text
stringlengths
50
141k
meta
dict
In particular, the present invention relates to a method of stabilizing tires extracted, at a relatively high temperature, generally of about 180.degree. C., from a curing mold. When manufacturing tires, particularly vehicle tires having internal body plies formed from nylon cords or other synthetic fibers which shrink when cooled, it is now customary to subject each tire, upon extraction from the curing mold, to a stabilizing operation generally consisting in mounting the tire on a support, inflating it to a given pressure, usually of about 3 atmospheres, and maintaining this pressure long enough for the tire to cool below a given temperature, usually of about 100.degree. C. Such a process, usually referred to as "post inflation", provides, not only for preventing the synthetic cords from shrinking, thus avoiding undesired distortion of the tire, but also for stabilizing the shape of the cords, which is extremely useful in terms of finished tire quality. Stabilizing cured tires, however, usually involves a number of drawbacks for the manufacturer, mainly due to the relatively long time required for cooling, and the size of currently used stabilizing equipment. Generally speaking, in fact, the time required at present for ensuring correct stabilization of a tire is roughly twice that required for curing. Consequently, two stabilizing machines are usually required for each curing mold, each of which usually features complex centralized systems for supplying cooling fluids such as water and/or air, for cooling the outer surface of the tires during stabilization.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to a novelty card having printed images thereon and the method for making the same where, upon removal of an insert from the card by the user, a foreground image is combined with a background image to produce a new, combined image. The novelty card can be used as a magazine insert component, direct mail unit, hand out, or other means within the print media area of the graphic arts industry. Novelty cards having an image which changes upon the removal or repositioning of a panel, divider or insert have been known for some time. Typically, these novelty cards have a foreground image printed upon a transparent sheet, which is separated by a divider from a background image printed on an opaque sheet of paper. The transparent sheet and the opaque sheet are attached along one of their respective edges, and together straddle a divider which is fixed to the card and which keeps the images separated. The background image is hidden from view until the attached transparency and opaque sheet are pulled out of the card and spatially displaced from the divider. Upon pulling the sheets from the card, the foreground image is superimposed upon, and combines with the background image to either complete the foreground image or to create a new, combined image. The opaque sheet may include laterally projecting stop tabs to prevent the complete withdrawal of the sheets from the card. U.S. Pat. No. 4,697,364 to Dean is an example of this type of novelty card. Unfortunately, because currently available novelty cards of the type described are generally expensive and complicated and slow to manufacture, they have not been extensively used in volume type advertising, promotion or other commercial uses. The high costs of manufacturing currently available novelty cards having changeable images is basically attributable to the limitations of typical basic printing and off-line assembly machinery, and usually by human hand operations. Novelty cards of this type generally use a fixed divider that separates the images, and are manufactured by complicated separate functions and expensive folding, die cutting and gluing techniques that cannot be performed on in-line web offset printing and/or in-line finishing systems. Currently available novelty card production processes require costly and time consuming reorientation of the paper and transparency plastic webs, and multiple passes through the printing, die cutting, folding and gluing assembly machinery to manufacture the cards properly. Further, currently available novelty cards of this type typically entail the use of costly photographic techniques for forming the desired images to be used on the card. Finally, not only is it expensive to manufacture such novelty cards, but the availability of such novelty cards has been limited because those in the printing business have not found it technically practical to make the necessary adaptations to their production lines.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The invention relates to a duplicate type servo actuator apparatus which causes an operation unit to be displaced on the basis of an input signal, and also to an aircraft control apparatus which uses such a duplicate type servo actuator apparatus. 2. Description of the Related Art In an aircraft such as a helicopter, a servo actuation system of a hydraulic, electric or electrohydraulic type is used in a control system, a stability augmentation system (SAS), and an automatic flight control system (AFCS). Such a servo actuation system is provided with various countermeasures against hardover. In a system of the mechanical hydraulic type, duplicate spools of a hydraulic control valve and the like are used to realize multiplication of the mechanical and hydraulic systems. In a system of the electric or electrohydraulic type are employed the following countermeasures: 1) the maximum operation amount is restricted so as to exist within such a range that the flight safety is not critically affected even when a hardover occurs; and 2) the system is multiplied to be redundantly managed so that the probability of occurrence of hardover is suppressed to an allowable value or less. As the performance and function of aircraft such as a helicopter are made higher, mechatronics systems are more frequently used. Therefore, it has been studied that a system is highly multiplied to expand an operable range while the maximum operation amount is not limited too much. In particular, triple or quadruple multiplication of a Fly-By-Wire control system, SAS, AFCS or the like realizes the following: a) the probability of function loss (including hardover) suppressed to 10.sup.-9 times/hour in commercial planes or 10.sup.-7 times/hour in military planes; b) specification of the probability of function loss (including hardover) corresponding to the failure influence request level (e.g., 10.sup.-5 times/hour); and c) a failure influence suppression (fail passive, fail soft, fail safe) and separation from a failure system. As higher redundancy is made by multiplication of a system, higher the flight safety is improved. However, such multiplication causes the system to be complicated and increased in size, and cost.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a multidirectional switch which outputs a switching signal in accordance with the tilting direction of a stem, and, more particularly, to a multidirectional switch which outputs a switching signal even when a stem is pushed. 2. Description of the Related Art A description of a conventional multidirectional switch will be given with reference to the relevant drawings. FIG. 8 is a sectional view of a conventional multidirectional switch. FIG. 9 is a plan view of a housing of the conventional multidirectional switch. FIG. 10 is an exploded perspective view of movable contact springs and the housing of the conventional multidirectional switch. FIG. 11 illustrates the operation of the conventional multidirectional switch. As shown in FIGS. 8 to 10, a housing 20 is molded out of a synthetic resin material, and comprises side walls 20a that surrounds four sides, an inside bottom portion 20b surrounded by the side walls 20a, four bosses 20c provided in a standing manner so as to extend outward from the four corners of the open end of the side walls 20a, four positioning portions 20d provided near the bosses 20c, and four inner protrusions 20e protruding from the inside bottom portion 20b. At the inside bottom portion 20b of the housing 20 are exposed a circular central fixed contact 2, a common contact 3 which surrounds the periphery of the central fixed contact 2, and peripheral fixed contacts 4 disposed at four locations, at the front, back, left and right sides along the periphery of the common contact 3. The central fixed contact 2, the common contact 3, and the peripheral fixed contacts 4 protrude outwardly as terminals 5 from opposing side walls 20a of the housing 20. Here, the four protrusions 20e at the inside bottom portion 20b are provided in a standing manner so as to surround the circular central fixed contact 2. A central tactile spring 60 serving as a central movable contact spring is formed by using a highly resilient base material, such as phosphor bronze or SUS, and subjecting the base material to surface treatment using silver (Ag). The central tactile spring 60 is dome shaped and is placed on the common contact 3 such that it is surrounded by the protrusions 20e. Peripheral tactile springs 70 serving as peripheral movable contact springs are formed by using highly resilient base materials, such as phosphor bronze or SUS, and subjecting the base materials to surface treatment using silver (Ag). The peripheral tactile springs 70 are formed into rectangular shapes. A bulging portion 70a which is fixed on both sides is integrally formed at the center of its corresponding peripheral tactile spring 70. The peripheral tactile springs 70 are placed on the common contact 3, inwardly of each of the peripheral fixed contacts 4, and are positioned by the corresponding protrusions 20e and the inside walls of the housing 20. In other words, the central tactile Spring 60, serving as a central movable contact spring, and each of the peripheral tactile springs 70, serving as a peripheral movable contact spring, are formed with different shapes, and are separately disposed inside the housing 20. A first stem 8 is molded out of a synthetic resin material, and comprises a cylindrical portion 8a, a skirt 8b, and four semicircular protrusions 8c, which are integrally formed. The skirt 8b spreads obliquely downward from one end portion of the cylindrical portion 8a. Each semicircular protrusion 8c is formed at the bottom surface of the skirt 8b so as to be maintained at equal angular distances of approximately 90 degrees from each other. The protrusions 8c oppose the bulging portions 70a of their corresponding peripheral tactile springs 70. A guide hole 9 is formed in the center portion of the cylindrical portion 8a so as to pass vertically therethrough. Four protrusions 8d are integrally formed at the peripheral edge of the lower portion of the skirt 8b. These protrusions 8d extend outwardly from portions midway between corresponding two adjacent protrusions 20e, and engage the corresponding positioning portions 20d of the housing 20. The first stem 8 is rockably supported with respect to the housing 20 by the peripheral tactile springs 70, which are placed on the inside bottom portion 20b of housing 20. The housing protrusions 20e have slots in a lower portion thereof (as best seen in FIG. 9) which hold the peripheral tactile springs 70 in place. A second stem 10 is molded out of a synthetic resin material. A flange 10a is integrally formed at the bottom end of the second stem 10. The bottom surface of the flange 10a opposes the top surface of each of the protrusions 20e of the housing 20 so as to be maintained at a predetermined