplicant already knows about this interface path = None try: path = wpas.GetInterface(ifname) except dbus.DBusException, exc: if not str(exc).startswith("fi.w1.wpa_supplicant1.InterfaceUnknown:"): raise exc try: path = wpas.CreateInterface({'Ifname': ifname, 'Driver': 'test'}) time.sleep(1) except dbus.DBusException, exc: if not str(exc).startswith("fi.w1.wpa_supplicant1.InterfaceExists:"): raise exc global if_obj if_obj = bus.get_object(WPAS_DBUS_SERVICE, path) global iface iface = dbus.Interface(if_obj, WPAS_DBUS_INTERFACES_INTERFACE) iface.Scan({'Type': 'active'}) gobject.MainLoop().run() wpas.RemoveInterface(dbus.ObjectPath(path)) if __name__ == "__main__": main()
null
write string
#!/usr/bin/python3 import argparse import glob import os import time import random COLOURS = (b'\xFF\x00\x00', b'\x00\xFF\x00', b'\x00\x00\xFF', b'\xFF\xFF\x00', b'\xFF\x00\xFF', b'\x00\xFF\xFF') def write_binary(driver_path, device_file, payload): with open(os.path.join(driver_path, device_file), 'wb') as open_file: open_file.write(payload) def read_string(driver_path, device_file): with open(os.path.join(driver_path, device_file), 'r') as open_file: return open_file.read().rstrip('\n') def METHOD_NAME(driver_path, device_file, payload): with open(os.path.join(driver_path, device_file), 'w') as open_file: open_file.write(payload) def find_devices(vid, pid): driver_paths = glob.glob(os.path.join('/sys/bus/hid/drivers/razerkbd', '*:{0:04X}:{1:04X}.*'.format(vid, pid))) for driver_path in driver_paths: device_type_path = os.path.join(driver_path, 'device_type') if os.path.exists(device_type_path): yield driver_path def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--skip-standard', action='store_true') parser.add_argument('--skip-custom', action='store_true') parser.add_argument('--skip-game-led', action='store_true') parser.add_argument('--skip-macro-led', action='store_true') return parser.parse_args() if __name__ == '__main__': args = parse_args() found_chroma = False for index, driver_path in enumerate(find_devices(0x1532, 0x0203), start=1): found_chroma = True print("Blackwidow Chroma {0}\n".format(index)) print("Driver version: {0}".format(read_string(driver_path, 'version'))) print("Driver firmware version: {0}".format(read_string(driver_path, 'firmware_version'))) print("Device serial: {0}".format(read_string(driver_path, 'device_serial'))) print("Device type: {0}".format(read_string(driver_path, 'device_type'))) print("Device mode: {0}".format(read_string(driver_path, 'device_mode'))) # Set to static red so that we have something standard write_binary(driver_path, 'matrix_effect_static', b'\xFF\x00\x00') if not args.skip_standard: print("Starting brightness test. Press enter to begin.") input() print("Max brightness...", end='') METHOD_NAME(driver_path, 'matrix_brightness', '255') time.sleep(1) print("brightness ({0})".format(read_string(driver_path, 'matrix_brightness'))) time.sleep(1) print("Half brightness...", end='') METHOD_NAME(driver_path, 'matrix_brightness', '128') time.sleep(1) print("brightness ({0})".format(read_string(driver_path, 'matrix_brightness'))) time.sleep(1) print("Zero brightness...", end='') METHOD_NAME(driver_path, 'matrix_brightness', '0') time.sleep(1) print("brightness ({0})".format(read_string(driver_path, 'matrix_brightness'))) time.sleep(1) METHOD_NAME(driver_path, 'matrix_brightness', '255') print("Starting other colour effect tests. Press enter to begin.") input() print("Green Static") write_binary(driver_path, 'matrix_effect_static', b'\x00\xFF\x00') time.sleep(5) print("Cyan Static") write_binary(driver_path, 'matrix_effect_static', b'\x00\xFF\xFF') time.sleep(5) print("Spectrum") write_binary(driver_path, 'matrix_effect_spectrum', b'\x00') time.sleep(10) print("None") write_binary(driver_path, 'matrix_effect_none', b'\x00') time.sleep(5) print("Wave Left") METHOD_NAME(driver_path, 'matrix_effect_wave', '1') time.sleep(5) print("Wave Right") METHOD_NAME(driver_path, 'matrix_effect_wave', '2') time.sleep(5) print("Breathing random") write_binary(driver_path, 'matrix_effect_breath', b'\x00') time.sleep(10) print("Breathing red") write_binary(driver_path, 'matrix_effect_breath', b'\xFF\x00\x00') time.sleep(10) print("Breathing blue-green") write_binary(driver_path, 'matrix_effect_breath', b'\x00\xFF\x00\x00\x00\xFF') time.sleep(10) if not args.skip_custom: # Custom LEDs all rows payload_all = b'' for row in range(0, 6): # 0x15 is 21. 0->21 inclusive payload_all += row.to_bytes(1, byteorder='big') + b'\x00\x15' for i in range(0, 22): payload_all += random.choice(COLOURS) # Custom LEDs M1-5 payload_m1_5 = b'' for row in range(0, 6): # Column 0 or column 0 payload_m1_5 += row.to_bytes(1, byteorder='big') + b'\x00\x00' + b'\xFF\xFF\xFF' print("Custom LED matrix colours test. Press enter to begin.") input() write_binary(driver_path, 'matrix_custom_frame', payload_all) write_binary(driver_path, 'matrix_effect_custom', b'\x00') print("Custom LED matrix partial colours test. Setting M1-5 to white. Press enter to begin.") input() write_binary(driver_path, 'matrix_custom_frame', payload_m1_5) write_binary(driver_path, 'matrix_effect_custom', b'\x00') time.sleep(0.5) if not args.skip_game_led: # Game mode test print("Starting game mode LED tests. Press enter to begin.") input() print("Enabling game mode LED") METHOD_NAME(driver_path, 'game_led_state', '1') time.sleep(5) print("Disabling game mode LED") METHOD_NAME(driver_path, 'game_led_state', '0') time.sleep(5) if not args.skip_macro_led: print("Starting marco LED tests. Press enter to begin.") input() print("Enabling macro mode LED") METHOD_NAME(driver_path, 'macro_led_state', '1') time.sleep(5) print("Enabling macro mode LED static effect") METHOD_NAME(driver_path, 'macro_led_effect', '0') time.sleep(5) print("Enabling macro mode LED blinking effect") METHOD_NAME(driver_path, 'macro_led_effect', '1') time.sleep(5) METHOD_NAME(driver_path, 'macro_led_effect', '0') print("Disabling macro mode LED") METHOD_NAME(driver_path, 'macro_led_state', '0') time.sleep(5) print("Finished") if not found_chroma: print("No Blackwidow Chromas found")
null
break lines
# Copyright 2013-2017 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from wa.utils.terminalsize import get_terminal_size INDENTATION_FROM_TITLE = 4 class TextFormatter(object): """ This is a base class for text formatting. It mainly ask to implement two methods which are add_item and format_data. The formar will add new text to the formatter, whereas the latter will return a formatted text. The name attribute represents the name of the foramtter. """ name = None data = None def __init__(self): pass def add_item(self, new_data, item_title): """ Add new item to the text formatter. :param new_data: The data to be added :param item_title: A title for the added data """ raise NotImplementedError() def format_data(self): """ It returns a formatted text """ raise NotImplementedError() class DescriptionListFormatter(TextFormatter): name = 'description_list_formatter' data = None def get_text_width(self): if not self._text_width: self._text_width, _ = get_terminal_size() # pylint: disable=unpacking-non-sequence return self._text_width def set_text_width(self, value): self._text_width = value text_width = property(get_text_width, set_text_width) def __init__(self, title=None, width=None): super(DescriptionListFormatter, self).__init__() self.data_title = title self._text_width = width self.longest_word_length = 0 self.data = [] def add_item(self, new_data, item_title): if len(item_title) > self.longest_word_length: self.longest_word_length = len(item_title) self.data[len(self.data):] = [(item_title, self._remove_newlines(new_data))] def format_data(self): parag_indentation = self.longest_word_length + INDENTATION_FROM_TITLE string_formatter = '{}:<{}{} {}'.format('{', parag_indentation, '}', '{}') formatted_data = '' if self.data_title: formatted_data += self.data_title line_width = self.text_width - parag_indentation for title, paragraph in self.data: formatted_data += '\n' title_len = self.longest_word_length - len(title) title += ':' if title_len > 0: title = (' ' * title_len) + title parag_lines = self.METHOD_NAME(paragraph, line_width).splitlines() if parag_lines: formatted_data += string_formatter.format(title, parag_lines[0]) for line in parag_lines[1:]: formatted_data += '\n' + string_formatter.format('', line) else: formatted_data += title[:-1] self.text_width = None return formatted_data # Return text's paragraphs sperated in a list, such that each index in the # list is a single text paragraph with no new lines def _remove_newlines(self, new_data): # pylint: disable=R0201 parag_list = [''] parag_num = 0 prv_parag = None # For each paragraph sperated by a new line for paragraph in new_data.splitlines(): if paragraph: parag_list[parag_num] += ' ' + paragraph # if the previous line is NOT empty, then add new empty index for # the next paragraph elif prv_parag: parag_num = 1 parag_list.append('') prv_parag = paragraph # sometimes, we end up with an empty string as the last item so we reomve it if not parag_list[-1]: return parag_list[:-1] return parag_list def METHOD_NAME(self, parag_list, line_width): # pylint: disable=R0201 formatted_paragraphs = [] for para in parag_list: words = para.split() if words: formatted_text = words.pop(0) current_width = len(formatted_text) # for each word in the paragraph, line width is an accumlation of # word length + 1 (1 is for the space after each word). for word in words: word = word.strip() if current_width + len(word) + 1 >= line_width: formatted_text += '\n' + word current_width = len(word) else: formatted_text += ' ' + word current_width += len(word) + 1 formatted_paragraphs.append(formatted_text) return '\n\n'.join(formatted_paragraphs)
null
prepare request
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import sys from typing import Any, AsyncIterable, Callable, Dict, Optional, TypeVar import urllib.parse from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._operations import build_list_request if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class Operations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.imagebuilder.aio.ImageBuilderClient`'s :attr:`operations` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list(self, **kwargs: Any) -> AsyncIterable["_models.Operation"]: """Lists available operations for the Microsoft.VirtualMachineImages provider. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either Operation or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.imagebuilder.models.Operation] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-07-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.OperationListResult] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def METHOD_NAME(next_link=None): if not next_link: request = build_list_request( api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("OperationListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = METHOD_NAME(next_link) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data) list.metadata = {"url": "/providers/Microsoft.VirtualMachineImages/operations"}
null
num samples
import functools import operator import os import os.path import sys import numpy as np # Bamboo utilities current_file = os.path.realpath(__file__) current_dir = os.path.dirname(current_file) sys.path.insert(0, os.path.join(os.path.dirname(current_dir), 'common_python')) import tools # ============================================== # Objects for Python data reader # ============================================== # Note: The Python data reader imports this file as a module and calls # the functions below to ingest data. # Data # Note: The L1 norm is not differentiable at 0, so we make sure values # are away from 0. np.random.seed(201910247) _num_samples = 23 _sample_size = 7 _samples = np.random.normal(size=(_num_samples,_sample_size)).astype(np.float32) # Sample access functions def get_sample(index): return _samples[index,:] def METHOD_NAME(): return _num_samples def sample_dims(): return (_sample_size,) # ============================================== # Setup LBANN experiment # ============================================== def setup_experiment(lbann, weekly): """Construct LBANN experiment. Args: lbann (module): Module for LBANN Python frontend """ mini_batch_size = METHOD_NAME() // 2 trainer = lbann.Trainer(mini_batch_size) model = construct_model(lbann) data_reader = construct_data_reader(lbann) optimizer = lbann.NoOptimizer() return trainer, model, data_reader, optimizer, None # Don't request any specific number of nodes def construct_model(lbann): """Construct LBANN model. Args: lbann (module): Module for LBANN Python frontend """ # Input data # Note: Sum with a weights layer so that gradient checking will # verify that error signals are correct. x_weights = lbann.Weights(optimizer=lbann.SGD(), initializer=lbann.ConstantInitializer(value=0.0), name='input_weights') x = lbann.Sum(lbann.Reshape(lbann.Input(data_field='samples'), dims=_sample_size), lbann.WeightsLayer(weights=x_weights, dims=_sample_size)) x_lbann = x # Objects for LBANN model obj = [] metrics = [] callbacks = [] # ------------------------------------------ # Data-parallel layout # ------------------------------------------ # LBANN implementation x = x_lbann y = lbann.LogSigmoid(x, data_layout='data_parallel') z = lbann.L2Norm2(y) obj.append(z) metrics.append(lbann.Metric(z, name='data-parallel layout')) # NumPy implementation vals = [] for i in range(METHOD_NAME()): x = get_sample(i).astype(np.float64) y = x - np.log1p(np.exp(x)) z = tools.numpy_l2norm2(y) vals.append(z) val = np.mean(vals) tol = 8 * val * np.finfo(np.float32).eps callbacks.append(lbann.CallbackCheckMetric( metric=metrics[-1].name, lower_bound=val-tol, upper_bound=val+tol, error_on_failure=True, execution_modes='test')) # ------------------------------------------ # Model-parallel layout # ------------------------------------------ # LBANN implementation x = x_lbann y = lbann.LogSigmoid(x, data_layout='model_parallel') z = lbann.L2Norm2(y) obj.append(z) metrics.append(lbann.Metric(z, name='model-parallel layout')) # NumPy implementation vals = [] for i in range(METHOD_NAME()): x = get_sample(i).astype(np.float64) y = x - np.log1p(np.exp(x)) z = tools.numpy_l2norm2(y) vals.append(z) val = np.mean(vals) tol = 8 * val * np.finfo(np.float32).eps callbacks.append(lbann.CallbackCheckMetric( metric=metrics[-1].name, lower_bound=val-tol, upper_bound=val+tol, error_on_failure=True, execution_modes='test')) # ------------------------------------------ # Gradient checking # ------------------------------------------ callbacks.append(lbann.CallbackCheckGradients(error_on_failure=True)) # ------------------------------------------ # Construct model # ------------------------------------------ num_epochs = 0 return lbann.Model(num_epochs, layers=lbann.traverse_layer_graph(x_lbann), objective_function=obj, metrics=metrics, callbacks=callbacks) def construct_data_reader(lbann): """Construct Protobuf message for Python data reader. The Python data reader will import the current Python file to access the sample access functions. Args: lbann (module): Module for LBANN Python frontend """ # Note: The training data reader should be removed when # https://github.com/LLNL/lbann/issues/1098 is resolved. message = lbann.reader_pb2.DataReader() message.reader.extend([ tools.create_python_data_reader( lbann, current_file, 'get_sample', 'num_samples', 'sample_dims', 'train' ) ]) message.reader.extend([ tools.create_python_data_reader( lbann, current_file, 'get_sample', 'num_samples', 'sample_dims', 'test' ) ]) return message # ============================================== # Setup PyTest # ============================================== # Create test functions that can interact with PyTest for _test_func in tools.create_tests(setup_experiment, __file__): globals()[_test_func.__name__] = _test_func
null
status message
# Copyright 2013-2023 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) """Query the status of bootstrapping on this machine""" import platform from typing import List, Optional, Sequence, Tuple, Union import spack.util.executable from ._common import _executables_in_store, _python_import, _try_import_from_store from .config import ensure_bootstrap_configuration from .core import clingo_root_spec, patchelf_root_spec from .environment import ( BootstrapEnvironment, black_root_spec, flake8_root_spec, isort_root_spec, mypy_root_spec, pytest_root_spec, ) ExecutablesType = Union[str, Sequence[str]] RequiredResponseType = Tuple[bool, Optional[str]] SpecLike = Union["spack.spec.Spec", str] def _required_system_executable(exes: ExecutablesType, msg: str) -> RequiredResponseType: """Search for an executable is the system path only.""" if isinstance(exes, str): exes = (exes,) if spack.util.executable.which_string(*exes): return True, None return False, msg def _required_executable( exes: ExecutablesType, query_spec: SpecLike, msg: str ) -> RequiredResponseType: """Search for an executable in the system path or in the bootstrap store.""" if isinstance(exes, str): exes = (exes,) if spack.util.executable.which_string(*exes) or _executables_in_store(exes, query_spec): return True, None return False, msg def _required_python_module(module: str, query_spec: SpecLike, msg: str) -> RequiredResponseType: """Check if a Python module is available in the current interpreter or if it can be loaded from the bootstrap store """ if _python_import(module) or _try_import_from_store(module, query_spec): return True, None return False, msg def _missing(name: str, purpose: str, system_only: bool = True) -> str: """Message to be printed if an executable is not found""" msg = '[{2}] MISSING "{0}": {1}' if not system_only: return msg.format(name, purpose, "@*y{{B}}") return msg.format(name, purpose, "@*y{{-}}") def _core_requirements() -> List[RequiredResponseType]: _core_system_exes = { "make": _missing("make", "required to build software from sources"), "patch": _missing("patch", "required to patch source code before building"), "bash": _missing("bash", "required for Spack compiler wrapper"), "tar": _missing("tar", "required to manage code archives"), "gzip": _missing("gzip", "required to compress/decompress code archives"), "unzip": _missing("unzip", "required to compress/decompress code archives"), "bzip2": _missing("bzip2", "required to compress/decompress code archives"), "git": _missing("git", "required to fetch/manage git repositories"), } if platform.system().lower() == "linux": _core_system_exes["xz"] = _missing("xz", "required to compress/decompress code archives") # Executables that are not bootstrapped yet result = [_required_system_executable(exe, msg) for exe, msg in _core_system_exes.items()] # Python modules result.append( _required_python_module( "clingo", clingo_root_spec(), _missing("clingo", "required to concretize specs", False) ) ) return result def _buildcache_requirements() -> List[RequiredResponseType]: _buildcache_exes = { "file": _missing("file", "required to analyze files for buildcaches"), ("gpg2", "gpg"): _missing("gpg2", "required to sign/verify buildcaches", False), } if platform.system().lower() == "darwin": _buildcache_exes["otool"] = _missing("otool", "required to relocate binaries") # Executables that are not bootstrapped yet result = [_required_system_executable(exe, msg) for exe, msg in _buildcache_exes.items()] if platform.system().lower() == "linux": result.append( _required_executable( "patchelf", patchelf_root_spec(), _missing("patchelf", "required to relocate binaries", False), ) ) return result def _optional_requirements() -> List[RequiredResponseType]: _optional_exes = { "zstd": _missing("zstd", "required to compress/decompress code archives"), "svn": _missing("svn", "required to manage subversion repositories"), "hg": _missing("hg", "required to manage mercurial repositories"), } # Executables that are not bootstrapped yet result = [_required_system_executable(exe, msg) for exe, msg in _optional_exes.items()] return result def _development_requirements() -> List[RequiredResponseType]: # Ensure we trigger environment modifications if we have an environment if BootstrapEnvironment.spack_yaml().exists(): with BootstrapEnvironment() as env: env.update_syspath_and_environ() return [ _required_executable( "isort", isort_root_spec(), _missing("isort", "required for style checks", False) ), _required_executable( "mypy", mypy_root_spec(), _missing("mypy", "required for style checks", False) ), _required_executable( "flake8", flake8_root_spec(), _missing("flake8", "required for style checks", False) ), _required_executable( "black", black_root_spec(), _missing("black", "required for code formatting", False) ), _required_python_module( "pytest", pytest_root_spec(), _missing("pytest", "required to run unit-test", False) ), ] def METHOD_NAME(section) -> Tuple[str, bool]: """Return a status message to be printed to screen that refers to the section passed as argument and a bool which is True if there are missing dependencies. Args: section (str): either 'core' or 'buildcache' or 'optional' or 'develop' """ pass_token, fail_token = "@*g{[PASS]}", "@*r{[FAIL]}" # Contain the header of the section and a list of requirements spack_sections = { "core": ("{0} @*{{Core Functionalities}}", _core_requirements), "buildcache": ("{0} @*{{Binary packages}}", _buildcache_requirements), "optional": ("{0} @*{{Optional Features}}", _optional_requirements), "develop": ("{0} @*{{Development Dependencies}}", _development_requirements), } msg, required_software = spack_sections[section] with ensure_bootstrap_configuration(): missing_software = False for found, err_msg in required_software(): if not found and err_msg: missing_software = True msg += "\n " + err_msg msg += "\n" msg = msg.format(pass_token if not missing_software else fail_token) return msg, missing_software
null
run fio
# Copyright 2019 PerfKitBenchmarker Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Runs fio against a remote gluster cluster.""" import json from absl import flags from perfkitbenchmarker import background_tasks from perfkitbenchmarker import configs from perfkitbenchmarker.linux_packages import fio from perfkitbenchmarker.linux_packages import gluster FLAGS = flags.FLAGS flags.DEFINE_string('fill_disk_size', '4G', 'Amount to fill the disk before reading.') flags.DEFINE_string('fill_disk_bs', '128k', 'Block size used to fill the disk before reading.') flags.DEFINE_integer('fill_disk_iodepth', 64, 'iodepth used to fill the disk.') flags.DEFINE_string('read_size', '4G', 'Size of the file to read.') flags.DEFINE_string('read_bs', '512k', 'Block size of the file to read.') flags.DEFINE_integer('read_iodepth', 1, 'iodepth used in reading the file.') BENCHMARK_NAME = 'gluster_fio' BENCHMARK_CONFIG = """ gluster_fio: description: > Runs fio against a remote gluster cluster. vm_groups: clients: vm_spec: *default_single_core vm_count: null gluster_servers: vm_spec: *default_single_core disk_spec: *default_500_gb vm_count: 1 """ _VOLUME_NAME = 'vol01' _MOUNT_POINT = '/glusterfs' _NUM_SECTORS_READ_AHEAD = 16384 def GetConfig(user_config): return configs.LoadConfig(BENCHMARK_CONFIG, user_config, BENCHMARK_NAME) def Prepare(benchmark_spec): """Set up GlusterFS and install fio. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. """ gluster_servers = benchmark_spec.vm_groups['gluster_servers'] clients = benchmark_spec.vm_groups['clients'] client_vm = clients[0] background_tasks.RunThreaded( lambda vm: vm.Install('fio'), gluster_servers + clients ) for vm in gluster_servers: vm.SetReadAhead(_NUM_SECTORS_READ_AHEAD, [d.GetDevicePath() for d in vm.scratch_disks]) # Set up Gluster if gluster_servers: gluster.ConfigureServers(gluster_servers, _VOLUME_NAME) args = [((client, gluster_servers[0], _VOLUME_NAME, _MOUNT_POINT), {}) for client in clients] background_tasks.RunThreaded(gluster.MountGluster, args) gluster_address = gluster_servers[0].internal_ip client_vm.RemoteCommand('sudo mkdir -p /testdir') client_vm.RemoteCommand('sudo mount %s:/vol01 /testdir -t glusterfs' % gluster_address) def METHOD_NAME(vm, fio_params, metadata): """Run fio. Args: vm: Virtual machine to run fio on. fio_params: fio parameters used to create the fio command to run. metadata: Metadata to add to the results. Returns: A list of sample.Sample objects """ stdout, _ = vm.RemoteCommand('sudo {0} {1}'.format(fio.GetFioExec(), fio_params)) job_file_contents = fio.FioParametersToJob(fio_params) samples = fio.ParseResults( job_file_contents, json.loads(stdout), base_metadata=metadata, skip_latency_individual_stats=True) return samples def Run(benchmark_spec): """Run fio against gluster. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. Returns: A list of sample.Sample objects. """ gluster_servers = benchmark_spec.vm_groups['gluster_servers'] clients = benchmark_spec.vm_groups['clients'] client_vm = clients[0] results = [] metadata = { 'fill_disk_size': FLAGS.fill_disk_size, 'fill_disk_bs': FLAGS.fill_disk_bs, 'fill_disk_iodepth': FLAGS.fill_disk_iodepth, 'read_size': FLAGS.read_size, 'read_bs': FLAGS.read_bs, 'read_iodepth': FLAGS.read_iodepth, } fio_params = ' '.join([ '--output-format=json', '--name=fill_disk', '--filename=/testdir/testfile', '--filesize=%s' % FLAGS.fill_disk_size, '--ioengine=libaio', '--direct=1', '--verify=0', '--randrepeat=0', '--bs=%s' % FLAGS.fill_disk_bs, '--iodepth=%s' % FLAGS.fill_disk_iodepth, '--rw=randwrite' ]) samples = METHOD_NAME(client_vm, fio_params, metadata) results += samples # In addition to dropping caches, increase polling to potentially reduce # variance in network operations for vm in gluster_servers + clients: vm.RemoteCommand('sudo /sbin/sysctl net.core.busy_poll=50') vm.DropCaches() fio_read_common_params = [ '--output-format=json', '--randrepeat=1', '--ioengine=libaio', '--gtod_reduce=1', '--filename=/testdir/testfile', '--bs=%s' % FLAGS.read_bs, '--iodepth=%s' % FLAGS.read_iodepth, '--size=%s' % FLAGS.read_size, '--readwrite=randread' ] fio_params = '--name=first_read ' + ' '.join(fio_read_common_params) samples = METHOD_NAME(client_vm, fio_params, metadata) results += samples # Run the command again. This time, the file should be cached. fio_params = '--name=second_read ' + ' '.join(fio_read_common_params) samples = METHOD_NAME(client_vm, fio_params, metadata) results += samples return results def Cleanup(benchmark_spec): """Cleanup gluster. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. """ clients = benchmark_spec.vm_groups['clients'] gluster_servers = benchmark_spec.vm_groups['gluster_servers'] for client in clients: client.RemoteCommand('sudo umount %s' % _MOUNT_POINT) if gluster_servers: gluster.DeleteVolume(gluster_servers[0], _VOLUME_NAME)
null
clear link
"""Service for linking the project to Minecraft.""" __all__ = [ "LinkManager", ] import logging import os import platform from pathlib import Path from typing import List, Optional, Union from beet import Cache, CachePin, Context, ErrorMessage, MultiCache, PackOverwrite from beet.core.utils import FileSystemPath, log_time, remove_path logger = logging.getLogger("link") def link_cache_finalizer(cache: Cache): """Link cache finalizer.""" LinkManager(cache).clean() class LinkManager: cache: Cache dirty = CachePin[List[str]]("dirty", default_factory=list) world = CachePin[Optional[str]]("world", None) minecraft = CachePin[Optional[str]]("minecraft", None) data_pack = CachePin[Optional[str]]("data_pack", None) resource_pack = CachePin[Optional[str]]("resource_pack", None) def __init__(self, arg: Union[Context, MultiCache[Cache], Cache]): if isinstance(arg, Context): arg = arg.cache if isinstance(arg, MultiCache): arg = arg["link"] self.cache = arg self.cache.add_finalizer(link_cache_finalizer) def clean(self): """Remove the previously linked files and folders.""" remove_path(*self.dirty) self.dirty.clear() def autosave_handler(self, ctx: Context): """Plugin for linking the generated resource pack and data pack to Minecraft.""" to_link = [ (Path(directory), pack) for directory, pack in zip([self.resource_pack, self.data_pack], ctx.packs) if directory and pack ] if to_link: with log_time("Link project."): for directory, pack in to_link: try: self.dirty.append(str(pack.save(directory))) except PackOverwrite as exc: logger.warning( f"Remove the conflicting pack to set up the link. {exc}" ) def setup_link( self, world: Optional[FileSystemPath] = None, minecraft: Optional[FileSystemPath] = None, data_pack: Optional[FileSystemPath] = None, resource_pack: Optional[FileSystemPath] = None, ): """Associate minecraft directories to the project.""" if minecraft: minecraft = Path(minecraft).resolve() if not minecraft.is_dir(): raise ErrorMessage(f"The specified Minecraft folder does not exist.") else: self.locate_minecraft() minecraft = Path(self.minecraft) if self.minecraft else None if world: world_name = world world = Path(world).resolve() if not (world / "level.dat").is_file(): if minecraft and Path(world_name).parts == (world_name,): world = minecraft / "saves" / world_name if not world.is_dir(): raise ErrorMessage( f"Couldn't find {str(world_name)!r} in the Minecraft save folder." ) else: raise ErrorMessage(f"The specified world folder is invalid.") else: world = None if data_pack: data_pack = Path(data_pack).resolve() if not data_pack.is_dir(): raise ErrorMessage( f"The specified data packs directory does not exist." ) elif world: data_pack = world / "datapacks" else: data_pack = None if data_pack and not world: world = data_pack.parent if world and not minecraft: minecraft = world.parent.parent if resource_pack: resource_pack = Path(resource_pack).resolve() if not resource_pack.is_dir(): raise ErrorMessage( f"The specified resource packs directory does not exist." ) elif minecraft: resource_pack = minecraft / "resourcepacks" else: resource_pack = None if resource_pack and not minecraft: minecraft = resource_pack.parent if world: self.world = str(world) if minecraft: self.minecraft = str(minecraft) if data_pack: self.data_pack = str(data_pack) if resource_pack: self.resource_pack = str(resource_pack) def METHOD_NAME(self): """Clear the link.""" self.cache.clear() def locate_minecraft(self): """Try to find the .minecraft folder.""" locations = [ Path(path) for path in os.environ.get("MINECRAFT_PATH", "").split(":") if path ] system = platform.system() if system == "Linux": locations.append(Path("~/.minecraft").expanduser()) locations.append( Path("~/.var/app/com.mojang.Minecraft/data/minecraft").expanduser() ) elif system == "Darwin": locations.append( Path("~/Library/Application Support/minecraft").expanduser() ) elif system == "Windows": locations.append(Path(os.path.expandvars(r"%APPDATA%\.minecraft"))) if path := next((path for path in locations if path and path.is_dir()), None): self.minecraft = str(path.resolve()) def summary(self) -> str: """Return a formatted summary.""" return "\n".join( f"{title}:\n | directory = {directory}\n" for title, directory in [ ("Minecraft installation", self.minecraft), ("World folder", self.world), ("Data packs directory", self.data_pack), ("Resource packs directory", self.resource_pack), ] )
null
enumerate interfaces from client
#!/usr/bin/env python """Windows specific actions. Most of these actions share an interface (in/out rdfvalues) with linux actions of the same name. Windows-only actions are registered with the server via libs/server_stubs.py """ import binascii import logging import pythoncom import win32api import win32com.client import win32file import win32service import win32serviceutil import winreg import wmi from grr_response_client import actions from grr_response_client.client_actions import standard from grr_response_core import config from grr_response_core.lib import rdfvalue from grr_response_core.lib.rdfvalues import client_action as rdf_client_action from grr_response_core.lib.rdfvalues import client_fs as rdf_client_fs from grr_response_core.lib.rdfvalues import client_network as rdf_client_network from grr_response_core.lib.rdfvalues import protodict as rdf_protodict # Properties to remove from results sent to the server. # These properties are included with nearly every WMI object and use space. IGNORE_PROPS = [ "CSCreationClassName", "CreationClassName", "OSName", "OSCreationClassName", "WindowsVersion", "CSName", "__NAMESPACE", "__SERVER", "__PATH" ] class GetInstallDate(actions.ActionPlugin): """Estimate the install date of this system.""" out_rdfvalues = [rdf_protodict.DataBlob] def Run(self, unused_args): """Estimate the install date of this system.""" # Don't use winreg.KEY_WOW64_64KEY since it breaks on Windows 2000 subkey = winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, "Software\\Microsoft\\Windows NT\\CurrentVersion", 0, winreg.KEY_READ) install_date = winreg.QueryValueEx(subkey, "InstallDate") self.SendReply(rdfvalue.RDFDatetime.FromSecondsSinceEpoch(install_date[0])) def METHOD_NAME(args): """Enumerate all MAC addresses of all NICs. Args: args: Unused. Yields: `rdf_client_network.Interface` instances. """ del args # Unused. pythoncom.CoInitialize() for interface in (wmi.WMI().Win32_NetworkAdapterConfiguration() or []): addresses = [] for ip_address in interface.IPAddress or []: addresses.append( rdf_client_network.NetworkAddress(human_readable_address=ip_address)) response = rdf_client_network.Interface(ifname=interface.Description) if interface.MACAddress: response.mac_address = binascii.unhexlify( interface.MACAddress.replace(":", "")) if addresses: response.addresses = addresses yield response class EnumerateInterfaces(actions.ActionPlugin): """Enumerate all MAC addresses of all NICs. Win32_NetworkAdapterConfiguration definition: http://msdn.microsoft.com/en-us/library/aa394217(v=vs.85).aspx """ out_rdfvalues = [rdf_client_network.Interface] def Run(self, args): for res in METHOD_NAME(args): self.SendReply(res) def EnumerateFilesystemsFromClient(args): """List all local filesystems mounted on this system.""" del args # Unused. for drive in win32api.GetLogicalDriveStrings().split("\x00"): if not drive: continue try: volume = win32file.GetVolumeNameForVolumeMountPoint(drive).rstrip("\\") label, _, _, _, fs_type = win32api.GetVolumeInformation(drive) except win32api.error: continue yield rdf_client_fs.Filesystem( device=volume, mount_point="/%s:/" % drive[0], type=fs_type, label=label) class EnumerateFilesystems(actions.ActionPlugin): """Enumerate all unique filesystems local to the system.""" out_rdfvalues = [rdf_client_fs.Filesystem] def Run(self, args): for res in EnumerateFilesystemsFromClient(args): self.SendReply(res) class Uninstall(actions.ActionPlugin): """Remove the service that starts us at startup.""" out_rdfvalues = [rdf_protodict.DataBlob] def Run(self, unused_arg): """This kills us with no cleanups.""" logging.debug("Disabling service") win32serviceutil.ChangeServiceConfig( None, config.CONFIG["Nanny.service_name"], startType=win32service.SERVICE_DISABLED) svc_config = QueryService(config.CONFIG["Nanny.service_name"]) if svc_config[1] == win32service.SERVICE_DISABLED: logging.info("Disabled service successfully") self.SendReply(rdf_protodict.DataBlob(string="Service disabled.")) else: self.SendReply( rdf_protodict.DataBlob(string="Service failed to disable.")) def QueryService(svc_name): """Query service and get its config.""" hscm = win32service.OpenSCManager(None, None, win32service.SC_MANAGER_ALL_ACCESS) result = None try: hs = win32serviceutil.SmartOpenService(hscm, svc_name, win32service.SERVICE_ALL_ACCESS) result = win32service.QueryServiceConfig(hs) win32service.CloseServiceHandle(hs) finally: win32service.CloseServiceHandle(hscm) return result def WmiQueryFromClient(args): """Run the WMI query and return the data.""" query = args.query base_object = args.base_object or r"winmgmts:\root\cimv2" if not query.upper().startswith("SELECT "): raise RuntimeError("Only SELECT WMI queries allowed.") for response_dict in RunWMIQuery(query, baseobj=base_object): yield response_dict class WmiQuery(actions.ActionPlugin): """Runs a WMI query and returns the results to a server callback.""" in_rdfvalue = rdf_client_action.WMIRequest out_rdfvalues = [rdf_protodict.Dict] def Run(self, args): for res in WmiQueryFromClient(args): self.SendReply(res) def RunWMIQuery(query, baseobj=r"winmgmts:\root\cimv2"): """Run a WMI query and return a result. Args: query: the WMI query to run. baseobj: the base object for the WMI query. Yields: rdf_protodict.Dicts containing key value pairs from the resulting COM objects. """ pythoncom.CoInitialize() # Needs to be called if using com from a thread. wmi_obj = win32com.client.GetObject(baseobj) # This allows our WMI to do some extra things, in particular # it gives it access to find the executable path for all processes. wmi_obj.Security_.Privileges.AddAsString("SeDebugPrivilege") # Run query try: query_results = wmi_obj.ExecQuery(query) except pythoncom.com_error as e: raise RuntimeError("Failed to run WMI query \'%s\' err was %s" % (query, e)) # Extract results from the returned COMObject and return dicts. try: for result in query_results: response = rdf_protodict.Dict() properties = ( list(result.Properties_) + list(getattr(result, "SystemProperties_", []))) for prop in properties: if prop.Name not in IGNORE_PROPS: # Protodict can handle most of the types we care about, but we may # get some objects that we don't know how to serialize, so we tell the # dict to set the value to an error message and keep going response.SetItem(prop.Name, prop.Value, raise_on_error=False) yield response except pythoncom.com_error as e: raise RuntimeError("WMI query data error on query \'%s\' err was %s" % (e, query)) class UpdateAgent(standard.ExecuteBinaryCommand): """Updates the GRR agent to a new version.""" # For Windows this is just an alias to ExecuteBinaryCommand.
null
created date
# coding=utf-8 # *** WARNING: this file was generated by pulumi. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetHybridUseBenefitResult', 'AwaitableGetHybridUseBenefitResult', 'get_hybrid_use_benefit', 'get_hybrid_use_benefit_output', ] @pulumi.output_type class GetHybridUseBenefitResult: """ Response on GET of a hybrid use benefit """ def __init__(__self__, METHOD_NAME=None, etag=None, id=None, last_updated_date=None, name=None, provisioning_state=None, sku=None, type=None): if METHOD_NAME and not isinstance(METHOD_NAME, str): raise TypeError("Expected argument 'created_date' to be a str") pulumi.set(__self__, "created_date", METHOD_NAME) if etag and not isinstance(etag, int): raise TypeError("Expected argument 'etag' to be a int") pulumi.set(__self__, "etag", etag) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if last_updated_date and not isinstance(last_updated_date, str): raise TypeError("Expected argument 'last_updated_date' to be a str") pulumi.set(__self__, "last_updated_date", last_updated_date) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if sku and not isinstance(sku, dict): raise TypeError("Expected argument 'sku' to be a dict") pulumi.set(__self__, "sku", sku) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(name="createdDate") def METHOD_NAME(self) -> str: """ Created date """ return pulumi.get(self, "created_date") @property @pulumi.getter def etag(self) -> int: """ Indicates the revision of the hybrid use benefit """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> str: """ Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} """ return pulumi.get(self, "id") @property @pulumi.getter(name="lastUpdatedDate") def last_updated_date(self) -> str: """ Last updated date """ return pulumi.get(self, "last_updated_date") @property @pulumi.getter def name(self) -> str: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ Provisioning state """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def sku(self) -> 'outputs.SkuResponse': """ Hybrid use benefit SKU """ return pulumi.get(self, "sku") @property @pulumi.getter def type(self) -> str: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type") class AwaitableGetHybridUseBenefitResult(GetHybridUseBenefitResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetHybridUseBenefitResult( METHOD_NAME=self.METHOD_NAME, etag=self.etag, id=self.id, last_updated_date=self.last_updated_date, name=self.name, provisioning_state=self.provisioning_state, sku=self.sku, type=self.type) def get_hybrid_use_benefit(plan_id: Optional[str] = None, scope: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetHybridUseBenefitResult: """ Gets a given plan ID :param str plan_id: This is a unique identifier for a plan. Should be a guid. :param str scope: The scope at which the operation is performed. This is limited to Microsoft.Compute/virtualMachines and Microsoft.Compute/hostGroups/hosts for now """ __args__ = dict() __args__['planId'] = plan_id __args__['scope'] = scope opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:softwareplan/v20191201:getHybridUseBenefit', __args__, opts=opts, typ=GetHybridUseBenefitResult).value return AwaitableGetHybridUseBenefitResult( METHOD_NAME=pulumi.get(__ret__, 'created_date'), etag=pulumi.get(__ret__, 'etag'), id=pulumi.get(__ret__, 'id'), last_updated_date=pulumi.get(__ret__, 'last_updated_date'), name=pulumi.get(__ret__, 'name'), provisioning_state=pulumi.get(__ret__, 'provisioning_state'), sku=pulumi.get(__ret__, 'sku'), type=pulumi.get(__ret__, 'type')) @_utilities.lift_output_func(get_hybrid_use_benefit) def get_hybrid_use_benefit_output(plan_id: Optional[pulumi.Input[str]] = None, scope: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetHybridUseBenefitResult]: """ Gets a given plan ID :param str plan_id: This is a unique identifier for a plan. Should be a guid. :param str scope: The scope at which the operation is performed. This is limited to Microsoft.Compute/virtualMachines and Microsoft.Compute/hostGroups/hosts for now """ ...
