text
stringlengths 50
141k
| meta
dict |
---|---|
This invention relates to rotary atomisers of the kind which include a rotary dispersion member in the form of a hollow truncated cone having a central region with a peripheral frusto-conical wall inclined outwardly of the central region, the inner surface of the wall being formed with grooves, each of which is symmetrical and extends radially outwardly from the central region to an innermost free edge of the wall. Such a rotary dispersion member will hereinafter be referred to as being of the kind specified. An outermost edge of the wall is usually formed with radially outwardly projecting teeth, each having an apex and a root, the teeth being disposed at the same angular spacing as the grooves and aligned along a radius of the dispersion member, so that an apex of each tooth is in alignment with a base of a corresponding groove.
Rotary atomisers have been used successfully for some years as a way of atomising liquids where it is necessary to control the range of spray droplet sizes produced for greater accuracy in liquid application and/or to reduce the volumes of spray liquid required. Such applications are the atomisation of pesticides (including herbicides) in agriculture, horticulture, and amenity situations, the atomisation of water for humidification/dust suppression and the accurate application of special additives in various applications such as paper making.
Rotary atomisers consist typically of a rotating dispersion member which maybe of a simple flat disc form. The rotary member can be driven by an suitable means such as an air or hydraulic motor, electric motor (A.C. or D.C.), either directly or indirectly via gears or belts and pulleys, a propeller in an air stream, or a turbine. The speed of the rotating member can be in the range 0-100,00 r.p.m. The liquid to be atomised is then fed through a flow calibration orifice onto the rotating disc. The liquid travels to the edge of the disc and centrifuged from it as discrete droplets (either directly or from the break-up of liquid ligaments formed at the disc edge).
One problem with these basic simple forms is that if the edge of the disc is plain, the surface tension of the liquid is sufficient to prevent the liquid leaving the edge in anything other than the random break up of a sheet of liquid if not at equilibrium of liquid flow rate and disc speed. The addition of tooth-like pointed serrations acting as zero issuing point as described in a paper by Bals. `Design of rotary atomisers` (Proc. 4th Int. Agric. Aviat. Congr., Kingston 1969) overcomes this problem. A second problem is one of feeding the spray liquid onto the disc. Ideally the feed should be at the centre of the disc where the angular velocity is at its lowest. As in practice this is normally where the drive shaft is, the feed is normally at some radius from the centre, usually resulting in poor spreading and distribution of the liquid to the disc edge. This problem has been overcome on later practical rotary atomiser designs by pointing the liquid feed towards the centre of the disc and turning the edge of the disc up to make a `frusto-conical` form. In order to ensure that liquid is fed to each tooth as regularly as possible, channels or grooves are added to the inside of the frusto-conical form. The number of teeth is normally the same as the number of grooves and can vary from 2 to 720 or whatever is practical for the disc size which can be from say a few millimetres to 1,000 mm. The design of this type of disc (frusto-conical with teeth and grooves) is described in U.K. Patent No. 1515511.
Whilst these discs made significant advances in controlling rotary atomiser droplet production, observation showed that on early designs when the liquid reached the end of the groove, because it had to turn a corner and cross a plain section of disc to reach the tooth tip, it could be disturbed by air movement caused by rotational speed and hence the stream of liquid was sometimes split and when it rejoined it as `corkscrewing` with subsequent deterioration of droplet spectrum. This phenomenon is illustrated in FIGS. 1 and 2 which show a groove 10, angle .alpha. through which liquid has to turn, liquid path 11, tooth 12 and liquid corkscrews 13 giving droplets 14.
This is overcome as described in U.K. Patent No. 2026904, which shows the interlocking of teeth and grooves and hence the shortening of the path from the end of groove to the tooth tip. In another invention as described in U.K. Patent No. 2004204 an attempt was made to ensure liquid contact from groove to tooth by means of an asymmetric tooth form. This however, suffers from the problem that it is a uni-directional rotary atomiser.
In recent years in the area where rotary atomisers are used there has been a move towards higher feed rates onto discs. This has resulted in another problem as illustrated in FIG. 3, which shows a groove 10, a liquid path 15 therein, and a body 16 of the atomiser. As can be seen, only part 17 of the stream of liquid remains in contact with the disc at the point where it leaves the groove and turns through the angle to reach the tooth tip. Another part 18 of the liquid stream splits off and emerges directly from the groove possibly resulting in contamination of the atomiser body and consequent dripping of spray liquid. | {
"pile_set_name": "USPTO Backgrounds"
} |
A refrigerant compressor for a vehicle air-conditioning apparatus is normally mounted in an engine compartment and is driven by power received from the vehicle engine. Accordingly, the rotation-speed of the compressor depends on the operating state of the vehicle engine, and so the rotation-speed of the compressor may also change drastically following a sudden change in the rotation-speed of the engine, and the refrigerant temperature and pressure in the compressor may be changed drastically. In particular, under severe climatic conditions, there have been cases where the pressure in the compressor increased abnormally. Therefore, for safety reasons, a refrigerant compressor for a vehicle air-conditioning apparatus is provided with a safety valve that releases the abnormal pressure externally when the pressure in the compressor has increased abnormally.
The safety valve is provided so as to communicate with an exhaust pathway in the compressor and is configured such that, when the pressure in the exhaust pathway reaches a set pressure or more, the valve is opened to discharge some of the refrigerant from a discharge port to the outside. However, there is a problem in that since this safety valve is exposed to a severe environment in the engine compartment, the refrigerant, into which oil has being mixed, is released from the safety valve, and white smoke is formed when the refrigerant contacts a high-temperature body, such as the engine, thereby staining the devices in the engine compartment. There has been a risk that the valve is blocked by the discharge port becoming clogged with foreign matter such as mud and sand, or the valve is stayed in a constantly-opened state by the discharge port becoming jammed with foreign matter and so forth.
Thus, proposed that a cap that covers the discharge port is attached to the safety valve, and the cap is provided with a guide port for releasing the refrigerant discharged from the discharge port in a specific direction (see PTL 1); a safety valve is provided with an attachable and detachable cover, an elastic body is interposed between this cover and a valve main body, and the elastic body is provided with a groove having a starting end facing the discharge port and a terminal end reaching the outer edge to form a gas discharge flow path, and further, the terminal end part of the groove of the elastic body is provided with a labyrinth (see PTL 2); and so forth.
{Citation List}
{Patent Literature}
{PTL 1}
Publication of Japanese Patent No. 3266985{PTL 2} Publication of Japanese Patent No. 3038681 | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention is related to nanofibers, methods and devices for electrospinning, methods and devices for depositing the nanofibers, and filters and other articles formed from the deposited nanofibers.
2. Description of the Related Art
The filtration industry has traditionally manufactured particulate air filters using conventional medium such as glass, cotton or polymer fibers made provided as rolled goods. The fibrous media may be made by non-woven processes such as wet laid paper, melt blown-spinning or woven yarn. The material is then transported to equipment where the media is cut, pleated, supported, glued into filter frames, and tested for leaks. Various measures of the properties of the rolled goods include appropriate weight per unit area, porosity, etc.
The porous filter media may be pleated or bonded into bags to increase the area of the media within individual filter units to reduce pressure drop. Often screens and other supports are added to prevent collapse of the media from the force of air flowing through the filter unit as dust is collected. Depending on the intended use of the filter, the filter may be tested with an appropriate challenge aerosol at a rated or standard airflow rate for pressure drop and particle collection efficiency. (e.g., ASHRAE 52.2, MIL-STD-282, IEST RP-CC 007.1, NIOSH APRS-STP-0051-00, and NIOSH APRS-0057-00 may be used to test the filters)
Theoretically, a reduction of the diameter of the fibers in a filter has the potential of causing an improvement of the filter system performance. For high efficiency filtration, fiberglass wet-laid papers are widely used having fiber diameters in the 200 nm to 5000 nm size range with the fiber sizes intentionally blended for both durability and filtration performance.
One technique for producing a smaller fiber diameter, and hence a potential for generating improved filtration media, is electrospinning of polymers to make submicron and nanofibers. Electrospinning as currently practiced uses a constant voltage to drive the spinning process defined herein as static field electrospinning.
However, electrospun nanofibers smaller than 500 nm are typically fragile, difficult to produce, and difficult to handle. One conventional approach has been to deposit nanofibers onto a conventional porous filter media to make a layered nanofiber filter media. The following patents describe conventional ways to fabricate nanofiber containing filters for various applications: U.S. Pat. Nos. 7,008,465; 6,994,742; 6,974,490; 6,955,775; 6,924,028; 6,875,256; 6,875,249; 6,800,117; 6,746,517; 6,743,273; 6,740,142; 6,716,274; and 6,673,136, and U.S. patent application Ser. Nos. 10/757,924 and 10/676,185; the entire contents of each of these patents are incorporated in entirety herein by reference.
Conventional layered nanofiber filters made from nanofibers deposited on conventional porous filter media have inherent limitations. The support media of these filters is usually pliable enough to allow pleating or manipulation during the assembly step. Such a pliable substrate media may flex or stretch from the air pressure drop force and may break or debond the nanofibers. The support layer of conventional media may contribute substantially to the pressure drop of the whole structure.
An ideal particulate filter is the one that would give the highest particle collection efficiency (lowest particle penetration) with the least pressure drop. One criterion for comparing filters of different thickness is the filter quality factor or figure of merit (FoM). The greater the value of FoM, the better the filter will perform (Hinds, 1982). One expression for this parameter is given by:FoM=−Log(Pt)/ΔP (1)where: Pt is the fractional penetration of a specific aerosol particle diameter (efficiency=(1−Pt)), and ΔP is the pressure drop corresponding to a specific face velocity of the filter (volumetric air flow divided by filter cross sectional area). As used herein, figure of merit given by −Log (Pt)/ΔP, where Pt is the fractional penetration of a specific aerosol particle diameter and ΔP is a pressure drop across the filtration medium corresponding to a face velocity of 5.3 cm/s and particle size of 0.3 microns.
Typically, the FoM of a high efficiency particulate air (HEPA) glass fiber media is 12 kPa−1 measured at a face velocity of 5.33 cm/s and 0.3 μm particle diameter. These are the standard conditions for HEPA media tests (i.e., IEST-RP-CC021.1).
The FoM of the layered nanofiber conventional porous filter media described above is limited by the relatively large fiber diameters of the coarse substrate which produce a relatively low FoM. The FoM of the layered nanofiber conventional porous filter media composite depends on the relative quantities of layers of nanofibers and conventional media and their respective FoM. In other words, while the individual layers of nanofibers may have a higher FoM than the conventional porous filter media substrate, the composite FoM is closer to the value of the convention porous filter media substrate because of the relative quantities of materials used in the conventional approach. Therefore at the current state-of-the-art, conventional layered nanofiber filter media do not provide filters with significantly greater FoM than conventional fiberglass media.
References describing various background materials and filter testing procedures include: 1. ASHRAE (1999) Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size, Standard 52.2-1999. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 1791 Tullie Circle, N. E. Atlanta, USA. 2. Ahn, Y. C., S. K. Park, et al. (2005). “Development of high efficiency nanofilters made of nanofibers.” Current Applied Physics: In press (accessed online). 3. Dhaniyala, S. and B. Y. H. Liu (1999a). “Investigations of particle penetration in fibrous filters part I. Experimental.” Journal of the IEST 42(1): 32-40. 4. Dhaniyala, S. and B. Y. H. Liu (1999b). “Investigations of particle penetration in fibrous filters Part II. Theoretical.” Journal of the IEST 42(2): 40-46. 5. Hinds, W. C. (1982). Aerosol Technology. New York, John Wiley & Sons, Inc. 6. IEST (1992) Institute of Environmental Sciences, Testing ULPA Filters. IEST RP-CC 007.1 Institute of Environmental Science and Technology, Rolling Meadows, USA. 7. IEST (1995) Institute of Environmental Sciences and Technology (1995) Testing HEPA and ULPA Filter Media, IEST-RP-CC021.1, Rolling Meadows, Ill. 8. MIL-STD-282, Filter units, Protective Clothing, Gas-mask Components and Related Products: Performance Test Methods, US Government Printing Office, May 28, 1956. 9. National Institute for Occupational Safety and Health (NIOSH) Particulate Filter Penetration Procedure to Test Negative Pressure Respirators against Liquid Particulates (Procedure APRS-STP-0051-00) Morgantown, W. Va.: NIOSH Division of Safety Research, 1955. 10. National Institute for Occupational Safety and Health (NIOSH) Particulate Filter Penetration Procedure to Test Negative Pressure Respirators against Solid Particulates (Procedure APRS-STP-0057-00) Morgantown, W. Va.: NIOSH Division of Safety Research, 1955. 11. Park, H. S. and Y. O. Park (2005). “Filtration properties of electrospun utrafine fiber webs.” Korean Journal of Chemical Engineering 22(1): 165-172. 12. Schreuder-Gibson, H. L., P. Gibson, et al. (2004). “Cooperative charging effects of fibers from electrospinning of electrically dissimilar polymers.” International Nonwovens Journal 13(4): 39-45. 13. Thomas, D., P. Contal, V. Renaudin, P. Penicot, D. Leclerc and J. Vendel (1999) Modelling pressure drop in HEPA filters during dynamic filtration. J. Aerosol Science, 30(2) 235-246. 14. S. Payet, D. Boulaud, G. Madelaine and A. Renoux (1992) Penetration and pressure drop of a HEPA filter during loading with submicron liquid particles. J. Aerosol Science 23(7). 723-735. 15. Bhattarai, S. R., N. Bhattarai, et al. (2004). “Novel biodegradable electrospun membrane: scaffold for tissue engineering.” Biomaterials 25(13): 2595-2602. 16. Boudriot, U., B. Goetz, et al. (2005). “Role of electrospun nanofibers in stem cell technologies and tissue engineering.” Macromolecular Symposia 225: 9-16. 17. Choi, S. S., Y. S. Lee, et al. (2004). “Electrospun PVDF nanofiber web as polymer electrolyte or separator.” Electrochimica Acta 50(2-3): 339-343. 18. Choi, S. W., S. M. Jo, et al. (2003). “An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications.” Advanced Materials 15(23): 2027-2032. 19. Jia, H. F., G. Y. Zhu, et al. (2002). “Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts.” Biotechnology Progress 18(5): 1027-1032. 20. Liu, H. Q., J. B. Edel, et al. (2006). “Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots.” Small 2(4): 495-499. 21. Zhang, Y. Z., C. T. Lim, et al. (2005). “Recent development of polymer nanofibers for biomedical and biotechnological applications.” Journal of Materials Science-Materials in Medicine 16(10): 933-946. 22. Aussawasathien, D., J. H. Dong, et al. (2005). “Electrospun polymer nanofiber sensors.” Synthetic Metals 154(1-3): 37-40. 23. Chronakis, I. S. (2005). “Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review.” Journal of Materials Processing Technology 167(2-3): 283-293. 24. Demir, M. M., M. A. Gulgun, et al. (2004). “Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)-PdCl2 solutions. Relations between preparation conditions, particle size, and catalytic activity.” Macromolecules 37(5): 1787-1792. 25. Ding, B., M. Yamazaki, et al. (2005). “Electrospun fibrous polyacrylic acid membrane-based gas sensors.” Sensors and Actuators B-Chemical 106(1): 477-483. 26. Huang, Z. M., Y. Z. Zhang, et al. (2003). “A review on polymer nanofibers by electrospinning and their applications in nanocomposites.” Composites Science and Technology 63(15): 2223-2253. 27. Jia, H. F., G. Y. Zhu, et al. (2002). “Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts.” Biotechnology Progress 18(5): 1027-1032. 28. Katti, D. S., K. W. Robinson, et al. (2004). “Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters.” Journal of Biomedical Materials Research Part B-Applied Biomaterials 70B(2): 286-296. 29. Kenawy, E. R. and Y. R. Abdel-Fattah (2002). “Antimicrobial properties of modified and electrospun poly(vinyl phenol).” Macromolecular Bioscience 2(6): 261-266. 30. Khil, M. S., D. I. Cha, et al. (2003). “Electrospun nanofibrous polyurethane membrane as wound dressing.” Journal of Biomedical Materials Research Part B-Applied Biomaterials 67B(2): 675-679. 31. Liu, H. Q., J. Kameoka, et al. (2004). “Polymeric nanowire chemical sensor.” Nano Letters 4(4): 671-675. 32. Luong-Van, E., L. Grondahl, et al. (2006). “Controlled release of heparin from poly(epsilon-caprolactone) electrospun fibers.” Biomaterials 27(9): 2042-2050. 33. Ma, Z. W., M. Kotaki, et al. (2005). “Potential of nanofiber matrix as tissue-engineering scaffolds.” @Tissue Engineering 11(1-2): 101-109. 34. Murugan, R. and S. Ramakrishna (2006). “Nano-featured scaffolds for tissue engineering: A review of spinning methodologies.” Tissue Engineering 12(3): 435-447. 35. Spasova, M., N. Manolova, et al. (2004). “Preparation of chitosan-containing nanofibres by electrospinning of chitosan/poly(ethylene oxide) blend solutions.” E-Polymers. 36. Zeng, J., X. Y. Xu, et al. (2003). “Biodegradable electrospun fibers for drug delivery.” Journal of Controlled Release 92(3): 227-231.The entire contents of these references are incorporate herein by reference. | {
"pile_set_name": "USPTO Backgrounds"
} |
Chucks are mechanisms removably hold and/or secure a part or tool. Some chucks operate by manipulation by the operator to clamp onto and secure and/or unsecure a part or tool. For example, a conventional three jaw chuck requires the operator to loosen the jaws to insert the item to be held and to tighten the jaws to clamp down on and secure the item. Other bit holders may automatically clamp onto and secure an item when the user inserts the item into the chuck, or require an action by the operator, such as twisting the chuck body by hand or using an external device, such as a key or other tool, to secure and/or unsecure an object to be held. | {
"pile_set_name": "USPTO Backgrounds"
} |
Glucocorticoids are stress hormones with regulatory effects on carbohydrate, protein and lipid metabolism. Cortisol (or hydrocortisone in rodent) is the most important human glucocorticoid. 11-beta hydroxyl steroid dehydrogenase or 11 beta-HSD1 (11β-HSD-1) is a member of the short chain dehydrogenase super-family of enzymes which converts functionally inert cortisone to active cortisol locally, in a pre-receptor manner. Given that the enzyme is abundantly expressed in metabolically important tissues, such as adipose, muscle, and liver, that become resistant to insulin action in Type 2 Diabetes, inhibition of 11β-HSD-1 offers the potential to restore the glucose lowering action of insulin in these tissues without impacting the central HPA. Another important 11-beta hydroxyl steroid dehydrogenase, namely Type 2 11-beta-HSD (11β-HSD-2), which converts cortisol into cortisone, is a unidirectional dehydrogenase mainly located in kidney and protects minerallocorticoid receptors from illicit activation by glucocorticoids.
Multiple lines of evidence indicate that 11β-HSD-1-mediated intracellular cortisol production may have a pathogenic role in Obesity, Type 2 Diabetes and its co-morbidities.
In humans, treatment with non-specific inhibitor carbenoxolone improves insulin sensitivity in lean healthy volunteers and people with type2 diabetes (Walker B R et al (1995)). Likewise, 11β-HSD-1 activity was decreased in liver and increased in the adipose tissue of obese individuate. Similarly 11β-HSD-1 mRNA was found to be increased in both visceral and subcutaneous adipose tissue of obese patients (Desbriere R et al (2006)) and was positively related to BMI and central obesity in Pima Indians, Caucasians and Chinese youth (Lindsay R S et al (2003), Lee Z S et al (1999)). Adipose tissue 11β-HSD-1 and Hexose-6-Phosphate Dehydrogenase gene expressions have also been shown to increase in patients with type 2 diabetes mellitus (Uçkaya G et al (2008)). In human skeletal muscle 11β-HSD-1 expression was found to be positively associated with insulin resistance (Whorwood C B et al (2002)). Increased 11β-HSD-1 expression was also seen in diabetic myotubes (Abdallah B M et al (2005)).
Various studies have been conducted in rodent models to substantiate the role of 11β-HSD-1 in diabetes and obesity. For example, over-expression of 11β-HSD-1 specifically in adipose tissue causes development of metabolic syndrome (glucose intolerance, obesity, dyslipidemia and hypertension) in mice (Masuzaki H et al (2001)). Conversely, when 11β-HSD-1 gene was knocked out, the resulting mice showed resistance to diet induced obesity and improvement of the accompanying dysregulation of glucose and lipid metabolism (Kotelevtsev Y et al (1997), Morton N M et al (2001), Morton N M et al (2004)). In addition, treatment of diabetic mouse models with specific inhibitors of 11β-HSD-1 caused a decrease in glucose output from the liver and overall increase in insulin sensitivity (Alberts P et al (2003)).
The results of the preclinical and early clinical studies suggest that the treatment with a selective and potent inhibitor of 11β-HSD-1 will be an efficacious therapy for type 2 diabetes, obesity and metabolic syndrome.
The role of 11β-HSD-1 as an important regulator of liver glucocorticoid level and thus of hepatic glucose production is well substantiated. Hepatic insulin sensitivity was improved in healthy human volunteers treated with the non-specific 11β-HSD-1 inhibitor carbenoxolone (Walker B R (1995)). Many in vitro and in vivo (animal model) studies showed that the mRNA levels and activities of two key enzymes (PEPCK and G6PC) in gluconeogenesis and glycogenolysis were reduced by reducing 11β-HSD-1 activity. Data from these models also confirm that inhibition of 11β-HSD-1 will not cause hypoglycemia, as predicted since the basal levels of PEPCK and G6Pase are regulated independently of glucocorticoids (Kotelevtsev Y (1997)).
In the pancreas cortisol is shown to inhibit glucose induced insulin secretion as well as increase stress induced beta cell apoptosis. Inhibition of 11β-HSD-1 by carbenoxolone in isolated murine pancreatic beta-cells improves glucose-stimulated insulin secretion (Davani B et al (2000)). Recently, it was shown that 11β-HSD-1 within alpha cells regulates glucagon secretion and in addition may act in a paracrine manner to limit insulin secretion from beta cells (Swali A et al (2008)). Levels of 11β-HSD-1 in islets from ob/ob mice were shown to be positively regulated by glucocorticoids and were lowered by a selective 11β-HSD-1 inhibitor and a glucocorticoid receptor antagonist. Increased levels of 11β-HSD-1 were associated with impaired GSIS (Ortsater H et al (2005)). In Zuker diabetic rats, troglitazone treatment improved metabolic abnormalities with a 40% decline in expression of 11β-HSD-1 in the islets (Duplomb L et al (2004)). Cortisol inhibition may lead to an increase in the insulin gene transcription and a normalization of first phase insulin secretion (Shinozuka Y et al (2001)).
In human skeletal muscle 11β-HSD-1 expression is positively associated insulin resistance and increased expression of 11β-HSD-1 was also reported in type 2 diabetic myotubes (Abdallah B M et al (2005)). Recently the contribution of cortisol in muscle pathology is being considered for modulating its action. Very recently it has been demonstrated that targeted reduction or pharmacological inhibition of 11β-HSD-1 in primary human skeletal muscle prevents the effect of cortisone on glucose metabolism and palmitate oxidation (Salehzadeh F et al (2009)). Over activity of cortisol in muscle leads to muscle atrophy, fibre type switch and poor utilization of glucose due to insulin resistance. Cortisol might have a direct role in reducing muscle glucose uptake.
Obesity is an important factor in Metabolic syndrome as well as in the majority (>80%) of type 2 diabetics, and omental (visceral) fat appears to be of central importance. 11β-HSD-1 activity is increased in the both visceral and subcutaneous adipose tissue of obese individual (Lindsay R S et al (2003)). Cortisol activity in adipose is known to increase the adipogenic program. Inhibition of 11β-HSD-1 activity in pre-adipocytes has been shown to decrease the rate of differentiation into adipocytes (Bader T et al (2002)). This is predicted to result in diminished expansion (possibly reduction) of the omental fat depot, i.e., reduced central obesity (Bujalska I J et al (1997) and (2006)). Intra-adipose cortisol levels have been associated with adipose hypertrophy, independent of obesity (Michailidou Z et al (2006)).
Cortisol in coordination with adrenergic signalling is also known to increase lipolysis which leads to increase in plasma free fatty acid concentrations which, in turn, is the primary cause of many deleterious effects of obesity (TomLinson J W et al (2007)).
Adrenalectomy attenuates the effect of fasting to increase both food intake and hypothalamic neuropeptide Y expression. This supports the role of glucocorticoids in promoting food intake and suggests that inhibition of 11β-HSD-1 in the brain might increase satiety and therefore reduce food intake (Woods S C (1998)). Inhibition of 11β-HSD-1 by a small molecule inhibitor also decreased food intake and weight gain in diet induced obese mice (Wang S J Y et al (2006)).
The effects discussed above therefore suggest that an effective 11β-HSD-1 inhibitor would have activity as an anti-obesity agent.
Cortisol in excess can also trigger triglyceride formation and VLDL secretion in liver, which can contribute to hyperlipidemia and associated dyslipidemia. It has been shown that 11β-HSD-1−/− transgenic mice have markedly lower plasma triglyceride levels and increased HDL cholesterol levels indicating a potential atheroprotective phenotype (Morton N M et al (2001)). In a diet-induced obese mouse model, a non-selective inhibitor of 11β-HSD-1 reduced plasma free fatty acid as well as triacylglycerol (Wang S J et al (2006)). Over-expression of 11β-HSD-1 in liver increased liver triglyceride and serum free fatty acids with the up regulation of hepatic lipogenic genes (Paterson J M et al (2004). It has been illustrated that inhibition of 11β-HSD-1 improves triglyceridemia by reducing hepatic VLDL-TG secretion, with a shift in the pattern of TG-derived fatty acid uptake toward oxidative tissues, in which lipid accumulation is prevented by increased lipid oxidation (Berthiaume M et al (2007)).
Atherosclerotic mouse model (APOE −/−) which are susceptible to atheroma when fed high fat diet, are protected against development of atherosclerosis when treated with 11β-HSD-1 inhibitors (Hermanowski-Vostaka A et al, (2005)).
Inhibition of 11β-HSD-1 in mature adipocytes is expected to attenuate secretion of the plasminogen activator inhibitor 1 (PAI-1)—an independent cardiovascular risk factor (Halleux C M et al (1999)). Furthermore, there is a clear correlation between glucocorticoid activity and cardiovascular risk factor suggesting that a reduction of the glucocorticoid effects would be beneficial (Walker B R et al (1998), Fraser R et al (1999)).
The association between hypertension and insulin resistance might be explained by increased activity of cortisol. Recent data show that the intensity of dermal vasoconstriction after topical application of glucocorticoids is increased in patients with essential hypertension (Walker B R et al (1998)). Glucocorticoid was shown to increase the expression of angiotensin receptor in vascular cell and thus potentiating the renin-angiotensin pathway (Ullian M E et al (1996)), (Sato A et al (1994)). Role of cortisol in NO signalling and hence vasoconstriction has been proved recently (Liu Y et al (2009)). These findings render 11β-HSD-1 a potential target for controlling hypertension and improving blood-flow in target tissues.
In the past decade, concern on glucocorticoid-induced osteoporosis has increased with the widespread use of exogenous glucocorticoids (GC). GC-induced osteoporosis is the most common and serious side-effect for patients receiving GC. Loss of bone mineral density (BMD) is greatest in the first few months of GC use. Mature bone-forming cells (osteoblasts) are considered to be the principal site of action of GC in the skeleton. The whole differentiation of mesenchymal stem cell toward the osteoblast lineage has been proven to be sensitive to GC as well as collagen synthesis (Kim C H et al (1999)). The effects of GC on this process are different according to the stage of differentiation of bone cell precursors. The presence of intact GC signalling is crucial for normal bone development and physiology, as opposed to the detrimental effect of high dose exposure (Pierotti S et al (2008), Cooper M S et al (2000)). Other data suggest a role of 11β-HSD-1 in providing sufficiently high levels of active glucocorticoid in osteoclasts, and thus in augmenting bone resorption (Cooper M S et al (2000)). The negative effect on bone nodule formation could be blocked by the non-specific inhibitor carbenoxolone suggesting an important role of 11β-HSD-1 in the glucocorticoid effect (Bellows C G et al (1998)).
Stress and glucocorticoids influence cognitive function (de Quervain D J et al (1998)). The enzyme 11β-HSD-1 controls the level of glucocorticoid action in the brain also known to contributes to neurotoxicity (Rajan V et al (1996)). It has been also suggested that inhibiting 11β-HSD-1 in the brain may result in reduced anxiety (Tronche F et al (1999)). Thus, taken together, the hypothesis is that inhibition of 11β-HSD-1 in the human brain would prevent reactivation of cortisone into cortisol and protect against deleterious glucocorticoid-mediated effects on neuronal survival and other aspects of neuronal function, including cognitive impairment, depression, and increased appetite.
Recent data suggest that the levels of the glucocorticoid target receptors and the 11β-HSD-1 enzymes determine the susceptibility to glaucoma (Stokes, J. et al. (2000)). Ingestion of carbenoxolone, a non-specific inhibitor of 11β-HSD-1, was shown to reduce the intraocular pressure by 20% in normal subjects. There are evidences that 11β-HSD-1 isozyme may modulate steroid-regulated sodium transport across the NPE, thereby influencing intra ocular pressure (IOP). 11β-HSD-1 is suggested to have a role in aqueous production, rather than drainage, but it is presently unknown if this is by interfering with activation of the glucocorticoid or the mineralocorticoid receptor, or both (Rauz S et al (2001; 2003)).
The multitude of glucocorticoid action is exemplified in patients with prolonged increase in plasma glucocorticoids, so called “Cushing's syndrome”. These patients have prolonged increase in plasma glucocorticoids and exhibit impaired glucose tolerance, type 2 diabetes, central obesity, and osteoporosis. These patients also have impaired wound healing and brittle skin. Administration of glucocorticoid receptor agonist (RU38486) in Cushing's syndrome patients reverses the features of metabolic syndrome (Neiman L K et al (1985)).
Glucocorticoids have been shown to increase risk of infection and delay healing of open wounds. Patients treated with glucocorticoids have 2-5-fold increased risk of complications when undergoing surgery. Glucocorticoids influence wound healing by interfering with production or action of cytokines and growth factors like IGF, TGF-beta, EGF, KGF and PDGF (Beer H D et al (2000)). TGF-beta reverses the glucocorticoid-induced wound-healing deficit in rats by PDGF regulation in macrophages (Pierce G F et al (1989)). It has also been shown that glucocorticoids decrease collagen synthesis in rat and mouse skin in vivo and in rat and human fibroblasts (Oishi Y et al, 2002).
Glucocorticoids have also been implicated in conditions as diverse aspolycystic Ovaries Syndrome, infertility, memory dydsfunction, sleep disorders, myopathy (Endocrinology. 2011 January; 152(1):93-102. Epub 2010 Nov. 24. PMID: 21106871) and muscular dystrophy. As such the ability to target enzymes that have an impact on glucocorticoid levels is expected to provide promise for the treatment of these conditions.
Based on patent literature and company press releases, there are many compound tested for 11β-HSD-1 inhibition in the different stages of drug discovery pipeline.
Incyte Corporation's INCB13739 has proceeded furthest to phase IIb stage of clinical trial. The results of phase IIa trial for type 2 diabetes (28-days, placebo-controlled, two-step hyperinsulinemic clamp studies) showed that it was safe and well tolerated without any serious side effects and hypoglycemia.
Though this molecule significantly improved hepatic insulin sensitivity there was no appreciable improvement in plasma glucose levels. The molecule appeared to be having positive effects on risk factors for cardiovascular disease including reduction of LDL, total cholesterol and triglycerides as well as more modest increases in HDL. INCB13739 is currently being studied in a dose ranging phase IIb trials in T2D patients whose glucose levels are not controlled by metformin monotherapy.
In the pre-clinical stage, Incyte's lead inhibitor INCB13739 was tested in rhesus monkey and was shown to inhibit adipose 11β-HSD-1 (INCB013739, a selective inhibitor of 11β-Hydroxysteroid Dehydrogenase Type 1 (11βHSD1) improves insulin sensitivity and lowers plasma cholesterol over 28 days in patients with type 2 diabetes mellitus.
The evidence therefore strongly suggests that compounds that are inhibitors of 11β-Hydroxysteroid Dehydrogenase would be useful in the treatment of a number of clinical conditions associated with the expression of this enzyme. In addition it would be desirable if the inhibitors were selective inhibitors so as not to interfere with the functioning of closely related enzymes such as 11β-HSD-2 which is known to provide a protective effect in the body. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a novel device for sufficiently firmly mounting a cylindrical, electronic circuit component part such as an electrolytic capacitor on a chassis without difficulty, which permits efficient assembly of the electrical circuit component part and provides increased strength against vibrations etc.
As shown in the art, a large-capacity electrolytic capacitor is cylindrically formed having a diameter of several centimeters or more. The capacitor is mounted with respect to a chassis and electrically connected to the other electrical circuit component parts. As the electrolytic capacitor is larger in size and heavier in weight, it is sufficiently mechanically firmly mounted with respect to the chassis.
The electrolytic capacitor mounting member is constructed mainly of a metal band such as aluminum. For example, two mounting pieces are formed integral with the side of the band such that they project outwardly. That is, the metal band is wrapped around the outer periphery of the electrolytic capacitor with one end portion of the metal band connected by a screw to the other end portion of the metal band. The metal band wrapped around the capacitor is mounted by connecting the mounting pieces by screws to a chassis. In this case, however, it is necessary to first tighten the metal band around the outer periphery of the electrolytic capacitor and then screw the mounting pieces of the metal band on the chassis. Therefore, the mounting operation becomes cumbersome, lowering the efficiency of the device mounting operation. Moreover, since the metal band is wrapped around the outer periphery of the electrolytic capacitor and then one end portion of the metal band is screwed to the other end portion of the metal band, the screw tends to loosen. When, in particular, mechanical vibration is applied to the screwed portion, the screw tends to loosen. In an electronic apparatus mounted, for example, on the rolling stock, aircraft etc. care must be exercised to mount such an electrical circuit component part. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a differential amplifier outlined in the first part of claim 1.
The present invention also relates to an integrated circuit provided with such a differential amplifier and to a telephone provided with such an integrated circuit. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a computer operation without using any substantial object, especially, to a method by which a computer is operated through the images of fingers or other proper object within a capturing section.
2. Description of the Prior Art
Mice are generally installed in computers for controlling the movement of a cursor on the display screen and for selecting or performing a work through a click. The current mouse is used to control a cursor through a (.sub..DELTA. X, .sub..DELTA. Y) corresponding to a rolling balls. Due to mass production, the cost thereof is relatively cheap, but the fatigue of the hand and professional hurt to a computer operator are gradually serious, therefore, it is needed to develop a new mouse conforming the requirement of the ergonomics.
In U.S. Pat. No. 5,617,312, a method is disclosed in which the computer system is controlled by a message of input image form a video camera, and in which the shape of a whole hand or a special lighting pen must be identified, wherein the lighting pen is provided with a light emitting element and a switch, and by a click on the lighting pen or the conventional keyboard, the clicking in the conventional mouse is performed. The primary formed elements includes a special lighting pen, a video camera, an image signal processing circuit, an image extracting circuit, a microprocessor, a pattern recognition, analysis, and tracking circuits, a program controller, etc. Thereby, a video signal is processed outside a computer to form as a signal similar the output signal of a mouse for being transferred to a computer, wherein the operation of this converter is very complicated, hi-processing powered and with a large storing quantity. It is even greater than that of a HOST PC, thus the operation thereof is very slow and will not match the action of the computer operator, in addition, the cost thereof is very expensive so not to be widely used. Another, during operation, another special pen or other objects are necessary and the pose of a hand may not changed as pleasure, thus this design could not match the requirement of ergonomics. While the clicking selecting function is inconvenient and irrational. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to migration in a hierarchical storage.
In a storage system, an architecture called hierarchical storage (hereinafter, HS) dynamically selects a storage device to use and selectively uses the storage device depending on the access frequency of data, and the like, in order to increase the cost-effectiveness of storage. Such systems have been widely used in recent years. | {
"pile_set_name": "USPTO Backgrounds"
} |
Conduits are used to transport a variety of liquid and gaseous products, such as crude oil, liquid propane, ethanol, water, etc., such products encounter friction against the interior surface of the conduit. The friction between the product being conveyed and the interior surface of the conduit is greater in curved conduit sections than over linear conduit sections because of the changes in direction of the product imposed by the curved conduit and because of swirling of the product as the change in direction is undertaken. In some situations, the liquid is used as a medium to convey particulate material in suspension within the product, such as with mining slurries and sludge. Such particulate material can be extremely abrasive and magnify the wear cause by friction within the conduit.
To minimize the effects of friction on the interior surface of conduits, the conduits, particularly on curved conduit segments, can be coated with a wear surface, such as a carbide metal coating, that can be applied to the interior surface of the conduit. The application of a wear coating on the interior surface of conduits is called hard surfacing. The hard facing of conduits can be applied to new conduit or as a refurbishing of old conduit to replace the wear surface that has been eroded through the use of the conduit. The application of hard surfacing can be accomplished via a number of techniques, including spraying and plasma, but is most typically by applying a series of weld beads along the interior surface of the conduit with each successive weld bead building on the adjacent weld bead.
The application of a wear resistant coating material by the placement of welding material on the interior surface of curved conduits is disclosed in U.S. Pat. No. 4,514,443, issued to Gene Kostecki on Apr. 30, 1985. In the Kostecki patent, a guide member is installed through the center of the curved conduit section and the weld placement apparatus is mounted to follow the guide member in the laying of weld beads along the length of the curved conduit segment. Similarly, Canadian Published Application No. 2,302,083, of Donald Hannu published on Mar. 27, 2000, discloses a track member on which a welding head is mounted to move along the track while depositing weld material along the interior surface of the conduit. In Canadian Published Patent Application No. 2,578,308 of Barry Kossowan, a three-axis robot arm is disclosed to provide for a radial and angular adjustment of the welding; however, the movement of the welding head through the conduit is also guided by a track extending longitudinally through the conduit.
Accordingly, it would be desirable to provide an apparatus that is operable to apply successive longitudinal weld beads along a curved conduit section without requiring the placement of a longitudinal guide track on which the welding head is carried while moving longitudinally through the conduit. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to semiconductor devices and more particularly to die seal structures and methods for protecting semiconductor devices from moisture.
Semiconductor devices, such as integrated circuits (ICs), are typically manufactured by forming multiple devices and interconnections (e.g., circuits) on a semiconductor wafer, which are then separated into individual parts or dies. Individual devices are located within corresponding die areas on the wafer with sufficient spacing provided between adjacent devices for subsequent separation operations and the manufacturing tolerances associated therewith. Typically, the devices are oriented in grid style on the wafer, with rows and columns of devices located on the top or front side of the wafer. The devices are formed using multi-step processing involving selective deposition, removal, and/or doping of active regions on the wafer surface to build electrical components (e.g., memory cells, transistors, diodes, resistors, capacitors, etc.) and connections therebetween. Within a particular die area, many electrical components are thus formed, and are interconnected with one another using one or more overlying metal layers, by which an integrated circuit device is produced. Thereafter, the individual dies or devices are separated from the wafer.
Following die separation, individual dies may then be assembled into integrated circuit chips. In constructing an integrated circuit chip, a semiconductor die is mounted onto a lead frame and wires are connected between lead frame leads and corresponding bonding pads on the die using a technique known as wire bonding. Wire bonding involves attachment of fine aluminum or gold wires to the die bonding pads through various bonding techniques, such as thermocompression bonding or ultrasonic bonding. Once the pads on the die are appropriately connected to the lead frame leads, the lead frame is encapsulated in a ceramic or plastic package, which may then be assembled onto a printer circuit board (PCB) by soldering the exposed portions of the leads onto corresponding conductive pads on the board. Alternatively, the dies may be mounted directly onto PCBs, where electrical connections are made between conductive circuit board pads and electrically conductive bonding pads on the dies. In this regard, Flip-Chip technology has recently become popular, wherein an individual semiconductor die is mounted directly to a circuit board. Bumps (e.g., solder bumps, plated bumps, gold stud bumps, adhesive bumps, or the like) are added to the bonding pads of the die using a process known as bumping. With stud bumps attached, the die or chip is then xe2x80x9cflippedxe2x80x9d over, with the bonding pads facing downward, and the bumps are attached to corresponding pads on the PCB using, for example, ultrasonic or other bonding techniques.
Moisture is known to cause adverse effects in the operational reliability and/or longevity of semiconductor devices. For example, where the electrical components within an active region of a semiconductor die are exposed to moisture, the characteristics of the transistors, memory cells, or the like may be affected. Thus, in a flash memory device, for instance, internal exposure to such moisture may change the programmed and/or erased threshold voltages associated with one or more memory cell structures therein, resulting in reduced reliability for storing or providing access to user data. During semiconductor device fabrication, as well as during subsequent bonding, packaging, and eventual operation of the device die (e.g., mounted in an integrated circuit package or directly on a circuit board), the exterior of the die may be exposed to a moist ambient operating environment. Where such moisture invades the electrical component areas of the device, operational degradation may result. It is therefore desirable to prevent or reduce the likelihood of such moisture entering the interior active regions of the device die, both during manufacturing and thereafter.