distance therefrom. The second stem 10 protrudes upward from the first stem 8 as a result of being inserted into the guide hole 9 from therebelow, and is stopped by the flange 10a so as not be dislodged from the first stem 8. A presser protrusion 10b is integrally formed at the center of the lower surface of the second stem 10. The bottom end of the presser protrusion 10b is in contact with the central tactile spring 60. A cover 11 is formed of a metal plate by a pressing operation. A circular central hole 11a is formed in the center of the cover member 11, and mounting holes (not shown) are formed in the four corners thereof. A portion which widens in the downward direction is formed at the peripheral edge of the central hole 11a. With the skirt 8b of the first stem 8 being passed through the center hole 11a, the cover member 11 covers the open end of the top portion of the housing 20 by caulking the bosses 20c passed through their corresponding mounting holes (not shown). In the multidirectional switch having the abovedescribed structure, the central tactile spring 60 and each of the peripheral tactile springs 70 are separately disposed inside the housing 20. The peripheral tactile springs 70 and the corresponding protrusions 8c are made to oppose each other with predetermined separations therebetween in order to provide a play therebetween. Therefore, in certain states of use of the switch, when, as shown in FIG. 11, the second stem 10 and the first stem 8 are rocked with respect to the housing 20 so that the entire multidirectional switch is tilted while in a switched state. In this configuration, one of the peripheral tactile springs 70b is compressed, while, the distance between the peripheral tactile spring 70c disposed opposite to the direction of operation of the first stem 8 and the corresponding protrusion 8c increases. Therefore, the peripheral tactile spring 70 may lift from the inside bottom portion 20b of the housing 20, causing the outside end of the peripheral tactile spring 70 to move upward along the corresponding side wall 20a of the housing 20. If the peripheral tactile spring 70 stays on the side wall 20a when the multidirectional switch is tilted back to its original position (as will sometimes occur), the switching of the peripheral tactile spring 70 may be hindered. In the above-described multidirectional switch, in order to always cause each of the peripheral tactile springs and the central tactile spring to be in electrical conduction with the common contact, it is necessary to wire the common contact so as to surround the central tactile spring. This has prevented size reduction of the multidirectional switch in the widthwise direction. In addition, a large number of tactile springs are used, and the assembly operations are troublesome to carry out, so that the multidirectional switches cannot be provided at low costs. To achieve the foregoing and other objects of the invention a multidirectional switch is provided that includes a housing having disposed at an inside bottom portion thereof a central fixed contact, a common contact, and a plurality of peripheral fixed contacts. A plurality of metallic movable contact springs are positioned to oppose the central fixed contact and the peripheral fixed contacts, respectively. The movable contact springs are connected together and are also in electrical communication with the common contact. An actuator assembly (e.g., an operating rod) is arranged permit any selected one of the movable contact springs to be brought into electrical communication with its opposing fixed contact. In one form of the present invention, the movable contact springs are integrally formed from a metallic material. In some implementations they are dome-shaped. In another form of the present invention, the housing is substantially rectangular in shape and the plurality of peripheral fixed contacts are disposed at the four corners of the housing in still another form of the present invention, the movable contact springs comprise a central movable contact spring disposed so as to oppose the central fixed contact, and peripheral movable contact springs disposed so as to oppose the corresponding peripheral fixed contacts. In this form of the multidirectional switch, a pair of the connecting portions that oppose each other extend from an outer peripheral edge of the central movable contact spring. In addition, connecting portions are provided, one branching and extending from each connecting portion, with the peripheral movable contact springs being connected at ends of the branched connecting portions. In still another form of the present invention, the operating rod comprises a first stem which has a guide hole formed in the center thereof and which is rockably supported with respect to the housing, and a second stem which is slidably fitted to the guide hole and which protrudes from the first stem. In this form of the multidirectional switch, by tilting the first stem in a predetermined direction through the second stem, a desired one of the peripheral fixed contacts is brought into electrical conduction with the common contact through the corresponding movable contact spring and the connecting portion. In addition, by pushing the second stem, the central fixed contact is brought into electrical conduction with the common contact through the corresponding movable contact spring.
{ "pile_set_name": "USPTO Backgrounds" }
In existing picture search techniques, users typically input a search word in the search box and submit it to the search engine of a website. The search engine then searches among a large number of pictures obtained by a web crawler, for the searched keywords in the text associated with the pictures, such as the word in the filename or the subordinate field of the pictures. Further, the server returns to the users the pictures for which the filename or the subordinate field of the file attributes matches the keywords. This type of picture search is essentially a text-content-based search. Pictures searched in this way are often not those really desired by the users. For example, among the picture search results that correspond to the searched keyword, users tend to desire pictures of a certain shape, for which the prior art picture search technologies do not account. Therefore, a picture search that takes the shape of the desired pictures into account may be advantageous.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to route data processing technology and more specifically, to a route data compression method for compressing recording points for recording a route to reduce the amount of storage data by means of setting the values of predetermined distance, predetermined angle and predetermined number of compression points and then determining whether or not the distance between every two recording points is greater than the predetermined distance and whether or not the contained angle of the two link lines of every three recording points is greater than the predetermined angle. 2. Description of the Related Art Following fast development of modern technology, many different electronic products are created to serve people, bringing more convenience to the people in their daily life. For example, many different advanced satellite navigation systems have been created following the development of satellite navigation technology. These advanced satellite navigation systems provide dramatic improvement in navigation quality, operation interface, display mode and size, attracting people to buy. Nowadays, most new cars are equipped with a satellite navigation system as a standard equipment. A satellite navigation system can receive a geographic coordinate data signal from an artificial satellite, compare the geographic coordinate data to its internal map database, and then display the location on a map. A satellite navigation system has a local area map database. When started the navigation software, the user can input the name or address of the destination, enabling the satellite navigation system to produce a line of route planning data. To a person who is not familiar with the road conditions, he or she can use the map of a satellite navigation system to guide the traveling to the destination. However, the navigation mapping software programs of modern satellite navigation systems or electronic devices (desk computers, notebook computers, PDAs or servers) provide a 3D actual view simulation and different route planning modes, thereby increasing program capacity and complicating the computation procedure. In consequence, much data storage capacity is necessary for recording the data and a relatively higher operating power of central processing speed must be used, resulting in a rise in cost. Further, when the amount of storage data is increased, the data transmission speed will be lowered, leading to trouble. Therefore, it is desirable to provide a method for use in the processing of route planning data to reduce memory space occupation, thereby eliminating the aforesaid problems.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a sensing device, and particularly to an image sensing device. 2. Description of the Related Art FIG. 1 is a schematic, cross-sectional view of a conventional image sensing device. FIG. 2 is a schematic view of a wafer including a number of image sensing devices shown in FIG. 1. Referring to FIG. 1 and FIG. 2, the image sensing device 100 sawed from the wafer 50 includes an image sensing chip 110, a spacer 120, a protecting glass 130 and a lens module 140. An image sensing region 112 is defined on a front surface 111 of the image sensing chip 110. The image sensing region 112 includes a number of light sensitive units 114 arranged in an array. Color filter patterns 116 are respectively disposed on the light sensitive units 114, and micro lenses 118 are respectively disposed on the color filter patterns 116. Additionally, the spacer 120 is disposed on the front surface 111 of the image sensing chip 110 and around the image sensing region 112. The spacer 120 is configured for supporting the protecting glass 130. The lens module 140 is disposed on the protecting glass 130. In the conventional technique, the protecting glasses 130 over the wafer 50 are a whole and the lens modules 140 over the wafer 50 are also a whole. In other words, the protecting glasses 130 are separated each other by a sawing process of the wafer 50, and the lens modules 140 are separated each other by the sawing process of the wafer 50. Thus, an orthogonal projection area of the lens module 140 on the front surface 111 of the image sensing chip 110 is equal to the area of the front surface 111 of the image sensing chip 110. The protecting glass 130 in the conventional image sensing device 100 can support the lens module 140 and prevent the image sensing region 112 from particles. However, the spacer 120 is needed to support the protecting glass 130 in the conventional image sensing device 100. The image sensing device 100 will be thickened due to thickness of the spacer 120 and the thickness of the protecting glass 130. Furthermore, a poor flatness of the spacer 120 and a poor flatness of the protecting glass 130 will affect the transmission path of the light, thereby reducing the quality of the image sensing device 100. In addition, it is very difficult for the protecting glass 130 to have a transparence of 100%, thereby reducing a light utility efficiency of the image sensing device 100. Therefore, what is needed is an image sensing device to overcome the above disadvantages.