null
tostring
import hashlib import logging from gettext import gettext as _ from lxml import etree LOGGER = logging.getLogger(__name__) LOGGER_FMT = "%(asctime)s [%(levelname)s] %(name)s: %(message)s" class PidProviderXMLAdapter: def __init__(self, xml_with_pre, pkg_name=None): self.xml_with_pre = xml_with_pre self.pkg_name = pkg_name def METHOD_NAME(self): return self.xml_with_pre.METHOD_NAME() @property def sps_pkg_name(self): return self.xml_with_pre.sps_pkg_name @property def finger_print(self): return self.xml_with_pre.finger_print @property def related_items(self): return self.xml_with_pre.related_items @property def journal_issn_electronic(self): return self.xml_with_pre.journal_issn_electronic @property def journal_issn_print(self): return self.xml_with_pre.journal_issn_print @property def v2_prefix(self): return self.xml_with_pre.v2_prefix @property def volume(self): return self.xml_with_pre.volume @property def number(self): return self.xml_with_pre.number @property def suppl(self): return self.xml_with_pre.suppl @property def pub_year(self): return self.xml_with_pre.pub_year @property def article_pub_year(self): return self.xml_with_pre.article_pub_year @property def main_doi(self): return self.xml_with_pre.main_doi @property def main_toc_section(self): return self.xml_with_pre.main_toc_section @property def is_aop(self): return self.xml_with_pre.is_aop @property def elocation_id(self): return self.xml_with_pre.elocation_id @property def fpage(self): return self.xml_with_pre.fpage @property def fpage_seq(self): return self.xml_with_pre.fpage_seq @property def lpage(self): return self.xml_with_pre.lpage @property def v2(self): return self.xml_with_pre.v2 @v2.setter def v2(self, value): self.xml_with_pre.v2 = value @property def v3(self): return self.xml_with_pre.v3 @v3.setter def v3(self, value): self.xml_with_pre.v3 = value @property def aop_pid(self): return self.xml_with_pre.aop_pid @aop_pid.setter def aop_pid(self, value): self.xml_with_pre.aop_pid = value @property def z_links(self): if not hasattr(self, "_links") or not self._links: self._links = _str_with_64_char("|".join(self.xml_with_pre.links)) return self._links @property def z_collab(self): if not hasattr(self, "_collab") or not self._collab: self._collab = _str_with_64_char(self.xml_with_pre.collab) return self._collab @property def z_surnames(self): if not hasattr(self, "_surnames") or not self._surnames: self._surnames = _str_with_64_char( "|".join( [ _standardize(person.get("surname")) for person in self.xml_with_pre.authors.get("person") ] ) ) return self._surnames @property def z_article_titles_texts(self): return _str_with_64_char( "|".join(sorted(self.xml_with_pre.article_titles_texts or [])) ) @property def z_partial_body(self): if not hasattr(self, "_partial_body") or not self._partial_body: self._partial_body = _str_with_64_char(self.xml_with_pre.partial_body) return self._partial_body def query_params(self, filter_by_issue=False, aop_version=False): """ Get query parameters Arguments --------- filter_by_issue: bool aop_version: bool Returns ------- dict """ _params = dict( z_surnames=self.z_surnames or None, z_collab=self.z_collab or None, ) if not any(_params.values()): _params["main_doi"] = self.main_doi if not any(_params.values()): _params["z_links"] = self.z_links if not any(_params.values()): _params["pkg_name"] = self.sps_pkg_name if not any(_params.values()): _params["z_partial_body"] = self.z_partial_body _params["elocation_id"] = self.elocation_id if aop_version: _params["issue__isnull"] = True else: if filter_by_issue: _params["issue__pub_year"] = self.pub_year _params["issue__volume"] = self.volume _params["issue__number"] = self.number _params["issue__suppl"] = self.suppl _params["fpage"] = self.fpage _params["fpage_seq"] = self.fpage_seq _params["lpage"] = self.lpage _params["journal__issn_print"] = self.journal_issn_print _params["journal__issn_electronic"] = self.journal_issn_electronic _params["article_pub_year"] = self.article_pub_year _params["z_article_titles_texts"] = self.z_article_titles_texts LOGGER.info(_params) return _params @classmethod def adapt_query_params(cls, params): """ Adapt query parameters Parameters ---------- params : dict Returns ------- dict """ _params = params.copy() LOGGER.info(f"Adapt params input: {_params}") attr_names = ( "main_doi", "pkg_name", "elocation_id", "issue__volume", "issue__number", "issue__suppl", "fpage", "fpage_seq", "lpage", ) for attr_name in attr_names: try: _params[f"{attr_name}__iexact"] = _params.pop(attr_name) except KeyError: continue LOGGER.info(f"Adapt params output: {_params}") return _params @property def query_list(self): items = [] if self.is_aop: LOGGER.info("self.is_aop") # o xml_adapter não contém dados de issue # não indica na consulta o valor para o atributo issue # então o registro encontrado pode ou não ter dados de issue params = self.query_params(aop_version=False) items.append(params) else: # o xml_adapter contém dados de issue # inclui na consulta os dados de issue LOGGER.info("not self.is_aop") params = self.query_params(filter_by_issue=True) items.append(params) # busca por registro cujo valor de issue is None params = self.query_params(aop_version=True) items.append(params) return items def _standardize(text): return (text or "").strip().upper() def _str_with_64_char(text): """ >>> import hashlib >>> m = hashlib.sha256() >>> m.update(b"Nobody inspects") >>> m.update(b" the spammish repetition") >>> m.digest() b'\x03\x1e\xdd}Ae\x15\x93\xc5\xfe\\\x00o\xa5u+7\xfd\xdf\xf7\xbcN\x84:\xa6\xaf\x0c\x95\x0fK\x94\x06' >>> m.digest_size 32 >>> m.block_size 64 hashlib.sha224(b"Nobody inspects the spammish repetition").hexdigest() """ if not text: return None return hashlib.sha256(_standardize(text).encode("utf-8")).hexdigest()
null
switch widget
# -*- coding: utf-8 -*- # # Copyright © Spyder Project Contributors # Licensed under the terms of the MIT License # (see spyder/__init__.py for details) """ Main widget to use in plugins that show content that comes from the IPython console, such as the Variable Explorer or Plots. """ # Third party imports from qtpy.QtWidgets import QStackedWidget, QVBoxLayout # Local imports from spyder.api.translations import _ from spyder.api.widgets.main_widget import PluginMainWidget from spyder.widgets.helperwidgets import PaneEmptyWidget class ShellConnectMainWidget(PluginMainWidget): """ Main widget to use in a plugin that shows console-specific content. Notes ----- * This is composed of a QStackedWidget to stack widgets associated to each shell widget in the console and only show one of them at a time. * The current widget in the stack will display the content associated to the console with focus. """ def __init__(self, *args, set_layout=True, **kwargs): super().__init__(*args, **kwargs) # Widgets self._stack = QStackedWidget(self) self._shellwidgets = {} if set_layout: # Layout layout = QVBoxLayout() layout.addWidget(self._stack) self.setLayout(layout) # ---- PluginMainWidget API # ------------------------------------------------------------------------ def current_widget(self): """ Return the current widget in the stack. Returns ------- QWidget The current widget. """ return self._stack.currentWidget() def get_focus_widget(self): return self.current_widget() # ---- SpyderWidgetMixin API # ------------------------------------------------------------------------ def update_style(self): self._stack.setStyleSheet("QStackedWidget {padding: 0px; border: 0px}") # ---- Stack accesors # ------------------------------------------------------------------------ def count(self): """ Return the number of widgets in the stack. Returns ------- int The number of widgets in the stack. """ return self._stack.count() def get_widget_for_shellwidget(self, shellwidget): """return widget corresponding to shellwidget.""" shellwidget_id = id(shellwidget) if shellwidget_id in self._shellwidgets: return self._shellwidgets[shellwidget_id] return None # ---- Public API # ------------------------------------------------------------------------ def add_shellwidget(self, shellwidget): """Create a new widget in the stack and associate it to shellwidget.""" shellwidget_id = id(shellwidget) if shellwidget_id not in self._shellwidgets: widget = self.create_new_widget(shellwidget) self._stack.addWidget(widget) self._shellwidgets[shellwidget_id] = widget # Add all actions to new widget for shortcuts to work. for __, action in self.get_actions().items(): if action: widget_actions = widget.actions() if action not in widget_actions: widget.addAction(action) self.set_shellwidget(shellwidget) def remove_shellwidget(self, shellwidget): """Remove widget associated to shellwidget.""" shellwidget_id = id(shellwidget) if shellwidget_id in self._shellwidgets: widget = self._shellwidgets.pop(shellwidget_id) self._stack.removeWidget(widget) self.close_widget(widget) self.update_actions() def set_shellwidget(self, shellwidget): """Set widget associated with shellwidget as the current widget.""" old_widget = self.current_widget() widget = self.get_widget_for_shellwidget(shellwidget) if widget is None: return self._stack.setCurrentWidget(widget) self.METHOD_NAME(widget, old_widget) self.update_actions() def add_errored_shellwidget(self, shellwidget): """ Create a new PaneEmptyWidget in the stack and associate it to shellwidget. This is necessary to show a meaningful message when switching to consoles with dead kernels. """ shellwidget_id = id(shellwidget) if shellwidget_id not in self._shellwidgets: widget = PaneEmptyWidget( self, "variable-explorer", # TODO: Use custom icon here _("No connected console"), _("The current console failed to start, so there is no " "content to show here.") ) self._stack.addWidget(widget) self._shellwidgets[shellwidget_id] = widget self.set_shellwidget(shellwidget) def create_new_widget(self, shellwidget): """Create a widget to communicate with shellwidget.""" raise NotImplementedError def close_widget(self, widget): """Close the widget.""" raise NotImplementedError def METHOD_NAME(self, widget, old_widget): """Switch the current widget.""" raise NotImplementedError def refresh(self): """Refresh widgets.""" if self.count(): widget = self.current_widget() widget.refresh() def is_current_widget_empty(self): """Check if the current widget is a PaneEmptyWidget.""" return isinstance(self.current_widget(), PaneEmptyWidget)
null
on connect
############################################# # This is a basic script to emulate the hardware of # an Arduino microcontroller. The VirtualDevice # service will execute this script when # createVirtualArduino(port) is called import time import math import threading from random import randint from org.myrobotlab.codec.serial import ArduinoMsgCodec working = False worker = None analogReadPollingPins = [] digitalReadPollingPins = [] def work(): """thread worker function""" global working, analogReadPollingPins x = 0 working = True while(working): x = x + 0.09 y = int(math.cos(x) * 100 + 150) # retcmd = "publishPin/" + str(pin) + "/3/"+ str(y) +"\n" # uart.write(codec.encode(retcmd)) for pinx in digitalReadPollingPins: retcmd = "publishPin/" + str(pinx) + "/0/"+str(randint(0,1))+"\n" uart.write(codec.encode(retcmd)) for pinx in analogReadPollingPins: #retcmd = "publishPin/" + str(pinx) + "/4/"+ str(y) +"\n" #retcmd = "publishPin/" + str(pinx) + "/" + str(int(pinx)%4) + "/"+ str(y) +"\n" retcmd = "publishPin/" + str(pinx) + "/1/"+ str(y) +"\n" uart.write(codec.encode(retcmd)) sleep(0.001) #print (y) # TODO ------- # if (digitalReadPollingPins.length() == 0 && analogReadPollingPins.length() == 0 # working = False print("I am done !") codec = ArduinoMsgCodec() virtual = runtime.start("virtual", "VirtualDevice") logic = virtual.getLogic() # get uarts and subscribe to them for uartName in virtual.getUarts().keySet(): uart = virtual.getUart(uartName) logic.subscribe(uart.getName(), "publishRX") logic.subscribe(uart.getName(), "onConnect") logic.subscribe(uart.getName(), "onPortNames") logic.subscribe(uart.getName(), "onDisconnect") def onRX(b): global working, worker, analogReadPollingPins print("onByte", b) command = codec.decode(b) if command != None and len(command) > 0 : print("decoded", command) # rstrip strips the \n from the record command = command.rstrip() clist = command.split('/') if command == "getVersion": uart.write(codec.encode("publishVersion/"+ str(ArduinoMsgCodec.MRLCOMM_VERSION) +"\n")) elif command.startswith("digitalReadPollingStart"): print("digitalReadPollingStart") pin = clist[1] digitalReadPollingPins.append(pin) if worker == None: worker = threading.Thread(name='worker', target=work) worker.setDaemon(True) worker.start() elif command.startswith("digitalReadPollingStop"): print("digitalReadPollingStop") pin = clist[1] digitalReadPollingPins.remove(pin) elif command.startswith("analogReadPollingStart"): print("analogReadPollingStart") pin = clist[1] analogReadPollingPins.append(pin) if worker == None: worker = threading.Thread(name='worker', target=work) worker.setDaemon(True) worker.start() elif command.startswith("analogReadPollingStop"): print("analogReadPollingStop") pin = clist[1] analogReadPollingPins.remove(pin) def off(): working = False worker = None def METHOD_NAME(portName): print("onConnect to ", portName) # FIXME ??? is this bad algorithm to determine callback method name ? # seems somebody is expecting it this way def onOnConnect(portName): print("onOnConnect connected to ", portName) def onPortNames(portName): print("onPortNames TODO - list portNames") def onOnPortNames(portName): print("onOnPortNames TODO - list portNames") def onDisconnect(portName): print("onDisconnect from ", portName) def onOnDisconnect(portName): print("onOnDisconnect from ", portName) # WHAT THE HECK IS THIS ABOUT ? # TODO - find out def serial1RX(data): print("serial1RX ", data) def serial2RX(data): print("serial2RX ", data) def serial3RX(data): print("serial3RX ", data) def serial4RX(data): print("serial4RX ", data) def serial5RX(data): print("serial5RX ", data) def serial6RX(data): print("serial6RX ", data) def serial7RX(data): print("serial7RX ", data) def serial8RX(data): print("serial8RX ", data)
null
location
# coding=utf-8 # *** WARNING: this file was generated by pulumi. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs __all__ = [ 'GetConfigurationAssignmentsForSubscriptionResult', 'AwaitableGetConfigurationAssignmentsForSubscriptionResult', 'get_configuration_assignments_for_subscription', 'get_configuration_assignments_for_subscription_output', ] @pulumi.output_type class GetConfigurationAssignmentsForSubscriptionResult: """ Configuration Assignment """ def __init__(__self__, filter=None, id=None, METHOD_NAME=None, maintenance_configuration_id=None, name=None, resource_id=None, system_data=None, type=None): if filter and not isinstance(filter, dict): raise TypeError("Expected argument 'filter' to be a dict") pulumi.set(__self__, "filter", filter) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if METHOD_NAME and not isinstance(METHOD_NAME, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", METHOD_NAME) if maintenance_configuration_id and not isinstance(maintenance_configuration_id, str): raise TypeError("Expected argument 'maintenance_configuration_id' to be a str") pulumi.set(__self__, "maintenance_configuration_id", maintenance_configuration_id) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if resource_id and not isinstance(resource_id, str): raise TypeError("Expected argument 'resource_id' to be a str") pulumi.set(__self__, "resource_id", resource_id) if system_data and not isinstance(system_data, dict): raise TypeError("Expected argument 'system_data' to be a dict") pulumi.set(__self__, "system_data", system_data) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def filter(self) -> Optional['outputs.ConfigurationAssignmentFilterPropertiesResponse']: """ Properties of the configuration assignment """ return pulumi.get(self, "filter") @property @pulumi.getter def id(self) -> str: """ Fully qualified identifier of the resource """ return pulumi.get(self, "id") @property @pulumi.getter def METHOD_NAME(self) -> Optional[str]: """ Location of the resource """ return pulumi.get(self, "location") @property @pulumi.getter(name="maintenanceConfigurationId") def maintenance_configuration_id(self) -> Optional[str]: """ The maintenance configuration Id """ return pulumi.get(self, "maintenance_configuration_id") @property @pulumi.getter def name(self) -> str: """ Name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter(name="resourceId") def resource_id(self) -> Optional[str]: """ The unique resourceId """ return pulumi.get(self, "resource_id") @property @pulumi.getter(name="systemData") def system_data(self) -> 'outputs.SystemDataResponse': """ Azure Resource Manager metadata containing createdBy and modifiedBy information. """ return pulumi.get(self, "system_data") @property @pulumi.getter def type(self) -> str: """ Type of the resource """ return pulumi.get(self, "type") class AwaitableGetConfigurationAssignmentsForSubscriptionResult(GetConfigurationAssignmentsForSubscriptionResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetConfigurationAssignmentsForSubscriptionResult( filter=self.filter, id=self.id, METHOD_NAME=self.METHOD_NAME, maintenance_configuration_id=self.maintenance_configuration_id, name=self.name, resource_id=self.resource_id, system_data=self.system_data, type=self.type) def get_configuration_assignments_for_subscription(configuration_assignment_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetConfigurationAssignmentsForSubscriptionResult: """ Get configuration assignment for resource.. Azure REST API version: 2023-04-01. :param str configuration_assignment_name: Configuration assignment name """ __args__ = dict() __args__['configurationAssignmentName'] = configuration_assignment_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:maintenance:getConfigurationAssignmentsForSubscription', __args__, opts=opts, typ=GetConfigurationAssignmentsForSubscriptionResult).value return AwaitableGetConfigurationAssignmentsForSubscriptionResult( filter=pulumi.get(__ret__, 'filter'), id=pulumi.get(__ret__, 'id'), METHOD_NAME=pulumi.get(__ret__, 'location'), maintenance_configuration_id=pulumi.get(__ret__, 'maintenance_configuration_id'), name=pulumi.get(__ret__, 'name'), resource_id=pulumi.get(__ret__, 'resource_id'), system_data=pulumi.get(__ret__, 'system_data'), type=pulumi.get(__ret__, 'type')) @_utilities.lift_output_func(get_configuration_assignments_for_subscription) def get_configuration_assignments_for_subscription_output(configuration_assignment_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetConfigurationAssignmentsForSubscriptionResult]: """ Get configuration assignment for resource.. Azure REST API version: 2023-04-01. :param str configuration_assignment_name: Configuration assignment name """ ...
null
pre operations
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # # Code generated by aaz-dev-tools # -------------------------------------------------------------------------------------------- # pylint: skip-file # flake8: noqa from azure.cli.core.aaz import * @register_command( "eventhubs cluster namespace list", ) class List(AAZCommand): """List all Event Hubs Namespace IDs in an Event Hubs Dedicated Cluster. """ _aaz_info = { "version": "2023-01-01-preview", "resources": [ ["mgmt-plane", "/subscriptions/{}/resourcegroups/{}/providers/microsoft.eventhub/clusters/{}/namespaces", "2023-01-01-preview"], ] } def _handler(self, command_args): super()._handler(command_args) self._execute_operations() return self._output() _args_schema = None @classmethod def _build_arguments_schema(cls, *args, **kwargs): if cls._args_schema is not None: return cls._args_schema cls._args_schema = super()._build_arguments_schema(*args, **kwargs) # define Arg Group "" _args_schema = cls._args_schema _args_schema.cluster_name = AAZStrArg( options=["-n", "--name", "--cluster-name"], help="The name of the Event Hubs Cluster.", required=True, fmt=AAZStrArgFormat( max_length=50, min_length=6, ), ) _args_schema.resource_group = AAZResourceGroupNameArg( required=True, ) return cls._args_schema def _execute_operations(self): self.METHOD_NAME() self.ClustersListNamespaces(ctx=self.ctx)() self.post_operations() @register_callback def METHOD_NAME(self): pass @register_callback def post_operations(self): pass def _output(self, *args, **kwargs): result = self.deserialize_output(self.ctx.vars.instance, client_flatten=True) return result class ClustersListNamespaces(AAZHttpOperation): CLIENT_TYPE = "MgmtClient" def __call__(self, *args, **kwargs): request = self.make_request() session = self.client.send_request(request=request, stream=False, **kwargs) if session.http_response.status_code in [200]: return self.on_200(session) return self.on_error(session.http_response) @property def url(self): return self.client.format_url( "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.EventHub/clusters/{clusterName}/namespaces", **self.url_parameters ) @property def method(self): return "GET" @property def error_format(self): return "MgmtErrorFormat" @property def url_parameters(self): parameters = { **self.serialize_url_param( "clusterName", self.ctx.args.cluster_name, required=True, ), **self.serialize_url_param( "resourceGroupName", self.ctx.args.resource_group, required=True, ), **self.serialize_url_param( "subscriptionId", self.ctx.subscription_id, required=True, ), } return parameters @property def query_parameters(self): parameters = { **self.serialize_query_param( "api-version", "2023-01-01-preview", required=True, ), } return parameters @property def header_parameters(self): parameters = { **self.serialize_header_param( "Accept", "application/json", ), } return parameters def on_200(self, session): data = self.deserialize_http_content(session) self.ctx.set_var( "instance", data, schema_builder=self._build_schema_on_200 ) _schema_on_200 = None @classmethod def _build_schema_on_200(cls): if cls._schema_on_200 is not None: return cls._schema_on_200 cls._schema_on_200 = AAZObjectType() _schema_on_200 = cls._schema_on_200 _schema_on_200.value = AAZListType() value = cls._schema_on_200.value value.Element = AAZObjectType() _element = cls._schema_on_200.value.Element _element.id = AAZStrType() return cls._schema_on_200 class _ListHelper: """Helper class for List""" __all__ = ["List"]
null
translate points to crop
# Copyright (C) 2020-2022 Intel Corporation # Copyright (C) 2022 CVAT.ai Corporation # # SPDX-License-Identifier: MIT import numpy as np import os import cv2 import torch from networks.mainnetwork import Network from dataloaders import helpers def convert_mask_to_polygon(mask): contours = None if int(cv2.__version__.split('.')[0]) > 3: contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[0] else: contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[1] contours = max(contours, key=lambda arr: arr.size) if contours.shape.count(1): contours = np.squeeze(contours) if contours.size < 3 * 2: raise Exception('Less then three point have been detected. Can not build a polygon.') polygon = [] for point in contours: polygon.append([int(point[0]), int(point[1])]) return polygon class ModelHandler: def __init__(self): base_dir = os.environ.get("MODEL_PATH", "/opt/nuclio/iog") model_path = os.path.join(base_dir, "IOG_PASCAL_SBD.pth") self.device = torch.device("cpu") # Number of input channels (RGB + heatmap of IOG points) self.net = Network(nInputChannels=5, num_classes=1, backbone='resnet101', output_stride=16, sync_bn=None, freeze_bn=False) pretrain_dict = torch.load(model_path) self.net.load_state_dict(pretrain_dict) self.net.to(self.device) self.net.eval() def handle(self, image, bbox, pos_points, neg_points, threshold): with torch.no_grad(): # extract a crop with padding from the image crop_padding = 30 crop_bbox = [ max(bbox[0][0] - crop_padding, 0), max(bbox[0][1] - crop_padding, 0), min(bbox[1][0] + crop_padding, image.width - 1), min(bbox[1][1] + crop_padding, image.height - 1) ] crop_shape = ( int(crop_bbox[2] - crop_bbox[0] + 1), # width int(crop_bbox[3] - crop_bbox[1] + 1), # height ) # try to use crop_from_bbox(img, bbox, zero_pad) here input_crop = np.array(image.crop(crop_bbox)).astype(np.float32) # resize the crop input_crop = cv2.resize(input_crop, (512, 512), interpolation=cv2.INTER_NEAREST) crop_scale = (512 / crop_shape[0], 512 / crop_shape[1]) def METHOD_NAME(points): points = [ ((p[0] - crop_bbox[0]) * crop_scale[0], # x (p[1] - crop_bbox[1]) * crop_scale[1]) # y for p in points] return points pos_points = METHOD_NAME(pos_points) neg_points = METHOD_NAME(neg_points) # Create IOG image pos_gt = np.zeros(shape=input_crop.shape[:2], dtype=np.float64) neg_gt = np.zeros(shape=input_crop.shape[:2], dtype=np.float64) for p in pos_points: pos_gt = np.maximum(pos_gt, helpers.make_gaussian(pos_gt.shape, center=p)) for p in neg_points: neg_gt = np.maximum(neg_gt, helpers.make_gaussian(neg_gt.shape, center=p)) iog_image = np.stack((pos_gt, neg_gt), axis=2).astype(dtype=input_crop.dtype) # Convert iog_image to an image (0-255 values) cv2.normalize(iog_image, iog_image, 0, 255, cv2.NORM_MINMAX) # Concatenate input crop and IOG image input_blob = np.concatenate((input_crop, iog_image), axis=2) # numpy image: H x W x C # torch image: C X H X W input_blob = input_blob.transpose((2, 0, 1)) # batch size is 1 input_blob = np.array([input_blob]) input_tensor = torch.from_numpy(input_blob) input_tensor = input_tensor.to(self.device) output_mask = self.net.forward(input_tensor)[4] output_mask = output_mask.to(self.device) pred = np.transpose(output_mask.data.numpy()[0, :, :, :], (1, 2, 0)) pred = pred > threshold pred = np.squeeze(pred) # Convert a mask to a polygon pred = np.array(pred, dtype=np.uint8) pred = cv2.resize(pred, dsize=(crop_shape[0], crop_shape[1]), interpolation=cv2.INTER_CUBIC) cv2.normalize(pred, pred, 0, 255, cv2.NORM_MINMAX) mask = np.zeros((image.height, image.width), dtype=np.uint8) x = int(crop_bbox[0]) y = int(crop_bbox[1]) mask[y : y + crop_shape[1], x : x + crop_shape[0]] = pred polygon = convert_mask_to_polygon(mask) return mask, polygon
null
test comparison uneven nested
import numpy as np import pytest import aesara from aesara.tensor.type import TensorType from aesara.typed_list.basic import TypedListVariable from aesara.typed_list.type import TypedListType from tests.tensor.utils import random_ranged class TestTypedListType: def test_wrong_input_on_creation(self): # Typed list type should raises an # error if the argument passed for # type is not a valid aesara type with pytest.raises(TypeError): TypedListType(None) def test_wrong_input_on_filter(self): # Typed list type should raises an # error if the argument given to filter # isn't of the same type as the one # specified on creation # list of matrices myType = TypedListType(TensorType(aesara.config.floatX, shape=(None, None))) with pytest.raises(TypeError): myType.filter([4]) def test_not_a_list_on_filter(self): # Typed List Value should raises an error # if no iterable variable is given on input # list of matrices myType = TypedListType(TensorType(aesara.config.floatX, shape=(None, None))) with pytest.raises(TypeError): myType.filter(4) def test_type_equality(self): # Typed list types should only be equal # when they contains the same aesara # variables # list of matrices myType1 = TypedListType(TensorType(aesara.config.floatX, shape=(None, None))) # list of matrices myType2 = TypedListType(TensorType(aesara.config.floatX, shape=(None, None))) # list of scalars myType3 = TypedListType(TensorType(aesara.config.floatX, shape=())) assert myType2 == myType1 assert myType3 != myType1 def test_filter_sanity_check(self): # Simple test on typed list type filter myType = TypedListType(TensorType(aesara.config.floatX, shape=(None, None))) x = random_ranged(-1000, 1000, [100, 100]) assert np.array_equal(myType.filter([x]), [x]) def test_intern_filter(self): # Test checking if values contained are themselves # filtered. If they weren't this code would raise # an exception. myType = TypedListType(TensorType("float64", shape=(None, None))) x = np.asarray([[4, 5], [4, 5]], dtype="float32") assert np.array_equal(myType.filter([x]), [x]) def test_load_alot(self): myType = TypedListType(TensorType(aesara.config.floatX, shape=(None, None))) x = random_ranged(-1000, 1000, [10, 10]) testList = [] for i in range(10000): testList.append(x) assert np.array_equal(myType.filter(testList), testList) def test_basic_nested_list(self): # Testing nested list with one level of depth myNestedType = TypedListType( TensorType(aesara.config.floatX, shape=(None, None)) ) myType = TypedListType(myNestedType) x = random_ranged(-1000, 1000, [100, 100]) assert np.array_equal(myType.filter([[x]]), [[x]]) def test_comparison_different_depth(self): # Nested list with different depth aren't the same myNestedType = TypedListType( TensorType(aesara.config.floatX, shape=(None, None)) ) myNestedType2 = TypedListType(myNestedType) myNestedType3 = TypedListType(myNestedType2) assert myNestedType2 != myNestedType3 def test_nested_list_arg(self): # test for the 'depth' optional argument myNestedType = TypedListType( TensorType(aesara.config.floatX, shape=(None, None)), 3 ) myType = TypedListType(TensorType(aesara.config.floatX, shape=(None, None))) myManualNestedType = TypedListType(TypedListType(TypedListType(myType))) assert myNestedType == myManualNestedType def test_get_depth(self): # test case for get_depth utilitary function myType = TypedListType(TensorType(aesara.config.floatX, shape=(None, None))) myManualNestedType = TypedListType(TypedListType(TypedListType(myType))) assert myManualNestedType.get_depth() == 3 def METHOD_NAME(self): # test for comparison between uneven nested list myType = TypedListType(TensorType(aesara.config.floatX, shape=(None, None))) myManualNestedType1 = TypedListType(TypedListType(TypedListType(myType))) myManualNestedType2 = TypedListType(TypedListType(myType)) assert myManualNestedType1 != myManualNestedType2 assert myManualNestedType2 != myManualNestedType1 def test_variable_is_Typed_List_variable(self): mySymbolicVariable = TypedListType( TensorType(aesara.config.floatX, shape=(None, None)) )() assert isinstance(mySymbolicVariable, TypedListVariable)
null
test tasks handles nonexisting theme
import pytest from ....cache.test import assert_invalidates_cache from ... import THEME_CACHE from ..css import change_css_source, get_theme_media_map, rebuild_css from ..tasks import build_single_theme_css, build_theme_css @pytest.fixture def assert_snapshot_match(snapshot, theme): def _assert_snapshot_match(result): result = result.replace(theme.dirname, "themedir") snapshot.assert_match(result) return _assert_snapshot_match @pytest.fixture def media_map(theme, image): return get_theme_media_map(theme) def test_tasks_builds_single_css_file(theme, image, css_needing_build): build_single_theme_css(css_needing_build.pk) css_needing_build.refresh_from_db() assert css_needing_build.build_file def test_tasks_skips_single_css_file_that_doesnt_require_build(theme, css): build_single_theme_css(css.pk) css.refresh_from_db() assert not css.build_file def test_tasks_handles_nonexisting_css_file(db): build_single_theme_css(1) def test_tasks_builds_theme_css_files_that_require_it(theme, image, css_needing_build): build_theme_css(theme.pk) css_needing_build.refresh_from_db() assert css_needing_build.build_file def test_tasks_skips_theme_css_files_that_dont_require_build(theme, css): build_theme_css(theme.pk) css.refresh_from_db() assert not css.build_file def METHOD_NAME(nonexisting_theme): build_theme_css(nonexisting_theme.pk) def test_media_map_for_theme_without_any_media_files_returns_empty_dict(theme): assert get_theme_media_map(theme) == {} def test_media_map_for_theme_with_media_files_returns_dict_with_data( theme, image, media ): assert get_theme_media_map(theme) def test_css_file_is_build(media_map, css_needing_build): rebuild_css(media_map, css_needing_build) css_needing_build.refresh_from_db() assert css_needing_build.build_file def test_build_css_file_is_hashed(media_map, css_needing_build): rebuild_css(media_map, css_needing_build) css_needing_build.refresh_from_db() assert css_needing_build.build_hash def test_build_css_file_includes_hash_in_filename(media_map, css_needing_build): rebuild_css(media_map, css_needing_build) css_needing_build.refresh_from_db() assert css_needing_build.build_hash in str(css_needing_build.build_file) def test_build_css_file_has_size_set(media_map, css_needing_build): rebuild_css(media_map, css_needing_build) css_needing_build.refresh_from_db() assert css_needing_build.size def test_simple_url_to_file_is_replaced_with_valid_url( assert_snapshot_match, media_map, image ): css = ".page-header { background-image: url(%s); }" % image.name result = change_css_source(media_map, css) assert_snapshot_match(result) def test_relative_url_to_file_is_replaced_with_valid_url( assert_snapshot_match, media_map, image ): css = ".page-header { background-image: url(./%s); }" % image.name result = change_css_source(media_map, css) assert_snapshot_match(result) def test_url_to_file_from_create_react_app_is_replaced_with_valid_url( assert_snapshot_match, media_map, image ): hashed_name = str(image.file).split("/")[-1] css = ".page-header { background-image: url(/static/media/%s); }" % hashed_name result = change_css_source(media_map, css) assert_snapshot_match(result) def test_quoted_url_to_file_is_replaced_with_valid_url( assert_snapshot_match, media_map, image ): css = '.page-header { background-image: url("%s"); }' % image.name result = change_css_source(media_map, css) assert_snapshot_match(result) def test_single_quoted_url_to_file_is_replaced_with_valid_url( assert_snapshot_match, media_map, image ): css = ".page-header { background-image: url('%s'); }" % image.name result = change_css_source(media_map, css) assert_snapshot_match(result) def test_absolute_https_url_to_file_is_not_replaced(media_map): css = ".page-header { background-image: url(https://cdn.example.com/bg.png); }" result = change_css_source(media_map, css) assert result == css def test_absolute_http_url_to_file_is_not_replaced(media_map): css = ".page-header { background-image: url(http://cdn.example.com/bg.png); }" result = change_css_source(media_map, css) assert result == css def test_absolute_protocol_relative_url_to_file_is_not_replaced(media_map): css = ".page-header { background-image: url(://cdn.example.com/bg.png); }" result = change_css_source(media_map, css) assert result == css def test_css_file_with_multiple_different_urls_is_correctly_replaced( assert_snapshot_match, media_map, image ): css = ( ".page-header { background-image: url(http://cdn.example.com/bg.png); }" '\n.container { background-image: url("%s"); }' '\n.alert { background-image: url("%s"); }' ) % (image.name, str(image.file).strip("/")[-1]) result = change_css_source(media_map, css) assert_snapshot_match(result) def test_building_single_theme_css_invalidates_theme_cache( theme, image, css_needing_build ): with assert_invalidates_cache(THEME_CACHE): build_single_theme_css(css_needing_build.pk) def test_building_theme_css_invalidates_theme_cache(theme): with assert_invalidates_cache(THEME_CACHE): build_theme_css(theme.pk)
null
visit func arg list
# Generated from /Users/mep/LocalStack/localstack/localstack/services/stepfunctions/asl/antlr/ASLIntrinsicParser.g4 by ANTLR 4.12.0 from antlr4 import * if __name__ is not None and "." in __name__: from .ASLIntrinsicParser import ASLIntrinsicParser else: from ASLIntrinsicParser import ASLIntrinsicParser # This class defines a complete generic visitor for a parse tree produced by ASLIntrinsicParser. class ASLIntrinsicParserVisitor(ParseTreeVisitor): # Visit a parse tree produced by ASLIntrinsicParser#func_decl. def visitFunc_decl(self, ctx:ASLIntrinsicParser.Func_declContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#states_func_decl. def visitStates_func_decl(self, ctx:ASLIntrinsicParser.States_func_declContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#state_fun_name. def visitState_fun_name(self, ctx:ASLIntrinsicParser.State_fun_nameContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#func_arg_list. def METHOD_NAME(self, ctx:ASLIntrinsicParser.Func_arg_listContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#func_arg_string. def visitFunc_arg_string(self, ctx:ASLIntrinsicParser.Func_arg_stringContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#func_arg_int. def visitFunc_arg_int(self, ctx:ASLIntrinsicParser.Func_arg_intContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#func_arg_float. def visitFunc_arg_float(self, ctx:ASLIntrinsicParser.Func_arg_floatContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#func_arg_bool. def visitFunc_arg_bool(self, ctx:ASLIntrinsicParser.Func_arg_boolContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#func_arg_json_path. def visitFunc_arg_json_path(self, ctx:ASLIntrinsicParser.Func_arg_json_pathContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#func_arg_func_decl. def visitFunc_arg_func_decl(self, ctx:ASLIntrinsicParser.Func_arg_func_declContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#json_path. def visitJson_path(self, ctx:ASLIntrinsicParser.Json_pathContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#json_path_part. def visitJson_path_part(self, ctx:ASLIntrinsicParser.Json_path_partContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#json_path_iden. def visitJson_path_iden(self, ctx:ASLIntrinsicParser.Json_path_idenContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#json_path_iden_qual. def visitJson_path_iden_qual(self, ctx:ASLIntrinsicParser.Json_path_iden_qualContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#json_path_qual_void. def visitJson_path_qual_void(self, ctx:ASLIntrinsicParser.Json_path_qual_voidContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#json_path_qual_idx. def visitJson_path_qual_idx(self, ctx:ASLIntrinsicParser.Json_path_qual_idxContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#json_path_qual_query. def visitJson_path_qual_query(self, ctx:ASLIntrinsicParser.Json_path_qual_queryContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#json_path_query_cmp. def visitJson_path_query_cmp(self, ctx:ASLIntrinsicParser.Json_path_query_cmpContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#json_path_query_length. def visitJson_path_query_length(self, ctx:ASLIntrinsicParser.Json_path_query_lengthContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#json_path_query_binary. def visitJson_path_query_binary(self, ctx:ASLIntrinsicParser.Json_path_query_binaryContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#json_path_query_star. def visitJson_path_query_star(self, ctx:ASLIntrinsicParser.Json_path_query_starContext): return self.visitChildren(ctx) # Visit a parse tree produced by ASLIntrinsicParser#identifier. def visitIdentifier(self, ctx:ASLIntrinsicParser.IdentifierContext): return self.visitChildren(ctx) del ASLIntrinsicParse
null
test l3 local parameter id