Various attempts have previously been made to seal the interior of the semiconductor device dies from such ambient moisture. The bottom substrate in most semiconductor devices (e.g., silicon) effectively blocks moisture from entering the interior of the die from the bottom, but materials commonly employed in fabricating further layers above the substrate provide a path for moisture to enter from the top and/or sides of the die following die separation. For example, certain commonly employed insulator materials such as silicon oxide (SiO) are relatively easily penetrated by moisture. Accordingly, lateral or side seal structures are often provided between the die edges and the active region. Such side seal structures are formed in one or more layers in the processed semiconductor device using vertically oriented contacts (e.g., such as tungsten) and metal die seal structures, wherein the contacts and die seal metal structures extend around the periphery of the active region of each individual die.
Each layer formed between the bottom substrate and the upper most metal layer typically includes such a structure, by which a vertical moisture barrier extends laterally around the periphery of the device active region from the bottom substrate to the upper most metal layer. Thus, where multiple metal connection layers are employed in a device fabrication process, the lower most die seal contacts extend from the substrate to a metal die seal structure in the first metal layer. Additional contacts are formed in an overlying insulator material, which extend upward from the metal die seal structure in the first metal layer to a similar seal structure in the second metal layer. This structure is then repeated for each successive metal layer until the final metal layer is formed.
In the past, moisture has been prevented from entering the die active region by an upper seal or liner layer directly overlying the upper most metal layer. A final insulator layer, such as SiO is then formed over the liner. Openings are made (e.g., etched) in the liner and final insulator layers so as to expose die bonding pads in the upper most metal layer for wire bonding after die separation. Thus, in the interior of the active region, the liner layer and the exposed metal bonding pads provide a seal against moisture entering from the top of the die. Furthermore, because the liner layer is formed directly over the final metal layer, a moisture seal is provided at the peripheral edges of the active region, where the liner layer is formed directly over the metal die seal structure in the top metal layer. Thus, although moisture may pass from the top ambient through the upper most SiO insulator layer, the liner layer prevents further downward moisture transfer to the electrical components below.
However, the use of such a liner overlying the upper metal layer may cause problems in the operation of the circuitry in the semiconductor device. For instance, in order to satisfy the demand for more and more functionality in modern semiconductor products, there is a continuing trend toward higher device densities. Such higher device densities, in turn, are facilitated by reduction in the device dimensions achieved through smaller and smaller features sizes. These feature sizes include the width and spacing of interconnecting lines in the various metal layers, which have recently become smaller to the point where electrical characteristics of the liner layer overlying the upper most metal layer features may have an adverse effect on the device performance. Thus, there is a need for improved moisture sealing structures and methodologies by which the semiconductor device and the components therein can be protected from moisture, without adversely affecting the circuit operation.
The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention, and is intended neither to identify key or critical elements of the invention nor to delineate the scope of the invention. Rather, the primary purpose of this summary is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later. The invention provides moisture seal apparatus and methodologies for protecting semiconductor devices from moisture, by which the above mentioned and other shortcomings associated with prior techniques may be mitigated or overcome.
One aspect of the invention provides semiconductor devices and moisture seal structures therefor in which an upper seal layer, such as silicon nitride (SiN) or an equivalent sealing material, is formed over an upper insulator layer and an exposed portion of a die seal metal structure so as to form a vertical moisture seal between electrical components in the semiconductor device and the ambient environment. A lateral moisture seal may be formed from the die seal metal structure in an upper metal layer in the device and one or more contacts extending downward from the die seal metal to the substrate or to a lower die seal metal structure. Together with the underlying bottom substrate, a moisture seal is thus provided to protect the internal active die region and the electrical components therein from the adverse effects of moisture.
In addition to providing a moisture seal, the invention may advantageously mitigate adverse effects of the electrical properties of the upper seal layer on the device operation. For example, the inventors have found that as line spacings in the upper metal layer are decreased to provide interconnection in high feature density devices, the dielectric properties of a liner layer directly formed on the upper metal layer may cause capacitive problems in circuit operation, where the liner material formed between adjacent signal line connection features creates a capacitor therebetween. In this regard, the inventors have found that the present invention advantageously allows silicon oxide (SiO) or other insulator layers to be formed directly above the upper most metal layer features, by which a reduction in such undesirable capacitive effects of the seal layer may be achieved.
Another aspect of the invention provides techniques for protecting a semiconductor device against moisture, comprising forming a seal structure in a final metal layer in the semiconductor device and forming an upper insulator layer overlying the final metal layer. The upper insulator layer may be formed, for example, using SiO, which has limited adverse capacitive effects on adjacent signal lines in the upper metal layer. A portion of the seal structure is exposed through the upper insulator layer, and an upper seal layer is then formed, which overlies the upper insulator layer and an exposed portion of the seal structure. By this technique, the effects of the electrical characteristics (e.g., such as dielectric properties) of the seal layer on the circuitry in the device may be mitigated.
To the accomplishment of the foregoing and related ends, the following description and annexed drawings set forth in detail certain illustrative aspects and implementations of the invention. These are indicative of but a few of the various ways in which the principles of the invention may be employed. Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a reflow furnace in which a printed circuit board with solder paste or solder cream put thereon and having electronic components put in position on the solder cream is heated and cooled to join the electronic components to the circuit board.
2. Related Background Art
In the reflow furnace, a printed circuit board having electronic components in position thereon is heated while it is transported by a conveyor to melt solder cream on the circuit board and join the electronic components to the circuit board. In general, the reflow furnaces can be classified into two major types: air reflow furnaces using air as atmosphere and nitrogen reflow furnaces supplied with gaseous nitrogen as an inert gas to increase the nitrogen content in its atmosphere. However, both types of reflow furnaces basically have a common configuration.
Generally, the reflow furnace has the inner space thereof divided into a plurality of chambers by a plurality of partition walls located at intervals in the direction of transporting a printed circuit board. These chambers are controllable in temperature and flow rate of atmosphere in the furnace independently from each other. Typically, the chambers are used as preheating chambers for preheating the circuit board, heating chambers for melting solder cream present on the circuit board, etc.
Japanese Laid-open Patent Publication JP 2002-134905 discloses a reflow furnace including a plurality of chambers separated from each other and in which in-furnace atmosphere is circulated and blown vertically onto a printed circuit board. For example, hot air is blown onto a printed circuit board in the preheating and heating chambers and, in case of a reflow furnace having a cooling chamber next to a heating chamber, unheated atmosphere is blown onto the printed circuit board in the cooling chamber to cool it.
In the conventional reflow furnaces, increased flow rate of atmosphere blown vertically onto a printed circuit board in each chamber often moves electronic components from their proper positions on the circuit board.
FIG. 20 graphically illustrates measured velocity of atmosphere in a conventional reflow furnace. In FIG. 20, the line A indicates the velocity of atmosphere blown vertically onto a printed circuit board (vertical blow), and the line B indicates the velocity of atmosphere laterally blown on electronic components to the circuit board (horizontal blow). In FIG. 20, reference numeral 100 indicates an inlet wall having formed the inlet of the reflow furnace, 101 indicates partition walls between adjacent chambers, and 102 indicates an outlet wall having formed the outlet of the reflow furnace.
To obtain the data shown in FIG. 20, vertical walls 105 were placed to partition the portion of the circuit board 4a from its front and back in its transport (or conveying) direction as shown in FIG. 21A, and an anemometer S was placed on the circuit board 4a to detect the velocity of the vertical blow. To detect the horizontal blow, a cover 106 in the shape of a rectangular bracket was placed at a height of 3 mm from the circuit board 4a to orient its lateral projections across the transport direction of the circuit board 4a, and the anemometer S was placed on the circuit board 4a under the cover 106, as shown in FIG. 21B. The anemometer S used in the experiments had the following specification, and the reflow furnace was driven at 60 Hz. (1) Manufacturer of the anemometer S Japan CANOMAX Co., Ltd. (2) Type of the anemometer S Linear output type ANEMOMASTER Model 6141 (3) Sensitive portion of the Probe Platinum wire-wound resistor (4) Response speed Slow
As will be seen from the measured data shown in FIG. 20, the velocity of the horizontal blow varied largely near the inlet wall 100, partition walls 101 and outlet wall 102, and the variation in velocity of the horizontal blow was about 2.0 m/sec. | {
"pile_set_name": "USPTO Backgrounds"
} |
A visual sensor is a sensor that can capture visual data associated with a target. The visual data can include an image of the target or a video of the target.
A cluster of heterogeneous visual sensors (different types of visual sensors) can be used for certain applications. Visual data collected by the heterogeneous sensors can be combined and processed to perform a task associated with the respective application. | {
"pile_set_name": "USPTO Backgrounds"
} |
Paint shakers are used to mix paint prior to sale of the paint and/or prior to use to ensure a homogenous mixture of the paint components that may have separated. Additionally, paint shakers are used to thoroughly mix a tint or colorant to the paint to add and/or change the color of the paint.
One apparatus used for shaking paint employs a top plate and a bottom plate that is moved toward and compresses the paint container between the plates. The plates then move in unison in an up and down direction to thoroughly mix the paint. When a color additive is added to the container by first removing the lid, the compression of the two plates ensures that the paint container lid or cap remains secured to the container body. In this way, no paint can be spilled from the container as the container is moved up and down. The plates move up and down relative to one another along a vector that is perpendicular to both of the plates. The top plate is moved up sufficient to allow the paint container to be removed. Typically, the container is loaded into the shaker between the top and bottom plates in a direction that is parallel to the two planes defined by the top and bottom plates.
A second type of apparatus is an orbital or rotary shaker that moves the container in an orbital or rotary path to mix the paint. In this type of shaker, the container is not moved up and down but rather in an orbital or rotary path. In the rotary type shaker, the paint container is typically loaded into a bucket or holder that has a top opening and a cavity to receive the paint container. In contrast to the compression mixers discussed above, the bucket or holder holds the container in place. Since the paint container is not shaken in an up down direction, the paint container need not be clamped in the up/down direction. This type of shaker allows for easy insertion and removal of the paint container by simply placing the paint container within the open end of the bucket or holder. If the cap or lid of the paint container is not securely fixed to the body of the paint container, it is possible that paint will leak out of the cap during the rotary motion of the container.
It would be desirable to combine the benefit of the rotary motion of the rotary shaker with the benefit of a compression clamp to ensure that the paint container does not leak during the rotary motion. It would further be desirable to provide a compression clamp that is easy to use by a retail store operator. It would also be desirable to provide a compression clamp that allows for insertion of the paint container into the bucket or holder from above. It would still further be desirable to provide a compression clamp that can be manually applied. It would still further be desirable to provide a system for holding a paint container having one or more of these or other advantageous features. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to 3D image production for stereoscopic motion pictures, and more specifically to the rendering and compositing stages in computer generated 3D image production.
2. Discussion of the Related Art
Computer generated imagery (CGI) is becoming more common for use in the production of stereoscopic motion pictures. Typically, large quantities of 3D computer models are rendered by render farms to produce two sets of 2D images, each set representing one of the stereo cameras required for stereoscopic viewing. These 2D images are then composited, for example, using a node based compositing tool to provide two final composited 2D images for each frame of the stereoscopic motion picture. The composited 2D images are then color corrected, further processed and edited for final production. Various techniques exist to project the final two cameras to the user such that the user visually interprets the illusion of depth. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a resist removal width inspection apparatus for inspecting whether a width of resist material removed, in a photo process, from the outer surrounding part of a resist-coated semiconductor wafer, glass substrate or the like, is proper or not.
In a photo process of forming a pattern on a semiconductor wafer, a wafer is coated with a resist material, and a resist layer formed on the wafer is exposed to light through a pattern by using the photographic technique, so as to form a minute pattern on the wafer. In the process, there is possibility of generating dust particles due to contact of the resist material attached to the outer surrounding portion of the wafer with the carrier. To avoid the dust generation, after the resist coating, the resist material is removed from an outer surrounding portion over a fixed width (this width will be referred frequently to as a resist removal width) on the resist-coated wafer (edge bead removal (EBR) process). In this case, if the resist material is excessively removed, an original resist pattern is adversely affected, and if the resist removal width is narrow, dust may be generated. Accordingly, it is necessary to inspect whether the resist removal width is proper or not. Conventionally, a visual inspection is employed for inspecting the resist removal width. That is, an operator applies light to the resist-coated wafer, visually checks a color change of light reflected from the wafer, discriminates an edge (boundary position) of the resist based on the color change, and judges whether the resist removal width is proper or not, by its position and shape.
The visual inspection by the operator inevitably suffers from adverse influences of the dust generated by the operator himself or herself upon the inspection result and a variation caused by individual difference in the inspection result. Further, the inspection result is utilized for only an examination pass decision, and cannot be utilized for management based on numerical values of inspection contents. For this reason, there is a need of automatizing the inspection process of the resist removal width. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the manufacture of non-pneumatic tires, there is often a need to bond non-polar components, such as cured diene-rubber components, to polar thermoset components, such as structural components formed from various polar thermoset materials. As the skilled person appreciates, the ability to bond polar elements to non-polar elements is frustrated by the surface tension that exists between these elements. Where the composites formed by bonding non-polar elements to polar elements undergo mechanical and dynamic stresses, the incompatibility between the elements can facilitate failure of the bond.
Attempts have been made to bond polar thermoset elements, such as polyurethane structural tire components, to non-polar tire elements, such as tire treads. For example, U.S. Pat. No. 4,942,093 proposes the use of a thermosetting adhesive composition including a bismaleimide compound and an isocyanate-terminated rubber to bond diene rubber to the polyurethane. The adhesive composition is applied to either the polyurethane substrate or an uncured rubber element (i.e. a non-polar element), and upon heating, the adhesive crosslinks with the uncured rubber while the uncured rubber is simultaneously crosslinked. It is suggested that the curing step occurs at temperatures of from 120 to 175° C. and pressures from 50 to about 10,000 psi.
U.S. Pat. No. 8,623,169 proposes that cured polyurethane can be adhered to uncured diene-based elastomer by using an adhesive system that includes a specific primer adhesive and a secondary adhesive layer. The adhesive primer composition includes a polyisocyanate compound and a vinyl ester or an unsaturated polyester resin. The secondary adhesive is compatible with the adhesive primer and may include phenolic-based glues or diene glues. The diene glues include a crosslinking agent, such as a polyester or vinyl ester resin, while the elastomer is preferably a polyvinylpyridine/styrene/butadiene elastomer. The composites are press cured, for example, at temperatures of 165° C. and 20 bar. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to electrical connectors and more particularly to a sealed electrical connector.
Sealed electrical connectors are used in many areas, such as in the automotive industry and in outdoors commercial fields, to protect electrical connections from moisture or other contaminants. In today's vehicles, there are many systems, particularly vehicle safety and control systems, such as brake or wheel speed sensors, exterior lighting assemblies, fuel injector connections, and other engine compartment applications that utilize electrical connectors in environments where it is desirable to protect the internal contacts of the connector from contamination.
Typically, conventional sealed connectors require several component parts to form a completed connector, particularly when the connector is combined with other features, such as terminal position assurance (TPA) and terminal retention. This is both inconvenient and costly as the seals, retainers, TPA members, and other components may be lost or damaged during initial assembly or when service operations are performed.
A need exists for a sealed connector that, among other things, is less complex, more reliable and less costly to produce. | {
"pile_set_name": "USPTO Backgrounds"
} |
The prior state of the art includes a manually movable squeegee which can be displaced in solely one direction while co-acting with the stencil to effect a printing sequence. When the squeegee, together with a print-forming substance, is located in a terminal position, a scoop is placed under the print-forming substance, the scoop and the squeegee forming a holder for bringing the substance and the squeegee to the start position and for placing said substance in front of the squeegee, wherewith the squeegee can again be displaced to the terminal position.
It is known in this manual procedure to rotate the squeegee so that a plane passing centrally therethrough forms an obtuse angle with the stencil and substrate material upon displacement of the squeegee along the stencil.
Squeegee arrangements of this kind intended for silkscreen printers are known to the art, and are intended for use when printing on material substrates whose print surfaces are not totally smooth and flat, but exhibit small promontories, for example irregularities of the kind found on printed circuit boards or cards, so as to ensure that a print-forming substance, e.g. a substance which inhibits the adhesive properties of molten solder, can also be applied effectively to the spaces located between minor promontories on the material substrate.
Various measures have also been proposed in connection with the stencil, for enabling adjustments to be made to the quantity of ink which passes through the stencil and onto the material substrate. In this regard experiments have also been carried out with different types of ink, and the viscosity of the ink, etc. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to water purification systems and, in particular, to such systems that purify raw water by distillation.
Systems that purify water by distillation, in which raw water is converted to steam in a boiling tank and the steam subsequently converted to treated water, are well-known in the art.
In one such distillation water purification system developed by the inventors of the present invention, water is admitted to the boiling tank in periodic batches in response to a tank probe that indicates the need for additional raw water. Whenever such a batch is admitted, the head of steam in the apparatus has a tendency to collapse. This phenomena is disruptive to the distillation process, can cause stress on components of the apparatus and emits a displeasing sound. In addition, the apparatus must be periodically de-energized and the boiling tank drained to remove salts and minerals that have accumulated in the raw water.
In a prior art water purification system, disclosed in U.S. Pat. No. 3,055,810 to Ross E. Skow, raw water is supplied to the apparatus in excess of the amount required for the distillation process. The excess raw water is disposed to a drain through a pipe mounted at a desired water level. Because the excess raw water is circulated through the boiling tank, contaminants in suspension therein will be removed with the excess water. However, any contaminants that precipitate out of the raw water will accumulate in the bottom of the boiling tank and must be periodically removed.
In another such system disclosed in U.S. Pat. No. 3,505,173, issued to Forrest Thompson Randell, a salinometer is provided for a water distillation plant to monitor the purity of the treated water. When the treated water is not of a desired quality, an output pump is disabled and the impure condensate is fed back to the boiling tank for re-distillation. | {
"pile_set_name": "USPTO Backgrounds"
} |
Wind energy machines are proposed in a wide variety of designs. The simplest is a form of windmill, with several blades mounted on a hub like an aircraft propeller spinning on a horizontal axis. These suffer from known problems. They are unresponsive to low wind speeds, and are liable to overspeed and suffer damage at high wind speeds. They are also relatively tall structures and are unsightly.
The blade tips travel at high velocity, even when operating in modest winds. This tip speed may be close to the speed of sound. The noise of such windmill designs is well known and is a major disadvantage. Changing the direction in which the windmill is facing becomes difficult when the blades are rotating, due to the creation of kinetic energy of the rotating blades around their horizontal axis, which resists changes in direction.
Squirrel cage type systems are highly directional and are relatively inefficient. Vertical rotor designs require the wind direction to be diverted by as much as 90 degs, thus wasting considerable energy.
They do have certain features which are advantageous. Thus they are easily directed at the incoming wind. They can be lower then propeller type designs and thus less objectionable. They are less liable to overspeed in high winds and less liable to damage. The turbine blades can be shorter, thus avoiding problems of excessive tip speeds common to windmill systems.
Turbine designs however have been of various types. The typical turbine is a multi-blade disc somewhat like a fan, with the blades being twisted so as to convert wind energy into rotation as the air passes. This type of turbine is not suitable for a vertical turbine design.
Water turbines also suffer from numerous disadvantages, and the principles of the invention can be applied to water flows, as well as to fluid flows such as air flows. Accordingly it is desirable to design a turbine machine, using a vertical axis turbine rotor, and mounted in a housing which can be directed at the incoming wind. | {
"pile_set_name": "USPTO Backgrounds"
} |
Many challenges exist in handling sensitive data, such as credit card numbers, social security numbers, bank account numbers, driving license numbers, and the like. In use, a system for processing such sensitive data transmits the sensitive data between multiple authorized entities, any of which can store the sensitive data. For example, in a retail environment, a user may swipe a credit card at a register, the register may transmit the credit card number to a local server, the local server may transmit the credit card number to a bank, and so forth. In this example, the credit card number may be stored at the register, the local server, the bank, and at any other intermittent entity implemented within such a retail environment. In such a system, the sensitive data is vulnerable to interception by unauthorized entities at multiple points, such as during each transmission between authorized entities or while stored at any authorized entity.
To prevent unauthorized access to sensitive data, steps can be taken to protect the sensitive data. Such data protection measures are required by many jurisdictions for various categories of sensitive data. The sensitive data can be encrypted during transmission or storage using an encryption algorithm and encryption key, but encryption can be broken by various hacking methods. Data storage security measures can be implemented while the sensitive data is stored at an authorized entity, but such storage security measures generally protect against intrusion by an unauthorized entity and don't protect the sensitive data after the unauthorized entity has overridden or bypassed the storage security measures. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates generally to the field of interconnecting devices with a computer, and more specifically, to swapping or changing the devices interconnected with a computer while the computer is in operation.
Drivers for fully xe2x80x9cplug-and-playxe2x80x9d operating systems and devices can handle the addition and removal of devices with little to no active involvement of the user. As a result, fully xe2x80x9cplug-and-playxe2x80x9d systems allow relatively unsophisticated users to install and exchange devices both easily and seamlessly, and without any need for the user to understand the software or have programming capability.
Within each operating system, there are a series of drivers for discovering and initializing devices included in a computer so that they can properly communicate with all of the resources of the computer. For operating systems, such as Windows 95(copyright) or 98(copyright) (products of Microsoft Corporation), the drivers enumerate or recognize the devices connected to the computer when the driver is started during the installation or booting up of the operating system. For some devices, however, their associated device driver is not fully xe2x80x9cplug and playxe2x80x9d enabled. Examples of these drivers include the IDE driver for hard disk drives and the floppy driver for floppy drives. Because these drivers are not fully xe2x80x9cplug and playxe2x80x9d enabled, the drivers for these devices are unable to enumerate the devices during runtime.
Due to this limitation, these operating systems cannot support the swapping of devices having not fully xe2x80x9cplug and playxe2x80x9d drivers, such as hard drives, CD-ROM drives and floppy drives, while the system is running (hot swapping) or in a sleeping state (warm swapping). Rather, the swapping or exchange of one of these devices for another requires the user to restart or reboot the computer. This requirement is both time-consuming and inconvenient to the user.
Briefly, the present invention comprises a method for enumerating a first device present in a computer system to make the first device recognizable to the computer system, the computer system having a memory and an operating system which uses a data structure stored in the memory for establishing a working configuration of the computer system, the data structure having one or more device nodes corresponding to devices present in the computer system, the method including the steps of providing an indication to the operating system that the first device has been inserted into the computer system while the computer system is in operation, enumerating a controller for controlling the first device in response to the indication, initializing a driver associated with the first device controller in response to the enumeration of the first device controller, locating, with the initialized driver, an enumerator associated with the first device controller, and enumerating the first device with the located enumerator, wherein the driver associated with the first device controller is only capable of locating the enumerator associated with the first device controller when initialized.
In another aspect of this method, prior to the step of connecting the first device, the method further includes the steps of determining whether a second device in the computer system is currently being accessed, removing the device node corresponding to the second device and a device node corresponding to a controller for controlling the second device from the data structure, isolating any data signals which are transmitted between the second device and the second device controller from being transmitted from the second device controller to the second device, and powering off the second device.
In yet another aspect of this method, the step of removing the device nodes corresponding to the second device and the second device controller includes the substep of unloading all drivers associated with the second device and the second device controller.
In a further aspect of the present invention, a computer program product comprises a computer usable medium having computer readable program code modules embodied therein for enumerating a first device present in a computer system to make the first device recognizable to the computer system, the computer system having a memory and an operating system which uses a data structure stored in the memory for establishing a working configuration of the computer system, the data structure having one or more device nodes corresponding to devices present in the computer system, the computer program product including a first enumeration module for enumerating a controller for controlling the first device after inserting the first device into the computer system while the computer system is in operation, an initialization module for initializing a driver associated with the first device controller in response to the enumeration of the first device controller, a locator module for identifying, with the initialized driver, an enumerator associated with the first device controller, and a second enumeration module for enumerating the first device with the located enumerator associated with the first device controller, wherein the driver associated with the first device controller is only capable of locating the enumerator associated with the first device controller when initialized. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a thioalkenyl phosphonic acid ester and to a process for the preparation thereof.
Thioalkenyl phosphonic esters are a group of compounds useful as intermediate compounds for the production of fine chemicals, because they can easily give, by Michael reaction with a nucleophile, a carbanion which in turn causes Horner-Emmons addition reaction with a carbonyl compound and because they can undergo a carbon--carbon bond-forming reaction by regio- or stereo-selective coupling with a vinyl halide, an aryl halide or Grignard reagent in the presence of a transitional metal catalyst.
At present, no methods have been known which can produce thioalkenyl phosphonic esters by a single stage reaction of a hydrocarbon. A reaction of a thioalkenyl halogen compound with a secondary phosphite under basic conditions may yield a thioalkenyl phosphonic ester. An addition of a secondary phosphite to a thioalkyne may also produce a thioalkenyl ether. These methods, however, are not advantageous from the industrial point of view, because the sulfur-containing raw materials are not easily obtainable. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Invention
This invention pertains generally to exercise and fitness equipment and, more particularly, to an improved weightlifting system.
2. Related Art
Notwithstanding the numerous types of exercise and fitness equipment which have been developed in recent years, free weights or barbells still remain one of the most popular. Such devices typically consist of an elongated bar, a plurality of interchangeable weight plates which are mounted on the end portions of the bar, and collars which retain the weight plates in place.
Changing the weight on the bar requires removal of the outer collars, the lifting of weight plates onto and/or off of the bar, and replacement of the collars. This takes time and, in addition to being inconvenient, can be difficult for a smaller person who must remove the heavier plates left on the bar by a stronger prior user. Also, in handling weight plates, there is always a danger of personal injury or property damage if the plates are dropped or inadvertently banged together.
Another problem in the use of free weights arises when the lifter is doing exercises on a bench, with the bar above him. As the lifter does his exercise, he tends to tire, and a spotter is often required to help him lift the bar away from his body at the end of the exercise so he can get out from under it. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a system for stabilizing the fluid flow in a variable capacity compressor.
2. Description of the Prior Art
Conventional compressors may be operated over a broad range of loads. As the load varies, it is necessary to stabilize the fluid flow in the compressor. A low flow rate may cause instability of the flow, thereby allowing the formation of rotating stall pockets or cells in the diffuser which create noise, cause vibration, and lower compressor efficiency. This condition is known as incipient surge or stall. If the flow becomes even more unstable, complete reversals of fluid flow in the diffuser may occur. This phenomenon, known as surge, is characterized by fluid alternately surging backward and forward through the compressor. Surge creates noise, causes vibration, lowers compressor efficiency, creates heat, and can cause damage to the compressor. Varying the geometry of the diffuser by altering the diffuser width is a recognized method of stabilizing the fluid flow.
Several devices for varying the diffuser width are disclosed in the prior art. For example, U.S. Pat. No. 4,527,949 to Kirtland discloses a device in which hydraulic fluid is delivered under pressure into a first expandable chamber to move a movable diffuser surface toward a fixed diffuser surface and thereby decrease the width of the diffuser. Providing fluid under pressure in a second expandable chamber causes movement of the movable diffuser surface away from the fixed diffuser surface and thereby increases the width of the diffuser
Another type of hydraulic system uses spring pressure to urge the movable diffuser surface in the direction of the fixed diffuser surface. In this system a low pressure area is produced behind the movable diffuser surface to counteract the force of the spring and to move the movable diffuser surface in a direction away from the fixed diffuser surface. A system of this type is shown in U.S. Pat. No. 4,416,583 to Burns.
Such hydraulic systems often use a piston and cylinder arrangement having a single large diameter piston. In the inventor's opinion, the length to diameter ratio of the piston is usually very low due to the small amount of axial space available inside the compressor housing. The low length to diameter ratio increases the possibility of jamming of the piston in the cylinder. To achieve a reliable length to diameter ratio, it would be necessary to increase the axial length of the compressor.
Such hydraulic systems may use multiple pistons instead of a single piston. It is the inventor's experience that an almost perfectly matched set of pistons is necessary to allow the pistons to move in unison. If the pistons are not matched closely enough, jamming can occur.
In hydraulic systems, uneven frictional force on the piston seals can cause the movable diffuser surface to become misaligned and jam. The piston seals themselves are also a source of concern, because if a seal fails, it may render the diffuser system totally inoperative. Seal leakage allows excessive oil to enter the compressor discharge gas, thereby affecting performance of the heat transfer surfaces. Seal leakage may also hamper proper operation of the compressor by bleeding pressure away from the hydraulic system. Hydraulic systems generally do not allow for a mechanical override. A breakdown in the hydraulic system therefore prevents the movement of the movable diffuser surface by other means. In addition, in a hydraulic system the movable diffuser surface needs to be rather stiff to reduce the possibility of warping. Warping of the movable diffuser surface can cause jamming. This stiffness requirement translates into increased weight and inertia.
Pneumatic systems are also in the prior art. A pneumatic, or refrigerant gas, actuated system operates in substantially the same manner as the hydraulic system. In this system the liquid of the hydraulic system is replaced by a gas from the compressor discharge. The pneumatic piston is designed similarly to the piston of the hydraulic system and therefore suffers from the jamming caused by the low length to diameter ratio. Pneumatic systems also have reliability problems for many of the same reasons stated above in regard to the hydraulic system.
Some mechanical systems can be found in the prior art. An example of a mechanical system is shown in U.S. Pat. No. 3,032,259 to Jassniker. The mechanical systems used in the past require a great deal of space along the centerline of the compressor and therefore increase the axial length of the compressor. Known mechanical systems do not achieve a desirable degree of compactness.
In summary, while a number of different systems have been used in the past for varying the diffuser width, those systems present a number of problems. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to computer software, and deals more particularly with methods, systems, and computer program products for dynamically extending network-accessible services, an example of which is Web services, thereby making additional operations available in a transparent manner.
2. Description of the Related Art
The term “Web service” refers generally to an interface that describes a collection of network-accessible operations. Web services technology is a mechanism for distributed application integration, whereby program-to-program operation is facilitated via distributed network access to software. Web services are also commonly referred to as the “service-oriented architecture” for distributed computing. Web services fulfill a specific task or a set of tasks. A Web service may work with one or more other Web services in an interoperable manner to carry out a complex workflow or a business transaction. For example, completing a complex purchase order transaction may require automated interaction between an order placement service (i.e., order placement software) at the ordering business and an order fulfillment service at one or more of its business partners. In turn, this order fulfillment service may interact with a credit card approval service, a package delivery service, and so forth.
The open industry standards leveraged by Web services to facilitate “just-in-time” distributed application integration include HTTP (“Hypertext Transfer Protocol”), SOAP (“Simple Object Access Protocol”), WSDL (“Web Services Description Language”), and UDDI (“Universal Description, Discovery, and Integration”). HTTP is commonly used to exchange messages over TCP/IP (“Transmission Control Protocol/Internet Protocol”) networks such as the Internet. SOAP is an XML-based protocol used to invoke methods in a distributed environment. UDDI is an XML-based registry technique with which businesses may list their services and with which service requesters may find businesses providing particular services. Just-in-time application integration is facilitated by issuing UDDI requests to locate distributed services through a UDDI registry, and dynamically binding the requester to a located service using service information which is conveyed in a platform-neutral WSDL format using SOAP and HTTP messages. Using these components, Web services will provide requesters with transparent access to program components which may reside in one or more remote locations, even though those components might run on different operating systems and be written in different programming languages than those of the requester.
For more information on SOAP, refer to “SOAP Version 1.2 Part 0: Primer, W3C Recommendation 24 Jun. 2003”, which is available from the W3C. More information on WSDL may be found in “Web Services Description Language (WSDL) 1.1, W3C Note 15 Mar. 2001”, which is also available from the W3C. Detailed information on UDDI is available from the Organization for the Advancement of Structured Information Standards (“OASIS”). HTTP is described in Request For Comments (“RFC”) 2616 from the Internet Engineering Task Force, titled “Hypertext Transfer Protocol—HTTP/1.1” (June 1999).
Use of Web services is becoming increasingly popular. As this technology becomes more pervasive, Web service authors and administrators of Web service implementations may want to be able to add additional operations to previously-deployed Web services. As an example, it may be desirable to add management capabilities to the deployed Web services. One way in which this might be done is to have all services provide a base management class that offers management features, and then subclass or extend this base class to offer service-specific details. However, this would be extremely costly, and is not extensible beyond planned-for base classes. (For example, it might be desirable to add operations that do not pertain to management.) In addition, it would be quite time-consuming and disruptive to retroactively update previously-deployed services. Therefore, this is not a viable approach.
The present invention avoids these drawbacks and limitations, enabling dynamic extensions to network-accessible services (such as Web services) to be provided in a transparent manner. | {
"pile_set_name": "USPTO Backgrounds"
} |
Displays can be created from an array of light emitting devices each controlled by individual circuits (i.e., pixel circuits) having transistors for selectively controlling the circuits to be programmed with display information and to emit light according to the display information. Thin film transistors (“TFTs”) fabricated on a substrate can be incorporated into such displays. TFTs tend to demonstrate non-uniform behavior across display panels and over time as the displays age. Compensation techniques can be applied to such displays to achieve image uniformity across the displays and to account for degradation in the displays as the displays age.
Some schemes for providing compensation to displays to account for variations across the display panel and over time utilize monitoring systems to measure time dependent parameters associated with the aging (i.e., degradation) of the pixel circuits. The measured information can then be used to inform subsequent programming of the pixel circuits so as to ensure that any measured degradation is accounted for by adjustments made to the programming. Such monitored pixel circuits may require the use of additional transistors and/or lines to selectively couple the pixel circuits to the monitoring systems and provide for reading out information. The incorporation of additional transistors and/or lines may undesirably decrease pixel-pitch (i.e., “pixel density”). | {
"pile_set_name": "USPTO Backgrounds"
} |
It is known that the fibres of cellulosic material, for instance paper pulp, lose their strength potential in the process of being dried, possibly resulting in so-called swelling collapse of the fibres. This can also be observed as an impaired ability to swell in water, and can be explained, for example, by the fact that strong hydrogen bonds are newly formed between hydrophilic groups in the fibre walls. This influences the absorption properties of the fibres, so as to reduce their absorption rate, absorption capacity and water retention properties.
It is also known to impregnate cellulosic fibres with a combined aluminium salt and silicon compound. This is described in BE 461 156 (U.S. Pat. No. 5,127,994), according to which an aluminium compound is introduced into stock which contains at least 50% fibres at pH 4-10, whereafter there is added a known mixture of polymeric silica, obtained by acidifying waterglass, and a polymeric cationic retention agent. It is stated that the polymeric silica used must present a high specific surface area, namely a specific area which exceeds 1050 m.sup.2 /g. The purpose of adding this combination of chemicals is to improve retention and dewatering when manufacturing paper by forming and dewatering a suspension of cellulosic fibres and filler on a forming wire.
The Swedish published specification SE-446 995 (corresponding to Swedish Patent Application No. 7900587-2) teaches a method of precipitating hydratised aluminium-silicate compounds onto fibres. This process is intended to modify the surfaces of inorganic fibres which are mixed with cellulose fibres or other organic fibres, with the intention of improving the bond between the organic and inorganic fibres so that the mechanical strength properties of the composite product will not be impaired. By treating the mixture of suspended inorganic and organic fibres first with aluminium sulphate and then with 0.05-10% by weight alkali silicate at a pH-value of 3-8, silicate is precipitated onto the inorganic fibres, thereby improving their ability to bond to the organic fibres, the resultant material being used to manufacture paper or board having good fire-retarding and dimension-stable properties.
A generally known problem within the field of the manufacture of absorbent materials for use primarily in the production of sanitary articles, such as diapers, incontinence guards etc., is one of achieving optimum absorption rates and liquid dispersion properties the fibre material of the fluff. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention generally relates to an absorbent that is adapted for the removal of hydrogen sulfide and other sulfur species from liquid and/or gaseous streams and more particularly to a stable iron (II) oxide and/or hydroxide that is particularly adapted to absorb hydrogen sulfide and other sulfur species from liquid and/or gaseous streams. Methods for making and using the absorbent are also disclosed.
2. Description of Related Art
Various liquid and/or gaseous streams, including hydrocarbon streams such as natural gas liquids (“NGL”), crude oil, acid-gas mixtures, carbon dioxide gas and liquid streams, anaerobic gas, landfill gas, geothermal gas, and the like, also often contain significant quantities of sulfur compounds. Some sulfur compounds that are often found in such streams include hydrogen sulfide, mercaptans and dimethyldisulfide. Particularly in the case of hydrocarbon streams, these sulfur compounds generally must be removed in order to meet emission standards and pipeline requirements.
Because of the noxious, toxic and corrosive nature of sulfur-containing compounds, many different products and methods have previously been disclosed for use in removing such compounds from hydrocarbon streams. One such commercially available product is SULFATREAT® brand particulate reactant that is said to be useful for removing hydrogen sulfide and other sulfur contaminants from gases and liquids including, for example, hydrocarbon fuels and geothermal steam for sale to producers of natural gas and the like. SULFATREAT® is a federally registered trademark of M-I L.L.C. of Houston, Tex., and, in stylized form, of Gas Sweetener Associates, Inc. of Chesterfield, Mo. The SULFATREAT® material has a proprietary formulation but is believed to comprise primarily ferric oxide particles having a high surface area. Iron sponge is another commercially available material composed of ferric oxide distributed on wood chips that is being used for sulfur removal in industrial processes.
Another known process for removing hydrogen sulfide from hydrocarbon streams is the use of a caustic scrubber or amine unit. Most of these processes involve the use of an alkaline solution such as sodium hydroxide (NaOH). Compared to these processes, the disclosed stable iron (II) oxide and/or hydroxide system shows greater sulfur capacity when using the same amount and concentration of caustic solutions.
Another commercially available product is disclosed in U.S. Pat. Nos. 7,744,841 and 7,943,105. This absorbent has been found to be particularly effective at absorbing hydrogen sulfide, mercaptans, dimethyldisulfide and other sulfur-containing compounds from various fluids including natural gas, light hydrocarbon streams such as natural gas liquids, crude oil, acid gas mixtures, carbon dioxide gas and liquid streams, anaerobic gas, landfill gas, geothermal and other sulfur-containing streams. This absorbent can be composed of ferrous carbonate, most preferably siderite granules or powdered siderite that is extruded or otherwise aggregated, compacted or formed into pellets, pills or spheres using a minor amount of water and optionally a binder. The ferrous carbonate used to form these particles is generally of a size where 90% pass through a 100 mesh screen, which corresponds to approximately 150 micrometers. The final absorbent preferably has dimensions ranging from about 4 to about 12 mesh or about 1.7-4.7 mm. and is deep red in color. This sorbent is capable of achieving sulfur loading of 10 to 20% by weight of the sorbent (25-50% based on iron content).
Despite the commercial success of the products covered by U.S. Pat. Nos. 7,744,841 and 7,943,105, there is still a need for an improved absorbent that is capable of removing sulfur compounds from liquid and/or gaseous streams, and in particular hydrogen sulfide from hydrocarbon streams. | {
"pile_set_name": "USPTO Backgrounds"
} |
More and more information is being stored in XML documents. Quite often, an XML documents may have links that point to other documents (which may be considered as a directed edge between two nodes/documents). These links may point to a whole XML document or one or more fragments in XML documents. XLink and related standards such as XInclude and XPointer may be used to define the links. As an example, a personnel database may be used to store a collection of XML documents each of which represents an employee or a department. An employee document may have a manager link embedded therein that points to another employee document that represents a manager. Additional links may be embedded in an employee document. For example, besides the manager link, the former employee document may comprise another link, say department link, that points to a department document that represents a department.
Operations that involve traversing links may be performed on a collection of interlinked XML documents. An example of interesting operation may be a query that returns a listing of employee-name and manager-name pairs. The straightforward evaluation of this query may require iteration over all employee documents; for each employee-name found in each employee document, a manager link in the employee document may be traversed to retrieve a corresponding manager-name.
In many scenarios, the number of documents in such collections is very large—perhaps in terms of millions. It becomes inefficient (and in some cases infeasible) to operate on such a collection using a single computer or only a small set of computers. It is thus necessary to split the collection over multiple machines in smaller collections (i.e. partitions) to enable parallel concurrent processing.
A disadvantage of these approaches, however, is that XML documents interlinked may end up in different partitions. As a result, the cost of traversing links may be increased because of the performance degradation caused by excessive traversal of links across partition boundaries.
Therefore, a better mechanism, which would better support managing and partitioning large collection of interlinked XML documents, is needed. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention pertains to novel polymerizable monomers obtained by reacting an allyl halide or a vinylbenzyl halide with an oxazoline or oxazine.
2. Background of the Invention
Litt et al. teach in U.S. Pat. No. 3,483,141 that oxazolines and oxazines ring open in the presence of alkyl halides (e.g., methyl iodide and 1,4-dibromobutane) and certain other compounds to form useful polyamides. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a cap and, more particularly, to a cap for a container.
2. Description of Related Art
In general, the cap of any conventional container is always completely separated from its container once the container is opened. For that reason, it is easy for the separated cap to be dropped, accidentally disposed of, and/or misplaced/lost. Moreover, the separated cap when dropped can easily become soiled by coming in to contact with the ground or other uncontrolled surfaces resulting in the cap becoming no longer reusable. Furthermore, the discarded or misplaced/lost separated caps are able to and will pollute the environment and cause additional environmental problems. Therefore, in order to solve these problems, the industry has developed a few caps that will remain connected to their containers while their containers are in an open state. These few caps are thereby prevented from being separated from their containers, dropped, accidentally discarded, misplaced/lost, soiled by contact with the ground or other uncontrolled surfaces or able to pollute the environment or cause additional environmental problems.