{ "pile_set_name": "USPTO Backgrounds" }
Resistive random access memory (RRAM) is a nonvolatile memory type that is one possible target for future advancement in memory technology. Generally, RRAM usually employs a dielectric material, which although normally insulating can be made to conduct through a filament or conduction path formed after application of a sufficiently high voltage. Once the filament is formed, it may be reset (broken, resulting in a high resistance) or set (re-formed, resulting in a lower resistance) by an appropriately applied voltage. The low and high resistance are utilized to indicate a “1” or “0”, thereby allowing for data storage. New and different configurations that may offer practical advantages to RRAM are an ongoing area of research.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to data communications equipment. More particularly, the present invention relates to mapping systems and methods having advantageous applications in high speed modems which are coupled to an analog local loop. 2. State of the Art With the ever-increasing importance of telecommunications for the transfer of-data as well as voice, there has been a strong effort to increase data transfer rates over the telephone wires. Recently, the ITU-T adopted the V.34 Recommendation (International Telecommunication Union, Telecommunication Standardization Sector Recommendation V.34, Geneva, Switzerland 1994) which is hereby incorporated by reference herein in its entirety. The V.34 standard and subsequent amendments define modem operating speeds of 28.8 kbps up to 33.6 kbps, and the vast majority of modems being sold today adhere to the V.34 Recommendation. However, with the explosion in the use of the Internet, even at the V.34 transfer rates, downloading of large files available on the Internet can take long periods of time. Thus, recently, there has been a thrust to provide additional standards recommendations which will increase data transfer rates even further (note the TIA TR-30.1 PAM Modem ad hoc group and the ITU-T Study Group 16). Recognizing that further increases in data rates is theoretically limited where the telecommunication network is an analog system (see C. E. Shannon, "A Mathematical Theory of Communication," Bell System Technical Journal, 27:379-423, 623-656 (1948)), there have been various proposals to take advantage of the fact that much of the telecommunication network is now digital. For example, U.S. Pat. No. 5,394,437 to Ayanoglu et al., U.S. Pat. No. 5,406,583 to Dagdeviren, and U.S. Pat. No. 5,528,625 to Ayanoglu et al. (all assigned to AT&T/Lucent and all of which are hereby incorporated by reference herein in their entireties) all discuss techniques which utilize the recognition that the network is mostly digital in order to increase data transmission rates to 56 kbps and higher. Similarly, Kalet et al., "The Capacity of PAM Voiceband Channels," IEEE International Conference on Communications '93, pages 507-511 Geneva, Switzerland (1993) discusses such a system where the transmitting end selects precise analog levels and timing such that the analog to digital conversion which occurs in the central office may be achieved with no quantization error. PCT application, number PCT/US95/15924 (Publication WO 96/18261) to Townshend which is hereby incorporated by reference herein in its entirety) discusses similar techniques. All of the disclosures assume the use of PAM (pulse amplitude modulation) digital encoding technology rather than the QAM (quadrature amplitude modulation) currently used in the V.34 Recommendation. The primary difference between the AT&T technology and the Townshend reference is that the AT&T technology suggests exploiting the digital aspect of the telephone network in both "upstream" and "downstream" directions, while Townshend appears to be concerned with the downstream direction only. Thus, systems such as the "x2" technology of US Robotics which are ostensibly based on Townshend envision the use of the V.34 Recommendation technology for upstream communications. As will be appreciated by those skilled in the art, the technologies underlying the V.34 Recommendation, and the proposed 56 kbps modem are complex and typically require the use of high-end digital signal processors (DSPs). One of the complex tasks of the modem is the mapping of digital data into a sequence of digital signals chosen from a constellation which are converted into an analog signal by a D/A converter. Mapping typically includes utilizing a constellation. In the V.34 Recommendation, the preferred constellation is a four-dimensional constellation, whereas in the envisioned 56 kbps modems, the constellation is envisioned as a one dimensional PAM constellation which complies with .mu.-law (A-law in Europe) requirements. According to .mu.-law requirements which are set forth in ITU-T Recommendation G.711 which is hereby incorporated by reference herein in its entirety, the total constellation consists of 255 signal levels; 127 positive, 127 negative, and zero. Both the positive portion of the constellation and the negative portion of the constellation include eight sectors with sixteen points each (the constellation being shown in Appendix 1 hereto), with zero being a common point for both portions. As is well known in the art, the minimum distance between points in sector 1 of the constellation is a distance "2". In sector 2, the minimum distance is "4", while in sector 3, the minimum distance is "8". In the eighth sector, the minimum distance is "256". Using the full PAM .mu.-law constellation, theoretically, a bit rate of almost 64 kbps can be transmitted over the analog local loop to the digital network. However, the average power of such a constellation would be about -4 dBm, and the minimum distance between points would be a distance of "2". Such a large average power is undesirable when compared to the present restrictions of an average power of -12 dBm on the network; and such a minimum distance is also undesirable, with minimum distances of at least "4" and preferably "8" being considerably more desirable in reducing errors due to noise. In light of the power restrictions, and minimum distance considerations, the prior art primarily discusses sending data at 56 kbps (i.e., seven bits per symbol at an 8 kHz rate). In order to increase the bit rate to 60 kbps, (e.g., 7.5 bits per symbol), a sequence of symbols could be sent, with every other symbol carrying seven bits and eight bits respectively. However, for reasons set forth above (average power, and minimum distance), the carrying of eight bits per symbol is not feasible.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to an electric heater for a foundry ladle and, more particularly, to apparatus for operating and controlling the same so as to protect the integrity of the electric heating means constituting the electric heater. It is common practice in the foundry industry to preheat ladles prior to having the molten metal introduced therein. This preserves the ladle lining against possible fracture and also conserves the metal itself against premature solidification. The practice over the years has been to heat ladles by an open gas flame which not only has been wasteful of energy but dangerous to operating personnel. It was therefore desirable to provide an electrically powered heater for this purpose and one approach in the prior art is found in U.S. Pat. No. 4,090,054. The mechanical arrangement and construction of the '054 patent produced certain disadvantages, notably in the failure of the insulation separating the electrical heaters from the transformer atop the lid which resulted in premature failure and breakdown of the apparatus. Also, the apparatus of the '054 patent was not particularly suited for use of silicon carbide electrical heaters which are preferred in the foundry industry because of their reliability and long life. In particular, the silicon carbide electrical heaters although possessing the foregoing advantages, are characterized by the disadvantage of being extremely fragile. For example, an electric heater which has been in use for 1000 hours showed no signs of wear but when accidentially bumped against a rigid object, shattered into small pieces. The fragility of the silicon carbide type of electric heater is not only affected by the handling thereof but also by the environment. For example, such electrical heaters are extremely sensitive to thermal shock--a quick cooling can cause the electrodes to shatter. The instant invention utilizes the advantages of the silicon carbide type electric heater and, by providing a structural arrangement and operation of the associated mechanical and electrical control apparatus, avoids the disadvantages also outlined above. According to the invention, a frame provides a pedestal on which the ladle to be heated is placed. The frame also is equipped with a vertical post on which a carriage travels for lowering and raising the electric heaters under certain electrical and mechanical safeguards which avoid both mechanical and thermal shock. Other objects and advantages of the invention may be seen in the details of construction and operation as set down in the ensuing specification.
{ "pile_set_name": "USPTO Backgrounds" }
There is known a hydraulic excavator as a typical one of such construction machines. In a hydraulic excavator, front members such as a boom and an arm, which constitute a front device, are operated by respective manual control levers. However, because the front members are coupled to each other through articulations for pivoting motion, it is very difficult to carry out excavation work over a predetermined area, particularly an area set by linear lines, by operating the front members. For this reason, there is a demand for enabling such work to be performed in an automatic manner. Various proposals for automating such work have been made. According to International Laid-open Publication WO95/30059, for example, an excavation enable area is set on the basis of a body as a reference, and excavation is controlled such that when part of a front device, e.g., a bucket, comes close to the boundary of the excavation enable area, only movement of the bucket toward the boundary is slowed down, and when the bucket reaches the boundary of the excavation enable area, the bucket is allowed to move along the boundary of the excavation enable area while it is kept from moving out of the excavation enable area. When a hydraulic excavator is designed to perform the above-mentioned work in an automatic manner, the posture and height of the hydraulic excavator itself are varied due to change in topography of the work site if a body of the excavator is moved. This means that the area set with respect to the body must be set again whenever the body is moved. In view of the above, JP, A, 3-295933 proposes an automatic excavation method for overcoming that drawback. The proposed automatic excavation method comprises the steps of detecting a height of an excavator body by a sensor, which is mounted on the body, using a laser beam from a laser oscillator installed on the ground to be excavated, determining an excavation depth (corresponding to the limited area in the above related art) based on the detected height of the body, excavating the ground linearly over a predetermined length while the body is kept stopped, then traveling the body by a predetermined distance, detecting change in height of the body by using the laser beam before excavating the ground linearly again while the body is kept stopped, and modifying the excavation depth in accordance with the detected change in the body height. Also, U.S. Pat. No. 4,829,418 proposes another automatic excavation method in which the excavation depth is modified by using a laser beam. This proposed automatic excavation method comprises the steps of setting a desired excavation depth (HTTRGT) with a laser beam as a basis, mounting a laser sensor on an arm, calculating a distance (HTACT) from the laser beam to a bucket prong of a front device at the moment the laser sensor detects the laser beam during excavation, and controlling associated actuators in accordance with a result of comparison between HTTRGT and HTACT so that the bucket prong is moved near the desired excavation depth.