# # @file TestL3LocalParameter.py # @brief L3 Local Parameter unit tests # # @author Akiya Jouraku (Python conversion) # @author Sarah Keating # # ====== WARNING ===== WARNING ===== WARNING ===== WARNING ===== WARNING ====== # # DO NOT EDIT THIS FILE. # # This file was generated automatically by converting the file located at # src/sbml/test/TestL3LocalParameter.c # using the conversion program dev/utilities/translateTests/translateTests.pl. # Any changes made here will be lost the next time the file is regenerated. # # ----------------------------------------------------------------------------- # This file is part of libSBML. Please visit http://sbml.org for more # information about SBML, and the latest version of libSBML. # # Copyright 2005-2010 California Institute of Technology. # Copyright 2002-2005 California Institute of Technology and # Japan Science and Technology Corporation. # # This library is free software; you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation. A copy of the license agreement is provided # in the file named "LICENSE.txt" included with this software distribution # and also available online as http://sbml.org/software/libsbml/license.html # ----------------------------------------------------------------------------- import sys import unittest import libsbml def isnan(x): return (x != x) pass class TestL3LocalParameter(unittest.TestCase): global P P = None def setUp(self): self.P = libsbml.LocalParameter(3,1) if (self.P == None): pass pass def tearDown(self): _dummyList = [ self.P ]; _dummyList[:] = []; del _dummyList pass def test_L3_LocalParameter_NS(self): self.assertTrue( self.P.getNamespaces() != None ) self.assertTrue( self.P.getNamespaces().getLength() == 1 ) self.assertTrue(( "http://www.sbml.org/sbml/level3/version1/core" == self.P.getNamespaces().getURI(0) )) pass def test_L3_LocalParameter_create(self): self.assertTrue( self.P.getTypeCode() == libsbml.SBML_LOCAL_PARAMETER ) self.assertTrue( self.P.getMetaId() == "" ) self.assertTrue( self.P.getNotes() == None ) self.assertTrue( self.P.getAnnotation() == None ) self.assertTrue( self.P.getId() == "" ) self.assertTrue( self.P.getName() == "" ) self.assertTrue( self.P.getUnits() == "" ) self.assertEqual( True, isnan(self.P.getValue()) ) self.assertEqual( False, self.P.isSetId() ) self.assertEqual( False, self.P.isSetName() ) self.assertEqual( False, self.P.isSetValue() ) self.assertEqual( False, self.P.isSetUnits() ) pass def test_L3_LocalParameter_createWithNS(self): xmlns = libsbml.XMLNamespaces() xmlns.add( "http://www.sbml.org", "testsbml") sbmlns = libsbml.SBMLNamespaces(3,1) sbmlns.addNamespaces(xmlns) p = libsbml.LocalParameter(sbmlns) self.assertTrue( p.getTypeCode() == libsbml.SBML_LOCAL_PARAMETER ) self.assertTrue( p.getMetaId() == "" ) self.assertTrue( p.getNotes() == None ) self.assertTrue( p.getAnnotation() == None ) self.assertTrue( p.getLevel() == 3 ) self.assertTrue( p.getVersion() == 1 ) self.assertTrue( p.getNamespaces() != None ) self.assertTrue( p.getNamespaces().getLength() == 2 ) self.assertTrue( p.getId() == "" ) self.assertTrue( p.getName() == "" ) self.assertTrue( p.getUnits() == "" ) self.assertEqual( True, isnan(p.getValue()) ) self.assertEqual( False, p.isSetId() ) self.assertEqual( False, p.isSetName() ) self.assertEqual( False, p.isSetValue() ) self.assertEqual( False, p.isSetUnits() ) _dummyList = [ p ]; _dummyList[:] = []; del _dummyList pass def test_L3_LocalParameter_free_NULL(self): _dummyList = [ None ]; _dummyList[:] = []; del _dummyList pass def test_L3_LocalParameter_hasRequiredAttributes(self): p = libsbml.LocalParameter(3,1) self.assertEqual( False, p.hasRequiredAttributes() ) p.setId( "id") self.assertEqual( True, p.hasRequiredAttributes() ) _dummyList = [ p ]; _dummyList[:] = []; del _dummyList pass def METHOD_NAME(self): id = "mitochondria"; self.assertEqual( False, self.P.isSetId() ) self.P.setId(id) self.assertTrue(( id == self.P.getId() )) self.assertEqual( True, self.P.isSetId() ) if (self.P.getId() == id): pass pass def test_L3_LocalParameter_name(self): name = "My_Favorite_Factory"; self.assertEqual( False, self.P.isSetName() ) self.P.setName(name) self.assertTrue(( name == self.P.getName() )) self.assertEqual( True, self.P.isSetName() ) if (self.P.getName() == name): pass self.P.unsetName() self.assertEqual( False, self.P.isSetName() ) if (self.P.getName() != None): pass pass def test_L3_LocalParameter_units(self): units = "volume"; self.assertEqual( False, self.P.isSetUnits() ) self.P.setUnits(units) self.assertTrue(( units == self.P.getUnits() )) self.assertEqual( True, self.P.isSetUnits() ) if (self.P.getUnits() == units): pass self.P.unsetUnits() self.assertEqual( False, self.P.isSetUnits() ) if (self.P.getUnits() != None): pass pass def test_L3_LocalParameter_value(self): self.assertEqual( False, self.P.isSetValue() ) self.assertEqual( True, isnan(self.P.getValue()) ) self.P.setValue(1.5) self.assertEqual( True, self.P.isSetValue() ) self.assertTrue( self.P.getValue() == 1.5 ) self.P.unsetValue() self.assertEqual( False, self.P.isSetValue() ) self.assertEqual( True, isnan(self.P.getValue()) ) pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestL3LocalParameter)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1)
null
get class
# ../memory/__init__.py """Provides binary/memory based functionality.""" # ============================================================================= # >> IMPORTS # ============================================================================= # Python import inspect # Source.Python # Loggers from loggers import _sp_logger # ============================================================================= # >> FORWARD IMPORTS # ============================================================================= # Source.Python # core from core import AutoUnload # memory from _memory import BinaryFile from _memory import CallingConvention from _memory import CLASS_INFO from _memory import Convention from _memory import DataType from _memory import EXPOSED_CLASSES from _memory import Function from _memory import FunctionInfo from _memory import NULL from _memory import Pointer from _memory import ProcessorRegister from _memory import Register from _memory import Registers from _memory import StackData from _memory import TYPE_SIZES from _memory import alloc from _memory import find_binary from _memory import get_data_type_size from _memory import get_object_pointer from _memory import get_size from _memory import make_object # ============================================================================= # >> ALL DECLARATION # ============================================================================= __all__ = ('BinaryFile', 'CLASS_INFO', 'Callback', 'CallingConvention', 'Convention', 'DataType', 'EXPOSED_CLASSES', 'Function', 'FunctionInfo', 'NULL', 'Pointer', 'ProcessorRegister', 'Register', 'Registers', 'StackData', 'TYPE_SIZES', 'alloc', 'find_binary', 'get_class', 'get_class_info', 'get_class_name', 'get_data_type_size', 'get_function_info', 'get_object_pointer', 'get_size', 'get_virtual_function', 'make_object' ) # ============================================================================= # >> GLOBAL VARIABLES # ============================================================================= # Get the sp.memory logger memory_logger = _sp_logger.memory # ============================================================================= # >> CLASSES # ============================================================================= class Callback(AutoUnload, Function): """Decorator to create a function in memory to call a Python callback.""" def __init__(self, convention, arg_types, return_type): """Initialize the Callback object. :param Convention|CallingConvention convention: Calling convention that should be used for this callback. :param iterable arg_types: Argument types of the callback. :param return_type: Return type of the callback. """ self.callback = None # Allocate enough space for a jump, so we can hook it later. Then # convert it to a function. Of course, this isn't a function, but the # hook will override it. super().__init__( alloc(8, False).address, convention, arg_types, return_type) self.add_pre_hook(self._hook) def _hook(self, args): """Call the callback and get the return value.""" return_value = self.callback(args) if return_value is not None: return return_value if self.return_type == DataType.VOID: return 0 # We will crash now :( raise ValueError('Return value is not allowed to be None.') def __call__(self, *args, **kw): """Store the given callback on the first call. All further calls will call the created callback function. """ if self.callback is None: assert callable(args[0]) self.callback = args[0] return self return super().__call__(*args, **kw) def _unload_instance(self): """Remove the hook, restore the allocated space and deallocate it.""" self._delete_hook() self.dealloc() # ============================================================================= # >> FUNCTIONS # ============================================================================= def get_virtual_function(obj, function_name, function_index=0): """Return a :class:`Function` object. Create the :class:`Function` object by using a :class:`FunctionInfo` object. :param obj: An object of an exposed class. :param str function_name: See :func:`get_function_info`. :param int function_index: See :func:`get_function_info`. :raise ValueError: See :func:`get_class_name`. """ return get_object_pointer(obj).make_virtual_function( get_function_info(obj, function_name, function_index)) def get_function_info(cls, function_name, function_index=0): """Return the :class:`FunctionInfo` object of a member function. :param str cls: See :func:`get_class_info`. :param str function_name: The name of the member function on the C++ side. :param int function_index: The index of the member function in the function info list. This is only required if the function is overloaded and you want to get a different FunctionInfo object than the first one. :raise ValueError: See :func:`get_class_name`. """ return get_class_info(cls)[function_name][function_index] def get_class_info(cls): """Return the class info dictionary of a class. :param str cls: A string that defines the name of the class on the C++ side or an exposed class or an object of an exposed class. :raise ValueError: See :func:`get_class_name`. """ if isinstance(cls, str): return CLASS_INFO[cls] if not inspect.isclass(cls): cls = cls.__class__ return get_class_info(get_class_name(cls)) def get_class_name(cls): """Return the name of a class or class object on the C++ side. :param cls: A class or class object. :raise ValueError: Raised if the class was not exposed by Source.Python. """ if not inspect.isclass(cls): cls = cls.__class__ for name, possible_cls in EXPOSED_CLASSES.items(): if cls is possible_cls: return name for base_class in cls.__bases__: try: class_name = get_class_name(base_class) except ValueError: continue else: return class_name raise ValueError('Given class was not exposed.') def METHOD_NAME(classname): """Return the class of an exposed class by its C++ class name. :param str classname: The name of the exposed class on the C++ side. :raise KeyError: Raised if the `classname` is not the name of an exposed class. """ return EXPOSED_CLASSES[classname]
null
test read stdout
""" unit tests for the script engine """ import contextlib import logging import signal import sys import pytest import salt.engines.script as script from salt.exceptions import CommandExecutionError from tests.support.mock import Mock, patch log = logging.getLogger(__name__) def _check_skip(grains): if grains["os"] == "MacOS": return True return False pytestmark = [ pytest.mark.skip_initial_gh_actions_failure(skip=_check_skip), ] @pytest.fixture def configure_loader_modules(master_opts): return {script: {"__opts__": master_opts}} def test__get_serializer(): """ Test known serializer is returned or exception is raised if unknown serializer """ for serializers in ("json", "yaml", "msgpack"): assert script._get_serializer(serializers) with pytest.raises(CommandExecutionError): script._get_serializer("bad") def METHOD_NAME(): """ Test we can yield stdout """ with patch("subprocess.Popen") as popen_mock: popen_mock.stdout.readline.return_value = "test" assert next(script._read_stdout(popen_mock)) == "test" def test__read_stdout_terminates_properly(): """ Test that _read_stdout terminates with the sentinel """ with patch("subprocess.Popen") as popen_mock: popen_mock.stdout.readline.return_value = b"" with pytest.raises(StopIteration): next(script._read_stdout(popen_mock)) @pytest.fixture() def serializer(): with patch("salt.engines.script._get_serializer", autospec=True) as get_serializer: serializer = Mock() get_serializer.return_value = serializer serializer.deserialize.side_effect = lambda x: x yield serializer @pytest.fixture() def event_send(): event = Mock() with patch("salt.utils.event.get_master_event", autospec=True) as get_master: get_master.return_value.fire_event = event with patch.dict(script.__salt__, {"event.send": event}): yield event @pytest.fixture() def raw_event(): with patch("salt.engines.script._read_stdout", autospec=True) as stdout: yield stdout @pytest.fixture() def proc(): with patch("subprocess.Popen", autospec=True) as popen: proc = Mock() proc.wait.return_value = False proc.pid = 1337 popen.return_value = proc yield @pytest.fixture() def event(): return {"tag": "test", "data": {"foo": "bar", "id": "test"}} @pytest.fixture() def new_tag(): return {"tag": "testnew", "data": {"foo": "bar", "id": "test"}} @pytest.fixture() def new_event(): return {"tag": "test", "data": {"foo": "baz", "id": "test"}} @pytest.fixture def timeout(): """ This fixture was proposed by waynew to allow testing an otherwise infinite loop. Once https://github.com/saltstack/salt/pull/62910 is merged, this can be migrated. """ if sys.platform.startswith("win"): pytest.skip("SIGALRM is not available on Windows.") def handler(num, frame): raise TimeoutError() @contextlib.contextmanager def _timeout(t=1): signal.signal(signal.SIGALRM, handler) signal.alarm(t) try: yield _timeout except TimeoutError: pass finally: signal.alarm(0) return _timeout @pytest.mark.usefixtures("proc", "serializer", "event_send", "raw_event", "timeout") class TestStart: def test_start(self, event, raw_event, event_send, timeout): raw_event.side_effect = ([event],) try: with timeout(): script.start("cmd", interval=1.5) except StopIteration: log.warning("Timeout failure") event_send.assert_called_once_with(tag=event["tag"], data=event["data"]) def test_multiple(self, event, new_event, raw_event, event_send, timeout): raw_event.side_effect = ([event, new_event],) try: with timeout(): script.start("cmd", interval=1.5) except StopIteration: log.warning("Timeout failure") assert event_send.call_count == 2 event_send.assert_any_call(tag=event["tag"], data=event["data"]) event_send.assert_any_call(tag=new_event["tag"], data=new_event["data"]) def test_onchange_no_change_no_output(self, event, raw_event, event_send, timeout): raw_event.side_effect = 110 * ([event],) try: with timeout(): script.start("cmd", onchange=True, interval=0.01) except StopIteration: log.warning("Timeout failure") event_send.assert_called_once_with(tag=event["tag"], data=event["data"]) def test_start_onchange_no_change_multiple( self, event, new_tag, raw_event, event_send, timeout ): raw_event.side_effect = 110 * ([event, new_tag],) try: with timeout(): script.start("cmd", onchange=True, interval=0.01) except StopIteration: log.warning("Timeout failure") assert event_send.call_count == 2 event_send.assert_any_call(tag=event["tag"], data=event["data"]) event_send.assert_any_call(tag=new_tag["tag"], data=new_tag["data"]) def test_start_onchange_with_change( self, event, new_event, raw_event, event_send, timeout ): raw_event.side_effect = 50 * [[event]] + 60 * [[new_event]] try: with timeout(): script.start("cmd", onchange=True, interval=0.01) except StopIteration: log.warning("Timeout failure") assert event_send.call_count == 2 event_send.assert_any_call(tag=event["tag"], data=event["data"]) event_send.assert_called_with(tag=new_event["tag"], data=new_event["data"]) def test_start_onchange_new_tag( self, event, new_tag, raw_event, event_send, timeout ): raw_event.side_effect = 50 * [[event]] + 60 * [[new_tag]] try: with timeout(): script.start("cmd", onchange=True, interval=0.01) except StopIteration: log.warning("Timeout failure") event_send.assert_any_call(tag=event["tag"], data=event["data"]) event_send.assert_called_with(tag=new_tag["tag"], data=new_tag["data"])
null
setup http manager
from __future__ import annotations import json import logging import os from abc import abstractmethod from pathlib import Path from typing import Any import urllib3 from checkov.common.util.data_structures_utils import merge_dicts from checkov.common.util.http_utils import get_user_agent_header class BaseVCSDAL: def __init__(self) -> None: self.api_url = "" self.graphql_api_url = "" self.token = "" # nosec self.current_repository = "" self.current_branch = "" self.repo_owner = "" self.org = "" self.default_branch_cache: dict[str, Any] = {} self.request_lib_http = None self._organization_security = None self.org_complementary_metadata: dict[str, Any] = {} self.repo_complementary_metadata: dict[str, Any] = {} self.http: urllib3.PoolManager | None = None self.METHOD_NAME(ca_certificate=os.getenv('BC_CA_BUNDLE', None)) self.discover() self.setup_conf_dir() @abstractmethod def discover(self) -> None: """ discover parameters from execution context of checkov. usually from env variable """ self.default_branch_cache = {} def METHOD_NAME(self, ca_certificate: str | None = None) -> None: """ bridgecrew uses both the urllib3 and requests libraries, while checkov uses the requests library. :param ca_certificate: an optional CA bundle to be used by both libraries. """ if self.http: return if ca_certificate: os.environ['REQUESTS_CA_BUNDLE'] = ca_certificate try: parsed_url = urllib3.util.parse_url(os.environ['https_proxy']) self.http = urllib3.ProxyManager(os.environ['https_proxy'], cert_reqs='REQUIRED', ca_certs=ca_certificate, proxy_headers=urllib3.make_headers(proxy_basic_auth=parsed_url.auth)) # type:ignore[no-untyped-call] except KeyError: self.http = urllib3.PoolManager(cert_reqs='REQUIRED', ca_certs=ca_certificate) else: try: parsed_url = urllib3.util.parse_url(os.environ['https_proxy']) self.http = urllib3.ProxyManager(os.environ['https_proxy'], proxy_headers=urllib3.make_headers(proxy_basic_auth=parsed_url.auth)) # type:ignore[no-untyped-call] except KeyError: self.http = urllib3.PoolManager() def _request(self, endpoint: str, allowed_status_codes: list[int]) -> dict[str, Any] | None: if allowed_status_codes is None: allowed_status_codes = [200] if not self.token: return None url_endpoint = f"{self.api_url}/{endpoint}" try: headers = self._headers() if self.http: request = self.http.request("GET", url_endpoint, headers=headers) # type:ignore[no-untyped-call] if request.status in allowed_status_codes: data: dict[str, Any] = json.loads(request.data.decode("utf8")) if isinstance(data, dict) and 'errors' in data.keys(): return None return data except Exception: logging.debug(f"Query failed to run by returning code of {url_endpoint}", exc_info=True) return None @abstractmethod def _headers(self) -> dict[str, Any]: return merge_dicts({"Accept": "application/vnd.github.v3+json", "Authorization": f"token {self.token}"}, get_user_agent_header()) def _graphql_headers(self) -> dict[str, str]: return {"Authorization": f"bearer {self.token}"} def _request_graphql(self, query: str, variables: dict[str, Any]) -> Any: if not self.token: return headers = self._graphql_headers() body = json.dumps({'query': query, 'variables': variables}) try: if self.http: request = self.http.request("POST", self.graphql_api_url, body=body, headers=headers) # type:ignore[no-untyped-call] if request.status == 200: data = json.loads(request.data.decode("utf8")) if isinstance(data, dict) and 'errors' in data.keys(): logging.debug("received errors %s", data) return None return data else: logging.debug("Query failed to run by returning code of {}. {}".format(request.data, query)) except Exception: logging.debug(f"Query failed {query}", exc_info=True) @staticmethod def persist(path: str | Path, conf: dict[str, Any] | list[dict[str, Any]]) -> None: BaseVCSDAL.ensure_dir(path) with open(path, "w+", encoding='utf-8') as f: logging.debug(f"Persisting to {path}") json.dump(conf, f, ensure_ascii=False, indent=4) @staticmethod def ensure_dir(file_path: str | Path) -> None: if not os.path.exists(file_path): directory_path = os.path.dirname(file_path) if not os.path.exists(directory_path): os.makedirs(directory_path) @abstractmethod def setup_conf_dir(self) -> None: pass
null
test fulltext index query
import pytest from resotocore.db import EstimatedSearchCost, EstimatedQueryCostRating from resotocore.db.arango_query import to_query, query_cost, fulltext_term_combine from resotocore.db.graphdb import GraphDB from resotocore.db.model import QueryModel from resotocore.model.model import Model from resotocore.query.model import Query, Sort from resotocore.query.query_parser import parse_query def test_sort_order_for_synthetic_prop(foo_model: Model, graph_db: GraphDB) -> None: def check_sort_in_query(q: Query, expected_sort: str) -> None: query_str, _ = to_query(graph_db, QueryModel(q, foo_model)) assert f"SORT {expected_sort}" in query_str, f"Expected {expected_sort} in {query_str}" check_sort_in_query(Query.by("foo").add_sort(Sort("reported.age")), "m0.reported.ctime desc") check_sort_in_query(Query.by("foo").add_sort(Sort("some.age")), "m0.some.age asc") check_sort_in_query(Query.by("foo").add_sort(Sort("reported.ctime")), "m0.reported.ctime asc") check_sort_in_query(Query.by("foo").add_sort(Sort("metadata.expired")), "m0.metadata.expired asc") @pytest.mark.asyncio async def test_query_cost(foo_model: Model, graph_db: GraphDB) -> None: async def cost(query_str: str) -> EstimatedSearchCost: query = parse_query(query_str) return await query_cost(graph_db, QueryModel(query, foo_model), False) c1 = await cost("aggregate(sum(1) as count):is(base) sort count asc") assert c1.full_collection_scan is False assert c1.rating is EstimatedQueryCostRating.simple c2 = await cost("is(base) sort count asc") assert c2.full_collection_scan is False assert c2.rating is EstimatedQueryCostRating.simple c3 = await cost("all sort reported.name asc") assert c3.full_collection_scan is True assert c3.rating is EstimatedQueryCostRating.complex c4 = await cost("all {parents: <-[0:]-} sort reported.name asc") assert c4.full_collection_scan is True assert c4.rating is EstimatedQueryCostRating.bad def test_fulltext_term() -> None: part = parse_query('(a>0 and ("foo" and (b>1 and c>2 and "d")))').parts[0] ft, remaining = fulltext_term_combine(part.term) assert str(remaining) == "((b > 1 and c > 2) and a > 0)" assert str(ft) == '("d" and "foo")' # there are 2 fulltext terms or combined with something else ft, remaining = fulltext_term_combine(parse_query('(a>0 and "b") or ("c" and "d")').parts[0].term) assert ft is None # fulltext index can not be utilized ft, remaining = fulltext_term_combine(parse_query('a>0 {c: <--} "fulltext"').parts[0].term) assert ft is None # fulltext index can not be utilized ft, remaining = fulltext_term_combine(parse_query('a>0 {c: <-- "fulltext" }').parts[0].term) assert ft is None # fulltext index can not be utilized ft, remaining = fulltext_term_combine(parse_query('"a" and "b" or "c" and "d"').parts[0].term) assert str(ft) == '((("a" and "b") or "c") and "d")' def METHOD_NAME(foo_model: Model, graph_db: GraphDB) -> None: def query_string(query: str) -> str: query_str, _ = to_query(graph_db, QueryModel(parse_query(query), foo_model)) return query_str single_ft_index = ( "LET m0=(FOR ft in search_ns SEARCH ANALYZER(PHRASE(ft.flat, @b0), 'delimited') " "SORT BM25(ft) DESC RETURN ft) " 'FOR result in m0 RETURN UNSET(result, ["flat"])' ) assert query_string('"a"') == single_ft_index assert query_string('"some other fulltext string"') == single_ft_index # and/or is combined correctly assert ( "ANALYZER((((PHRASE(ft.flat, @b0)) and (PHRASE(ft.flat, @b1))) or " "(PHRASE(ft.flat, @b2))) and (PHRASE(ft.flat, @b3)), 'delimited')" ) in query_string('"a" and "b" or "c" and "d"') def test_ancestors_kind_lookup(foo_model: Model, graph_db: GraphDB) -> None: # 1234 is coerced to a string query = "ancestors.account.reported.name==1234" assert to_query(graph_db, QueryModel(parse_query(query), foo_model))[1] == {"b0": "1234"} def test_escape_property_path(foo_model: Model, graph_db: GraphDB) -> None: raw = "metadata.replace.with.filter.sort.bla==true" query = to_query(graph_db, QueryModel(parse_query(raw), foo_model))[0] # aql keywords are escaped with backslashes assert "m0.metadata.`replace`.`with`.`filter`.`sort`.bla" in query def test_with_query_with_limit(foo_model: Model, graph_db: GraphDB) -> None: query = "is(foo) with(empty, -->) limit 2" query_str, _ = to_query(graph_db, QueryModel(parse_query(query), foo_model)) # make sure, there is no limit in the filter statement assert "LET filter0 = (FOR m0 in `ns` FILTER @b0 IN m0.kinds RETURN m0)" in query_str # make sure the limit is applied to the with statement assert "FILTER counter1==1 LIMIT 0, 2 RETURN l0_l0_res" in query_str def test_context(foo_model: Model, graph_db: GraphDB) -> None: query = 'is(foo) and nested[*].{name=true and inner[*].{name=true}} and parents[*].{some_int="23"}' aql, bind_vars = to_query(graph_db, QueryModel(parse_query(query).on_section("reported"), foo_model)) # query unfolds all nested loops assert aql == ( "LET filter0 = (LET nested_distinct0 = (FOR m0 in `ns` FOR pre0 IN TO_ARRAY(m0.reported.nested) " "FOR pre1 IN TO_ARRAY(pre0.inner) " "FOR pre2 IN TO_ARRAY(m0.reported.parents) " "FILTER ((@b0 IN m0.kinds) and ((pre0.name == @b1) and (pre1.name == @b2))) and (pre2.some_int == @b3) " "RETURN DISTINCT m0) FOR m1 in nested_distinct0 " 'RETURN m1) FOR result in filter0 RETURN UNSET(result, ["flat"])' ) # coercing works correctly for context terms assert bind_vars["b1"] == "true" # true is coerced to a string assert bind_vars["b2"] == "true" # inner true is coerced to a string assert bind_vars["b3"] == 23 # 23 is coerced to an int # fixed index works as well query = "is(foo) and inner[1].{name=true and inner[0].name==true}" aql, bind_vars = to_query(graph_db, QueryModel(parse_query(query).on_section("reported"), foo_model)) assert aql == ( "LET filter0 = (FOR m0 in `ns` FILTER (@b0 IN m0.kinds) and " "((m0.reported.inner[1].name == @b1) and (m0.reported.inner[1].inner[0].name == @b2)) RETURN m0) " 'FOR result in filter0 RETURN UNSET(result, ["flat"])' ) def test_usage(foo_model: Model, graph_db: GraphDB) -> None: q, b = to_query(graph_db, QueryModel(parse_query("with_usage(3w, cpu, mem) is(foo)"), foo_model)) assert q == ( "LET filter0 = (FOR m0 in `ns` FILTER @b0 IN m0.kinds RETURN m0)\n" "let with_usage0 = (\n" " for r in filter0\n" " let resource=r\n" " let resource_usage = first(\n" " for m in ns_usage\n" " filter m.at>=@b1 and m.at<=@b2 and m.id==r._key\n" " collect aggregate cpu_min = MIN(m.v.cpu.min), cpu_avg = AVG(m.v.cpu.avg), cpu_max = MAX(m.v.cpu.max), mem_min = MIN(m.v.mem.min), mem_avg = AVG(m.v.mem.avg), mem_max = MAX(m.v.mem.max), count = sum(1)\n" # noqa: E501 " return {usage:{cpu: {min: cpu_min, avg: cpu_avg, max: cpu_max},mem: {min: mem_min, avg: mem_avg, max: mem_max},entries:count,start:@b3,duration:@b4}}\n" # noqa: E501 " )\n" " return resource_usage.usage.entries ? merge(resource, resource_usage) : resource\n" ")\n" ' FOR result in with_usage0 RETURN UNSET(result, ["flat"])' )
null
convert token to id
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for LayoutXLM model.""" from typing import List, Optional import sentencepiece as spm from .. import AddedToken, PretrainedTokenizer from ..tokenizer_utils import _is_control, _is_punctuation, _is_whitespace SPIECE_UNDERLINE = "▁" PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "layoutxlm-base-uncased": 514, # FIXME(wj-Mcat): why this model-name not in the init-configuration # "layoutxlm-wo-backbone-base-uncased": 514 } def _is_end_of_word(text): """Checks whether the last character in text is one of a punctuation, control or whitespace character.""" last_char = text[-1] return bool(_is_control(last_char) | _is_punctuation(last_char) | _is_whitespace(last_char)) def _is_start_of_word(text): """Checks whether the first character in text is one of a punctuation, control or whitespace character.""" first_char = text[0] return bool(_is_control(first_char) | _is_punctuation(first_char) | _is_whitespace(first_char)) class LayoutXLMTokenizer(PretrainedTokenizer): resource_files_names = {"vocab_file": "sentencepiece.bpe.model"} pretrained_resource_files_map = { "vocab_file": { "layoutxlm-base-uncased": "https://bj.bcebos.com/paddlenlp/models/transformers/layoutxlm_base/sentencepiece.bpe.model", } } pretrained_init_configuration = { "layoutxlm-base-uncased": {"do_lower_case": False}, } max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] SPECIAL_TOKENS_ATTRIBUTES = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", "additional_special_tokens", ] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs ): mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self._bos_token = bos_token self._eos_token = eos_token self._sep_token = sep_token self._cls_token = cls_token self._unk_token = unk_token self._pad_token = pad_token self._mask_token = mask_token self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(vocab_file) self.vocab_file = vocab_file self.tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab self.offset = 1 self.tokens_to_ids["<mask>"] = len(self.sp_model) + self.offset self.ids_to_tokens = {v: k for k, v in self.tokens_to_ids.items()} def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.sp_model) + self.offset + 1 # Add the <mask> token def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text): return self.sp_model.EncodeAsPieces(text) def METHOD_NAME(self, token): """Converts a token (str) in an id using the vocab.""" if token in self.tokens_to_ids: return self.tokens_to_ids[token] spm_id = self.sp_model.PieceToId(token) # Need to return unknown token if the SP model returned 0 return spm_id + self.offset if spm_id else self.unk_token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index in self.ids_to_tokens: return self.ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.offset) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def num_special_tokens_to_add(self, pair=False): token_ids_0 = [] token_ids_1 = [] return len(self.build_inputs_with_special_tokens(token_ids_0, token_ids_1 if pair else None))
null
apply
# ----------------------------------------------------------------------------- # BSD 3-Clause License # # Copyright (c) 2021-2022, Science and Technology Facilities Council # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ----------------------------------------------------------------------------- # Authors: R. W. Ford and N. Nobre, STFC Daresbury Lab '''Module containing a class that provides functionality to transform a PSyIR MIN or MAX operator to PSyIR code. This could be useful if the operator is not supported by the back-end or if the performance of the inline code is better than the intrinsic. This utility transformation should not be called directly by the user, rather it provides functionality that can be specialised by MIN and MAX-specific transformations. ''' from __future__ import absolute_import from psyclone.psyir.nodes import BinaryOperation, NaryOperation, Assignment, \ Reference, IfBlock from psyclone.psyir.symbols import DataSymbol, REAL_TYPE from psyclone.psyir.transformations.intrinsics.operator2code_trans import \ Operator2CodeTrans class MinOrMax2CodeTrans(Operator2CodeTrans): '''Provides a utility transformation from a PSyIR MIN or MAX Operator node to equivalent code in a PSyIR tree. Validity checks are also performed (by the parent class). This utility transformation is not designed to be called directly by the user, rather it should be specialised to provide MIN or MAX transformations. The transformation replaces .. code-block:: python R = [MIN or MAX](A, B, C ...) with the following logic: .. code-block:: python R = A if B [< or >] R: R = B if C [< or >] R: R = C ... ''' def __init__(self): super(MinOrMax2CodeTrans, self).__init__() self._classes = (BinaryOperation, NaryOperation) self._compare_operator = None def METHOD_NAME(self, node, options=None): '''Apply this utility transformation to the specified node. This node must be a MIN or MAX BinaryOperation or NaryOperation. The operation is converted to equivalent inline code. This is implemented as a PSyIR transform from: .. code-block:: python R = ... [MIN or MAX](A, B, C ...) ... to: .. code-block:: python res = A tmp = B IF tmp [< or >] res: res = tmp tmp = C IF tmp [< or >] res: res = tmp ... R = ... res ... where ``A``, ``B``, ``C`` ... could be arbitrarily complex PSyIR expressions and the ``...`` before and after ``[MIN or MAX](A, B, C ...)`` can be arbitrary PSyIR code. This transformation requires the operation node to be a descendent of an assignment and will raise an exception if this is not the case. :param node: a MIN or MAX Binary- or Nary-Operation node. :type node: :py:class:`psyclone.psyir.nodes.BinaryOperation` or \ :py:class:`psyclone.psyir.nodes.NaryOperation` :param options: a dictionary with options for transformations. :type options: Optional[Dict[str, Any]] ''' # pylint: disable=too-many-locals self.validate(node) symbol_table = node.scope.symbol_table assignment = node.ancestor(Assignment) # Create a temporary result variable. There is an assumption # here that the Operator returns a PSyIR real type. This # might not be what is wanted (e.g. the args might PSyIR # integers), or there may be errors (arguments are of # different types) but this can't be checked as we don't have # appropriate methods to query nodes (see #658). res_var_symbol = symbol_table.new_symbol( f"res_{self._operator_name.lower()}", symbol_type=DataSymbol, datatype=REAL_TYPE) # Create a temporary variable. Again there is an # assumption here about the datatype - please see previous # comment (associated issue #658). tmp_var_symbol = symbol_table.new_symbol( f"tmp_{self._operator_name.lower()}", symbol_type=DataSymbol, datatype=REAL_TYPE) # Replace operation with a temporary (res_var). node.replace_with(Reference(res_var_symbol)) # res_var=A (child[0] of node) lhs = Reference(res_var_symbol) new_assignment = Assignment.create(lhs, node.children[0].detach()) assignment.parent.children.insert(assignment.position, new_assignment) # For each of the remaining arguments (B,C...) for expression in node.pop_all_children(): # tmp_var=(B or C or ...) lhs = Reference(tmp_var_symbol) new_assignment = Assignment.create(lhs, expression) assignment.parent.children.insert(assignment.position, new_assignment) # if_condition: tmp_var [< or >] res_var lhs = Reference(tmp_var_symbol) rhs = Reference(res_var_symbol) if_condition = BinaryOperation.create( self._compare_operator, lhs, rhs) # then_body: res_var=tmp_var lhs = Reference(res_var_symbol) rhs = Reference(tmp_var_symbol) then_body = [Assignment.create(lhs, rhs)] # if [if_condition] then [then_body] if_stmt = IfBlock.create(if_condition, then_body) assignment.parent.children.insert(assignment.position, if_stmt)
null
new
# ----------------------------------------------------------------------------- # Getting Things GNOME! - a personal organizer for the GNOME desktop # Copyright (c) The GTG Team # # This program is free software: you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation, either version 3 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program. If not, see <http://www.gnu.org/licenses/>. # ----------------------------------------------------------------------------- """Everything related to saved searches.""" from gi.repository import GObject from uuid import uuid4, UUID from typing import Optional import logging from lxml.etree import Element, SubElement from GTG.core.base_store import BaseStore log = logging.getLogger(__name__) class SavedSearch(GObject.Object): """A saved search.""" __gtype_name__ = 'gtg_SavedSearch' __slots__ = ['id', 'name', 'query', 'icon', 'children'] def __init__(self, id: UUID, name: str, query: str) -> None: self.id = id self.name = name self.query = query self.icon = None self.children = [] self.parent = None def __str__(self) -> str: """String representation.""" return f'Saved Search: {self.name} ({self.id})' def __repr__(self) -> str: """String representation.""" return (f'Saved Search "{self.name}" ' f'with query "{self.query}" and id "{self.id}"') def __eq__(self, other) -> bool: """Equivalence.""" return self.id == other.id class SavedSearchStore(BaseStore): """A list of saved searches.""" __gtype_name__ = 'gtg_SavedSearchStore' #: Tag to look for in XML XML_TAG = 'savedSearch' def __str__(self) -> str: """String representation.""" return f'Saved Search Store. Holds {len(self.lookup)} search(es)' def find(self, name: str) -> Optional[SavedSearch]: """Get a saved search by name.""" for search in self.data: if search.name == name: return search def from_xml(self, xml: Element) -> None: """Load searches from an LXML element.""" elements = list(xml.iter(self.XML_TAG)) # Do parent searches first for element in elements: search_id = element.get('id') name = element.get('name') query = element.get('query') search = SavedSearch(id=search_id, name=name, query=query) self.add(search) log.debug('Added %s', search) for element in elements: parent_name = element.get('parent') if parent_name and parent_name != 'search': tid = element.get('id') parent = self.find(parent_name) if parent: self.parent(tid, parent.id) log.debug('Added %s as child of %s', element, parent) def to_xml(self) -> Element: """Save searches to an LXML element.""" root = Element('searchlist') parent_map = {} for search in self.data: for child in search.children: parent_map[child.id] = search.name for search in self.lookup.values(): element = SubElement(root, self.XML_TAG) element.set('id', str(search.id)) element.set('name', search.name) element.set('query', search.query) try: element.set('parent', str(parent_map[search.id])) except KeyError: # Toplevel search pass return root def METHOD_NAME(self, name: str, query: str, parent: UUID = None) -> SavedSearch: """Create a new saved search and add it to the store.""" search_id = uuid4() search = SavedSearch(id=search_id, name=name, query=query) if parent: self.add(search, parent) else: self.data.append(search) self.lookup[search_id] = search return search
null
solution for delegated puzzle
""" Pay to delegated puzzle or hidden puzzle In this puzzle program, the solution must choose either a hidden puzzle or a delegated puzzle on a given public key. The given public key is morphed by adding an offset from the hash of the hidden puzzle and itself, giving a new so-called "synthetic" public key which has the hidden puzzle hidden inside of it. If the hidden puzzle path is taken, the hidden puzzle and original public key will be revealed which proves that it was hidden there in the first place. This roughly corresponds to bitcoin's taproot. Note: p2_delegated_puzzle_or_hidden_puzzle is essentially the "standard coin" in chia. DEFAULT_HIDDEN_PUZZLE_HASH from this puzzle is used with calculate_synthetic_secret_key in the wallet's standard pk_to_sk finder. This is important because it allows sign_coin_spends to function properly via the following mechanism: - A 'standard coin' coin exists in the blockchain with some puzzle hash. - The user's wallet contains a primary sk/pk pair which are used to derive to one level a set of auxiliary sk/pk pairs which are used for specific coins. These can be used for signing in AGG_SIG_ME, but the standard coin uses a key further derived from one of these via calculate_synthetic_secret_key as described in https://chialisp.com/docs/standard_transaction. Therefore, when a wallet needs to find a secret key for signing based on a public key, it needs to try repeating this derivation as well and see if the G1Element (pk) associated with any of the derived secret keys matches the pk requested by the coin. - Python code previously appeared which was written like: delegated_puzzle_solution = Program.to((1, condition_args)) solutions = Program.to([[], delgated_puzzle_solution, []]) In context, delegated_puzzle_solution here is any *chialisp program*, here one simply quoting a list of conditions, and the following argument is the arguments to this program, which here are unused. Secondly, the actual arguments to the p2_delegated_puzzle_or_hidden_puzzle are given. The first argument determines whether a hidden or revealed puzzle is used. If the puzzle is hidden, then what is required is a signature given a specific synthetic key since the key cannot be derived inline without the puzzle. In that case, the first argument is this key. In most cases, the puzzle will be revealed, and this argument will be the nil object, () (represented here by an empty python list). The second and third arguments are a chialisp program and its corresponding arguments, which will be run inside the standard coin puzzle. This interacts with sign_coin_spend in that the AGG_SIG_ME condition added by the inner puzzle asks the surrounding system to provide a signature over the provided program with a synthetic key whose derivation is within. Any wallets which intend to use standard coins in this way must try to resolve a public key to a secret key via this derivation. """ from __future__ import annotations import hashlib from typing import Union from blspy import G1Element, PrivateKey from clvm.casts import int_from_bytes from chia.types.blockchain_format.program import Program from chia.types.blockchain_format.sized_bytes import bytes32 from chia.wallet.util.curry_and_treehash import calculate_hash_of_quoted_mod_hash, curry_and_treehash from .load_clvm import load_clvm_maybe_recompile from .p2_conditions import puzzle_for_conditions DEFAULT_HIDDEN_PUZZLE = Program.from_bytes(bytes.fromhex("ff0980")) DEFAULT_HIDDEN_PUZZLE_HASH = DEFAULT_HIDDEN_PUZZLE.get_tree_hash() # this puzzle `(x)` always fails MOD = load_clvm_maybe_recompile("p2_delegated_puzzle_or_hidden_puzzle.clsp") QUOTED_MOD_HASH = calculate_hash_of_quoted_mod_hash(MOD.get_tree_hash()) PublicKeyProgram = Union[bytes, Program] GROUP_ORDER = 0x73EDA753299D7D483339D80809A1D80553BDA402FFFE5BFEFFFFFFFF00000001 def calculate_synthetic_offset(public_key: G1Element, hidden_puzzle_hash: bytes32) -> int: blob = hashlib.sha256(bytes(public_key) + hidden_puzzle_hash).digest() offset = int_from_bytes(blob) offset %= GROUP_ORDER return offset def calculate_synthetic_public_key(public_key: G1Element, hidden_puzzle_hash: bytes32) -> G1Element: synthetic_offset: PrivateKey = PrivateKey.from_bytes( calculate_synthetic_offset(public_key, hidden_puzzle_hash).to_bytes(32, "big") ) return public_key + synthetic_offset.get_g1() def calculate_synthetic_secret_key(secret_key: PrivateKey, hidden_puzzle_hash: bytes32) -> PrivateKey: secret_exponent = int.from_bytes(bytes(secret_key), "big") public_key = secret_key.get_g1() synthetic_offset = calculate_synthetic_offset(public_key, hidden_puzzle_hash) synthetic_secret_exponent = (secret_exponent + synthetic_offset) % GROUP_ORDER blob = synthetic_secret_exponent.to_bytes(32, "big") synthetic_secret_key = PrivateKey.from_bytes(blob) return synthetic_secret_key def puzzle_for_synthetic_public_key(synthetic_public_key: G1Element) -> Program: return MOD.curry(bytes(synthetic_public_key)) def puzzle_hash_for_synthetic_public_key(synthetic_public_key: G1Element) -> bytes32: public_key_hash = Program.to(bytes(synthetic_public_key)).get_tree_hash() return curry_and_treehash(QUOTED_MOD_HASH, public_key_hash) def puzzle_for_public_key_and_hidden_puzzle_hash(public_key: G1Element, hidden_puzzle_hash: bytes32) -> Program: synthetic_public_key = calculate_synthetic_public_key(public_key, hidden_puzzle_hash) return puzzle_for_synthetic_public_key(synthetic_public_key) def puzzle_hash_for_public_key_and_hidden_puzzle_hash(public_key: G1Element, hidden_puzzle_hash: bytes32) -> bytes32: synthetic_public_key = calculate_synthetic_public_key(public_key, hidden_puzzle_hash) return puzzle_hash_for_synthetic_public_key(synthetic_public_key) def puzzle_for_public_key_and_hidden_puzzle(public_key: G1Element, hidden_puzzle: Program) -> Program: return puzzle_for_public_key_and_hidden_puzzle_hash(public_key, hidden_puzzle.get_tree_hash()) def puzzle_for_pk(public_key: G1Element) -> Program: return puzzle_for_public_key_and_hidden_puzzle_hash(public_key, DEFAULT_HIDDEN_PUZZLE_HASH) def puzzle_hash_for_pk(public_key: G1Element) -> bytes32: return puzzle_hash_for_public_key_and_hidden_puzzle_hash(public_key, DEFAULT_HIDDEN_PUZZLE_HASH) def METHOD_NAME(delegated_puzzle: Program, solution: Program) -> Program: return Program.to([[], delegated_puzzle, solution]) def solution_for_hidden_puzzle( hidden_public_key: G1Element, hidden_puzzle: Program, solution_to_hidden_puzzle: Program, ) -> Program: return Program.to([hidden_public_key, hidden_puzzle, solution_to_hidden_puzzle]) def solution_for_conditions(conditions) -> Program: delegated_puzzle = puzzle_for_conditions(conditions) return METHOD_NAME(delegated_puzzle, Program.to(0))
