Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
fact-checking
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
stance-detection
License:
# Copyright 2022 Mads Kongsbak and Leon Derczynski | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# TODO: Address all TODOs and remove all explanatory comments | |
"""RumourEval 2019: Stance Prediction""" | |
import csv | |
import json | |
import os | |
import datasets | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@inproceedings{gorrell-etal-2019-semeval, | |
title = "{S}em{E}val-2019 Task 7: {R}umour{E}val, Determining Rumour Veracity and Support for Rumours", | |
author = "Gorrell, Genevieve and | |
Kochkina, Elena and | |
Liakata, Maria and | |
Aker, Ahmet and | |
Zubiaga, Arkaitz and | |
Bontcheva, Kalina and | |
Derczynski, Leon", | |
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation", | |
month = jun, | |
year = "2019", | |
address = "Minneapolis, Minnesota, USA", | |
publisher = "Association for Computational Linguistics", | |
url = "https://aclanthology.org/S19-2147", | |
doi = "10.18653/v1/S19-2147", | |
pages = "845--854", | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
Stance prediction task in English. The goal is to predict whether a given reply to a claim either supports, denies, questions, or simply comments on the claim. Ran as a SemEval task in 2019. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "cc-by-4.0" | |
class RumourEval2019Config(datasets.BuilderConfig): | |
def __init__(self, **kwargs): | |
super(RumourEval2019Config, self).__init__(**kwargs) | |
class RumourEval2019(datasets.GeneratorBasedBuilder): | |
"""RumourEval2019 Stance Detection Dataset formatted in triples of (source_text, reply_text, label)""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
RumourEval2019Config(name="RumourEval2019", version=VERSION, description="Stance Detection Dataset"), | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"source_text": datasets.Value("string"), | |
"reply_text": datasets.Value("string"), | |
"label": datasets.features.ClassLabel( | |
names=[ | |
"support", | |
"deny", | |
"query", | |
"comment" | |
] | |
) | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
train_text = dl_manager.download_and_extract("rumoureval2019_train.csv") | |
validation_text = dl_manager.download_and_extract("rumoureval2019_val.csv") | |
test_text = dl_manager.download_and_extract("rumoureval2019_test.csv") | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_text, "split": "train"}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_text, "split": "validation"}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_text, "split": "test"}), | |
] | |
def _generate_examples(self, filepath, split): | |
with open(filepath, encoding="utf-8") as f: | |
reader = csv.DictReader(f, delimiter=",") | |
guid = 0 | |
for instance in reader: | |
instance["source_text"] = instance.pop("source_text") | |
instance["reply_text"] = instance.pop("reply_text") | |
instance["label"] = instance.pop("label") | |
instance['id'] = str(guid) | |
yield guid, instance | |
guid += 1 |