{ "pile_set_name": "USPTO Backgrounds" }
MEMS have proven to be effective solutions in various applications due to the sensitivity, spatial and temporal resolutions, and lower power requirements exhibited by MEMS devices. Consequently, MEMS-based sensors, such as accelerometers, gyroscopes, acoustic sensors, optical sensors, and pressure sensors, have been developed for use in a wide variety of applications. In general, capacitive MEMS pressure sensors include a first electrode that forms one plate of a parallel plate capacitor and a second electrode that forms the other plate of the parallel plate capacitor. The first electrode is generally fixed and is typically provided in a substrate, such as a silicon wafer. The second electrode is generally movable and is incorporated into a deformable membrane that is suspended over the first electrode on the surface of the substrate. The first and second electrodes are generally spaced apart by open space, a dielectric, or another material. The deformable membrane is configured to deflect toward the substrate under an applied pressure which alters the gap between the fixed electrode and the movable electrode, resulting in a change in the capacitance between the two electrodes. By monitoring the change in capacitance between the fixed electrode and the movable electrode, a magnitude of a pressure applied to the deformable membrane can be determined. The electrodes may be formed in a variety of different ways, such as by the deposition of a conductive film, electrical isolation of a conductive layer, and adding a spacer layer between two conductive layers. Surface micromachining is used to fabricate many MEMS devices. With surface micromachining, a MEMS device structure can be built on a silicon substrate using processes such as chemical vapor deposition. These processes allow MEMS structures to include layer thicknesses of less than a few microns with substantially larger in-plane dimensions. Frequently, these devices include parts, such as capacitive electrodes, which are configured to move with respect to other parts of the device. In this type of device, the movable structure is frequently built upon a sacrificial layer of material. After the movable structure is formed, the movable structure can be released by selective wet or dry etching of the sacrificial layers. After wet etching, the released MEMS device structure can be rinsed in deionized water to remove the etchant and etch products. For dry release, no subsequent cleaning may be necessary. In some cases, MEMS having moving or flexing components have a limited lifespan, especially when such devices are released from the substrate and cannot benefit from added support of the substrate. In an example, MEMS devices being used on or near biological material or in a harsh environment may need to be regularly replaced to maintain accurate operation. Customary MEMS devices such as pressure sensors often require significant packaging, as well as expensive materials and processing requirements, and are thus not optimized for the uses described above. What is needed, therefore, is a flexible MEMS device that can be produced easily and at scale so as to be disposable.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a crystal oscillator in the shape of a tuning fork, an angular velocity sensor element, an angular velocity sensor, and a method of fabricating a tuning fork shaped crystal oscillator, and, in particular, to an angular velocity sensor element and a method of fabrication thereof. Angular-velocity sensor elements are used in applications such as vehicle guidance systems and devices for preventing camera shake. The present applicants have already applied for a Japanese patent for an angular velocity sensor element obtained by using direct bonding to attach two tuning fork shaped crystal elements. A perspective view of a prior-art example of an angular velocity sensor element is shown in FIG. 7. This angular velocity sensor element is provided with a composite tuning fork shaped crystal element 1 obtained by attaching two tuning fork shaped crystal elements 1a and 1b by direct bonding, as shown in FIG. 7. The width of each of the tuning fork shaped crystal elements 1a and 1b is arranged on the X-axis of the crystalline axes (XYZ) of the crystal, with the length thereof on the Y-axis and the thickness thereof on the Z-axis. When one of these tuning fork shaped crystal elements 1a and 1b is viewed in an upright attitude, the negative direction along the X-axis is to the right-hand side and the positive direction thereof is to the left-hand side. In other words, the −X face of the crystal that is orthogonal to the −X-axis direction is taken to be the right-side surface of the tuning fork shaped crystal. The tuning fork shaped crystal elements 1a and 1b are bonded together with the ±X-axis directions thereof oriented in opposite directions. When the composite tuning fork shaped crystal element 1 is fabricated, two Z-cut crystal wafers 2a and 2b are first bonded together directly, with the ±X-axis directions thereof oriented in opposite directions. Etching masks 3 as shown in FIG. 8 in the shape of a tuning fork are then formed on the front and rear of this directly bonded composite crystal wafer 2. These etching masks 3 are formed in such a manner that the right-hand direction (as seen when the composite tuning fork shaped crystal elements 1 that will be formed later are stood upright) is arrayed along the −X-axis direction. The composite crystal wafer 2 is then selectively etched by wet etching, to obtain a large number of the composite tuning fork shaped crystal elements 1 (which will become angular velocity sensor elements). An electrode for driving the tuning fork in resonance is provided on each of the tines of the tuning fork of the angular velocity sensor element, in order to detect the Coriolis force imposed thereon. In this case, a surface electrode 6a on one tine of the tuning fork (on the right-hand side in the linkage diagram of FIG. 9) and a rear-surface electrode 7b on the other tine of the tuning fork (the left-hand side in FIG. 9) are connected in common and lead out to a first drive terminal D1. Similarly, a rear-surface electrode 6b on the other tine of the tuning fork leads out to a second drive terminal D2. Electrodes 6c and 7c on the inner side surfaces of the two tines of the tuning fork are connected together, electrodes 6d and 7d on the outer side surfaces thereof are also connected together, and these connections lead out to first and second sensor terminals S1 and S2, respectively. A surface electrode 7a on the other tine of the tuning fork leads out to a monitor terminal M as shown in FIG. 9. A schematic configurational diagram of a prior-art example of an angular velocity sensor is shown in FIG. 10. The angular velocity sensor shown in FIG. 10 is formed of an oscillation circuit 8 connected to the first and second drive terminals D1 and D2, to excite the tuning fork into resonance; charge amplifiers 9a and 9b and a differential amplifier 10 connected to the sensor terminals S1 and S2, to amplify the electrical charge due to the Coriolis force; a synchronization detection circuit 11 that detects the amount of electrical charge due to the Coriolis force from the differential amplifier 10; a low-pass filter 12 that obtains a DC voltage that is a smoothed output from the synchronization detection circuit 11 in response to angular velocity (a detected angle of rotation); a charge amplifier 9c connected to the monitor terminal M, to amplify the electrical charge due to the resonance of the tuning fork; and an automatic gain control (AGC) circuit 13 that fixes the amplitude of the tuning fork's resonance in accordance with the magnitude of the thus amplified electrical charge. Note that the synchronization frequency for the synchronization detection circuit 11 is supplied from the monitor terminal M in this case. The electrical charge caused by the Coriolis force is detected by the thus-configured angular velocity sensor, to reliably determine the angle of rotation thereof. However, the angular velocity sensor element of this prior-art example does not have a favorable configuration from the viewpoints of improving the crystal impedance (hereinafter abbreviated to CI) when acting as a tuning fork shaped oscillator, and the breaking strength, frequency stability, and CI stability with respect to the drive power (in other words, the drive level characteristics thereof), as well as the uniformity between elements. The problems with the angular velocity sensor element of this prior-art example are discussed below. The angular velocity sensor element of the above-described configuration is obtained by using wet etching to etch the composite crystal wafer 2 shown in FIG. 8 and thus obtain the individual composite tuning fork shaped crystal elements 1 (see FIG. 7). Since the crystal has etching anisotropy, the etching speed is different in the different crystalline axis directions. Moreover, the etching mask is formed on the composite crystal wafer 2 in this case in such a manner that the two crystal wafers 2a and 2b in this case are connected together with the X-axis directions thereof oriented in opposite directions and the right side surface of each completed tuning fork form the −X face, when the tuning fork shaped crystal elements 1a and 1b are viewed in an upright attitude. For that reason, a distinctive configuration is formed in the handle portion of the tuning fork (the lower surface portion of the groove of the tuning fork). An exploded perspective view of the tuning fork with the tines cut away is shown in FIG. 11A, to illustrate this distinctive configuration of the handle portion of the tuning fork. As is clear from this FIG. 11A, a mountain-shaped portion 100 is created where the connective interface forms a peak in the handle portion of the tuning fork. The inner side surfaces of the root portions of tines 101 and 102 of the tuning fork are connected to the mountain-shaped portion 100. An inclined surface 100a that is the main part of this mountain-shaped portion 100 configures a surface that is called the R face of the crystal and surfaces 100b and 100c to the left and right thereof configure r faces of the crystal. This is because the etching speed of the R face is greater than that of the r faces. A perspective view of a cutaway through the base portion of the tuning fork and the tine 101 of the tuning fork is shown in FIG. 11B. As is clear from this perspective view, a protruberance 101a caused by etching anisotropy is created in the side surface of the tine portion of the tuning fork that abuts the +X face of the crystal. The ridge line of this protruberance 101a is on the +X face of the tuning fork shaped crystal elements 1a and 1b and is created along the longitudinal direction of the tine portion of the tuning fork in the vicinity of a boundary 105 at which the tuning fork shaped crystal elements 1a and 1b are connected. This ridge line crosses the above-described mountain-shaped portion 100 at a position that is slightly offset from the ridge line of the mountain-shaped portion 100. The above-described physical shape of the handle portion of the tuning fork obstructs the previously mentioned electrical characteristics. For example, when the left and right tines of the turning fork resonate, stresses are generated in the vertical direction in the handle portion of the tuning fork. However, since the mountain-shaped portion 100 suppresses any change in position in the vertical direction, the resonance of the tuning fork is also suppressed. In other words, the left and right tines 101 and 102 of the tuning fork are restrained mechanically by the mountain-shaped portion 100, increasing the load on the resonance of the tuning fork. This increases the CI. In addition, since stress concentrations can easily occur in the vicinity of an intersection P between the ridge line of the protruberance 101a and the mountain-shaped portion 100 (see FIG. 11B) when the tines of the tuning fork are resonating, this could cause problems such as cracks when the electrical power applied to the tuning fork is increased. This is a cause of deterioration in the drive level characteristics. In particular, when the amplitude level is low in an angular velocity sensor that is designed to maintain a fixed amplitude level for the tuning fork resonance by the AGC circuit provided with the monitor terminal of the above-described configuration, there is an increase in the electrical power that automatically drives the amplitude to be constant. This can easily cause damage to the tuning fork shaped crystal oscillator. (See Japanese Patent Laid-Open Publication No. 2002-188922, hereinafter referred to as Reference Document 1).