null
get name
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import threading import time from typing import Optional import msgpack from nvflare.fuel.f3.connection import BytesAlike, Connection from nvflare.fuel.f3.endpoint import Endpoint from nvflare.fuel.f3.sfm.constants import HandshakeKeys, Types from nvflare.fuel.f3.sfm.prefix import PREFIX_LEN, Prefix log = logging.getLogger(__name__) class SfmConnection: """A wrapper of driver connection. Driver connection deals with frame. This connection handles messages. The frame format: .. code-block:: +--------------------------------------------------------+ | length (4 bytes) | +----------------------------+---------------------------+ | header_len (2) | type (1) | reserved | +----------------------------+---------------------------+ | flags (2) | app_id (2) | +----------------------------+---------------------------+ | stream_id (2) | sequence (2) | +--------------------------------------------------------+ | Headers | | header_len bytes | +--------------------------------------------------------+ | | | Payload | | (length-header_len-16) bytes | | | +--------------------------------------------------------+ """ def __init__(self, conn: Connection, local_endpoint: Endpoint): self.conn = conn self.local_endpoint = local_endpoint self.sfm_endpoint = None self.last_activity = 0 self.sequence = 0 self.lock = threading.Lock() def METHOD_NAME(self) -> str: return self.conn.name def next_sequence(self) -> int: """Get next sequence number for the connection. Sequence is used to detect lost frames. """ with self.lock: self.sequence = (self.sequence + 1) & 0xFFFF return self.sequence def send_handshake(self, frame_type: int): """Send HELLO/READY frame""" data = {HandshakeKeys.ENDPOINT_NAME: self.local_endpoint.name, HandshakeKeys.TIMESTAMP: time.time()} if self.local_endpoint.properties: data.update(self.local_endpoint.properties) self.send_dict(frame_type, 1, data) def send_heartbeat(self, frame_type: int, data: Optional[dict] = None): """Send Ping or Pong""" if frame_type not in (Types.PING, Types.PONG): log.error(f"Heartbeat type must be PING or PONG, not {frame_type}") return if not self.sfm_endpoint: log.error("Trying to send heartbeat before SFM Endpoint is established") return stream_id = self.sfm_endpoint.next_stream_id() self.send_dict(frame_type, stream_id, data) def send_data(self, app_id: int, stream_id: int, headers: Optional[dict], payload: BytesAlike): """Send user data""" prefix = Prefix(0, 0, Types.DATA, 0, 0, app_id, stream_id, 0) self.send_frame(prefix, headers, payload) def send_dict(self, frame_type: int, stream_id: int, data: dict): """Send a dict as payload""" prefix = Prefix(0, 0, frame_type, 0, 0, 0, stream_id, 0) payload = msgpack.packb(data) self.send_frame(prefix, None, payload) def send_frame(self, prefix: Prefix, headers: Optional[dict], payload: Optional[BytesAlike]): headers_bytes = self.headers_to_bytes(headers) header_len = len(headers_bytes) if headers_bytes else 0 length = PREFIX_LEN + header_len if payload: length += len(payload) prefix.length = length prefix.header_len = header_len prefix.sequence = self.next_sequence() buffer: bytearray = bytearray(length) offset = 0 prefix.to_buffer(buffer, offset) offset += PREFIX_LEN if headers_bytes: buffer[offset:] = headers_bytes offset += header_len if payload: buffer[offset:] = payload log.debug(f"Sending frame: {prefix} on {self.conn}") # Only one thread can send data on a connection. Otherwise, the frames may interleave. with self.lock: self.conn.send_frame(buffer) @staticmethod def headers_to_bytes(headers: Optional[dict]) -> Optional[bytes]: if headers: return msgpack.packb(headers) else: return None
null
critical cancel log
from copy import copy from sysexecution.order_stacks.order_stack import missingOrder from sysexecution.orders.named_order_objects import missing_order from syscore.genutils import quickTimer from sysexecution.stack_handler.stackHandlerCore import stackHandlerCore from sysexecution.orders.list_of_orders import listOfOrders from sysexecution.orders.broker_orders import brokerOrder from sysproduction.data.broker import dataBroker class stackHandlerCancelAndModify(stackHandlerCore): def cancel_and_confirm_all_broker_orders( self, log_critical_on_timeout: bool = False, wait_time_seconds: int = 60 ): """ Try cancelling all our orders We send the cancellations, and then poll for confirmation If no cancellation comes, then we may send an email :param log_critical_on_timeout: if the cancellation doesn't come through in time, log critical error :param wait_time_seconds: Time after cancellation to give up (and send email) :return: success or failure """ list_of_broker_orders = ( self.try_and_cancel_all_broker_orders_and_return_list_of_orders() ) list_of_uncancelled_broker_orders = self.are_all_orders_cancelled_after_timeout( list_of_broker_orders, wait_time_seconds=wait_time_seconds ) if len(list_of_uncancelled_broker_orders) > 0: # We don't wait for a confirmation if log_critical_on_timeout: self.METHOD_NAME(list_of_uncancelled_broker_orders) else: self.log.debug("All orders cancelled okay") def try_and_cancel_all_broker_orders_and_return_list_of_orders( self, ) -> listOfOrders: list_of_broker_order_ids = self.broker_stack.get_list_of_order_ids() list_of_broker_orders = [] for broker_order_id in list_of_broker_order_ids: broker_order = self.cancel_broker_order_with_id_and_return_order( broker_order_id ) if broker_order is not missing_order: list_of_broker_orders.append(broker_order) list_of_broker_orders = listOfOrders(list_of_broker_orders) return list_of_broker_orders def cancel_broker_order_with_id_and_return_order( self, broker_order_id: int ) -> brokerOrder: broker_order = self.broker_stack.get_order_with_id_from_stack(broker_order_id) if broker_order is missing_order: return missing_order if broker_order.fill_equals_desired_trade(): # no need to cancel return missing_order log = broker_order.log_with_attributes(self.log) log.debug("Cancelling order on stack with broker %s" % str(broker_order)) data_broker = self.data_broker data_broker.cancel_order_on_stack(broker_order) return broker_order def are_all_orders_cancelled_after_timeout( self, list_of_broker_orders: listOfOrders, wait_time_seconds: int = 60 ) -> listOfOrders: timer = quickTimer(wait_time_seconds) while timer.unfinished: list_of_broker_orders = self.list_of_orders_not_yet_cancelled( list_of_broker_orders ) if len(list_of_broker_orders) == 0: break return list_of_broker_orders def list_of_orders_not_yet_cancelled( self, list_of_broker_orders: listOfOrders ) -> listOfOrders: new_list_of_orders = copy(list_of_broker_orders) for broker_order in list_of_broker_orders: # if an order is cancelled, remove from list try: order_is_cancelled = self.check_order_cancelled(broker_order) except missingOrder: # Maintains previous behavior by assuming an order was cancelled # when the corresponding IB order is not found order_is_cancelled = True if order_is_cancelled: log = broker_order.log_with_attributes(self.log) new_list_of_orders.remove(broker_order) log.debug("Order %s succesfully cancelled" % broker_order) new_list_of_orders = listOfOrders(new_list_of_orders) return new_list_of_orders def check_order_cancelled(self, broker_order: brokerOrder) -> bool: data_broker = self.data_broker order_is_cancelled = data_broker.check_order_is_cancelled(broker_order) return order_is_cancelled def METHOD_NAME(self, list_of_broker_orders: listOfOrders): for broker_order in list_of_broker_orders: log = broker_order.log_with_attributes(self.log) log.critical( "Broker order %s could not be cancelled within time limit; might be a position break" % broker_order )
null
test static bss
#!/usr/bin/env python import subprocess from subprocess import Popen import pytest import stat import lief import pathlib from utils import get_sample, is_linux, is_x86_64 def test_issue_872(tmp_path): tmp = pathlib.Path(tmp_path) elf: lief.ELF.Binary = lief.parse(get_sample('ELF/i872_risv.elf')) payload_sec = elf.get_section(".payload") offset = payload_sec.offset new_section = lief.ELF.Section(".new_section") new_section.virtual_address = 0xa0000000 new_section.add(lief.ELF.SECTION_FLAGS.ALLOC) new_section.size = 0x1000 new_section.content = [0xa5] * 0x1000 elf.add(new_section) outpath = tmp / "i872_risv_modified.elf" elf.write(outpath.as_posix()) modified: lief.ELF.Binary = lief.ELF.parse(outpath.as_posix()) new_offset = modified.get_section(".payload").offset new_section = modified.get_section(".new_section") new_segment = modified.segment_from_offset(new_section.offset) assert offset == new_offset assert new_section.virtual_address == 0xa0000000 assert new_segment is not None assert new_segment.virtual_address == 0xa0000000 @pytest.mark.skipif(not (is_linux() and is_x86_64()), reason="incompatible env") @pytest.mark.parametrize("mode", [ lief.ELF.Binary.PHDR_RELOC.SEGMENT_GAP, lief.ELF.Binary.PHDR_RELOC.FILE_END, lief.ELF.Binary.PHDR_RELOC.BSS_END ]) def test_static_musl(tmp_path, mode): sample = get_sample("ELF/i872_hello_musl.elf") elf: lief.ELF.Binary = lief.ELF.parse(sample) elf.relocate_phdr_table(mode) segment = lief.ELF.Segment() segment.type = lief.ELF.SEGMENT_TYPES.LOAD segment.content = [0xcc for _ in range(0x2000)] elf.add(segment) outpath = tmp_path / "modified.elf" elf.write(outpath.as_posix()) outpath.chmod(outpath.stat().st_mode | stat.S_IEXEC) popen_args = { "stdout": subprocess.PIPE, "stderr": subprocess.STDOUT, "universal_newlines": True } with Popen([outpath.as_posix()], **popen_args) as proc: stdout = proc.stdout.read() assert "Hello World" in stdout, f"Error: {stdout}" @pytest.mark.skipif(not (is_linux() and is_x86_64()), reason="incompatible env") @pytest.mark.parametrize("mode", [ lief.ELF.Binary.PHDR_RELOC.SEGMENT_GAP, lief.ELF.Binary.PHDR_RELOC.FILE_END, lief.ELF.Binary.PHDR_RELOC.BSS_END ]) def test_static_musl_bss(tmp_path, mode): sample = get_sample("ELF/i872_hello_musl_bss.elf") elf: lief.ELF.Binary = lief.ELF.parse(sample) elf.relocate_phdr_table(mode) segment = lief.ELF.Segment() segment.type = lief.ELF.SEGMENT_TYPES.LOAD segment.content = [0xcc for _ in range(0x2000)] elf.add(segment) outpath = tmp_path / "modified.elf" elf.write(outpath.as_posix()) outpath.chmod(outpath.stat().st_mode | stat.S_IEXEC) popen_args = { "stdout": subprocess.PIPE, "stderr": subprocess.STDOUT, "universal_newlines": True } with Popen([outpath.as_posix()], **popen_args) as proc: stdout = proc.stdout.read() assert "Hello World" in stdout, f"Error: {stdout}" @pytest.mark.skipif(not (is_linux() and is_x86_64()), reason="incompatible env") @pytest.mark.parametrize("mode", [ lief.ELF.Binary.PHDR_RELOC.SEGMENT_GAP, lief.ELF.Binary.PHDR_RELOC.FILE_END, lief.ELF.Binary.PHDR_RELOC.BSS_END ]) def test_static(tmp_path, mode): sample = get_sample("ELF/i872_hello.elf") elf: lief.ELF.Binary = lief.ELF.parse(sample) elf.relocate_phdr_table(mode) segment = lief.ELF.Segment() segment.type = lief.ELF.SEGMENT_TYPES.LOAD segment.content = [0xcc for _ in range(0x2000)] elf.add(segment) outpath = tmp_path / "modified.elf" elf.write(outpath.as_posix()) outpath.chmod(outpath.stat().st_mode | stat.S_IEXEC) popen_args = { "stdout": subprocess.PIPE, "stderr": subprocess.STDOUT, "universal_newlines": True } with Popen([outpath.as_posix()], **popen_args) as proc: stdout = proc.stdout.read() assert "Hello World" in stdout, f"Error: {stdout}" @pytest.mark.skipif(not (is_linux() and is_x86_64()), reason="incompatible env") @pytest.mark.parametrize("mode", [ lief.ELF.Binary.PHDR_RELOC.SEGMENT_GAP, lief.ELF.Binary.PHDR_RELOC.FILE_END, lief.ELF.Binary.PHDR_RELOC.BSS_END ]) def METHOD_NAME(tmp_path, mode): sample = get_sample("ELF/i872_hello_bss.elf") elf: lief.ELF.Binary = lief.ELF.parse(sample) elf.relocate_phdr_table(mode) segment = lief.ELF.Segment() segment.type = lief.ELF.SEGMENT_TYPES.LOAD segment.content = [0xcc for _ in range(0x2000)] elf.add(segment) outpath = tmp_path / "modified.elf" elf.write(outpath.as_posix()) outpath.chmod(outpath.stat().st_mode | stat.S_IEXEC) popen_args = { "stdout": subprocess.PIPE, "stderr": subprocess.STDOUT, "universal_newlines": True } with Popen([outpath.as_posix()], **popen_args) as proc: stdout = proc.stdout.read() assert "Hello World" in stdout, f"Error: {stdout}" @pytest.mark.skipif(not (is_linux() and is_x86_64()), reason="incompatible env") @pytest.mark.parametrize("mode", [ lief.ELF.Binary.PHDR_RELOC.SEGMENT_GAP, lief.ELF.Binary.PHDR_RELOC.FILE_END, lief.ELF.Binary.PHDR_RELOC.BSS_END ]) def test_docker_init(tmp_path, mode): sample = get_sample("ELF/docker-init.elf") elf: lief.ELF.Binary = lief.ELF.parse(sample) elf.relocate_phdr_table(mode) segment = lief.ELF.Segment() segment.type = lief.ELF.SEGMENT_TYPES.LOAD segment.content = [0xcc for _ in range(0x2000)] elf.add(segment) outpath = tmp_path / "modified.elf" elf.write(outpath.as_posix()) outpath.chmod(outpath.stat().st_mode | stat.S_IEXEC) popen_args = { "stdout": subprocess.PIPE, "stderr": subprocess.STDOUT, "universal_newlines": True } with Popen([outpath.as_posix(), "--version"], **popen_args) as proc: stdout = proc.stdout.read() assert "tini version 0.19.0" in stdout, f"Error: {stdout}"
null
test pickle3 d
import unittest import numpy as np import discretize from discretize.utils import example_simplex_mesh import os import pickle import matplotlib.pyplot as plt try: import vtk # NOQA F401 has_vtk = True except ImportError: has_vtk = False class SimplexTests(unittest.TestCase): def test_init_errors(self): bad_nodes = np.array( [ [0, 0, 0], [1, 0, 0], [0, 1, 0], [2, 2, 0], ] ) simplices = np.array([[0, 1, 2, 3]]) with self.assertRaises(ValueError): discretize.SimplexMesh(bad_nodes, simplices) good_nodes = np.array( [ [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], ] ) with self.assertRaises(ValueError): # pass incompatible shaped nodes and simplices discretize.SimplexMesh(good_nodes, simplices[:, :-1]) with self.assertRaises(ValueError): # pass bad dimensionality discretize.SimplexMesh(np.random.rand(10, 4), simplices[:, :-1]) def test_find_containing(self): n = 4 points, simplices = example_simplex_mesh((n, n)) mesh = discretize.SimplexMesh(points, simplices) x = np.array([[0.1, 0.2], [0.3, 0.4]]) inds = mesh.point2index(x) np.testing.assert_equal(inds, [16, 5]) def test_pickle2D(self): n = 5 points, simplices = discretize.utils.example_simplex_mesh((n, n)) mesh0 = discretize.SimplexMesh(points, simplices) byte_string = pickle.dumps(mesh0) mesh1 = pickle.loads(byte_string) np.testing.assert_equal(mesh0.nodes, mesh1.nodes) np.testing.assert_equal(mesh0._simplices, mesh1._simplices) def METHOD_NAME(self): n = 5 points, simplices = discretize.utils.example_simplex_mesh((n, n, n)) mesh0 = discretize.SimplexMesh(points, simplices) byte_string = pickle.dumps(mesh0) mesh1 = pickle.loads(byte_string) np.testing.assert_equal(mesh0.nodes, mesh1.nodes) np.testing.assert_equal(mesh0._simplices, mesh1._simplices) def test_image_plotting(self): n = 5 points, simplices = discretize.utils.example_simplex_mesh((n, n)) mesh = discretize.SimplexMesh(points, simplices) cc_dat = np.random.rand(mesh.n_cells) n_dat = np.random.rand(mesh.n_nodes) f_dat = np.random.rand(mesh.n_faces) e_dat = np.random.rand(mesh.n_edges) ccv_dat = np.random.rand(mesh.n_cells, 2) mesh.plot_image(cc_dat) mesh.plot_image(ccv_dat, v_type="CCv", view="vec") mesh.plot_image(n_dat) mesh.plot_image(f_dat, v_type="Fx") mesh.plot_image(f_dat, v_type="Fy") mesh.plot_image(f_dat, v_type="F") mesh.plot_image(f_dat, v_type="F", view="vec") mesh.plot_image(e_dat, v_type="Ex") mesh.plot_image(e_dat, v_type="Ey") mesh.plot_image(e_dat, v_type="E") mesh.plot_image(e_dat, v_type="E", view="vec") with self.assertRaises(NotImplementedError): points, simplices = discretize.utils.example_simplex_mesh((n, n, n)) mesh = discretize.SimplexMesh(points, simplices) cc_dat = np.random.rand(mesh.n_cells) mesh.plot_image(cc_dat) plt.close("all") def test_plot_grid(self): n = 5 points, simplices = discretize.utils.example_simplex_mesh((n, n)) mesh = discretize.SimplexMesh(points, simplices) mesh.plot_grid(nodes=True, faces=True, edges=True, centers=True) points, simplices = discretize.utils.example_simplex_mesh((n, n, n)) mesh = discretize.SimplexMesh(points, simplices) mesh.plot_grid(nodes=True, faces=True, edges=True, centers=True) plt.close("all") if has_vtk: def test_2D_vtk(self): n = 5 points, simplices = discretize.utils.example_simplex_mesh((n, n)) mesh = discretize.SimplexMesh(points, simplices) cc_dat = np.random.rand(mesh.n_cells) vtk_obj = mesh.to_vtk(models={"info": cc_dat}) mesh2, models = discretize.SimplexMesh.vtk_to_simplex_mesh(vtk_obj) np.testing.assert_equal(mesh.nodes, mesh2.nodes) np.testing.assert_equal(mesh._simplices, mesh2._simplices) np.testing.assert_equal(cc_dat, models["info"]) mesh.write_vtk("test.vtu", models={"info": cc_dat}) mesh2, models = discretize.SimplexMesh.read_vtk("test.vtu") np.testing.assert_equal(mesh.nodes, mesh2.nodes) np.testing.assert_equal(mesh._simplices, mesh2._simplices) np.testing.assert_equal(cc_dat, models["info"]) def test_3D_vtk(self): n = 5 points, simplices = discretize.utils.example_simplex_mesh((n, n, n)) mesh = discretize.SimplexMesh(points, simplices) cc_dat = np.random.rand(mesh.n_cells) vtk_obj = mesh.to_vtk(models={"info": cc_dat}) mesh2, models = discretize.SimplexMesh.vtk_to_simplex_mesh(vtk_obj) np.testing.assert_equal(mesh.nodes, mesh2.nodes) np.testing.assert_equal(mesh._simplices, mesh2._simplices) np.testing.assert_equal(cc_dat, models["info"]) mesh.write_vtk("test.vtu", models={"info": cc_dat}) mesh2, models = discretize.SimplexMesh.read_vtk("test.vtu") np.testing.assert_equal(mesh.nodes, mesh2.nodes) np.testing.assert_equal(mesh._simplices, mesh2._simplices) np.testing.assert_equal(cc_dat, models["info"]) def tearDown(self): try: os.remove("test.vtu") except FileNotFoundError: pass
null
process model name
import json import os import re from typing import Dict import fsspec import yaml from coqpit import Coqpit from TTS.config.shared_configs import * from TTS.utils.generic_utils import find_module def read_json_with_comments(json_path): """for backward compat.""" # fallback to json with fsspec.open(json_path, "r", encoding="utf-8") as f: input_str = f.read() # handle comments input_str = re.sub(r"\\\n", "", input_str) input_str = re.sub(r"//.*\n", "\n", input_str) data = json.loads(input_str) return data def register_config(model_name: str) -> Coqpit: """Find the right config for the given model name. Args: model_name (str): Model name. Raises: ModuleNotFoundError: No matching config for the model name. Returns: Coqpit: config class. """ config_class = None config_name = model_name + "_config" paths = ["TTS.tts.configs", "TTS.vocoder.configs", "TTS.encoder.configs", "TTS.vc.configs"] for path in paths: try: config_class = find_module(path, config_name) except ModuleNotFoundError: pass if config_class is None: raise ModuleNotFoundError(f" [!] Config for {model_name} cannot be found.") return config_class def METHOD_NAME(config_dict: Dict) -> str: """Format the model name as expected. It is a band-aid for the old `vocoder` model names. Args: config_dict (Dict): A dictionary including the config fields. Returns: str: Formatted modelname. """ model_name = config_dict["model"] if "model" in config_dict else config_dict["generator_model"] model_name = model_name.replace("_generator", "").replace("_discriminator", "") return model_name def load_config(config_path: str) -> Coqpit: """Import `json` or `yaml` files as TTS configs. First, load the input file as a `dict` and check the model name to find the corresponding Config class. Then initialize the Config. Args: config_path (str): path to the config file. Raises: TypeError: given config file has an unknown type. Returns: Coqpit: TTS config object. """ config_dict = {} ext = os.path.splitext(config_path)[1] if ext in (".yml", ".yaml"): with fsspec.open(config_path, "r", encoding="utf-8") as f: data = yaml.safe_load(f) elif ext == ".json": try: with fsspec.open(config_path, "r", encoding="utf-8") as f: data = json.load(f) except json.decoder.JSONDecodeError: # backwards compat. data = read_json_with_comments(config_path) else: raise TypeError(f" [!] Unknown config file type {ext}") config_dict.update(data) model_name = METHOD_NAME(config_dict) config_class = register_config(model_name.lower()) config = config_class() config.from_dict(config_dict) return config def check_config_and_model_args(config, arg_name, value): """Check the give argument in `config.model_args` if exist or in `config` for the given value. Return False if the argument does not exist in `config.model_args` or `config`. This is to patch up the compatibility between models with and without `model_args`. TODO: Remove this in the future with a unified approach. """ if hasattr(config, "model_args"): if arg_name in config.model_args: return config.model_args[arg_name] == value if hasattr(config, arg_name): return config[arg_name] == value return False def get_from_config_or_model_args(config, arg_name): """Get the given argument from `config.model_args` if exist or in `config`.""" if hasattr(config, "model_args"): if arg_name in config.model_args: return config.model_args[arg_name] return config[arg_name] def get_from_config_or_model_args_with_default(config, arg_name, def_val): """Get the given argument from `config.model_args` if exist or in `config`.""" if hasattr(config, "model_args"): if arg_name in config.model_args: return config.model_args[arg_name] if hasattr(config, arg_name): return config[arg_name] return def_val
null
test query assertions
import unittest from stix_shifter.stix_translation import stix_translation translation = stix_translation.StixTranslation() MODULE = 'reversinglabs' def METHOD_NAME(query, queries): assert isinstance(query, dict) is True assert 'queries' in query assert query['queries'] == [queries] class TestReversingLabsStixToQuery(unittest.TestCase, object): @staticmethod def get_query_translation_result(stix_pattern, options={}): return translation.translate(MODULE, 'query', MODULE, stix_pattern, options) def test_ipv4_query(self): stix_pattern = "[ipv4-addr:value='194.147.78.155']" query = TestReversingLabsStixToQuery.get_query_translation_result(stix_pattern) queries = "{'data': '194.147.78.155', 'dataType': 'ip'}" METHOD_NAME(query, queries) def test_ipv6_query(self): stix_pattern = "[ipv6-addr:value = '3001:0:0:0:0:0:0:2']" query = TestReversingLabsStixToQuery.get_query_translation_result(stix_pattern) queries = "{'data': '3001:0:0:0:0:0:0:2', 'dataType': 'ip'}" METHOD_NAME(query, queries) def test_multi_ipv4_expression_query(self): stix_pattern = "([ipv4-addr:value = '194.147.78.155'] OR [ipv4-addr:value = '198.51.100.10'])" query = TestReversingLabsStixToQuery.get_query_translation_result(stix_pattern) queries = "{'data': '198.51.100.10', 'dataType': 'ip'}" METHOD_NAME(query, queries) def test_url_query(self): stix_pattern = "[url:value='https://test.com']" query = TestReversingLabsStixToQuery.get_query_translation_result(stix_pattern) queries = "{'data': 'https://test.com', 'dataType': 'url'}" METHOD_NAME(query, queries) def test_NOT_and_not_equals_operators(self): search_string1 = "www.example.com" search_string2 = "www.example.ca" stix_pattern = "[url:value != '{}' OR url:value NOT = '{}']".format(search_string1, search_string2) query = TestReversingLabsStixToQuery.get_query_translation_result(stix_pattern) queries = "{'data': 'www.example.com', 'dataType': 'url'}" METHOD_NAME(query, queries) def test_file_hash_query(self): stix_pattern = "[file:hashes.'SHA-1'='D5DD920BE5BCFEB904E95DA4B6D0CCCA0727D692']" query = TestReversingLabsStixToQuery.get_query_translation_result(stix_pattern) queries = "{'data': 'D5DD920BE5BCFEB904E95DA4B6D0CCCA0727D692', 'dataType': 'hash'}" METHOD_NAME(query, queries) def test_file_hash_md5_query(self): stix_pattern = "[file:hashes.'MD5'='16cda323189d8eba4248c0a2f5ad0d8f']" query = TestReversingLabsStixToQuery.get_query_translation_result(stix_pattern) queries = "{'data': '16cda323189d8eba4248c0a2f5ad0d8f', 'dataType': 'hash'}" METHOD_NAME(query, queries) def test_generic_filehash_query(self): stix_pattern = "[file:hashes.'SHA-256' = 'd7fc5162511d42d22462ad5b4c716b73903a677806119f9ad0314763ccd719ca']" query = TestReversingLabsStixToQuery.get_query_translation_result(stix_pattern) queries = "{'data': 'd7fc5162511d42d22462ad5b4c716b73903a677806119f9ad0314763ccd719ca', 'dataType': 'hash'}" METHOD_NAME(query, queries) def test_domain_query(self): stix_pattern = "[domain-name:value='test.com']" query = TestReversingLabsStixToQuery.get_query_translation_result(stix_pattern) queries = "{'data': 'test.com', 'dataType': 'domain'}" METHOD_NAME(query, queries) def test_multi_expression_query(self): stix_pattern = "[domain-name:value='test.com' OR ipv4-addr:value='194.147.78.155']" query = TestReversingLabsStixToQuery.get_query_translation_result(stix_pattern) queries = "{'data': 'test.com', 'dataType': 'domain'}" METHOD_NAME(query, queries) def test_not_comp_exp(self): """ Test with NOT operator :return: """ stix_pattern = "[ipv4-addr:value NOT = '172.31.60.104'] START t'2020-05-01T08:43:10.003Z' " \ "STOP t'2020-10-30T10:43:10.003Z'" query = TestReversingLabsStixToQuery.get_query_translation_result(stix_pattern) queries = "{'data': '172.31.60.104', 'dataType': 'ip'}" METHOD_NAME(query, queries) def test_in_comp_exp(self): """ Test with IN operator """ stix_pattern = "[ipv4-addr:value IN ('172.31.60.104','94.147.78.155')]" query = TestReversingLabsStixToQuery.get_query_translation_result(stix_pattern) queries = "{'data': '(172.31.60.104 OR 94.147.78.155)', 'dataType': 'ip'}" METHOD_NAME(query, queries) def test_one_obser_is_super_set_operator_network(self): """ to test single observation with an un-supported operator """ stix_pattern = "[ipv4-addr:value ISSUPERSET '172.217.0.0/24'] " \ "START t'2019-04-10T08:43:10.003Z' STOP t'2019-04-23T10:43:10.003Z'" query = TestReversingLabsStixToQuery.get_query_translation_result(stix_pattern) assert query['success'] is False assert query['code'] == 'mapping_error' def test_like_comp_exp(self): """ Test with LIKE operator """ stix_pattern = "[ipv4-addr:value LIKE '172.31.60.104'] START t'2020-10-01T08:43:10.003Z' " \ "STOP t'2020-10-30T10:43:10.003Z'" query = TestReversingLabsStixToQuery.get_query_translation_result(stix_pattern) queries = "{'data': '%172.31.60.104%', 'dataType': 'ip'}" METHOD_NAME(query, queries) def test_matches_comp_exp(self): """ Test with MATCHES operator :return: """ stix_pattern = "[ipv4-addr:value MATCHES '\\\\d+'] START t'2020-10-01T08:43:10.003Z' STOP " \ "t'2020-10-30T10:43:10.003Z'" query = TestReversingLabsStixToQuery.get_query_translation_result(stix_pattern) queries = "{'data': '.*\\\\\\\\d+.*', 'dataType': 'ip'}" METHOD_NAME(query, queries)
null
slack
# coding=utf-8 ##################################################### # THIS FILE IS AUTOMATICALLY GENERATED. DO NOT EDIT # ##################################################### # noqa: E128,E201 from ..client import BaseClient from ..client import createApiClient from ..client import config from ..client import createTemporaryCredentials from ..client import createSession _defaultConfig = config class Notify(BaseClient): """ The notification service listens for tasks with associated notifications and handles requests to send emails and post pulse messages. """ classOptions = { } serviceName = 'notify' apiVersion = 'v1' def ping(self, *args, **kwargs): """ Ping Server Respond without doing anything. This endpoint is used to check that the service is up. This method is ``stable`` """ return self._makeApiCall(self.funcinfo["ping"], *args, **kwargs) def lbheartbeat(self, *args, **kwargs): """ Load Balancer Heartbeat Respond without doing anything. This endpoint is used to check that the service is up. This method is ``stable`` """ return self._makeApiCall(self.funcinfo["lbheartbeat"], *args, **kwargs) def version(self, *args, **kwargs): """ Taskcluster Version Respond with the JSON version object. https://github.com/mozilla-services/Dockerflow/blob/main/docs/version_object.md This method is ``stable`` """ return self._makeApiCall(self.funcinfo["version"], *args, **kwargs) def email(self, *args, **kwargs): """ Send an Email Send an email to `address`. The content is markdown and will be rendered to HTML, but both the HTML and raw markdown text will be sent in the email. If a link is included, it will be rendered to a nice button in the HTML version of the email This method is ``experimental`` """ return self._makeApiCall(self.funcinfo["email"], *args, **kwargs) def pulse(self, *args, **kwargs): """ Publish a Pulse Message Publish a message on pulse with the given `routingKey`. This method is ``experimental`` """ return self._makeApiCall(self.funcinfo["pulse"], *args, **kwargs) def matrix(self, *args, **kwargs): """ Post Matrix Message Post a message to a room in Matrix. Optionally includes formatted message. The `roomId` in the scopes is a fully formed `roomId` with leading `!` such as `!foo:bar.com`. Note that the matrix client used by taskcluster must be invited to a room before it can post there! This method is ``experimental`` """ return self._makeApiCall(self.funcinfo["matrix"], *args, **kwargs) def METHOD_NAME(self, *args, **kwargs): """ Post Slack Message Post a message to a Slack channel. The `channelId` in the scopes is a Slack channel ID, starting with a capital C. The Slack app can post into public channels by default but will need to be added to private channels before it can post messages there. This method is ``experimental`` """ return self._makeApiCall(self.funcinfo["slack"], *args, **kwargs) def addDenylistAddress(self, *args, **kwargs): """ Denylist Given Address Add the given address to the notification denylist. Addresses in the denylist will be ignored by the notification service. This method is ``experimental`` """ return self._makeApiCall(self.funcinfo["addDenylistAddress"], *args, **kwargs) def deleteDenylistAddress(self, *args, **kwargs): """ Delete Denylisted Address Delete the specified address from the notification denylist. This method is ``experimental`` """ return self._makeApiCall(self.funcinfo["deleteDenylistAddress"], *args, **kwargs) def listDenylist(self, *args, **kwargs): """ List Denylisted Notifications Lists all the denylisted addresses. By default this end-point will try to return up to 1000 addresses in one request. But it **may return less**, even if more tasks are available. It may also return a `continuationToken` even though there are no more results. However, you can only be sure to have seen all results if you keep calling `list` with the last `continuationToken` until you get a result without a `continuationToken`. If you are not interested in listing all the members at once, you may use the query-string option `limit` to return fewer. This method is ``experimental`` """ return self._makeApiCall(self.funcinfo["listDenylist"], *args, **kwargs) def heartbeat(self, *args, **kwargs): """ Heartbeat Respond with a service heartbeat. This endpoint is used to check on backing services this service depends on. This method is ``stable`` """ return self._makeApiCall(self.funcinfo["heartbeat"], *args, **kwargs) funcinfo = { "addDenylistAddress": { 'args': [], 'input': 'v1/notification-address.json#', 'method': 'post', 'name': 'addDenylistAddress', 'route': '/denylist/add', 'stability': 'experimental', }, "deleteDenylistAddress": { 'args': [], 'input': 'v1/notification-address.json#', 'method': 'delete', 'name': 'deleteDenylistAddress', 'route': '/denylist/delete', 'stability': 'experimental', }, "email": { 'args': [], 'input': 'v1/email-request.json#', 'method': 'post', 'name': 'email', 'route': '/email', 'stability': 'experimental', }, "heartbeat": { 'args': [], 'method': 'get', 'name': 'heartbeat', 'route': '/__heartbeat__', 'stability': 'stable', }, "lbheartbeat": { 'args': [], 'method': 'get', 'name': 'lbheartbeat', 'route': '/__lbheartbeat__', 'stability': 'stable', }, "listDenylist": { 'args': [], 'method': 'get', 'name': 'listDenylist', 'output': 'v1/notification-address-list.json#', 'query': ['continuationToken', 'limit'], 'route': '/denylist/list', 'stability': 'experimental', }, "matrix": { 'args': [], 'input': 'v1/matrix-request.json#', 'method': 'post', 'name': 'matrix', 'route': '/matrix', 'stability': 'experimental', }, "ping": { 'args': [], 'method': 'get', 'name': 'ping', 'route': '/ping', 'stability': 'stable', }, "pulse": { 'args': [], 'input': 'v1/pulse-request.json#', 'method': 'post', 'name': 'pulse', 'route': '/pulse', 'stability': 'experimental', }, "slack": { 'args': [], 'input': 'v1/slack-request.json#', 'method': 'post', 'name': 'slack', 'route': '/slack', 'stability': 'experimental', }, "version": { 'args': [], 'method': 'get', 'name': 'version', 'route': '/__version__', 'stability': 'stable', }, } __all__ = ['createTemporaryCredentials', 'config', '_defaultConfig', 'createApiClient', 'createSession', 'Notify']
null
install
"""AsyncIO support for zmq Requires asyncio and Python 3. """ # Copyright (c) PyZMQ Developers. # Distributed under the terms of the Modified BSD License. import asyncio import selectors import sys import warnings from asyncio import Future, SelectorEventLoop from weakref import WeakKeyDictionary import zmq as _zmq from zmq import _future # registry of asyncio loop : selector thread _selectors: WeakKeyDictionary = WeakKeyDictionary() class ProactorSelectorThreadWarning(RuntimeWarning): """Warning class for notifying about the extra thread spawned by tornado We automatically support proactor via tornado's AddThreadSelectorEventLoop""" def _get_selector_windows( asyncio_loop, ) -> asyncio.AbstractEventLoop: """Get selector-compatible loop Returns an object with ``add_reader`` family of methods, either the loop itself or a SelectorThread instance. Workaround Windows proactor removal of *reader methods, which we need for zmq sockets. """ if asyncio_loop in _selectors: return _selectors[asyncio_loop] # detect add_reader instead of checking for proactor? if hasattr(asyncio, "ProactorEventLoop") and isinstance( asyncio_loop, asyncio.ProactorEventLoop # type: ignore ): try: from tornado.platform.asyncio import AddThreadSelectorEventLoop except ImportError: raise RuntimeError( "Proactor event loop does not implement add_reader family of methods required for zmq." " zmq will work with proactor if tornado >= 6.1 can be found." " Use `asyncio.set_event_loop_policy(WindowsSelectorEventLoopPolicy())`" " or install 'tornado>=6.1' to avoid this error." ) warnings.warn( "Proactor event loop does not implement add_reader family of methods required for zmq." " Registering an additional selector thread for add_reader support via tornado." " Use `asyncio.set_event_loop_policy(WindowsSelectorEventLoopPolicy())`" " to avoid this warning.", RuntimeWarning, # stacklevel 5 matches most likely zmq.asyncio.Context().socket() stacklevel=5, ) selector_loop = _selectors[asyncio_loop] = AddThreadSelectorEventLoop(asyncio_loop) # type: ignore # patch loop.close to also close the selector thread loop_close = asyncio_loop.close def _close_selector_and_loop(): # restore original before calling selector.close, # which in turn calls eventloop.close! asyncio_loop.close = loop_close _selectors.pop(asyncio_loop, None) selector_loop.close() asyncio_loop.close = _close_selector_and_loop # type: ignore # mypy bug - assign a function to method return selector_loop else: return asyncio_loop def _get_selector_noop(loop) -> asyncio.AbstractEventLoop: """no-op on non-Windows""" return loop if sys.platform == "win32": _get_selector = _get_selector_windows else: _get_selector = _get_selector_noop class _AsyncIO: _Future = Future _WRITE = selectors.EVENT_WRITE _READ = selectors.EVENT_READ def _default_loop(self): if sys.version_info >= (3, 7): try: return asyncio.get_running_loop() except RuntimeError: warnings.warn( "No running event loop. zmq.asyncio should be used from within an asyncio loop.", RuntimeWarning, stacklevel=4, ) # get_event_loop deprecated in 3.10: return asyncio.get_event_loop() class Poller(_AsyncIO, _future._AsyncPoller): """Poller returning asyncio.Future for poll results.""" def _watch_raw_socket(self, loop, socket, evt, f): """Schedule callback for a raw socket""" selector = _get_selector(loop) if evt & self._READ: selector.add_reader(socket, lambda *args: f()) if evt & self._WRITE: selector.add_writer(socket, lambda *args: f()) def _unwatch_raw_sockets(self, loop, *sockets): """Unschedule callback for a raw socket""" selector = _get_selector(loop) for socket in sockets: selector.remove_reader(socket) selector.remove_writer(socket) class Socket(_AsyncIO, _future._AsyncSocket): """Socket returning asyncio Futures for send/recv/poll methods.""" _poller_class = Poller def _get_selector(self, io_loop=None): if io_loop is None: io_loop = self._get_loop() return _get_selector(io_loop) def _init_io_state(self, io_loop=None): """initialize the ioloop event handler""" self._get_selector(io_loop).add_reader( self._fd, lambda: self._handle_events(0, 0) ) def _clear_io_state(self): """clear any ioloop event handler called once at close """ loop = self._current_loop if loop and not loop.is_closed() and self._fd != -1: self._get_selector(loop).remove_reader(self._fd) Poller._socket_class = Socket class Context(_zmq.Context[Socket]): """Context for creating asyncio-compatible Sockets""" _socket_class = Socket # avoid sharing instance with base Context class _instance = None class ZMQEventLoop(SelectorEventLoop): """DEPRECATED: AsyncIO eventloop using zmq_poll. pyzmq sockets should work with any asyncio event loop as of pyzmq 17. """ def __init__(self, selector=None): _deprecated() return super().__init__(selector) _loop = None def _deprecated(): if _deprecated.called: # type: ignore return _deprecated.called = True # type: ignore warnings.warn( "ZMQEventLoop and zmq.asyncio.install are deprecated in pyzmq 17. Special eventloop integration is no longer needed.", DeprecationWarning, stacklevel=3, ) _deprecated.called = False # type: ignore def METHOD_NAME(): """DEPRECATED: No longer needed in pyzmq 17""" _deprecated() __all__ = [ "Context", "Socket", "Poller", "ZMQEventLoop", "install", ]
null
report