Nonetheless, the currently existing caps with the above-mentioned functions usually require much more complex designs. Specifically, these designs normally involve the need of more than one component or structure; for example, besides a main body structure for the caps, the designs also necessitate a complicated connecting structure to connect the caps to their containers once the containers have been opened. Furthermore, the designs also necessitate a barrier structure to prevent the caps, while in an open state, from interfering with the opening of their containers and also insuring that the caps remain in an open state when so desired by the user. Additionally, the complicated connecting structures necessitate some difficult physical manipulation by the user to return the caps to a closed sealed state. In order to manufacture caps with these structures, the materials and the numbers of components used are increased to beyond the industry and market standards. The manufacturing process of these caps also requires several levels of production utilizing multiple pieces of manufacturing equipment (machines) to create the complicated connecting structures. Accordingly, not only the cost of material increases but also the overhead costs of manufacturing equipment and man hours involved are increased as well. The cost and inefficiency of the manufacturing process of these caps is quite high and above the market and industry requirements.
Therefore, there is a need to provide a cap with the above-mentioned functions by using a simpler design and structure with the use of less material, fewer pieces of manufacturing equipment and fewer man hours to create a much more environmentally friendly, simply manufactured, high production efficient, and much lower cost cap. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the packaging of certain products such as liquid chlorine bleach and the like, it is desirable to provide a single use package which can not be reused and yet which will have an indication of possible tampering.
Accordingly among the objectives of the present invention are to provide a single usage tamper resistant package which will adequately seal the contents, will not be resealable, and wherein neither the sealing device nor the closure can be reused and wherein preferably a portion of the closure remains with the bottle or container.
In accordance with the invention, the non-reusable temper indicating package comprises a container and a closure. The container has a body portion and a neck portion defining an opening and the neck portion has an annular bead spaced from the end of the neck. The closure has a top wall and a peripheral skirt and a retention and holding bead on the skirt adapted to engage the annular bead on the container. The closure includes spaced score lines on the skirt and a portion of the top wall defining a severable portion between the score lines such that when the severable portion is pulled outwardly and upwardly, the closure is severed along the score lines. A foil sheet has a layer of thermoplastic material on each surface thereof and is thermally bonded to the upper end of the container. A liner ring overlies the foil sheet and is thermally bonded to the thermoplastic material of the foil. The top wall has a depending portion thermally bonded to the thermoplastic material on the foil sheet such that when the severable portion of the skirt and top wall are severed along the score lines, the depending portion of the closure tears the foil sheet to provide access to the contents and the foil sheet can not be reused and the closure can not be reused to reseal a container. In a modified form, the liner is eliminated and the depending portion is thermally bonded directly to foil sheet. | {
"pile_set_name": "USPTO Backgrounds"
} |
Mobile device users frequently desire to print content items such as web pages, documents, and spreadsheets. However, such users are at times unaware of when or where a printer will become available. When a printer becomes available, a content item, such as a final confirmation for an on-line transaction, may no longer be available or at least not readily available. The ensuing frustration, at times, results in the user not printing and losing the content item. Some inelegant approaches taken when a printer is not available have included e-mailing or saving the content item for later retrieval and printing. Such approaches rely on the user to remember that the content item was saved or sent and require multiple additional steps when the user simply desired to print. | {
"pile_set_name": "USPTO Backgrounds"
} |
Type 2 diabetes mellitus (T2DM) progresses from a state of insulin resistance with euglycemia and hyperinsulinemia to β-cell failure resulting in impaired insulin secretion and fasting hyperglycemia. The pathogenic role of inflammation in both stages of T2DM is increasingly recognized. Adipose tissue inflammation contributes to insulin resistance via proinflammatory cytokines such as TNFα and IL-6, and infiltration of proinflammatory cells into pancreatic islets of diabetic patients and animals may contribute to β-cell failure. Furthermore, the Nlrp3 (NOD-like receptor family, pyrin domain containing 3) inflammasome, a protein complex involved in the proteolytic activation of caspase-1 and interleukin-1β (IL-1β) secretion, has been implicated in the pathogenesis of diabetogenic insulitis (i.e. inflammation of pancreatic islets).
Endocannabinoids, the lipid ligands of G protein-coupled CB1 and CB2 receptors, produce a broad range of biological effects (reviewed in Pacher, P., et. al., Pharmacol Rev 58, 389-462 (2006)). CB1R (CB1 receptor) activation promotes food intake, increases lipogenesis in adipose tissue and liver, and induces insulin resistance and dyslipidemia, suggesting that an overactive endocannabinoid/CB1R system contributes to the development of visceral obesity and its complications. Accordingly, chronic CB1R/CB1R blockade reduced body weight and improved obesity-related insulin resistance, dyslipidemia and fatty liver both in rodent models of obesity and in overweight people with the metabolic syndrome. CB1R blockade also improved glycemic control as a monotherapy in drug-naive patients with T2DM. However, the therapeutic development of CB1R antagonist/inverse agonists has been halted due to adverse psychiatric effects. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a magnetron for use in microwave ovens and so on, and more specifically, it relates to a magnetron having a filament improved to implement a long lifetime.
Generally, a magnetron generates microwaves efficiently and is widely used in application apparatuses, particularly, such as microwave ovens and thawing apparatuses, strongly requiring stability, high quality, long lifetime, and high efficiency.
FIG. 6A shows a cathode assembly of a conventional magnetron which is mounted on home electronic ovens.
The cathode assembly is arranged on a central axis of an anode cylindrical body (not shown). The cathode assembly comprises a rod-shaped center lead pin 1 made of a high melting point metal, a top hat 2, made of a high melting point metal, connected to an upper end of the center lead pin 1 and an end hat 3, made of a high melting point metal, connected to a lower end of the center lead pin 1, side lead pins 4a and 4b, made of a high melting point metal, connected to the end hat 3, and a helical filament 5 which circles around the center lead pin 1 and whose one end is connected to the top hat 2 and the other end is connected to the end hat 3.
In order to stabilize the electron emission characteristic, the filament 5 has a carbonized layer 7 which covers an outer circumference of a core wire 6 such as a thorium-tungsten wire.
The carbonized layer 7 is formed by electrifying the core wire 6 which is molded in advance in a helical shape of a predetermined dimension under a rare gas atmosphere containing carbon and by increasing a temperature of the core wire 6 higher than that at the time of oscillating as the filament 5.
The carbonized layer 7 of the filament 5 is exhausted gradually as time passes, and, when the carbonized layer 7 is extinct, the electron emission characteristic is degraded so that the magnetron is not available any longer.
Therefore, in order to achieve a long life span of the magnetron, it is desirable that the carbonized layer 7 be formed thick.
However, an outer diameter of a wire material that can be used as the filament 5 is limited to a predetermined range (for example, about φ0.5 to 0.6 mm) according to spatial conditions that can be secured in the magnetron and required electrical characteristics. Hence, when the thickness of the carbonized layer 7 is increased, the diameter of the core wire 6 should be reduced accordingly. Further, as the thickness of the carbonized layer 7 is increased, the life span is elongated. However, in this case, a mechanical strength to vibration or shock while carrying is reduced due to a decrease in diameter of the core wire 6, which result in causing a disconnection of the filament or the like. Further, there is a problem in that oscillation performance may be degraded due to degradation of the electrical characteristics.
Thus, in order to secure a long life span without degrading the electrical characteristics or mechanical strength, it is important to properly determine the thickness of the carbonized layer 7 with respect to the range of the diameter of the wire material that can be used as the filament 5.
From such a background, conventionally, there is suggested a technology in which the thickness of the carbonized layer 7 is in a range of 5 to 30 μm, for example, and is limited to less than 5% of the value of the outer diameter D of the wire material including the carbonized layer 7, such that the long life span and the maintenance of the electrical characteristics or the mechanical strength may be stood together (for example, see JP-B-60-53418).
As described above, the carbonized layer 7 of the filament 5 is formed by electrifying the core wire 6 which is molded in advance in the helical shape of the predetermined dimension. The carbonized layer 7 formed with such a manufacturing method does not have a uniform thickness since the center of an outer circumferential circle of the carbonized layer 7 is in an eccentric state with respect to the center of the core wire 6 due to a temperature difference at the time of increasing the temperature, as shown in FIG. 7.
For this reason, as described in Patent Document 1, according to the method in which the thickness of the carbonized layer 7 formed around the outer circumference of the core wire 6 is regulated according to a ratio to the outer diameter D of the wire material, when a location for measuring the thickness of the carbonized layer 7 is deviated, a significant difference in the total amount of the substantially covered carbonized layer 7 occurs.
Specifically, according to the prior art, even when the equipped amount of the carbonized layer 7 is defined, there occurs a significant variation in the total amount of the substantially covered carbonized layer 7. As a result, there is a problem in that a variation in electrical characteristic or mechanical strength easily occurs at the time of serving as the filament 5. Furthermore, there is a problem in that a significant variation in life span also occurs at the time of serving as the magnetron.
In addition, when the electrical characteristics of the filament 5 are different from those of the conventional product, there is also a problem in that compatibility as the magnetron is not implemented. | {
"pile_set_name": "USPTO Backgrounds"
} |
Fingerprint sensing and matching is a reliable and widely used technique for personal identification or verification. In particular, a common approach to fingerprint identification involves scanning a sample fingerprint or an image thereof and storing the image and/or unique characteristics of the fingerprint image. The characteristics of a sample fingerprint may be compared to information for reference fingerprints already in a database to determine proper identification of a person, such as for verification purposes.
A particularly advantageous approach to fingerprint sensing is disclosed in U.S. Pat. No. 5,953,441 to Setlak and assigned to the assignee of the present invention, the entire contents of which are herein incorporated by reference. The fingerprint sensor is an integrated circuit sensor that drives the user's finger with an electric field signal and senses the electric field with an array of electric field sensing pixels on the integrated circuit substrate.
A particularly advantageous approach to multi-biometric fingerprint sensing is disclosed in U.S. Pat. No. 7,361,919 to Setlak, which is assigned to the assignee of the present invention and is incorporated in its entirety by reference. The Setlak patent discloses a multi-finger sensing device sensing different biometric characteristics of a user's finger that have different matching selectivities.
A fingerprint sensor may be particularly advantageous for verification and/or authentication in an electronic device, and more particularly, a portable device, for example. Such a fingerprint sensor may be carried by the housing of a portable electronic device, for example, and may be sized to sense a fingerprint from a single-finger. Thus, a fingerprint sensor may be particularly advantageous for providing more convenient access to the electronic device without a password, for example, and, more particularly, without having to type the password, which is often time consuming. A fingerprint sensor may also be particularly advantageous for starting one or more applications on the electronic device.
U.S. Patent Application Publication No. 2011/0175703 to Benkley, III discloses an electronic imager using an impedance sensor grid array mounted on or about a switch. More particularly, Benkley, III discloses a switch being incorporated into a sensor assembly that allows integration of sensor operations, such as, fingerprint sensor operations. A fingerprint sensor can be used for authentication while being used together with a power switch or navigation selection switch. The authentication may be used to access the device entirely or access different levels of information.
While a fingerprint sensor used in an electronic device may be particularly advantageous for authentication, navigation, etc., it may be desirable that these sensors have a reduced size to accommodate the relatively small amount of space available on the housing of the portable electronic device. However, making a fingerprint sensor smaller may make it less accurate because a smaller sensing area is available. Thus, processing time may be increased. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to an X-Y positionable work station and more particularly to a very accurately and quickly positionable work station in a vacuum environment.
2. Description of the Prior Art
Generally, in the known prior art, systems operating in vacuum environments are not required to simultaneously perform to stringent specifications. As such, relatively loose designs are possible which are inaccurate or slow and do not severely stress the components. In the writing of photolithographic patterns on semiconductor workpieces by an electron beam in a vacuum environment, a very accurately positionable X-Y table is required. The table also has to function within a high vacuum environment, presenting stringent lubrication requirements and special material and component limitations. Also, the electron beam is greatly affected by moving magnetic material near the final lens, and by electro magnetic fields created in the vacinity of the lens. These considerations require that the electric drive motor be located outside the vacuum chamber to eliminate the outgassing friction of the brushes, and lubrication problems, as well as to attenuate the electro magnetic field. By placing the motors outside the vacuum chamber, heat transfer from the motor is also facilitated.
At the same time, the requirements for very fast and accurate positioning demand that the prime mover and associated linear actuators conform to prescribed requirements of good design of servo systems. Mandatory characteristics include items such as low friction, low compliance, high rigidity, high stiffness, and low mass, to achieve the maximum mechanical resonent frequency. This requires a minimal backlash linear actuator, and positive coupling between all the drive components, as well as positive coupling to the X-Y stage. Consequently, such items as flexible shafts and couplings are not desirable.
A system having the foregoing characteristics has many interactive parts requiring maintenance, repair, replacement, and diagnosis. A severe problem with prior art systems has been that the entire electron beam (E-beam) column which provides a control for the electron beam, must be lifted up with a crane to provide access to the workpiece positioning apparatus. The prior art teaches no quick and convenient way to remove the X-Y table, to perform necessary maintenence etc., and return the same into the vacuum chamber. Similarly, known techniques for conveniently accessing X-Y tables for maintenance and repair purposes would not be applicable to the highly fast and accurate X-Y positioning apparatus required herein. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to the field of portable devices and more particularly to a hinged operated portable device including a plurality of display units.
2. Description of the Related Art
Generally, “portable communication devices” as the term is used herein refers to devices that allow for a form of communication, while the devices are being carried. Various applications or types of communications may be performed by the portable device. For example, voice communication, short message service, mobile banking, television (TV) watching, on-line game service, and on-demand video service are communications or applications that may be provided to users using portable communication devices.
The portable communication devices may include devices such as a hand-held phone (HHP), a cordless telephone (CT-)2 cellular phone, a digital phone, a personal communications systems (PCS) phone, and a personal digital assistant (PDA) and are sorted into various types according to their appearances. For example, wireless terminals are sorted into a bar type, a flip type, a folder type, a sliding type, and a pop-up type according to their appearances. The above-mentioned portable communication devices always include an antenna apparatus, a data input/output device, and a data transceiver. For the data output device, a display unit is generally used. Recently, some terminals include a touch screen that allow the user to input data by touching a display screen on the display unit
However, a display unit of a conventional portable communication device generally has a screen size of about 320×240 pixels, and such a small screen size of the display unit is too small for a user to comfortably access a public network, such as the Internet, or watch television or operate an on-line game service, or watch a multimedia presentation (e.g., moving or motion pictures)
In addition, the conventional portable communication device needs a separate cradling device that may hold the device in place. Generally, the cradling device allows the user to position the portable device at an angle convenient for viewing. Otherwise, it is inconvenient for the user to see the (display) screen of the display unit that is placed on a desk without a cradling device.
As a result, there is a need for a portable communication device in which a plurality of display units may be used together or positioned to allow convenient viewing of the display screen. | {
"pile_set_name": "USPTO Backgrounds"
} |
In recent years, electronic ballasts have begun to displace traditional “core and coil” magnetic ballasts. In comparison with magnetic ballasts, electronic ballasts provide a host of benefits, including dramatically higher energy efficiency and better quality of illumination (e.g., little or no visible flicker in the light emitted by the lamp). On the other hand, magnetic ballasts are usually less expensive and more reliable than electronic ballasts.
A typical prior art single-phase electronic ballast is described in FIG. 1. The ballast includes a 1-phase electromagnetic interference (EMI) filter, a fullwave diode bridge BR1, a power factor correction (PFC) circuit, an electrolytic capacitor C1, and a high frequency inverter. The ballast receives operating power from a single-phase alternating current (AC) voltage source. The DC bus voltage, Vbus, across capacitor C1 is described in FIG. 2.
In the prior art ballast of FIG. 1, the PFC circuit, which is typically realized by a controlled DC-to-DC converter such as a boost converter, is required in order to ensure that the power factor (PF) is high enough, and that the total harmonic distortion (THD) in the current drawn from the AC voltage source is low enough, to meet applicable standards for power quality. Without a PFC circuit, the PF would be much too low (e.g., about 0.5) and the THD would be much too high (e.g., about 150%). Unfortunately, a dedicated PFC circuit is materially expensive, requires a considerable amount of physical space, and has power losses that detract from the energy efficiency of the ballast.
In the prior art ballast of FIG. 1, the large electrolytic bulk capacitor C1 is necessary in order to ensure that the amount of ripple (ΔV in FIG. 2) in Vbus is sufficiently small so as to prevent excessive low frequency (e.g., 120 hertz) flicker in the illumination provided by the lamp(s). Typically, the electrolytic capacitor has a high capacitance (e.g., 47 microfarads or higher) and a high voltage rating (e.g., 250 volts or higher), and is therefore quite large. Additionally, a high value bulk capacitor causes correspondingly high levels of inrush current. Perhaps the greatest disadvantage of using electrolytic bulk capacitors is encountered in those ballasts that operate in high ambient temperature environments, in which case the ballast's operating life is largely determined by the useful operating life of the electrolytic capacitor (which decreases by a factor of two for every 10° C. increase in operating temperature). Thus, significant impetus exists for developing ballast circuits that do not require electrolytic bulk capacitors.
FIG. 3 describes a typical grouping scheme that is desirable in industrial/office buildings having lighting fixtures that employ single-phase electronic ballasts like the ballast of FIG. 1. In order to equalize the loading on each phase of the 3-phase AC voltage source, it is necessary that the fixtures be divided into groups wherein each group draws about the same amount of power from the AC voltage source. As such a grouping scheme requires that the building be wired so that each of the three phases are distributed accordingly, it greatly complicates the building wiring.
What is needed, therefore, is an electronic ballast that does not require a dedicated PFC circuit or an electrolytic bulk capacitor in order to provide acceptable power quality and illumination without noticeable flicker. A need also exists for a ballast that does not require grouping of lighting fixtures within a building so as to equalize the loading on each phase of the AC voltage source. Such a ballast would offer a number of benefits over existing electronic ballasts, including lower material cost, reduced physical size, higher energy efficiency, enhanced life, lower inrush current, and simplified building wiring, and would thus represent a significant advance over the prior art. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to digital communications, and more particularly, to switching to a lower data rate for power savings.
2. Description of Related Art
A communication system permits communication between two or more network devices. Communication between network devices can be conventionally achieved using a communication line (or link), formed by twisted pairs of wires (or cables), and transceivers, one transceiver positioned at each end of a twisted pair. For example, the IEEE 802.3 (10GBASE-T) standard targets data transmission rates with a total throughput of 10 Gbps over (4) pairs of twisted wires for distances of up to 100 m. The data transmission is generally performed in a simultaneous bidirectional fashion, thus each pair of wires simultaneously carries bidirectional data, each direction running effectively at 2.5 Gbps.
A common problem associated with a communication system using multiple twisted pairs of wires and multiple transceivers is noise in the form of interference signals. For example, due to the bidirectional nature of data transmission along a twisted pair (or channel), echo cancellation is typically performed which subtracts a transmitted signal from a received signal. Furthermore, since channel insertion loss is quite significant, the signal strength at the end of a communication line is typically very weak, and any noise and/or interference can significantly affect communication system bit error rate (BER). Thus, much effort is usually carried out to cancel any deterministic source of noise in a communication system.
Such deterministic noise sources include, for example, first reflection of a transmitted signal off of discontinuities in the communication line (so called echo), second intersymbol interference due to signal distortion in the communication line, and near-end crosstalk (NEXT) from channels adjacent to a given channel within a communication line, and differential signal wander caused by the AC coupled link and non-DC balanced data stream. Far-end crosstalk (FEXT) is another deterministic source of noise. Due to the high complexity of cancellation circuitry and the fact that far-end crosstalk is orders of magnitude weaker than other deterministic sources of noise, far-end crosstalk may not be typically cancelled. However, in the 10GBASE-T standard the very low system signal-to-noise ratio (SNR) requires FEXT cancellation as well. In the 10GBASE-T standard jitter and other alienated sources of interference are treated as random noise that are accounted for in the signal-to-noise (SNR) budget of the link.
After the cancellation of the major sources of deterministic noise, there is generally still not enough signal-to-noise ratio left to achieve a target bit error rate of 10E-12 for the link. Therefore, a low density parity check (LDPC) decoder typically follows the recovered data to provide coding gain and increase the effective signal-to-noise ratio. The overhead of the LDPC decoding is approximately 1/7th of total data throughput. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to database management systems, and has particular application to relational database management systems (RDBMS) and more particularly to a method and apparatus for efficiently sharing of instructions, especially cached dynamic SQL statements between applications connected at different nodes in a multiple node database while maintaining cache and application integrity across the nodes.
Structured Query Language (SQL) is the database access language most commonly used to access relational databases (such as the DB2 product sold by IBM Corporation) in an open, heterogeneous environment. Although this disclosure refers to the DB2 relational database product sold by IBM, individuals skilled in the art will recognize that the caching of database access statements is applicable to any relational database management system (RDBMS).
Within this specification including the claims, the following terms will be used:
There are two basic types of SQL statements, static and dynamic. In using static SQL the user embeds SQL requests for data in an application program. An SQL precompiler removes these statements from the application program and replaces them with function calls whose parameters indicate a specific section entry for the package corresponding to the current source file. The removed SQL statement is then sent to the database management system for compilation. Compiling (also known as preparing) a SQL statement is the process by which the database management system SQL compiler chooses and builds an access plan to efficiently resolve the SQL statement. The access plan is saved in its executable format, a section, in the system catalogues.
The parsing of the statement and building of the access plan can be relatively long and complicated. Compilation of static SQL improves run time performance by building the access plan before the application is executed.
Dynamic SQL is SQL issued by an application that is not compiled until the time the application issues the query, and is often used for ad hoc SQL requests. For example, in a database used to track sales of individual products, a dynamic SQL query may be invoked to list the top ten products sold, by sales region. Depending upon the nature of a dynamic SQL request, the time required to parse it and create an access plan to satisfy the user request can be significant. Furthermore, if the dynamic SQL request is repeated later in the application by the same agent or perhaps by a different agent, a new access plan must be created in each instance. Thus, the creation of an identical access plan may often have to be repeated, thereby impacting performance of the application.
In such a scenario, each of the nodes involved in processing the query must have a copy of the xe2x80x9csectionxe2x80x9d in order that the query runs completely. Including all the data from all the nodes. As a basic solution to this requirement, the dynamic SQL statement is compiled at the node where the application is running. The resulting section is then sent or xe2x80x9cshippedxe2x80x9d to the remote nodes. At each of the nodes xe2x80x9cagentsxe2x80x9d on behalf of the application can then execute the query using the shipped section. Similarly, applications that are running on other nodes of the database that issue dynamic SQL, require the SQL to be compiled on the resulting section be shipped to all of this remote nodes that are involved in the transaction.
Given the potentially high cost of compilation and of SQL sections, it is desirable to avoid repeated compilation of the identical SQL request, and rely on previously compiled sections.
In accordance with another aspect of the present invention there is provided a database system comprising:
a) a plurality of nodes
b) a plurality of databases stored on the nodes; and
c) a global dynamic SQL statement cache stored on at least one node; the global dynamic SQL cache being accessible to a plurality of applications in the database system.
In accordance with the present invention there is also provided a method of maintaining cache and application integrity across a relational database system comprising a plurality of nodes and a plurality of databases shared on the nodes, the method comprising the steps of: (a) providing for at least some of the databases, a global cached including information to enable agents to access the databases; (b) origination a request through a coordinating node, the coordinating node sending information on the dynamic SQL request to be executed to remote nodes: (c) having each remote node receive the request and check the global cache on the respective remote node for a current copy of the dynamic SQL entry; and (d) if the remote node does not have the current entry, the remote node requesting the coordination node to send the current version of the dynamic SQL entry and its section (e) having the global dynamic SQL cache be accessible for applications that are running at any node in the database system so that an application is able to re-use a cached copy of a previously inserted dynamic SQL entry and its section regardless of the node at which it was originally compiled.
Various aspects of the invention provide a data processing system, a method, and software for operating it where the data processing system includes a number of interconnected nodes. At least one data partition resides on one of the nodes, and one or more tables reside in a data partition. One of the nodes has a catalogue containing metadata describing tables and other objects and relationships therebetween in the data processing system. There is a global instruction cache at each node having a statement portion storing instruction statements and associated executables; each of the executable is designed for a particular environment; the instruction cache includes a dependency portion which lists objects and links them to the corresponding executable entries that depend on the objects; the instruction cache includes a shipped variation portion, each entry of the shipped variation portion refers to one executable entry and identifies the node from which the statement associated with the executable was originally shipped and the identification of such executable in the node from which it was originally shipped. The cache includes an invalidations in progress portion, each entry of the invalidations in progress portion refers to an object entry in the dependency portion.
In a further aspect of the invention the data processing system a catalogue node has a catalogue containing metadata describing tables and other SQL objects and relationships therebetween in the data processing system; wherein the SQL objects may include tables views of tables, aliases of tables, functions, and user defined types among others; a global SQL instruction cache at each node having a statement portion storing dynamic SQL statements and associated executables; each the executable being designed for a particular environment; the SQL cache includes a dependency portion which lists SQL objects and links them to the corresponding executable entries that depend on the objects; the SQL cache includes a shipped variation portion, each entry of the shipped variation portion refers to one executable entry and identifies the node at which the SQL statement associated with the executable was originally compiled and identification of such executable in the node at which it was compiled; the SQL cache includes an invalidations in progress portion, each entry of the invalidations in progress portion refers to an object entry in the dependency portion.
In yet a further aspect of the invention the data processing system the global SQL instruction cache includes a statement entry which includes:
SQL instruction statement text and a list of associated environment entries;
each the environment entry includes a description of the environment and a list of variations, each the variation includes: an identification number; the executable itself; a list of required privileges; a reference available to the entry in the shipped variation list portion of the cache.
Another aspect of the invention provides a method of executing an SQL request issued by an application from a node (a coordinator node) comprising: searching in a global SQL cache at the coordinator node for an executable that is associated with an SQL statement and environment corresponding to the SQL request; if the executable is not found in the global cache then the database management system compiles the SQL request at the coordinator node then inserts an executable entry into the global cache at the coordinator node; searching at the coordinator node in the global SQL cache for an SQL statement entry, the text of which matches the text of the SQL request; if the entry is not present at the coordinator node, inserting, by the database management system, a new SQL statement entry, the text of which matches the SQL request; if the entry is present then the database management system searches for environment entries associated with the SQL statement entry for an environment entry that matches the environment for which the SQL request was issued; if the entry is not present then the database management system inserts into the cache a new environment entry matching the environment of the SQL request; the database management system searches for a variation entry comprising a valid executable corresponding to the SQL request, which includes the SQL statement and environment entry, and, if a valid executable is not found then the database management system compiles the SQL request, referring to the appropriate environment, into an executable (a set of one or more executable instructions) to carry out the SQL request; inserting into a variation entry the compiled executable, including a list of required privileges, a list of dependent objects, an identification number of the variation entry, and identification of the validity of the entry; and, for each object in the list of dependent objects searching in the dependency portion of the global SQL cache for an object entry with a matching object name and object type, and if it does not exist in the cache, inserting a new entry.
The invention also provides for a data processing system having a plurality of nodes at which processing may be performed, a method of identifying an executable comprising identifying the executable by node identification and entry identification associated with the first node of the data processing system that shipped the executable to any other node in the data processing system.
Preferably the executable is identified by node and entry identification associated with the first node of the data processing system that compiled and shipped the executable to any other node in the data processing system.
Another aspect of the invention provides a method of indexing data and instructions for storage and retrieval for a multi-node data processing system comprising:
storing identification of the data and instructions in a list wherein the data and instructions are identified by node identification and entry identification associated with the first node that shipped the data and instructions to any other node.
Preferably the node list comprises an entry portion and a lookup portion wherein:
the entry portion stores the following:
SQL statements;
executables;
environment parameters;
entry identification for that entry in the list; and,
wherein the lookup portion includes the following:
the entry identification;
the identification of the node that first shipped or compiled the executable;
entry identification of the executable at the node that first shipped or compiled the executable.
In still another aspect of the invention which may be used in a data base system, having a plurality of interconnected nodes, managed by a database management system, each of the nodes having an unique identification, the nodes being capable of storing or processing information, each node having a cache, the cache having a statement portion and a shipped variation portion;
the statement portion of the cache at each node for storing SQL statements, executables associated with the SQL statements, and environments with which the executables are associated, wherein the executables are each identified by an unique entry identification;
the shipped variation portion (list) for storing identification entries for the executables including:
identification (ID number) of the executable which corresponds to the identification (ID number) of the associated entry in the statement portion of the cache;
the node identification (ID number) of the node from which the executable was originally shipped from or compiled; and,
the identification (ID number) of the executable at the node from which the executable was first shipped;
a method of executing a data processing request from a node (the coordinator node) in a manner adapted to avoid redundant shipping of executables comprising:
finding a suitable executable for carrying out the request by:
searching the statement portion of the cache at the coordinating node for an executable that is associated matching the request and environment in which the request was issued; and,
if the matching statement and environment were not found in the statement portion of the cache of the coordinating node, then compiling the request and inserting the request into the cache;
sending a request to all other nodes of the data base management system that are necessary to process the request (subordinate nodes of the coordinating node) wherein the request to all other such nodes includes: the identification of the coordinator node and the entry identification of the executable, and if there is a entry in the shipped variation list associated with the executable on the coordinator node cache then the database management system also ships identification of the node and entry.
In yet another aspect the invention provides for use in a database system having a plurality of nodes, and being managed by a database management system, each node having a storage cache for indexing and storing instructions including statements, executables and environment information, a method of executing a request by an application at a first node wherein the application identifies the executable that is desired to be executed, searches at the first node for the executable, and, if the executable is not found at the node compiling the executable, then, using identification of the node by the node and entry identification of the executable on the node from which it was first shipped or compiled, requesting execution by all other nodes required for executing the executable;
the other nodes searching in their respective caches by the node and entry identification of the executable assigned by the node from which it was initially shipped or compiled; and,
if the executable is found at each the other node executing it at each node at which it is found; and,
if it is not found at one or more of the other nodes requesting that the executable be shipped from the first node to the nodes where the executable was not found; and, then executing the executable at each of the other nodes receiving it.
Another aspect of the invention also provides a method of performing data processing in a multi-node data processing system by sharing dynamic compiled (SQL) executable data processing statements between nodes of the data processing system comprising:
identifying each compiled SQL statement with a (numerical) identifier;
at a node receiving statements (a receiving node) storing a list of statements received at the receiving node listing the originating node and identifier for each of the received statements;
upon receiving a request for processing with a specified statement having the receiving node check its list of statements received for the specified statement by its originating node and identifier;
comparing the identification of the specified statement with the statements in the list of the receiving node, and if a match if found then accessing the statement stored at the receiving node;
if a match is not found, having the receiving node request the specified statement from another node, and when it is received then loading it into its local cache;
having the receiving node update its list of statements;
executing the statement at the receiving node.
In another aspect the invention provides a method for use in a data base management system having a plurality of interconnected nodes, each of the nodes having an unique identification, the nodes being capable of storing or processing information,
one of the nodes comprising a catalogue node having metadata describing tables and other SQL objects and relationships between them in the data processing system;
each node having a cache, the cache having a statement portion and a dependency portion;
the statement portion of the cache at each node for storing SQL statements, executables associated with the SQL statements, and environments with which the executables are associated, wherein the executables are each identified by an unique entry identification;
the dependency portion for storing object entries for the SQL objects including:
identification of the object which corresponds to the object name and object type;
a list of entries referring to executable entries in the statement portion of the cache whose execution relies on the definition and existence of the object;
a method of updating entries in the cache at each node when object definition entries in the catalogue are changed comprising:
updating the catalogue node by removing all invalid entries and broadcasting instructions to other known nodes of system to remove invalid entries from their respective caches, by:
making a first broadcast of instructions to the nodes to secure entries in the dependency portion of each cache by first:
finding an object entry associated with the object that is being changed in the dependency portion of the cache;
if such an object entry in the dependency portion of the cache is not found, inserting a new object entry;
securing the object entry in the dependency portion of caches of the other nodes; marking all the executables currently listed as being associated with the object as invalid;
reporting to the database management system at the catalog node that the object entry in each of the caches have been marked as secured;
examining any executable newly arriving in a cache of a node and determining if it depends on an object that has been secured, and if so, marking it as invalid;
making a second broadcast from the catalog node to all known nodes to:
mark all entries in the caches which are dependent on a secured object or an invalid object as being invalid; and,
removing the secured marking of all secured objects;
removing all invalid entries and objects.
In a further aspect of the immediately above method entries are updated in the cache at each node when a node is added to the database comprising:
when a new node is added to the database system, sending from the catalogue node a list of all secured objects to the new node;
at the new node, for all the objects in the list of the objects secured at the catalog node, creating and securing a new object entry in the dependency portion of the cache of the new node;
at the new, nodes examining any executable newly arriving in the cache of the new node and determining if the executable depends on an object that has been secured, and if so, marking it as invalid.
A further aspect of the invention provides a computer program product comprising computer readable storage for storing statements or instructions for use in execution in a computer in accordance with one or more aspects of the invention described above. | {
"pile_set_name": "USPTO Backgrounds"
} |
The organic electroluminescence device (organic EL device) is a general term for light emitting devices using an organic compound as a light emitting material of a light emitting layer, and for example, devices are known using a polymer light emitting material as a light emitting material of a light emitting layer.
Though there is no specific suggestion, there is proposed a polyamine layer provided between a light emitting layer and an anode as a means for elongating the life of the device (monthly Display, '03, September, p. 10 (2003)).
However, when a layer of a polymer compound composed of the following repeating unit is used as a polyamine layer, device performances such as device life and the like are not necessarily satisfactory.
| {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to the field of stem cell development. More particularly, it concerns the induction of cardiomyocyte differentiation from pluripotent stem cells.
2. Description of Related Art
Cardiomyocytes are thought to be terminally differentiated. Although a small percentage of cardiomyocytes may have proliferative capacity, this is not sufficient to adequately replace injured or dead cardiomyocytes. Death of cardiomyocytes occurs, for example, when a coronary vessel is occluded by a thrombus and the surrounding cardiomyocytes cannot be supplied with necessary energy sources from other coronary vessels. Loss of functional cardiomyocytes may lead to chronic heart failure.
The proliferative capacity of the cardiomyocytes is not sufficient to regenerate the heart following myocardial injury. Conventional pharmacological therapy for patients with different stages of ischemic heart disease improves cardiac function, survival and quality of life. However, ischemic heart disease is still the most life-threatening disease in the United States and Europe; accordingly, alternative therapies will be necessary to improve the clinical outcome for patients with ischemic heart disease further. In recent years, the focus on cell replacement therapy has been intensified, stimulated by the increasing number of potential cell sources for transplantation, such as skeletal myoblasts, adult cardiac stem cells, bone marrow stem cells and embryonic stem cells.
A potential route for restoring “normal” heart function is replacement of injured or dead cardiomyocytes by new functional cardiomyocytes. Pluripotent stem cells, such as human embryonic stem (ES) cells or induced pluripotent stem cells (iPS) cells, are a potential source of cells for cardiomyocyte replacement. Differentiation of pluripotent stem cells into cardiomyocytes can be achieved either spontaneously or upon induction.
However, a number of obstacles have stood in the way of developing a paradigm for obtaining substantially enriched populations of cardiomyocyte lineage cells from pluripotent stem cells. Some ensue from the relative fragility of pluripotent cells of primate origin, the difficulty in culturing them, their exquisite sensitivity and dependence on various factors present in the culture environment, and low efficiency and wide variation of differentiation methods. Thus, there is a need to improve induction of differentiation of pluripotent stem cells to cardiomyocytes, especially for large-scale production. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to footwear and, in particular, to a shoe with fitness benefits. The fitness benefits are imparted by a unique walking action which is induced by the shoe's midsole. This midsole has multiple layers, multiple densities, a longitudinal convexity, and a longitudinal concavity. The induced walking action mimics the effect of walking on a sandy beach or on a giving or uneven surface.
Shoes are designed for many purposes—from protection on the job, to performance during athletic activity on the track or court, to special occasions and everyday lifestyle. Shoes have also been used to promote physical health and activity. Increasingly, shoes have given users fitness benefits. Many shoes have attempted to provide users the benefit of improving the user's fitness by simply walking while wearing such shoes. However, there continues to be a need for such shoes that improve the user's health yet are comfortable and easy to use.
Walking is one of the easiest and most beneficial forms of exercise. When done properly and with the appropriate footwear, it strengthens the heart, improves cardiovascular health, increases one's stamina and improves posture. It also helps to strengthen one's muscles and maintain joint flexibility.
2. Description of Related Art
Prior art shoes have attempted to improve the user's fitness by mimicking walking barefoot. See, for example, U.S. Pat. No. 6,341,432 to Müller. Such shoes can include an abrupt, discrete pivot point provided by a hard inclusion. Consequently, in every step taken during normal walking while wearing such shoes, the user is forced to overcome this abrupt, discrete pivot point. This can result in significant pain and discomfort.
The present invention aims to provide a way of mimicking walking on a sandy beach or on a giving or uneven surface, while not inducing any pain or discomfort from doing so. By mimicking walking on a sandy beach and/or on an uneven surface, the present invention aims to significantly increase the fitness and health benefits of everyday walking by requiring the user to exert additional effort and energy while walking and to use muscles that the user otherwise would not use if wearing ordinary footwear, again all without inducing any pain or discomfort. | {
"pile_set_name": "USPTO Backgrounds"
} |
Bones and bony structures are susceptible to a variety of weaknesses that can affect their ability to provide support and structure. Weaknesses in bony structures may have many causes, including degenerative diseases, tumors, fractures, and dislocations. Advances in medicine and engineering have provided doctors with a plurality of devices and techniques for alleviating or curing these weaknesses.
Typically, weaknesses in the spine are corrected by using devises that fuse one or more vertebrae together. Common devices involve plate systems that align and maintain adjacent cervical vertebrae in a desired position, with a desired spacing.
These devises, commonly referred to as bone fixation plating systems, typically include one or more plates and screws for aligning and holding vertebrae in a fixed position with respect to one another. Initial devices used stainless steel plates and screws. In order to remain fixed in place, the screws were required to pass completely through the vertebrae and into the spinal canal. These systems generally rely on four or more screws. This also causes problems when part of one of the vertebra being screwed into is diseased or fractured.
Thus, there is a need for a plate system that is small in width and provides similar structural stability as the larger plate system. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to transfer grids for metal plates.
When initially formed in a plate mill, metal plates are very hot and must be suitably cooled before further processing. A cooling bed is typically provided over which the plates are slid by the use of chains employing pusher dogs. The bed is constructed to allow plentiful air circulation to the plates for cooling as they traverse the length of the bed.
The cooling bed is typically composed of a plurality of transfer grids with each grid cast as a single piece. Each grid may typically comprise a plurality of parallel longitudinal grid members extending in the direction of travel of the plates and a plurality of transverse cross grid members extending between the longitudinal grid members. The longitudinal grid members project above the cross members so that the support surface for the plates as the plates move over the grid is defined by the longitudinal grid members.
The movement of the metal plates over the grid surfaces generates significant wear on the grid surfaces requiring relatively frequent replacement of the grids at considerable expense. In addition, the undersurfaces of the plates may be marred as they are conveyed along the grid members.
Various attempts have been made to modify the transfer grids to minimize grid wear and to minimize marring of the plates as they are transferred over the grid. For example, it has been proposed to provide inserts which are removably positioned, in retrofit manner, in the pockets defined between the longitudinal and transverse grid members with each insert, when positioned in a pocket in the grid, presenting a roller projecting above the surface of the longitudinal grid members so that the plates move along a plate pass plane defined by the upper surfaces of the rollers, whereby to minimize marring to the undersurfaces of the plates and eliminate wear on the transfer grid.
Whereas these inserts have proven to be helpful in reducing grid wear and minimizing marring of the plates, the available inserts have a complex construction, and hence a rather high cost; employ an adjusting arrangement for the insert roller that makes it difficult to position the roller at the precise desired height and/or to position the circumferential surface of the roller at a level disposition with respect to the grid surface; and require complete removal of the insert from the grid in order to allow replacement of the roller. | {
"pile_set_name": "USPTO Backgrounds"
} |
There has been a mobile terminal device such as a mobile phone which turns on a back light of a display module and then turns off the back light after a certain period of time to reduce power consumption. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to an extruded conduit profile, which has a U-shaped cross section and comprises a base and limbs, said limbs being shaped on the base as one piece. The profile also has a covering part, which can be connected to the free ends of the limbs.
Such conduit profiles are widely known. They serve as installation conduits for the installation of electrical lines or mains, are used when such lines are being installed in walls or ceilings, serve as parapet conduits and have many other applications.
A conduit profile of such type is know from German patent 77 02 117. Here, an installation conduit is described comprising a U-shaped housing for receiving wires, cables, lines, hoses and suchlike having a covering part for covering the housing. In the free end areas of the sidewalls of this installation conduits slots are formed which extend in longitudinal direction and serve for the placing of retaining clips.
With respect to such conduit profiles, it is the endeavour of manufacturers and users to keep the wall thickness of the profiles at the lowest possible level. Due to the required stability during manufacturing and installation, this endeavour is relatively limited.
Therefore, it is suggested in DE 82 31 934 U1 to form the base and/or the sidewalls and/or the covering or the conduit profile at least partially as hollow chamber profile. This suggestion assumes that hollow chamber profiles generally have a high stability and are if low weight so that the desired material saving can be achieved in such a manner. However, it has been ignored that such hollow chamber profiles have two continuous walls with interconnected webs serving as space retainers so that the material saving, if any is achieved after all, is relatively low.
It is the object of the present invention to provide a material saving manufacturing of such conduit profiles and at the same time to retain the required stability. It is suggested according to the invention that at least the base of the U-shaped conduit profile has a reduced wall thickness and that impressions serving the reinforcement in sections are placed inside this wall thickness-reducing base.