{ "pile_set_name": "USPTO Backgrounds" }
The problems caused by large-volume aerostatic balloons capable of withstanding high overpressures while remaining of a relatively moderate weight, are presently being solved. Such balloons, for instance those described in French patent application No. 84.18798 by the same applicant, comprise of at least one inner envelope containing helium and one outer envelope containing both the inner envelopes and air which imparts its generally cylindrical shape to the balloon. The capability of the outer envelope to withstand high overpressures makes it possible to use such balloons as high-load transports, with the lifting of the load and the aerostatic vertical control being implemented by merely ballasting the air. For operations where lifting is predominant, one application comprises an aerostatic lift device associated with a horizontal mechanical winch means. This device involves a captive balloon tethered to the ground at three fixed or automotive points. It may comprise a simple aerostatic balloon devoid of any means of its own for displacement, or it may also include, for lifting more substantial loads, an aerostatic machine comprising the combination of several balloons secured to external structures. Such an application moves large loads over short distances but is restricted in operations by the presence of cables and the need for a clear field. This situtation may be improved by implementing the horizontal winching of the device by the use of a separate aircraft that can be reduced to a point (helicopter or blimp). However these two applications require large tractions in order to achieve the horizontal winching by the balloons(s). These transverse forces are transmitted by the coupling means to the pole pieces of the balloons. Considering the small size of these pole pieces and the inertia of the assembly, the stresses applied to the envelope at the pole pieces, therefore, are quite high and may bring about the degradation and even the rupture of the connection between this envelope and the pole piece. The devices coupling the envelope and the horizontal winch means for an isolated balloon or the envelope and the external structure therefore must be carefully designed to permit transmitting high transverse forces. Beyond those two applications, more ambitious projects combine aerostatic balloons into airships equipped with sets of horizontal propulsion plants and all means required to move bulky and high loads over long distances. Such airships require an aerodynamic design reducing the drag of the assembled balloons. This drag reduction may be achieved in significant manner by rotating these balloons about their longitudinal axis. This rotation also allows setting up artificial gravity. Considering the inertia of these balloons, rotation demands coupling them to external structures by means of devices allowing to transmission of large couples. The object of the present invention is to provide a solution for the above discussed problems and to create a device coupling an envelope and an external element and allowing to transmit large forces to the envelope. To that end, the main object of the invention is to have all or a great part of the envelope absorb the point stresses or torques transmitted in the vicinity of the pole of the envelope. Another object of the invention is to create a coupling member which can act as damper between an envelope and an external element. Still another object is to provide a coupling member capable of adapting itself to the differences in shape of an envelope subjected to variation in its inner overpressure.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a method of manufacturing an automotive instrument panel having a concealed airbag. More particularly, the present invention relates to a method of manufacturing an instrument panel having a metal door overlying an aperture in a substrate with a molded flexible covering overlying the substrate and metal door. 2. Description of the Related Art It is known to manufacture an automotive airbag having a seamless covering. One such device is described in U.S. Pat. No. 5,447,328, issued Sep. 5, 1995. The device teaches a hinged metal door secured to a plastic substrate. The hinge is secured to both the plastic substrate and the metal door and folds when the airbag is inflated. A deep groove directly overlying the perimeter of the metal door forms a weakened section in the covering that tears when the door is opened. An airbag door and cover of this construction is difficult to manufacture because a metal hinge must be secured to only one edge of the plastic substrate. It is also difficult to form a deep groove in the covering that directly overlies the perimeter of the metal door. The groove construction taught in the 5,447,328 patent extends almost to the surface of the plastic substrate, making it difficult to inject foam in the vicinity of the groove. It is desirable to inject a foam between the cover and the door to secure the two components without causing the foam to impede the opening of the door. It is also known that the rapid force needed to deploy an airbag causes stress on the molded plastic substrate when the door is attached to only one edge. Various frames may be attached to the perimeter of the airbag opening to make the substrate more rigid. An example of this construction is illustrated in U.S. Pat. No. 5,393,088 issued Feb. 28, 1995. A metal frame is secured within the aperture of a plastic substrate. A door is attached to one side of the frame with a hinge. The metal frame keeps the substrate from deforming under the impact of an inflating airbag. Finally, it is also known to secure an airbag to the underside of a substrate using a chute that partially spaces the airbag from the door. Gaps or spaces between the chute and door may allow the airbag to partially inflate behind the panel. It is an advantage of the present invention to provide a seamless airbag covering having an unhinged door that is secured to a substrate. It is a further object of the present invention to provide an easily manufacturable method of securing the airbag covering to the substrate and door. These and other objects, features and advantages of the present invention will become more apparent to those of ordinary skills in the art upon reference to the attached drawings and following description.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a transistor in a semiconductor device and method of manufacturing the same, and more specifically, to a transistor in a semiconductor device having a VDMOS (Vertical Diffused MOS) structure suitable for a high-voltage operation, and method of manufacturing the same. 2. Discussion of Related Art A transistor used in a high-voltage device is fabricated in a structure different from a common transistor. For example, a transistor is manufactured to have an EDMOS (Extended Drain MOS) or LDMOS (Lateral Diffused MOS) structure so that the transistor can operate stably at high voltage. Of them, a transistor of the LDMOS structure (hereinafter, referred to as “LDMOS transistor”) will be described. FIG. 1 is a cross-sectional view for explaining the structure of a transistor in a semiconductor device in the related art. Referring to FIG. 1, a LDMOS transistor includes a gate oxide film 104, a gate 105, dielectric film spacers 106 formed at the sidewalls of the gate 105, a source 107 and a drain 108. At this time, the source 107 has a low-concentration impurity region 107a and a high-concentration impurity region 107b, and the drain 108 has a low-concentration impurity region 108a and a high-concentration impurity region 108b. Unexplained reference numeral 102 indicates a well, 103 designates an isolation film and 109 indicates a well junction. In the above, assuming that the size (LLDMOS) of the LDMOS transistor is from the edge of the high-concentration impurity region 107b included in the source 107 to the edge of the high-concentration impurity region 108b included in the drain 108, the size (LLDMOS) of the LDMOS transistor can be expressed into the following Equation 1.LLDMOS=2LD+2LDO+LGATE1  [Equation 1]where LD is a width from the edge of the high-concentration impurity region to the edge of the gate.LDO is a width that the low-concentration impurity region and the gate are overlapped.LGATE1 is a channel width. In the above, in order for the LDMOS transistor to stably operate even at high voltage, the low-concentration impurity regions 107a and 108a have to be extended in the horizontal direction. Thus, the size of the transistor is increased. For example, in order for the LDMOS transistor to stably operate even at about 40V, it is required that LD be at least 1.5 μm and LGATE1 be at least 3 μm. At this time, assuming that LDO is 0.5 μm, the size of the LDMOS transistor becomes 7 μm. If the channel width LGATE1 is reduced, the size of the LDMOS transistor can be reduced but the electrical properties of the transistor can be degraded due to a short channel effect. For this reason, it is difficult to apply the conventional LDMOS transistor to a high-integration circuit. In particular, there is a problem that the conventional LDMOS transistor is difficult to implement SOC (System On Chip).