#!/usr/bin/env python3 #* This file is part of the MOOSE framework #* https://www.mooseframework.org #* #* All rights reserved, see COPYRIGHT for full restrictions #* https://github.com/idaholab/moose/blob/master/COPYRIGHT #* #* Licensed under LGPL 2.1, please see LICENSE for details #* https://www.gnu.org/licenses/lgpl-2.1.html import os import collections import argparse import multiprocessing import mooseutils # List of available languages and an associated function for testing if a filename is that language LANGUAGES = collections.OrderedDict() LANGUAGES['C++'] = lambda f: f.endswith(('.C', '.h')) LANGUAGES['Python'] = lambda f: f.endswith('.py') LANGUAGES['Input'] = lambda f: f.endswith(('.i', '.hit')) LANGUAGES['Markdown'] = lambda f: f.endswith('.md') LANGUAGES['Make'] = lambda f: f.endswith(('Makefile', '.mk')) LANGUAGES['YAML'] = lambda f: f.endswith('.yml') def get_options(): """Return the command-line options""" parser = argparse.ArgumentParser(description='Tool for listing author line counts.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('locations', nargs='*', type=str, default=[mooseutils.git_root_dir()], help='The repository directory to consider.') parser.add_argument('-j', '--num-threads', type=int, default=os.cpu_count(), help="The number of threads to use for computing the counts.") parser.add_argument('--exclude', nargs=1, type=str, default='contrib', help="Exclude pattern passed to git ls-files call.") parser.add_argument('-l', '--languages', nargs='+', type=str, choices=list(LANGUAGES.keys()), default=list(LANGUAGES.keys()), help="Limit the analysis the the listed languages.") return parser.parse_args() def target(filename): """Helper for counting the lines, by author of the given filename""" return mooseutils.git_lines(filename) def update_count(c, lang, counts): """ Add the counts from to the total count Input: c[dict]: Local counts with authors as keys, returned from 'target' function lang[str]: The language key that the 'c' count dict is associated counts[dict of dict]: The global count by author, then language """ for key, value in c.items(): counts[key][lang] += value def METHOD_NAME(counts, commits, merges): """ Prints the global count in a table on the screen """ titles = list(list(counts.values())[0].keys()) + ['Total', 'Commits', 'Merges'] row_format = '{:>25}' row_format += "{:>10}" * (len(titles)) n = 25 + 10 * len(titles) totals = {k:0 for k in titles} print('-'*n) print(row_format.format("Name", *titles)) print('-'*n) for author, row in reversed(sorted(counts.items(), key=lambda item:sum(item[1].values()))): row['Total'] = sum(row.values()) values = ['{:,}'.format(row[key]) for key in titles if key not in ('Commits', 'Merges')] c = commits.get(author, 0) m = merges.get(author, 0) values += [c, m] row['Commits'] = c row['Merges'] = m for key in titles: totals[key] += row[key] print(row_format.format(author, *values)) print('-'*n) print(row_format.format('TOTAL', *['{:,}'.format(totals[key]) for key in titles])) if __name__ == '__main__': args = get_options() # Populate desired langauges lang = collections.OrderedDict() for key in args.languages: lang[key] = LANGUAGES[key] # List all files in the repository all_files = set() for location in args.locations: all_files.update(mooseutils.git_ls_files(os.path.abspath(args.locations[0]), exclude=args.exclude)) # Group filenames by extension groups = collections.defaultdict(list) for filename in all_files: for key, func in lang.items(): if func(filename): groups[key].append(filename) # Report author counts by file type counts = collections.defaultdict(lambda: {g:0 for g in lang.keys()}) for group, files in groups.items(): print('Counting {} lines...'.format(group), end='') with multiprocessing.Pool(processes=args.num_threads) as pool: for c in pool.imap_unordered(target, files): update_count(c, group, counts) print('done') # Compute number of commits per user commits = dict() merges = dict() for location in args.locations: commits.update(mooseutils.git_committers(location, '--no-merges')) merges.update(mooseutils.git_committers(location, '--merges')) METHOD_NAME(counts, commits, merges)
null
get map of attnum and table oid
import warnings from sqlalchemy import and_, asc, cast, select, text, exists, Identity from db.columns.exceptions import DynamicDefaultWarning from db.connection import execute_msar_func_with_engine from db.tables.operations.select import reflect_table_from_oid from db.utils import execute_statement, get_pg_catalog_table def get_column_attnum_from_names_as_map(table_oid, column_names, engine, metadata, connection_to_use=None): statement = _get_columns_attnum_from_names(table_oid, column_names, engine, metadata=metadata) attnums_tuple = execute_statement(engine, statement, connection_to_use).fetchall() name_attnum_map = {attnum_tuple['attname']: attnum_tuple['attnum'] for attnum_tuple in attnums_tuple} return name_attnum_map def get_columns_attnum_from_names(table_oid, column_names, engine, metadata, connection_to_use=None): """ Returns the respective list of attnum of the column names passed. The order is based on the column order in the table and not by the order of the column names argument. """ statement = _get_columns_attnum_from_names(table_oid, column_names, engine=engine, metadata=metadata) attnums_tuple = execute_statement(engine, statement, connection_to_use).fetchall() attnums = [attnum_tuple[0] for attnum_tuple in attnums_tuple] return attnums def get_column_attnum_from_name(table_oid, column_name, engine, metadata, connection_to_use=None): statement = _get_columns_attnum_from_names(table_oid, [column_name], engine=engine, metadata=metadata) return execute_statement(engine, statement, connection_to_use).scalar() def _get_columns_attnum_from_names(table_oid, column_names, engine, metadata): pg_attribute = get_pg_catalog_table("pg_attribute", engine=engine, metadata=metadata) sel = select(pg_attribute.c.attnum, pg_attribute.c.attname).where( and_( pg_attribute.c.attrelid == table_oid, pg_attribute.c.attname.in_(column_names) ) ).order_by(asc(pg_attribute.c.attnum)) return sel def get_column_attnums_from_tables(table_oids, engine, metadata, connection_to_use=None): pg_attribute = get_pg_catalog_table("pg_attribute", engine, metadata=metadata) sel = select(pg_attribute.c.attnum, pg_attribute.c.attrelid.label('table_oid')).where( and_( pg_attribute.c.attrelid.in_(table_oids), # Ignore system columns pg_attribute.c.attnum > 0, # Ignore removed columns pg_attribute.c.attisdropped.is_(False) ) ) results = execute_statement(engine, sel, connection_to_use).fetchall() return results def METHOD_NAME(table_oids, engine, metadata, connection_to_use=None): """ Order determined by the column order in the table. """ triples_of_col_info = _get_triples_of_column_name_and_attnum_and_table_oid( table_oids, None, engine, metadata, connection_to_use ) return { (attnum, table_oid): column_name for column_name, attnum, table_oid in triples_of_col_info } def get_column_names_from_attnums(table_oid, attnums, engine, metadata, connection_to_use=None): return list(get_map_of_attnum_to_column_name(table_oid, attnums, engine, metadata, connection_to_use).values()) def get_map_of_attnum_to_column_name(table_oid, attnums, engine, metadata, connection_to_use=None): """ Order determined by the column order in the table. """ triples_of_col_info = _get_triples_of_column_name_and_attnum_and_table_oid( [table_oid], attnums, engine, metadata, connection_to_use ) return { attnum: column_name for column_name, attnum, _ in triples_of_col_info } def _get_triples_of_column_name_and_attnum_and_table_oid( table_oids, attnums, engine, metadata, connection_to_use ): statement = _statement_for_triples_of_column_name_and_attnum_and_table_oid( table_oids, attnums, engine, metadata ) return execute_statement(engine, statement, connection_to_use).fetchall() def get_column_default(table_oid, attnum, engine, metadata, connection_to_use=None): default_dict = get_column_default_dict( table_oid, attnum, engine, metadata=metadata, connection_to_use=connection_to_use, ) if default_dict is not None: return default_dict['value'] def get_column_default_dict(table_oid, attnum, engine, metadata, connection_to_use=None): column = get_column_from_oid_and_attnum( table_oid=table_oid, attnum=attnum, engine=engine, metadata=metadata, connection_to_use=connection_to_use, ) default = column.server_default if default is None: return is_dynamic = execute_msar_func_with_engine( engine, 'is_default_possibly_dynamic', table_oid, attnum ).fetchone()[0] sql_text = str(default.arg) if not isinstance(default, Identity) else 'identity' if is_dynamic: warnings.warn( "Dynamic column defaults are read only", DynamicDefaultWarning ) default_value = sql_text else: # Defaults are often stored as text with SQL casts appended # Ex: "'test default string'::character varying" or "'2020-01-01'::date" # Here, we execute the cast to get the proper python value default_value = execute_statement( engine, select(cast(text(sql_text), column.type)), connection_to_use ).scalar() return {"value": default_value, "is_dynamic": is_dynamic} def determine_whether_column_contains_data( table_oid, column_name, engine, metadata, connection_to_use=None ): """ Given a column, return True if it contains data, False otherwise. """ sa_table = reflect_table_from_oid( table_oid, engine, metadata=metadata, connection_to_use=connection_to_use, ) sel = select(exists(1).where(sa_table.columns[column_name] != None)) # noqa contains_data = execute_statement(engine, sel, connection_to_use).scalar() return contains_data def get_column_from_oid_and_attnum(table_oid, attnum, engine, metadata, connection_to_use=None): sa_table = reflect_table_from_oid(table_oid, engine, metadata=metadata, connection_to_use=connection_to_use) column_name = get_column_name_from_attnum(table_oid, attnum, engine, metadata=metadata, connection_to_use=connection_to_use) sa_column = sa_table.columns[column_name] return sa_column def get_column_name_from_attnum(table_oid, attnum, engine, metadata, connection_to_use=None): statement = _statement_for_triples_of_column_name_and_attnum_and_table_oid( [table_oid], [attnum], engine, metadata=metadata, ) column_name = execute_statement(engine, statement, connection_to_use).scalar() return column_name def _statement_for_triples_of_column_name_and_attnum_and_table_oid( table_oids, attnums, engine, metadata ): """ Returns (column name, column attnum, column table's oid) tuples for each column that's in the tables specified via `table_oids`, and, when `attnums` is not None, that has an attnum specified in `attnums`. The order is based on the column order in the table and not on the order of the arguments. """ pg_attribute = get_pg_catalog_table("pg_attribute", engine, metadata=metadata) sel = select(pg_attribute.c.attname, pg_attribute.c.attnum, pg_attribute.c.attrelid) wasnt_dropped = pg_attribute.c.attisdropped.is_(False) table_oid_matches = pg_attribute.c.attrelid.in_(table_oids) conditions = [wasnt_dropped, table_oid_matches] if attnums is not None: attnum_matches = pg_attribute.c.attnum.in_(attnums) conditions.append(attnum_matches) else: attnum_positive = pg_attribute.c.attnum > 0 conditions.append(attnum_positive) sel = sel.where(and_(*conditions)) return sel
null
simple write csv
import concurrent.futures import csv import os from pathlib import Path import pandas as pd from typing import List from typing import Dict from utils import df_wide_to_long from utils import iso3_to_iso2 from utils import make_dir from utils import write_to_csv def METHOD_NAME( output_dir: str = None, name: str = None, data: List[Dict] | Dict = None, mode: str = "w", extension: str = "csv") -> None: if isinstance(data, dict): data = [data] with open(f"{output_dir}/{name}.{extension}", mode=mode) as csvfile: writer = csv.DictWriter(csvfile, fieldnames=data[0].keys()) writer.writeheader() writer.writerows(data) if __name__ == "__main__": # where to create tables outputDir = "../data/processed/PIK_PRIMAPv2.4" outputDir = os.path.abspath(outputDir) make_dir(path=Path(outputDir).as_posix()) # PRIMPAP dataset fl = '../data/raw/PIK_PRIMAP-hist/Guetschow-et-al-2022-PRIMAP-hist_v2.4_no_extrap_11-Oct-2022.csv' fl = os.path.abspath(fl) # ------------------------------------------ # Publisher table # ------------------------------------------ publisherDict = { 'id': 'PRIMAP', 'name': 'Potsdam Realtime Integrated Model for probabilistic Assessment of emissions Path', 'URL': 'https://www.pik-potsdam.de/paris-reality-check/primap-hist/' } METHOD_NAME( output_dir=outputDir, name='Publisher', data=publisherDict, mode='w' ) # ------------------------------------------ # DataSource table # ------------------------------------------ datasourceDict = { 'datasource_id': 'PRIMAP:10.5281/zenodo.7179775:v2.4', 'name': 'PRIMAP-hist CR v2.4', 'publisher': 'PRIMAP', 'published': '2022-10-17', 'URL': 'https://doi.org/10.5281/zenodo.7179775', 'citation': 'Gütschow, J., & Pflüger, M. (2022). The PRIMAP-hist national historical emissions time series v2.4 (1750-2021). Zenodo. doi:10.5281/zenodo.7179775' } METHOD_NAME( output_dir=outputDir, name='DataSource', data=datasourceDict, mode='w' ) # ------------------------------------------ # EmissionsAgg table # ------------------------------------------ # create emissionsAgg table df_pri = pd.read_csv(fl) # set values entity = 'KYOTOGHG (AR4GWP100)' category = 'M.0.EL' scenario = 'HISTCR' # filter PRIMAP dataset filt = ( (df_pri['entity'] == entity) & (df_pri['category (IPCC2006_PRIMAP)'] == category) & (df_pri['scenario (PRIMAP-hist)'] == scenario) ) # filtered dataset df_pri = df_pri.loc[filt] # get ISO data with concurrent.futures.ProcessPoolExecutor(max_workers=8) as executor: results = [executor.submit(iso3_to_iso2, name, return_input=True) for name in list(set(df_pri['area (ISO3)']))] data = [f.result() for f in concurrent.futures.as_completed(results)] # return ISO as dataframe df_iso = pd.DataFrame(data, columns=['iso3', 'iso2']) # merge datasets df_merged = pd.merge(df_pri, df_iso, left_on=['area (ISO3)'], right_on=["iso3"], how="left") # filter out ISO3 code ANT (netherland antilles) # The Netherlands Antilles dissolved on October 10, 2010 filt = ~(df_merged['area (ISO3)'] == 'ANT') df_merged = df_merged.loc[filt] # convert from wide to long dataframe df_long = df_wide_to_long(df=df_merged, value_name="emissions", var_name="year") # drop custom iso codes, this is not totally necessary isoCodesToDrop = [ 'EARTH', 'ANNEXI', 'NONANNEXI', 'AOSIS', 'BASIC', 'EU27BX', 'LDC', 'UMBRELLA', 'ANT', ] filt = ~(df_long['area (ISO3)'].isin(isoCodesToDrop)) df_long = df_long.loc[filt] # filter nan emissions filt = ~df_long['emissions'].isna() df_long = df_long.loc[filt] # rename columns df_long = df_long.rename(columns={'iso2': 'actor_id'}) def gigagram_to_metric_ton(val): ''' 1 gigagram = 1000 tonnes ''' return val * 1000 # create id columns df_long['datasource_id'] = datasourceDict['datasource_id'] df_long['emissions_id'] = df_long.apply(lambda row: f"{row['source']}:{row['actor_id']}:{row['year']}", axis=1) # convert emissions to metric tons df_long['total_emissions'] = df_long['emissions'].apply( gigagram_to_metric_ton) # Create EmissionsAgg table emissionsAggColumns = [ "emissions_id", "actor_id", "year", "total_emissions", "datasource_id" ] df_emissionsAgg = df_long[emissionsAggColumns] # ensure columns have correct types df_emissionsAgg = df_emissionsAgg.astype({'emissions_id': str, 'actor_id': str, 'year': int, 'total_emissions': int, 'datasource_id': str}) # sort by actor_id and year df_emissionsAgg = df_emissionsAgg.sort_values(by=['actor_id', 'year']) # save to csv df_emissionsAgg.drop_duplicates().to_csv( f'{outputDir}/EmissionsAgg.csv', index=False) # ================================================================= # Tags and DataSourceTags # ================================================================= # dictionary of tag_id : tag_name tagDict = { "GHGs_included_CO2_CH4_N2O_F_gases": "GHGs included: CO2, CH4, N2O, and F-gases", "sectors_energy_IPPU_ag_waste_other": "Sectors: energy, IPPU, agriculture, waste, and other", "excludes_LULUCF":"Excludes LULUCF", "GWP_100_SAR_and_AR4": "Uses GWP100 from IPCC SAR and AR4, depending on the gas", "Excludes_international_aviation_shipping":"Excludes emissions from international aviation and shipping", 'combined_datasets': 'Combined datasets', 'country_or_3rd_party': 'Country-reported data or third party', 'peer_reviewed': 'Peer reviewed', } tagDictList = [{"tag_id": key, "tag_name": value} for key, value in tagDict.items()] METHOD_NAME(outputDir, "Tag", tagDictList) dataSourceTagDictList = [ {"datasource_id": datasourceDict["datasource_id"], "tag_id": tag["tag_id"]} for tag in tagDictList ] METHOD_NAME(outputDir, "DataSourceTag", dataSourceTagDictList) # ------------------------------------------ # DataSourceQuality table # ------------------------------------------ DataSourceQualityList = [{ "datasource_id": datasourceDict['datasource_id'], "score_type": "GHG target", "score": 0.8, "notes": "Long time series. not sure if 2021 values are correct. data for all countries. not country reported data" }] METHOD_NAME(outputDir, "DataSourceQuality", DataSourceQualityList
null
test update weights
import os import unittest import torch import torchvision from packaging.version import Version import neural_compressor.adaptor.pytorch as nc_torch from neural_compressor import PostTrainingQuantConfig, quantization from neural_compressor.adaptor.torch_utils.model_wrapper import WeightOnlyLinear from neural_compressor.model import MODELS from neural_compressor.model import Model as INCModel from neural_compressor.model.torch_model import PyTorchModel try: import intel_pytorch_extension as ipex TEST_IPEX = True except: TEST_IPEX = False PT_VERSION = nc_torch.get_torch_version() if PT_VERSION >= Version("1.8.0-rc1"): FX_MODE = True else: FX_MODE = False class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.fc1 = torch.nn.Linear(30, 40) self.fc2 = torch.nn.Linear(40, 30) self.fc3 = torch.nn.Linear(30, 5) def forward(self, x): out = self.fc1(x) out = self.fc2(out) out = self.fc3(out) return out class TestPytorchModel(unittest.TestCase): framework = "pytorch" model = torchvision.models.quantization.resnet18() lpot_model = MODELS["pytorch"](model) def test_Model(self): model = torchvision.models.quantization.resnet18() inc_model = INCModel(model) self.assertTrue(isinstance(inc_model, PyTorchModel)) def test_get_all_weight_name(self): assert len(list(self.lpot_model.get_all_weight_names())) == 62 def test_get_weight(self): for name, param in self.model.named_parameters(): if name == "layer4.1.conv2.weight": param.data.fill_(0.0) if name == "fc.bias": param.data.fill_(0.1) assert int(torch.sum(self.lpot_model.get_weight("layer4.1.conv2.weight"))) == 0 assert torch.allclose(torch.sum(torch.tensor(self.lpot_model.get_weight("fc.bias"))), torch.tensor(100.0)) def test_get_input(self): model = MODELS["pytorch"](torchvision.models.quantization.resnet18()) model.model.eval().fuse_model() model.register_forward_pre_hook() rand_input = torch.rand(100, 3, 256, 256).float() model.model(rand_input) assert torch.equal(model.get_inputs("x"), rand_input) model.remove_hooks() def METHOD_NAME(self): self.lpot_model.update_weights("fc.bias", torch.zeros([1000])) assert int(torch.sum(self.lpot_model.get_weight("fc.bias"))) == 0 def test_gradient(self): with self.assertRaises(AssertionError): self.lpot_model.get_gradient("fc.bias") shape = None for name, tensor in self.lpot_model._model.named_parameters(): if name == "fc.bias": shape = tensor.shape tensor.grad = torch.randn(shape) break new_grad = torch.zeros(shape) self.lpot_model.update_gradient("fc.bias", new_grad) assert torch.equal(torch.tensor(self.lpot_model.get_gradient("fc.bias")), torch.zeros(shape)) rand_input = torch.rand(100, 3, 256, 256).float() rand_input.grad = torch.ones_like(rand_input) assert torch.equal(torch.tensor(self.lpot_model.get_gradient(rand_input)), torch.ones_like(rand_input)) def test_report_sparsity(self): df, total_sparsity = self.lpot_model.report_sparsity() self.assertTrue(total_sparsity > 0) self.assertTrue(len(df) == 22) def test_WeightOnlyLinear(self): model = Model() input = torch.randn(1, 30) conf = PostTrainingQuantConfig( approach="weight_only", ) q_model = quantization.fit(model, conf) out1 = q_model(input) q_model.save("saved") model_size1 = os.path.getsize("saved/best_model.pt") / 1024 print("FP32 Model size:{:.3f}M".format(model_size1)) # test compress_bits = [8, 16, 32, 64] compression_dtype = [torch.int8, torch.int16, torch.int32, torch.int64] for dtype in compression_dtype: new_model = Model() inc_model = INCModel(new_model) inc_model.export_compressed_model( qweight_config_path="saved/qconfig.json", compression_dtype=dtype, ) out2 = q_model(input) torch.save(inc_model.state_dict(), "saved/tmp.pt") model_size2 = os.path.getsize("saved/tmp.pt") / 1024 print("WeightOnlyLinear Model size:{:.3f}M".format(model_size2)) self.assertTrue(isinstance(inc_model.model.fc1, WeightOnlyLinear)) self.assertTrue(inc_model.model.fc1.packed_weight.dtype == dtype) self.assertTrue(inc_model.model.fc1.scale.dtype == torch.float32) self.assertTrue(model_size1 / model_size2 > 2) self.assertTrue(torch.all(torch.isclose(out1, out2, atol=5e-1))) # test compress_bits = [8, 16, 32, 64] compress_dims = [0, 1] for dim in compress_dims: new_model = Model() inc_model = INCModel(new_model) inc_model.export_compressed_model( qweight_config_path="saved/qconfig.json", compression_dim=dim, ) out2 = q_model(input) torch.save(inc_model.state_dict(), "saved/tmp.pt") model_size2 = os.path.getsize("saved/tmp.pt") / 1024 print("WeightOnlyLinear Model size:{:.3f}M".format(model_size2)) self.assertTrue(isinstance(inc_model.model.fc1, WeightOnlyLinear)) if dim == 1: self.assertTrue(inc_model.model.fc1.packed_weight.shape[0] == inc_model.model.fc1.out_features) else: self.assertTrue(inc_model.model.fc1.packed_weight.shape[1] == inc_model.model.fc1.in_features) self.assertTrue(model_size1 / model_size2 > 2) self.assertTrue(torch.all(torch.isclose(out1, out2, atol=5e-1))) # test half dtype new_model = Model() inc_model = INCModel(new_model) inc_model.export_compressed_model( qweight_config_path="saved/qconfig.json", scale_dtype=torch.float16, ) out2 = q_model(input) torch.save(inc_model.state_dict(), "saved/tmp.pt") model_size2 = os.path.getsize("saved/tmp.pt") / 1024 print("WeightOnlyLinear Model size:{:.3f}M".format(model_size2)) self.assertTrue(isinstance(inc_model.model.fc1, WeightOnlyLinear)) self.assertTrue(inc_model.model.fc1.scale.dtype == torch.float16) self.assertTrue(model_size1 / model_size2 > 2) self.assertTrue(torch.all(torch.isclose(out1, out2, atol=5e-1))) if __name__ == "__main__": unittest.main()
null
test release failure
# SPDX-FileCopyrightText: Red Hat, Inc. # SPDX-License-Identifier: GPL-2.0-or-later from __future__ import absolute_import from __future__ import division from storage.storagetestlib import FakeGuardedLock from testlib import VdsmTestCase from vdsm.storage import guarded class InjectedFailure(Exception): pass class TestContext(VdsmTestCase): def test_empty(self): with guarded.context([]): pass def test_one_vol(self): log = [] locks = [ FakeGuardedLock('01_dom', 'dom', 'mode', log), FakeGuardedLock('02_img', 'img', 'mode', log), FakeGuardedLock('03_vol', 'vol', 'mode', log)] expected = [ ('acquire', '01_dom', 'dom', 'mode'), ('acquire', '02_img', 'img', 'mode'), ('acquire', '03_vol', 'vol', 'mode'), ('release', '03_vol', 'vol', 'mode'), ('release', '02_img', 'img', 'mode'), ('release', '01_dom', 'dom', 'mode')] with guarded.context(locks): self.assertEqual(expected[:3], log) self.assertEqual(expected, log) def test_two_vols_different_domains(self): log = [] locks = [ FakeGuardedLock('01_dom', 'dom1', 'mode', log), FakeGuardedLock('02_img', 'img1', 'mode', log), FakeGuardedLock('03_vol', 'vol1', 'mode', log), FakeGuardedLock('01_dom', 'dom2', 'mode', log), FakeGuardedLock('02_img', 'img2', 'mode', log), FakeGuardedLock('03_vol', 'vol2', 'mode', log)] expected = [ ('acquire', '01_dom', 'dom1', 'mode'), ('acquire', '01_dom', 'dom2', 'mode'), ('acquire', '02_img', 'img1', 'mode'), ('acquire', '02_img', 'img2', 'mode'), ('acquire', '03_vol', 'vol1', 'mode'), ('acquire', '03_vol', 'vol2', 'mode'), ('release', '03_vol', 'vol2', 'mode'), ('release', '03_vol', 'vol1', 'mode'), ('release', '02_img', 'img2', 'mode'), ('release', '02_img', 'img1', 'mode'), ('release', '01_dom', 'dom2', 'mode'), ('release', '01_dom', 'dom1', 'mode')] with guarded.context(locks): self.assertEqual(expected[:6], log) self.assertEqual(expected, log) def test_two_vols_same_image(self): log = [] locks = [ FakeGuardedLock('01_dom', 'dom1', 'mode', log), FakeGuardedLock('02_img', 'img1', 'mode', log), FakeGuardedLock('03_vol', 'vol1', 'mode', log), FakeGuardedLock('01_dom', 'dom1', 'mode', log), FakeGuardedLock('02_img', 'img1', 'mode', log), FakeGuardedLock('03_vol', 'vol2', 'mode', log)] expected = [ ('acquire', '01_dom', 'dom1', 'mode'), ('acquire', '02_img', 'img1', 'mode'), ('acquire', '03_vol', 'vol1', 'mode'), ('acquire', '03_vol', 'vol2', 'mode'), ('release', '03_vol', 'vol2', 'mode'), ('release', '03_vol', 'vol1', 'mode'), ('release', '02_img', 'img1', 'mode'), ('release', '01_dom', 'dom1', 'mode')] with guarded.context(locks): self.assertEqual(expected[:4], log) self.assertEqual(expected, log) def test_acquire_failure(self): log = [] locks = [ FakeGuardedLock('01_dom', 'dom1', 'mode', log), FakeGuardedLock('02_img', 'img1', 'mode', log), FakeGuardedLock('03_vol', 'vol1', 'mode', log, acquire=InjectedFailure)] expected = [ ('acquire', '01_dom', 'dom1', 'mode'), ('acquire', '02_img', 'img1', 'mode'), ('release', '02_img', 'img1', 'mode'), ('release', '01_dom', 'dom1', 'mode')] with self.assertRaises(InjectedFailure): with guarded.context(locks): pass self.assertEqual(expected, log) def test_aquire_failure_then_release_failure(self): log = [] locks = [ FakeGuardedLock('01_dom', 'dom1', 'mode', log), FakeGuardedLock('02_img', 'img1', 'mode', log, release=InjectedFailure), FakeGuardedLock('03_vol', 'vol1', 'mode', log, acquire=InjectedFailure)] expected = [ ('acquire', '01_dom', 'dom1', 'mode'), ('acquire', '02_img', 'img1', 'mode'), ('release', '01_dom', 'dom1', 'mode')] with self.assertRaises(InjectedFailure): with guarded.context(locks): pass self.assertEqual(expected, log) def METHOD_NAME(self): log = [] locks = [ FakeGuardedLock('01_dom', 'dom1', 'mode', log), FakeGuardedLock('02_img', 'img1', 'mode', log), FakeGuardedLock('03_vol', 'vol1', 'mode', log, release=InjectedFailure)] expected = [ ('acquire', '01_dom', 'dom1', 'mode'), ('acquire', '02_img', 'img1', 'mode'), ('acquire', '03_vol', 'vol1', 'mode'), ('release', '02_img', 'img1', 'mode'), ('release', '01_dom', 'dom1', 'mode')] with self.assertRaises(guarded.ReleaseError): with guarded.context(locks): pass self.assertEqual(expected, log) def test_fail_inside_context(self): log = [] locks = [ FakeGuardedLock('01_dom', 'dom1', 'mode', log), FakeGuardedLock('02_img', 'img1', 'mode', log), FakeGuardedLock('03_vol', 'vol1', 'mode', log)] expected = [ ('acquire', '01_dom', 'dom1', 'mode'), ('acquire', '02_img', 'img1', 'mode'), ('acquire', '03_vol', 'vol1', 'mode'), ('release', '03_vol', 'vol1', 'mode'), ('release', '02_img', 'img1', 'mode'), ('release', '01_dom', 'dom1', 'mode')] with self.assertRaises(InjectedFailure): with guarded.context(locks): raise InjectedFailure() self.assertEqual(expected, log) def test_fail_inside_context_with_release_failure(self): log = [] locks = [ FakeGuardedLock('01_dom', 'dom1', 'mode', log), FakeGuardedLock('02_img', 'img1', 'mode', log), FakeGuardedLock('03_vol', 'vol1', 'mode', log, release=InjectedFailure)] expected = [ ('acquire', '01_dom', 'dom1', 'mode'), ('acquire', '02_img', 'img1', 'mode'), ('acquire', '03_vol', 'vol1', 'mode'), ('release', '02_img', 'img1', 'mode'), ('release', '01_dom', 'dom1', 'mode')] with self.assertRaises(RuntimeError): with guarded.context(locks): raise RuntimeError() self.assertEqual(expected, log) def test_deadlock(self): log = [] locks = [ FakeGuardedLock('00_storage', 'dom', 'shared', log), # Attemting to lock next locks will deadlock in resourceManager. FakeGuardedLock('02_img.dom', 'img', 'exclusive', log), FakeGuardedLock('02_img.dom', 'img', 'shared', log), FakeGuardedLock('03_vol.dom', 'vol', 'exclusive', log), ] # Creating a context should raise with self.assertRaises(guarded.Deadlock): with guarded.context(locks): pass # Without locking any of the locks self.assertEqual([], log)
null
sample program configs
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append('../') from auto_scan_test import AutoScanTest, IgnoreReasons from program_config import TensorConfig, ProgramConfig, OpConfig, CxxConfig, TargetType, PrecisionType, DataLayoutType, Place import unittest import hypothesis from hypothesis import given, settings, seed, example, assume import hypothesis.strategies as st import argparse import numpy as np from functools import partial class TestClipOp(AutoScanTest): def __init__(self, *args, **kwargs): AutoScanTest.__init__(self, *args, **kwargs) self.enable_testing_on_place( TargetType.X86, PrecisionType.FP32, DataLayoutType.NCHW, thread=[1, 4]) self.enable_testing_on_place( TargetType.ARM, PrecisionType.FP32, DataLayoutType.NCHW, thread=[1, 4]) opencl_places = [ Place(TargetType.OpenCL, PrecisionType.FP16, DataLayoutType.ImageDefault), Place( TargetType.OpenCL, PrecisionType.FP16, DataLayoutType.ImageFolder), Place(TargetType.OpenCL, PrecisionType.FP32, DataLayoutType.NCHW), Place(TargetType.OpenCL, PrecisionType.Any, DataLayoutType.ImageDefault), Place( TargetType.OpenCL, PrecisionType.Any, DataLayoutType.ImageFolder), Place(TargetType.OpenCL, PrecisionType.Any, DataLayoutType.NCHW), Place(TargetType.Host, PrecisionType.FP32) ] self.enable_testing_on_place(places=opencl_places) self.enable_testing_on_place(TargetType.NNAdapter, PrecisionType.FP32) self.enable_devices_on_nnadapter(device_names=[ "cambricon_mlu", "nvidia_tensorrt", "intel_openvino", "kunlunxin_xtcl" ]) def is_program_valid(self, program_config: ProgramConfig, predictor_config: CxxConfig) -> bool: if "kunlunxin_xtcl" in self.get_nnadapter_device_name(): in_num = len(program_config.inputs) if in_num == 3: return False return True def METHOD_NAME(self, draw): in_shape_tmp = draw( st.lists( st.integers( min_value=1, max_value=8), min_size=1, max_size=4)) in_shape = draw(st.sampled_from([in_shape_tmp, []])) min_val = float(np.random.randint(0, 100) / 100) max_val = min_val + 0.5 min_max_shape = draw(st.integers(min_value=1, max_value=1)) case_type = draw(st.sampled_from(["c1", "c2"])) def generate_input(*args, **kwargs): return np.random.random(in_shape).astype(np.float32) def generate_min(*args, **kwargs): return np.random.random(min_max_shape).astype(np.float32) def generate_max(*args, **kwargs): return np.random.random(min_max_shape).astype(np.float32) + 1.0 if case_type == "c1": clip_op = OpConfig( type="clip", inputs={ "X": ["input_data"], "Min": ["min_data"], "Max": ["max_data"] }, outputs={"Out": ["output_data"]}, attrs={"min": 0, "max": 0}) program_config = ProgramConfig( ops=[clip_op], weights={}, inputs={ "input_data": TensorConfig(data_gen=partial(generate_input)), "min_data": TensorConfig(data_gen=partial(generate_min)), "max_data": TensorConfig(data_gen=partial(generate_max)), }, outputs=["output_data"]) else: clip_op = OpConfig( type="clip", inputs={"X": ["input_data"]}, outputs={"Out": ["output_data"]}, attrs={"min": min_val, "max": max_val}) program_config = ProgramConfig( ops=[clip_op], weights={}, inputs={ "input_data": TensorConfig(data_gen=partial(generate_input)) }, outputs=["output_data"]) return program_config def sample_predictor_configs(self): return self.get_predictor_configs(), ["clip"], (1e-5, 1e-5) def add_ignore_pass_case(self): def teller1(program_config, predictor_config): if "nvidia_tensorrt" in self.get_nnadapter_device_name(): in_num = len(program_config.inputs) in_shape_size = len(program_config.inputs["input_data"].shape) if in_num == 3 or in_shape_size == 1: return True self.add_ignore_check_case( teller1, IgnoreReasons.PADDLELITE_NOT_SUPPORT, "Lite does not support '3 input tensors' or 'in_shape_size == 1' on nvidia_tensorrt." ) def teller2(program_config, predictor_config): if "intel_openvino" in self.get_nnadapter_device_name(): in_num = len(program_config.inputs) if in_num == 3: return True self.add_ignore_check_case( teller2, IgnoreReasons.PADDLELITE_NOT_SUPPORT, "Lite does not support '3 input tensors' on intel_openvino.") def _teller3(program_config, predictor_config): target_type = predictor_config.target() in_x_shape = list(program_config.inputs["input_data"].shape) if target_type not in [ TargetType.ARM, TargetType.Host, TargetType.X86, TargetType.Metal, TargetType.OpenCL ]: if len(in_x_shape) == 0: return True self.add_ignore_check_case( _teller3, IgnoreReasons.PADDLELITE_NOT_SUPPORT, "0D-tensor is not supported on this target now.") def test(self, *args, **kwargs): self.run_and_statis(quant=False, max_examples=100) if __name__ == "__main__": unittest.main(argv=[''])
null
find max ckpt
import os from .util import get_ngpu from .util import MAIN_ROOT from .util import run_cmd def METHOD_NAME(model_path): max_ckpt = 0 for filename in os.listdir(model_path): if filename.endswith('.pdz'): files = filename[:-4] a1, a2, it = files.split("_") if int(it) > max_ckpt: max_ckpt = int(it) return max_ckpt class FineTune: def __init__(self): self.now_file_path = os.path.dirname(__file__) self.PYTHONPATH = os.path.join(MAIN_ROOT, "examples/other/tts_finetune/tts3") self.BIN_DIR = os.path.join(MAIN_ROOT, "paddlespeech/t2s/exps/fastspeech2") self.pretrained_model_dir = os.path.realpath( "source/model/fastspeech2_aishell3_ckpt_1.1.0") self.voc_model_dir = os.path.realpath( "source/model/hifigan_aishell3_ckpt_0.2.0") self.finetune_config = os.path.join("conf/tts3_finetune.yaml") def finetune(self, input_dir, exp_dir='temp', epoch=100): """ use cmd follow examples/other/tts_finetune/tts3/run.sh """ newdir_name = "newdir" new_dir = os.path.join(input_dir, newdir_name) mfa_dir = os.path.join(exp_dir, 'mfa_result') dump_dir = os.path.join(exp_dir, 'dump') output_dir = os.path.join(exp_dir, 'exp') lang = "zh" ngpu = get_ngpu() cmd = f""" # check oov python3 {self.PYTHONPATH}/local/check_oov.py \ --input_dir={input_dir} \ --pretrained_model_dir={self.pretrained_model_dir} \ --newdir_name={newdir_name} \ --lang={lang} # get mfa result python3 {self.PYTHONPATH}/local/get_mfa_result.py \ --input_dir={new_dir} \ --mfa_dir={mfa_dir} \ --lang={lang} # generate durations.txt python3 {self.PYTHONPATH}/local/generate_duration.py \ --mfa_dir={mfa_dir} # extract feature python3 {self.PYTHONPATH}/local/extract_feature.py \ --duration_file="./durations.txt" \ --input_dir={new_dir} \ --dump_dir={dump_dir} \ --pretrained_model_dir={self.pretrained_model_dir} # create finetune env python3 {self.PYTHONPATH}/local/prepare_env.py \ --pretrained_model_dir={self.pretrained_model_dir} \ --output_dir={output_dir} # finetune python3 {self.PYTHONPATH}/local/finetune.py \ --pretrained_model_dir={self.pretrained_model_dir} \ --dump_dir={dump_dir} \ --output_dir={output_dir} \ --ngpu={ngpu} \ --epoch=100 \ --finetune_config={self.finetune_config} """ print(cmd) return run_cmd(cmd, exp_dir) def synthesize(self, text, wav_name, out_wav_dir, exp_dir='temp'): voc = "hifigan_aishell3" dump_dir = os.path.join(exp_dir, 'dump') output_dir = os.path.join(exp_dir, 'exp') text_path = os.path.join(exp_dir, 'sentences.txt') lang = "zh" ngpu = get_ngpu() model_path = f"{output_dir}/checkpoints" ckpt = METHOD_NAME(model_path) # 生成对应的语句 with open(text_path, "w", encoding='utf8') as f: f.write(wav_name + " " + text) cmd = f""" FLAGS_allocator_strategy=naive_best_fit \ FLAGS_fraction_of_gpu_memory_to_use=0.01 \ python3 {self.BIN_DIR}/../synthesize_e2e.py \ --am=fastspeech2_aishell3 \ --am_config={self.pretrained_model_dir}/default.yaml \ --am_ckpt={output_dir}/checkpoints/snapshot_iter_{ckpt}.pdz \ --am_stat={self.pretrained_model_dir}/speech_stats.npy \ --voc={voc} \ --voc_config={self.voc_model_dir}/default.yaml \ --voc_ckpt={self.voc_model_dir}/snapshot_iter_2500000.pdz \ --voc_stat={self.voc_model_dir}/feats_stats.npy \ --lang={lang} \ --text={text_path} \ --output_dir={out_wav_dir} \ --phones_dict={dump_dir}/phone_id_map.txt \ --speaker_dict={dump_dir}/speaker_id_map.txt \ --spk_id=0 \ --ngpu={ngpu} """ out_path = os.path.join(out_wav_dir, f"{wav_name}.wav") return run_cmd(cmd, out_path)
null
test upgrade
""" Nest analysis results field Revision ID: 7emq1brv0zz6 Date: 2022-06-09 20:38:11.017655 """ import asyncio import arrow # Revision identifiers. from pymongo import UpdateOne from virtool_core.mongo import buffered_bulk_writer from virtool.migration import MigrationContext name = "Nest analysis results field" created_at = arrow.get("2022-06-09 20:38:11.017655") revision_id = "7emq1brv0zz6" alembic_down_revision = "90bf491700cb" virtool_down_revision = None async def upgrade(ctx: MigrationContext): """ Move the ``subtracted_count`` and ``read_count`` fields from the document to the ``results`` sub-document. This supports the new jobs API model where only a ``results`` field can be set on the analysis document by a workflow job. """ # We are only interested in analyses that have a non-``None`` ``results`` field # but no ``results.hits`` field, which indicates it is an older analysis. query = { "results": {"$ne": None, "$exists": True}, "results.hits": {"$exists": False}, } async with buffered_bulk_writer(ctx.mongo.analyses) as writer: async for document in ctx.mongo.analyses.find(query): _id = document["_id"] results = {"hits": document["results"]} if document["workflow"] == "pathoscope_bowtie": await writer.add( UpdateOne( {"_id": _id}, { "$set": { "results": { **results, "read_count": document["read_count"], "subtracted_count": document["subtracted_count"], } }, "$unset": {"read_count": "", "subtracted_count": ""}, }, ) ) elif document["workflow"] == "nuvs": await writer.add( UpdateOne({"_id": _id}, {"$set": {"results": results}}) ) elif document["workflow"] == "aodp": await writer.add( UpdateOne( {"_id": _id}, { "$set": { "results": { **results, "join_histogram": document["join_histogram"], "joined_pair_count": document["joined_pair_count"], "remainder_pair_count": document[ "remainder_pair_count" ], } }, "$unset": { "join_histogram": "", "joined_pair_count": "", "remainder_pair_count": "", }, }, ) ) if await ctx.mongo.analyses.count_documents(query) > 0: raise Exception("Some analyses still have a non-nested results field") async def METHOD_NAME(ctx: MigrationContext, snapshot): await asyncio.gather( ctx.mongo.analyses.delete_many({}), ctx.mongo.analyses.insert_many( [ { "_id": "foo", "read_count": 1209, "results": [1, 2, 3, 4, 5], "subtracted_count": 231, "workflow": "pathoscope_bowtie", }, { "_id": "fine", "results": { "hits": [1, 2, 3, 4, 5], "read_count": 1209, "subtracted_count": 231, }, "workflow": "pathoscope_bowtie", }, { "_id": "bar", "read_count": 7982, "results": [9, 8, 7, 6, 5], "subtracted_count": 112, "workflow": "pathoscope_bowtie", }, {"_id": "baz", "results": [9, 8, 7, 6, 5], "workflow": "nuvs"}, { "_id": "bad", "join_histogram": [1, 2, 3, 4, 5], "joined_pair_count": 12345, "remainder_pair_count": 54321, "results": [9, 8, 7, 6, 5], "workflow": "aodp", }, { "_id": "missing", "join_histogram": [1, 2, 3, 4, 5], "joined_pair_count": 12345, "remainder_pair_count": 54321, "workflow": "aodp", }, { "_id": "none", "join_histogram": [1, 2, 3, 4, 5], "joined_pair_count": 12345, "remainder_pair_count": 54321, "results": None, "workflow": "aodp", }, ] ), ) await upgrade(ctx) assert await ctx.mongo.analyses.find().to_list(None) == snapshot
null
get
import typing from collections.abc import MutableSet from typing import List, Optional, Type, Union from loguru import logger from flexget import plugin from flexget.entry import Entry from flexget.event import event PLUGIN_NAME = 'plex_watchlist' SUPPORTED_IDS = ['imdb_id', 'tmdb_id', 'tvdb_id', 'plex_guid'] logger = logger.bind(name=PLUGIN_NAME) if typing.TYPE_CHECKING: from plexapi.myplex import MyPlexAccount from plexapi.video import Movie, Show def import_plexaccount() -> "Type[MyPlexAccount]": try: from plexapi.myplex import MyPlexAccount return MyPlexAccount except ImportError: raise plugin.DependencyError('plex_watchlist', 'plexapi', 'plexapi package required') def to_entry(plex_item: "Union[Movie, Show]") -> Entry: entry = Entry( title=f"{plex_item.title} ({plex_item.year})" if plex_item.year else plex_item.title, url=plex_item.guid, ) if plex_item.TYPE == 'movie': entry['movie_name'] = plex_item.title entry['movie_year'] = plex_item.year elif plex_item.TYPE == 'show': entry['series_name'] = plex_item.title entry['series_year'] = plex_item.year entry.update(get_supported_ids_from_plex_object(plex_item)) return entry def get_supported_ids_from_plex_object(plex_item): ids = {'plex_guid': plex_item.guid} for guid in plex_item.guids: x = guid.id.split("://") try: value = int(x[1]) except ValueError: value = x[1] media_id = f'{x[0]}_id' if media_id in SUPPORTED_IDS: ids[media_id] = value return ids class VideoStub: guid: str title: str # plexapi objects are build fomr XML. So we create a simple stub that works for watchlist calls def to_plex_item(entry): item = VideoStub() item.guid = entry['plex_guid'] item.title = entry['title'] return item class PlexManagedWatchlist(MutableSet): def __init__( self, username: Optional[str] = None, password: Optional[str] = None, token: Optional[str] = None, filter: Optional[str] = None, type: Optional[str] = None, ): self.username = username self.password = password self.token = token self.type = type self.filter = filter self._items: Optional[List[Entry]] = None self._account: Optional[MyPlexAccount] = None @property def account(self) -> "MyPlexAccount": MyPlexAccount = import_plexaccount() if self._account is None: self._account = MyPlexAccount(self.username, self.password, self.token) return self._account @property def items(self) -> List[Entry]: if self._items is None: watchlist = self.account.watchlist(filter=self.filter, libtype=self.type) self._items = [] for item in watchlist: self._items.append(to_entry(item)) return self._items def __iter__(self): return iter(self.items) def __len__(self) -> int: return len(self.items) def __contains__(self, entry) -> bool: return self._find_entry(entry) is not None def METHOD_NAME(self, entry) -> Optional[Entry]: return self._find_entry(entry) def add(self, entry: Entry) -> None: item = None if 'plex_guid' in entry: item = to_plex_item(entry) else: logger.debug('Searching for {} with discover', entry['title']) results = self.account.searchDiscover(entry['title'], libtype=self.type) matched_entry = self._match_entry(entry, [to_entry(result) for result in results]) if matched_entry: item = to_plex_item(matched_entry) if item: if self.account.onWatchlist(item): logger.debug(f'"{item.title}" is already on the watchlist') return logger.debug(f'Adding "{item.title}" to the watchlist') self.account.addToWatchlist(item) def discard(self, entry) -> None: entry = self._find_entry(entry) if entry: item = to_plex_item(entry) logger.debug('Removing {} from watchlist', entry['title']) self.account.removeFromWatchlist(item) @property def online(self) -> bool: return True @property def immutable(self): return False def _find_entry(self, entry): return self._match_entry(entry, self.items) def _match_entry(self, entry: Entry, entries: List[Entry]): for item in entries: # match on supported ids if any(entry.METHOD_NAME(id) is not None and entry[id] == item[id] for id in SUPPORTED_IDS): return item name = entry.METHOD_NAME('movie_name', None) or entry.METHOD_NAME('series_name', None) year = entry.METHOD_NAME('movie_year', None) or entry.METHOD_NAME('series_year', None) _name = item.METHOD_NAME('movie_name', None) or item.METHOD_NAME('series_name', None) _year = item.METHOD_NAME('movie_year', None) or item.METHOD_NAME('series_year', None) if (name and year) and (_name == name and _year == year): return item # title matching sucks but lets try as last resort if entry.METHOD_NAME('title').lower() == item['title'].lower(): return item class PlexWatchlist: schema = { 'properties': { 'username': {'type': 'string'}, 'password': {'type': 'string'}, 'token': {'type': 'string'}, 'type': {'type': 'string', 'enum': ['movie', 'show']}, 'filter': {'type': 'string', 'enum': ['available', 'released']}, }, 'anyOf': [{'required': ['token']}, {'required': ['username', 'password']}], } @plugin.priority(plugin.PRIORITY_FIRST) def on_task_start(self, task, config): import_plexaccount() def get_list(self, config): return PlexManagedWatchlist(**config) @plugin.internet(logger) def on_task_input(self, task, config): yaml_list = PlexManagedWatchlist(**config) yield from yaml_list @event('plugin.register') def register_plugin(): plugin.register(PlexWatchlist, PLUGIN_NAME, api_ver=2, interfaces=['task', 'list'])