The invention draws on the ample knowledge gained, for example, in the manufacturing of corrugated pipes. Here, substantial reductions in the cross section of the pipe walls have been achieved by forming corrugations so that corrugated pipes could be manufactured at substantially less material expenditure at comparative strength relative to compact pipes. At the core of the invention is a type of transversal corrugation for generating transversally extending ribs, at least in the base area of the U-shaped conduit profile. According to the invention, this transversal corrugation can be manufactured by means of stamping, punching, via vacuum link chains or by means of differing thrust during extrusion.
It is essential for its operation that the transversal corrugations are placed in the wall areas having a weakened cross section. Hereby, it can be of advantage that limbs which have a thicker cross section relative to the base extend slightly into the base with the wall thickness in the deflection area to the base and that the impressions extend from the wall thickness of the deflection area. The strength extending from these impressions runs into the thickened sidewall, here preferably into the radius area.
Impressions in the form of a cross or T or such like can be placed into the wall thickness-reduced base in addition to the corrugated shape or instead thereof. Star shapes, circles, polygons etc can be placed into the wall thickness-reduced base. The impressions can be provided in planar shape or reinforced in prism shape at the plane of maximum load, ie the bending moment.
It is particularly advantageous if, in addition to the undulated impressions, circular formations are placed into the base, which contribute to a further increase in stability. Such circular formations can be designed with a raised edge whereby, for example, a screw head of an attachment screw can be sunk into the such formed interior space. Thereby, in addition to the stability increase, a damage of the lines which are to be pulled into the lumen of the conduit profile over a, for example, sharp-edged screw head, is prevented.
The impressions according to the invention can be placed into the base and/or into the limbs and/or the covering part. In addition to reinforcement characteristics, transversal corrugations in the covering, as long as they are placed sheet-like, can serve as raised base on the covering for advertisements such as company names, system names, marks of conformity etc.
The impressions according to the invention can be placed into the corresponding wall thickness-reduced wall areas and spaced at arbitrary distance. The impressions can also be provided as a hybrid, namely once as transversal corrugations crosswise to the longitudinal axis of the conduit profile in the base, in the limbs and/or the covering and additionally in round, cross-, star-, T-shaped and polygonal impressions. | {
"pile_set_name": "USPTO Backgrounds"
} |
A number of prior art systems have been developed to generate various types of textures. Typically, these systems involve modulation of existing functions, such as Perlin noise functions, reaction-diffusion or vector fields. Alternatively, an existing image may be modulated using these or similar functions. However, such approaches tend to be relatively processor intensive, which may be a disadvantage where speed is important.
There is an ongoing interest in generating visually interesting textures in a relatively simple, fast manner, for use with all types of text and graphics manipulation and display. In particular, there is an ongoing need for visually interesting parameterised textures which can be applied to font characters and relatively easily customised for particular applications without the need for large amounts of manual input from a user. | {
"pile_set_name": "USPTO Backgrounds"
} |
A. Field of Invention
This application pertains to a diagnostic ultrasonic scanning probe having a cantilevered or a hinged beam supporting an ultrasonic generator/sensor, as well as an excitation and control circuit for controlling linearly the lateral movement of the beam. Optionally the control circuit is integrated with the controls for the transducer.
B. Description of the Prior Art
Diagnostic ophthalmic ultrasonic probes make use of well-known, safe diagnostic medical imaging techniques in which ultrasound waves are used to create images representative of a patient's eyes. Ultrasonic probes are advantageous in that they are noninvasive diagnostic tools that provide images virtually instantaneously and can be used for the evaluation of various ophthalmic disorders.
Ophthalmic ultrasound probes use pulse-echo system. A series of emitted pulses at pre-determined ultrasound frequency are emitted by the probe that is in contact with a patient's lid or eye. At every acoustic interface, some of the echoes are reflected back to the transducer, indicating a change in tissue density. The echoes returned to the probe are converted back into an electrical signal and processed as ultrasound images. Typically, ophthalmic ultrasound machines may use frequencies in the range of 6 to 80 MHz, compared with 2 to 6 MHz typically used in other fields of diagnostic ultrasound. Each pulse is followed by a brief pause (microseconds) during which echoes of the pulses are received and processed and the resulting images are presented on the display screen.
The A-scan, B-scan and ultrasound biomicroscopy are the most commonly used ophthalmic ultrasound techniques. The A-scan technique results in a one-dimensional display of echo strength over time (time delay). The vertical spikes are generated that correspond to the reflected echo intensity and are typically demonstrated as a function of time. The technique commonly uses a frequency range of about 6 to 12 MHz and is mainly used for documenting axial eye length measurements of the eye: to measure the distance between the anterior cornea and retina. This distance is used to calculate the appropriate power of an intraocular lens implant used at cataract surgery.
The B-scan technique generates a two dimensional image of the echoes along both a horizontal and vertical axis. It is an important tool for the clinical assessment of various ocular and orbital diseases. In situations in which normal examinations are not possible, such as lid problems, corneal opacities dense cataracts, or vitreous opacities, diagnostic B-scan ultrasound can accurately image intraocular structures and give valuable information on the status of the lens, retina, and other areas of anatomy.
Ultrasound biomicroscopy is an ultrasonic technique that uses frequencies from 35 to 80 MHz for the acoustic evaluation of anterior segment of the eye. Higher frequency use results in more detailed imaging of the anterior segment of the eye.
Historically ultrasonic probes have been utilized with a water stand-off and the examiner manipulating a transducer free hand. This technique was found to be unwieldy and time consuming.
Currently, most B-scan diagnostic ultrasonic probes are in a self-contained cylindrical package—with a small amount of water or other fluid stand-off built into the device around the transducer element. The self-contained device may be positioned directly on the eye or lid by the physician and moved about without injuring the eye. Using these devices the probe—typically, a single transducer—is moved mechanically in an arc scan across the eye, and at regular intervals, an ultrasound pulse is directed into the eye and the resulting echoes are received by the same transducer and analyzed.
The present state the art utilizes several motorized mechanical parts to provide this mechanical movement. In this design the transducer is typically driven in a sector or arc scan (although other scan configurations are possible) inside the enclosed water bath. Water or some other fluid is required in these systems since air results in total internal reflection and the ultrasonic beam fails to exit the probe. Moreover, the cabling between the probe and the mechanical device requires a coaxial cable of some design, carrying signals to and from the transducer, as well as leads carrying the drive current to the electric motor and the signal from the position sensor. These cables often fail with continued use due to mechanical fatigue as well as exposure to elevated temperatures. The probe is made compact by having the necessary drive components built into and closely around the rocking transducer assembly.
Mechanical scanning is currently the industry standard in ophthalmic systems (including systems using combined A and B-scan capabilities). Despite the disadvantages associated with moving parts, such as wear and tear, vibration, and resultant heat the level of acoustic noise associated with these scanners was considered tolerable using insulation and software filters.
Co-pending patent application US 20120236358 describes an ultrasonic probe with resonant beam vibrating at its natural mechanical frequency of resonance in a manner similar to a tuning fork to move an ultrasonic transceiver. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates to a method for manufacturing a semiconductor device, especially a method for manufacturing a semiconductor device, as well as a semiconductor substrate, that can reduce the possibility of, for example, crystal defects occurring from an element isolation region.
2. Related Art
In a method for manufacturing a semiconductor device having an element isolation region, especially a high-breakdown-voltage transistor, an element isolation region is formed on a semiconductor substrate first, and then a well is formed by introducing an impurity into an element-forming region, which is the region other than the element isolation region, and performing a long-time heat treatment for uniform diffusion of the impurity within a desired region on the semiconductor substrate, as disclosed in JP-A-2004-260073, which is an example of related art.
In the above method, however, a heat stress is applied due to the heat treatment that is performed in forming a well on a semiconductor substrate on which an element isolation region is formed. Such a heat stress can cause problems of crystal defects, as well as cracks due to, for example, the concentration of such crystal defects. | {
"pile_set_name": "USPTO Backgrounds"
} |
With businesses moving to electronic based work environments, databases continue to grow in size. In turn, analytical queries associated with these databases also grow. Data visualization of analytical queries play a role in analytical software. The growing cardinality of analytical queries can lead to increased processing times for data visualization on client devices. Visualization of large volumes of data can in turn decrease performance of software architectures. | {
"pile_set_name": "USPTO Backgrounds"
} |
A regulated output circuit can be employed when a circuit communicates from a given bus and voltage source and attempts to communicate to a circuit having a different bus and voltage source. For example, a circuit on an “A” bus may utilize voltage levels of 0.9 volts to 5.5 volts. A circuit on bus “B” may operate with a supply in the range of 2.7 volts to 5.5 volts, for example. Since the circuits on bus A and B do not share a common power supply, some form of voltage level translation is necessary in order to communicate information between the respective busses. A regulated output circuit is one component of a translation circuit that enables voltage level translation between busses. A common application for using multiple busses is in a computer where multiple busses need to be isolated from one another in order to preserve parametric conditions on the respective busses (e.g., maintain maximum capacitive load for a given bus).
The typical means for coupling voltage, current, and ultimately information between busses is to regulate a desired voltage level such as a maintaining a voltage near ground (e.g., 0.5 v) on one side of the translation circuit. For example, a translation circuit that receives a voltage input from bus A and outputs voltage and current to bus B will attempt to maintain a low level condition such as 0.5 volts at all times when actively driving bus B. In order to communicate a low level signal (e.g., low logic signal) from bus A to bus B, the translation circuit enables a switch that switches a regulated output circuit to drive bus B to a low voltage level such as 0.5 volts. An error amplifier then receives feedback from the output in order to maintain or regulate the output voltage to the low level on bus B. If a high voltage level (e.g., logic 1) is to be communicated from bus A to bus B, then the translation circuit deactivates the switch operating bus B which is then pulled high by external pull-ups when the bus is not being driven. Thus, communicating from one voltage level to another is basically a sequence of driving the bus to a known low state when communicating one voltage state and releasing the bus to communicate the opposite voltage state. In repeater applications, static offsets are maintained as a valid low-level for every other component on the bus except the repeater. The requirement for bi-directional communication is that the static offset needs to allow for being externally over-driven without also interfering with the B-side bus.
Regulated output stages typically require finite time to recover when the output is forced out of regulation. Feedback from the output dictates that all internal nodes in the regulated output stage are saturated and thus, circuit recovery time is dependent on the slew rate of the amplifier circuit driving the output. This problem can be exacerbated in applications where unidirectional output stages are used to generate a static output low voltage (VOL) offset. The VOL regulation loop saturates when external circuits pull down on the bus, for example. When not actively driving the bus, an external pull-up resistor pulls the bus high as soon as the external pull-down circuit releases the bus. A “glitch” or transient can result on the bus as the VOL regulator slews to regain regulation, however. Some attempts to correct this problem include increasing bias current and reducing capacitive parasitic parameters but practical limitations exist due to desired response times for the regulated output stage. Another technique for reducing transients includes clamping methods applied at the regulated output, however clamping effectiveness is reduced when weaker output pull-down circuits are employed. Also, such clamping methods reduce available headroom for desired noise margins. | {
"pile_set_name": "USPTO Backgrounds"
} |
Maturity of Processor Architecture Research:
The general-purpose processor architecture research field has matured, with attempts to further increase the performance of general-purpose processors presently encountering (i) frequency, (ii) power, (iii) design complexity, and (iv) memory wall barriers. However, the need for increased performance and reduced power continues to exist.
Difficulty of Parallel Programming:
Abandoning the extremely convenient, easy-to-use sequential programming model and programming explicitly for parallel processors constitute one way for increasing performance. Recent multi-core processor architectures [5] that are enabled by increasing VLSI densities indeed encourage this approach. However, programming a parallel multi-core processor system is not a natural and easy task, due to, e.g., race conditions, deadlocks, and non-deterministic bugs that are hard to track. Increased parallelism in general-purpose processors has in fact increased the difficulty of programming and using them [2].
Inefficiencies of the Hypervisor and the Operating System:
Sharing of computing resources among different independent applications and virtual machines has been emphasized at least since the days of early mainframes [1]. This emphasis on resource sharing continues to this day. Recently, Cloud Computing [3] and Virtualization [4] have emerged as preferred methods of offering computing and application services with resource sharing. By breaking the barriers of the traditional in-house IT shop approach, cloud computing offers centralized high performance computing resources, economies of scale, and radically higher degrees of efficiency. For example, a large cloud computing data center, along with a fast and reliable encrypted network, can greatly amplify the performance of an inexpensive client device, while preserving the security properties of an in-house IT shop.
However, cloud computing today relies on operating systems or hypervisors that are designed in software, and that lack scalability. For example, the cost of an interrupt may involve substantial overhead (e.g., ten thousand instructions) in today's operating systems. Moreover, the transition between privilege levels (as in an interrupt or system call) requires a global serialization/pipeline flush in general-purpose processors. The schedulers within operating systems and hypervisors alike are not designed in an algorithmically parallel scalable way, to handle massively parallel systems. At the extreme performance levels that will be needed in the future, such serialization overheads will become important. To alleviate the severe performance slowdown consequences of Amdahl's law, the slowdown effects due to both the OS and the hypervisor must be reduced.
Prevailing Solutions:
Current computer industry focus areas include two prevailing approaches, namely: energy-efficient multi-core processors [5] and hybrid computing architectures [6], which, while not directly addressing the significant problems mentioned above (namely, the difficulty of parallel programming, and the inefficiency of the OS and hypervisor), do promise to increase performance and to reduce power. We will review the hybrid computing architectures, since they are most relevant to application-specific supercomputers, the subject of the present document.
In general-purpose hybrid computing architectures, the acceleration unit consists of graphics processing units (GPUs) with their own specialized Instruction Set Architecture [6]. These acceleration units are capable of accelerating graphics applications, as well as a range of additional high performance computing applications, provided that suitable parts of the applications are re-coded to expose explicit parallelism and to take advantage of the massively parallel architecture of specialized processors.
By contrast, reconfigurable hybrid computing architectures (reconfigurable computers) deploy field programmable gate arrays (FPGAs) as the acceleration unit, and offer more flexibility. Typically, a collection of one or more FPGAs acts as a co-processor to each general-purpose host processor [7] [8]. While arbitrary code in general cannot take advantage of the FPGAs using today's tools, suitable code fragments can again be recoded to expose explicit parallelism and then compiled with a high-level tool to run on the FPGAs.
Even though the commercial systems with FPGAs are very promising in boosting the application performance with less power than traditional servers, they suffer from a few shortcomings: Lack of scalable pre-emptive scheduling: Many of today's reconfigurable computer systems do not implement pre-emptive scheduling of accelerators: they instead allow a hardware accelerator to keep its share of hardware resources as long as it runs. As a consequence, even when an accelerator is idle, e.g., waiting for an input, it occupies hardware resources until it finishes. This potentially leads to the underutilization of the system. Where pre-emptive hardware task scheduling is indeed done [15][16][17], it is done in a non-scalable way, with software involvement. Existing pre-emptive schedulers may also impose restrictions on inter-task communication, for example, task dependences may be in the form of a DAG (Directed Acyclic Graph) [U.S. Pat. No. 6,034,538]. Lack of scalability of hardware-accelerated applications: Today's software and hardware design tools do not virtualize application-specific, custom hardware accelerators at the supercomputer scale. Low programmer productivity: Using a reconfigurable hardware platform is complex at present, because of the general difficulty of parallel programming, mentioned earlier, and the general difficulty of hardware design with today's tools. Missing semi-reconfigurable ASICs: An FPGA is an interpreter of arbitrary circuits specified at the Register Transfer Level, and is therefore very flexible and general, while an ASIC implementation of a given RTL circuit is in fact a compiled version of that circuit, which has performance and power advantages over the corresponding FPGA implementation. To benefit from the lower power and higher performance advantages of an ASIC within a reconfigurable system, a systematic solution to utilize ASICs for application acceleration (beyond the solution of implementing only one function on a given kind of ASIC) is desirable. The existing reconfigurable computer systems do not systematically support application-specific integrated circuits (ASICs) in addition to FPGAs, as a source of hardware acceleration.
Our Approach:
The present document's system does address the two significant problems (difficulty of parallel programming, inefficiency of the OS and hypervisor) mentioned above. It also distinguishes itself from the cited art in at least the following ways: Scalable pre-emptive Scheduling: The present document's system introduces a scalable parallel hardware hypervisor system, where the hypervisor functions related to the allocation, de-allocation, and relocation of hardware supercomputing tasks with unrestricted inter-task communication, are achieved with parallel algorithms implemented in hardware. The resources allocated to a virtual application-specific supercomputer can increase or decrease on demand, at the virtual tile granularity. The parallel implementation of such hypervisor functions is a difficult problem, giving rise to several race conditions, which have been addressed in the present document. Scalability of hardware-accelerated applications: The present document's system virtualizes application-specific, custom hardware accelerators at the supercomputer scale. Programmer productivity: The present document's system establishes a hardware acceleration programming model and automated compilation method, which achieves 100% compatibility between the original single-threaded software application and the virtual supercomputer created from it. This is a model that allows better programmer productivity. Semi-reconfigurable ASICs: The present document's system establishes a systematic method to create semi-reconfigurable ASIC modules, allowing the same ASIC module to realize multiple functions, while retaining the ASIC advantages of lower power and/or higher performance. | {
"pile_set_name": "USPTO Backgrounds"
} |
There are many ways in which structures such as shelving, scaffolding, furniture, clipboards and cabinets are fitted together. Such arrangements include fasteners such as nuts and bolts, wooden dowels, nails and other types of intricate locking mechanisms. Dowels are the most common connectors of furniture. The dowel is typically symmetrical about its axial midpoint and is typically provided with one or more longitudinally extending grooves or some other type of profiling on the outside of the dowel. The dowel is typically inserted into a cylindrical bore drilled into the furniture part in which the dowel is to be connected therein. Adhesives are commonly placed into the central bore prior to insertion of the dowel so that an improved connection between the bore and dowel is made.
The preparation and construction of furniture requires special knowledge and special skills. Many types of furniture are not preassembled and are commonly transported to the location where they are to be assembled. During such transportation, many of the connection components are exposed to adverse types of environments such as low and high humidity which results in the cracking and/or expanding of the dowels. Such expanding and cracking of the dowels results in the weakening of the structure in which the dowel is connecting and/or resulting in the dowel not being able to be properly placed within the pre-drilled bore hole. In addition, special skill is required when inserting a dowel into a bore hole containing a liquid adhesive. In order to achieve an interference fit between the bore and the dowel, the diameter of the dowel is typically slightly greater than the diameter of the bore hole thereby requiring the dowel to be driven or pressed into the bore hole commonly resulting in much of the adhesive being forced out of the bore hole. In order to overcome the problems with using dowels and adhesives, many manufacturers have used screws or nails to attach components such as furniture together or to secure a dowel in position. Although the use of a screw or a nail typically provides an adequate connection, the aesthetic value of the component, such as fine furniture, is severely prejudiced due to the appearance of the visible nail or screw.
As is apparent, the use of a dowel in combination with an adhesive is time consuming and requires great care. Furthermore, soiling of the surfaces and parts commonly occurs with the use of liquid adhesives. Also, the amount of adhesive placed in the bore is important so as not to cause significant waste and cleaning problems when the dowel is inserted into the bore. The prior art includes several solutions to remedying the problem associated with dowels and liquid adhesives.
In U.S. Pat. No. 4,681,477, an enclosed capsule filled with a specific amount of adhesive is placed into the cylindrical bore prior to inserting the dowel into the bore. The pre-measured amount of adhesive is designed to reduce the problems caused when the dowel is inserted into the bore, the adhesive flows out of the bore causing a mess. Furthermore, sealing the adhesive reduces problems associated with spillage of the adhesive onto the furniture. However, the use of a glue capsule does not insure that the glue uniformally coats the inserted dowel to insure that the dowel uniformally adheres to the bore. Furthermore, the use of a glue capsule still requires the assembler to carefully insert the dowel into the bore so that the dowel is properly aligned in the bore to rupture the glue capsule. In addition, the assembler does not have any indication when the dowel has been completely inserted into the bore. Finally, the use of the glue capsule does not allow the assembler to remove the dowel after complete insertion into the bore if any problems result in the initial insertion of the dowel since such removal would cause a mess and the glue in the bore and on the dowel would dry, thereby preventing reinsertion of the dowel into the bore.
In U.S. Pat. No. 5,259,686, a dowel is coated with a water soluble glue prior to inserting the dowel into the bore. Once the dowel is inserted into the bore, liquid is injected about the dowel and into the bore thereby activating the glue and creating a connection between the dowel and the cylindrical bore. The coating of the dowel with the water soluble glue assists in uniformly gluing the dowel to the cylindrical bore. The water soluble glue also reduces the problems associated with excess glue flowing out of the bore as the dowel is inserted. However, the use of such a dowel does not indicate to the assembler as to whether the dowel has been properly and completely inserted into the cylindrical bore. Such improper alignment of the dowel would require the assembler to drill out the rigidly connected dowel or have connected pieces improperly aligned. The dowel design also does not allow for intermediate assembly to ensure proper setup prior to final assembly. These problems become more severe when fine furniture is assembled which has very small tolerances and requires a precision connection. The dowel is also a typical interference fitting dowel. The tight fit of the dowel in the bore requires any water applied to the dowel and bore to slowly wick into the bore to re-wet the glue. However, improper re-wetting can occur if not enough water is applied and/or if the dowel is too tightly fitted in the bore thereby interfering with the wicking effect.
As a result, there has been a demand for a connector which forms a clean and secure connection, allows an assembler to assemble and disassemble parts as needed to fully assemble the components and to form a rigid and strong connection when the components are in their final assembled form. | {
"pile_set_name": "USPTO Backgrounds"
} |
The modern communications era has brought about a tremendous expansion of wireline and wireless networks. Wireless and mobile networking technologies have addressed related consumer demands, while providing more flexibility and immediacy of information transfer. Concurrent with the expansion of networking technologies, an expansion in computing power has resulted in development of affordable computing devices capable of taking advantage of services made possible by modern networking technologies. This expansion in computing power has led to a reduction in the size of computing devices and given rise to a new generation of mobile devices that are capable of performing functionality that only a few years ago required processing power that could be provided only by the most advanced desktop computers. Consequently, mobile computing devices having a small form factor have become ubiquitous and are used to access network applications and services by consumers of all socioeconomic backgrounds. | {
"pile_set_name": "USPTO Backgrounds"
} |
Within the financial industry, document processing is an important part of the daily management of a business. Document processing systems include sorters for physically handling and retrieving data from checks and other items and data processors for analyzing and storing the retrieved data. The sorters and data processors intercommunicate data and instructions to individually read and process each check.
Conventional document sorters include microfilm and/or digital cameras for recording images of the documents being sorted. For digital images recorded by a digital camera, conventional sorters typically store these images within the sorter. Thus, a limited amount of memory is available, resulting in a limit on the number of images which may be stored. In addition, future use of the stored images generally requires that the images be retrieved from the memory of the sorter. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention is directed to the use of navigation systems. In particular, the present invention enables better timing and routing information to be provided related to points of interest along a route.
2. Description of the Related Art
Navigation systems are popularly used to guide travelers to destinations. Such systems are available built into vehicles or free-standing, to be moved from vehicle to vehicle; for use by drivers and/or pedestrians; as purpose-built devices or as applications on general-purpose devices such as personal digital assistants or mobile telephones; and as systems that are entirely self-contained or as systems that utilize a remote server to perform some or all of their calculations. We refer generally to these systems as “navigation systems.”
Since a common use of navigation systems is to guide the traveler to a desired destination, an important function of such systems is the selection of the destination. In some cases, the driver selects the destination by entering the address. In others, the driver selects the destination from a personal list of stored destinations, typically including home and work. In addition, the driver often wants to select a destination from a directory of “points of interest”.
Points of interest (“POIs”) include many kinds of destinations that drivers may want to find, either when running errands near home or when traveling away from home, such as hotels, restaurants, gas stations, stores of various kinds, roadside rest areas, and emergency services such as hospitals or police stations. The driver may want to search for any POI in a given category (e.g., any restaurant), or for a POI with a given name in a given category (e.g., a restaurant whose name contains “Taqueria”), or for a POI with a given name in any category (e.g., a POI whose name contains “Taqueria”, without knowing whether the category should be “restaurant” or “fast food”). The driver may want to search for POIs radially around the current location, without regard to any previous or current destination. Alternatively, the driver may want to search for POIs near an already-computed route, for example, finding a gas station near the currently planned route to a destination. All of these kinds of search are commonly supported in modern navigation systems. | {
"pile_set_name": "USPTO Backgrounds"
} |
Inductively-coupled plasma (ICP) sources have advantages over other types of plasma sources when used with a focusing column to form a focused beam of charged particles, i.e., ions or electrons. The inductively-coupled plasma source is capable of providing charged particles within a narrow energy range, which allows the particles to be focused to a small spot. ICP sources, such as the one described in U.S. Pat. No. 7,241,361, which is assigned to the assignee of the present invention, include a radio frequency (RF) antenna typically wrapped around a ceramic plasma chamber. The RF antenna provides energy to maintain the gas in an ionized state within the chamber.
The energy of ions used for ion beam processes is typically between 5 keV and 50 keV, and most typically about 30 keV. Electron energy varies between about 500 eV to 5 keV for a scanning electron microscope system to several hundred thousand electron volts for a transmission electron microscope system. The sample in a charged particle system is typically maintained at ground potential, with the source maintained at a large electrical potential, either positive or negative, depending on the particles used to form the beam. Thus, the ion beam source is typically maintained at between 5 kV and 50 kV and the electron source is typically maintained at between 500 V and 5 kV. “High voltage” as used herein means positive or negative voltage greater than about 500 V above or below ground potential. For the safety of operating personnel, it is necessary to electrically isolate the high voltage components. The electrical isolation of the high voltage plasma creates several design problems that are difficult to solve in light of other goals for a plasma source design.
One design difficulty occurs because gas must be brought into the high voltage plasma chamber to replenish the gas as ions leave the plasma. The gas is typically stored at ground potential and well above atmospheric pressure. Gas pressure in a plasma chamber typically varies between about 10−3 mbar and about 1 mbar. The electrical potential of the gas must be brought to that of the high voltage plasma and the pressure of the gas must be decreased as the gas moves from the gas source into the plasma chamber. The gas must be brought into the chamber in a way that prevents a gas phase discharge, also known as arcing, which would damage the system.
Another design challenge is to place the radio frequency coils that provide power to the plasma as close as possible to the plasma to efficiently transfer power. Maintaining the coils at the same high potential as the plasma, however, would typically require maintaining the power supply for the coil at the high plasma potential, which would excessively complicate the power supply design and greatly increase the cost. Inductively-coupled plasma ion sources may use a split Faraday shield to reduce capacitive coupling between the coil and the plasma. The split Faraday shield must be located between the plasma and the coils and is typically well grounded. When the grounded Faraday shield is located close to the dielectric plasma container, the large electric field caused by the rapid change in potential would likely cause a gas-phase discharge if any air or other low dielectric constant gas is trapped between the Faraday shield and the dielectric plasma chamber, which discharge could damage the source.
Also, the energy applied to the plasma chamber generates heat. While a compact plasma source is desirable for beam formation, the more compact and powerful the plasma source, the hotter the source would become and therefore the greater the need to efficiently dissipate the heat. The high voltage can also make cooling difficult, which can limit the density of the plasma used. These conflicting requirements make the design of an ICP source very challenging. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field of the Invention
The present invention relates to a hybrid intercooler system and a control method thereof, and more particularly, to a hybrid intercooler system that stabilizes a temperature of an intake air passing through an inlet of an intercooler using a water cooler, and significantly increases cooling efficiency of the intercooler using an air cooler, and a control method thereof.
Description of Related Art
Generally, a turbocharger is a supercharging structure that compresses intake air supplied to an engine with exhaust power of an exhaust gas to supply the compressed intake air to a cylinder, thereby increasing intake charging efficiency of the engine and increasing mean effective pressure to increase an output of the engine. The turbocharger has a structure in which a compressor and a turbine generally are disposed in the same axial line, the turbine is rotated by the exhaust power of the exhaust gas output through an exhaust pipe to rotate the compressor disposed in the same axial line as the turbine, to thus compress an air introduced through an intake manifold to be supplied to the cylinder.
Meanwhile, a temperature of the air compressed by the turbocharger described above is increased, therefore when the compressed air is supplied to a combustion chamber, an increase rate of air density is decreased thus causing a deterioration of a charging efficiency or knocking may easily be caused. An intercooler has been provided to decrease the temperature of the supercharged air. In particular, FIG. 1 is a view for describing an intercooler in accordance with the related art. Referring to FIG. 1, a density of an intake air cooled while passing through the intercooler is maintained to be high and a temperature thereof is decreased, thereby improving combustion power.
Generally, the intercooler is divided into an air-cooling type intercooler and a water-cooling type intercooler based on a cooling method. The air-cooling type intercooler has a structure in which the supercharged air passes through a plurality of tubes and is cooled by a cold air passing through a cooling fin integrally formed with the tubes. The water-cooling type intercool has a structure in which the air is cooled by a cooling channel contacting the tubes. In general, the air-cooling type intercooler has excellent cooling efficiency, but has a problem in that the cooling efficiency may be unstable due to a change in a temperature of the outside air, or the like. Further, the water-cooling type intercooler may maintain stable efficiency, but has a problem in that the cooling efficiency thereof is not as good as that of the air-cooling type intercooler. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to blowing agent concentrates for forming porous, molded thermoplastic items, and, more particularly to blowing agent concentrates that are compatible with polycarbonate homopolymers, but which can be extruded without causing thermal decomposition of the blowing agent.
Porous, thermoplastic molded articles are useful for various applicatioins including computer housings and outdoor telecommunication devices. Methods for making such articles typically employ a blowing agent, which is conventionally extruded together with a polymer to make polymer pellets comprising the blowing agent. These pellets are then subjected to heat and pressure in a molding process used to form useful articles. Alternatively, the pellets comprising the blowing agent (i.e., the blowing agent concentrate) may be combined with pellets of a second polymer before introducing the mixture into a molding machine. The heat and pressure employed in the molding process must be sufficient to cause the blowing agent to decompose into gaseous chemicals which do not harm the resin. These gaseous chemicals are trapped within voids present in the molded article upon cooling.
It has heretofore been difficult to employ polycarbonate homopolymer as the principle ingredient in said porous, thermoplastic molded articles because polycarbonate must be extruded at a high temperature due to its relatively high softening point. Specifically, the extrusion temperature necessary for polycarbonate is often sufficiently high to cause thermal degradation of the blowing agent prior to molding.
For the foregoing reasons, there is a need for a combination of a thermoplastic polymer and a blowing agent which can be extruded together to form a blowing agent concentrate that is compatible with polycarbonate homnopolyimer, without causing degradation of the blowincg agent. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a new and distinct cultivar of Kalanchoe plant, botanically known as Kalanchoe hybrida, and hereinafter referred to by the cultivar name African Orange.
The new Kalanchoe is a product of a planned breeding program conducted by the Inventor in Hinnerup, Denmark. The objective of the breeding program was to create new Kalanchoe cultivars with large flowers, interesting leaf shape, and good postproduction longevity.
The new Kalanchoe originated from a cross made by the Inventor of an unnamed selection of Kalanchoe laciniata as the male, or pollen, parent with the Kalanchoe blossfeldiana cultivar Anita (not patented) as the female or seed parent. The cultivar African Orange was discovered and selected by the Inventor as a flowering plant within the progeny of the stated cross in a controlled environment in Hinnerup, Denmark.
Asexual reproduction of the new Kalanchoe by terminal cuttings taken at Hinnerup, Denmark, has shown that the unique features of this new Kalanchoe are stable and reproduced true to type in successive generations. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to encapsulant compositions, and in particular relates to encapsulant compositions for fabricating encapsulant materials of high light-transmittance and methods for forming encapsulant materials capable of packaging solid state light-emitting elements, thereby improving light transmittance thereof.
2. Description of the Related Art
Optical-electronic devices such as organic light emitting diodes (OLED), light emitting diodes (LED) and solar cells have been developed due to developments in the optical-electronic industry. Optical-electronic elements in the optical-electronic devices, however, are easily affected by moisture and oxygen in the ambient and thus decrease operating lifespan thereof. Therefore, the optical-electronic devices are usually packaged by suitable materials to block the optical-electronic elements therein from the moisture and oxygen in the ambient, thereby increasing operating lifespan thereof.
Conventional encapsulant materials are synthesized by thermal processes. A resin monomer is first synthesized to form a resin, and fillers and hardeners are then added and mixed therewith to obtain an encapsulant material. The above thermal processes are time-consuming, normally taking couple of hours or up to ten hours or more for completing resin synthesis. In addition, since the above thermal processes incorporate solvents, reaction conditions and process safety issues are a concern. Therefore, fabrication time and costs for fabricating encapsulant materials by the thermal processes are not easily reduced.
Thus, a novel method for fabricating encapsulant materials and encapsulant compositions for forming thereof are needed to fabricate encapsulant materials in a faster and safer method, decrease fabrication time and costs, and improve safety issues during fabrication. | {
"pile_set_name": "USPTO Backgrounds"
} |
As mobile computing devices like smartphones and tablet computers become increasingly ubiquitous, consumers are demanding greater performance and a wider range of functionality from these devices. As a result, the cellular data and wireless networks to which mobile devices are often connected have seen a corresponding increase in demand for the number of simultaneous connections and the volume of data traffic that should be handled. These growing demands have led to the development of technologies intended to improve data transmission efficiency using the hypertext transfer protocol (HTTP) which serves as the foundation for a substantial portion of server-client communication across the World Wide Web. One example of such a technology is dynamic adaptive streaming over HTTP (DASH). DASH is an adaptive bitrate streaming technique that enables high quality streaming of media content from an HTTP server. Using DASH, content that is to be delivered to a networked device can be downloaded form a server at a variety of different bitrates. For each segment of content that a client requests from the server, the client automatically requests that the segment be downloaded at the highest bitrate possible, based on the available network bandwidth, without causing the media stream to stall or re-buffer. Thus DASH can adapt to changing network conditions while still maintaining a relatively high quality playback experience for the client. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a system for leveling a load of a power system and realizing stabilization of a power system.
In the power system, when all-electric homes further increase by a conventional pace, a power distribution installation (a distribution substation transformer or a pole transformer) needs to be replaced by a large-sized type through an increase in a load. However, there arises a problem that since cost for that purpose is a large burden for an electric power supplier, equipment cost is suppressed.
As one of effective technologies for suppressing a load peak as usual, a demand side management technology is disclosed in JP-A-2007-334523. According to the above technology, in the power system, in the case where there is present a time zone at which a load concentration is anticipated in a future such as the next day, reduction in the amount of the energy use is requested from an electric power supplier to customers. To the customer which moves a time zone for the energy use to the other time zones according to the request, an incentive such as a reception of power rate discount is given in exchange for the above.
The technology is characterized by that a request content of the reduction in the energy use amount to be requested for customers is information in each device and each time zone. Specifically, the request content is that “when the operation time of tomorrow for a dishwasher is changed into 10 to 11 o'clock, the unit price of power is changed to * yen at cut-rate prices”. When the request content is brought into shape as described above, the technology exerts an effect that a customer is easy to respond to a request and as a result a load concentration state of the power system can be peak-shifted with a high expected value. | {
"pile_set_name": "USPTO Backgrounds"
} |
Cooling can be achieved by active cooling or passive cooling. Active cooling involves the consumption of energy to cool an object (e.g., paying for external energy), whereas passive cooling requires no energy from an external source to cool an object (e.g., natural, no-cost energy transfer). Radiative cooling is the process by which an object loses heat by thermal radiation (e.g., electromagnetic radiation generated by thermal motion of charged particles in matter). Passive radiative cooling refers to losing heat by thermal radiation to an external thermal sink, without the consumption of energy. A subset of passive cooling systems operate even when the objects to be cooled are exposed to sunlight. Such daylight passive radiative cooling materials include for example multilayer inorganic films, coating formulations including glass microspheres, and multilayer polymer films with a silver reflector. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to releasable fishing line clips and more particularly concerns an improved snag-free outrigger or downrigger clip of a compact arrangement, having increased efficiency, decreased line friction and improved latching.
In various types of trolling, the fishing line is held at a position to one side of, or below, a cruising boat by means of an outrigger or downrigger. The line is releasably held at the outwardly or downwardly displaced position by being passed through a clip secured to a support, such as an outrigger pole or a weighted downwardly extending line. The clip is arranged so that when a fish strikes the bait or lure, the line tension increases sufficiently to free the line from the clip.
Because the clip is displaced from the cruising boat, the fishing line passing through the clip makes a sharp bend, generally being led over a releasable member, such as a wire or bail, that is pivoted to the clip and pulled outwardly by a sudden tension increase so as to allow the line to run freely out on the clip. Many releasable clips presently available create excessive friction between the fishing line and the wire or bail over which it runs so that the line frequently is seriously damaged or frayed.
An arrangement that attempts to decrease this friction is described in the U.S. Pat. No. 3,905,148, to Naone et al which shows a circular sheave with fixed axial protuberances. These protuberances are frictionally received and clamped between a pair of legs that are adjusted to maintain the sheave in position. The clamping force needed to hold the sheave in position exerts a rotation restraining frictional force on the sheave which thus may experience difficulties in turning and the concomitant loss of a friction-free characteristic. Further, with the arrangement of Naone et al, the increased tension on a line to release the line from the clip will pull the sheave completely free of its supporting legs as the line is released. Thus, the sheave is lost each time there is a strike, and a new sheave must be employed for reuse of the clip. Obviously, economic considerations will prevent this disposable and expendable sheave from being manufactured with optimum characteristics of efficiency, durability, and frictionless rotation.
The clip of our prior application, identified above, includes an all-plastic latch member which overlies both the body and the pivoted arm and may be subject to wear and inadvertent release or displacement. Tension of the trolling line varies as the lure skips in and out of the water, so that under some circumstances a very small diameter or compressible line, such as a Dacron line, may slip over the end of the roller of the clip of our prior application and become jammed between the end surface of the roller and the roller mounting arm. The clip described in the present application minimizes or avoids such problems and provides an improved, more efficient, and compact design having significant advantages over the invention of our earlier application. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The disclosure relates to a heat exchange circulation system and, more specifically, a heat exchange circulation system utilizing mixture of gas and liquid as its heat transfer medium.
2. Background
Traditional heat exchange circulation systems often use refrigerants, which dissolve the Earth's ozone layer, for heat exchange. Whenever such refrigerant leaks, it can easily cause greenhouse effect and damage to the Earth's ozone layer. Although some vendors use coolant posing less environment impact instead, the heat transfer efficiency of these coolant usually are low.
As a result, inventing designs that use heat transfer mediums without causing environmental problems and are with high heat transfer efficiency remains a major challenge for industrial manufacturers. | {
"pile_set_name": "USPTO Backgrounds"
} |
Many botanical substances contain chemicals that have been found to be useful for the therapeutic treatment of various medical conditions. Since these chemicals are often present in very small amounts, techniques have been developed to extract these substances and to concentrate the therapeutically active agents. Various methods are available for extraction and purification of such substances, including the use of organic solvents, microwave systems, and supercritical CO2 extraction. Organic solvent-based extractions utilize added solvents that are evaporated to form a concentrated extract, which results in a damp, pasty mass that is typically further spray-dried onto a carrier for delivery. Alternatively, supercritical CO2 extraction is another method of collecting such extracts. This extraction method yields a thick, high viscosity resin, oil, or other fluid-like material that can have a honey-like consistency.
One pharmaceutically useful botanical substance is the extract of hops (Humulus lupulus L.). Hops cone flowers contain a variety of active agents, including alpha acids, iso-alpha acids, and beta acids, as well as a number of flavonoids and essential oils. Humulone, one of the alpha acids found in hops, has been demonstrated to suppress cyclooxygenase-2 activity, inhibit angiogenesis, and decrease bone loss. Some other biologically relevant properties of hops constituents include anti-inflammatory, antibacterial, antiviral, antifungal, estrogenic, anti-oxidant, anti-allergenic, anti-carcinogenic, and anti-proliferative properties.
As with other botanical substances, dried hops flowers contain very small amounts of alpha acids. Supercritical CO2 extraction and other solvent-based extractions of dried hops cones produce a thick, high-viscosity resin that can contain a high percentage of active hops constituents. While extraction is an effective means of providing alpha and beta acids in a highly concentrated form, the resulting extracts have very low solubility in water. This property can make digesting such extracts difficult, resulting in delayed absorption of the acids and delayed onset of certain therapeutic effects. It would therefore be useful to provide the primary constituents of hops extracts in formulations that are soluble in water. In addition, methods of making such formulations from hops extract resin would be desirable. | {
"pile_set_name": "USPTO Backgrounds"
} |
A channel may be defined in terms of effects imparted to a signal propagated over the channel, such as inter-symbol interference (ISI), multi-path, Doppler effect, and/or noise.
An adaptive equalizer and/or channel estimator may adapt filter coefficients or weights until an optimum set of coefficients is determined for a channel. A speed or rate of convergence toward the optimum set may depend on increments by which the coefficients are adjusted, or step size. Adaptive equalization and/or channel estimation may be performed with a constant step size (CSS) algorithm or a variable step size (VSS) algorithm.