{ "pile_set_name": "USPTO Backgrounds" }
Forgery-preventing means of products is broadly divided into means for making it impossible to copy products themselves and means for attaching an unreproducible label to products as forgery-preventing means so that true and correct products (authentic products) can be identified. Herein, “product” is a generic name of a produced item such as an article, a commodity and goods. In particular, the latter means is frequently used, because it is more generally versatile than the former means, which rather needs to be individually dealt with. The latter means may be further divided into two techniques. One is a technique in which anyone can always identify the existence of forgery-preventing means, and a well known technique includes a hologram. The other is a technique in which forgery-preventing means is ordinarily undetectable, and only persons who know the existence of forgery-preventing means can detect it with special means to determine whether the product is authentic or not. A technique, in which authenticity is identified by observing, with a polarizing plate, a latent image formed using a phase difference medium in which an optical axis is patterned, is known (see, for example, JP-A-2008-137232 (“JP-A” means unexamined published Japanese patent application) and JP-A-2008-129421). However, there are problems in that the thus-visualized latent image is monochromatic when viewed from the front, and further authenticity can not be identified unless the polarizing plate is rotated, which makes authentication cumbersome and complicated.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a vertical actuator mechanism for the legs of a walking machine and, more particularly, to a vertical actuator mechanism for a pantograph leg mechanisms for a walking machine which achieves isolation between the vertical and horizontal actuator mechanisms in a simple and efficient manner. 2. Description of the Prior Art It has long been known that it would be advantageous to develop a machine that walks rather than one driven by wheels or treads because a machine with legs can operate in areas and on terrain where wheeled or treaded vehicles cannot go. Knowing this, numerous attempts have been made over the years to develop a walking machine. However, the problems in developing such a machine have been so formidable that to this time, no satisfactory machine exists. These problems include coordinating the movement of the various legs, teaching the machine how to sense its environment so that each foot lands properly, and teaching the machine balance so that it does not fall over. The simple fact of the matter is that while walking is second nature to people and animals, it is extremely complex for computers and robots. The computer, with its ability to process enormous amounts of data and actuate suitable commands, promises to make the control of the legs of a walking machine a manageable problem. As a result, a number of researchers around the world have been working on the development of various different types of walking machines. It is highly desirable to form the leg of a walking machine out of a pantograph mechanism. A pantograph is a parallelogram structure where one corner of the parallelogram is a fixed point, the end of one of the legs of the pantograph is the movable point, the foot, and there exists within the pantograph structure what is known as the true pantograph point, a point which lies on a straight line between the fixed point and the movable point where motion of the true pantograph point in any direction will be translated into a proportional motion of the movable point. In order to move the foot of the pantograph structure both vertically and horizontally, so that a walking machine to which the leg mechanism is attached can walk, both a vertical actuator mechanism and a horizontal actuator mechanism is required. By using a pantograph mechanism, small motions of the pantograph point can be multiplied at the foot so that compact actuator mechanisms can be used and small movements of these mechanisms can be translated into large movements of the foot. Another highly desirable objective of a pantograph mechanism is that complete isolation be achieved between the vertical actuator mechanism and the horizontal actuator mechanism. The reason for this is that the vertical actuator mechanism supports the weight of the walking machine and it must, of necessity, be capable of exerting large forces. The horizontal actuator mechanism, on the other hand, is solely responsible for moving the foot horizontally and is not loaded by the weight of the walking machine. Thus, this actuator mechanism can be made small and fast provided that horizontal and vertical foot movements can be isolated and that the walking machine body can be kept level to gravity. In copending application Ser. No. 476,558, filed concurrently herewith, entitled Leg Mechanism for Walking Machine, and assigned to Odetics, Inc., the assignee of the present application, there is disclosed a foldable pantograph leg mechanism for a walking machine which will allow the legs of a walking machine to fold compactly against the machine body. In copending application Ser. No. 476,566, filed concurrently herewith, entitled Horizontal Actuator Mechanism for the Legs of a Walking Machine, and assigned to Odetics, Inc., the assignee of the present application, there is disclosed a horizontal actuator mechanism for the pantograph leg mechanism of a walking machine which allows very small motors to be used in applying the horizontal actuation force. In copending application Ser. No. 476,629, filed concurrently herewith, entitled Walking Machine, and assigned to Odetics, Inc., the assignee of the present application, there is disclosed a walking machine including a body having six legs attached thereto, extending therearound, in uniform positions around the body. As discussed in such application, by arranging a walking machine with a body and six uniformly spaced legs, the machine has the ability to maneuver in areas that are as small as a human being can maneuver in. Upon review of these applications, the problem remains to drive the pantograph leg mechanism in such a manner that isolation between the horizontal and vertical actuator mechanisms is achieved. The problem with using the true pantograph point as the vertical drive point is that the vertical actuator would have to follow the horizontal movement of the leg. This would mean that the actuator itself would have to slide on rails or in some other way accommodate the horizontal motion of the pantograph point, without changing its relationship to the vertical. Actually, one could either have the vertical actuator slide horizontally on rails to accommodate the horizontal motion of the pantograph point or have the horizontal actuator mechanism slide on rails to accommodate the vertical motion. Either alternative is highly inefficient because of the necessity of providing heavy, bulky mechanisms to support the sliding structure. It is the desire of the present invention to provide a simple, compact, lightweight mechanism. The ideal type of linkage to transmit large forces with a lightweight, efficient structure is a push-pull link (a strut) where the link is strictly in tension or compression, rather than sliding rails that have to carry high moments. One end of the strut would be connected to a vertical drive mechanism and the other end connected to a point on the pantograph. However, this causes a swinging action of the strut and if connected to the true pantograph point, horizontal movement of the mechanism will cause vertical movement of the connection point, preventing the desired isolation between the horizontal and vertical actuator mechanisms.
{ "pile_set_name": "USPTO Backgrounds" }
Dental implants are widely used as artificial substitutes for the root portion of missing teeth. A dental implant allows a dental restoration, such as a dental prosthesis, to be securely anchored to the jaw via an abutment mounted to the implant. An endosseous implant may have an externally threaded body. The threaded body can be configured for self-tapping into the bone tissues of the jaw. An endosseous implant can have an internal passage that is configured, such as internally threaded, for receiving and securing the anchoring stem of a permanent abutment therein. Following implantation of an implant in the intraoral cavity and healing of the surrounding tissues, a physical model of the intraoral cavity is produced for facilitating design and manufacture of the permanent abutment and prosthesis that are to be mounted onto the implant. In one procedure, an analog is placed in the physical model that is similar to the patient's intraoral cavity. The analog can be configured with an internal passage similar to the internal passage of the implant for receiving and securing the permanent abutment. The dental technician can then use the physical model to design and/or build a dental prosthesis for the patient. The dental technician mounts an abutment to the physical model via the internal passage of the analog. The dental technician then proceeds to build a dental prosthesis to fit onto the abutment and match surrounding teeth in the intraoral cavity of the patient. The methods and apparatus for constructing dental models can be less than ideal in at least some instances. Accurate placement of the analog in the physical model can be important for correct design and manufacture of the permanent abutment and prosthesis, and also for the outcome of the dental procedure. Accurate placement of an analog into a physical dental model, however, can be difficult. For example, manual positioning and orientation of an analog can be less than ideal with respect to accuracy, outcome and user convenience. In some dental models, which may employ a separate implant analog that is separately coupled to the dental model, inaccuracies in the placement of such implant analogs may compromise the accurate positioning of the abutment, and therefore degrade the accuracy of the prosthesis subsequently fabricated on the abutment and model. Thus, there is a need for improved dental models for dental procedures involving a dental implant. Ideally, such improved models would be simple to use, provide improved outcomes, include relatively few discrete parts, and provide accurate positioning and orienting of the permanent abutment.
{ "pile_set_name": "USPTO Backgrounds" }
The underlying causes of glaucoma are not fully understood. However, it is known that elevated intraocular pressure is one of the symptoms associated with the development of glaucoma. Elevations of intraocular pressure can ultimately lead to impairment or loss of normal visual function due to damage to the optic nerve. It is also known that the elevated intraocular pressure is caused by an excess of fluid (i.e., aqueous humor) within the eye. The excess intraocular fluid is believed to result from blockage or impairment of the normal drainage of fluid from the eye via the trabecular meshwork. The current drug therapies for treating glaucoma attempt to control intraocular pressure by means of increasing the drainage or "outflow" of aqueous humor from the eye or decreasing the production or "inflow" of aqueous humor by the ciliary processes of the eye. In some cases, patients become refractory to drug therapy. In other cases, the use of drug therapy alone is not sufficient to adequately control intraocular pressure, particularly if there is a severe blockage of the normal passages for the outflow of aqueous humor. Thus, some patients require surgical intervention to correct the impaired outflow of aqueous humor and thereby normalize or at least control their intraocular pressure. The outflow of aqueous humor can be improved by means of intraocular surgical procedures known to those skilled in the art as trabeculectomy procedures. These procedures are collectively referred to herein as "glaucoma filtration surgery." The procedures utilized in glaucoma filtration surgery generally involve the creation of a fistula to promote the drainage of aqueous humor into a surgically prepared filtration bleb. Alternatively, filtration devices have been used to shunt aqueous humor via a cannula from the anterior chamber into a dispersing device implanted beneath a surgically created bleb. A number of designs for filtration implants are known. See, for example, Prata et al., Ophthalmol. 102:894-904 (1995) which reviews a variety of available filtration implants made from polypropylene, polymethylmethacrylate or silicone materials. See also, Hoskins et al., Ophthalmic Surgery 23:702-707 (1992). Wound fibroplasia is a common cause of failure for glaucoma filtration devices. The fibroplasia results in encapsulation of the device, limiting aqueous humor outflow. There is a need for an improved glaucoma filtration device material which exhibits flexibility, is resistant to bioerosion and tissue adhesion, and does not elicit a significant immune response.