null
test reg class
"""Tests for distutils.msvc9compiler.""" import sys import unittest import os from distutils.errors import DistutilsPlatformError from distutils.tests import support from test.test_support import run_unittest # A manifest with the only assembly reference being the msvcrt assembly, so # should have the assembly completely stripped. Note that although the # assembly has a <security> reference the assembly is removed - that is # currently a "feature", not a bug :) _MANIFEST_WITH_ONLY_MSVC_REFERENCE = """\ <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0"> <trustInfo xmlns="urn:schemas-microsoft-com:asm.v3"> <security> <requestedPrivileges> <requestedExecutionLevel level="asInvoker" uiAccess="false"> </requestedExecutionLevel> </requestedPrivileges> </security> </trustInfo> <dependency> <dependentAssembly> <assemblyIdentity type="win32" name="Microsoft.VC90.CRT" version="9.0.21022.8" processorArchitecture="x86" publicKeyToken="XXXX"> </assemblyIdentity> </dependentAssembly> </dependency> </assembly> """ # A manifest with references to assemblies other than msvcrt. When processed, # this assembly should be returned with just the msvcrt part removed. _MANIFEST_WITH_MULTIPLE_REFERENCES = """\ <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0"> <trustInfo xmlns="urn:schemas-microsoft-com:asm.v3"> <security> <requestedPrivileges> <requestedExecutionLevel level="asInvoker" uiAccess="false"> </requestedExecutionLevel> </requestedPrivileges> </security> </trustInfo> <dependency> <dependentAssembly> <assemblyIdentity type="win32" name="Microsoft.VC90.CRT" version="9.0.21022.8" processorArchitecture="x86" publicKeyToken="XXXX"> </assemblyIdentity> </dependentAssembly> </dependency> <dependency> <dependentAssembly> <assemblyIdentity type="win32" name="Microsoft.VC90.MFC" version="9.0.21022.8" processorArchitecture="x86" publicKeyToken="XXXX"></assemblyIdentity> </dependentAssembly> </dependency> </assembly> """ _CLEANED_MANIFEST = """\ <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0"> <trustInfo xmlns="urn:schemas-microsoft-com:asm.v3"> <security> <requestedPrivileges> <requestedExecutionLevel level="asInvoker" uiAccess="false"> </requestedExecutionLevel> </requestedPrivileges> </security> </trustInfo> <dependency> </dependency> <dependency> <dependentAssembly> <assemblyIdentity type="win32" name="Microsoft.VC90.MFC" version="9.0.21022.8" processorArchitecture="x86" publicKeyToken="XXXX"></assemblyIdentity> </dependentAssembly> </dependency> </assembly>""" if sys.platform=="win32": from distutils.msvccompiler import get_build_version if get_build_version()>=8.0: SKIP_MESSAGE = None else: SKIP_MESSAGE = "These tests are only for MSVC8.0 or above" else: SKIP_MESSAGE = "These tests are only for win32" @unittest.skipUnless(SKIP_MESSAGE is None, SKIP_MESSAGE) class msvc9compilerTestCase(support.TempdirManager, unittest.TestCase): def test_no_compiler(self): # makes sure query_vcvarsall raises # a DistutilsPlatformError if the compiler # is not found from distutils.msvc9compiler import query_vcvarsall def _find_vcvarsall(version): return None from distutils import msvc9compiler old_find_vcvarsall = msvc9compiler.find_vcvarsall msvc9compiler.find_vcvarsall = _find_vcvarsall try: self.assertRaises(DistutilsPlatformError, query_vcvarsall, 'wont find this version') finally: msvc9compiler.find_vcvarsall = old_find_vcvarsall def METHOD_NAME(self): from distutils.msvc9compiler import Reg self.assertRaises(KeyError, Reg.get_value, 'xxx', 'xxx') # looking for values that should exist on all # windows registeries versions. path = r'Control Panel\Desktop' v = Reg.get_value(path, u'dragfullwindows') self.assertTrue(v in (u'0', u'1', u'2')) import _winreg HKCU = _winreg.HKEY_CURRENT_USER keys = Reg.read_keys(HKCU, 'xxxx') self.assertEqual(keys, None) keys = Reg.read_keys(HKCU, r'Control Panel') self.assertTrue('Desktop' in keys) def test_remove_visual_c_ref(self): from distutils.msvc9compiler import MSVCCompiler tempdir = self.mkdtemp() manifest = os.path.join(tempdir, 'manifest') f = open(manifest, 'w') try: f.write(_MANIFEST_WITH_MULTIPLE_REFERENCES) finally: f.close() compiler = MSVCCompiler() compiler._remove_visual_c_ref(manifest) # see what we got f = open(manifest) try: # removing trailing spaces content = '\n'.join([line.rstrip() for line in f.readlines()]) finally: f.close() # makes sure the manifest was properly cleaned self.assertEqual(content, _CLEANED_MANIFEST) def test_remove_entire_manifest(self): from distutils.msvc9compiler import MSVCCompiler tempdir = self.mkdtemp() manifest = os.path.join(tempdir, 'manifest') f = open(manifest, 'w') try: f.write(_MANIFEST_WITH_ONLY_MSVC_REFERENCE) finally: f.close() compiler = MSVCCompiler() got = compiler._remove_visual_c_ref(manifest) self.assertIs(got, None) def test_suite(): return unittest.makeSuite(msvc9compilerTestCase) if __name__ == "__main__": run_unittest(test_suite())
null
act l 3191
""" https://github.com/csesoc/Circles/wiki/Manual-Fixes-to-Course-Prerequisites Copy this into a new file for the relevant faculty's fixes: e.g. COMPFixes.py, ACCTFixes.py, PSYCFixes.py Apply manual ACTL fixes to processed conditions in conditionsProcessed.json so that they can be fed into algorithms. If you make a mistake and need to regenerate conditionsProcessed.json, then you can run: python3 -m data.processors.conditionsPreprocessing To then run this file: python3 -m data.processors.manualFixes.ACTLFixes """ from data.utility import data_helpers # Reads conditionsProcessed dictionary into 'CONDITIONS' CONDITIONS = data_helpers.read_data("data/final_data/conditionsProcessed.json") PROCESSED = "processed" # Reads coursesProcessed dictionary into 'COURSES' (for updating exclusions) COURSES = data_helpers.read_data("data/final_data/coursesProcessed.json") def fix_conditions(): """ Functions to apply manual fixes """ CONDITIONS["ACTL1101"][PROCESSED] = ACTL_1101() CONDITIONS["ACTL2101"][PROCESSED] = ACTL_2101() CONDITIONS["ACTL2102"][PROCESSED] = ACTL_2102() CONDITIONS["ACTL2111"][PROCESSED] = ACTL_2111() CONDITIONS["ACTL3142"][PROCESSED] = ACTL_3142() CONDITIONS["ACTL3162"][PROCESSED] = ACTL_3162() CONDITIONS["ACTL3191"][PROCESSED] = METHOD_NAME() CONDITIONS["ACTL3192"] = ACTL_3192(CONDITIONS["ACTL3192"]) CONDITIONS["ACTL3202"][PROCESSED] = ACTL_3202() CONDITIONS["ACTL3303"][PROCESSED] = ACTL_3303() CONDITIONS["ACTL4001"] = ACTL_4001(CONDITIONS["ACTL4001"]) CONDITIONS["ACTL4003"][PROCESSED] = ACTL_4003() # Updates the files with the modified dictionaries data_helpers.write_data( CONDITIONS, "data/final_data/conditionsProcessed.json") data_helpers.write_data(COURSES, "data/final_data/coursesProcessed.json") def ACTL_1101(): """ "original": "Prerequisite: MATH1151 AND in Actuarial Studies programs.<br/><br/>", "processed": "MATH1151 && in Actuarial Studies programs" """ return "MATH1151 && ACTL#" def ACTL_2101(): """ "original": "Prerequisite:Enrolment in Program 3587<br/><br/>", "processed": "Enrolment in Program 3587" """ return "3587" def ACTL_2102(): """ "original": "Pre-requisite: (ACTL2131 or MATH2901) and in Actuarial single or dual degrees.<br/><br/>", "processed": "(ACTL2131 || MATH2901) && in Actuarial single || dual degrees" """ return "(ACTL2131 || MATH2901) && ACTL#" def ACTL_2111(): """ "original": "Pre-requsite: MATH1251 AND (ACTL1101 OR in MATHE1, MATHM1 or MATHT1 majors)<br/><br/>", "processed": "MATH1251 && (ACTL1101 || in MATHE1 || MATHM1 || MATHT1 majors)" """ return "MATH1251 && (ACTL1101 || (MATHE1 || MATHM1 || MATHT1))" def ACTL_3142(): """ "original": "Pre-requisite: ACTL2131 OR (MATH2931 and in B. Data Science and Decisions (3959)) OR (MATH2901 and MATH2931)<br/><br/>", "processed": "ACTL2131 || (MATH2931 && in B. Data Science && Decisions (3959)) || (MATH2901 && MATH2931)" """ return "ACTL2131 || (MATH2931 && 3959) || (MATH2901 && MATH2931)" def ACTL_3162(): """ "original": "Pre-requisite: ACTL2102 or (MATH2901 AND MATHE1, MATHM1 or MATHT1 major)<br/><br/>", "processed": "ACTL2102 || (MATH2901 && MATHE1 || MATHM1 || MATHT1 major)" """ return "ACTL2102 || (MATH2901 && (MATHE1 || MATHM1 || MATHT1))" def METHOD_NAME(): """ "original": "Pre-requisites: ECON2101 or (ECON1101 and ACTL1101) or (completed at least 84UOC and enrolled in a Commerce Program).<br/><br/>", "processed": "ECON2101 || (ECON1101 && ACTL1101) || ( 84UOC && a Commerce Program)" """ return "ECON2101 || (ECON1101 && ACTL1101) || (84UOC && COMM#)" def ACTL_3192(condition): """ "original": "Pre-requisites: ECON2101 or (ECON1101 and ACTL1101) or (completed at least 84UOC and enrolled in a Commerce Program) and be in good academic standing.<br/><br/>", "processed": "ECON2101 || (ECON1101 && ACTL1101) || ( 84UOC && a Commerce Program) && be in good academic standing" """ return { "original": condition["original"], "processed": "ECON2101 || (ECON1101 && ACTL1101) || (84UOC && COMM#)", "handbook_note": "You must be in good academic standing to enroll in this course." } def ACTL_3202(): """ "original": "Prerequisite: ACTL2101 and enrolment in program 3587<br/><br/>", "processed": "ACTL2101 && enrolment in program 3587" """ return "ACTL2101 && 3587" def ACTL_3303(): """ "original": "Prerequisite: ACTL3202 and enrolment in program 3587<br/><br/>", "processed": "ACTL3202 && enrolment in program 3587" """ return "ACTL3202 && 3587" def ACTL_4001(condition): """ "original": "Pre-requisite: ACCT1511 or COMM1140, ACTL3141, ACTL3182, FINS1613 or COMM1180, ACTL3162, ACTL3151, ECON1102, 60+ WAM.<br/>Note: Students in 3587 may complete ACTL3141 as a co-requisite<br/><br/>", "processed": "ACCT1511 || COMM1140 || ACTL3141 || ACTL3182 || FINS1613 || COMM1180, ACTL3162, ACTL3151, ECON1102, 60WAM. Note: in 3587 may complete ACTL3141 as a []" """ return { "original": condition["original"], "processed": "(ACCT1511 || COMM1140) && ACTL3141 && ACTL3182 && (FINS1613 || COMM1180) && ACTL3162 && ACTL3151 && ECON1102 && 60WAM", "handbook_note": "Students in 3587 may complete ACTL3141 as a co-requisite." } def ACTL_4003(): """ "original": "Students must be in Actuarial Studies (Honours).<br/><br/>", "processed": "must be in Actuarial Studies (Honours)" """ return "4520" if __name__ == "__main__": fix_conditions()
null
override vddsdio
# SPDX-FileCopyrightText: 2014-2022 Fredrik Ahlberg, Angus Gratton, # Espressif Systems (Shanghai) CO LTD, other contributors as noted. # # SPDX-License-Identifier: GPL-2.0-or-later from ..loader import ESPLoader from ..util import FatalError, NotImplementedInROMError class ESP8266ROM(ESPLoader): """Access class for ESP8266 ROM bootloader""" CHIP_NAME = "ESP8266" IS_STUB = False CHIP_DETECT_MAGIC_VALUE = [0xFFF0C101] # OTP ROM addresses ESP_OTP_MAC0 = 0x3FF00050 ESP_OTP_MAC1 = 0x3FF00054 ESP_OTP_MAC3 = 0x3FF0005C SPI_REG_BASE = 0x60000200 SPI_USR_OFFS = 0x1C SPI_USR1_OFFS = 0x20 SPI_USR2_OFFS = 0x24 SPI_MOSI_DLEN_OFFS = None SPI_MISO_DLEN_OFFS = None SPI_W0_OFFS = 0x40 UART_CLKDIV_REG = 0x60000014 XTAL_CLK_DIVIDER = 2 FLASH_SIZES = { "512KB": 0x00, "256KB": 0x10, "1MB": 0x20, "2MB": 0x30, "4MB": 0x40, "2MB-c1": 0x50, "4MB-c1": 0x60, "8MB": 0x80, "16MB": 0x90, } FLASH_FREQUENCY = { "80m": 0xF, "40m": 0x0, "26m": 0x1, "20m": 0x2, } BOOTLOADER_FLASH_OFFSET = 0 MEMORY_MAP = [ [0x3FF00000, 0x3FF00010, "DPORT"], [0x3FFE8000, 0x40000000, "DRAM"], [0x40100000, 0x40108000, "IRAM"], [0x40201010, 0x402E1010, "IROM"], ] def get_efuses(self): # Return the 128 bits of ESP8266 efuse as a single Python integer result = self.read_reg(0x3FF0005C) << 96 result |= self.read_reg(0x3FF00058) << 64 result |= self.read_reg(0x3FF00054) << 32 result |= self.read_reg(0x3FF00050) return result def _get_flash_size(self, efuses): # rX_Y = EFUSE_DATA_OUTX[Y] r0_4 = (efuses & (1 << 4)) != 0 r3_25 = (efuses & (1 << 121)) != 0 r3_26 = (efuses & (1 << 122)) != 0 r3_27 = (efuses & (1 << 123)) != 0 if r0_4 and not r3_25: if not r3_27 and not r3_26: return 1 elif not r3_27 and r3_26: return 2 if not r0_4 and r3_25: if not r3_27 and not r3_26: return 2 elif not r3_27 and r3_26: return 4 return -1 def get_chip_description(self): efuses = self.get_efuses() is_8285 = ( efuses & ((1 << 4) | 1 << 80) ) != 0 # One or the other efuse bit is set for ESP8285 if is_8285: flash_size = self._get_flash_size(efuses) max_temp = ( efuses & (1 << 5) ) != 0 # This efuse bit identifies the max flash temperature chip_name = { 1: "ESP8285H08" if max_temp else "ESP8285N08", 2: "ESP8285H16" if max_temp else "ESP8285N16", }.get(flash_size, "ESP8285") return chip_name return "ESP8266EX" def get_chip_features(self): features = ["WiFi"] if "ESP8285" in self.get_chip_description(): features += ["Embedded Flash"] return features def flash_spi_attach(self, hspi_arg): if self.IS_STUB: super(ESP8266ROM, self).flash_spi_attach(hspi_arg) else: # ESP8266 ROM has no flash_spi_attach command in serial protocol, # but flash_begin will do it self.flash_begin(0, 0) def flash_set_parameters(self, size): # not implemented in ROM, but OK to silently skip for ROM if self.IS_STUB: super(ESP8266ROM, self).flash_set_parameters(size) def chip_id(self): """ Read Chip ID from efuse - the equivalent of the SDK system_get_chip_id() func """ id0 = self.read_reg(self.ESP_OTP_MAC0) id1 = self.read_reg(self.ESP_OTP_MAC1) return (id0 >> 24) | ((id1 & 0xFFFFFF) << 8) def read_mac(self): """Read MAC from OTP ROM""" mac0 = self.read_reg(self.ESP_OTP_MAC0) mac1 = self.read_reg(self.ESP_OTP_MAC1) mac3 = self.read_reg(self.ESP_OTP_MAC3) if mac3 != 0: oui = ((mac3 >> 16) & 0xFF, (mac3 >> 8) & 0xFF, mac3 & 0xFF) elif ((mac1 >> 16) & 0xFF) == 0: oui = (0x18, 0xFE, 0x34) elif ((mac1 >> 16) & 0xFF) == 1: oui = (0xAC, 0xD0, 0x74) else: raise FatalError("Unknown OUI") return oui + ((mac1 >> 8) & 0xFF, mac1 & 0xFF, (mac0 >> 24) & 0xFF) def get_erase_size(self, offset, size): """Calculate an erase size given a specific size in bytes. Provides a workaround for the bootloader erase bug.""" sectors_per_block = 16 sector_size = self.FLASH_SECTOR_SIZE num_sectors = (size + sector_size - 1) // sector_size start_sector = offset // sector_size head_sectors = sectors_per_block - (start_sector % sectors_per_block) if num_sectors < head_sectors: head_sectors = num_sectors if num_sectors < 2 * head_sectors: return (num_sectors + 1) // 2 * sector_size else: return (num_sectors - head_sectors) * sector_size def METHOD_NAME(self, new_voltage): raise NotImplementedInROMError( "Overriding VDDSDIO setting only applies to ESP32" ) class ESP8266StubLoader(ESP8266ROM): """Access class for ESP8266 stub loader, runs on top of ROM.""" FLASH_WRITE_SIZE = 0x4000 # matches MAX_WRITE_BLOCK in stub_loader.c IS_STUB = True def __init__(self, rom_loader): self.secure_download_mode = rom_loader.secure_download_mode self._port = rom_loader._port self._trace_enabled = rom_loader._trace_enabled self.cache = rom_loader.cache self.flush_input() # resets _slip_reader def get_erase_size(self, offset, size): return size # stub doesn't have same size bug as ROM loader ESP8266ROM.STUB_CLASS = ESP8266StubLoader
null
get container registry
# coding=utf-8 # *** WARNING: this file was generated by pulumi. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetContainerRegistryResult', 'AwaitableGetContainerRegistryResult', 'get_container_registry', 'get_container_registry_output', ] @pulumi.output_type class GetContainerRegistryResult: """ Container registry resource payload. """ def __init__(__self__, id=None, name=None, properties=None, system_data=None, type=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if properties and not isinstance(properties, dict): raise TypeError("Expected argument 'properties' to be a dict") pulumi.set(__self__, "properties", properties) if system_data and not isinstance(system_data, dict): raise TypeError("Expected argument 'system_data' to be a dict") pulumi.set(__self__, "system_data", system_data) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def id(self) -> str: """ Fully qualified resource Id for the resource. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> str: """ The name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def properties(self) -> 'outputs.ContainerRegistryPropertiesResponse': """ Properties of the container registry resource payload. """ return pulumi.get(self, "properties") @property @pulumi.getter(name="systemData") def system_data(self) -> 'outputs.SystemDataResponse': """ Metadata pertaining to creation and last modification of the resource. """ return pulumi.get(self, "system_data") @property @pulumi.getter def type(self) -> str: """ The type of the resource. """ return pulumi.get(self, "type") class AwaitableGetContainerRegistryResult(GetContainerRegistryResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetContainerRegistryResult( id=self.id, name=self.name, properties=self.properties, system_data=self.system_data, type=self.type) def METHOD_NAME(container_registry_name: Optional[str] = None, resource_group_name: Optional[str] = None, service_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetContainerRegistryResult: """ Get the container registries resource. :param str container_registry_name: The name of the container registry. :param str resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :param str service_name: The name of the Service resource. """ __args__ = dict() __args__['containerRegistryName'] = container_registry_name __args__['resourceGroupName'] = resource_group_name __args__['serviceName'] = service_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:appplatform/v20230501preview:getContainerRegistry', __args__, opts=opts, typ=GetContainerRegistryResult).value return AwaitableGetContainerRegistryResult( id=pulumi.get(__ret__, 'id'), name=pulumi.get(__ret__, 'name'), properties=pulumi.get(__ret__, 'properties'), system_data=pulumi.get(__ret__, 'system_data'), type=pulumi.get(__ret__, 'type')) @_utilities.lift_output_func(METHOD_NAME) def get_container_registry_output(container_registry_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, service_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetContainerRegistryResult]: """ Get the container registries resource. :param str container_registry_name: The name of the container registry. :param str resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :param str service_name: The name of the Service resource. """ ...
null
spark dbfs datasource
from __future__ import annotations import logging import os import pathlib import re from typing import TYPE_CHECKING, cast import boto3 import botocore import pytest from great_expectations.core.util import DBFSPath from great_expectations.datasource.fluent import SparkDBFSDatasource from great_expectations.datasource.fluent.data_asset.data_connector import ( DBFSDataConnector, ) from great_expectations.datasource.fluent.file_path_data_asset import ( _FilePathDataAsset, ) from great_expectations.datasource.fluent.interfaces import TestConnectionError from great_expectations.datasource.fluent.spark_file_path_datasource import ( CSVAsset, ) from tests.test_utils import create_files_in_directory if TYPE_CHECKING: from pyfakefs.fake_filesystem import FakeFilesystem logger = logging.getLogger(__file__) @pytest.fixture def METHOD_NAME(fs: FakeFilesystem, test_backends) -> SparkDBFSDatasource: if "SparkDFDataset" not in test_backends: pytest.skip("No spark backend selected.") # Copy boto modules into fake filesystem (see https://github.com/spulec/moto/issues/1682#issuecomment-645016188) for module in [boto3, botocore]: module_dir = pathlib.Path(module.__file__).parent fs.add_real_directory(module_dir, lazy_read=False) # Copy google credentials into fake filesystem if they exist on your filesystem google_cred_file = os.getenv("GOOGLE_APPLICATION_CREDENTIALS") if google_cred_file: fs.add_real_file(google_cred_file) base_directory: str = "/dbfs/great_expectations" fs.create_dir(base_directory) create_files_in_directory( directory=base_directory, file_name_list=[ "alex_20200809_1000.csv", "eugene_20200809_1500.csv", "james_20200811_1009.csv", "abe_20200809_1040.csv", "will_20200809_1002.csv", "james_20200713_1567.csv", "eugene_20201129_1900.csv", "will_20200810_1001.csv", "james_20200810_1003.csv", "alex_20200819_1300.csv", ], ) return SparkDBFSDatasource( # type: ignore[call-arg] name="spark_dbfs_datasource", base_directory=pathlib.Path(base_directory), ) @pytest.fixture def csv_asset(METHOD_NAME: SparkDBFSDatasource) -> _FilePathDataAsset: asset = METHOD_NAME.add_csv_asset( name="csv_asset", batching_regex=r"(?P<name>.+)_(?P<timestamp>.+)_(?P<price>\d{4})\.csv", ) return asset @pytest.fixture def bad_regex_config(csv_asset: CSVAsset) -> tuple[re.Pattern, str]: regex = re.compile( r"(?P<name>.+)_(?P<ssn>\d{9})_(?P<timestamp>.+)_(?P<price>\d{4})\.csv" ) data_connector: DBFSDataConnector = cast( DBFSDataConnector, csv_asset._data_connector ) test_connection_error_message = f"""No file at base_directory path "{data_connector._base_directory.resolve()}" matched regular expressions pattern "{data_connector._batching_regex.pattern}" and/or glob_directive "**/*" for DataAsset "csv_asset".""" return regex, test_connection_error_message @pytest.mark.spark def test_construct_spark_dbfs_datasource(METHOD_NAME: SparkDBFSDatasource): assert METHOD_NAME.name == "spark_dbfs_datasource" @pytest.mark.spark def test_add_csv_asset_to_datasource(METHOD_NAME: SparkDBFSDatasource): asset_specified_metadata = {"asset_level_metadata": "my_metadata"} asset = METHOD_NAME.add_csv_asset( name="csv_asset", batching_regex=r"(.+)_(.+)_(\d{4})\.csv", batch_metadata=asset_specified_metadata, ) assert asset.name == "csv_asset" assert asset.batching_regex.match("random string") is None assert asset.batching_regex.match("alex_20200819_13D0.csv") is None m1 = asset.batching_regex.match("alex_20200819_1300.csv") assert m1 is not None assert asset.batch_metadata == asset_specified_metadata @pytest.mark.unit def test_construct_csv_asset_directly(): # noinspection PyTypeChecker asset = CSVAsset( name="csv_asset", batching_regex=r"(.+)_(.+)_(\d{4})\.csv", ) assert asset.name == "csv_asset" assert asset.batching_regex.match("random string") is None assert asset.batching_regex.match("alex_20200819_13D0.csv") is None m1 = asset.batching_regex.match("alex_20200819_1300.csv") assert m1 is not None @pytest.mark.spark @pytest.mark.xfail( reason="Accessing objects on pyfakefs.fake_filesystem.FakeFilesystem using Spark is not working (this test is conducted using Jupyter notebook manually)." ) def test_get_batch_list_from_fully_specified_batch_request( METHOD_NAME: SparkDBFSDatasource, ): asset_specified_metadata = {"asset_level_metadata": "my_metadata"} asset = METHOD_NAME.add_csv_asset( name="csv_asset", batching_regex=r"(?P<name>.+)_(?P<timestamp>.+)_(?P<price>\d{4})\.csv", batch_metadata=asset_specified_metadata, ) request = asset.build_batch_request( {"name": "alex", "timestamp": "20200819", "price": "1300"} ) batches = asset.get_batch_list_from_batch_request(request) assert len(batches) == 1 batch = batches[0] assert batch.batch_request.datasource_name == METHOD_NAME.name assert batch.batch_request.data_asset_name == asset.name assert batch.batch_request.options == ( "name", "timestamp", "price", "path", ) assert batch.metadata == { "path": "alex_20200819_1300.csv", "name": "alex", "timestamp": "20200819", "price": "1300", **asset_specified_metadata, } assert ( batch.id == "spark_dbfs_datasource-csv_asset-name_alex-timestamp_20200819-price_1300" ) request = asset.build_batch_request({"name": "alex"}) batches = asset.get_batch_list_from_batch_request(request) assert len(batches) == 2 @pytest.mark.spark def test_test_connection_failures( METHOD_NAME: SparkDBFSDatasource, bad_regex_config: tuple[re.Pattern, str], ): regex, test_connection_error_message = bad_regex_config csv_asset = CSVAsset( name="csv_asset", batching_regex=regex, ) csv_asset._datasource = METHOD_NAME METHOD_NAME.assets = [ csv_asset, ] csv_asset._data_connector = DBFSDataConnector( datasource_name=METHOD_NAME.name, data_asset_name=csv_asset.name, batching_regex=re.compile(regex), base_directory=METHOD_NAME.base_directory, data_context_root_directory=METHOD_NAME.data_context_root_directory, glob_directive="*.csv", file_path_template_map_fn=DBFSPath.convert_to_protocol_version, ) csv_asset._test_connection_error_message = test_connection_error_message with pytest.raises(TestConnectionError) as e: METHOD_NAME.test_connection() assert str(e.value) == str(test_connection_error_message)
null
get padding
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Conv1d, ConvTranspose1d from torch.nn.utils import weight_norm, remove_weight_norm LRELU_SLOPE = 0.1 def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def METHOD_NAME(kernel_size, dilation=1): return (kernel_size * dilation - dilation) // 2 class ResBlock(torch.nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): super(ResBlock, self).__init__() self.convs1 = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=METHOD_NAME(kernel_size, dilation[0]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=METHOD_NAME(kernel_size, dilation[1]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[2], padding=METHOD_NAME(kernel_size, dilation[2]), ) ), ] ) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=METHOD_NAME(kernel_size, 1), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=METHOD_NAME(kernel_size, 1), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=METHOD_NAME(kernel_size, 1), ) ), ] ) self.convs2.apply(init_weights) def forward(self, x): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for layer in self.convs1: remove_weight_norm(layer) for layer in self.convs2: remove_weight_norm(layer) class Generator(torch.nn.Module): def __init__(self, cfg): super(Generator, self).__init__() self.num_kernels = len(cfg["resblock_kernel_sizes"]) self.num_upsamples = len(cfg["upsample_rates"]) self.conv_pre = weight_norm( Conv1d( cfg.get("model_in_dim", 80), cfg["upsample_initial_channel"], 7, 1, padding=3, ) ) self.ups = nn.ModuleList() for i, (u, k) in enumerate( zip(cfg["upsample_rates"], cfg["upsample_kernel_sizes"]) ): self.ups.append( weight_norm( ConvTranspose1d( cfg["upsample_initial_channel"] // (2 ** i), cfg["upsample_initial_channel"] // (2 ** (i + 1)), k, u, padding=(k - u) // 2, ) ) ) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = cfg["upsample_initial_channel"] // (2 ** (i + 1)) for k, d in zip( cfg["resblock_kernel_sizes"], cfg["resblock_dilation_sizes"] ): self.resblocks.append(ResBlock(ch, k, d)) self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) self.ups.apply(init_weights) self.conv_post.apply(init_weights) def forward(self, x): x = self.conv_pre(x) for i in range(self.num_upsamples): x = F.leaky_relu(x, LRELU_SLOPE) x = self.ups[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i * self.num_kernels + j](x) else: xs += self.resblocks[i * self.num_kernels + j](x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) x = torch.tanh(x) return x def remove_weight_norm(self): print("Removing weight norm...") for layer in self.ups: remove_weight_norm(layer) for layer in self.resblocks: layer.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post)
null
create score model set
import json import os import pickle from re import finditer import pandas import pandas as pd from KGToolbox.Tools import MakeIndex from Marie.Util.Web.SPARQLWarehouse import ONTOKIN_ALL_PROPERTIES_ALL_SPECIES from Marie.Util.location import DATA_DIR from KGToolbox.Utils import query_blazegraph """ <http://www.theworldavatar.com/ontology/ontokin/OntoKin.owl#hasDipoleMoment> <http://www.theworldavatar.com/ontology/ontokin/OntoKin.owl#hasDipoleMomentUnits> <http://www.theworldavatar.com/ontology/ontokin/OntoKin.owl#hasLennardJonesDiameter> <http://www.theworldavatar.com/ontology/ontokin/OntoKin.owl#hasLennardJonesDiameterUnits> <http://www.theworldavatar.com/ontology/ontokin/OntoKin.owl#hasLennardJonesWellDepth> <http://www.theworldavatar.com/ontology/ontokin/OntoKin.owl#hasLennardJonesWellDepthUnits> <http://www.theworldavatar.com/ontology/ontokin/OntoKin.owl#hasPolarizability> <http://www.theworldavatar.com/ontology/ontokin/OntoKin.owl#hasPolarizabilityUnits> <http://www.theworldavatar.com/ontology/ontokin/OntoKin.owl#hasRotationalRelaxationCollisionNumber> <http://www.theworldavatar.com/ontology/ontokin/OntoKin.owl#hasRotationalRelaxationCollisionNumberUnits> - <http://www.theworldavatar.com/ontology/ontokin/OntoKin.owl#hasSpeciesGeometry> """ def camel_case_split(identifier): matches = finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)', identifier) return [m.group(0) for m in matches] class OntoKinReader: def __init__(self): self.dataset_path = os.path.join(DATA_DIR, 'CrossGraph', 'ontokin') self.entity2idx = None self.relation2idx = None def query_all_species(self): # Use one query to find all the properties fo all species under the type species . short_species_list = [] triples = [] tmp = [] value_dictionary = {} rst = query_blazegraph(query=ONTOKIN_ALL_PROPERTIES_ALL_SPECIES, namespace="ontokin") non_attributes = ['species', 'label', 'transport'] heads = [h for h in rst['head']['vars'] if h not in non_attributes and '_unit' not in h] unique_labels = [] for r in rst['results']['bindings']: row = [] species = r['species']['value'] # .split('/')[-1] transport = r['transport']['value'] label = r['label']['value'] if "#" in species: short_species = species.split('#')[-1] else: short_species = species.split('/')[-1] # filter, only put findable species ... counter = 0 if label not in unique_labels: short_species_list.append(short_species) counter += 1 print(f"number of selected iris", counter) row.append(species) row.append(label) for head in heads: if head in r: data = r[head]['value'] else: data = "EMPTY" new_node = head + '_' + short_species row.append(new_node) if head + '_unit' in r: data_unit = r[head + '_unit']['value'] value_dictionary[new_node] = data + ' ' + data_unit else: # insert a new node, with part of the species and the relations value_dictionary[new_node] = data triples.append((short_species, head + '_latent', new_node)) tmp.append(row) unique_labels.append(label) print('number of unique labels', len(unique_labels)) df_all_species = pd.DataFrame(tmp) df_all_species.columns = ['species', 'label'] + heads df_all_species.to_csv(os.path.join(self.dataset_path, 'all_species.tsv'), sep='\t') with open(os.path.join(self.dataset_path, 'value_dict.json'), 'w') as f: f.write(json.dumps(value_dictionary)) f.close() df_triples = pd.DataFrame(triples) df_triples.to_csv(os.path.join(self.dataset_path, 'ontokin-train.txt'), sep='\t', index=False, header=False) df_test = df_triples.sample(frac=0.2) df_test.to_csv(os.path.join(self.dataset_path, 'ontokin-test.txt'), sep='\t', index=False, header=False) def run(self): self.query_all_species() data_folder = 'CrossGraph/ontokin' MakeIndex.create_indexing(data_dir=data_folder, dataset_name="ontokin") e2i_path = open(os.path.join(DATA_DIR, f'{data_folder}/entity2idx.pkl'), 'rb') r2i_path = open(os.path.join(DATA_DIR, f'{data_folder}/relation2idx.pkl'), 'rb') _full_dir = os.path.join(DATA_DIR, f'{data_folder}') self.entity2idx = pickle.load(e2i_path) self.relation2idx = pickle.load(r2i_path) self.METHOD_NAME() def METHOD_NAME(self): property_dict = {"SpeciesGeometry_latent": "geometry", "RotationalRelaxationCollisionNumber_latent": "rotational relaxation collision number", "Polarizability_latent": "polarizability", "LennardJonesDiameter_latent": "lennard jones diameter", "LennardJonesWellDepth_latent": "lennard jones well depth", "DipoleMoment_latent": "dipole moment" } df_train = pd.read_csv(os.path.join(self.dataset_path, "ontokin-train.txt"), sep='\t', header=None) question_list = [] for idx, row in df_train.iterrows(): # question head tail rel h, r, t = row if "_latent" in r: h_idx = (self.entity2idx[h]) r_idx = (self.relation2idx[r]) t_idx = (self.entity2idx[t]) q = property_dict[r] question_list.append((q, h_idx, t_idx, r_idx)) df_questions = pd.DataFrame(question_list) df_questions.columns = ["question", "head", "tail", "rel"] df_questions.to_csv(os.path.join(self.dataset_path, "score_model_training.tsv"), sep='\t') if __name__ == '__main__': my_ontokin_reader = OntoKinReader() my_ontokin_reader.run()
null
test channel properties
# Copyright (C) 2022 ASTRON (Netherlands Institute for Radio Astronomy) # SPDX-License-Identifier: GPL-3.0-or-later """ These tests check that the python bindings for the DPInfo class behave correctly. This script can be invoked in two ways: - as standalone from the build/pythondp3/test/integration directory, using `pytest source/tPyDpInfo.py` (extended with pytest options of your choice) - using ctest, see pythondp3/test/integration/CMakeLists.txt """ import math import pytest import sys # Append current directory to system path in order to import testconfig sys.path.append(".") import testconfig as tcf sys.path.insert(0, tcf.PYTHONDIR) try: "The import may fail while running pytest --collect-only" import dp3 except ImportError: pass def test_constructor(): # Constructor using only default values for the arguments info0 = dp3.DPInfo() # Check whether the default values for the constructor arguments have been used assert info0.n_correlations == 0 assert info0.original_n_channels == 0 assert info0.start_channel == 0 assert info0.antenna_set == "" # Constructor using specific values for the arguments n_correlations = 4 original_n_channels = 8 start_channel = 1 antenna_set = "LBA" info1 = dp3.DPInfo( n_correlations, original_n_channels, start_channel, antenna_set ) assert info1.n_correlations == n_correlations assert info1.original_n_channels == original_n_channels assert info1.start_channel == start_channel assert info1.antenna_set == antenna_set def test_antenna_properties(): info = dp3.DPInfo() # Check default values. assert info.n_antenna == 0 assert info.antenna_names == [] assert info.antenna_positions == [] assert info.first_antenna_indices == [] assert info.second_antenna_indices == [] # Check that properties are read-only. with pytest.raises(AttributeError): info.n_antenna = 3 with pytest.raises(AttributeError): info.antenna_names = ["very", "nice", "names"] with pytest.raises(AttributeError): info.antenna_positions = [[0, 0, 0], [0, 42, 0], [42, 0, 0]] with pytest.raises(AttributeError): info.first_antenna_indices = [0, 0, 0] with pytest.raises(AttributeError): info.second_antenna_indices = [0, 1, 2] # Check that set_antennas() yields new property values. names = ["name_1", "name_2"] diameters = [42, 43] positions = [[1, 2, 3], [4, 5, 6]] first_indices = [0] second_indices = [1] info.set_antennas( names, diameters, positions, first_indices, second_indices ) assert info.n_antenna == 2 assert info.antenna_names == names assert info.antenna_positions == positions assert info.first_antenna_indices == first_indices assert info.second_antenna_indices == second_indices def METHOD_NAME(): info = dp3.DPInfo() # Check default values. assert info.n_channels == 0 assert info.channel_frequencies == [] assert info.bda_channel_frequencies == [[]] assert info.channel_widths == [] assert info.bda_channel_widths == [[]] # Check that properties are read-only. with pytest.raises(AttributeError): info.n_channels = 3 with pytest.raises(AttributeError): info.channel_frequencies = [10.0e6, 11.0e6, 12.0e6] with pytest.raises(AttributeError): info.bda_channel_frequencies = [[13.0e6, 14.0e6, 15.0e6]] with pytest.raises(AttributeError): info.channel_frequencies = [2.0e6, 2.0e6, 2.0e6] with pytest.raises(AttributeError): info.bda_channel_frequencies = [[3.0e6, 3.0e6, 3.0e6]] # Check that set_channels() yields new property values. frequencies = [42.0e6, 43.0e6] widths = [1.0e6, 1.0e6] info.set_channels(frequencies, widths) assert info.n_channels == 2 assert info.channel_frequencies == frequencies assert info.bda_channel_frequencies == [frequencies] assert info.channel_widths == widths assert info.bda_channel_widths == [widths] def test_time_properties(): info = dp3.DPInfo() # Check default values. assert info.first_time == 0.0 assert info.last_time == 0.0 assert info.time_interval == 1.0 assert info.start_time == -0.5 assert info.n_times == 1 # Check that properties are read-only. with pytest.raises(AttributeError): info.first_time = 3.0 with pytest.raises(AttributeError): info.last_time = 4.0 with pytest.raises(AttributeError): info.time_interval = 5.0 with pytest.raises(AttributeError): info.start_time = 6.0 with pytest.raises(AttributeError): info.n_times = 7 # Check that set_times() yields new property values. first_time = 42.0 last_time = 141.0 interval = 5.0 info.set_times(first_time, last_time, interval) assert info.first_time == first_time assert info.last_time == last_time assert info.time_interval == interval assert info.start_time == 39.5 assert info.n_times == 21 def test_phase_center(): info = dp3.DPInfo() assert math.isclose(info.phase_center[0], 0.0, rel_tol=1.0e-9) assert math.isclose(info.phase_center[1], 0.5 * math.pi, rel_tol=1.0e-9) for phase_center in [[0.1, 0.2], [-0.1, 0.2], [0.1, -0.2], [-0.1, -0.2]]: info = dp3.DPInfo() info.phase_center = phase_center assert math.isclose( phase_center[0], info.phase_center[0], rel_tol=1.0e-9 ) assert math.isclose( phase_center[1], info.phase_center[1], rel_tol=1.0e-9 ) def test_ms_name(): info = dp3.DPInfo() assert info.ms_name == "" name = "test_ms_name" info.ms_name = name assert info.ms_name == name
null
splitdrive