A receiver may be suitable for some channel conditions may not be as suitable for other channel conditions. For example, an adaptive CSS blind equalizer may be suitable for a relatively static channel (i.e., little or no Doppler effect), which may found in a suburban or rural setting, but may not converge well for a dynamic channel, such as in an urban setting. An adaptive VSS blind equalizer may converge for static and dynamic channels, but may incur greater losses with respect to static channels relative to an adaptive CSS blind equalizer
A receiver may be implemented with additional to operate under a variety of channel conditions, but may incur penalties in terms of added complexity, cost, area consumption, and/or power consumption.
In the drawings, the leftmost digit(s) of a reference number identifies the drawing in which the reference number first appears. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the past, many procedures were devised to allow one to install the maximum complement of balls into a ball bearing assembly. One method was to relieve or cut away one side wall of one or both race rings. This was permissible because the other side of the race ring takes substantially all the load, which has both radial and axial components. A local cut-out in the race allows the bearing to remain substantially intact during shipment, but the rotational balance of the bearing is affected. A circumferential relief in one race to allow the race to maintain its rotational balance cannot keep the bearing balls or races intact during shipment and installation.
In other kinds of ball bearing assemblies, the relieved side of the raceway is not relieved all the way so as to be tangent to the torus surface forming the roll race surface. In these bearings, special heating and cooling techniques must be employed to permit insertion of the desired ball complements if the assembly is to be unit handled.
Another method is disclosed in U.S. Pat. No. 3,552,812 wherein a liner of resilient material is installed in the circumferential relieved side wall of the race ring. The resilient material deflects upon assembly of the races and balls. This forms a unit handling relationship for the ball bearing assembly. This method is obviously not suited in high temperature operations because the high temperature could cause the resilient material to flow. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Art
The present invention relates to an apparatus adapted for observing an image composed of secondary electrons generated in a recessed portion when the charged particle beam is focused on a specimen having recessed portions, such as through holes formed in the processes carried out in an LSI production line, and a method for observing a surface by a charged particle beam.
2. Background of the Prior Art
Recently, there has arisen the problem of disconnection in wiring due to the residue of a photoresist on the bottom of a specimen having through holes, capacitive grooves, recesses and so on (all of which are referred to simply as "through holes" hereinafter in this specification) so that there has been a strong demand for an apparatus capable of observing the bottoms of through holes by a charged particle beam in the LSI production process.
FIG. 1 shows a column of an apparatus for observing a surface by utilizing a charged particle observation reported by Y. Furuya, T. Ohtaka, S. Yamada, H. Mori, M. Yamada, T. Watanabe and K. Ishikawa in "Model S-6000 Field Emission CD Measurement SEM", the 93rd study reference disclosed at the 132nd committee held on Japan Society for the Promotion of Science (November 8-9, 1985), p. 1.
Electrons 1 (to be referred to as "the primary electrons" hereinafter in this specification) emitted from a cathode 2 are accelerated by a first anode 3 and a second anode 4 and are focused on the upper surface of a specimen 8 through a condenser lens 5 and an objective lens 6. The focusing point on the surface of the specimen 8 at which the primary electrons 1 are focused is controlled by a deflection coil 7. Secondary electrons 9 produced in response to the impingement of the primary electrons 1 on the surface of the specimen 8 pass through the objective lens 6 and are detected by a secondary electron detector 10. The secondary electron image over the surface of the specimen 8 can be observed with the secondary electron detector 10 by detecting the secondary electrons 9 while the primary electrons 1 are caused to scan the surface of the specimen by using the deflection coil 7.
However, in order to observe the through holes with the above-mentioned conventional apparatus utilizing charged particle beam observation, almost all the secondary electrons emitted from the bottoms of through holes will not come out therefrom because the secondary electrons impinge the side walls of through holes. For instance, the trajectory of the secondary electrons emitted from a cylindrical through a hole 1 .mu.m in depth and 0.5 .mu.m in diameter is shown in FIG. 2. An insulating layer 12 is formed over the surface of a substrate 11 and the specimen 8 shown in FIG. 1 is composed of the substrate 11 and the insulating layer 12. The insulating layer 12 is formed with a through hole 0.5 .mu.m in diameter (D) and 1 .mu.m in depth (T). Corresponding to the following reference numerals: 13 represents the central axis of the through hole; 14 represents the trajectory of the secondary electron emitted at an angle of 5.degree. with respect to the central axis 13 from the center of the through hole; 15 represents the trajectory of the secondary electron emitted at an angle of 10.degree. with respect to the central axis 13 from the center of the through hole; and 16 represents the trajectory of the secondary electron emitted from the center of the through hole at an angle between 15.degree. and 85.degree. with respect to the central axis 13. The energy of the secondary electrons 14-16 is 5 eV. In the through hole, there exists magnetic flux of 1.times.10.sup.4 AT/m corresponding to the leakage flux of the objective lens 6 in parallel with the axis 13. It is seen that the secondary electrons emitted at angles in excess of about more than 15.degree. with respect to the axis 13 impinge on the side wall of the through hole and cannot come out therefrom. As described above, in the case of the conventional apparatus utilizing charged particle beam, almost all the secondary electrons cannot reach the secondary electron detector so that there is the problem that the secondary electron image at the bottom of the through hole cannot be observed.
The same inventors proposed to observe the secondary electrons by applying a strong magnetic field perpendicular to the bottom of the through hole and causing the secondary electrons to come out of the through hole by winding the secondary electrons around lines of the magnetic force as disclosed in "Low-energy-electron ray tracing and its application" in the 97th study reference (November 14-15, 1986) of the 132nd committee held on Japan Society for the Promotion of Science, pp. 118-123. In order to observe the secondary electron image at the bottom of the through hole formed during the LSI production process, it is estimated that the magnetic field of about higher than 10.sup.6 AT/m must be applied perpendicularly to the surface of the specimen.
In the case of the apparatus as shown in FIG. 1, the magnetic field applied perpendicularly to the surface of the specimen 8 is of the order of about 1.times.10.sup.4 AT/m. In order to observe the bottom of the through hole by the above-mentioned method for applying a strong magnetic field to draw the secondary electrons, the magnetic field applied to the specimen 8 must be increased by about 100 times so that the excitation current of the objective lens 7 must be increased also of the order of about 100 times.
However, in the above-mentioned surface observation apparatus utilizing a charged particle beam, when the excitation current for the objective lens 6 is increased, the focusing point of the primary electrons which has been located on the surface of the specimen 8 is moved upwardly so that the secondary electron image of the specimen becomes out of focus as shown in FIG. 3. In FIG. 3, corresponding to the following reference numerals 1 represents the trajectory of the primary electrons prior to the increase of the excitation current for the objective lens 6; 17 represents a point at which the primary electrons 1 converge; 18 represents a trajectory of the primary electrons after the excitation current for the objective lens 6 is increased; and 19 represents the point of convergence or focusing point of the primary electrons when the excitation current is increased. Before the excitation current for the objective lens 6 is increased, the focusing point 17 is at the upper surface of the specimen 8, but when the excitation current for the objective lens 6 is increased, the focusing point 19 of the primary electrons shifts upwardly of the specimen 8. As a result, the diameter of the primary electron beam impinged on the surface of the specimen 8 is increased so that there is the problem that the secondary electron image to be observed becomes out of focus. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a process for locating the position of a radionuclide emitting positrons during its disintegration and whereof the child core emits at least one photon by de-excitation.
A field of application is locating radioactive markers for example for therapeutic or other purposes, such as for example location of markers in a geological medium (underground, rocks) or on an in-depth sample in a geological medium (drillcores), for analysing the borrowed preferential trajectory in the flow of the radio element, such as for example for determining the flow sites of rainwater or waste water. Document [1] indicates that such a process can be executed by detecting by a positron emission tomography camera (PET in English) a response line of the radionuclide. According to document [1], the position of the radionuclide is situated at the intersection between the response line and a geometric cone determined from a Compton telescope, the cone having as apex the interaction position of Compton type detected in a detection medium of Compton interactions of the telescope from the photon emitted by the radionuclide, and for semi-opening the angle between the direction of the incident photon of the interaction and the axis of revolution of the cone formed by the direction joining this interaction and the position of another interaction detected by the telescope. Document [1] specifies that measuring the three coordinates and the energy of the two first interactions of the incident photon should be used, but omits describing how to identify these two first interactions via Compton telescope.
The aim of the invention is to provide a process for locating the radionuclide contributing means for resolving this problem. An object of the invention is a process for locating the position of a radionuclide emitting positrons and whereof the child core emits at least one photon by de-excitation, in which a response line of the radionuclide is detected by a positron emission tomography camera, the position of the radionuclide being situated at the intersection between the response line and a determined geometric cone, the cone having as apex the interaction position of Compton type from the photon emitted by the radionuclide, and as semi-opening the angle between the direction of the incident photon of the interaction and the axis of revolution of the cone formed by the direction joining this interaction and the position of another interaction, characterised in that a Compton telescope is used for detecting a plurality, greater than or equal to two, of interactions of Compton type caused in cascade in a detection medium of the Compton telescope from the photon emitted by the radionuclide, the position of each interaction of said plurality is measured by Compton telescope, for each of the multiplicity of arrangements ordered per pair of first and second interactions of Compton type among the plurality of interactions detected, the angle between the direction of the incident photon of the first interaction and the geometric axis joining the position of the first interaction and the position of the second interaction is determined by Compton telescope and the geometric surface of the cone having as apex the position of the first interaction and as semi-opening said angle determined around said geometric axis is reconstructed, said geometric axis forming the axis of revolution of the cone and being oriented in the direction going from the second interaction to the first interaction, those cones arc eliminated whereof the geometric surface has no intersection with the response line, at least one cone whereof the geometric surface has an intersection with the response line is selected, and the position of the radionuclide is selected from said reconstructed intersection of the response line with the geometric surface of the selected cone.
In accordance with embodiments of the invention: said angle mn for each arrangement per pair is determined by Compton telescope according to the formula:cos θmm=1+mec2(1/E0m−1/(E0m−E1m))where me is the mass of the electron, c represents the speed of light in vacuum, E0m is the measured energy of the incident photon of the first interaction of the pair, E1m is the energy transferred to an electron during the first interaction and measured. it is determined whether there is only a single selected cone whereof the surface has a point of intersection with the response line, and, in the affirmative, the position of the radionuclide is calculated as being the position of this point of intersection of this single selected cone whereof the surface has a point of intersection with the response line. it is determined whether there are several selected cones whereof the surface has a point of intersection with the response line, and, in the affirmative, it is determined which of these selected cones whereof the surface has a point of intersection with the response line is the most probable, the position of the radionuclide is calculated as being the position of the point of intersection of the selected cone whereof the surface has a point of intersection with the response line and which is the most probable.
Other objects of the invention are the following: Application of the process such as described hereinabove to location imagery of the radionuclide. Application of the process such as described hereinabove to locating at least one radioactive marker comprising said radionuclide. This last application can serve to locate at least one radioactive marker, comprising the radionuclide, for locating a radiomarked substance by the marker in a geological medium. In this last application the radiomarked substance can be water. Application of the process such as described hereinabove to locating at least one radioactive marker, comprising the radionuclide, to mark a chemical substance in a human or animal body. Application of the process such as described hereinabove to locating at least one radioactive marker, comprising the radionuclide, to mark a chemical substance in a human or animal body, having been introduced to said body. Application of the process such as described hereinabove to detection of leaks from a container containing at least the radionuclide. Application of the process such as described hereinabove to detection of an object containing at least the radionuclide.
Another object of the invention is a device for carrying out the process such as described hereinabove, comprising a positron emission tomography camera for detecting a response line of the radionuclide, a Compton telescope comprising: means for detecting a plurality, greater than or equal to two, of interactions of Compton type caused in cascade in a detection medium of the Compton telescope from the photon emitted by the radionuclide, means for measuring the position of each interaction of said plurality in the detection medium, the device comprising, in addition to the camera and the telescope: means for determining, for each of the multiplicity of arrangements ordered per pair of first and second interactions of Compton type among the plurality of interactions detected, the angle between the direction of the incident photon of the first interaction and the geometric axis joining the position of the first interaction and the position of the second interaction, to reconstruct the geometric surface of the cone having for apex the position of the first interaction and for semi-opening said angle determined around said geometric axis, said geometric axis forming the axis of revolution of the cone and being oriented in the direction going from the second interaction to the first interaction, means for eliminating the cones whereof the geometric surface has no intersection with the response line, means for selecting at least one cone whereof the geometric surface has an intersection with the response line, means for selecting the position of the radionuclide from said reconstructed intersection of the response line with the geometric surface of the selected cone. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to portable terminals, and more particularly, to a portable terminal on which multiple Subscriber Identity Modules (SIMs) are capable of being mounted, and a method of selecting a SIM from the multiple SIMs.
2. Description of the Related Art
Conventionally, a SIM is a card which can be used in a portable terminal, such as a smart phone, a mobile phone, a Portable Multimedia Player (PMP), a Moving Picture Experts Group (MPEG) Audio Layer 3 (MP3) player, and a personal navigation device, and stores personal information in order to enable the provision of various services, such as the authentication of a subscriber, charging a fee, and security functions. The SIM has been developed in order to enable a user to freely use mobile communication by using his/her own telephone number in any area regardless of mobile communication technology standards, such as a Code Division Multiple Access (CDMA) scheme and a Global System for Mobile Communication (GSM) scheme.
The SIM can be manufactured in the form of a smart card, and can be inserted into a portable terminal that, when booted, performs an initialization process including an authentication process by reading subscriber information stored in the SIM. The portable terminal can be used only with an authenticated SIM. Typically, a portable terminal that can use one SIM has been mainly used, but a Dual SIM Dual Standby (DSDS) portable terminal, which can combine and use multiple SIMs together, has recently been introduced. The DSDS portable terminal can combine and use together two SIMs of two different business operators or an identical business operator. Accordingly, the user can use two telephone numbers in one DSDS portable terminal.
In the portable terminal on which the multiple SIMs can be mounted as described above, a SIM is used in such a manner as to be selectively set according to the user's need, among the multiple SIMs. For example, the multiple SIMs may be distinguished as a main SIM and a subordinate SIM according to the user's setting. The two SIMS are combined and used together because a service charging system is different for each business operator and for each region, and use (e.g., business use/personal use) is different for each SIM. Accordingly, the user changes the setting of the main SIM and the subordinate SIM, and thereby can use a SIM of a business operator having a charging system satisfying the user, and can use the SIM suitable for the user's purposes.
In this regard, a particular application or service may be executed by using only a SIM of a particular type, or it may be more appropriate to select the SIM of the particular type. However, a great deal of inconvenience is caused when the user directly and manually changes the setting of a SIM depending on an application/service, as described above. | {
"pile_set_name": "USPTO Backgrounds"
} |
A touch screen with a touch function has increasingly become a mainstream technology in the display field due to its simple, light and thin structure as well as low production cost.
The touch screens mainly include capacitive touch screen, resistive touch screen, optical touch screen, and so on. Among them, the capacitive touch screen is a relatively common and universal one.
The working principle of the capacitive touch screen will be briefly described hereinafter in conjunction with the structure thereof.
FIG. 1 is a top view of a capacitive touch screen. Referring to FIG. 1, the capacitive touch screen comprises a plurality of touch-driving electrodes 800 arranged along a first direction and a plurality of touch-sensing electrodes 900 arranged along a second direction. The first and second directions are perpendicular to each other. The adjacent touch-driving electrode 800 and the touch-sensing electrode 900 are coupled to each other so as to generate mutual capacitance Cm. When a finger touches the screen, an equivalent electric field of the finger will change a value of the mutual capacitance Cm. A touch detecting unit for detecting a touch point detects a variation of the current corresponding to the mutual capacitance Cm at the touch point before and after it is touched by the finger, and thereby detects a position of the touch point.
FIG. 2 is a sectional view of the touch-driving electrode 800 and the touch-sensing electrode 900 as shown in FIG. 1. Referring to FIG. 2, a voltage is applied to the touch-driving electrode 800 and the touch-sensing electrode 900 when the touch screen is touched, so as to form an electric field therebetween. The line with an arrow in FIG. 2 represents an electric field line. The electric field formed between the touch-driving electrode 800 and the touch-sensing electrode 900 consists of two portions, i.e., a forward electric field formed between the opposite, overlapping surfaces of the touch-driving electrode 800 and the touch-sensing electrode 900, and a projection electric field formed between the non-overlapping surfaces. The capacitance between the touch-driving electrode and the touch-sensing electrode corresponding to the forward electric field is parasitic capacitance C1 that has no beneficial effect on the touch, and the capacitance C0 between the touch-driving electrode and the touch-sensing electrode corresponding to the projection electric field is capacitance that can be changed by the finger. Cm is approximately equal to C0+C1. The finger can change the value of the mutual capacitance Cm merely by changing the electric field projected to outside of the touch-driving electrode 800 and the touch-sensing electrode 900.
In terms of structure, the touch screens at least include Add-on touch screen and In-Cell/On-Cell touch screen.
Regardless of the Add-on touch screen or the In-Cell/On-Cell touch screen, when a ratio of the forward electric field to the projection electric field is big, the variation of the current or voltage, corresponding to the capacitance Cm detected by the touch detecting unit at the touch point before and after it is touched by the finger, is not obvious, and the touch effect is poor. In order to ensure a relatively big variation of the current or voltage corresponding to the capacitance Cm at the touch point before and after the touching and to obtain a better touch effect, it is required to increase a surface area of at least one of the touch-sensing electrode and the touch-driving electrode. Increasing the surface area of the touch-sensing electrode and/or the touch-driving electrode will result in an increase in an area of a vertically overlapping surface between the touch-sensing electrode and the touch-driving electrode as well as an increase in the parasitic capacitance therebetween, thereby it is difficult to reduce the ratio of the forward electric field to the projection electric field and improve the touch effect. When the touch-sensing electrode and the touch-driving electrode are built in the display screen, there is also big parasitic capacitance between the touch-sensing electrode and the touch-driving electrode with large areas, and the conductive, functional film layers in the display screen such as a gate line, a data line and a common electrode. In addition, the quality of the image displayed on the display screen will be lowered. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to nonvolatile memories and methods of forming nonvolatile memories. In particular, this application relates to nonvolatile memory arrays in which floating gate memory cells individually hold one or more bits of data.
Nonvolatile memory systems are used in various applications. Some nonvolatile memory systems are embedded in a larger system such as a personal computer. Other nonvolatile memory systems are removably connected to a host system and may be interchanged between different host systems. Examples of such removable memory systems include memory cards and USB flash drives. Electronic circuit cards, including non-volatile memory cards, have been commercially implemented according to a number of well-known standards. Memory cards are used with personal computers, cellular telephones, personal digital assistants (PDAs), digital still cameras, digital movie cameras, portable audio players and other host electronic devices for the storage of large amounts of data. Such cards usually contain a re-programmable non-volatile semiconductor memory cell array along with a controller that controls and supports operation of the memory cell array and interfaces with a host to which the card is connected. Several of the same type of card may be interchanged in a host card slot designed to accept that type of card. However, the development of the many electronic card standards has created different types of cards that are incompatible with each other in various degrees. A card made according to one standard is usually not useable with a host designed to operate with a card of another standard. Memory card standards include PC Card, CompactFlash™ card (CF™ card), SmartMedia™ card, MultiMediaCard (MMC™), Secure Digital (SD) card, a miniSD™ card, Subscriber Identity Module (SIM), Memory Stick™, Memory Stick Duo card and microSD/TransFlash™ memory module standards. There are several USB flash drive products commercially available from SanDisk Corporation under its trademark “Cruzer®.” USB flash drives are typically larger and shaped differently than the memory cards described above.
Different types of memory array architecture are used in nonvolatile memory systems. In one type of architecture, a NAND array, a series of strings of more than two memory cells, such as 16 or 32, are connected along with one or more select transistors between individual bit lines and a reference potential to form columns of cells. Word lines extend across cells within a large number of these columns. Typically word lines, bit lines and other similar conductive components are formed by patterning a conductive layer using a pattern established by photolithography. | {
"pile_set_name": "USPTO Backgrounds"
} |
Cancer is the second leading cause of human death next to coronary disease. Worldwide, millions of people die from cancer every year. In the United States alone, as reported by the American Cancer Society, cancer causes the death of well over a half-million people annually, with over 1.2 million new cases diagnosed per year. While deaths from heart disease have been declining significantly, those resulting from cancer generally are on the rise. In the early part of the next century, cancer is predicted to become the leading cause of death.
Worldwide, several cancers stand out as the leading killers. In particular, carcinomas of the lung, prostate, breast, colon, pancreas, and ovary represent the primary causes of cancer death. These and virtually all other carcinomas share a common lethal feature. With very few exceptions, metastatic disease from a carcinoma is fatal. Moreover, even for those cancer patients who initially survive their primary cancers, common experience has shown that their lives are dramatically altered. Many cancer patients experience strong anxieties driven by the awareness of the potential for recurrence or treatment failure. Many cancer patients experience physical debilitations following treatment. Furthermore, many cancer patients experience a recurrence.
Worldwide, prostate cancer is the fourth most prevalent cancer in men. In North America and Northern Europe, it is by far the most common cancer in males and is the second leading cause of cancer death in men. In the United States alone, well over 30,000 men die annually of this disease—second only to lung cancer. Despite the magnitude of these figures, there is still no effective treatment for metastatic prostate cancer. Surgical prostatectomy, radiation therapy, hormone ablation therapy, surgical castration and chemotherapy continue to be the main treatment modalities. Unfortunately, these treatments are ineffective for many and are often associated with undesirable consequences.
On the diagnostic front, the lack of a prostate tumor marker that can accurately detect early-stage, localized tumors remains a significant limitation in the diagnosis and management of this disease. Although the serum prostate specific antigen (PSA) assay has been a very useful tool, however its specificity and general utility is widely regarded as lacking in several important respects.
Progress in identifying additional specific markers for prostate cancer has been improved by the generation of prostate cancer xenografts that can recapitulate different stages of the disease in mice. The LAPC (Los Angeles Prostate Cancer) xenografts are prostate cancer xenografts that have survived passage in severe combined immune deficient (SCID) mice and have exhibited the capacity to mimic the transition from androgen dependence to androgen independence (Klein et al., 1997, Nat. Med. 3:402). More recently identified prostate cancer markers include PCTA-1 (Su et al., 1996, Proc. Natl. Acad. Sci. USA 93: 7252), prostate-specific membrane (PSM) antigen (Pinto et al., Clin Cancer Res 1996 Sep. 2 (9): 1445-51), STEAP (Hubert, et al., Proc Natl Acad Sci USA. 1999 Dec. 7; 96(25): 14523-8) and prostate stem cell antigen (PSCA) (Reiter et al., 1998, Proc. Natl. Acad. Sci. USA 95: 1735).
While previously identified markers such as PSA, PSM, PCTA and PSCA have facilitated efforts to diagnose and treat prostate cancer, there is need for the identification of additional markers and therapeutic targets for prostate and related cancers in order to further improve diagnosis and therapy.
Renal cell carcinoma (RCC) accounts for approximately 3 percent of adult malignancies. Once adenomas reach a diameter of 2 to 3 cm, malignant potential exists. In the adult, the two principal malignant renal tumors are renal cell adenocarcinoma and transitional cell carcinoma of the renal pelvis or ureter. The incidence of renal cell adenocarcinoma is estimated at more than 29,000 cases in the United States, and more than 11,600 patients died of this disease in 1998. Transitional cell carcinoma is less frequent, with an incidence of approximately 500 cases per year in the United States.
Surgery has been the primary therapy for renal cell adenocarcinoma for many decades, Until recently, metastatic disease has been refractory to any systemic therapy. With recent developments in systemic therapies, particularly immunotherapies, metastatic renal cell carcinoma may be approached aggressively in appropriate patients with a possibility of durable responses. Nevertheless, there is a remaining need for effective therapies for these patients.
Of all new cases of cancer in the United States, bladder cancer represents approximately 5 percent in men (fifth most common neoplasm) and 3 percent in women (eighth most common neoplasm). The incidence is increasing slowly, concurrent with an increasing older population. In 1998, there was an estimated 54,500 cases, including 39,500 in men and 15,000 in women. The age-adjusted incidence in the United States is 32 per 100,000 for men and eight per 100,000 in women. The historic male/female ratio of 3:1 may be decreasing related to smoking patterns in women. There were an estimated 11,000 deaths from bladder cancer in 1998 (7,800 in men and 3,900 in women). Bladder cancer incidence and mortality strongly increase with age and will be an increasing problem as the population becomes more elderly.
Most bladder cancers recur in the bladder. Bladder cancer is managed with a combination of transurethral resection of the bladder (TUR) and intravesical chemotherapy or immunotherapy. The multifocal and recurrent nature of bladder cancer points out the limitations of TUR. Most muscle-invasive cancers are not cured by TUR alone. Radical cystectomy and urinary diversion is the most effective means to eliminate the cancer but carry an undeniable impact on urinary and sexual function. There continues to be a significant need for treatment modalities that are beneficial for bladder cancer patients.
An estimated 130,200 cases of colorectal cancer occurred in 2000 in the United States, including 93,800 cases of colon cancer and 36,400 of rectal cancer. Colorectal cancers are the third most common cancers in men and women. Incidence rates declined significantly during 1992-1996 (−2.1% per year). Research suggests that these declines have been due to increased screening and polyp removal, preventing progression of polyps to invasive cancers. There were an estimated 56,300 deaths (47,700 from colon cancer, 8,600 from rectal cancer) in 2000, accounting for about 11% of all U.S. cancer deaths.
At present, surgery is the most common form of therapy for colorectal cancer, and for cancers that have not spread, it is frequently curative. Chemotherapy, or chemotherapy plus radiation, is given before or after surgery to most patients whose cancer has deeply perforated the bowel wall or has spread to the lymph nodes. A permanent colostomy (creation of an abdominal opening for elimination of body wastes) is occasionally needed for colon cancer and is infrequently required for rectal cancer. There continues to be a need for effective diagnostic and treatment modalities for colorectal cancer.
There were an estimated 164,100 new cases of lung and bronchial cancer in 2000, accounting for 14% of all U.S. cancer diagnoses. The incidence rate of lung and bronchial cancer is declining significantly in men, from a high of 86.5 per 100,000 in 1984 to 70.0 in 1996. In the 1990s, the rate of increase among women began to slow. In 1996, the incidence rate in women was 42.3 per 100,000.
Lung and bronchial cancer caused an estimated 156,900 deaths in 2000, accounting for 28% of all cancer deaths. During 1992-1996, mortality from lung cancer declined significantly among men (−1.7% per year) while rates for women were still significantly increasing (0.9% per year). Since 1987, more women have died each year of lung cancer than breast cancer, which, for over 40 years, was the major cause of cancer death in women. Decreasing lung cancer incidence and mortality rates most likely resulted from decreased smoking rates over the previous 30 years; however, decreasing smoking patterns among women lag behind those of men. Of concern, although the declines in adult tobacco use have slowed, tobacco use in youth is increasing again.
Treatment options for lung and bronchial cancer are determined by the type and stage of the cancer and include surgery, radiation therapy, and chemotherapy. For many localized cancers, surgery is usually the treatment of choice. Because the disease has usually spread by the time it is discovered, radiation therapy and chemotherapy are often needed in combination with surgery. Chemotherapy alone or combined with radiation is the treatment of choice for small cell lung cancer; on this regimen, a large percentage of patients experience remission, which in some cases is long lasting. There is however, an ongoing need for effective treatment and diagnostic approaches for lung and bronchial cancers.
An estimated 182,800 new invasive cases of breast cancer were expected to occur among women in the United States during 2000. Additionally, about 1,400 new cases of breast cancer were expected to be diagnosed in men in 2000. After increasing about 4% per year in the 1980s, breast cancer incidence rates in women have leveled off in the 1990s to about 110.6 cases per 100,000.
In the U.S. alone, there were an estimated 41,200 deaths (40,800 women, 400 men) in 2000 due to breast cancer. Breast cancer ranks second among cancer deaths in women. According to the most recent data, mortality rates declined significantly during 1992-1996 with the largest decreases in younger women, both white and black. These decreases were probably the result of earlier detection and improved treatment.
Taking into account the medical circumstances and the patient's preferences, treatment of breast cancer may involve lumpectomy (local removal of the tumor) and removal of the lymph nodes under the arm; mastectomy (surgical removal of the breast) and removal of the lymph nodes under the arm; radiation therapy; chemotherapy; or hormone therapy. Often, two or more methods are used in combination. Numerous studies have shown that, for early stage disease, long-term survival rates after lumpectomy plus radiotherapy are similar to survival rates after modified radical mastectomy. Significant advances in reconstruction techniques provide several options for breast reconstruction after mastectomy. Recently, such reconstruction has been done at the same time as the mastectomy.
Local excision of ductal carcinoma in situ (DCIS) with adequate amounts of surrounding normal breast tissue may prevent the local recurrence of the DCIS. Radiation to the breast and/or tamoxifen may reduce the chance of DCIS occurring in the remaining breast tissue. This is important because DCIS, if left untreated, may develop into invasive breast cancer. Nevertheless, there are serious side effects or sequelae to these treatments. There is, therefore, a need for efficacious breast cancer treatments.
There were an estimated 23,100 new cases of ovarian cancer in the United States in 2000. It accounts for 4% of all cancers among women and ranks second among gynecologic cancers. During 1992-1996, ovarian cancer incidence rates were significantly declining. Consequent to ovarian cancer, there were an estimated 14,000 deaths in 2000. Ovarian cancer causes more deaths than any other cancer of the female reproductive system.
Surgery, radiation therapy, and chemotherapy are treatment options for ovarian cancer. Surgery usually includes the removal of one or both ovaries, the fallopian tubes (salpingo-oophorectomy), and the uterus (hysterectomy). In some very early tumors, only the involved ovary will be removed, especially in young women who wish to have children. In advanced disease, an attempt is made to remove all intra-abdominal disease to enhance the effect of chemotherapy. There continues to be an important need for effective treatment options for ovarian cancer.
There were an estimated 28,300 new cases of pancreatic cancer in the United States in 2000. Over the past 20 years, rates of pancreatic cancer have declined in men. Rates among women have remained approximately constant but may be beginning to decline. Pancreatic cancer caused an estimated 28,200 deaths in 2000 in the United States. Over the past 20 years, there has been a slight but significant decrease in mortality rates among men (about −0.9% per year) while rates have increased slightly among women.
Surgery, radiation therapy, and chemotherapy are treatment options for pancreatic cancer. These treatment options can extend survival and/or relieve symptoms in many patients but are not likely to produce a cure for most. There is a significant need for additional therapeutic and diagnostic options for pancreatic cancer. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a current limiting circuit for controlled semiconductor power components, in particular to a current limiting circuit for power transistors.
Integrated power circuits require effective protection against current overloading at their outputs, in order to prevent thermal destruction in the event of a possible short circuit.
While the invention is applicable in principle to all controlled semiconductor power components, the present invention and the problem area on which it is based are explained with reference to power ICs using hybrid technology which provide not only MOS power transistors but also bipolar components and CMOS components.
The customary basic principle for such a current limiting circuit consists in the total current flowing through the power transistor or, using the sense cell principle, part of this total current generating a voltage drop across a resistor (also referred to as shunt resistor).
If the voltage drop exceeds a predetermined maximum value, the current limiting circuit loads the drive signal of the power transistor to such a great extent that the output current of the power transistor, which can be determined from the drive signal by way of the family of output characteristic curves, remains below a permissible limit value.
There exist a variety of approaches in the prior art for implementing that basic principle in circuitry terms.
In general, a distinction is made between current-regulation limiting circuits and voltage-regulation limiting circuits.
Current-regulation limiting circuits generally require a filter for masking inrush spikes. Voltage-regulation limiting circuits require temperature compensation circuits. Furthermore, the prior art circuits of both circuit types again themselves require complex protective circuitry for the occurrence of a short circuit.
Examples of that prior art are found in "Smart Power ICs: Technologies and Applications," Murari, Bertotti, and Vignola (Eds.), pp. 328, 400, 426, Springer Verlag, Berlin-Heidelberg-New York, 1996.
U.S. Pat. No. 5,519,341 to Corsi et al. discribes a current limiting circuit for a power transistor with a current sense resistor and a comparator comprising four bipolar transistors and two current sources. The current threshold at which the comparator responds can be set by way of the emitter areas of the cross-connected bipolar transistors.
A further current limiter circuit is disclosed in German patent DE 44 29 716. There, a current mirror circuit is connected to the current sense resistor. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an air conditioning duct to be positioned at a rear wall side of a vehicular instrument panel and a method for mounting the same.
In general vehicles including motor vehicles, there are many instances where the vehicles are mounted with air conditioning units with a view to provide a comfortable surrounding for passengers. A vehicular air conditioning system includes an air conditioning duct positioned at a rear side of an instrument panel mounted in a front part of a passenger compartment to allow cold air or hot air to be blown out into the passenger compartment through the duct. Such a duct is disclosed in, for example, Japanese Patent Laid-Open Publication No. HEI-11-321287.
The duct disclosed in Japanese Patent Laid-Open Publication No. HEI-11-321287 comprises a plurality of duct sections, interconnecting segments for interconnecting these duct sections and a leg portion protruding from one of the ducts, with the leg portion and the one of the duct sections being unitarily formed by a blow forming technology to form the air conditioning duct. Securing the aforementioned leg portion to the rear surface of the instrument panel 1 by vibration welding, hereinafter referred to as a vibrating deposition, allows the aforementioned air conditioning duct to be mounted to the instrument panel.
In order to improve the comfortable surrounding in the passenger compartment, it is desired for air conditioning to be efficiently carried out to preclude an uneven temperature distribution in the passenger compartment. To meet such a demand, it is a point that a plurality of air blowout openings must be located at respective suitable positions and the volumes of air discharged from the respective air blowout openings must be suitably distributed. In order to optimize the volumes of air to be distributed, it is thought that the air conditioning duct is formed with a plurality of partitions or with a plurality of air inlets. With such a structure, the air conditioning duct inevitably results in a complicated shape. When forming the air conditioning duct with such a complicated structure with the use of the abovementioned conventional technology, there is a limit in addressing issues of troublesome processing steps and complicated forming dies.
It is therefore an object of the present invention to provide a technology for enabling an air conditioning duct with a complicated structure, which is mounted to a vehicular instrument panel, to be manufactured in an easy manner.
According to a first aspect of the present invention, there is provided an air conditioning duct adapted to be located at a rear surface of a vehicular instrument panel, which comprises a first cylindrical duct, hereinafter referred to as a first cylindrical body; a second cylindrical duct, hereinafter referred to as a second cylindrical body, placed along the first cylindrical body; a plurality of fastener members, hereinafter referred to as fixture members, for joining the first and second cylindrical bodies to one another; and a leg portion extending from at least one of the first and second cylindrical bodies toward the vehicular instrument panel.
Thus, the present invention allows one piece of the air conditioning duct with a complicated structure to be manufactured with separate pieces of the cylindrical bodies. Joining these plural pieces of the cylindrical bodies with the plurality of the fixture members enables production of a single piece of the air conditioning duct. The unitarily formed air conditioning duct is mounted to the vehicular instrument panel via the leg portion extending toward the same. Thus, even when the air conditioning duct has the complicated structure, the presence of the plurality of the separate cylindrical bodies allows the individual cylindrical bodies to be formed in relatively simplified structures. This results in an easy production of the air conditioning duct.
Preferably, the fixture members are placed along the longitudinal direction of the first cylindrical body. Joining the first and second cylindrical bodies with the plurality of the fixture members allows the air conditioning duct to have an adequate entire shape and rigidity to provide a preferable result.
In a preferred form, at least one of the fixture members is located in the vicinity of the openings of the first and second cylindrical bodies. That is, the fixture member remains in the vicinity of the openings within worker""s reach, with a resultant improvement over the joining workability.
Desirably, the first and second cylindrical bodies include air blowout tubes, respectively, which extend toward the aforementioned vehicular instrument panel. Outlets of the air blowout tubes are formed in bell-mouthed shapes so as to mate with the air discharge pipes mounted at the aforementioned vehicular instrument panel. Thus, even when the outlets of the air blowout tubes are slightly dislocated with respect to the air bleed openings of the instrument panel, mating the outlets of the air blowout tubes with the air discharge pipes enables a matching of the outlets of the air blowout tubes with respect to the air discharge pipes in an easy manner.
The leg portion may be designed to be mounted to the vehicular instrument panel by the vibrating deposition and has a mount surface formed with a plurality of projections. Thus, the presence of the plurality of the projections allows a contact surface area per each projection to have a lower value than that of a single piece of projection as proposed in prior art practice. The presence of the individual projections with reduced contact surface areas decreases the heat value, which occurs during the vibrating deposition, by an amount equal to the reduced contact surface area. It is possible to further preclude a sink mark or irregular gloss caused on an external surface of the instrument panel due to heat generated during the vibrating deposition.
According to a second aspect of the present invention, there is provided a method for mounting an air conditioning duct, comprising the steps of: preparing a first cylindrical body and a second cylindrical body which are unitarily formed with leg portions, respectively; placing the first cylindrical body and the second cylindrical body along to one another and joining the first and second cylindrical bodies with a plurality of fixture members; and mounting the respective leg portions to the vehicular instrument panel by a vibrating deposition.
Thus, in accordance with the assembling method of the present invention, the second cylindrical body is placed along the first cylindrical body and both of these components are joined to one another with the plural pieces of the fixture members and, subsequently, the leg portion is mounted to the instrument panel by the vibrating deposition, resulting in an ease of fabrication of the air conditioning duct even with a complicated structure. In addition, since the unitarily formed air conditioning duct is mounted to the instrument panel with a work merely having the vibrating deposition, workability for mounting the air conditioning duct is highly improved. | {
"pile_set_name": "USPTO Backgrounds"
} |
A wind turbine power plant having high capacity of generating electric power by installing a plurality of wind turbine electric power generator units each of which utilizes the rotation force generated by applying wind force to a plurality of blades to drive a generator via the rotor shaft, is constructed at high elevation such as the top of a hill or mountain or at a place such as above the sea where high wind velocity can be received. The generator set is generally controlled by adjusting the pitch angle of blades connected to the wind turbine rotor for keeping required generation of power corresponding with the energy of wind and the power to be consumed (required generation power) at the time of operation.
An upwind type wind turbine having a rotor with blades attached in the front part of the nacelle supported on a support prevails for use in the wind turbine generator unit.
An upstream type wind turbine like this is disclosed in Japanese Patent Application Publication No. 5-60053, which has a nacelle (wind turbine rotor supporting body) supporting a turbine rotor by means of a main shaft (turbine rotor shaft). The nacelle contains therein an energy converting unit such as an electric generator and a transmission mechanism for transmitting the rotation of the main shaft to the energy converting unit, and is supported for rotation in a horizontal plane on a support standing erect on the earth or on a ship.
In the wind turbine generator unit, a yaw control (azimuth control) means is used for keeping the revolution surface of the blades always toward the direction of wind to allow the wind force to act efficiently on the blades by rotating the nacelle supporting the wind turbine for rotation in accordance with the direction of wind. The wind turbine is equipped with a yaw control means which includes a yaw brake for braking the nacelle which is allowed to rotate in accordance with the direction of wind when wind is strong due to a typhoon, etc., as shown, for example, in patent document 1 (Japanese patent Application Publication No. 8-82277)
As shown in FIG. 13 and FIG. 14 which shows the detail of Z part of FIG. 13 in a perspective view, the yaw brake 3 is used for locking the wind turbine proper 100A consisting of blades 101, a rotor 105, a rotor shaft, and a nacelle 102. A rotation seat bearing 312 is located between the top face of the support 106 and the wind turbine proper 100A mounted above the support 106. A brake disk 304 is attached between the support 106 and the bearing 312. A hydraulically actuated disk brake unit 310 having a hydraulic cylinder 301a, 301b and a brake caliper 308 sandwiches the brake disk 304. The rotation of the wind turbine proper 100A relative to the support 106 is braked by pressing the brake disk from its upper and lower side by the hydraulically actuated disk brake unit 310.
In the upwind type wind turbine generator equipped with the yaw control means and the yaw brake, the nacelle is controlled by the yaw control means in normal operation to rotate so that the revolution surface of the blades directs always to wind. When a power outage occurs due to a sudden gust of wind, or strong wind caused by a typhoon, etc., the yaw control becomes impossible, so the nacelle is locked by actuating the yaw brake.
As mentioned above, with the conventional art as disclosed in the patent document 1, generally the rotation of the nacelle is locked by actuating the yaw brake to keep the nacelle in a standby state when a power outage occurs due to a sudden gust of wind, or strong wind due to a typhoon, etc. Therefore, when a strong wind blows on the blades in a slanting direction when the rotation of the nacelle is locked into a standby state, breakage occurs in the blades many times due to an excessively biased-load acting on the blades in the slanting direction. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates to inkjet printing apparatuses performing printing by discharging ink to a print medium from an inkjet head.
2. Background Art
Inkjet printing apparatuses forming an image by discharging ink droplets from a nozzle of an inkjet head and landing them to a sheet are being widely used.
Of the inkjet printing apparatuses, an inkjet printing apparatus of a line type performing printing by discharging the ink droplets from the fixed, long inkjet head while transferring the sheet has drawn attention in recent years in terms of speed-up.
Some inkjet printing apparatuses can perform full-color printing using black (K), cyan (C), magenta (M), and yellow (Y) inks (refer to, for example, Patent Literature 1).
When such an inkjet printing apparatus capable of performing the full-color printing forms a gray image having medium to low density, normally, it does not use the K ink but the C, M, Y inks to form the gray image. There are two reasons for that.
As a first reason, if the gray image having the low density is formed only with the K ink or the K, C, M, Y inks, many pixels are thinned out to form the gray image with less pixels (dots). Then, graininess is deteriorated.
As a second reason, with respect to a K dot, if a position of other color dot is deviated due to landing deviation, the gray image may have other color.