{ "pile_set_name": "USPTO Backgrounds" }
A Buffer Status Report (BSR) is of great importance in an uplink system due to its provision of User Equipment (UE) side information required for scheduling at a base station (evolved NodeB or eNB). In the Long Term Evolution-Advance (LTE-A) Release 8/9, a buffer status report is relatively simple because there is only one Media Access Control Protocol Data Unit (MAC PDU) in each Transport Time Interval (TTI). However in the LTE-A Release 10, a plurality of MAC PDUs can be transmitted in one TTI due to the introduction of Carrier Aggregation (CA), i.e., a plurality of Component Carriers (CCs), and thus it is desirable to address some new issues occurring with a buffer status report.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field The present disclosure relates generally to a power supply apparatus and a method of operating the same, and more particularly to a power supply apparatus with input voltage detection and a method of operating the same. 2. Description of Related Art With the development and progress of science and technology, electronic products with a wide range of different functions have gradually been developed. These electronic products not only meet different demands of users, but also provide more convenient life for the users. Each electronic product includes various electronic components, and the required voltages for supplying different electronic components are usually not the same. In order to provide appropriate voltage levels for normally operating each of the electronic components, the power supply or power conversion unit is used to convert the AC voltage or DC voltage into the appropriate voltage levels. In addition, in order to avoid the malfunction and damage of the power supply or the power conversion unit from the abnormal supply power of the AC power source, it is usually to install a detection circuit at the input side of the power supply or the power conversion unit. Reference is made to FIG. 1 which is a schematic circuit block diagram of a related art input detection circuit for a power supply. The power supply is supplied power by an external AC power source VS, and an AC detection circuit 10A is installed at the input side of the power supply to directly detect whether the external AC power source VS is normal or abnormal. Reference is made to FIG. 2 which is a schematic view of showing a failed detection of an AC detection circuit of a related art power supply apparatus. When the live wire VSL and the neutral wire VSN are both abnormal, the AC detection circuit 10A generates a signal to a protection circuit of the power supply to provide a protection for the power supply. In particular, the output system 20A, the power supply, and the AC detection circuit 10A are commonly grounded. Once one of the live wire or the neutral wire is abnormal, a loop Ls is formed via the grounding of the AC detection circuit 10A and the output system 20A. Accordingly, the AC detection circuit 10A fails to detect whether the live wire VSL or the neutral wire VSN of the external AC power source VS is abnormal or not. Also, the AC detection circuit 10A does not generate the signal to the protection circuit of the power supply and fail to provide a protection for the power supply. Accordingly, it is desirable to provide a power supply apparatus with input voltage detection and a method of operating the same to use an input detection module without any grounding or an input detection module with an independent grounding which is different from that of the power supply for detecting whether the AC power source is abnormal or not.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention generally relates to a method of making headliners used in a motor vehicle and, more particularly, to methods of making headliners that use adhesives to adhere the headliner layers together. 2. Background Art As for all automotive components, improved methods of manufacturing that produce higher quality parts at lower costs are always desirable. The aesthetic demands of vehicle interiors makes improvements for such components particularly important. Such components include headliners, trim, upholstery, and the like. Headliners are particularly important because vehicle interiors have significant areas covered by this component. In the typical headliner forming operation, a PU pre-polymer is roller coated onto a PU foam mat. Water is then sprayed on both surfaces of the PU foam mat. A sandwich structure of a non-woven polyester, glass fiber mat, the adhesive-coated PU foam, a second glass fiber mat, and a non-woven polyester with polyethylene film is positioned in a pressing tool. The sandwich structure is heated to about 130° C. with a pressing time of about 30 seconds to form the finished headliner. In order to remove the headliner from the pressing tool, it is necessary to spray a release agent onto the tool before pressing. The use of release agents results in residues on both sides of the headliner after pressing. In a related refinement of this process, a textile is laminated onto the side that faces the car interior and small parts such as cables or retainers are glued to the side facing the car roof. The existing release agents impair bonding in both these instances The adhesives used in the current processes also cause various problems. For example, foaming of the adhesive during reaction occurs causing it to partially bleed through and sticks to the tools which are typically aluminum or steel. Finally, the polyethylene film on the polyester non-woven material melts in areas of high pressure thereby sticking to the tooling as well. Accordingly, there exists a need in the prior art for an improved process of forming headliners to be used in motor vehicle interiors.
{ "pile_set_name": "USPTO Backgrounds" }
Many devices used in the care and treatment of swimming pools provide for a high velocity jet of water to stir dirt, leaves and other foreign matter from the pool bottom and walls and into suspension for removal by the pool circulation system, or to create a low pressure zone for suction of same from the bottom and walls. Since pumps are employed in the regular circulation of water from the pool through heating and/or filtering media and back to the pool again, it is highly desirable to use the available circulation pump for the pool treating equipment, as well as for other water circulation systems. In such event, it is necessary to have suitable valving means to direct the pump discharge selectively through either the normal circulation system or the auxilary pool treating systems. It is also necessary, because of the generally high flow capacity requirements for such auxilary systems, that the valve device provide high flow capacity in both the circulation and pool-treating modes. It is further highly desirable that the three-way valve be adapted so that any one of the three hubs may be connected to the suction or discharge line connected to a pump, with the other two being connected to circulation and cleaning system delivery, thus offering flexibility in plumping arrangements.
{ "pile_set_name": "USPTO Backgrounds" }
This invention pertains to a pedestal for supporting a top for a starting platform for one end of a swimming pool. Pedestals embodying this invention are adjustable so as not to require, in many instances, custom fitting, via custom cutting or welding operations, to accommodate pool dimensions, water level, and other factors from one swimming pool to another. In a swimming meet, each swimmer starts at a starting platform, which may be also called a starting block, at one end of a swimming pool. Typically, a starting platform comprises a base, stand, or pedestal, to which a top is mounted so that its upper surface is horizontal or so that its upper surface is sloped slightly (e.g. not more than 10xc2x0 from horizontal) from the back edge of the top toward its front edge. Several models of such starting platforms are available commercially from Kiefer Pool Equipment Co. of Zion, Ill., as illustrated and described briefly on page 2 of its 2002 Product Guide, in which such starting platforms are called starting blocks. Typically, installation of a starting block must conform to governmental and non-governmental rules, standards, and regulations. As an example, a 1991 rule of the National Federation of State High School Associations provides that, if a swimming pool has less than four feet of water at its starting end, a starting platform may be no higher than eighteen inches from the water level at the starting end. Commonly, therefore, the base, stand, or pedestal of a starting platform, as known heretofore, must be custom fitted, via custom cutting and welding operations, so as to accommodate pool dimensions, water level, and other factors from one swimming pool to another. This invention provides, for supporting a top for a starting platform for one end of a swimming pool, an adjustable pedestal, which has an upper member and a lower member. The upper and lower members are fastened releasably to each other, as by means comprising a bolt or bolts, so as to define a generally upright column having any of a plurality of adjusted lengths. The upper member is adapted to support a top for the starting platform. The lower member is adapted for anchoring to a base. Preferably, the upper and lower members are tubular and have a telescoping relationship when not fastened to each other, the upper member extending downwardly into the lower member. The starting platform may have a step, which is fastened releasably to the generally upright column, via a bracket, to which the step is mounted, at any of a plurality of adjustable positions. Means comprising a bolt or bolts are used for fastening the bracket, to which the step is mounted, releasably to the generally upright column. The means used for fastening the upper and lower members releasably to each other may be also used for fastening the bracket, to which the step is mounted, releasably to the generally upright column. The pedestal may have an upper step, an upper bracket, to which the upper step is mounted, a lower step, and a lower bracket, to which the lower step is mounted. Means comprising bolts are used for fastening the upper and lower members of the generally upright column releasably to each other, for fastening the upper bracket, to which the upper step is mounted, releasably to the generally upright column, and for fastening the lower bracket, to which the lower step is mounted, to the generally upright column. The means for fastening the upper and lower members of the generally upright column to each other may be also used for fastening the upper bracket, to which the upper step is mounted, releasably to the generally upright column. In this document, all directional terms referring to a pedestal, particularly but not exclusively xe2x80x9cupperxe2x80x9d, xe2x80x9clowerxe2x80x9d, and xe2x80x9cgenerally uprightxe2x80x9d, are intended to refer to the pedestal, as installed in its usual orientation, not to limit the pedestal, as made and sold, to any particular orientation. Moreover, the term xe2x80x9cgenerally upright columnxe2x80x9d is intended to cover a sloping column, as well as a vertical column.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to peptides which affect the biological activity of cells in culture. In particular, the invention is directed to specific peptides affecting adherence, growth or secretion of cells. 