"""Pathname and path-related operations for the Macintosh.""" import os import warnings from stat import * import genericpath from genericpath import * __all__ = ["normcase","isabs","join","splitdrive","split","splitext", "basename","dirname","commonprefix","getsize","getmtime", "getatime","getctime", "islink","exists","lexists","isdir","isfile", "walk","expanduser","expandvars","normpath","abspath", "curdir","pardir","sep","pathsep","defpath","altsep","extsep", "devnull","realpath","supports_unicode_filenames"] # strings representing various path-related bits and pieces curdir = ':' pardir = '::' extsep = '.' sep = ':' pathsep = '\n' defpath = ':' altsep = None devnull = 'Dev:Null' # Normalize the case of a pathname. Dummy in Posix, but <s>.lower() here. def normcase(path): return path.lower() def isabs(s): """Return true if a path is absolute. On the Mac, relative paths begin with a colon, but as a special case, paths with no colons at all are also relative. Anything else is absolute (the string up to the first colon is the volume name).""" return ':' in s and s[0] != ':' def join(s, *p): path = s for t in p: if (not s) or isabs(t): path = t continue if t[:1] == ':': t = t[1:] if ':' not in path: path = ':' + path if path[-1:] != ':': path = path + ':' path = path + t return path def split(s): """Split a pathname into two parts: the directory leading up to the final bit, and the basename (the filename, without colons, in that directory). The result (s, t) is such that join(s, t) yields the original argument.""" if ':' not in s: return '', s colon = 0 for i in range(len(s)): if s[i] == ':': colon = i + 1 path, file = s[:colon-1], s[colon:] if path and not ':' in path: path = path + ':' return path, file def splitext(p): return genericpath._splitext(p, sep, altsep, extsep) splitext.__doc__ = genericpath._splitext.__doc__ def METHOD_NAME(p): """Split a pathname into a drive specification and the rest of the path. Useful on DOS/Windows/NT; on the Mac, the drive is always empty (don't use the volume name -- it doesn't have the same syntactic and semantic oddities as DOS drive letters, such as there being a separate current directory per drive).""" return '', p # Short interfaces to split() def dirname(s): return split(s)[0] def basename(s): return split(s)[1] def ismount(s): if not isabs(s): return False components = split(s) return len(components) == 2 and components[1] == '' def islink(s): """Return true if the pathname refers to a symbolic link.""" try: import Carbon.File return Carbon.File.ResolveAliasFile(s, 0)[2] except: return False # Is `stat`/`lstat` a meaningful difference on the Mac? This is safe in any # case. def lexists(path): """Test whether a path exists. Returns True for broken symbolic links""" try: st = os.lstat(path) except os.error: return False return True def expandvars(path): """Dummy to retain interface-compatibility with other operating systems.""" return path def expanduser(path): """Dummy to retain interface-compatibility with other operating systems.""" return path class norm_error(Exception): """Path cannot be normalized""" def normpath(s): """Normalize a pathname. Will return the same result for equivalent paths.""" if ":" not in s: return ":"+s comps = s.split(":") i = 1 while i < len(comps)-1: if comps[i] == "" and comps[i-1] != "": if i > 1: del comps[i-1:i+1] i = i - 1 else: # best way to handle this is to raise an exception raise norm_error, 'Cannot use :: immediately after volume name' else: i = i + 1 s = ":".join(comps) # remove trailing ":" except for ":" and "Volume:" if s[-1] == ":" and len(comps) > 2 and s != ":"*len(s): s = s[:-1] return s def walk(top, func, arg): """Directory tree walk with callback function. For each directory in the directory tree rooted at top (including top itself, but excluding '.' and '..'), call func(arg, dirname, fnames). dirname is the name of the directory, and fnames a list of the names of the files and subdirectories in dirname (excluding '.' and '..'). func may modify the fnames list in-place (e.g. via del or slice assignment), and walk will only recurse into the subdirectories whose names remain in fnames; this can be used to implement a filter, or to impose a specific order of visiting. No semantics are defined for, or required of, arg, beyond that arg is always passed to func. It can be used, e.g., to pass a filename pattern, or a mutable object designed to accumulate statistics. Passing None for arg is common.""" warnings.warnpy3k("In 3.x, os.path.walk is removed in favor of os.walk.", stacklevel=2) try: names = os.listdir(top) except os.error: return func(arg, top, names) for name in names: name = join(top, name) if isdir(name) and not islink(name): walk(name, func, arg) def abspath(path): """Return an absolute path.""" if not isabs(path): if isinstance(path, unicode): cwd = os.getcwdu() else: cwd = os.getcwd() path = join(cwd, path) return normpath(path) # realpath is a no-op on systems without islink support def realpath(path): path = abspath(path) try: import Carbon.File except ImportError: return path if not path: return path components = path.split(':') path = components[0] + ':' for c in components[1:]: path = join(path, c) try: path = Carbon.File.FSResolveAliasFile(path, 1)[0].as_pathname() except Carbon.File.Error: pass return path supports_unicode_filenames = True
null
execute external
import mindsdb_sql from mindsdb_sql import parse_sql from mindsdb_sql.planner import utils as planner_utils from mindsdb.api.mysql.mysql_proxy.classes.sql_query import Column, SQLQuery from mindsdb.api.mysql.mysql_proxy.utilities import ( ErBadDbError, SqlApiException, logger, ) import mindsdb.utilities.profiler as profiler from mindsdb.api.mysql.mysql_proxy.executor.executor_commands import ExecuteCommands class Executor: """This class stores initial and intermediate params between different steps of query execution. And it is also creates a separate instance of ExecuteCommands to execute the current query step. IMPORTANT: A public API of this class is a contract. And there are at least 2 classes strongly depend on it: ExecuctorClient ExecutorService. These classes do the same work as Executor when MindsDB works in 'modularity' mode. Thus please make sure that IF you change the API, you must update the API of these two classes as well!""" def __init__(self, session, sqlserver): self.session = session self.sqlserver = sqlserver self.query = None # returned values # all this attributes needs to be added in # self.json() method self.columns = [] self.params = [] self.data = None self.state_track = None self.server_status = None self.is_executed = False self.error_message = None self.error_code = None # self.predictor_metadata = {} self.sql = "" self.sql_lower = "" self.command_executor = ExecuteCommands(self.session, self) def change_default_db(self, new_db): self.command_executor.change_default_db(new_db) def stmt_prepare(self, sql): resp = self.METHOD_NAME(sql) if resp is not None: # is already executed self.is_executed = True return self.parse(sql) # if not params params = planner_utils.get_query_params(self.query) if len(params) == 0: # execute immediately self.do_execute() else: # plan query # TODO less complex. # planner is inside SQLQuery now. sqlquery = SQLQuery(self.query, session=self.session, execute=False) sqlquery.prepare_query() self.params = [ Column( alias=p.value, type="str", name=p.value, ) for p in params ] # TODO: # select * from mindsdb.models doesn't invoke prepare_steps and columns_list is empty self.columns = sqlquery.columns_list def stmt_execute(self, param_values): if self.is_executed: return # fill params self.query = planner_utils.fill_query_params(self.query, param_values) # execute query self.do_execute() @profiler.profile() def query_execute(self, sql): logger.info("%s.query_execute: sql - %s", self.__class__.__name__, sql) resp = self.METHOD_NAME(sql) if resp is not None: # is already executed self.is_executed = True return self.parse(sql) self.do_execute() # for awesome Mongo API only def binary_query_execute(self, sql): self.sql = sql.to_string() self.sql_lower = self.sql.lower() ret = self.command_executor.execute_command(sql) self.error_code = ret.error_code self.error_message = ret.error_message self.data = ret.data self.server_status = ret.status if ret.columns is not None: self.columns = ret.columns self.state_track = ret.state_track def METHOD_NAME(self, sql): # not exec directly in integration return None # try exec in external integration if ( isinstance(self.session.database, str) and len(self.session.database) > 0 and self.session.database.lower() not in ("mindsdb", "files", "information_schema") and "@@" not in sql.lower() and ( (sql.lower().strip().startswith("select") and "from" in sql.lower()) or ( sql.lower().strip().startswith("show") # and 'databases' in sql.lower() and "tables" in sql.lower() ) ) ): datanode = self.session.datahub.get(self.session.database) if datanode is None: raise ErBadDbError("Unknown database - %s" % self.session.database) # try parse or send raw sql try: sql = parse_sql(sql, dialect="mindsdb") except mindsdb_sql.exceptions.ParsingException: pass result, column_info = datanode.query(sql) columns = [ Column(name=col["name"], type=col["type"]) for col in column_info ] data = [] if len(result) > 0: # columns = [{ # 'table_name': '', # 'name': x, # 'type': TYPES.MYSQL_TYPE_VAR_STRING # } for x in result[0].keys()] data = [[str(value) for key, value in x.items()] for x in result] self.columns = columns self.data = data return True @profiler.profile() def parse(self, sql): logger.info("%s.parse: sql - %s", self.__class__.__name__, sql) self.sql = sql sql_lower = sql.lower() self.sql_lower = sql_lower.replace("`", "") try: self.query = parse_sql(sql, dialect="mindsdb") except Exception as mdb_error: try: self.query = parse_sql(sql, dialect="mysql") except Exception: # not all statements are parsed by parse_sql logger.warning(f"SQL statement is not parsed by mindsdb_sql: {sql}") raise SqlApiException( f"SQL statement cannot be parsed by mindsdb_sql - {sql}: {mdb_error}" ) from mdb_error # == a place for workarounds == # or run sql in integration without parsing @profiler.profile() def do_execute(self): # it can be already run at prepare state logger.info("%s.do_execute", self.__class__.__name__) if self.is_executed: return ret = self.command_executor.execute_command(self.query) self.error_code = ret.error_code self.error_message = ret.error_message self.is_executed = True self.data = ret.data self.server_status = ret.status if ret.columns is not None: self.columns = ret.columns self.state_track = ret.state_track
null
minion config
import ctypes import logging import multiprocessing import os import pathlib import shutil import stat import time from pathlib import Path import pytest from pytestshellutils.utils import ports from saltfactories.utils import random_string import salt.channel.client import salt.channel.server import salt.config import salt.ext.tornado.gen import salt.ext.tornado.ioloop import salt.master import salt.utils.platform import salt.utils.process import salt.utils.stringutils log = logging.getLogger(__name__) pytestmark = [ pytest.mark.skip_on_spawning_platform( reason="These tests are currently broken on spawning platforms. Need to be rewritten.", ) ] @pytest.fixture def channel_minion_id(): return random_string("Tha-Minion-") @pytest.fixture def root_dir(tmp_path): if salt.utils.platform.is_darwin(): # To avoid 'OSError: AF_UNIX path too long' _root_dir = pathlib.Path("/tmp").resolve() / tmp_path.name try: yield _root_dir finally: shutil.rmtree(str(_root_dir), ignore_errors=True) else: yield tmp_path def transport_ids(value): return "transport({})".format(value) @pytest.fixture(params=["tcp", "zeromq"], ids=transport_ids) def transport(request): return request.param @pytest.fixture def master_config(root_dir, transport): master_conf = salt.config.master_config("") master_conf["transport"] = transport master_conf["id"] = "master" master_conf["root_dir"] = str(root_dir) master_conf["sock_dir"] = str(root_dir) master_conf["interface"] = "127.0.0.1" master_conf["publish_port"] = ports.get_unused_localhost_port() master_conf["ret_port"] = ports.get_unused_localhost_port() master_conf["pki_dir"] = str(root_dir / "pki") os.makedirs(master_conf["pki_dir"]) salt.crypt.gen_keys(master_conf["pki_dir"], "master", 4096) minions_keys = os.path.join(master_conf["pki_dir"], "minions") os.makedirs(minions_keys) yield master_conf @pytest.fixture def METHOD_NAME(master_config, channel_minion_id): minion_conf = salt.config.METHOD_NAME( "", minion_id=channel_minion_id, cache_minion_id=False ) minion_conf["transport"] = master_config["transport"] minion_conf["root_dir"] = master_config["root_dir"] minion_conf["id"] = channel_minion_id minion_conf["sock_dir"] = master_config["sock_dir"] minion_conf["ret_port"] = master_config["ret_port"] minion_conf["interface"] = "127.0.0.1" minion_conf["pki_dir"] = os.path.join(master_config["root_dir"], "pki_minion") os.makedirs(minion_conf["pki_dir"]) minion_conf["master_port"] = master_config["ret_port"] minion_conf["master_ip"] = "127.0.0.1" minion_conf["master_uri"] = "tcp://127.0.0.1:{}".format(master_config["ret_port"]) salt.crypt.gen_keys(minion_conf["pki_dir"], "minion", 4096) minion_pub = os.path.join(minion_conf["pki_dir"], "minion.pub") pub_on_master = os.path.join(master_config["pki_dir"], "minions", channel_minion_id) shutil.copyfile(minion_pub, pub_on_master) return minion_conf @pytest.fixture def process_manager(): process_manager = salt.utils.process.ProcessManager() try: yield process_manager finally: process_manager.terminate() @pytest.fixture def master_secrets(): salt.master.SMaster.secrets["aes"] = { "secret": multiprocessing.Array( ctypes.c_char, salt.utils.stringutils.to_bytes(salt.crypt.Crypticle.generate_key_string()), ), "serial": multiprocessing.Value( ctypes.c_longlong, lock=False # We'll use the lock from 'secret' ), } yield salt.master.SMaster.secrets.pop("aes") @salt.ext.tornado.gen.coroutine def _connect_and_publish( io_loop, channel_minion_id, channel, server, received, timeout=60 ): log.info("TEST - BEFORE CHANNEL CONNECT") yield channel.connect() log.info("TEST - AFTER CHANNEL CONNECT") def cb(payload): log.info("TEST - PUB SERVER MSG %r", payload) received.append(payload) io_loop.stop() channel.on_recv(cb) server.publish({"tgt_type": "glob", "tgt": [channel_minion_id], "WTF": "SON"}) start = time.time() while time.time() - start < timeout: yield salt.ext.tornado.gen.sleep(1) io_loop.stop() def test_pub_server_channel( io_loop, channel_minion_id, master_config, METHOD_NAME, process_manager, master_secrets, ): server_channel = salt.channel.server.PubServerChannel.factory( master_config, ) server_channel.pre_fork(process_manager) req_server_channel = salt.channel.server.ReqServerChannel.factory(master_config) req_server_channel.pre_fork(process_manager) def handle_payload(payload): log.info("TEST - Req Server handle payload %r", payload) req_server_channel.post_fork(handle_payload, io_loop=io_loop) if master_config["transport"] == "zeromq": p = Path(str(master_config["sock_dir"])) / "workers.ipc" mode = os.lstat(p).st_mode assert bool(os.lstat(p).st_mode & stat.S_IRUSR) assert not bool(os.lstat(p).st_mode & stat.S_IRGRP) assert not bool(os.lstat(p).st_mode & stat.S_IROTH) pub_channel = salt.channel.client.AsyncPubChannel.factory(METHOD_NAME) received = [] try: io_loop.add_callback( _connect_and_publish, io_loop, channel_minion_id, pub_channel, server_channel, received, ) io_loop.start() assert len(received) == 1 finally: server_channel.close() req_server_channel.close() pub_channel.close()
null
make grid
#!/usr/bin/env nemesis """Python application to create spatial databases for a synthetic event with time-varying Gaussian slip. """ import math import numpy from spatialdata.spatialdb.SimpleGridDB import SimpleGridDB from spatialdata.spatialdb.SimpleGridAscii import createWriter from spatialdata.spatialdb import TimeHistoryIO from spatialdata.geocoords.CSGeo import CSGeo from pythia.pyre.applications.Script import Script as Application class GenerateSlowslip(Application): """Python application to create spatial databases for a synthetic SSE with time-varying Gaussian slip. """ import pythia.pyre.inventory # Python object for managing GenerateSlowslip facilities and properties. ## # \b Properties # @li \b rake Rake of fault slip (degrees). # @li \b slip_center (lon,lat) coordinates of slip center. # @li \b slip_radius Radius of slip region (degrees). # @li \b slip_max Maximum slip value (meters). # @li \b slip_sigma_lon Sigma value for longitude. # @li \b slip_sigma_lat Sigma value for latitude. # @li \b slip_times List of times for which to provide amplitudes. # @li \b slip_time_units Units used for slip times. # @li \b slip_amplitudes List of slip amplitudes. # @li \b grid_lon_range Min and max longitude values for grid. # @li \b grid_lat_range Min and max latitude values for grid. # @li \b grid_incr Grid increment (degrees) for spatial database. # @li \b time_db_filename Name of temporal DB output file. # @li \b database_filename Filename for generated spatial database. ## # \b Facilities # @li \b coordsys Coordinate system for output database. rake = pythia.pyre.inventory.float("rake", default=1.0) rake.meta['tip'] = "Rake of fault slip (degrees)." slipCenter = pythia.pyre.inventory.list("slip_center", default=[0.0, 0.0]) slipCenter.meta['tip'] = "(lon,lat) coordinates of slip center." slipRadius = pythia.pyre.inventory.float("slip_radius", default=1.0) slipRadius.meta['tip'] = "Radius of slip region (degrees)." slipMax = pythia.pyre.inventory.float("slip_max", default=5.0) slipMax.meta['tip'] = "Maximum slip value (meters)." slipSigmaLon = pythia.pyre.inventory.float("slip_sigma_lon", default=0.2) slipSigmaLon.meta['tip'] = "Sigma value for longitude." slipSigmaLat = pythia.pyre.inventory.float("slip_sigma_lat", default=0.2) slipSigmaLat.meta['tip'] = "Sigma value for latitude." slipTimes = pythia.pyre.inventory.list("slip_times", default=[0.0, 0.5, 1.0]) slipTimes.meta['tip'] = "List of times for which to provide amplitudes." slipTimeUnits = pythia.pyre.inventory.str("slip_time_units", default="year") slipTimeUnits.meta['tip'] = "Units used for slip times." slipAmplitudes = pythia.pyre.inventory.list("slip_amplitudes", default=[0.0, 0.5, 1.0]) slipAmplitudes.meta['tip'] = "List of slip amplitudes." gridLonRange = pythia.pyre.inventory.list("grid_lon_range", default=[-123.0, -124.0]) gridLonRange.meta['tip'] = "Min and max longitude values for grid." gridLatRange = pythia.pyre.inventory.list("grid_lat_range", default=[45.0, 46.0]) gridLatRange.meta['tip'] = "Min and max latitude values for grid." gridIncr = pythia.pyre.inventory.float("grid_incr", default=0.05) gridIncr.meta['tip'] = "Sigma value for latitude." timeDbFilename = pythia.pyre.inventory.str("time_db_filename", default="slip.timedb") timeDbFilename.meta['tip'] = "Filename of temporal DB output file." coordsys = pythia.pyre.inventory.facility("coordsys", family="coordsys", factory=CSGeo) coordsys.meta['tip'] = "Coordinate system for output database." dbFilename = pythia.pyre.inventory.str("database_filename", default="slip.spatialdb") dbFilename.meta['tip'] = "Filename for generated spatial database." # PUBLIC METHODS ///////////////////////////////////////////////////// def __init__(self, name="generate_slowslip"): Application.__init__(self, name) self.lon = None self.lat = None self.z = None self.grid = None self.faultSlip = None return def main(self): self.METHOD_NAME() self._computeGauss() self._writeSpatialdb() self._writeTemporaldb() return # PRIVATE METHODS ///////////////////////////////////////////////////// def _configure(self): """Setup members using inventory. """ Application._configure(self) def METHOD_NAME(self): """Function to create a mesh grid for computations. """ lonMin = float(self.gridLonRange[0]) lonMax = float(self.gridLonRange[1]) latMin = float(self.gridLatRange[0]) latMax = float(self.gridLatRange[1]) lonDiff = lonMax - lonMin latDiff = latMax - latMin numLon = int(round(lonDiff / self.gridIncr)) + 1 numLat = int(round(latDiff / self.gridIncr)) + 1 self.lon = numpy.linspace(lonMin, lonMax, num=numLon, dtype=numpy.float64) self.lat = numpy.linspace(latMin, latMax, num=numLat, dtype=numpy.float64) self.z = numpy.zeros(1, dtype=numpy.float64) lonGrid, latGrid = numpy.meshgrid(self.lon, self.lat) zGrid = numpy.zeros_like(lonGrid) self.grid = numpy.column_stack(( lonGrid.flatten(), latGrid.flatten(), zGrid.flatten(), )) def _computeGauss(self): """Function to compute 2D Gaussian slip distribution. """ lonShift = self.grid[:, 0] - float(self.slipCenter[0]) latShift = self.grid[:, 1] - float(self.slipCenter[1]) distance = numpy.sqrt(lonShift * lonShift + latShift * latShift) outside = numpy.where(distance > self.slipRadius) lonFac = 0.5 * lonShift * lonShift / (self.slipSigmaLon * self.slipSigmaLon) latFac = 0.5 * latShift * latShift / (self.slipSigmaLat * self.slipSigmaLat) slip = self.slipMax * numpy.exp(-(lonFac + latFac)) slip[outside] = 0.0 rakeRadians = math.radians(self.rake) llComp = math.cos(rakeRadians) udComp = math.sin(rakeRadians) llSlip = llComp * slip udSlip = udComp * slip opSlip = numpy.zeros_like(llSlip) self.faultSlip = numpy.column_stack((llSlip, udSlip, opSlip)) def _writeSpatialdb(self): """Write spatial database with fault slip. """ llSlipInfo = {'name': "left-lateral-slip", 'units': "m", 'data': self.faultSlip[:, 0]} udSlipInfo = {'name': "reverse-slip", 'units': "m", 'data': self.faultSlip[:, 1]} openInfo = {'name': "fault-opening", 'units': "m", 'data': self.faultSlip[:, 2]} data = {'num-x': self.lon.shape[0], 'num-y': self.lat.shape[0], 'num-z': 1, 'points': self.grid, 'x': self.lon, 'y': self.lat, 'z': self.z, 'coordsys': self.coordsys, 'data_dim': 2, 'values': [llSlipInfo, udSlipInfo, openInfo]} writer = createWriter(self.dbFilename) writer.write(data) def _writeTemporaldb(self): """Write temporal database with time variation of fault slip. """ if (len(self.slipTimes) == 1): return time = [float(i) for i in self.slipTimes] timeArr = numpy.array(time, dtype=numpy.float64) amplitude = [float(i) for i in self.slipAmplitudes] amplitudeArr = numpy.array(amplitude, dtype=numpy.float64) TimeHistoryIO.write(timeArr, amplitudeArr, self.slipTimeUnits, self.timeDbFilename) # ---------------------------------------------------------------------- if __name__ == '__main__': GenerateSlowslip().run() # End of file
null
test create tar gz basic
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import hashlib import os import shutil import stat import tarfile import tempfile import unittest import pytest from mozpack.archive import ( DEFAULT_MTIME, create_tar_bz2_from_files, create_tar_from_files, create_tar_gz_from_files, ) from mozpack.files import GeneratedFile from mozunit import main MODE_STANDARD = stat.S_IRUSR | stat.S_IWUSR | stat.S_IRGRP | stat.S_IROTH def file_hash(path): h = hashlib.sha1() with open(path, "rb") as fh: while True: data = fh.read(8192) if not data: break h.update(data) return h.hexdigest() class TestArchive(unittest.TestCase): def _create_files(self, root): files = {} for i in range(10): p = os.path.join(root, "file%02d" % i) with open(p, "wb") as fh: fh.write(b"file%02d" % i) # Need to set permissions or umask may influence testing. os.chmod(p, MODE_STANDARD) files["file%02d" % i] = p for i in range(10): files["file%02d" % (i + 10)] = GeneratedFile(b"file%02d" % (i + 10)) return files def _verify_basic_tarfile(self, tf): self.assertEqual(len(tf.getmembers()), 20) names = ["file%02d" % i for i in range(20)] self.assertEqual(tf.getnames(), names) for ti in tf.getmembers(): self.assertEqual(ti.uid, 0) self.assertEqual(ti.gid, 0) self.assertEqual(ti.uname, "") self.assertEqual(ti.gname, "") self.assertEqual(ti.mode, MODE_STANDARD) self.assertEqual(ti.mtime, DEFAULT_MTIME) @pytest.mark.xfail( reason="ValueError is not thrown despite being provided directory." ) def test_dirs_refused(self): d = tempfile.mkdtemp() try: tp = os.path.join(d, "test.tar") with open(tp, "wb") as fh: with self.assertRaisesRegexp(ValueError, "not a regular"): create_tar_from_files(fh, {"test": d}) finally: shutil.rmtree(d) @pytest.mark.xfail(reason="ValueError is not thrown despite uid/gid being set.") def test_setuid_setgid_refused(self): d = tempfile.mkdtemp() try: uid = os.path.join(d, "setuid") gid = os.path.join(d, "setgid") with open(uid, "a"): pass with open(gid, "a"): pass os.chmod(uid, MODE_STANDARD | stat.S_ISUID) os.chmod(gid, MODE_STANDARD | stat.S_ISGID) tp = os.path.join(d, "test.tar") with open(tp, "wb") as fh: with self.assertRaisesRegexp(ValueError, "cannot add file with setuid"): create_tar_from_files(fh, {"test": uid}) with self.assertRaisesRegexp(ValueError, "cannot add file with setuid"): create_tar_from_files(fh, {"test": gid}) finally: shutil.rmtree(d) def test_create_tar_basic(self): d = tempfile.mkdtemp() try: files = self._create_files(d) tp = os.path.join(d, "test.tar") with open(tp, "wb") as fh: create_tar_from_files(fh, files) # Output should be deterministic. self.assertEqual(file_hash(tp), "01cd314e277f060e98c7de6c8ea57f96b3a2065c") with tarfile.open(tp, "r") as tf: self._verify_basic_tarfile(tf) finally: shutil.rmtree(d) @pytest.mark.xfail(reason="hash mismatch") def test_executable_preserved(self): d = tempfile.mkdtemp() try: p = os.path.join(d, "exec") with open(p, "wb") as fh: fh.write("#!/bin/bash\n") os.chmod(p, MODE_STANDARD | stat.S_IXUSR) tp = os.path.join(d, "test.tar") with open(tp, "wb") as fh: create_tar_from_files(fh, {"exec": p}) self.assertEqual(file_hash(tp), "357e1b81c0b6cfdfa5d2d118d420025c3c76ee93") with tarfile.open(tp, "r") as tf: m = tf.getmember("exec") self.assertEqual(m.mode, MODE_STANDARD | stat.S_IXUSR) finally: shutil.rmtree(d) def METHOD_NAME(self): d = tempfile.mkdtemp() try: files = self._create_files(d) gp = os.path.join(d, "test.tar.gz") with open(gp, "wb") as fh: create_tar_gz_from_files(fh, files) self.assertEqual(file_hash(gp), "7c4da5adc5088cdf00911d5daf9a67b15de714b7") with tarfile.open(gp, "r:gz") as tf: self._verify_basic_tarfile(tf) finally: shutil.rmtree(d) def test_tar_gz_name(self): d = tempfile.mkdtemp() try: files = self._create_files(d) gp = os.path.join(d, "test.tar.gz") with open(gp, "wb") as fh: create_tar_gz_from_files(fh, files, filename="foobar") self.assertEqual(file_hash(gp), "721e00083c17d16df2edbddf40136298c06d0c49") with tarfile.open(gp, "r:gz") as tf: self._verify_basic_tarfile(tf) finally: shutil.rmtree(d) def test_create_tar_bz2_basic(self): d = tempfile.mkdtemp() try: files = self._create_files(d) bp = os.path.join(d, "test.tar.bz2") with open(bp, "wb") as fh: create_tar_bz2_from_files(fh, files) self.assertEqual(file_hash(bp), "eb5096d2fbb71df7b3d690001a6f2e82a5aad6a7") with tarfile.open(bp, "r:bz2") as tf: self._verify_basic_tarfile(tf) finally: shutil.rmtree(d) if __name__ == "__main__": main()
null
main
#!/usr/bin/python # coding: utf-8 -*- # (c) 2020, John Westcott IV <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: token author: "John Westcott IV (@john-westcott-iv)" version_added: "2.3.0" short_description: create, update, or destroy Automation Platform Controller tokens. description: - Create or destroy Automation Platform Controller tokens. See U(https://www.ansible.com/tower) for an overview. - In addition, the module sets an Ansible fact which can be passed into other controller modules as the parameter controller_oauthtoken. See examples for usage. - Because of the sensitive nature of tokens, the created token value is only available once through the Ansible fact. (See RETURN for details) - Due to the nature of tokens this module is not idempotent. A second will with the same parameters will create a new token. - If you are creating a temporary token for use with modules you should delete the token when you are done with it. See the example for how to do it. options: description: description: - Optional description of this access token. required: False type: str application: description: - The application name, ID, or named URL tied to this token. required: False type: str scope: description: - Allowed scopes, further restricts user's permissions. Must be a simple space-separated string with allowed scopes ['read', 'write']. required: False type: str choices: ["read", "write"] existing_token: description: The data structure produced from token in create mode to be used with state absent. type: dict existing_token_id: description: A token ID (number) which can be used to delete an arbitrary token with state absent. type: str state: description: - Desired state of the resource. choices: ["present", "absent"] default: "present" type: str extends_documentation_fragment: awx.awx.auth ''' EXAMPLES = ''' - block: - name: Create a new token using an existing token token: description: '{{ token_description }}' scope: "write" state: present controller_oauthtoken: "{{ my_existing_token }}" - name: Delete this token token: existing_token: "{{ controller_token }}" state: absent - name: Create a new token using username/password token: description: '{{ token_description }}' scope: "write" state: present controller_username: "{{ my_username }}" controller_password: "{{ my_password }}" - name: Use our new token to make another call job_list: controller_oauthtoken: "{{ controller_token }}" always: - name: Delete our Token with the token we created token: existing_token: "{{ controller_token }}" state: absent when: token is defined - name: Delete a token by its id token: existing_token_id: 4 state: absent ''' RETURN = ''' controller_token: type: dict description: An Ansible Fact variable representing a token object which can be used for auth in subsequent modules. See examples for usage. contains: token: description: The token that was generated. This token can never be accessed again, make sure this value is noted before it is lost. type: str id: description: The numeric ID of the token created type: str returned: on successful create ''' from ..module_utils.controller_api import ControllerAPIModule def return_token(module, last_response): # A token is special because you can never get the actual token ID back from the API. # So the default module return would give you an ID but then the token would forever be masked on you. # This method will return the entire token object we got back so that a user has access to the token module.json_output['ansible_facts'] = { 'controller_token': last_response, 'tower_token': last_response, } module.exit_json(**module.json_output) def METHOD_NAME(): # Any additional arguments that are not fields of the item can be added here argument_spec = dict( description=dict(), application=dict(), scope=dict(choices=['read', 'write']), existing_token=dict(type='dict', no_log=False), existing_token_id=dict(), state=dict(choices=['present', 'absent'], default='present'), ) # Create a module for ourselves module = ControllerAPIModule( argument_spec=argument_spec, mutually_exclusive=[ ('existing_token', 'existing_token_id'), ], # If we are state absent make sure one of existing_token or existing_token_id are present required_if=[ [ 'state', 'absent', ('existing_token', 'existing_token_id'), True, ], ], ) # Extract our parameters description = module.params.get('description') application = module.params.get('application') scope = module.params.get('scope') existing_token = module.params.get('existing_token') existing_token_id = module.params.get('existing_token_id') state = module.params.get('state') if state == 'absent': if not existing_token: existing_token = module.get_one( 'tokens', **{ 'data': { 'id': existing_token_id, } } ) # If the state was absent we can let the module delete it if needed, the module will handle exiting from this module.delete_if_needed(existing_token) # Attempt to look up the related items the user specified (these will fail the module if not found) application_id = None if application: application_id = module.resolve_name_to_id('applications', application) # Create the data that gets sent for create and update new_fields = {} if description is not None: new_fields['description'] = description if application is not None: new_fields['application'] = application_id if scope is not None: new_fields['scope'] = scope # If the state was present and we can let the module build or update the existing item, this will return on its own module.create_or_update_if_needed( None, new_fields, endpoint='tokens', item_type='token', associations={}, on_create=return_token, ) if __name__ == '__main__': METHOD_NAME()
null
create jax task
# coding=utf-8 # Copyright 2022 The Pax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for trainer_lib.""" import itertools from absl.testing import absltest from absl.testing import parameterized from etils import epath import jax.numpy as jnp from paxml import tasks_lib from paxml import trainer_lib from praxis import base_hyperparams from praxis import base_layer from praxis import base_model from praxis import optimizers from praxis import pax_fiddle from praxis import py_utils from praxis import pytypes from praxis import schedules NestedMap = py_utils.NestedMap JTensor = pytypes.JTensor class RunningModeTest(parameterized.TestCase): def test_unknown_mode(self): self.assertEqual( trainer_lib.RunningMode.detect(False, False, False), trainer_lib.RunningMode.UNKNOWN, ) @parameterized.parameters( ('has_train', True, False, False), ('has_train', True, True, False), ('has_train', True, False, True), ('has_train', True, True, True), ('has_eval', False, True, False), ('has_eval', True, True, False), ('has_eval', False, True, True), ('has_eval', True, True, True), ('has_decode', False, False, True), ('has_decode', False, True, True), ('has_decode', True, False, True), ('has_decode', True, True, True), ) def test_valid_modes( self, running_mode, has_train_metrics, has_eval_metrics, has_test_metrics ): self.assertTrue( getattr( trainer_lib.RunningMode.detect( has_train_metrics, has_eval_metrics, has_test_metrics ), running_mode, ) ) class TestModel(base_model.BaseModel): """Simple model for testing. Attributes: input_dims: Depth of the input. output_dims: Depth of the output. """ input_dims: int = 0 output_dims: int = 0 def setup(self) -> None: self.create_variable( 'weights', base_layer.WeightHParams(shape=[self.input_dims, self.output_dims]), ) def compute_predictions(self, input_batch: NestedMap) -> JTensor: ret = jnp.einsum('bi,io->bo', input_batch.inputs, self.theta.weights) self.add_summary('debug', ret, verbosity=4) self.add_summary('info', ret, verbosity=3) return ret def compute_loss( self, predictions: JTensor, input_batch: NestedMap ) -> tuple[NestedMap, NestedMap]: del input_batch prediction_loss = jnp.sum(predictions) theta_loss = jnp.max(jnp.abs(self.theta.weights)) # Here loss is the main loss to back-prop into, and loss02 is an eval # metric. per_example_out = NestedMap() return ( NestedMap( prediction_loss=( prediction_loss, jnp.array(1.0, prediction_loss.dtype), ), theta_loss=(theta_loss, jnp.array(1.0, theta_loss.dtype)), ), per_example_out, ) class TrainerLibTest(parameterized.TestCase): def METHOD_NAME(self, input_dims: int, output_dims: int): config = pax_fiddle.Config(tasks_lib.SingleTask, name='task') config.model = pax_fiddle.Config( TestModel, name='test_model', input_dims=input_dims, output_dims=output_dims, ) learner = config.train.learner learner.loss_name = 'loss' learner.optimizer = pax_fiddle.Config(optimizers.Adam) learner.optimizer.lr_schedule = pax_fiddle.Config(schedules.Constant) return base_hyperparams.instantiate(config) @parameterized.parameters(itertools.product((True, False), (True, False))) def test_create_train_state_metadata(self, discard_opt_states, do_eval): input_dims = 3 output_dims = 5 inputs = jnp.ones((1, input_dims), dtype=jnp.float32) task = self.METHOD_NAME(input_dims, output_dims) train_shape_dtype = NestedMap(inputs=inputs) metadata = trainer_lib.create_train_state_metadata( task, train_shape_dtype, discard_opt_states, do_eval ) self.assertTrue((metadata.input_shape_dtype['inputs'] == inputs).all()) var_weight_hparams = task.model.abstract_init_with_metadata( train_shape_dtype, do_eval=do_eval ) self.assertEqual(metadata.var_weight_hparams, var_weight_hparams) padded_global_shapes = task.create_train_state_padded_shapes( var_weight_hparams, discard_opt_states=discard_opt_states ) self.assertEqual(metadata.padded_global_shapes, padded_global_shapes) unpadded_global_shapes = task.create_train_state_unpadded_shapes( var_weight_hparams, discard_opt_states=discard_opt_states ) self.assertEqual(metadata.unpadded_global_shapes, unpadded_global_shapes) partition_specs = task.create_train_state_partition_specs( var_weight_hparams, discard_opt_states=discard_opt_states ) self.assertEqual(metadata.partition_specs, partition_specs) @parameterized.parameters(itertools.product((True, False), (True, False))) def test_write_post_init_model_hparams_file( self, discard_opt_states, do_eval ): input_dims = 3 output_dims = 5 layer_cfg = pax_fiddle.Config( TestModel, name='test_model', input_dims=input_dims, output_dims=output_dims, ) model = pax_fiddle.build(layer_cfg) inputs = jnp.ones((1, input_dims), dtype=jnp.float32) task = self.METHOD_NAME(input_dims, output_dims) train_shape_dtype = NestedMap(inputs=inputs) train_state_metadata = trainer_lib.create_train_state_metadata( task, train_shape_dtype, discard_opt_states, do_eval ) job_log_dir = ( epath.Path(absltest.get_default_test_tmpdir()) / f'model_hparams_{discard_opt_states}_{do_eval}' ) trainer_lib.write_post_init_model_hparams_file( model, train_state_metadata, job_log_dir, do_eval ) params_fpath = job_log_dir / 'post_init_model_params.txt' with params_fpath.open() as params_file: hyper_params, param_weights = params_file.read().split('\n\n') hyper_params_config = model.abstract_init_with_mdl_config( train_state_metadata.input_shape_dtype, do_eval=do_eval ) hyper_params_expected = base_hyperparams.nested_struct_to_text( hyper_params_config ) param_weights_expected = base_hyperparams.nested_struct_to_text( train_state_metadata.var_weight_hparams ) self.assertEqual(hyper_params.strip(), hyper_params_expected.strip()) self.assertEqual(param_weights.strip(), param_weights_expected.strip()) if __name__ == '__main__': absltest.main()
null
find most distant
""" """ from SALib.sample.morris.strategy import Strategy from scipy.special import comb as nchoosek # type: ignore from itertools import combinations, islice import sys import numpy as np # type: ignore from typing import List class BruteForce(Strategy): """Implements the brute force optimisation strategy""" def _sample( self, input_sample, num_samples, num_params, k_choices, num_groups=None ): return self.brute_force_most_distant( input_sample, num_samples, num_params, k_choices, num_groups ) def brute_force_most_distant( self, input_sample: np.ndarray, num_samples: int, num_params: int, k_choices: int, num_groups: int = None, ) -> List: """Use brute force method to find most distant trajectories Parameters ---------- input_sample : numpy.ndarray num_samples : int The number of samples to generate num_params : int The number of parameters k_choices : int The number of optimal trajectories num_groups : int, default=None The number of groups Returns ------- list """ scores = self.METHOD_NAME( input_sample, num_samples, num_params, k_choices, num_groups ) maximum_combo = self.find_maximum(scores, num_samples, k_choices) return maximum_combo def METHOD_NAME( self, input_sample: np.ndarray, num_samples: int, num_params: int, k_choices: int, num_groups: int = None, ) -> np.ndarray: """ Finds the 'k_choices' most distant choices from the 'num_samples' trajectories contained in 'input_sample' Parameters ---------- input_sample : numpy.ndarray num_samples : int The number of samples to generate num_params : int The number of parameters k_choices : int The number of optimal trajectories num_groups : int, default=None The number of groups Returns ------- numpy.ndarray """ # Now evaluate the (N choose k_choices) possible combinations if nchoosek(num_samples, k_choices) >= sys.maxsize: raise ValueError("Number of combinations is too large") number_of_combinations = int(nchoosek(num_samples, k_choices)) # First compute the distance matrix for each possible pairing # of trajectories and store in a shared-memory array distance_matrix = self.compute_distance_matrix( input_sample, num_samples, num_params, num_groups ) # Initialise the output array chunk = int(1e6) if chunk > number_of_combinations: chunk = number_of_combinations counter = 0 # Generate a list of all the possible combinations combo_gen = combinations(range(num_samples), k_choices) scores = np.zeros(number_of_combinations, dtype=np.float32) # Generate the pairwise indices once pairwise = np.array([y for y in combinations(range(k_choices), 2)]) mappable = self.mappable for combos in self.grouper(chunk, combo_gen): scores[(counter * chunk) : ((counter + 1) * chunk)] = mappable( combos, pairwise, distance_matrix ) counter += 1 return scores @staticmethod def grouper(n, iterable): it = iter(iterable) while True: chunk = tuple(islice(it, n)) if not chunk: return yield chunk @staticmethod def mappable(combos, pairwise, distance_matrix): """ Obtains scores from the distance_matrix for each pairwise combination held in the combos array Parameters ---------- combos : numpy.ndarray pairwise : numpy.ndarray distance_matrix : numpy.ndarray """ combos = np.array(combos) # Create a list of all pairwise combination for each combo in combos combo_list = combos[ :, pairwise[ :, ], ] addresses = (combo_list[:, :, 1], combo_list[:, :, 0]) all_distances = distance_matrix[addresses] new_scores = np.sqrt(np.einsum("ij,ij->i", all_distances, all_distances)) return new_scores def find_maximum(self, scores, N, k_choices): """Finds the `k_choices` maximum scores from `scores` Parameters ---------- scores : numpy.ndarray N : int k_choices : int Returns ------- list """ if not isinstance(scores, np.ndarray): raise TypeError("Scores input is not a numpy array") index_of_maximum = int(scores.argmax()) maximum_combo = self.nth( combinations(range(N), k_choices), index_of_maximum, None ) return sorted(maximum_combo) @staticmethod def nth(iterable, n, default=None): """Returns the nth item or a default value Parameters ---------- iterable : iterable n : int default : default=None The default value to return """ if type(n) != int: raise TypeError("n is not an integer") return next(islice(iterable, n, None), default)
null
pop