With the above-described two reasons, the inkjet printing apparatus capable of performing the full-color printing normally forms the gray image having the medium to low density using the three color inks of C, M, Y without using the K ink, but, a problem may occur even with such a method. For example, the positions of the C, M, Y ink dots are deviated from one another and, as a result, the gray image may have other color.
Thus, it can be considered to use only the K ink, raise resolution higher than set resolution (set to higher resolution), and decrease an ink discharge amount per one pixel (set to a smaller ink discharge amount), so as to form the gray image.
The graininess is described as below. “High graininess” or “good graininess” indicates a state in which, since the pixel included in the printed image is small, it is hardly visible. Thus, when the graininess is high, the printed image looks smooth. On the other hand, “low graininess” or “bad graininess” indicates a state in which, since the pixel included in the printed image is large, the pixel is easily visible. Thus, when the graininess is low, the printed image looks variable in grain and rough.
The graininess is an indication for evaluating the printed image by an impression when it is viewed with human eyes. Whether the graininess is high or low can be determined by mechanical measurement such as a size of the pixel included in the printed image, a level of arrangement of the pixels, and so on. The smaller the pixel is, or the more uniform the arrangement of the pixels is, the higher the graininess becomes. On the other hand, the larger the pixel is, or the less uniform the arrangement of the pixels is, the lower the graininess becomes.
With the higher resolution and the smaller ink discharge amount, the grain of the image can be reduced in size and, thus, deterioration of the graininess in the printed image can be reduced. Further, since only the K ink is used, the gray image would not have the other colors. | {
"pile_set_name": "USPTO Backgrounds"
} |
I. Field
Certain aspects of the present disclosure generally relate to wireless communications and, more specifically, to partitioning resources for enhanced inter-cell interference coordination (eICIC).
II. Background
Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, etc. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Examples of such multiple-access networks include Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, and Single-Carrier FDMA (SC-FDMA) networks.
A wireless communication network may include a number of base stations that can support communication for a number of user equipments (UEs). A UE may communicate with a base station via the downlink and uplink. The downlink (or forward link) refers to the communication link from the base station to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the base station.
A base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE. On the downlink, a transmission from the base station may observe interference due to transmissions from neighbor base stations. On the uplink, a transmission from the UE may cause interference to transmissions from other UEs communicating with the neighbor base stations. The interference may degrade performance on both the downlink and uplink. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates, generally, to a rake receiver for telecommunication systems with wireless telecommunication between mobile and/or stationary transceivers, and, more particularly, to such a rake receiver wherein a pipeline architecture having a number of pipeline stages is employed such that individual signal processing steps are processed as on a pipeline.
2. Description of the Prior Art
Telecommunication systems with wireless telecommunication between mobile and/or stationary transceivers are special communication systems with an information transmission link between a message source and a message sink in which, for example, base stations and mobile parts are used as transceivers for message processing and transmission and in which: 1) the message processing and message transmission can take place in a preferred direction of transmission (simplex mode) or in both directions of transmission (duplex mode); 2) the message processing is preferably digital; and 3) the message transmission via the long-distance link takes place wirelessly on the basis of various message transmission methods FDMA (Frequency Division Multiple Access), TDMA (Time Division Multiple Access) and/or CDMA (Code Division Multiple Access)—e.g., according to radio standards such as DECT [Digital Enhanced (previously European) Cordless Telecommunication; compare Nachrichtentechnik Elektronik 42 (1992) January/February No. 1, Berlin, DE, U. Pilger “Struktur des DECT-Standards” [Structure of the DECT standard], pages 23 to 29 in conjunction with ETSI publication ETS 300175-1 . . . 9, October 1992 and DECT publication of the DECT Forum, February 1997, pages 1 to 16], GSM [Group Spéciale Mobile or Global System for Mobile Communication; compare Informatik Spektrum 14 (1991) June, No. 3, Berlin, DE; A. Mann. “Der GSM-Standard—Grundlage für digitale europäische Mobilfunknetze” [The GSM standard—The basis for digital European mobile radio networks], pages 137 to 152 in conjunction with the publication telekom praxis 4/1993, P. Smolka “GSM-Funkschnittstelle—Elemente und Funktionen” [GSM radio interface—elements and functions], pages 17 to 24], UMTS [Universal Mobile Telecommunication System; compare (1): Nachrichtentechnik Elektronik, Berlin 45, 1995 vol. 1, pages 10 to 14 and vol. 2, pages 24 to 27; P. Jung, B. Steiner: “Konzept eines CDMA-Mobilfunksystems mit gemeinsamer Detektion für die dritte Mobilfunkgeneration” [Concept of a CDMA mobile radio system with joint detection for the third mobile radio generation]; (2): Nachrichten-technik Elektronik, Berlin 41, 1991, vol. 6, pages 223 to 227 and page 234; P. W. Baier, P. Jung, A. Klein: “CDMA—ein günstiges Vielfach-zugriffsverfahren für frequenzselektive und zeitvariante Mobilfunkkanäle” [CDMA—an advantageous multiple access method for frequency-selective and time-variant mobile radio channels], (3): IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E79-A, No. 12, December 1996, pages 1 930 to 1 937; P. W. Baier, P. Jung: “CDMA Myths and Realities Revisited”; (4): IEEE Personal Communications, February 1995, pages 38 to 47; A. Urie, M. Streeton, C. Mourot: “An Advanced TDMA Mobile Access System for UMTS”; (5): telekom praxis, 5/1995, pages 9 to 14; P. W. Baier: “Spread-Spectrum-Technik und CDMA—eine ursprünglich militärische Technik erobert den zivilen Bereich” [Spread-spectrum technology and CDMA—a technology originally from the military domain conquers the civil domain], (6): IEEE Personal Communications, February 1995, pages 48 to 53; P. G. Andermo, L. M. Ewerubring: “A CDMA-Based Radio Access Design for UMTS”; (7): ITG Fachberichte 124 (1993), Berlin, Offenbach: VDE Verlag ISBN 3-8007-1965-7, pages 67 to 75; Dr. T Zimmermann, Siemens A G: “Anwendung von CDMA in der Mobilkommunikation” [Application of CDMA in mobile communication], (8): telcom report 16, (1993), vol. 1, pages 38 to 41, Dr. T Ketseoglou, Siemens A G and Dr. T Zimmermann, Siemens A G: “Effizienter Teilnehmerzugriff für die 3. Generation der Mobilkommunikation—Vielfachzugriffsverfahren CDMA macht Luftschnittstelle flexibler” [Efficient subscriber access for the 3rd-generation mobile communication—CDMA multiple access method makes the interface more flexible]; (9): Funkschau 6/98: R. Sietmann “Ringen um die UMTS-Schnittstelle” [Tug-of-war for the UMTS interface] pages 76 to 81] WACS or PACS, IS-54, IS-95, PHS, PDC etc. [compare IEEE Communications Magazine, January 1995, pages 50 to 57; D. D. Falconer et al.: “Time Division Multiple Access Methods for Wireless Personal Communications”].
“Message” is a higher-level term which stands both for the meaning (information) and for the physical representation (signal). In spite of identical meaning of a message, that is to say identical information, different signal forms can occur. Thus, for example, a message relating to an object can be transmitted (1) in the form of an image, (2) as a spoken word, or (3) as a written word, (4) as an encrypted word or image.
The type of transmission according to (1) . . . (3) is normally characterized by continuous (analog) signals whereas it is usually discontinuous signals (e.g. pulses, digital signals) which are produced with the type of transmission according to (4).
In the UMTS scenario (3rd-generation mobile radio or, respectively, IMT 2000), there are two part-scenarios, for example according to the printed document Funkschau 6/98: R. Sietmann “Ringen um die UMTS-Schnittstelle” [Tug-of-war for the UMTS interface], pages 76 to 81. In a first part-scenario, the licensed coordinated mobile radio will be based on a WCDMA (Wideband Code Division Multiple Access) technology and operated in FDD (Frequency Division Duplex) mode as in GSM, whereas, in a second part-scenario, the unlicensed uncoordinated mobile radio will be based on a TD-CDMA (Time Division Code Division Multiple Access) technology and operated in TDD (Time Division Duplex) mode as in DECT.
For the WCDMA/FDD operation of the universal mobile telecommunication system, the air interface of the telecommunication system in each case contains a number of physical channels in the uplink and downlink direction of telecommunication in accordance with the printed document ETSI STC SMG2 UMTS-L1, Tdoc SMG2 UMTS-L1 163/98: “UTRA Physical Layer Description FDD Parts” vers. 0.3, May 5, 1998, of which channels a first physical channel, the so-called Dedicated Physical Control Channel DPCCH, and a second physical channel, the so-called Dedicated Physical Data Channel DPDCH, are shown with respect to their frame structures in FIGS. 1 and 2.
In the downlink (radio link from the base station to the mobile station) of the WCDMA/FDD system by ETSI and ARIB, respectively, the Dedicated Physical Control Channel (DPCCH) and the Dedicated Physical Data CHannel (DPDCH) are time-division multiplexed whereas in the uplink, an I/Q multiplex is done in which the DPDCH is transmitted in the I channel and the DPCCH is transmitted in the Q channel.
The DPCCH contains Npilot pilot bits for channel estimation, NTPC bits for fast power control and NTFI format bits which indicate the bit rate, the type of service, the type of error protecting coding, etc. (TFI=Traffic Format Indicator).
FIG. 3 shows, on the basis of a GSM radio scenario which includes, for example, two radio cells and Base Transceiver Stations arranged therein, a first base transceiver station BTS1 (transceiver) omnidirectionally illuminating a first radio cell FZ1 and a second base transceiver station BTS2 (transceiver) omnidirectionally illuminating a second radio cell FZ2, an FDMA/TDMA/CDMA radio scenario in which the base transceiver stations BTS1, BTS2 are connected or can be connected to a number of mobile stations MS1 . . . MS5 (transceiver) located in the radio cells FZ1, FZ2 by wireless unidirectional or bi-directional-uplink UL and/or downlink DL—telecommunication on corresponding transmission channels TRC via an air interface designed for the FDMA/TDMA/CDMA radio scenario. The base transceiver stations BTS1, BTS2 are connected in at familiar manner (compare GSM telecommunication system) to a base station controller BSC which handles the frequency administration and switching functions in controlling the base transceiver stations. The base station controller BSC, in turn, is connected via a Mobile Switching Center MSC to the higher-level telecommunication network; e.g., the PSTN (Public Switched Telecommunication Network). The mobile switching center MSC is the administrative center for the telecommunication system shown. It handles the complete call administration and, with attached registers (not shown), the authentication of the telecommunication subscribers and the location monitoring in the network.
FIG. 4 shows the basic configuration of the base transceiver station BTS1, BTS2 constructed as transceiver and FIG. 5 shows the basic configuration of the mobile station MS1 . . . MS5, also constructed as transceiver. The base transceiver station BTS1, BTS2 handles the transmitting and receiving of radio messages from and to the mobile station MS1 . . . MS5 and the mobile station MTS1 . . . MTS5 handles the transmitting and receiving of radio messages from and to the base transceiver station BTS1, BTS2. For this purpose, the base station has a transmitting antenna SAN and a receiving antenna EAN and the mobile station MS1 . . . MS5 has a common antenna ANT for transmitting and receiving which is controllable by an antenna switch AU. In the uplink (receiving path), the base transceiver station BTS1, BTS2 receives via the receiving antenna EAN, for example, at least one radio message FN with an FDMA/TDMA/CDMA component from at least one of the mobile stations MS1 . . . MS5 and the mobile station MS1 . . . MS5 receives in the downlink (receiving path) via the common antenna ANT, for example, at least one radio message FN with an FDMA/TDMA/CDMA component from at least one base transceiver station BTS1, BTS2. The radio message FN consists of a broadband spread-spectrum carrier signal modulated with an information item composed of data symbols.
In a radio receiver FEE, the received carrier signal is filtered and mixed down to an intermediate frequency which, in turn, is thereafter sampled and quantized. After analog/digital conversion, the signal, which has been distorted by multipath propagation on the radio path, is supplied to an equalizer EQL which largely equalizes (synchronizes) the distortions.
After that, a channel estimator KS attempts to estimate the transmission characteristics of the transmission channel TRC on which the radio message FN has been transmitted. The transmission characteristics of the channel are specified by the channel impulse response in the time domain. To be able to estimate the channel impulse response, a special supplementary information item in the form of a so-called midamble, which is designed as training information sequence, is assigned or allocated to the radio message FN at the transmitting end (by the mobile station MS1 . . . MS5 or, respectively, the base transceiver station BTS1, BTS2, in the present case).
The individual mobile-station-specific signal components, which are contained in the common signal, are equalized and separated in a known manner in a subsequent data detector DD which is common to all received signals. After the equalization and separation, the data symbols hitherto present are converted into binary data in a symbol-to-data converter SDW. After that, the original bit stream is obtained from the intermediate frequency in a demodulator DMOD before the individual time slots are allocated to the correct logical channels and, thus, also to the different mobile stations in a demultiplexer DMUX.
The bit sequence obtained is decoded channel by channel in a channel codec KC. Depending on the channel, the bit information is allocated to the control and signaling timeslot or to a voice timeslot and, in the case of the base transceiver station (FIG. 4), the control and signaling data and the voice data are jointly transferred to an interface SS responsible for the signaling and voice coding/decoding (voice codec) for transmission to the base station controller BSC. In the case of the mobile station (FIG. 5), the control and signaling data are transferred to a control and signaling unit STSE responsible for the complete signaling and control of the mobile station and the voice data are transferred to a voice codec SPC designed for voice input and output.
In the voice codec of the interface SS in the base transceiver station BTS1, BTS2, the voice data is in a predetermined data stream (e.g., 64-kbit/s stream in the direction of the network and 13 kbit/s stream in the direction from the network).
The complete control of the base transceiver station BTS1, BTS2 is performed in a control unit STE.
In the downlink (transmitting path), the base transceiver station BTS1, BTS2 sends via the transmitting antenna SAN, for example, at least one radio message FN with an FDMA/TDMA/CDMA component to at least one of the mobile stations MS1 . . . MS5 and the mobile station MS1 . . . MS5 sends in the uplink (transmitting path) via the common antenna ANT, for example, at least one radio message FN with an FDMA/TDMA/CDMA component to at least one base transceiver station BTS1, BTS2.
The transmitting path begins at the base transceiver station BTS1, BTS2 in FIG. 4, by control and signaling data and voice data received by the base station controller BSC via the interface SS being assigned to a control and signaling timeslot or a voice timeslot in the channel codec KC and these timeslots being coded in a bit sequence channel by channel.
The transmitting path begins in the case of the mobile station MS1 . . . MS5 in FIG. 5 by voice data received from the voice codec SPC and control and signaling data received from the control and signaling unit STSE being assigned to a control and signaling timeslot or a voice timeslot in the channel codec KC and these timeslots being coded in a bit sequence channel by channel.
The bit sequence obtained in the base station BTS1, BTS2 and in the mobile station MS1 . . . MS5 is, in each case, converted into data symbols in a data-to-symbol converter DSW. Following this, the data symbols are, in each case, spread with a subscriber-associated code in a spreader SPE. In the burst generator BG consisting of a burst assembler BZS and a multiplexer MUX, a training information sequence in the form of a midamble is then added to the spread data symbols in the burst assembler BZS for channel estimation and the burst information obtained in this manner is set to the correct timeslot in the multiplexer MUX. The burst obtained is then radio-frequency modulated, in each case, in a modulator MOD and digital/analog converted before the signal obtained in this manner is radiated at the transmitting antenna SAN or, respectively, the common antenna ANT via a radio transmitter FSE as radio message FN.
In CDMA-based systems, the problem of multiple reception, the so-called delay spread, in the presence of echoes can be solved in spite of the great bandwidth and the very small chip or bit times of these systems by combining the received signals with one another in order to increase the reliability of detection. Naturally, the channel characteristics must be known for this. To determine these, a pilot sequence common to all subscribers is used (compare FIGS. 1 and 2) which is additionally radiated independently and with increased transmitting power without modulation by a message sequence. Its reception provides the receiver with the information on how many paths are involved in the instantaneous situation of reception and what delay times are produced.
In a RAKE receiver, the signals coming in via the individual paths are acquired in separate receivers, the “fingers” of the RAKE receiver, detected and added together in an addition section weighted among each other after compensation for the delay times and the phase shifts of the echoes.
A RAKE receiver is used, in particular, for recovering digital data from a radio reception signal having a CDMA component. The signals superimposed via multipath propagation and distorted by the channel are recovered and the symbol energies of the individual propagation paths are accumulated.
The theory for the RAKE receiver has been sufficiently well investigated and is known (compare J. G. Proakis: “Digital Communications”; McGraw-Hill, Inc.; 3rd edition, 1995; pp. 728 to 739 and K. D. Kammeyer: “Nachrichtenübertragung” [Information transmission]; B:G. Teubner Stuttgart, 1996; pp. 658 to 669).
An object of the present invention is to specify a rake receiver for telecommunication systems with wireless telecommunication between mobile and/or stationary transceivers, especially in third-generation mobile radio systems, which exhibits a smaller number of function blocks and/or logic gates compared with known rake receivers.
Accordingly, the present invention has a pipeline architecture, including a number of pipeline stages (pipeline structure), which is implemented such that the individual signal processing steps or computing steps are processed as in a pipeline. As a result, the hardware circuits used can be used in time-division multiplex.
In an embodiment, it is advantageous to use three pipeline stages. It is also advantageous to buffer the processing in the pipeline stages via two registers if no direct pipelining is possible in the three pipeline stages because of different processing speeds in the pipeline stages.
In a first pipeline stage, the data (e.g., chips or subchips in the case of oversampling) are read out of a memory (e.g., a dual-port RAM (DP-RAM)). To be able to superimpose the symbols of the individual signal paths in the correct phase (code combining), the corresponding path delays must be taken into consideration. The addresses are also calculated in the first stage. The delay time is added to the current address in the form of an offset. There are, for example, “L” offsets, “L” corresponding to the number of fingers in the RAKE receiver and a different offset being needed in each clock period. Thus, the memory is accessed in every clock period.
Furthermore, the code generated by at least one code generator, the spreading code and/or the scrambling code required for descrambling, is multiplied by the current value from the dual-port RAM in the first pipeline stage. This operation is relatively simple since it only consists of sign operations and of two additional additions in the case of complex scrambling codes.
In addition, the soft handover is handled in the first pipeline stage. In the case of a soft handover, the RAKE receiver receives signals which have been sent with different scrambling and spreading codes from, for example, base transceiver stations. The maximum possible number of RAKE fingers must be shared out among the base transceiver stations in accordance with the quality of reception. For this reason, the code generators are switched in dependence on the RAKE fingers. The multiplexer performing the switching operates at a maximum of L*W MHz. To increase the number of base transceiver stations, further code generators can be added.
In the second pipeline stage, each value is multiplied by a weight. These weights are different for each finger and change with every clock period. In principle, they are repeated after “L” steps. In the case of an interpolation, the delta values are accumulated to form the weights.
In the last, third pipeline stage, the chip energies of the individual RAKE fingers are accumulated to form the symbol energy Usymb.
u symb = ∑ i = 1 SF ∑ j = 1 L u ij ; where SF = spreading factor , L = number of RAKE fingers .
Additional features and advantages of the present invention are described in, and will be apparent from, the Detailed Description of the Preferred Embodiments and the Drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
In order to enhance a vehicle's aesthetic qualities, it is common to integrate the vehicle radio antennas with one or more of the vehicle's windows (commonly known as hidden antenna systems or on-glass AM/FM antenna system). Unlike mast (rod) antennas, on-glass antenna systems do not introduce any external vehicle protrusions and they typically offer excellent mechanical stability and satisfactory reception performance. Although on-glass antennas are widely used, they do suffer from various drawbacks. Specifically, on-glass antennas are difficult to design because a small change in a vehicle's body design can radically change the reception performance of the antenna.
On-glass antenna systems are usually fabricated by printing metallic conductors on an inner surface of the back-glass or the side-glass of a vehicle window. A low-noise-amplifier (LNA) circuit is typically mounted in close proximity to the on-glass antenna and is electrically coupled to the on-glass antenna to amplify the weak signal received by the antenna before it is sent to the radio receiver for further conditioning. The on-glass antennas are typically fed vertically (close to the vehicle roof) so that the LNA circuit can be housed in the vicinity where the vehicle roof intersects the window. Recently, vehicle designers have found it advantageous to place side-airbags in the locations where the LNA circuits have traditionally resided. Accordingly, new feed points for the on-glass antennas and for the placement of the LNA are required. The most obvious approach is to simply rotate the current on-glass antenna design by 90 degrees which would enable a horizontal feed from the LNA circuit to the on-glass antenna. However, this approach has been shown to tremendously degrade the reception performance of the on-glass antenna rendering its reception quality so poor that it no longer meets the performance specified by many vehicle manufacturers.
This invention sets forth various on-glass window grid antenna designs that can be fed horizontally while still maintaining excellent reception performance characteristics. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a method and apparatus for processing data within a set-top decoder such as that used to receive digital television signals. In particular, the invention relates to a method and apparatus for preventing the overflow of data in a buffer while maintaining compliance with an interface timing performance standard such as the RS404-A standard of the Electronic Industries Association (EIA).
Technology for the transmission of digital television signals continues to advance in view of increasing consumer demand. Digital television signals provide a sharp picture and a high-fidelity audio signal, in addition to providing the viewer with a larger selection of available programming. In fact, digital programming is expected to eventually supplant existing analog schemes.
Various transmission standards have been created, including the Motion Picture Expert Group's MPEG-2 standard and the similar Digicipher II standard which is proprietary to General Instrument Corporation of Chicago, Ill., U.S.A. Additionally, the RS404-A performance standard has been promulgated by the Electronic Industries Association (EIA) to provide a baseline for interface timing during the transmission of asynchronous (e.g., start-stop) data. The standard is set forth in the documents entitled "Standard for Start-Stop Signal Quality Between Data Terminal Equipment and Non-Synchronous Data Communication Equipment--EIA Standard RS-404", Electronic Industries Association, Washington, D.C., U.S.A., Mar. 1973; and "Application of Signal Quality Requirements to RS-449--Addendum No. 1 to RS-334-A and RS-404," Electronic Industries Association, May 1983. In particular, the RS404 standard is a performance standard which specifies the quality of serial binary signals which are exchanged across an interface between start-stop (e.g., asynchronous) data terminal equipment (such as a processor or teleprinter) and non-synchronous data communications equipment (such as a data set or signal converter) as defined in EIA standard RS-232-C. The data communications equipment is considered to be non-synchronous if the timing signal circuits across the interface are not required at either the transmitting terminal or the receiving terminal.
Digital television signals may be delivered as asynchronous data to a set-top box (e.g., decoder) of the television. Various interface, syntax, buffer requirements and decoder timing requirements must be established. In particular, to minimize the cost of the decoder, it is desirable to minimize the size of the memory which is required to temporarily store the received data until it can be processed and displayed.
In general, an asynchronous data component is one in which data is delivered at low rates without an accompanying clock. The data comprises a succession of characters which are delivered irregularly. This is the type of data which is typically used by the RS232-C serial port of a personal computer. The RS-232 standard is described in the document entitled "Interface Between Data Terminal Equipment and Data Communication Equipment Employing Serial Binary Data Interchange," Electronic Industries Association.
In an asynchronous, or start-stop system, a group of code elements which correspond to a character is preceded by a start element which prepares the receiving equipment for the reception and registration of a character, and is followed by a stop element during which the receiving equipment comes to rest in preparation for the reception of the next character. In a continuous start-stop system, a signal represents a series of characters which follow one another at a nominal character rate. In contrast, in a synchronous system, the sending and receiving data terminal equipment are operating continuously at substantially the same frequency, and are maintained in a desired phase relationship, for example, using a phase-locked loop.
The RS404-A specification for interface timing describes the timing parameters which are associated with each received bit of a character, as well as the start and stop bits. In particular, the minimum description of an asynchronous character requires ten bits, namely, one start bit, seven data bits, one parity bit, and one stop bit. Optionally, two stop bits instead of one may be provided. Additionally, parity may be even or odd. Alternatively, there may be no parity, in which case eight data bits are provided in each character. The term "mark" is associated with a "1", and the term "space" is associated with a "0". The RS232-C standard essentially describes signal voltage levels above +3 volts (V) as representing a space, while a voltage level below -3 V represents a mark, among other electrical interface parameters.
For asynchronous data components that conform to the RS404-A and RS232-C standards, and with data at nominal rates of 1,200, 2,400, 4,800, 9,600 and 19,200 bits per second (bps), processing of the asynchronous data at an encoder must accomplish various tasks. Specifically, the encoder must input serial data, remove start and stop bits, buffer the resulting eight-bit bytes, build packets of these bytes according to the asynchronous data syntax, and send (e.g., transmit) each packet when constructed. The sending of the packets should be delayed to approximately match the video throughput delay of the system, or, if a packet is only partially full because data arrival is irregular, the encoder should implement a latency time-out of, for example, one second. Moreover, the multiplexing and transmission of the asynchronous data packets should conform to a decoder model.
Generally, the decoder must reverse the steps performed by the encoder. In particular, the decoder must buffer the received data. To provide maximum flexibility for multiplexers, a decoder model will typically include a 512 byte transport buffer which is defined for video, audio and isochronous data service components. After removing transport headers and adaptation fields, if any, and the data syntax overhead, the remaining bytes are sent to the main asynchronous data buffer of the decoder similar to MPEG Systems buffer applications. The transfer time is defined assuming that a character rate parameter which corresponds to a minimum average character interval of the RS404-A standard is input to the encoder. A character interval is the duration of a character expressed as the total number of unit intervals, including information, error checking and control bits and the start and stop elements, which are required to transmit a character. As explained in the RS404-A specification, a unit interval is the duration of the shortest nominal signal element. That is, the unit interval is the longest interval of time such that the nominal durations of the start and information elements are integer multiples of the unit interval. A model decoder main buffer is assumed to include 4 msec. of information plus thirty-two bytes. Bytes (e.g., asynchronous data "access units") are removed from the model main buffer at the rate described. The purpose of the decoder buffer model is to define constraints for the encoder. That is, the encoder must build the transport multiplex such that neither the transport nor the main buffers overflow.
As with video, audio and isochronous data, an actual decoder implementation may not match the model in detail. For example, generally, only a single decoder buffer is required, and it must be larger than the size which is suggested by the model. In addition, the decoder buffer may only store asynchronous data bytes, without header information.
The decoder must produce a clock signal to output the asynchronous data from the decoder buffer while not knowing the exact value of the rate. Usually, any clock rate which is close to the nominal bit rate will be effective since the data arrival at the decoder is generally irregular. However, in the case of continuous start-stop operation as described by the RS404-A standard, it is possible for a decoder built with a nominal clock generation to overflow (i.e., overfill its data buffer) when the minimum average character interval is used.
Accordingly, it would be desirable to provide a method and apparatus for avoiding overflow of a decoder buffer. In particular, the scheme should prevent a buffer overflow when using the continuous start-stop operation as described by the RS404-A or similar standard, while also minimizing a data output rate tolerance. The scheme should further provide an output data rate tolerance which conforms to a data rate performance standard such as the RS404-A standard. The present invention provides a method and apparatus having the above and other advantages. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present embodiment relates generally to an apparatus and method for removing a golf ball cover.
The need to remove a cover from used golf balls is known for recycling purposes. U.S. Pat. No. 5,976,430 discloses a mechanism for removing a golf ball cover, including two roller gears. U.S. Pat. No. 6,833,098 shows a similar design for removing a golf ball cover.
However, there exists a need in the art for an improved method and apparatus for removing golf ball covers. Specifically, it would be advantageous have a machine that is capable of removing a golf ball cover efficiently and to allow for a seamless disposal of the golf ball core. | {
"pile_set_name": "USPTO Backgrounds"
} |
Where two components are to be connected, it is conventional to provide each component with a flange which abuts with the opposing flange and provides a means for connecting the two components. In addition, the flanges may also provide additional strength and stiffness to the components.
As shown in FIG. 1, flanges are often used with tubular components, particularly cylindrical components. However, the components may be hemispherical, conical or other similar structures. The component 2 of FIG. 1 has a flange portion 4 projecting substantially perpendicularly to a portion 6 of the component 2. The flange portion 4 is provided with a plurality of holes 8 passing therethrough for connection with an abutting flange. FIG. 2 shows a partial cross-section through the component 2, with the dashed line representing a central axial axis of the component.
The component 2 may be a casing component of a turbomachine. Conventionally, such a casing component would be manufactured from a metal, such as a titanium or a nickel alloy. Advantageously, metallic components usually have near homogeneous material properties irrespective of the component shape and method of manufacture.
The same can not be said for composite materials, particularly fibre reinforced organic matrix composites, which are highly heterogeneous. The properties of these materials depend on the local fibre orientation and the strength and stiffness of the material may vary greatly between regions of the component. It is however desirable to use such composite materials since they are generally lighter than metallic materials and may be cheaper than high-strength low-density metals, such as titanium. Furthermore, particular directionality of strength can be tuned by appropriate selection of ply material and orientation.
A composite component may be designed to ensure that it has the desired properties by selectively aligning the fibres in the composite material with the directions of anticipated loads. This may be performed on a local scale such that localised regions of the component are provided with appropriately oriented fibres to produce the desired properties for that region.
For example casing components are often designed to withstand pressure vessel loads, to provide roundness stability, and to guarantee containment of a blade in the event of a blade-off. The main body of the component therefore has to have good hoop and axial strength and stiffness.
The flange portion of the component must maintain its shape under asymmetric loading to prevent leakage from the interface between the two components.
The present invention provides a composite flange having a ply layup which provides desirable properties for the flange and which enables the metal flange to be replaced by a composite material. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a nebulizer pump adapter for use in connection with nebulizers. The nebulizer pump adapter has particular utility in connection with providing a source of gas flow when a compressed gas tank or electrical air compressor is not available.
2. Description of the Prior Art
Nebulizer pump adapters are desirable for allowing the attachment of a bicycle pump to a nebulizer when a source of compressed air is not otherwise available. In order for a nebulizer to work, there must be a source of gas flow sufficient to nebulize the solution. The compressed gas tank or electrical air compressor which is normally used may not be available in certain situations, such as in the wilderness or during a blackout. As a result, having the option of using a hand-operated pump may be critical in administering inhaled aerosol medications.
The use of nebulizer bacteria filters is known in the prior art. For example, U.S. Pat. No. 3,932,153 to Byrns discloses a nebulizer bacteria filter. However, the Byrns ""153 patent does not have a Schrader valve-sized pump connector, and has further drawbacks of not having a hollow cylindrical filter with a beveled bottom.
U.S. Pat. No. 5,776,342 to Hiranaga et al. discloses a filter assembly that provides increased strength. However, the Hiranaga et al. ""342 patent does not have a Schrader valve-sized pump connector, and additionally does not have a hollow cylindrical filter with a beveled bottom.
Similarly, U.S. Pat. No. 5,195,527 to Hicks discloses respiratory filters that are included in a respiratory system used in anesthesia and/or patient ventilation. However, the Hicks ""527 patent does not have a Schrader valve-sized pump connector, and also lacks a hollow cylindrical filter with a beveled bottom.
In addition, U.S. Pat. No. 4,148,732 to Burrow et al. discloses a bacteria filter unit that comprises a two-piece molded housing. However, the Burrow et al. ""732 patent does not have a Schrader valve-sized pump connector, and also does not have a hollow cylindrical filter with a beveled bottom.
Furthermore, U.S. Pat. No. 4,444,661 to Jackson et al. discloses a filter device that has a plastic housing with inlet and outlet chambers separated by a filter disc. However, the Jackson et al. ""661 patent does not have a Schrader valve-sized pump connector, and further lacks a hollow cylindrical filter with a beveled bottom.
Lastly, U.S. Pat. No. 5,230,727 to Pound et al. discloses an air filter for medical ventilation equipment and the like that is an inexpensive, bidirectional, low flow resistance air filter. However, the Pound et al. ""727 patent does not have a Schrader valve-sized pump connector, and has the additional deficiency of not having a hollow cylindrical filter with a beveled bottom.
While the above-described devices fulfill their respective, particular objectives and requirements, the aforementioned patents do not describe a nebulizer pump adapter that allows providing a source of gas flow when a compressed gas tank or electrical air compressor is not available. The above patents make no provision for connecting a Schrader valve-sized pump to the filtering apparatus. Furthermore, none of the above patents have a hollow cylindrical filter with a beveled bottom.
Therefore, a need exists for a new and improved nebulizer pump adapter that can be used for providing a source of gas flow when a compressed gas tank or electrical air compressor is not available. In this regard, the present invention substantially fulfills this need. In this respect, the nebulizer pump adapter according to the present invention substantially departs from the conventional concepts and designs of the prior art, and in doing so provides an apparatus primarily developed for the purpose of providing a source of gas flow when a compressed gas tank or electrical air compressor is not available.
In view of the foregoing disadvantages inherent in the known types of nebulizer bacteria filters now present in the prior art, the present invention provides an improved nebulizer pump adapter, and overcomes the above-mentioned disadvantages and drawbacks of the prior art. As such, the general purpose of the present invention, which will be described subsequently in greater detail, is to provide a new and improved nebulizer pump adapter which has all the advantages of the prior art mentioned heretofore and many novel features that result in a nebulizer pump adapter which is not anticipated, rendered obvious, suggested, or even implied by the prior art, either alone or in any combination thereof.
To attain this, the present invention essentially comprises a hollow pump connection and a hollow tubing connection removably attached to the pump connection. An additional significant element is a hollow cylindrical filter with a beveled bottom housed within the hollow pump connection and hollow tubing connection.
There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood and in order that the present contribution to the art may be better appreciated. The invention may also include the hollow pump connection having a hollow pump connector which is sized to accept a Schrader valve-sized pump. The hollow tubing connection may have a hollow tubing connector sized to accept nebulizer tubing. The hollow pump connection may also be permanently attached to the hollow tubing connection. There are, of course, additional features of the invention that will be described hereinafter and which will form the subject matter of the claims attached.
Numerous objects, features and advantages of the present invention will be readily apparent to those of ordinary skill in the art upon a reading of the following detailed description of presently current, but nonetheless illustrative, embodiments of the present invention when taken in conjunction with the accompanying drawings. In this respect, before explaining the current embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of descriptions and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
It is therefore an object of the present invention to provide a new and improved nebulizer pump adapter that has all of the advantages of the prior art nebulizer bacteria filters and none of the disadvantages.
It is another object of the present invention to provide a new and improved nebulizer pump adapter that may be easily and efficiently manufactured and marketed.
An even further object of the present invention is to provide a new and improved nebulizer pump adapter that has a low cost of manufacture with regard to both materials and labor, and which accordingly is then susceptible of low prices of sale to the consuming public, thereby making such nebulizer pump adapter economically available to the buying public.
Still another object of the present invention is to provide a new nebulizer pump adapter that provides in the apparatuses and methods of the prior art some of the advantages thereof, while simultaneously overcoming some of the disadvantages normally associated therewith.
Even still another object of the present invention is to provide a nebulizer pump adapter for providing a source of gas flow when a compressed gas tank or electrical air compressor is not available. This allows the use of a hand-operated pump, such as a bicycle pump, to operate a nebulizer.
Still yet another object of the present invention is to provide a nebulizer pump adapter for providing a source of gas flow when a compressed gas tank or electrical air compressor is not available. This makes it possible to administer aerosol medication from a nebulizer under almost any circumstances.
An additional object of the present invention is to provide a nebulizer pump adapter for providing a source of gas flow when a compressed gas tank or electrical air compressor is not available. This ensures that the air entering the nebulizer is not contaminated.
A further object of the present invention is to provide a nebulizer pump adapter for providing a source of gas flow when a compressed gas tank or electrical air compressor is not available. This makes it possible to change the filter while reusing the other parts of the nebulizer pump adapter.
Lastly, it is an object of the present invention to provide a new and improved nebulizer pump adapter for providing a source of gas flow when a compressed gas tank or electrical air compressor is not available.
These together with other objects of the invention, along with the various features of novelty that characterize the invention, are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and the specific objects attained by its uses, reference should be had to the accompanying drawings and descriptive matter in which there is illustrated current embodiments of the invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present application relates to finishing printed labels, and is particularly directed to a thermal transfer ribbon for finishing a printed label and a method of manufacturing a thermal transfer ribbon therefor.
Printed labels obtained from label printers (e.g., laser jet, inkjet, flexographic, or lithographic) are usually laminated with a clear pressure-sensitive overlaminate to provide a finished label. As shown in the known arrangement 10 in FIG. 1, a label is printed at a label printer 12. A separate label laminator 14 then applies a clear pressure-sensitive overlaminate on the printed label to provide a finished label 20 as shown in FIG. 2.
The finished label 20 has a substrate 30 which includes a liner portion 32, an adhesive portion 34, and a label portion 36 on which layer 40 is printed by the label printer 12. The finished label 20 also has an overlaminate 50 which includes an adhesive layer 52 and a polyethylene terephthalate (PET) layer 54 applied by the label laminator 14. During the lamination process, the label laminator 14 applies the overlaminate 50 (i.e., the adhesive layer 52 and the PET layer 54) to the printed layer 40 to provide the finished label 20.
A drawback in the known arrangement 10 shown in FIG. 1 is that the label printer 12 and the label laminator 14 are different pieces of equipment. A label printed by the label printer 12 needs to be physically carried to the label laminator 14 so that the label laminator 14 can apply the clear pressure-sensitive overlaminate to provide the finished label 20 as shown in FIG. 2. Separate processes on two different pieces of equipment are involved in the known arrangement 10 shown in FIG. 1 to provide the finished label 20. It would be desirable to provide a finished label which involves only a single piece of equipment. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a technology for reducing noise in image signals acquired by an image pickup device or the like.
2. Description of the Background Art
With the increasing number of pixels in image pickup devices used in digital cameras, digital movie cameras, and the like, the light receiving area per pixel is becoming smaller and smaller. The reduction in the light receiving area per pixel in an image pickup device causes a decrease in the light receiving sensitivity, and hence, in the signal-to-noise ratio of the captured pixel signal.
An image pickup device having a color filter array known as a single Bayer array outputs an image signal having only one color component per pixel. Therefore, a digital camera having such an image pickup device requires pixel interpolation in which each pixel is converted into a pixel having all color components of the color space.
Under such circumstances in which the light receiving sensitivity of the image pickup device is decreasing, it is essential to perform noise reduction so as to improve the signal-to-noise ratio of pixel signals. In order to eliminate the adverse effect of noise in image signals, it is effective to apply noise reduction to data not yet subjected to pixel interpolation, that is, RAW data.
As described above, it is effective to apply noise reduction to RAW data; however, when the noise reduction is too strong the RAW data loses its original information, thereby possibly causing a decrease in the resolution feeling or other adverse effects.
Such adverse effects are remarkable especially when noise reduction is performed with a well-known filter such as a median filter.
In Japanese Patent Application Laid Open Gazette No. 2006-238060, noise reduction is performed by determining RGB signal levels independently of each other. For example, in the case of R signals, the level difference between a pixel of interest and a neighboring pixel is calculated, and when the level difference exceeds a threshold, the pixel value of the pixel of interest is replaced by the pixel value of the neighboring pixel.
Even the method disclosed in Japanese Patent Application Laid Open Gazette No. 2006-238060 may erroneously replace the pixel value of a high luminance pixel by the pixel value of a neighboring pixel.
In Japanese Patent Application Laid Open Gazette No. 2001-144996, it is determined whether a pixel of interest is a contour component based on the color difference between the pixel of interest and a reference pixel. When the pixel of interest is determined to be a contour component, a median filter is used; otherwise, a smoothing filter is used. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to control systems and methods of controlling the dispensing of items. In particular, the present invention relates to control systems and methods of controlling the dispensing of items from a vibratory dispenser.
2. Description of Related Art
Known control systems and methods of controlling the dispensing of items may be used to operate dispensers that receive and dispense a plurality of items. Known control systems and methods may operate dispensers, so that dispensers may dispense a plurality of items at different rates. Moreover, known control systems and methods may count dispensed items, so that items may be dispensed in predetermined quantities. Known control systems may measure a physical characteristic of dispensed items, e.g., known control systems may weigh dispensed items.
In known control systems, however, the accuracy of the count of dispensed items may be affected by operation of known dispensers. For example, the ability of known control systems to operate dispensers to dispense items singularly, e.g., in a single file, may improve the accuracy of the count of dispensed items. If two or more items are dispensed simultaneously, known control systems may count the items as a single item, thereby undermining the accuracy of the count of dispensed items. Thus, known dispensing control systems may reduce or limit the rate at which items are dispensed in order to improve the accuracy of a count of dispensed items. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an ultrasound diagnostic system and, more particularly, to an ultrasound diagnostic system that allows an examiner and an examinee to view a diagnosis result on different screens through a single display unit by adjusting viewing angles depending on positions of the examiner and the examinee.
2. Description of the Related Art
Generally, an ultrasound diagnostic system refers to a non-invasive apparatus that irradiates an ultrasound signal from a surface of a patient body towards a target internal organ beneath the body surface and obtains an image of a monolayer or blood flow in soft tissue from information in the reflected ultrasound signal (ultrasound echo-signal). The ultrasound diagnostic system has been widely used for diagnosis of the heart, the abdomen, the urinary organs, and in obstetrics and gynecology due to various merits such as small size, low price, real-time image display, and high stability through elimination of radiation exposure, as compared with other image diagnostic systems, such as X-ray diagnostic systems, computerized tomography scanners (CT scanners), magnetic resonance imagers (MRIs), nuclear medicine diagnostic apparatuses, and the like.