import time from timeit import default_timer import logging logger = logging.getLogger(__file__) from collections import OrderedDict, Counter def isnotebook(): """ returns True if Jupyter notebook is runnung """ # from https://stackoverflow.com/questions/15411967/how-can-i-check-if-code-is-executed-in-the-ipython-notebook try: shell = get_ipython().__class__.__name__ if shell == 'ZMQInteractiveShell': return True # Jupyter notebook or qtconsole elif shell == 'TerminalInteractiveShell': return False # Terminal running IPython else: return False # Other type (?) except NameError: return False # Probably standard Python interpreter def time(): """ returns the time. used instead of time.time for rapid portability""" return default_timer() def get_unique_name_list_from_class_list(cls_list): """ returns a list of names using cls.name if unique or cls.name1, cls.name2... otherwise. Order of the name list matches order of cls_list, such that iterating over zip(cls_list, name_list) is OK """ # cls_list is typically # cls_modules = [rp.HK, rp.AMS, rp.Scope, rp.Sampler, rp.Asg1, rp.Asg2] + \ # [rp.AuxOutput] * 2 + [rp.IQ] * 3 + [rp.Pid] * 4 + [rp.IIR] # first, map from list of classes to a list of corresponding names # e.g. all_names = ['hk, ..., 'pwm', 'pwm', ... all_names = [cls.__name__.lower() for cls in cls_list] final_names = [] for name in all_names: # how many times does the name occur? occurences = all_names.count(name) if occurences == 1: # for single names, leave as-is final_names.append(name) else: # for multiple name, assign name+str(lowest_free_number) for i in range(occurences): if not name+str(i) in final_names: final_names.append(name+str(i)) break return final_names def get_class_name_from_module_name(module_name): """ returns the class name corresponding to a module_name """ return module_name[0].upper() + (module_name[1:]).rstrip('1234567890') def get_base_module_class(module): """ returns the base class of module that has the same name as module """ base_module_class_name = get_class_name_from_module_name(module.name) for base_module_class in type(module).__mro__: if base_module_class.__name__ == base_module_class_name: return base_module_class # see http://stackoverflow.com/questions/3862310/how-can-i-find-all-subclasses-of-a-class-given-its-name def all_subclasses(cls): """ returns a list of all subclasses of cls """ return cls.__subclasses__() + [g for s in cls.__subclasses__() for g in all_subclasses(s)] def recursive_getattr(root, path): """ returns root.path (i.e. root.attr1.attr2) """ attribute = root for name in path.split('.'): if name != "": attribute = getattr(attribute, name) return attribute def recursive_setattr(root, path, value): """ returns root.path = value (i.e. root.attr1.attr2 = value) """ attribute = root names = path.split('.') for name in names[:-1]: attribute = getattr(attribute, name) setattr(attribute, names[-1], value) def setloglevel(level='info', loggername='pyrpl'): """ sets the log level to the one specified in config file""" try: loglevels = {"notset": logging.NOTSET, "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL} level = loglevels[level] except: pass else: logging.getLogger(name=loggername).setLevel(level) class DuplicateFilter(logging.Filter): """ Prevent multiple repeated logging message from polluting the console """ def filter(self, record): # add other fields if you need more granular comparison, depends on your app current_log = (record.module, record.levelno, record.msg) if current_log != getattr(self, "last_log", None): self.last_log = current_log return True return False def sorted_dict(dict_to_sort=None, sort_by_values=True, **kwargs): if dict_to_sort is None: dict_to_sort = kwargs if not sort_by_values: return OrderedDict(sorted(dict_to_sort.items())) else: return OrderedDict(sorted(dict_to_sort.items(), key=lambda x: x[1])) def update_with_typeconversion(dictionary, update): for k, v in update.items(): if k in dictionary: # perform type conversion if appropriate v = type(dictionary[k])(v) dictionary[k] = v return dictionary def unique_list(nonunique_list): """ Returns a list where each element of nonunique_list occurs exactly once. The last occurence of an element defines its position in the returned list. """ unique_list = [] for attr in reversed(nonunique_list): # remove all previous occurences if attr not in unique_list: unique_list.insert(0, attr) return unique_list class Bijection(dict): """ This class defines a bijection object based on dict It can be used exactly like dict, but additionally has a property 'inverse' which contains the inverted {value: key} dict. """ def __init__(self, *args, **kwargs): super(Bijection, self).__init__(*args, **kwargs) self.inverse = {v: k for k, v in self.items()} def __setitem__(self, key, value): super(Bijection, self).__setitem__(key, value) self.inverse[value] = key def __delitem__(self, key): self.inverse.__delitem__(self.__getitem__(key)) super(Bijection, self).__delitem__(key) def METHOD_NAME(self, key): self.inverse.METHOD_NAME(self.__getitem__(key)) super(Bijection, self).METHOD_NAME(key) def update(self, *args, **kwargs): super(Bijection, self).update(*args, **kwargs) self.inverse = {v: k for k, v in self.items()}
null
test cov args with cov bin
# Copyright 2022 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Consolidate test configuration from command-line and environment. """ from __future__ import annotations from datetime import timedelta from pathlib import Path from legate.tester import FeatureType from legate.tester.config import Config from legate.tester.stages import test_stage as m from legate.tester.stages.util import Shard, StageResult, StageSpec from legate.tester.test_system import ProcessResult, TestSystem as _TestSystem from legate.util.types import ArgList, EnvDict from . import FakeSystem s = FakeSystem() class MockTestStage(m.TestStage): kind: FeatureType = "eager" name = "mock" args = ["-foo", "-bar"] def __init__(self, config: Config, system: _TestSystem) -> None: self._init(config, system) def compute_spec(self, config: Config, system: _TestSystem) -> StageSpec: shards = [Shard([(0,)]), Shard([(1,)]), Shard([(2,)])] return StageSpec(2, shards) def shard_args(self, shard: Shard, config: Config) -> ArgList: return [] def env(self, config: Config, system: _TestSystem) -> EnvDict: return {} class TestTestStage: def test_name(self) -> None: c = Config([]) stage = MockTestStage(c, s) assert stage.name == "mock" def test_intro(self) -> None: c = Config([]) stage = MockTestStage(c, s) assert "Entering stage: mock" in stage.intro def test_outro(self) -> None: c = Config([]) stage = MockTestStage(c, s) stage.result = StageResult( [ProcessResult("invoke", Path("test/file"))], timedelta(seconds=2.123), ) outro = stage.outro assert "Exiting stage: mock" in outro assert "Passed 1 of 1 tests (100.0%)" in outro assert "2.123" in outro def test_file_args_default(self) -> None: c = Config([]) stage = MockTestStage(c, s) assert stage.file_args(Path("integration/foo"), c) == [] assert stage.file_args(Path("unit/foo"), c) == [] def test_file_args_v(self) -> None: c = Config(["test.py", "-v"]) stage = MockTestStage(c, s) assert stage.file_args(Path("integration/foo"), c) == ["-v"] assert stage.file_args(Path("unit/foo"), c) == [] def test_file_args_vv(self) -> None: c = Config(["test.py", "-vv"]) stage = MockTestStage(c, s) assert stage.file_args(Path("integration/foo"), c) == ["-v", "-s"] assert stage.file_args(Path("unit/foo"), c) == [] def test_cov_args_without_cov_bin(self) -> None: c = m.Config(["test.py", "--cov-args", "run -a"]) stage = MockTestStage(c, s) assert stage.cov_args(c) == [] def METHOD_NAME(self) -> None: cov_bin = "conda/envs/legate/bin/coverage" args = ["--cov-bin", cov_bin] c = m.Config(["test.py"] + args) expected_result = [cov_bin] + c.cov_args.split() stage = MockTestStage(c, s) assert stage.cov_args(c) == expected_result def test_cov_args_with_cov_bin_args_and_src_path(self) -> None: cov_bin = "conda/envs/legate/bin/coverage" cov_args = "run -a" cov_src_path = "source_path" args = ( ["--cov-bin", cov_bin] + ["--cov-args", cov_args] + ["--cov-src-path", cov_src_path] ) c = m.Config(["test.py"] + args) expected_result = ( [cov_bin] + cov_args.split() + ["--source", cov_src_path] ) stage = MockTestStage(c, s) assert stage.cov_args(c) == expected_result
null
test download json
import json from functools import partial from unittest import mock import pytest from yapapi.ctx import WorkContext from yapapi.script import Script class TestWorkContext: @pytest.fixture(autouse=True) def setUp(self): self._on_download_executed = False @staticmethod def _get_work_context(storage=None): return WorkContext(mock.Mock(), mock.Mock(), storage=storage, emitter=mock.Mock()) @staticmethod def _assert_dst_path(script: Script, dst_path): batch = script._evaluate() transfer_cmd = [cmd for cmd in batch if "transfer" in cmd][0] assert transfer_cmd["transfer"]["to"] == f"container:{dst_path}" @staticmethod def _assert_src_path(script: Script, src_path): batch = script._evaluate() transfer_cmd = [cmd for cmd in batch if "transfer" in cmd][0] assert transfer_cmd["transfer"]["from"] == f"container:{src_path}" async def _on_download(self, expected, data: bytes): assert data == expected self._on_download_executed = True @pytest.mark.asyncio async def test_upload_json(self): storage = mock.AsyncMock() dst_path = "/test/path" data = { "param": "value", } ctx = self._get_work_context(storage) script = ctx.new_script() script.upload_json(data, dst_path) await script._before() storage.upload_bytes.assert_called_with(json.dumps(data).encode("utf-8")) self._assert_dst_path(script, dst_path) @pytest.mark.asyncio async def test_upload_bytes(self): storage = mock.AsyncMock() dst_path = "/test/path" data = b"some byte string" ctx = self._get_work_context(storage) script = ctx.new_script() script.upload_bytes(data, dst_path) await script._before() storage.upload_bytes.assert_called_with(data) self._assert_dst_path(script, dst_path) @pytest.mark.asyncio async def test_download_bytes(self): expected = b"some byte string" storage = mock.AsyncMock() storage.new_destination.return_value.download_bytes.return_value = expected src_path = "/test/path" ctx = self._get_work_context(storage) script = ctx.new_script() script.download_bytes(src_path, partial(self._on_download, expected)) await script._before() await script._after() self._assert_src_path(script, src_path) assert self._on_download_executed @pytest.mark.asyncio async def METHOD_NAME(self): expected = {"key": "val"} storage = mock.AsyncMock() storage.new_destination.return_value.download_bytes.return_value = json.dumps( expected ).encode("utf-8") src_path = "/test/path" ctx = self._get_work_context(storage) script = ctx.new_script() script.download_json(src_path, partial(self._on_download, expected)) await script._before() await script._after() self._assert_src_path(script, src_path) assert self._on_download_executed @pytest.mark.parametrize( "args", ( ("foo", 42), (), ), ) def test_start(self, args): ctx = self._get_work_context() script = ctx.new_script() script.start(*args) batch = script._evaluate() assert batch == [{"start": {"args": args}}] @pytest.mark.parametrize( "kwargs", ( {"foo": 42}, {}, ), ) def test_deploy(self, kwargs): ctx = self._get_work_context() script = ctx.new_script() script.deploy(**kwargs) batch = script._evaluate() assert batch == [{"deploy": kwargs}] def test_terminate(self): ctx = self._get_work_context(None) script = ctx.new_script() script.terminate() batch = script._evaluate() assert batch == [{"terminate": {}}]
null
parse output
#v 1.0 import sys, os, time, re import urllib, urllib2 from optparse import OptionParser from HTMLParser import HTMLParser from xml.dom.minidom import parseString #id mapping def getPDBIdandChain(uniprotID): #data from http://www.bioinf.org.uk/pdbsws/ dirPath = os.path.dirname(sys.argv[0]) fileName ='pdb_uniprot_chain_map.lst.2' if len(dirPath) != 0: fileName = dirPath + "/pdb_uniprot_chain_map.lst.2" fileName = fileName.replace('\\', '/') f = open (fileName, 'r') pdbId = '' chain = '' while(1): line = f.readline() if not line: break line = line.rstrip('\n') columns = line.split() if len(columns) != 3: continue if columns[2] == uniprotID: pdbId = columns[0] chain = columns[1] f.close() return pdbId, chain # Define a function for the thread class NoRedirectHandler(urllib2.HTTPRedirectHandler): def http_error_302(self, req, fp, code, msg, headers): infourl = urllib.addinfourl(fp, headers, req.get_full_url()) infourl.status = code infourl.code = code return infourl http_error_300 = http_error_302 http_error_301 = http_error_302 http_error_303 = http_error_302 http_error_307 = http_error_302 def prepare_optparser(): """Prepare optparser object. New options will be added in this function first. """ usage = "usage: %prog <-p STRING -c STRING -m STRING> [options]" description = "SNP2PDBSite." optparser = OptionParser(version="%prog v1.0", description=description, usage=usage, add_help_option=False) optparser.add_option("-h","--help",action="help",help="Show this help message and exit.") optparser.add_option("-p","--protId",dest="protId",type="string", help="Enter protein (uniprot) ID.") optparser.add_option("-c", "--chain", dest="chain",type="string", help="Enter chain.") optparser.add_option("-m", "--mut", dest="mutation",type="string", help="Enter mutation.") return optparser def opt_validate(optparser): """Validate options from a OptParser object. Return: Validated options object. """ (options,args) = optparser.parse_args() if not (options.protId and options.chain and options.mutation): optparser.print_help() sys.exit(1) if '"' in options.protId: options.protId = options.protId.replace('"','') if '"' in options.mutation: options.mutation = options.mutation.replace('"','') id, chain = getPDBIdandChain(options.protId) if not (id and chain): sys.exit(1) options.chain = chain options.protId = id mutList = list(options.mutation) mutList[0] = chain options.mutation = "".join(mutList) return options class Snp2pdbsite: def __init__(self, options): self.protId = options.protId if not options.chain: options.chain = "" self.chain = options.chain if not options.mutation: options.mutation = "" self.mutation = options.mutation self.url = 'http://www-bionet.sscc.ru/psd2/rest.php?tool=snp2pdbsite' def sendQuery(self): opener = urllib2.build_opener(NoRedirectHandler()) urllib2.install_opener(opener) # do POST params = urllib.urlencode({'pdb': self.protId, 'chain': self.chain, 'mut': self.mutation}) req = urllib2.Request(self.url, params) rsp = urllib2.urlopen(req) content = rsp.read() res = content.find('qid=') content = content[res+5:] res = content.find('"') content = content[:res] self.url = "http://www-bionet.sscc.ru/psd2/rest.php?tool=snp2pdbsite&q=%s" %content self.getResult() def getResult(self): opener = urllib2.build_opener(NoRedirectHandler()) urllib2.install_opener(opener) content = "working" while content.find('working') >= 0: req = urllib2.Request(self.url) rsp = urllib2.urlopen(req) content = rsp.read() time.sleep(0.1) self.METHOD_NAME(content) def METHOD_NAME(self, content): if len(content) == 0: print "Result is empty" sys.exit(1) xmldoc = parseString(content) itemlist = xmldoc.getElementsByTagName('aa') if itemlist.length <= 0: print "Result is empty" sys.exit(1) for item in itemlist: print "PDB_SITE" + ':' + item.getAttribute("pos") + item.getAttribute("aa") + ';' def main(): opts=opt_validate(prepare_optparser()) g = Snp2pdbsite(opts) g.sendQuery() if __name__ == "__main__": main()
null
yield all throttles from module
from importlib import import_module from unittest import mock from django.conf import settings from django.contrib.auth.models import AnonymousUser from django.test.client import RequestFactory from django.test.utils import override_settings import pytest from freezegun import freeze_time from rest_framework.test import APIRequestFactory, force_authenticate from rest_framework.throttling import BaseThrottle from rest_framework.viewsets import GenericViewSet from olympia import amo from olympia.activity.models import ActivityLog from olympia.amo.tests import TestCase, user_factory from olympia.api.throttling import GranularIPRateThrottle, GranularUserRateThrottle def find_all_throttle_classes(): def METHOD_NAME(module): for name in dir(module): item = getattr(module, name) if hasattr(item, 'mro'): mro = item.mro() # Our own throttle classes we've defined. if BaseThrottle in mro and item.__module__.startswith('olympia.'): yield item # Every throttle class referenced in viewsets. if GenericViewSet in mro: for throttle in getattr(item, 'throttle_classes', []): if throttle: yield throttle def yield_all_throttles(): for app in settings.INSTALLED_APPS: if not app.startswith('olympia'): continue for module_name in ('throttling', 'views'): try: module = import_module(f'{app}.{module_name}') yield from METHOD_NAME(module) except ModuleNotFoundError: continue return sorted(set(yield_all_throttles()), key=lambda x: x.__name__) @pytest.mark.parametrize('throttle_class', find_all_throttle_classes()) def test_ensure_throttles_inherit_from_granular_user_rate_throttle(throttle_class): # All throttling classes we can find in addons-server should also be # children of GranularUserRateThrottle. assert GranularUserRateThrottle in throttle_class.mro() class TestGranularUserRateThrottle(TestCase): def setUp(self): self.throttle = GranularUserRateThrottle() def test_backwards_compatible_format(self): # test the original DRF rate string format x/timeperiod works assert self.throttle.parse_rate('1/minute') == (1, 60) assert self.throttle.parse_rate('24/s') == (24, 1) assert self.throttle.parse_rate('456/hour') == (456, 3600) def test_granular_format(self): assert self.throttle.parse_rate('1/5minute') == (1, 60 * 5) assert self.throttle.parse_rate('24/1s') == (24, 1) assert self.throttle.parse_rate('456/7hour') == (456, 7 * 3600) @mock.patch('rest_framework.throttling.UserRateThrottle.allow_request') def test_allow_request_if_api_throttling_setting_is_false(self, allow_request_mock): request = RequestFactory().get('/test') view = object() # Pretend the parent class would always throttle requests if called. allow_request_mock.return_value = False # With the setting set to True (the default), throttle as normal. assert settings.API_THROTTLING is True assert self.throttle.allow_request(request, view) is False assert allow_request_mock.call_count == 1 # With the setting set to False, ignore throttling. with override_settings(API_THROTTLING=False): assert settings.API_THROTTLING is False assert self.throttle.allow_request(request, view) is True # The parent class hasn't been called an additional time. assert allow_request_mock.call_count == 1 # And again set to True to be sure. assert settings.API_THROTTLING is True assert self.throttle.allow_request(request, view) is False assert allow_request_mock.call_count == 2 @mock.patch('rest_framework.throttling.UserRateThrottle.allow_request') def test_bypass_if_user_has_permission(self, allow_request_mock): request = RequestFactory().get('/test') view = object() # Pretend the parent class would always throttle requests if called. allow_request_mock.return_value = False # No user: throttle as normal. assert self.throttle.allow_request(request, view) is False assert allow_request_mock.call_count == 1 # AnonymousUser: throttle as normal. request.user = AnonymousUser() allow_request_mock.reset_mock() assert self.throttle.allow_request(request, view) is False assert allow_request_mock.call_count == 1 # Regular user: throttle as normal. request.user = user_factory() allow_request_mock.reset_mock() assert self.throttle.allow_request(request, view) is False assert allow_request_mock.call_count == 1 # User with the right permission: bypass throttling. self.grant_permission(request.user, 'API:BypassThrottling') allow_request_mock.reset_mock() assert self.throttle.allow_request(request, view) is True assert allow_request_mock.call_count == 0 @freeze_time(as_kwarg='frozen_time') def test_freeze_time_works_with_throttling(self, frozen_time): self.throttle = self.throttle.__class__() old_time = self.throttle.timer() frozen_time.move_to('2019-04-08 15:16:23.42') assert self.throttle.timer() == 1554736583.42 assert old_time != 1554736583.42 @mock.patch('rest_framework.throttling.UserRateThrottle.allow_request') def test_activity_log(self, allow_request_mock): request = RequestFactory().get('/test') view = object() allow_request_mock.return_value = False assert self.throttle.allow_request(request, view) is False # Shouldn't be any ActivityLog since there was no user associated with # that request. assert not ActivityLog.objects.exists() allow_request_mock.return_value = True request.user = user_factory() assert self.throttle.allow_request(request, view) is True # Shouldn't be any ActivityLog since the request was not throttled. assert not ActivityLog.objects.exists() allow_request_mock.return_value = False request.user = user_factory() assert self.throttle.allow_request(request, view) is False assert ActivityLog.objects.exists() activity = ActivityLog.objects.get() assert activity.action == amo.LOG.THROTTLED.id assert activity.arguments == [self.throttle.scope] assert activity.user == request.user activity_str = str(activity) assert '/user/%d/' % request.user.pk in activity_str assert self.throttle.scope in activity_str class TestGranularIPRateThrottle(TestGranularUserRateThrottle): def setUp(self): self.throttle = GranularIPRateThrottle() def test_get_cache_key_returns_even_for_authenticated_users(self): # Like DRF's AnonRateThrottleTests.test_authenticated_user_not_affected # except that we should get a cache key regardless of whether the user # is authenticated or not. request = APIRequestFactory().get('/') user = user_factory() force_authenticate(request, user) request.user = user request.META['REMOTE_ADDR'] = '123.45.67.89' expected_key = 'throttle_anon_123.45.67.89' assert self.throttle.get_cache_key(request, view={}) == expected_key
null
to str
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 """ Submarine API The Submarine REST API allows you to access Submarine resources such as, experiments, environments and notebooks. The API is hosted under the /v1 path on the Submarine server. For example, to list experiments on a server hosted at http://localhost:8080, access http://localhost:8080/api/v1/experiment/ # noqa: E501 The version of the OpenAPI document: 0.9.0-SNAPSHOT Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from submarine.client.configuration import Configuration class GitCodeSpec(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'branch': 'str', 'password': 'str', 'trust_certs': 'bool', 'url': 'str', 'username': 'str', } attribute_map = { 'branch': 'branch', 'password': 'password', 'trust_certs': 'trustCerts', 'url': 'url', 'username': 'username', } def __init__( self, branch=None, password=None, trust_certs=None, url=None, username=None, local_vars_configuration=None, ): # noqa: E501 """GitCodeSpec - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._branch = None self._password = None self._trust_certs = None self._url = None self._username = None self.discriminator = None if branch is not None: self.branch = branch if password is not None: self.password = password if trust_certs is not None: self.trust_certs = trust_certs if url is not None: self.url = url if username is not None: self.username = username @property def branch(self): """Gets the branch of this GitCodeSpec. # noqa: E501 :return: The branch of this GitCodeSpec. # noqa: E501 :rtype: str """ return self._branch @branch.setter def branch(self, branch): """Sets the branch of this GitCodeSpec. :param branch: The branch of this GitCodeSpec. # noqa: E501 :type: str """ self._branch = branch @property def password(self): """Gets the password of this GitCodeSpec. # noqa: E501 :return: The password of this GitCodeSpec. # noqa: E501 :rtype: str """ return self._password @password.setter def password(self, password): """Sets the password of this GitCodeSpec. :param password: The password of this GitCodeSpec. # noqa: E501 :type: str """ self._password = password @property def trust_certs(self): """Gets the trust_certs of this GitCodeSpec. # noqa: E501 :return: The trust_certs of this GitCodeSpec. # noqa: E501 :rtype: bool """ return self._trust_certs @trust_certs.setter def trust_certs(self, trust_certs): """Sets the trust_certs of this GitCodeSpec. :param trust_certs: The trust_certs of this GitCodeSpec. # noqa: E501 :type: bool """ self._trust_certs = trust_certs @property def url(self): """Gets the url of this GitCodeSpec. # noqa: E501 :return: The url of this GitCodeSpec. # noqa: E501 :rtype: str """ return self._url @url.setter def url(self, url): """Sets the url of this GitCodeSpec. :param url: The url of this GitCodeSpec. # noqa: E501 :type: str """ self._url = url @property def username(self): """Gets the username of this GitCodeSpec. # noqa: E501 :return: The username of this GitCodeSpec. # noqa: E501 :rtype: str """ return self._username @username.setter def username(self, username): """Sets the username of this GitCodeSpec. :param username: The username of this GitCodeSpec. # noqa: E501 :type: str """ self._username = username def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map(lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value)) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict( map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items(), ) ) else: result[attr] = value return result def METHOD_NAME(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.METHOD_NAME() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, GitCodeSpec): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, GitCodeSpec): return True return self.to_dict() != other.to_dict()
null
outputs
""" component_wise_divide_fc ======================== Autogenerated DPF operator classes. """ from warnings import warn from ansys.dpf.core.dpf_operator import Operator from ansys.dpf.core.inputs import Input, _Inputs from ansys.dpf.core.METHOD_NAME import Output, _Outputs from ansys.dpf.core.operators.specification import PinSpecification, Specification class component_wise_divide_fc(Operator): """For every two fields with the same label space (from the two input fields containers), computes component-wise fraction between two fields of same dimensionality. If one field's scoping has an 'overall' location, then this field's values are applied on the other field entirely. Parameters ---------- fields_containerA : FieldsContainer fields_containerB : FieldsContainer Examples -------- >>> from ansys.dpf import core as dpf >>> # Instantiate operator >>> op = dpf.operators.math.component_wise_divide_fc() >>> # Make input connections >>> my_fields_containerA = dpf.FieldsContainer() >>> op.inputs.fields_containerA.connect(my_fields_containerA) >>> my_fields_containerB = dpf.FieldsContainer() >>> op.inputs.fields_containerB.connect(my_fields_containerB) >>> # Instantiate operator and connect inputs in one line >>> op = dpf.operators.math.component_wise_divide_fc( ... fields_containerA=my_fields_containerA, ... fields_containerB=my_fields_containerB, ... ) >>> # Get output data >>> result_fields_container = op.outputs.fields_container() """ def __init__( self, fields_containerA=None, fields_containerB=None, config=None, server=None ): super().__init__(name="component_wise_divide_fc", config=config, server=server) self._inputs = InputsComponentWiseDivideFc(self) self._outputs = OutputsComponentWiseDivideFc(self) if fields_containerA is not None: self.inputs.fields_containerA.connect(fields_containerA) if fields_containerB is not None: self.inputs.fields_containerB.connect(fields_containerB) @staticmethod def _spec(): description = """For every two fields with the same label space (from the two input fields containers), computes component-wise fraction between two fields of same dimensionality. If one field's scoping has an 'overall' location, then this field's values are applied on the other field entirely.""" spec = Specification( description=description, map_input_pin_spec={ 0: PinSpecification( name="fields_containerA", type_names=["fields_container"], optional=False, document="""""", ), 1: PinSpecification( name="fields_containerB", type_names=["fields_container"], optional=False, document="""""", ), }, map_output_pin_spec={ 0: PinSpecification( name="fields_container", type_names=["fields_container"], optional=False, document="""""", ), }, ) return spec @staticmethod def default_config(server=None): """Returns the default config of the operator. This config can then be changed to the user needs and be used to instantiate the operator. The Configuration allows to customize how the operation will be processed by the operator. Parameters ---------- server : server.DPFServer, optional Server with channel connected to the remote or local instance. When ``None``, attempts to use the global server. """ return Operator.default_config(name="component_wise_divide_fc", server=server) @property def inputs(self): """Enables to connect inputs to the operator Returns -------- inputs : InputsComponentWiseDivideFc """ return super().inputs @property def METHOD_NAME(self): """Enables to get outputs of the operator by evaluating it Returns -------- outputs : OutputsComponentWiseDivideFc """ return super().METHOD_NAME class InputsComponentWiseDivideFc(_Inputs): """Intermediate class used to connect user inputs to component_wise_divide_fc operator. Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.math.component_wise_divide_fc() >>> my_fields_containerA = dpf.FieldsContainer() >>> op.inputs.fields_containerA.connect(my_fields_containerA) >>> my_fields_containerB = dpf.FieldsContainer() >>> op.inputs.fields_containerB.connect(my_fields_containerB) """ def __init__(self, op: Operator): super().__init__(component_wise_divide_fc._spec().inputs, op) self._fields_containerA = Input( component_wise_divide_fc._spec().input_pin(0), 0, op, -1 ) self._inputs.append(self._fields_containerA) self._fields_containerB = Input( component_wise_divide_fc._spec().input_pin(1), 1, op, -1 ) self._inputs.append(self._fields_containerB) @property def fields_containerA(self): """Allows to connect fields_containerA input to the operator. Parameters ---------- my_fields_containerA : FieldsContainer Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.math.component_wise_divide_fc() >>> op.inputs.fields_containerA.connect(my_fields_containerA) >>> # or >>> op.inputs.fields_containerA(my_fields_containerA) """ return self._fields_containerA @property def fields_containerB(self): """Allows to connect fields_containerB input to the operator. Parameters ---------- my_fields_containerB : FieldsContainer Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.math.component_wise_divide_fc() >>> op.inputs.fields_containerB.connect(my_fields_containerB) >>> # or >>> op.inputs.fields_containerB(my_fields_containerB) """ return self._fields_containerB class OutputsComponentWiseDivideFc(_Outputs): """Intermediate class used to get outputs from component_wise_divide_fc operator. Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.math.component_wise_divide_fc() >>> # Connect inputs : op.inputs. ... >>> result_fields_container = op.outputs.fields_container() """ def __init__(self, op: Operator): super().__init__(component_wise_divide_fc._spec().METHOD_NAME, op) self._fields_container = Output( component_wise_divide_fc._spec().output_pin(0), 0, op ) self._outputs.append(self._fields_container) @property def fields_container(self): """Allows to get fields_container output of the operator Returns ---------- my_fields_container : FieldsContainer Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.math.component_wise_divide_fc() >>> # Connect inputs : op.inputs. ... >>> result_fields_container = op.outputs.fields_container() """ # noqa: E501 return self._fields_container
null
add to report
# Copyright (c) Facebook, Inc. and its affiliates. import csv import json import logging import os import warnings from dataclasses import dataclass, field from typing import List import pytorch_lightning as pl from mmf.common.registry import registry from mmf.common.sample import convert_batch_to_sample_list from mmf.utils.configuration import get_mmf_env from mmf.utils.distributed import gather_tensor, is_main from mmf.utils.file_io import PathManager from mmf.utils.general import ckpt_name_from_core_args, foldername_from_config_override from mmf.utils.logger import log_class_usage from mmf.utils.timer import Timer from omegaconf import OmegaConf from torch.utils.data import Dataset logger = logging.getLogger(__name__) DEFAULT_CANDIDATE_FIELDS = [ "id", "question_id", "image_id", "context_tokens", "captions", "scores", ] @registry.register_test_reporter("file") @registry.register_test_reporter("default") class TestReporter(Dataset): @dataclass class Config: # A set of fields to be *considered* for exporting by the reporter # Note that `format_for_prediction` is what ultimtly detemrimes the # exported fields candidate_fields: List[str] = field( default_factory=lambda: DEFAULT_CANDIDATE_FIELDS ) # csv or json predict_file_format: str = "json" def __init__( self, datamodules: List[pl.LightningDataModule], config: Config = None, dataset_type: str = "train", ): self.test_reporter_config = OmegaConf.merge( OmegaConf.structured(self.Config), config ) self.datamodules = datamodules self.dataset_type = dataset_type self.config = registry.get("config") self.report = [] self.timer = Timer() self.training_config = self.config.training self.num_workers = self.training_config.num_workers self.batch_size = self.training_config.batch_size self.report_folder_arg = get_mmf_env(key="report_dir") self.experiment_name = self.training_config.experiment_name self.current_datamodule_idx = -1 self.dataset_names = list(self.datamodules.keys()) self.current_datamodule = self.datamodules[ self.dataset_names[self.current_datamodule_idx] ] self.current_dataloader = None self.save_dir = get_mmf_env(key="save_dir") self.report_folder = ckpt_name_from_core_args(self.config) self.report_folder += foldername_from_config_override(self.config) self.report_folder = os.path.join(self.save_dir, self.report_folder) self.report_folder = os.path.join(self.report_folder, "reports") if self.report_folder_arg: self.report_folder = self.report_folder_arg self.candidate_fields = self.test_reporter_config.candidate_fields PathManager.mkdirs(self.report_folder) log_class_usage("TestReporter", self.__class__) @property def current_dataset(self): self._check_current_dataloader() return self.current_dataloader.dataset def next_dataset(self, flush_report=True): if self.current_datamodule_idx >= 0: if flush_report: self.flush_report() else: self.report = [] self.current_datamodule_idx += 1 if self.current_datamodule_idx == len(self.datamodules): return False else: self.current_datamodule = self.datamodules[ self.dataset_names[self.current_datamodule_idx] ] logger.info( f"Predicting for {self.dataset_names[self.current_datamodule_idx]}" ) return True def flush_report(self): if not is_main(): # Empty report in all processes to avoid any leaks self.report = [] return name = self.current_datamodule.dataset_name time_format = "%Y-%m-%dT%H:%M:%S" time = self.timer.get_time_hhmmss(None, format=time_format) filename = name + "_" if len(self.experiment_name) > 0: filename += self.experiment_name + "_" filename += self.dataset_type + "_" filename += time use_csv_writer = ( self.config.evaluation.predict_file_format == "csv" or self.test_reporter_config.predict_file_format == "csv" ) if use_csv_writer: filepath = os.path.join(self.report_folder, filename + ".csv") self.csv_dump(filepath) else: filepath = os.path.join(self.report_folder, filename + ".json") self.json_dump(filepath) logger.info(f"Wrote predictions for {name} to {os.path.abspath(filepath)}") self.report = [] def postprocess_dataset_report(self): self._check_current_dataloader() if hasattr(self.current_dataset, "on_prediction_end"): self.report = self.current_dataset.on_prediction_end(self.report) def csv_dump(self, filepath): with PathManager.open(filepath, "w") as f: title = self.report[0].keys() cw = csv.DictWriter(f, title, delimiter=",", quoting=csv.QUOTE_MINIMAL) cw.writeheader() cw.writerows(self.report) def json_dump(self, filepath): with PathManager.open(filepath, "w") as f: json.dump(self.report, f) def get_dataloader(self): self.current_dataloader = getattr( self.current_datamodule, f"{self.dataset_type}_dataloader" )() # Make sure to assign dataset to dataloader object as # required by MMF if not hasattr(self.current_dataloader, "dataset"): self.current_dataloader.dataset = getattr( self.current_datamodule, f"{self.dataset_type}_dataset" ) return self.current_dataloader def prepare_batch(self, batch): self._check_current_dataloader() if hasattr(self.current_dataset, "prepare_batch"): batch = self.current_dataset.prepare_batch(batch) batch = convert_batch_to_sample_list(batch) batch.dataset_name = self.current_dataset.dataset_name batch.dataset_type = self.dataset_type return batch def __len__(self): self._check_current_dataloader() return len(self.current_dataloader) def _check_current_dataloader(self): assert self.current_dataloader is not None, ( "Please call `get_dataloader` before accessing any " + "'current_dataloader' based function" ) def METHOD_NAME(self, report, model, *args, **kwargs): if "execute_on_master_only" in kwargs: warnings.warn( "'execute_on_master_only keyword is deprecated and isn't used anymore", DeprecationWarning, ) self._check_current_dataloader() for key in self.candidate_fields: report = self.reshape_and_gather(report, key) results = [] if hasattr(self.current_dataset, "format_for_prediction"): results = self.current_dataset.format_for_prediction(report) if hasattr(model, "format_for_prediction"): results = model.format_for_prediction(results, report) elif hasattr(model.module, "format_for_prediction"): results = model.module.format_for_prediction(results, report) self.report = self.report + results def reshape_and_gather(self, report, key): if key in report: num_dims = report[key].dim() if num_dims == 1: report[key] = gather_tensor(report[key]).view(-1) elif num_dims >= 2: # Collect dims other than batch other_dims = report[key].size()[1:] report[key] = gather_tensor(report[key]).view(-1, *other_dims) return report
null
toggle logging
# Copyright 2015-2021 Espressif Systems (Shanghai) CO LTD # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import os import re from typing import BinaryIO, Callable, Optional, Union # noqa: F401 from serial.tools import miniterm # noqa: F401 from .constants import MATCH_PCADDR from .output_helpers import lookup_pc_address, red_print, yellow_print class Logger: def __init__(self, elf_file, console, timestamps, timestamp_format, pc_address_buffer, enable_address_decoding, toolchain_prefix): # type: (str, miniterm.Console, bool, str, bytes, bool, str) -> None self.log_file = None # type: Optional[BinaryIO] self._output_enabled = True # type: bool self.elf_file = elf_file self.console = console self.timestamps = timestamps self.timestamp_format = timestamp_format self._pc_address_buffer = pc_address_buffer self.enable_address_decoding = enable_address_decoding self.toolchain_prefix = toolchain_prefix @property def pc_address_buffer(self): # type: () -> bytes return self._pc_address_buffer @pc_address_buffer.setter def pc_address_buffer(self, value): # type: (bytes) -> None self._pc_address_buffer = value @property def output_enabled(self): # type: () -> bool return self._output_enabled @output_enabled.setter def output_enabled(self, value): # type: (bool) -> None self._output_enabled = value @property def log_file(self): # type: () -> Optional[BinaryIO] return self._log_file @log_file.setter def log_file(self, value): # type: (Optional[BinaryIO]) -> None self._log_file = value def METHOD_NAME(self): # type: () -> None if self._log_file: self.stop_logging() else: self.start_logging() def toggle_timestamps(self): # type: () -> None self.timestamps = not self.timestamps def start_logging(self): # type: () -> None if not self._log_file: name = 'log.{}.{}.txt'.format(os.path.splitext(os.path.basename(self.elf_file))[0], datetime.datetime.now().strftime('%Y%m%d%H%M%S')) try: self.log_file = open(name, 'wb+') yellow_print('\nLogging is enabled into file {}'.format(name)) except Exception as e: # noqa red_print('\nLog file {} cannot be created: {}'.format(name, e)) def stop_logging(self): # type: () -> None if self._log_file: try: name = self._log_file.name self._log_file.close() yellow_print('\nLogging is disabled and file {} has been closed'.format(name)) except Exception as e: # noqa red_print('\nLog file cannot be closed: {}'.format(e)) finally: self._log_file = None def print(self, string, console_printer=None): # noqa: E999 # type: (Union[str, bytes], Optional[Callable]) -> None if console_printer is None: console_printer = self.console.write_bytes if self.timestamps and (self._output_enabled or self._log_file): t = datetime.datetime.now().strftime(self.timestamp_format) # "string" is not guaranteed to be a full line. Timestamps should be only at the beginning of lines. if isinstance(string, type(u'')): search_patt = '\n' replacement = '\n' + t + ' ' else: search_patt = b'\n' # type: ignore replacement = b'\n' + t.encode('ascii') + b' ' # type: ignore string = string.replace(search_patt, replacement) # type: ignore if self._output_enabled: console_printer(string) if self._log_file: try: if isinstance(string, type(u'')): string = string.encode() # type: ignore self._log_file.write(string) # type: ignore except Exception as e: red_print('\nCannot write to file: {}'.format(e)) # don't fill-up the screen with the previous errors (probably consequent prints would fail also) self.stop_logging() def output_toggle(self): # type: () -> None self.output_enabled = not self.output_enabled yellow_print('\nToggle output display: {}, Type Ctrl-T Ctrl-Y to show/disable output again.'.format( self.output_enabled)) def handle_possible_pc_address_in_line(self, line): # type: (bytes) -> None line = self._pc_address_buffer + line self._pc_address_buffer = b'' if not self.enable_address_decoding: return for m in re.finditer(MATCH_PCADDR, line.decode(errors='ignore')): translation = lookup_pc_address(m.group(), self.toolchain_prefix, self.elf_file) if translation: self.print(translation, console_printer=yellow_print)
null