The ultrasound diagnostic system transmits an ultrasound signal to a diagnosis target, receives the ultrasound echo-signal reflected therefrom, and displays an ultrasound image, particularly, a two-dimensional grey-scale ultrasound image, on a monitor, which corresponds to a display mode, for example, B-mode, M-mode, Doppler mode, etc., based on the received echo-signal. It should be noted that the above description is provided for understanding the background of the invention and is not a description of a conventional technique.
In diagnosis with the ultrasound diagnostic system, two monitors are used to provide a diagnosis result to both an examiner and an examinee such that the monitors for the examiner and the examinee display the same image or such that the monitor for the examiner displays all necessary information for diagnosis and the monitor for to the examinee displays only an image of the diagnosis result.
As such, separate monitors are needed to provide the diagnosis result to both the examiner and the examinee. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a MOS type semiconductor apparatus, such as a MOS field-effect transistor (hereinafter referred to as xe2x80x9cMOSFETxe2x80x9d) or an insulated gate bipolar transistor (hereinafter referred to as xe2x80x9cIGBTxe2x80x9d), wherein a plurality of source regions having gates of metal-oxide film-semiconductor (MOS) structure are separately formed in a surface layer of a semiconductor substrate.
To produce a MOSFET as one type of MOS type semiconductor device, a p base region is formed by diffusing impurities into a selected area of a surface layer of an n type semiconductor substrate such that a pn junction appears on the surface of the substrate, and an n source region is formed in a surface layer of the p base region in a similar manner. A gate electrode is then formed on an insulating film, over the surface of a channel region provided by a surface layer of the p base region that is interposed between the n source region and the n type semiconductor substrate. Also, a source electrode is formed in contact with both the p base region and the n source region, and a drain electrode is formed on the other surface of the n type semiconductor substrate. By applying a suitable voltage to the gate electrode, an inversion layer appears in the channel region, to reduce resistance between the drain electrode and the source electrode, so that current flows between the drain electrode and the source electrode through the inversion layer.
To produce IGBT as another type of MOS type semiconductor device, an additional p type region is formed on the side of the drain electrode of the MOSFET. With the p type region thus added, the IGBT is capable of modulating the conductivity, utilizing injection of minority carriers.
The MOS type semiconductor devices as described above have been widely used in switching circuits because the devices provide low ON-state resistance and high switching speed, and can be easily controlled by changing voltage applied thereto.
In recent years, MOS type semiconductor devices used as switching elements in switching currents are more likely to receive surge voltage generated in the circuits, because of simplification of the circuits from which snubbers are eliminated, and reduction in the size of the semiconductor devices. When such a MOS type semiconductor device operates to stop current flow from an inductive load, for example, the voltage applied to the semiconductor device increases due to energy stored in an inductor, and may become even higher than the power supply voltage in some cases. The resulting overvoltage stress may cause breakdown of the MOS type semiconductor device. Thus, the semiconductor device used as a switching element has been desired to have an increased breakdown voltage or higher capability to withstand avalanche breakdown.
In the meantime, as a new trend of the MOS type semiconductor device, so-called intelligent devices, in other words, MOS type semiconductor apparatuses including MOS type semiconductor devices, have been used in these days. In this type of apparatus, the semiconductor device is integrated with a circuit that senses overcurrent, temperature, or the like, and feeds detection signals back to the gate. In such a MOS type semiconductor apparatus, it is particularly important to protect its gate and control input terminal against surge voltage.
FIG. 14 is a circuit diagram showing an equivalent circuit of a MOS type semiconductor apparatus provided with an arrangement for protecting the gate.
In this apparatus, a Zener diode 5 is connected between the source S and the gate G of a main MOS type semiconductor device 2. The Zener diode 5 functions to protect the device by bypassing current when overvoltage or excess voltage is applied to the gate G. A resistance 6 functions to prevent high-voltage noise from being applied to the gate G due to disconnection of a gate lead, for example. Between the drain D and the gate G is connected a series Zener diode array 3 in which a large number of pairs of Zener diodes are connected in series such that each pair of diodes are formed back to back. If the voltage applied to the drain D becomes higher than the clamp voltage of the series Zener diode array 3, a difference between the drain voltage and the clamp voltage is applied to the gate G, so as to turn on the main MOS type semiconductor device 2, thereby protecting the device from the overvoltage.
The series Zener diode array 3 connected between the drain D and the gate G is formed using polycrystalline silicon or polysilicon that is deposited on an insulating film over a semiconductor substrate of the MOS type semiconductor apparatus, as disclosed in U.S. Pat. No. 5,365,099.
The inventors of the present invention fabricated an intelligent IGBT that includes a Zener diode between the gate G and the source S for protecting the device against surge voltage, a means for detecting overcurrent, or the like, and an IGBT as a MOS type semiconductor device that provides the output stage. FIG. 15 shows an equivalent circuit of the intelligent IGBT. The gate G of the semiconductor apparatus is connected to a gate (g) of a main IGBT 4 as the output stage, via an internal control circuit 9 for sensing and computing. A Zener diode 5 connected between the gate G and the source S serves to protect the device against surge voltage. When an overvoltage is applied to the gate G, the Zener diode 5 performs a bypassing functions so as to protect the device against the overvoltage. A series Zener diode array 3 having a large number of pairs of Zener diodes is connected between the drain D and the gate g of the main IGBT. Each pair of the Zener diodes are formed back to back, namely, the anodes of each pair of the diodes are connected to each other, and adjacent pairs are connected with corresponding cathodes facing with each other. If a high voltage applied to the drain D becomes higher than the clamp voltage of the series Zener diode array 3, a difference between the drain voltage and the clamp voltage is applied to the gate g of the main IGBT 4, to turn on the main IGBT 4, thereby protecting the device from the overvoltage. A power supply of the internal control circuit 9 is taken from the control input terminal G. In the circuit of FIG. 15, the power supply terminal VDD is directly connected to the control input terminal G. The Zener diode 5 and the series Zener diode array 3 are formed by depositing polysilicon on an insulating film over the semiconductor device.
A surge voltage test was conducted on the device thus fabricated. FIG. 16(a) shows a test circuit, and FIG. 16(b) shows waveforms obtained in the test.
After a switch s1 was closed and a capacitor C was charged by a power supply Vcc, the switch s1 was opened. Then, a switch s2 was closed, and a test voltage was applied to a test device (DUT). The capacitance C was 33 xcexcF, and resistances Ra and Rb were 100 xcexa9 and 75 xcexa9, respectively, while the power supply voltage was varied in the range of 30 to 500 V.
As shown in FIG. 16(b), the waveform of the voltage applied to the test device takes the form of a pulse having a width of about 9ms, which rapidly rises in the initial period, and then gradually decreases.
In the surge voltage test, if the test voltage was increased to be larger than 100 V, some test devices broke down. In many cases, the breakdown occurred at around the Zener diode 5.
The semiconductor apparatus as described above has another problem. To integrate the internal control circuit with the IGBT, the known apparatus employs an isolation structure using an embedded layer as reported by Wrathall, R. S. et al. in Proc. of the Symposium on High Voltage and Smart Power Devices, p.384, (1989), or an SOI isolation structure in which the control circuit is isolated by means of the substrate of the IGBT and an oxide film, for example. These methods, however, requires complicated and numerous process steps, which result in increased cost. In the production of the IGBT as described above, the inventors did not use these methods, but employed a self isolation structure as the simplest one that shortens the fabrication process, when integrating the internal control circuit with the IGBT.
FIG. 17 is a cross-sectional view showing an internal control circuit portion integrated on the MOS type semiconductor apparatus. This portion includes an p+drain layer 21, n+buffer layer 22, n drift layer 23, and a drain electrode 30, which are shared by the IGBT portion of the output stage. A pxe2x88x92 well 34 is formed in a surface layer of the n drift layer 23, and an enhancement-type n charmer MOSFET 51 and a depletion-type n channel MOSFET 61 are formed in and above a surface layer of the pxe2x88x92 well 34. More specifically, n+drain regions 53, 63 are formed in the surface layer of the pxe2x88x92 well 34, and drain electrodes 60, 70 are formed in contact with the surfaces of the n+ drain regions 53, 63, respectively. Also, n+ source regions 56, 66 are formed in the surface layer of the pxe2x88x92 well 34, and source electrodes 59, 69 are formed in contact with the surfaces of the n+ source regions 56, 66. Reference numeral 64 denotes an n channel doped region for controlling the threshold voltage, and 58 and 68 denote gate electrode layers. The drain electrode 70 of the depletion-type n channel MOSFET 61 is connected to the power supply terminal (VDD in FIG. 15) of the internal control circuit.
In the self isolation structure as described above, the p+ drain layer 21, n+ buffer layer 22, n drift layer 23, pxe2x88x92 well 34, and the n+ drain region 63 provides a pnpn four-layer structure. Namely, this structure involves a parasitic thyristor consisting of these four layers. The parasitic thyristor of the internal control circuit portion is forward-biased during the operation of the intelligent IGBT, or when a surge voltage is applied to make the control input terminal (G) negative with respect to the output terminal (S). The parasitic thyristor, when it is forward-biased, latches up as indicated by the arrow 71 in FIG. 17, and may result in breakdown of the device.
It is therefore an object of the present invention to provide a MOS type semiconductor apparatus including a Zener diode(s) for protection against surge voltage, which can be easily manufactured and operate with high reliability, assuring improved capability to withstand surge voltage, and in which a parasitic thyristor is unlikely to latch up.
To accomplish the above object, the present invention provides a MOS type semiconductor apparatus comprising: a semiconductor substrate; a main MOS type semiconductor device including a control portion of a metal-oxide film-semiconductor (MOS) structure; a first output terminal and a second output terminal to which two outputs of the main MOS type semiconductor device are connected; a control input terminal to which a control input of the main MOS type semiconductor device is connected; an internal control circuit connected between the control input terminal and the control input of said main MOS type semiconductor device; and a protecting device connected between the control input terminal and said first output terminal, for protection against overvoltage, the protecting device comprising a first branch including a first Zener diode comprising a polysilicon layer deposited on an insulating film over said semiconductor substrate, and a second branch including a second Zener diode formed in a surface layer of the semiconductor substrate and a third diode comprising a polysilicon layer deposited on an insulating film over the semiconductor substrate, the third diode being connected in series with the second Zener diode in a reverse direction, the first and second branches being connected in parallel with each other.
In the MOS type semiconductor apparatus as described above, the area of the Zener diode portion can be reduced due to the presence of the second Zener diode (Z21) capable of withstanding a high voltage. Further, since the third diode consisting of a polysilicon layer is connected to the second Zener diode in the reverse direction, latch-up of a parasitic thyristor does not occur in the Zener diode portion.
In one preferred form of the invention, the sum of the breakdown voltage of the second Zener diode formed in the surface layer of the semiconductor substrate and the forward voltage of the reverse-connected third diode consisting of the polysilicon layer is made equal to or smaller than the breakdown voltage of the first Zener diode consisting of the polysilicon layer. In this case, the second Zener diode formed in the surface layer of the semiconductor substrate is able to effectively function to withstand a high voltage.
In another preferred form of the invention, the protecting device including the Zener diodes is located between an electrode pad of the control input terminal (G) and an electrode pad of die first output terminal (S), such that two electrodes of the Zener diodes are integrated with the electrode pad of the control input terminal and the electrode pad of the first output terminal, respectively.
If the anode electrode and cathode electrode of the Zener diode are integrated with a source pad and a gate pad, respectively, there is no need to draw wiring around for connection between these electrodes and the electrode pads.
In another preferred form of the invention, a branch in which a resistance and a Zener diode are connected in series is connected between the control input terminal (G) and the first output terminal (S), and a point between the resistance and the Zener diode is connected to the control input of the main MOS type semiconductor device. In a further preferred form of the invention, a plurality of resistances are connected in series between the control input terminal G and the control input of the main MOS type semiconductor device, and a Zener diode is connected between one side of each of the resistances that is closer to the control input of the main MOS type semiconductor device, and the first output terminal (S).
With this arrangement, the breakdown voltage of the Zener diode in the previous stage is applied across the Zener diode and the resistance in the later stage, and therefore the voltage applied to the control input of the main MOS type semiconductor device is reduced by an amount corresponding to a voltage drop across the resistance. If a large number of such stages are provided, the voltage applied to the control input of the main MOS type semiconductor device is reduced as the number of the stages increases.
Also, the forward voltage of the Zener diode in the previous stage is applied across the resistance and the Zener diode in the later stage, so that the forward voltage of the Zener diode in the later stage is applied to the control input of the main MOS type semiconductor device, thus preventing latch-up of a parasitic thyristor in the internal control circuit portion. If a large number of such stages are provided, the voltage applied to the control input of the main MOS type semiconductor device is reduced as the number of the stages increases.
The resistances (R1, R2, xe2x80xa2xe2x80xa2xe2x80xa2) and the Zener diodes (Z5p, Z6p, xe2x80xa2xe2x80xa2xe2x80xa2) are preferably formed of polysilicon. In this case, the semiconductor apparatus does not suffer from latch-up of a parasitic thyristor that would otherwise appear in the Zener diode portion or the internal control circuit portion.
It is also effective to provide a diode (Z4pr) that is formed from a polysilicon layer deposited on an insulating film over the semiconductor substrate and oriented in a reverse direction with respect to the Zener diode (Z1p), on the side of the power supply terminal of the internal control circuit. In this case, latch-up of a parasitic thyristor in the internal control circuit portion can be advantageously prevented.
If the Zener diode or diodes as described above include comb-like electrodes, the Zener diode(s) provides an increased length of pn junction, while requiring a reduced area.
According to the present invention, there is also provided a MOS type semiconductor apparatus, comprising a semiconductor substrate; a main MOS type semiconductor device including a control portion of a metal-oxide film-semiconductor (MOS) structure; a first output terminal and a second output terminal to which two outputs of the main MOS type semiconductor device are connected; a control input terminal to which a control input of the main MOS type semiconductor device is connected; and an internal control circuit connected between the control input terminal and the control input of the main MOS type semiconductor device, the internal control circuit comprising a MOS type semiconductor device that includes a control portion of a metal-oxide film-semiconductor (MOS) structure, and is integrated within a self-isolation region or a junction isolation region formed in a surface layer of the semiconductor substrate, wherein a channel region of the main MOS type semiconductor device is spaced at least 200 xcexcm from a channel region of the MOS type semiconductor device of the internal control circuit.
In the MOS type semiconductor apparatus as described just above, carriers in the main MOS type semiconductor device are kept from flowing into the MOS type semiconductor device of the internal control circuit, and therefore latch-up of a parasitic thyristor can be advantageously prevented.
In particular, an amount of impurities in a self isolation region or junction isolation region formed in a surface layer of the semiconductor substrate is preferably controlled to be in a range of 1xc3x971013 to 1xc3x971014 cmxe2x88x922.
If the amount of the impurities is smaller than 1xc3x971013 cmxe2x88x922, the current amplification factor of a transistor that provides a parasitic thyristor is increased, and the parasitic thyristor is highly likely to latch up, as will be understood from the results of experiments as described later. If the amount of the impurities is greater than 1xc3x971014 cmxe2x88x922, the threshold voltage of the MOS type semiconductor device of the internal control circuit is increased, thus making it impossible to drive the device with a low voltage.
Furthermore, the MOS type semiconductor apparatus may further include a lead electrode that is formed in contact with a surface of the self isolation region or the junction isolation region, and connected to the first output terminal (S), such that the lead electrode is spaced from the channel region of the MOS type semiconductor device of the internal control circuit by a distance of not greater than 100 xcexcm. With this arrangement, the carriers that enter the self isolation region or junction isolation region are ejected or discharged from the lead electrode, and therefore latch-up of a parasitic thyristor can be prevented. | {
"pile_set_name": "USPTO Backgrounds"
} |
Heretofore, it is known that the functions of numerous hormones and neurotransmitters are expressed by an increase in the concentration of adenosine 3xe2x80x2,5xe2x80x2-cyclic monophosphate (cAMP) or guanosine 3xe2x80x2,5xe2x80x2-cyclic monophosphate (cGMP), both of which are the secondary messengers in cells. The cellular concentrations of cAMP and cGMP are controlled by the generation and decomposition thereof, and their decomposition is carried out by phosphodiesterase (PDE). Therefore, when PDE is inhibited, the concentrations of these secondary cellular messengers increase. Up to the present, 8 kinds of PDE isozymes have been found, and the isozyme-selective PDE inhibitors are expected to exhibit pharmaceutical effect based on their physiological significance and distribution in vivo [TiPS, 11, 150 (1990), ibid., 12, 19 (1991), and Biochemical and Biophysical Research Communications, 250, 751 (1998)].
It is known that the activation of inflammatory leukocytes can be suppressed by increasing the concentration of the cellular CAMP. The extraordinary activation of leukocytes causes secretion of inflammatory cytokines such as tumor necrosis factor (TNF), and expression of the cellular adhesion molecules such as intercellular adhesion molecules (ICAM), followed by cellular infiltration [J. Mol. Cell. Cardiol., 12 (Suppl. II), S61 (1989)].
It is known that the contraction of a respiratory smooth muscle can be suppressed by increasing the concentration of the cellular cAMP (T. J. Torphy in Directions for New Anti-Asthma Drugs, eds S. R. O""Donell and C. G. A. Persson, 1988, 37, Birkhauser-Verlag). The extraordinary contraction of a respiratory smooth muscle is a main symptom of bronchial asthma. Infiltration of inflammatory-leukocytes such as neutrophils is observed in lesions of organopathy associated with ischemia-reperfusion such as myocardial ischemia. It has been found that the type IV PDE (PDE IV) mainly participates in the decomposition of cAMP in these inflammatory cells and tracheal smooth muscle cells. Therefore, the inhibitors selective for PDE IV are expected to have therapeutic and/or preventive effect on inflammatory diseases, respiratory obstructive diseases, and ischemic diseases.
The PDE IV inhibitors are expected to prevent the progress and spread of the inflammatory reaction transmitted by inflammatory cytokines such as TNFxcex1 and interleukin (IL)-8, because the PDE IV inhibitors suppress the secretion of these cytokines by increasing the concentration of cAMP. For example, TNFxcex1 is reported to be a factor of insulin-resistant diabetes because it declines the phosphorylating mechanism of insulin receptors in muscle and fat cells [J. Clin. Invest., 94, 1543 (1994)]. Similarly, it is suggested that the PDE IV inhibitors may be useful for autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, and Crohn""s disease because TNFxcex1 participates in the onset and progress of these diseases [Nature Medicine, 1, 211 (1995) and ibid., 1, 244 (1995)].
Further, participation of TNFxcex1 in the fatigued feeling after dialysis and that of patients suffering from cancer has been also reported [International Journal of Artificial Organs, 21, 83 (1998) and Oncology Nursing Forum, 19, 419 (1992)]. Accordingly, a PDE IV inhibitor can be expected to be effective for improvement in fatigue, malaise, and the like.
It has been reported that a drug which increases cAMP promotes the healing of wounds [The 68th Annual Meeting of Japan Pharmacological Society (in Nagoya), Presentation P3-116 (1995)].
PDE-IV inhibitors exhibit a therapeutic effect to carcinomatous osteopenia model, sciatic nerve excision model and ovariectomic model which are animal models for osteoporosis and their possibility as a therapeutic agent for osteoporosis is suggested [Jpn. J. Pharmacol., 79, 477 (1999)].
Relaxation of ureter has been known to promote the excretion of calculus while a PDE IV inhibitor suppresses the vermicular movement of ureter, and therefore, there is a suggestion for the probability that it is effective for the therapy and/or prevention of urinary calculus [J. Urol., 160, 920 (1998)].
Japanese Published Unexamined Patent Application Nos. 95/242543 and 95/242655 disclose 1,4-benzodioxane derivatives as a therapeutic agent for hepatic diseases. WO 92/10494 discloses 1,4-benzodioxane derivatives having an antagonistic action to serotonin (5HT)3 receptors.
In U.S. Pat. No. 5,166,367, 1,4-benzodioxane derivatives having an anti-hallucination action are disclosed.
In Japanese Published Unexamined Patent Application No. 88/179868, 1,4-benzodioxane derivatives having a vasodilating action are disclosed.
AU 521225 discloses 1,4-benzodioxane derivatives as intermediates for the synthesis of cinnamoylpiperazine.
WO 98/22455 discloses 1,4-benzodioxane derivatives having PDE IV inhibitory activity.
The present invention relates to oxygen-containing heterocyclic compounds which have phosphodiesterase (PDE) IV inhibitory activity and which are useful as a therapeutic agent for inflammatory allergic diseases such as bronchial asthma, allergic rhinitis, atopic dermatitis and nephritis; autoimmune diseases such as chronic obstructive pulmonary disease, rheumatism, multiple sclerosis, Crohn""s disease, psoriasis and systemic lupus erythematosus; diseases of the central nervous system such as depression, amnesia and dementia; organopathy associated with ischemia-reperfusion caused by cardiac failure, shock and cerebrovascular disease, and the like; insulin-resistant diabetes; wounds; AIDS; osteoporosis; urinary calculus; urinary incontinence and the like; and as a recuperative agent for fatigue, malaise and the like.
Novel and useful PDE IV inhibitors are expected to have a preventive or therapeutic effect to diseases of a broad range. An object of the present invention is to provide novel oxygen-containing heterocyclic compounds having a bronchodilating or an anti-inflammatory action due to the presence of a PDE IV-selective inhibiting action so that CAMP concentrations in cells are increased.
The present invention relates to oxygen-containing heterocyclic compounds represented by the following formula (I):
wherein m represents an integer of 0 to 4;
R1, R2, R3 and R4 independently represent a hydrogen atom, substituted or unsubstituted lower alkyl, substituted or unsubstituted cycloalkyl, polycycloalkyl, substituted or unsubstituted lower alkoxycarbonyl, substituted or unsubstituted lower alkanoyl, substituted or unsubstituted lower alkanoyloxy, cyano, hydroxy, substituted or unsubstituted lower alkoxy, substituted or unsubstituted lower alkenyl, substituted or unsubstituted cycloalkenyl, substituted or unsubstituted aryl, a substituted or unsubstituted aromatic hetecyclic group, substituted or unsubstituted aralkyl, or xe2x80x94CONR7R8 (wherein R7 and R8 independently represent a hydrogen atom, substituted or unsubstituted lower alkyl, substituted or unsubstituted lower alkanoyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, a substituted or unsubstituted aromatic heterocyclic group or substituted or unsubstituted aralkyl, or R7 and R8 are combined to represent a substituted or unsubstituted heterocyclic group together with the adjacent nitrogen atom); two groups present on the same carbon atom among R1, R2, R3and R4 are combined to represent a saturated Spiro carbon ring together with the said carbon atom; two groups present on the adjacent carbon atoms among R1, R2, R3 and R4 are combined to represent a saturated carbon ring together with the said adjacent two carbon atoms; two groups present on the adjacent carbon atoms among R1, R2, R3 and R4are combined to represent a single bond (forming a double bond together with the already-existing bond)
R5 represents hydroxy, or substituted or unsubstituted lower alkoxy;
R6 represents a hydrogen atom or halogen;
Y represents the following formula (II):
wherein R9 represents cyano, ethynyl or carbamoyl, and R10 represents a hydrogen atom, or R9 and R10 are combined to represent a single bond (forming a double bond together with the already-existing bond), R11 represents hydroxy, formyl, substituted or unsubstituted lower alkoxy, substituted or unsubstituted tetrazolyl, xe2x80x94NR13R14 (wherein R13 and R14 independently represent a hydrogen atom, substituted or unsubstituted lower alkyl, substituted or unsubstituted lower alkanoyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, a substituted or unsubstituted aromatic heterocyclic group or substituted or unsubstituted aralkyl, or R13 and R14 are combined to represent a substituted or unsubstituted heterocyclic group together with the adjacent nitrogen atom), xe2x80x94COOR15 (wherein R15 represents a hydrogen atom, or substituted or unsubstituted lower alkyl), xe2x80x94CONR16R17 (wherein R16 and R17 independently represent a hydrogen atom, substituted or unsubstituted lower alkyl, substituted or unsubstituted lower alkanoyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, a substituted or unsubstituted aromatic heterocyclic group, or substituted or unsubstituted aralkyl, or R16 and R17 are combined to represent a substituted or unsubstituted heterocyclic group together with the adjacent nitrogen atom), or xe2x80x94CH2COOR18 (wherein R18 represents a hydrogen atom or substituted or unsubstituted lower alkyl), R12 represents a hydrogen atom, or substituted or unsubstituted lower alkoxy, or R11 and R12 are combined together to represent xe2x80x94OCH2(CH2)pOxe2x80x94 (wherein p represents an integer of 1 to 3), xe2x80x94CR19R20Oxe2x80x94 (wherein R19 and R20 independently represent a hydrogen atom or cyano), xe2x95x90CHOR21 (wherein R21 represents substituted or unsubstituted lower alkyl, substituted or unsubstituted lower alkenyl, or substituted or unsubstituted aralkyl), xe2x95x90CHCOOR22 (wherein R22 represents a hydrogen atom, or substituted or unsubstituted lower alkyl) or xe2x95x90O; the following formula (III):
wherein n represents an integer of 0 to 4, X represents CH2, NR23 (wherein R23 represents a hydrogen atom, substituted or unsubstituted lower alkyl, substituted or unsubstituted lower alkanoyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, a substituted or unsubstituted aromatic heterocyclic group, or substituted or unsubstituted aralkyl) or O; the following formula (IV):
wherein Z1xe2x80x94Z2xe2x80x94Z3 represents Oxe2x80x94Nxe2x95x90CH, Sxe2x80x94Nxe2x95x90CH, Oxe2x80x94CHxe2x95x90CH, Sxe2x80x94CHxe2x95x90CH, Nxe2x95x90CHxe2x80x94S, Nxe2x95x90CHxe2x80x94O, C(xe2x95x90O)xe2x80x94NHxe2x80x94NH, C(xe2x95x90O)xe2x80x94Nxe2x95x90N, C(xe2x95x90O)xe2x80x94CH2xe2x80x94C(xe2x95x90O), C(xe2x95x90O)xe2x80x94NRaxe2x80x94C(xe2x95x90O) (wherein Ra represents a hydrogen atom, substituted or unsubstituted lower alkyl, or substituted or unsubstituted aralkyl) or CH2xe2x80x94NRbxe2x80x94C(xe2x95x90O) (wherein Rb represents a hydrogen atom, substituted or unsubstituted lower alkyl, or substituted or unsubstituted aryl); 2,1,3-benzothiadiazolyl; or 2,1,3-benzofurazanyl; or
pharmaceutically acceptable salts thereof.
The present invention relates to oxygen-containing heterocyclic compounds wherein Y in the formula (I) is the formula (II) or pharmaceutically acceptable salts thereof. Among the above, oxygen-containing heterocyclic compounds wherein R9 is cyano or pharmaceutically acceptable salts thereof are preferred.
In the present invention, oxygen-containing heterocyclic compounds wherein m is 0 to 2 in the formula (I) or pharmaceutically acceptable salts thereof, oxygen-containing heterocyclic compounds wherein all of R1, R2, R3 and R4 are hydrogen atoms or pharmaceutically acceptable salts thereof and oxygen-containing heterocyclic compounds wherein one group among R1, R2, R3 and R4 is substituted or unsubstituted lower alkyl while other three groups are hydrogen atoms or pharmaceutically acceptable salts thereof are preferred examples as well.
Further, in the above-mentioned compounds group, oxygen-containing heterocyclic compounds wherein R11 represents carboxy or hydroxy, or R11 and R12 are combined together to represent xe2x95x90O or pharmaceutically acceptable salts thereof are preferred as well.
Furthermore, oxygen-containing heterocyclic compounds wherein Y in the formula (I) is the formula (III) or pharmaceutically acceptable salts thereof are preferred as well. Still further, among the above, oxygen-containing heterocyclic compounds wherein n is 1 or pharmaceutically acceptable salts thereof and oxygen-containing heterocyclic compounds wherein X is CH2 or pharmaceutically acceptable salts thereof are preferred.
The present invention further relates to a pharmaceutical composition comprising an effective amount of at least one oxygen-containing heterocyclic compound represented by the formula (I) together with a pharmaceutically acceptable carrier or diluent.
The present invention furthermore relates to a method of inhibiting phosphodiesterase (PDE) IV, which comprises administering an effective dose of at least one oxygen-containing heterocyclic compound represented by the formula (I) or a pharmaceutically acceptable salt thereof.
Hereinafter, the compounds represented by the formula (I) are referred to as a compound (I). The same applies to the compounds of other formula numbers.
In the definitions of the groups in the formula (I), the lower alkyl and the lower alkyl moiety of the lower alkoxy, the lower alkanoyl, the lower alkanoyloxy and the lower alkoxycarbonyl include straight-chain or branched alkyl groups having 1 to 8 carbon atom(s) such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl and octyl; the cycloalkyl includes cycloalkyl groups having 3 to 10 carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl and cyclodecyl; and the polycycloalkyl includes polycycloalkyl groups having 5 to 12 carbon atoms such as bicyclo[3.2.1]octyl, bicyclo[4.3.2]undecyl, adamantyl and noradamantyl. The lower alkenyl includes straight-chain or branched alkenyl groups having 2 to 8 carbon atoms such as vinyl, 1-propenyl, allyl, methacryl, 1-butenyl, crotyl, pentenyl, isoprenyl, hexenyl, heptenyl and octenyl; and the cycloalkenyl includes cycloalkenyl groups having 4 to 10 carbon atoms such as cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, cyclononenyl and cyclodecenyl. The aryl includes phenyl and naphthyl for example; and the aralkyl includes aralkyl groups having 7 to 15 carbon atoms such as benzyl, phenethyl, benzhydryl and naphthylmethyl. The aromatic heterocyclic group includes 5- or 6-membered monocyclic aromatic heterocyclic groups having 1 to 2 oxygen atom(s), 5- or 6-membered monocyclic aromatic heterocyclic groups having 1 to 2 sulfur atom(s), 5- or 6-membered monocyclic aromatic heterocyclic groups having 1 to 4 nitrogen atom(s), condensed bicyclic aromatic heterocyclic groups consisting of 5- and 6-membered rings and condensed bicyclic aromatic heterocyclic groups consisting of 6- and 6-membered rings, where oxygen, sulfur and nitrogen may be mixedly present therein. Specific examples thereof include furyl, thienyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, quinolyl, isoquinolyl, phthalazinyl, quinazolinyl, quinoxalinyl, naphthylidinyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, thiazolyl, oxazolyl, indolyl, indazolyl, benzimidazolyl, benzotriazolyl and purinyl.
The heterocyclic group which is formed together with the adjacent nitrogen atom includes 5-, 6- or 7-membered monocyclic heterocyclic groups and condensed heterocyclic groups consisting of 6- and 6-membered rings, such as pyrrolidinyl, piperidino, piperazinyl, morpholino, thiomorpholino, homopiperidino, homopiperazinyl, tetrahydropyridyl, tetrahydroquinolyl and tetrahydroisoquinolyl.
The saturated spiro carbon ring which is formed by two groups present on the same carbon atom together with the said carbon atom and the saturated carbon ring which is formed by two groups present on the adjacent carbon atoms together with the said two carbon atoms include those having 3 to 10 carbon atoms such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclononane and cyclodecane. Halogen includes fluorine, chlorine, bromine and iodine atoms.
The substituents in the substituted lower alkyl, the substituted lower alkoxy, the substituted lower alkoxycarbonyl, the substituted lower alkanoyl, the substituted lower alkanoyloxy, the substituted lower alkenyl, the substituted cycloalkyl and the substituted cycloalkenyl are the same or different 1 to 3 substituent(s), such as lower alkyl, lower alkenyl, cyano, cycloalkyl, cycloalkenyl, hydroxy, lower alkoxy, carboxy and halogen where the lower alkyl, the lower alkenyl, the cycloalkyl, the cycloalkenyl, the lower alkoxy and the halogen each have the same meanings as defined above.
The substituents in the substituted aryl, the substituted tetrazolyl, the substituted aromatic heterocyclic group, the substituted heterocyclic group which is formed together with the adjacent nitrogen atom and the substituted aralkyl are the same or different 1 to 3 substituent(s), such as substituted or unsubstituted lower alkyl, hydroxy, lower alkoxy, lower alkanoyl, lower alkoxycarbonyl, carboxy, carbamoyl, trifluoromethyl, amino, mono- or di-lower alkyl-substituted amino, cyano, nitro and halogen. The lower alkyl, the lower alkyl moiety of the lower alkoxy, the lower alkanoyl, the lower alkoxycarbonyl and the mono- or di-lower alkyl-substituted amino and the halogen each have the same meanings as defined above where the substituent(s) in the substituted lower alkyl has/have the same meaning(s) as defined above.
The pharmaceutically acceptable salts of the compound (I) include pharmaceutically acceptable acid addition salts, metal salts, ammonium salts, and organic amine addition salts.
The pharmaceutically acceptable acid addition salts of the compound (I) include inorganic acid addition salts such as a hydrochloride, a sulfate, a nitrate, and a phosphate, and organic acid addition salts such as an acetate, a maleate, a fumarate, and a citrate; the pharmaceutically acceptable metal salts include alkali metal salts such as a sodium salt and a potassium salt, alkaline earth metal salts such as a magnesium salt and a calcium salt, an aluminium salt, and a zinc salt; the pharmaceutically acceptable ammonium salts include ammonium and tetramethylammonium; and the pharmaceutically acceptable organic amine addition salts include an addition salt with morpholine or piperidine.
Processes for preparing the compound (I) are described below.
Producing method: The compound (I) can be obtained according to the following process.
Process 1
(In the formulae, m, R1, R2, R3, R4, R5 and R6 have the same meanings as defined above.)
The starting compound (V) can be obtained by a known method [Khimiya Geterotsiklicheskikh Soedinenii, 12, 1614 (1982), etc.] or by a method similar thereto.
After the formyl group of the compound (V) is directly converted to the corresponding halogenated methyl derivative or after the formyl group of the compound (V) is reduced and the resulting hydroxymethyl derivative is converted to the corresponding halide or sulfonate derivative, it is reacted with a metal cyanide whereupon the compound (VI) can be obtained.
The compound (V) is reacted with one equivalent to a large excess of trialkylsilyl halide or triarylsilane halide, or with one equivalent to a large excess of a halogenated salt and one equivalent to a large excess of trimethylsilyl chloride in an inert solvent at the temperature between xe2x88x9250xc2x0 C. and the boiling point of the used solvent for 5 minutes to 5 hours, followed by treatment with one equivalent to a large excess of a reducing agent at the temperature between xe2x88x9250xc2x0 C. and the boiling point of the used solvent for 5 minutes to 48 hours, whereupon the corresponding halide can be obtained.
Alternatively, the compound (V) is treated with one equivalent to a large excess of a reducing agent in an inert solvent at the temperature between xe2x88x9250xc2x0 C. and the boiling point of the used solvent for 5 minutes to 48 hours whereby the corresponding hydroxylmethyl derivative is obtained. The resulting hydroxylmethyl derivative is reacted with one equivalent to a large excess of a halogenating agent in an inert solvent at the temperature between xe2x88x9230xc2x0 C. and the boiling point of the used solvent for 5 minutes to 120 hours to give the corresponding halide.
Alternatively, the resulting hydroxymethyl derivative is treated with one equivalent to a large excess of an alkylsulfonyl chloride or an arylsulfonyl chloride in the presence of one equivalent to a large excess of a base in an inert solvent at the temperature between xe2x88x9230xc2x0 C. and the boiling point of the used solvent for 5 minutes to 120 hours whereby the corresponding sulfonate derivative is obtained.
The resulting halide or sulfonate derivative is treated with one equivalent to a large excess of a metal cyanide in an insert solvent at the temperature between xe2x88x9230xc2x0 C. and the boiling point of the used solvent for 5 minutes to 120 hours whereupon the compound (VI) can be obtained.
Examples of the trialkylsilyl halide or the triarylsilyl halide are trimethylsilyl chloride, trimethylsilyl bromide, trimethylsilyl iodide, triethylsilyl chloride, dimethylethylsilyl chloride and triphenylsilyl chloride.
Examples of the halogenated salt are lithium bromide, sodium bromide, potassium bromide, lithium chloride, sodium chloride, potassium chloride, lithium iodide, sodium iodide and potassium iodide.
Examples of the reducing agent are 1,1,3,3-tetramethyldisiloxane, triethylsilane, sodium borohydride, sodium cyanoborohydride, sodium triacetoxyborohydride and lithium aluminum hydride.
Examples of the halogenating agent are hydrochloric acid, hydrogen bromide, hydrogen iodide, thionyl chloride, phosphorus oxychloride and phosphorus tribromide.
Examples of the base are triethylamine, N,N-diisopropylethylamine, 1,8-diazabicyclo[5.4.0]-7-undecene (hereinafter, abbreviated as DBU), potassium carbonate and sodium hydride.
Examples of the alkylsulfonyl chloride or arylsulfonyl chloride are methanesulfonyl chloride, p-toluenesulfonyl chloride and benzenesulfonyl chloride.
Examples of the metal cyanide are sodium cyanide, potassium cyanide and copper cyanide.
Examples of the inert solvent are tetrahydrofuran (hereinafter, abbreviated as THF), dioxane, 1,2-dimethoxyethane, diethyl ether, acetonitrile, dimethylformamide (hereinafter, abbreviated as DMF), dimethyl sulfoxide (hereinafter, abbreviated as DMSO), methanol, ethanol, propanol, dichloromethane, chloroform, benzene, toluene, pyridine and ethyl acetate.
Process 2
(In the formulae, m, R1, R2, R3, R4, R5 and R6 have the same meanings as defined above and R24 stands for the lower alkyl having the same meaning as defined above.)
The compound (VIII) can be obtained by the following method.
The compound (VI) is treated with the compound (VII) in an inert solvent in the presence of a catalytic amount to a large excess amount of a base at the temperature between 0xc2x0 C. and the boiling point of the used solvent for 5 minutes to 48 hours whereby the compound (VIII) can be obtained.
Examples of the base are benzyltrimethylammonium hydroxide (Triton B), sodium hydroxide, potassium hydroxide, sodium hydride, potassium hydride, sodium methoxide, lithium diisopropylamide (hereinafter, abbreviated as LDA), pyridine, potassium tert-butoxide, DBU, triethylamine and diisopropylethylamine.
Examples of the inert solvent are THF, dioxane, diethyl ether, methanol, ethanol, 1-propanol, 2-propanol, n-butanol, tert-butyl alcohol, pyridine, acetonitrile, DMF, DMSO, 1,2-dimethoxyethane, diethylene glycol methyl ether, dichloromethane, chloroform, benzene and toluene.
Process 3
(In the formulae, m, R1, R2, R3, R4, R5, R6 and R24 have the same meanings as defined above.)
The compound (IX) can be obtained by the following method from the compound (VIII).
The compound (VIII) is treated in an inert solvent in the presence of one equivalent to a large excess of a base at the temperature between 0xc2x0 C. and the boiling point of the used solvent for 5 minutes to 48 hours whereupon the compound (IX) can be obtained.
Examples of the base are sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, LDA, pyridine, potassium tert-butoxide, DBU, triethylamine and diisopropylethylamine.
Examples of the inert solvent are THF, dioxane, pyridine, diethyl ether, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, tert-butyl alcohol, acetonitrile, DMF, DMSO, 1,2-dimethoxyethane, diethylene glycol methyl ether, dichloromethane, chloroform, benzene and toluene.
Process 4
(In the formulae, m, R1, R2, R3, R4, R5, R6 and R24 have the same meanings as defined above.)
The compound (Ia) can be obtained according to the following reaction step.
The compound (IX) is treated in an inert solvent in the presence of one equivalent to a large excess of water at the temperature between 60xc2x0 C. and the boiling point of the used solvent for 5 minutes to 120 hours whereupon the compound (Ia) can be obtained. If necessary, a catalytic amount to an excess amount of a salt such as sodium chloride, lithium chloride, sodium iodide, lithium iodide or sodium cyanide may be added thereto.
Examples of the inert solvent are dioxane, toluene, DMF, DMSO, tert-butyl alcohol, acetonitrile, 1,2-dimethoxyethane, diethylene glycol methyl ether, ethylene glycol, triethylene glycol and water.
Process 5
(In the formulae, m, R1, R2, R3, R4, R5 and R6 have the same meanings as defined above.)
The compound (X) can be obtained according to the following reaction step.
2-Trimethylsilyl-1,3-dithiane is treated with a base in an inert solvent at the temperature between xe2x88x92100xc2x0 C. and 0xc2x0 C., followed by reaction with the compound (Ia) at the temperature between xe2x88x92100xc2x0 C. and 30xc2x0 C. for 1 minute to 12 hours whereupon the compound (X) can be obtained.
Examples of the base are sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide, sodium methoxide, butyl lithium, LDA, lithium bistrimethylsilylamide, sodium bistrimethylsilylamide, potassium bistrimethylsilylamide, potassium tert-butoxide, DBU, triethylamine, diisopropylethylamine and ethyl magnesium bromide.
Examples of the inert solvent are THF, dioxane, diethyl ether, 1,2-dimethoxyethane and diisopropyl ether.
Process 6
(In the formulae, m, R1, R2, R3, R4, R5 and R6 have the same meanings as defined above and R25 represents the same lower alkyl as defined above.)
The compound (Ib) can be obtained according to the following reaction step.
The compound (X) is treated in a solvent [with regard to the said solvent, a lower alcohol which will be mentioned later may be used solely or as a mixed solvent containing the lower alcohol (dioxane/lower alcohol, THF/lower alcohol, and the like); and the said lower alcohol also acts as a reagent for esterifying the carboxyl group which is obtained by the reaction] in the presence of one equivalent to an excess amount of a divalent mercury salt and an acid at the temperature between 0xc2x0 C. and the boiling point of the used solvent for 5 minutes to 48 hours whereupon the compound (Ib) can be obtained.
Examples of the divalent mercury salt are mercury chloride (HgCl2) and mercury acetate [Hg(OCOCH3)2]. Examples of the acid are perchloric acid, sulfuric acid, hydrochloric acid, trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid and boron trifluoride.
Examples of the solvent are lower alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, tert-butyl alcohol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, and the like), a mixed solvent of dioxane/a lower alcohol (wherein the lower alcohol has the same meaning as defined above) and a mixed solvent of THF/a lower alcohol (wherein the lower alcohol has the same meaning as defined above).
Process 7
(In the formulae, m, R1, R2, R3, R4, R5, R6 and R25 have the same meanings as defined above.)
The compound (Ic) can be obtained according to the following reaction step.
The compound (Ib) is treated with an aqueous solution of an alkali in an inert solvent at the temperature between 0xc2x0 C. and the boiling point of the used solvent for 5 minutes to 48 hours whereupon the compound (Ic) can be obtained.
Examples of the aqueous solution of an alkali are aqueous solutions of sodium hydroxide, potassium hydroxide and lithium hydroxide while examples of the inert solvent are ethanol, dioxane, methanol, THF, a mixed solvent of ethanol/THF, a mixed solvent of methanol/THF, and DMSO.
Process 8
(In the formulae, m, R1, R2, R3, R4, R5 and R6 have the same meanings as defined above.)
The compound (Id) can be obtained according to the following reaction step.
One equivalent to an excess amount of methoxymethyl-triphenylphosphonium chloride is treated with one equivalent to an excess amount of a base in an inert solvent at the temperature between xe2x88x92100xc2x0 C. and the boiling point of the used solvent, followed by reaction with the compound (Ia) at the temperature between xe2x88x92100xc2x0 C. and the boiling point of the used solvent for 5 minutes to 12 hours whereupon the compound (Id) can be obtained.
Examples of the base are sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide, sodium methoxide, butyl lithium, LDA, lithium bistrimethylsilylamide, sodium bistrimethylsilylamide, potassium bistrimethylsilylamide, potassium tert-butoxide, DBU, sodium amide and sodium ethoxide.
Examples of the inert solvent are THF, dioxane, diethyl ether, 1,2-dimethoxyethane, DMF and diisopropyl ether.
Process 9
(In the formulae, m, R1, R2, R3, R4, R5 and R6 have the same meanings as defined above.)
The compound (Ie) can be obtained according to the following reaction step.
The compound (Id) is treated with a catalytic amount to an excess amount of an acid in the absence of a solvent or in an inert solvent at the temperature between 0xc2x0 C. and the boiling point of the used solvent for 5 minutes to 48 hours whereupon the compound (Ie) can be obtained.
Examples of the acid are hydrochloric acid, sulfuric acid, acetic acid, trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid, 10-camphorsulfonic acid, boron trifluoride and aluminum chloride.
Examples of the inert solvent are THF, acetone, acetonitrile, methanol, ethanol, dioxane and a mixed solvent of such an inert solvent with water.
Process 10
(In the formulae, m, R1, R2, R3, R4, R5 and R6 have the same meanings as defined above.)
The compound (If) can be obtained according to the following reaction step.
The compound (Ia) is treated with one equivalent to a large excess of trimethylsulfoxonium iodide or trimethylsulfonium iodide in the presence of one equivalent to a large excess of a base in an inert solvent at the temperature between xe2x88x9230xc2x0 C. and the boiling point of the used solvent for 5 minutes to 48 hours whereupon the compound (If) can be obtained.
Examples of the base are sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide, sodium methoxide, butyl lithium, LDA, lithium bistrimethylsilylamide, sodium bistrimethylsilylamide, potassium bistrimethylsilylamide, potassium tert-butoxide, DBU, sodium amide and sodium ethoxide.
Examples of the inert solvent are THF, dioxane, diethyl ether, 1,2-dimethoxyethane, DMF and diisopropyl ether.
Process 11
(In the formulae, m, R1, R2, R3, R4, R5 and R6 have the same meanings as defined above.)
The compound (Ie) can be obtained according to the following reaction step.
The compound (If) is treated with one equivalent to an excess amount of an acid in the absence of a solvent or in an inert solvent at the temperature between 0xc2x0 C. and the boiling point of the used solvent for 5 minutes to 48 hours whereupon the compound (Ie) can be obtained.
Examples of the acid are hydrochloric acid, sulfuric acid, hydrogen bromide, magnesium chloride, magnesium bromide, lithium bromide, trifluoroacetic acid, lithium perchlorate, p-toluenesulfonic acid, methanesulfonic acid, 10-camphorsulfonic acid, boron trifluoride, aluminum chloride and silica gel.
Examples of the inert solvent are THF, acetone, acetonitrile, methanol, ethanol and dioxane.
Process 12
(In the formulae, m, R1, R2, R3, R4, R5 and R6 have the same meanings as defined above.)
The compound (Ic) can be obtained according to the following reaction step.
The compound (Ie) is treated with one equivalent to an excess amount of an oxidizing agent in an inert solvent at the temperature between 0xc2x0 C. and the boiling point of the used solvent for 5 minutes to 48 hours whereupon the compound (Ic) can be obtained.
Examples of the oxidizing agent are sodium chlorite, potassium permanganate and hydrogen peroxide.
When sodium chlorite is used as an oxidizing agent, one equivalent to an excess amount of 2-methyl-2-butene, sulfamic acid, DMSO, an aqueous solution of hydrogen peroxide, or the like may be added if necessary, or further, one equivalent to an excess amount of sodium dihydrogen phophate may be added thereto.
Examples of the inert solvent are tert-butyl alcohol, acetic acid, DMSO, acetone and acetonitrile.
Process 13
(In the formulae, m, R1, R2, R3, R4, R5 and R6 have the same meanings as defined above.)
The compound (Ig) can be obtained according to the following reaction step.
The compound (Ia) is treated with one equivalent to a large excess of chloroacetonitrile in the presence of one equivalent to a large excess of a base in an inert solvent at the temperature between xe2x88x9210xc2x0 C. and the boiling point of the used solvent for 5 minutes to 48 hours whereupon the compound (Ig) can be obtained. If necessary, a catalytic amount to an excess amount of a salt such as benzyltriethylammonium chloride, benzyltriethylammonium bromide, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium bromide, tetraethylammonium chloride or triethylmethylammonium bromide may be added thereto.
Examples of the base are potassium carbonate, sodium carbonate, sodium hydride, potassium hydride, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium methoxide, butyl lithium, potassium tert-butoxide, DBU and sodium ethoxide.
Examples of the inert solvent are methanol, ethanol, 1-propanol, 2-propanol, tert-butyl alcohol, ethyl acetate, toluene, THF, 1,2-dimethoxyethane, DMF, DMSO and diisopropyl ether.
Process 14
(In the formulae, m, R1, R2, R3, R4, R5 and R6 have the same meanings as defined above.)
The compound (Ic) can be obtained according to the following reaction step.
The compound (Ig) is treated with one equivalent to an excess amount of magnesium bromide or lithium bromide in the absence of a solvent or in an inert solvent in the presence of one equivalent to an excess amount of water at the temperature between 0xc2x0 C. and the boiling point of the used solvent for 5 minutes to 48 hours whereupon the compound (Ic) can be obtained.
Examples of the inert solvent are THF, DMF, acetone, acetonitrile, methanol, ethanol, dioxane and a mixed solvent of DMF/acetonitrile.
Process 15
(In the formulae, m, R1, R2, R3, R4, R5, R6, R11 and R12 each have the same meanings as defined above and L1 represents chlorine, bromine or iodine.)
The compound (XIII) can be obtained according to the following reaction step.
The starting compound (XI) can be obtained according to a known method (WO 98/22455) or a method similar thereto. A commercially available compound can be used as the compound (XII).
The compound (XI) is treated with one equivalent to an excess amount of a base in an inert solvent at the temperature between xe2x88x92100xc2x0 C. and room temperature for 5 minutes to 10 hours, followed by reaction with one equivalent to an excess amount of the compound (XII) at the temperature between xe2x88x92100xc2x0 C. and room temperature for 5 minutes to 30 hours whereupon the compound (XIII) can be obtained. If necessary, tetramethylethylenediamine, cerium chloride, or the like may be added thereto.
Examples of the base are lithium, magnesium, methyl lithium, methyl magnesium bromide, ethyl magnesium bromide and butyl lithium.
Examples of the inert solvent are THF, dioxane, diethyl ether, 1, 2-dimethoxyethane, diethylene glycol dimethyl ether, benzene, toluene and hexane.
Process 16
(In the formulae, m, R1, R2, R3, R4, R5, R6, R11 and R12 have the same meanings as defined above.)
The compound (Ih) can be obtained according to the following reaction step.
The compound (XIII) is treated with one equivalent to an excess amount of an acid in the absence of a solvent or in an inert solvent at the temperature between 0xc2x0 C. and the boiling point of the used solvent for 5 minutes to 48 hours whereupon the compound (Ih) can be obtained. If necessary, water may be added thereto.
Examples of the acid are hydrochloric acid, sulfuric acid, 10-camphorsulfonic acid, acetic acid, formic acid, trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid, boron trifluoride and aluminum chloride.
Examples of the inert solvent are THF, acetone, acetonitrile, toluene, xylene, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butyl alcohol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol and dioxane.
Process 17
(In the formulae, m, R1, R2, R3, R4, R5, R6, R11 and R12 have the same meanings as defined above.)
The compound (Ii) can be obtained according to the following reaction step.
The compound (XIII) is treated with one equivalent to an excess amount of a cyanide in the presence of one equivalent to an excess amount of an acid in an inert solvent at the temperature between xe2x88x92100xc2x0 C. and the boiling point of the used solvent for 5 minutes to 48 hours whereupon the compound (Ii) can be obtained.
Examples of the acid are hydrochloric acid, sulfuric acid, 10-camphorsulfonic acid, acetic acid, formic acid, trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid, titanium tetrachloride, boron trifluoride and aluminum chloride.
Examples of the cyanide are trimethylsilyl cyanide, sodium cyanide and potassium cyanide.
Examples of the inert solvent are THF, dioxane, diethyl ether, 1,2-dimethoxyethane, methanol, ethanol, acetonitrile, dichloromethane, 1, 2-dichloroethane, chloroform and toluene.
Process 18
(In the formulae, m, p, R1, R2, R3, R4, R5 and R6 have the same meanings as defined above.)
The compound (Ia) can be obtained according to the following reaction step.
The starting compound (Iia) can be synthesized in such a manner that a compound (XIII) wherein R11 and R12 have a ketal structure is obtained using a compound (XII) wherein R11 and R12 have a ketal structure as a starting material in Process 15 and a method mentioned in Process 17 is applied using the compound (XIII) wherein R11 and R12 have a ketal structure as a starting material.
The compound (Iia) is treated with one equivalent to an excess amount of an acid in the absence of a solvent or in an inert solvent at the temperature between 0xc2x0 C. and the boiling point of the used solvent for 5 minutes to 48 hours whereupon the compound (Ia) can be obtained.
Examples of the acid are hydrochloric acid, sulfuric acid, 10-camphorsulfonic acid, acetic acid, formic acid, trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid, boron trifluoride and aluminum chloride.
Examples of the inert solvent are THF, acetone, acetonitrile, toluene, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butyl alcohol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, dioxane and a mixed solvent of such an insert solvent with water.
Process 19
(In the formulae, m, R1, R2, R3, R4, R5 and R6 have the same meanings as defined above.)
The compound (Ij) can be obtained according to the following reaction step.
The compound (Ia) is treated with one equivalent to an excess amount of a reducing agent in an inert solvent at the temperature between xe2x88x92100xc2x0 C. and the boiling point of the used solvent for 5 minutes to 48 hours whereupon the compound (Ij) can be obtained.
Examples of the reducing agent are 1,1,3,3-tetramethyldisiloxane, triethylsilane, sodium borohydride, sodium cyanoborohydride, sodium triacetoxyborohydride and lithium aluminum hydride.
Examples of the inert solvent are methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butyl alcohol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol and dioxane.
Process 20
(In the formulae, m, n, R1, R2, R3, R4, R5, R6, L1 and X each have the same meanings as defined above, and L2 represents chlorine, bromine, iodine or a trifluoromethanesulfonate group.)
The compound (Ik) can be obtained according to the following reaction step.
With regard to the compound (XIV), the commercially available one may be used or it may be obtained according to a known method [Tetrahedron Lett., 30, 5499 (1992)].
After the compound (XI) is treated with a base in an inert solvent at the temperature between xe2x88x92100xc2x0 C. and room temperature for 5 minutes to 10 hours, the resulting compound is treated with a metal halide or a boron compound at the temperature between xe2x88x92100xc2x0 C. and the boiling point of the used solvent for 5 minutes to 30 hours, followed by further reaction with the compound (XIV) in an inert solvent in the presence of a catalytic amount to an excess amount of a palladium complex at the temperature between room temperature and the boiling point of the used solvent for 5 minutes to 30 hours whereupon the compound (Ik) can be obtained. Incidentally, in the above reaction which is carried out in the presence of a catalytic amount to an excess amount of a palladium complex, a salt such as lithium chloride or silver oxide may be added, if necessary.
Examples of the base are lithium, magnesium, methyl lithium, methyl magnesium bromide, ethyl magnesium bromide and butyl lithium.
Examples of the metal halide are halogenated alkyl tin derivatives such as chlorotributyltin and chlorotrimethyltin and halogenated zinc derivatives such as zinc chloride, zinc bromide and zinc iodide while examples of the boron compound are trimethyl borate, triisopropyl borate, tributyl borate, triethyl borate and borane.
Examples of the palladium complex are tetrakis(triphenylphosphine)palladium, dichlorobis(triphenylphosphine)palladium, dichlorobis(acetonitrile)palladium, [1,1xe2x80x2-bis(diphenylphosphino)ferrocene]dichloropalladium and palladium acetate.
Examples of the inert solvent used in the reaction with a metal halide or a boron compound are THF, dioxane, diethyl ether, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, benzene, toluene and hexane.
Examples of the inert solvent used in the reaction in the presence of a palladium complex are THF, dioxane, diethyl ether, ethylene glycol, triethylene glycol, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, methanol, ethanol, 1-butanol, 2-propanol, dichloromethane, chloroform, acetonitrile, benzene, toluene, dimethylacetamide, DMF and DMSO.
Process 21
(In the formulae, m, R1, R2, R3, R4, R5, R6, L1 and Z1xe2x80x94Z2xe2x80x94Z3 each have the same meanings as defined above, Z4 represents an oxygen atom or a sulfur atom, and L3 and L4 represent chlorine, bromine, iodine or a trifluoromethanesulfoxy group.)
The compound (Im) and the compound (In) can be obtained according to the following reaction step.
With regard to the compound (XV) and the compound (XVI), the commercially available ones may be used or they may be obtained according to known methods [J. Chem. Soc., Perkin Trans. 1, 1954 (1973); J. Org. Chem., 60(7), 1936 (1995); Tetrahedron Lett., 30(42), 7719 (1994); Chem. Pharm. Bull., 40(10), 2597 (1992); J. Heterocyclic Chem., 7, 815 (1970); J. Chem. Soc. Chem. Comm., 1183 (1985); etc.]
The compound (XI) is treated with a base in an inert solvent at the temperature between xe2x88x92100xc2x0 C. and room temperature for 5 minutes to 10 hours, followed by reaction with a metal halide or a boron compound at the temperature between xe2x88x92100xc2x0 C. and the boiling point of the used solvent for 5 minutes to 30 hours. The resulting compound is treated with the compound (XV) in an inert solvent in the presence of a catalytic amount to an excess amount of a palladium complex or a nickel complex at the temperature between room temperature and the boiling point of the used solvent for 5 minutes to 30 hours whereby the compound (Im) can be obtained. Incidentally, when the compound (XVI) is used instead of the compound (XV) and the same reaction as in the case of the compound (XV) is carried out, the compound (In) is obtained.
In the above-mentioned reaction carried out in the presence of a catalytic amount to an excess amount of a palladium complex or a nickel complex, a salt such as lithium chloride or silver oxide may be added thereto, if necessary.
Examples of the base are lithium, magnesium, methyl lithium, methyl magnesium bromide, ethyl magnesium bromide and butyl lithium.
Examples of the metal halide are halogenated alkyl tin derivatives such as chlorotributyltin and chlorotrimethyltin and halogenated zinc derivatives such as zinc chloride, zinc bromide and zinc iodide while examples of the boron compound are trimethyl borate, triisopropyl borate, tributyl borate, triethyl borate and borane.
Examples of the palladium complex are tetrakis(triphenylphosphine)palladium, dichlorobis(triphenylphosphine)palladium, dichlorobis(acetonitrile)palladium, [1,1xe2x80x2-bis(diphenylphosphino)ferrocene]dichloropalladium and palladium acetate.
Examples of the nickel complex are [1,1xe2x80x2-bis(diphenylphosphino)ferrocene]dichloronickel and dichlorobis(triphenylphosphine)nickel.
Examples of the inert solvent used in the reaction with a metal halide or a boron compound are THF, dioxane, diethyl ether, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, benzene, toluene and hexane.
Examples of the inert solvent used in the reaction in the presence of a palladium complex or a nickel catalyst are THF, dioxane, diethyl ether, ethylene glycol, triethylene glycol, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, methanol, ethanol, 1-butanol, 2-propanol, dichloromethane, chloroform, acetonitrile, benzene, toluene, dimethylacetamide, DMF and DMSO.
The compound (Ima) which is the compound (Im) wherein Z1xe2x80x94Z2xe2x80x94Z3 is C(xe2x95x90O)xe2x80x94NHxe2x80x94C(xe2x95x90O) can also be obtained in such a way that a reaction similar to that mentioned in Process 21 is carried out using the compound (XI) and a diethyl 4-halogenated phthalate such as diethyl 4-bromophthalate followed by hydrolysis and the product obtained thereby is treated with urea.
The compound (I) wherein R9 is carbamoyl can be obtained using the compound (I) wherein R9 is cyano according to a known method [xe2x80x9cJikken Kagaku Koza (Handbook of Experimental Chemistry)xe2x80x9d, fourth edition, edited by the Chemical Society of Japan, 22, 151-154 (1992)] or a method similar thereto.
The compound (I) wherein R9 is cyano is converted to the compound wherein the moiety corresponding to R9 is an aldehyde according to a known method [xe2x80x9cJikken Kagaku Koza (Handbook of Experimental Chemistry)xe2x80x9d, fourth edition, edited by the Chemical Society of Japan, 21, 89-94 (1992)] or a method similarly thereto, and then the compound (I) wherein R9 is ethynyl can be obtained according to a known method [xe2x80x9cJikken Kagaku Koza (Handbook of Experimental Chemistry)xe2x80x9d, fourth edition, edited by the Chemical Society of Japan, 19, 306-307 (1992)] or a method similar thereto.
The intermediates and the desired compounds in each of the above-mentioned process can be isolated and purified by separation and purification methods conventionally used in synthetic organic chemistry such as filtration, extraction, washing, drying, concentration, recrystallization and various kinds of chromatography. The intermediates may be subjected to the subsequent reaction without particular purification.
When it is desired to obtain a salt of the compound (I), the compound (I) is dissolved or suspended in a suitable solvent, then an acid or a base is added thereto, and the resulting salt may be isolated and purified.
Further, the compound (I) and pharmaceutically acceptable salts thereof can also exist in the form of adducts with water or various solvents, which are also within the scope of the present invention.
Specific examples of the compound (I) obtained according to the present invention are shown in Table 1.
The pharmacological activities of the representative the compounds (I) are described in more detail by Test Examples.
Human phosphodiesterase cDNA (HSPDE4A) was isolated from testicles. Its predicted amino acid sequence is identical with the sequence (HSPDE4A5) reported by Bolger, G. et al. (Mol. Cell. Biol., 6558 (1993)) except that 223 amino acids have been deleted from the N-terminal thereof. This recombinant protein was expressed by an E. coli expression plasmid and then purified. The PDE activity was measured in the following 2-step process according to the method of Kincaid, R. and Manganiello, V. [Method. Enzymol., 159, 457 (1988)]. The substrate used was [3H]cAMP (final concentration: 1 xcexcmol/L), and the reaction was performed in a standard mixture containing N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (50 mmol/L, pH 7.2), MgCl2 (1 mmol/L) and soybean trypsin inhibitor (0.1 mg/ml). The reaction was initiated by adding the enzyme thereto, and the mixture was incubated at 30xc2x0 C. for 10 to 30 minutes. The reaction was quenched by hydrochloric acid, and the formed 5xe2x80x2-AMP was completely decomposed with 5xe2x80x2-nucleosidase. This sample was subjected to chromatography on DEAE-Sephadex A-25, and the eluted [3H]adenosine was counted 15 with a scintillation counter. The test compound was added after dissolved (concentration: 1.7%) in DMSO.
In this study, Compound 5 showed enzyme inhibitory activity of over 87% at a drug concentration of 1 mol/L.
Although the compound (I) or pharmaceutically acceptable salts thereof can also be administered as such, it is usually desirable to provide them in the form of various pharmaceutical preparations. Such pharmaceutical preparations may be used for animals and humans.
The pharmaceutical preparations according to the present invention may contain the compound (I) or a pharmaceutically acceptable salt thereof as an active ingredient, alone or as a mixture with other therapeutically effective components. Further, such pharmaceutical preparations are obtained by any means which are well-known in the technical field of pharmaceutics after mixing the active ingredient with one or more pharmaceutically acceptable carriers.
Examples of the effective ingredient to be mixed therewith are a serotonin (5HT)3 receptor antagonist, a serotonin (5HT)4 receptor agonist, a serotonin (5HT)1A receptor agonist, a dopamine (D)2receptor antagonist, a histamine (H)1 receptor antagonist, a muscarine receptor antagonist, a neurokinin (NK)1 receptor antagonist and an endothelin (ET)A receptor antagonist.
It is desired to use the administration route which is the most effective in therapy such as oral administration and parenteral administration which includes intrabuccal, intratracheal, intrarectal, subcutaneous, intramuscular and intravenous administration.
The administration form includes sprays, capsules, tablets, granules, syrups, emulsions, suppositories, injections, ointments and tapes.
Liquid preparations such as emulsions and syrups which are suitable for oral administration can be obtained using water, sugars such as sucrose, sorbitol and fructose, glycols such as polyethylene glycol and propylene glycol, oils such as sesame oil, olive oil and soybean oil, preservatives such as p-hydroxybenzoate and flavors such as strawberry flavor and peppermint. Capsules, tablets, powder and granules can be obtained using excipients such as lactose, glucose, sucrose and mannitol, disintegrators such as starch and sodium alginate, lubricants such as magnesium stearate and talc, binders such as polyvinyl alcohol, hydroxypropyl cellulose and gelatin, surfactants such as fatty acid esters, and plasticizers such as glycerin.
Preparations suitable for parenteral administration comprise a sterilized aqueous agent containing the active compound, which is preferably isotonic to the blood of a patient. For example, a solution for injection is prepared using a carrier such as a salt solution, a glucose solution or a mixture of a saline solution and a glucose solution. Preparations for intrarectal administration are prepared using a carrier such as cacao fat, hydrogenated fat and hydrogenated carboxylic acid, and provided as suppositories. Sprays are prepared using an active compound itself or an active compound with a carrier which can disperse the active compound as fine particles to facilitate absorption without stimulating oral or respiratory mucosa. Examples of such carriers are lactose and glycerin. Preparations such as aerosol and dry powder can be used depending on the properties of the active compound and carriers used.
These parenteral preparations may also contain one or more auxiliary components selected from diluents, flavors, preservatives, excipients, disintegrators, lubricants, binders, surfactants, and plasticizers, all of which are mentioned in the above oral preparations.
The effective dose and administration schedule of the compound (I) or a pharmaceutically acceptable salt thereof may vary depending on the form of administration, the age and body weight of a patient, and the type or degree of the disease to be treated, but usually, in the case of oral administration, the compound (I) or a pharmaceutically acceptable salt thereof is administered in a dose of 0.01 mg to 1 g/adult/day, preferably 0.05 to 50 mg/adult/day, at one time or in several parts. In the case of parenteral administration such as intravenous administration, the compound (I).or a pharmaceutically acceptable salt thereof is administered in a dose of 0.001 to 100 mg/adult/day, preferably 0.01 to 10 mg/adult/day, at one time or in several parts. However, these doses vary depending on the various conditions described above. | {
"pile_set_name": "USPTO Backgrounds"
} |
Media terminal adaptors (MTAs) are used to convert digital data to analog audio for telephones. MTAs require a strict provisioning sequence prior to becoming operational. In a PacketCable environment a total of 25 steps must be complete to become operational, and 11 additional steps must be completed in order to establish security associations with the call agent. These provisioning steps are controlled by the Multiple Service Operator (MSO) or Internet Service Provider (ISP) and are a function of the MSO Provisioning Server (MTA dynamic host configuration protocol (DHCP) options and MTA configuration file), the service provider's domain name system (DNS) configuration, and the configuration of the service provider call agent and Kerberos Key Distribution Center (KDC). Failure to properly configure any of these items can leave the MTA in a non-provisioned or improperly configured state which will render the MTA nonfunctional or out-of-service. In this context, out-of-service means that dial tone is not heard on the handset when the phone attached to the MTA is taken off-hook.
Existing cable modems and MTAs use discrete light emitting diodes (LEDs) or a 7-segment LED display to indicate provisioning status and possibly, the first provisioning step that has failed. Due to the small number of product LEDs (typically 5, 6, or 7-segment display) and the large number of provisioning steps, it is difficult to indicate the precise cause of a provisioning failure. Approaches have been used to display the provisioning status via blinking LEDs, displaying the status code in a binary format, etc. Many non-technical consumers are not able to easily correlate the blinking LED codes with a table in the user manual in order to resolve their specific problem.
As can be appreciated, there is a need for a MTA that provides a diagnostic audio message that is easily understandable to the user of the MTA when a there is a provisioning failure or out-or-order condition. Additionally, there is a need to provide a message to the user that the user can easily understand with regard to correcting the provisioning failure or out-of-order condition. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to a system and method for charging a battery and, more particularly, to a system and method for charging a vehicle battery that employs both a voltage control mode and a current control mode.
2. Discussion of the Related Art
Electric vehicles are becoming more and more prevalent. These vehicles include hybrid vehicles, such as the extended range electric vehicles (EREV) that combine a battery and a main power source, such as an internal combustion engine, fuel cell system, etc., and electric only vehicles, such as the battery electric vehicles (BEV). All of these types of electric vehicles employ a high voltage battery that includes a number of battery cells. These batteries can be different battery types, such as lithium-ion, nickel metal hydride, lead acid, etc. A typical high voltage battery for an electric vehicle may include 196 battery cells providing about 400 volts. The battery can include individual battery modules where each battery module may include a certain number of battery cells, such as twelve cells. The individual battery cells may be electrically coupled in series, or a series of cells may be electrically coupled in parallel, where a number of cells in the module are connected in series and each module is electrically coupled to the other modules in parallel. Different vehicle designs include different battery designs that employ various trade-offs and advantages for a particular application.
There is a need in the art to reliably charge batteries, particularly vehicle batteries, to accurately and reliably provide a full battery charge without damaging the battery. Currently, battery charging algorithms may attempt to charge the battery to a particular battery voltage within a certain period of time. Once the battery is charged to that voltage level, then the charging algorithm may go into a sustaining charging mode, where a trickle current is provided to maintain the battery at the charge voltage. The algorithms that control the battery charger would need to control the amount of current being provided to the battery to control heat, over-charging, etc., so that the battery and other components would not be damaged. These different types of chargers have different goals where they may be over-night chargers or fast chargers depending on the charging situation. The battery charger may be on the vehicle or may be separate from the vehicle where an electrical cord from the battery charger is plugged into the vehicle or the vehicle is plugged directly into an AC wall outlet. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to apparatus and methods for positioning and securing anchors within tissue. More particularly, the present invention relates to apparatus and methods for positioning and securing anchors within folds of tissue within a body.
2. Background of the Invention
Morbid obesity is a serious medical condition pervasive in the United States and other countries. Its complications include hypertension, diabetes, coronary artery disease, stroke, congestive heart failure, multiple orthopedic problems and pulmonary insufficiency with markedly decreased life expectancy.
A number of surgical techniques have been developed to treat morbid obesity, e.g., bypassing an absorptive surface of the small intestine, or reducing the stomach size. However, many conventional surgical procedures may present numerous life-threatening post-operative complications, and may cause atypical diarrhea, electrolytic imbalance, unpredictable weight loss and reflux of nutritious chyme proximal to the site of the anastomosis.
Furthermore, the sutures or staples that are often used in these surgical procedures typically require extensive training by the clinician to achieve competent use, and may concentrate significant force over a small surface area of the tissue, thereby potentially causing the suture or staple to tear through the tissue. Many of the surgical procedures require regions of tissue within the body to be approximated towards one another and reliably secured. The gastrointestinal lumen includes four tissue layers, wherein the mucosa layer is the inner-most tissue layer followed by connective tissue, the muscularis layer and the serosa layer.
One problem with conventional gastrointestinal reduction systems is that the anchors (or staples) should engage at least the muscularis tissue layer in order to provide a proper foundation. In other words, the mucosa and connective tissue layers typically are not strong enough to sustain the tensile loads imposed by normal movement of the stomach wall during ingestion and processing of food. In particular, these layers tend to stretch elastically rather than firmly hold the anchors (or staples) in position, and accordingly, the more rigid muscularis and/or serosa layer should ideally be engaged. This problem of capturing the muscularis or serosa layers becomes particularly acute where it is desired to place an anchor or other apparatus transesophageally rather than intraoperatively, since care must be taken in piercing the tough stomach wall not to inadvertently puncture adjacent tissue or organs.
One conventional method for securing anchors within a body lumen to the tissue is to utilize sewing devices to suture the stomach wall into folds. This procedure typically involves advancing a sewing instrument through the working channel of an endoscope and into the stomach and against the stomach wall tissue. The contacted tissue is then typically drawn into the sewing instrument where one or more sutures or tags are implanted to hold the suctioned tissue in a folded condition known as a plication. Another method involves manually creating sutures for securing the plication.
One of the problems associated with these types of procedures is the time and number of intubations needed to perform the various procedures endoscopically. Another problem is the time required to complete a plication from the surrounding tissue with the body lumen. In the period of time that a patient is anesthetized, procedures such as for the treatment of morbid obesity or for GERD must be performed to completion. Accordingly, the placement and securement of the tissue plication should ideally be relatively quick and performed with a minimal level of confidence.
Another problem with conventional methods involves ensuring that the staple, knotted suture, or clip is secured tightly against the tissue and that the newly created plication will not relax under any slack which may be created by slipping staples, knots, or clips. Other conventional tissue securement devices such as suture anchors, twist ties, crimps, etc. are also often used to prevent sutures from slipping through tissue. However, many of these types of devices are typically large and unsuitable for low-profile delivery through the body, e.g., transesophageally.
Moreover, when grasping or clamping onto or upon the layers of tissue with conventional anchors, sutures, staples, clips, etc., may of these devices are configured to be placed only after the tissue has been plicated and not during the actual plication procedure. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a rotary transfer mechanism for extracting a flat article from the discharge opening of a magazine and depositing it at a receiving station.
Such mechanisms are known to comprise a support member, a drive shaft rotatably mounted on and extending from the support member, means for rotatably driving the drive shaft, carrier means rotatable with the drive shaft, at least one support shaft rotatable on the carrier means substantially parallel to the drive shaft, whereby the support shaft can orbit round the drive shaft, means for controlling the rotational disposition of the support shaft with respect to the carrier mean, at least one suction cup attached to the support shaft, means for producing a vacuum, means alternatively connecting the suction cup with the vacuum-producing means and the atmosphere, the means for controlling the support shaft including means causing the suction cup while connected with the vacuum-producing mean to contact an article at the discharge opening of the magazine, extract the article from the magazine, and transfer the article to the receiving station, whereupon the suction up is connected with the atmosphere to release the article to the receiving station.
In one such mechanism (U.S. Pat. No. 2 915 308) three support shafts with suction cups are spaced from and around the drive shaft on radial arms rotatable with and by the drive shaft, and the means for controlling the rotational disposition of the support shafts with respect to the carrier means consists of drive gears secured one to each support shaft, idler gears rotatably carried one by each of the arms and meshing one with each drive shaft, the idler gears also meshing with a stationary gear coaxial with the drive shaft, whereby the suport shafts rotate continuously in the opposite direction to the drive shaft, and the gear ratios of the planetary gearing comprised of the stationary gear (i.e. the sun gear), an idler gear, and the respective drive gear (i.e., a planet gear) being such that for each revolution of the drive shaft each suction cup moves along a hypotrochoidal path having three node points 120.degree. apart, with one node point at the discharge opening of the magazine and another node point at the receiving station.
Another example is to be found in U.S. Pat. No. 3 302 946 in which the mechanism is similar to that of U.S. Pat. No. 2 915 308 with the exception that it employs a chain drive in place of the idler gears.
In another such mechanism (U.S. Pat. No. 4 350 466) four support arms with suction cups are spaced from and around the drive shaft on radial arms rotatable with and by the drive shaft, and the means for controlling the rotational disposition of the support shafts with respect to the carrier means consists of sprockets secured one to each support shaft and a plurality of pins attached to the support member and extending substantially parallel to the support shafts in a circle concentric with the drive shaft, the sprockets engaging the pins for rolling along the interior of the circle of pins, whereby the support shafts rotate continuously in the opposite direction to the drive shaft, the gear ratios of the planetary gearing comprised of the circle of pins and the sprockets being such that for each revolution of the drive shaft each suction cup moves along a hypotrochoidal path having three node points 120.degree. apart, with one node point at the discharge opening of the magazine and another node point at the receiving station.
Similar mechanisms each with a single support shaft but with diametrically oppositely directed suction cups each following a hypotrochoidal path are to be found in U.S. Pat. No. 3 937 458 and U.S. Pat. No. 4 537 587 (EP-PS 0 134 628) transferring cartons from a magazine to a receiving station on a conveyor. A difficulty encountered by the mechanism of U.S. Pat. No. 3 937 458 is that opening of a flat sleeve carton during extraction from the magazine is resisted by the vacuum generated within the carton as the inner surfaces of the carton are being pulled apart. Therefore, in U.S. Pat. No. 4 537 587 the third node point is disposed adjacent a stationary suction cup for cooperation with each moving suction cup to open a flat sleeve carton carried thereon ready for deposit between flights on the conveyor, which flights may hold the sleeve carton open for end loading with a product at a subsequent station along the conveyor.
All these known mechanisms depend on a strict drive ratio, whether via planetary gears or chains, or sprockets nd pins, e.g., 3:1 giving three node points 120.degree. apart, which in turn determines that the discharge opening of the magazine shall be at substantially 120.degree. to the receiving station. Any departure from this ratio must be either to 2:1 or to 4:1, resulting in an inconvenient disposition of the discharge opening parallel to and above the receiving station, or perpendicular to the receiving station and thereby imposing severe limitation on the length of article that can be transferred.
Furthermore, when the receiving station is on a conveyor, as in U.S. Pat. No. 3 937 458 in which a single support shaft carries diametrically oppositely directed suction cups following a hypotrochoidal path, the suction cup depositing an article has substantially no component of movement in the direction of movement of the conveyor, so the instant of release of the article from the suction cup (by connection of that suction cup with the atmosphere) must be very precisely timed.
Moreover, when the article is a flat sleeve carton to be deposited open between flights on the conveyor there is a tendency for the carton to be re-flattened and/or damaged and/or rotationally displaced between the flights of the conveyor, especially if the carton is of the type having a substantially square cross-section.
In an alternative form of mechanism (U.S. Pat. No. 3 575 409) the problem of strict drive ratios, and consequentially restricted article length and angular disposition of the discharge opening of the magazine, is avoided by mounting each of three suction cups on a radially guided arm the radial and angular disposition of which is controlled by a continuous cam surface and a pair of cam followers, the cam surface being concentric with the drive shaft except over the extent of a pair of outwardly protruding segments which create a "node point" in the path of each suction cup at the magazine location while the remainder of the path of each suction cup is a circular sweep including past the receiving station. This mechanism has not been applied in any attempt to overcome to the difficulties encountered in opening a sleeve carton and maintaining its integrity of shape and correct disposition between flights on a conveyor. Object and Summary of the Invention
An object of the present invention is to provide an improved, yet simple, rotary transfer mechanism for extracting a flat article from the discharge opening of a magazine and depositing it with accurate placement at a receiving station on a conveyor.
Another object is to provide a rotary transfer mechanism with which the disposition of the discharge opening of a magazine in relation to a receiving station, particularly on a conveyor, can be varied infinitely.
A further object of the invention is to provide a rotary transfer mechanism adaptable to a wide range of lengths of flat articles to be transferred from a magazine to a receiving station, particularly on a conveyor.
Yet another object is to provide a rotary transfer mechanism for transferring flat sleeve cartons from the discharge opening of a magazine to a receiving station on a conveyor having flights and for facilitating opening of the cartons ready for end loading with a product at a subsequent station along the conveyor.
According to the present invention, a rotary transfer mechanism for extracting a flat article from the discharge opening of a magazine and depositing it at a receiving station on a conveyor comprises a support member, a drive shaft rotatably mounted on and extending from the support member, means for rotatably driving the drive shaft, carrier means rotatable with the drive shaft, at least one support shaft rotatable on the carrier means substantially parallel to the drive shaft, whereby the support shaft can orbit round the drive shaft, means for controlling the rotational disposition of the support shaft with respect to the carrier means, at least one suction cup attached to the support shaft, means for producing a vacuum, means alternatively connecting the suction cup with the vacuum-producing means and the atmosphere, the means for controlling the support shaft including means causing the suction cup while connected with the vacuum-producing means to contact an article at the discharge opening of the magazine, extract the article from the magazine, and transfer the article to the receiving station, whereupon the suction cup is connected with the atmosphere to release the article to the receiving station, characterised in that the means for controlling the at least one support shaft comprises: on the one hand, a pinion secured coaxially to the support shaft, and an arcuate rack secured to the support member in such a position as to act upon the pinion to create a partial path of the at least one suction cup with a "node point" at the discharge opening of the magazine; and, on the other hand, a cam follower on an arm extending laterally from the support shaft, and a cam track secured to the support member and of such an operative extent as to act upon the cam follower when the arcuate rack is not acting on the pinion, the profile of the cam track being such as to cause the suction cup to move past the receiving station in the same direction as the conveyor with the article generally parallel to the conveyor.
Thus, the suction cup "plucks" each article from the magazine, but instead of merely dropping the article at the receiving station, the suction cup imparts to the article a major component of motion in the direction of movement of the conveyor, with consequent better placement of the article on the conveyor. The flexibility of design in suction cup path afforded by the combination of the ratio of the rack-and-pinion drive, the disposition of the rack, and the profile of the operative extent of the cam track, allows for a wide choice of article length and disposition of magazine, whilst avoiding interference between the magazine on the conveyor with the article while it is being transferred. This is particularly important when the conveyor has flights for the timed positioning of the articles in relation to a subsequent operation, such as when the article is a sleeve carton presented on the conveyor in open condition ready for end loading with a product at a subsequent station.
Indeed, in accordance with a feature of special significance, a rotary transfer mechanism in accordance with the invention for transferring flat sleeve cartons from the discharge opening of a magazine to a receiving station on a conveyor having flights, facilitates opening of the cartons ready for end loading with a product at a subsequent station along the conveyor, by arranging for the combined action of the means for rotatably driving the drive shaft and the means for controlling the at least one support shaft so that at the receiving station the at least one suction cup is moving in the same direction as the conveyor relatively at a slightly greater speed, whereby the relative movement between the suction cup, holding one side of a sleeve carton, and leading flights on the conveyor, which flights are abutted by the leading corner fold of the carton, is such as to effect an opening of the carton which is substantially completed before the carton is abutted by trailing flights on the conveyor to hold the carton in its fully open condition as it passes to and through a subsequent end-loading station.
The arcuate rack may be disposed radially inwards with respect to the orbital path of the at least one support shaft, with an idler gear in permanent mesh with the pinion and adapted to mesh with the arcuate rack (during the appropriate arc of the support shaft orbit). However, the arcuate rack is preferably disposed radially outwards with respect to the orbital path of the at least one support shaft, whereby the pinion conveniently meshes directly with the arcuate rack (during the appropriate arc of the support shaft orbit), thus avoiding the need for an idler gear. The cam follower may be carried by the pinion offset from the common axis with the support shaft, whereby the pinion serves as the arm extending laterally from the support shaft, and the cam track may be continuous but be provided with an inoperative portion along which the cam follower passes with clearance when the rack is acting on the pinion.
Conveniently, three support shafts are provided with two suction cups attached to each shaft; but two, or four or more support shafts may be provided, depending on the size of the article to be transferred and/or the spacing of articles on a conveyor; and, likewise, three or more suction cups may be attached to each support shaft, depending on the size and/or weight of article to be transferred.
Further advantageous features will become evident from the following description of an embodiment of the invention, given by way of example, only with reference to the accompanying drawings, in which: | {
"pile_set_name": "USPTO Backgrounds"
} |