2. Description of Relevant Art Tissue and protein hydrolysates have been routinely used as a source of peptides in cell culture media since the late 1800's. They are the most common undefined culture media component in present use in bacteriology and often replace serum in the mammalian culture (S. Saha and A. Sen., Aptavirol 33:338–343, 1989). Hydrolysates and serum are not optimal sources of peptides for culture media. Further, their composition are undefined, vary from lot to lot and may harbor pathogens such as BSE. It has been recognized that peptides are generally preferred nutrients for use in cell culture media as compared to their constituent amino acids. Several approaches have been taken in an effort to determine which specific peptides are utilized by a cell culture as a means for identifying defined peptides which affect growth or some other biological activity. For example, recent developments in peptide synthesis technology have made it possible to screen large numbers of compounds for media enhancement, either as individual defined sequences or as a mixture of variable sequences in a peptide library. The library approach has provided an opportunity to screen more peptide sequences for desired biological effects in cell culture. Once the sequence of a peptide having the desired biological activity is identified, it may be produced in large quantity, such as by chemical synthesis or recombinant DNA methods. Subsequently, the peptide can be included in a culture system by coating on a surface or being free in solution in the culture medium. Both presentations may lead to a desired effect on cultured cells. The ability of cells to interact with components of the extracellular matrix in vivo is involved in several important biological processes including cellular growth, migration, and differentiation. Moreover, the necessity of anchorage-dependent cells to first adhere to surfaces largely dictates the success of a cell culture effort. In particular, the abilities of the cell to adhere, spread, and contract on solid matrices are prerequisites for the growth of normal anchorage-dependent cells in vitro. (Grinnell, F., Psychology, 53:67–149, 1978 and Couchman, et al., J. Cell Biol., 93:402–410, 1982) The ability of cells to adhere to surfaces is affected by many factors including the cell culture media used, the particular type of cell, and the particular surface upon which the cells are cultured. When the end goal is to accumulate product in the supernatant, and the cells being cultured are adherent-type cells, best results are typically achieved when adherence and growth are optimized first, followed by an optimization of expression and finally secretion. In general, mammalian cells are cultured on polymer surfaces. Practically all mammalian cells that adhere to synthetic polymer surfaces are controlled by absorbed protein and are receptor mediated. For example, fibronectin is a protein component of the extracellular matrix which has been shown to be involved in the adhesion of mammalian cell types to tissue culture substrates. (Pearlstein, E., Nature, 262:497–500, 1976 and Kleinman, et al., Biochem. Biophys. Res. Commun., 72:426–432, 1976) The ability of fibronectin to aid in cell attachment has been localized to a trimer sequence (RGD), which is located in the cell binding domain of fibronectin. Regarding the role of a cell culture substrate and other surfaces in promoting cell adhesion, it is known that proteins are immediately absorbed to the surface of a tissue culture substrate following placement of a protein solution thereon. Provided there are receptors for some of the absorbed proteins on the cell surface, and further provided that the conformation of the absorbed protein is not altered to a large degree by absorption so as to destroy ligand-receptor affinity, cell adhesions to the culture substrate and cell spreading can result. With further reference to the role of the cell culture substrate and other surfaces in permitting cell adhesion, if cells are seeded on a substrate in the absence of absorbed protein, then proteins which are on the cell surface may directly absorb to the surface and the cell will, provided suitable conditions are present, secrete protein towards the surface in the form of an extracellular matrix. However, it is known that cells in culture never directly touch the surface except through intermediate absorbed protein. It has been proposed that particular peptides are absorbed to a polymer surface in order to promote short-term cell adhesion to the surface. For example, Singer et al. proposed the absorption of a 13-mer peptide containing the RGD sequence described above onto a polymer substrate to promote cell adhesion. (Singer, et al., J. Cell Bio., 104:573–584, 1987) The disadvantages of using peptides of this length has been that they are highly subseptible to degradation at high temperatures such as those used during cell culture and to the proteolytic action of the cultured cells themselves. An alternative to surface absorption of peptides to promote cell adhesions, has been to chemically attach peptides via covalent modifications to a surface. For example, Brandly, et al., (Analytical Biochemistry 173:270, 1988) proposed the inclusion of a 9-mer peptide in a polymer substrate to promote cell adhesions. While this method promoted cell adhesions, its required large concentrations of peptide to promote an acceptable level of cell adhesion. Given that the cost of preparing synthetic peptides is high, incorporation of peptides to the bulk of the polymer would not facilitate the economical preparation of cell culture substrates commercially. It is also known to derivatize surfaces with peptides having less than 12 amino acid residues and containing one of the following sequences of amino acids: GRGD, GYIGSR, GREDV. These peptides have been further described as including a minimal cell-surface receptor recognition sequence, for example, RGD, YIGSR, or REDV to permit the cell receptor mediated support of cells to a treated surface. The peptides are preferably attached to the surface through the reaction of a terminal primary amine associated with the peptide to be grafted to the surface and an active group on the polymer surface. A disadvantage of this method is that the surface must first be activated before the surface can be derivatized with a peptide. The process used for activating the surface can be lengthy in time and can involve reagents which may be toxic to cells, requiring thorough washing of the surface prior to modification with the peptide and prior to culturing of the cells on the derivatized surface. Further, the efficiency of peptide immobilization is highly dependent on the prior polymer derivatization process. The final range of peptide concentration and orientation on the surface are restricted. Thus, a need exists in the art for the discovery of additional small peptides for use in modifying surfaces to promote cell adhesions and growth which are thermally stable and resistant to proteolysis by cellular proteases or proteases such as trypsin which are often added to remove adherent-type mammalian cells from a tissue culture substrate. It is further desired that the small peptides are resistant to the desorptive effect, but not require covalent immobilization to the surface. There is also a need in the art for small peptides that enhance expression and secretion. Adherent cell lines are often the choice for production when the target pharmaceutical is secreted. Having an immobilized cell allows one to easily remove the high molecular weight constituents, which are present in the supernatant and required during the growth phase, and to subsequently replace the supernatant with a stabilizing media containing only low molecular weight substances that will not co-purify with the target pharmaceutical. Unfortunately, these stabilizing media often reduce expression and secretion levels. Having low molecular weight peptides that increase accumulation of product in tissue culture broth would therefore be advantageous. Finally, there is a need for peptide libraries which accelerate the discovery of media or culture environment constituents with the attributes described above. The ability to match peptide performance with physical properties will lead to peptide classes delivering benefits across many cell types and culture conditions. Further, such peptide classes will allow bioengineers to rapidly identify high-performing bioactive peptides as media constituents for cells in rare supply, such as stem cells.
{ "pile_set_name": "USPTO Backgrounds" }
Fluorocarbons, particularly fluorinated olefins, as a class, have many and varied uses, including as chemical intermediates and monomers. In particular, these products are useful as refrigerants, monomers or intermediates for preparing refrigerants, particularly those identified as having low global warming potential. With concerns over global warming, hydrofluoroolefins (HFOs) are being commercialized as substitutes for chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) for use as refrigerants, heat transfer agents, blowing agents, monomers and propellants because HFOs do not deplete the ozone layer and have low global warming potential. Some HFOs are prepared by multiple steps that involve fluorinating a chlorinated organic compound with a fluorination agent such as hydrogen fluoride in the presence of a fluorination catalyst. These reactions may be conducted in either the liquid or gas phase or a combination of these. In processes to manufacture 2,3,3,3-tetrafluoropropene (1234yf), the following reaction sequence is known: Step 1: TCP+3HF→1233xf+3HClwherein TCP is 1,1,2,3-tetrachloropropene, or CCl2═CClCH2Cl; and 1233xf is 2-chloro-3,3,3,-trifluoropropene, or CH2═CClCF3. Step 2: 1233xf+HF→244bbwherein 244bb is 2-chloro-1,1,1,2-tetrafluoropropane, or CH3CClFCF3.A by-product of Step 2 can also form as follows: 1233xf+2HF→245cb+HCl, where 245cb is 1,1,1,2,2-pentafluoropropane, or CH3CF2CF3. Step 3: 244bb→1234yf+HClwherein 1234yf is 2,3,3,3-tetrafluoropropene, or CH2═CFCF3. Whereas, in Step 2, a high conversion of 1233xf concurrent with low selectivity to the 245cb by-product is sought, it has been found, especially when an antimony chloride complex catalyst is used, that less than desirable conversion and selectivity is often obtained. There is thus a need to simultaneously achieve high conversion of 1233xf with low selectivity of 245cb and to gain the resultant economic and commercial benefits in, e.g. the production of 1234yf as a final product.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to steel particularly suited for both general use and the manufacture of a component for bearings, especially a race for ball bearings, needle bearings or roller bearings. 2. Background of the Invention Components for bearings, such as races, balls, needles or rollers, are generally manufactured from steel of the 100Cr6 or 100CrMn6 type containing from 0.6 to 1.5% of carbon, from 1.3 to 1.6% of chromium, from 0.3 to 1% of manganese and less than 0.4% of silicon and having a very high degree of cleanliness in terms of inclusions. The steel is used in the form of rolled bar, seamless tube or wire, from which are cut blanks or slugs which are formed by cold or hot plastic deformation and then hardened by tempering and annealing, before being machined. The components thus obtained have a high hardness and the toughness required for them to be able to withstand the rolling fatigue well, at least under the normal conditions of use, especially for in-service temperatures below 150.degree. C. However, the components thus formed have an insufficient rolling fatigue resistance for more severe service conditions, which are tending to become common. These more severe service conditions are characterized, in particular, by a service temperature above 150.degree. C. and possibly as high as 350.degree. C., and/or by the presence of the phenomenon of bearing surface deterioration by indentation. This phenomenon consists of the initiation of cracks on the surface, caused by the indentations, i.e. deformations generated by hard particles present in the lubricant. In order to limit the effect of the indentation, it has been proposed to use materials having a very high hardness such as ceramics or deposits of hard materials. However, this technique has the drawback of being not very reliable because of the excessively high brittleness of these materials, which brittleness makes them very sensitive to the slightest defect. It has also been proposed, for example in U.S. Pat. No. 5,030,017, to use a steel containing, in particular, from 0.3% to 0.6% of carbon, from 3% to 14% of chromium, from 0.4% to 2% of molybdenum, from 0.3% to 1% of vanadium and less than 2% of manganese. The components are carburized or carbonitrided in the region of the bearing surface, so as to obtain a sum of the carbon and nitrogen contents of between 0.03% and 1%, and are then hardened so that their micrographic structure comprises from 20% to 50% (in % by volume) of residual austenite in a surface layer representing from 10% to 25% of the volume of the component. This technique has the double drawback of requiring the use of a steel which is highly loaded with alloying elements, and is hence expensive, and the execution of a carburizing or carbonitriding treatment, this treatment being lengthy and expensive. It has also been proposed, in German Patent Application DE 195 24 957, to use a steel containing from 0.9% to 1.3% of carbon, from 0.6% to 1.2% of silicon, from 1.1% to 1.6% of manganese and from 1.3% to 1.7% of chromium, the balance being iron and impurities resulting from smelting, the structure of this steel containing from 7% to 25% of residual austenite. However, this steel, because of its chemical composition, provides no guarantee of castability, of cold deformability and of residual austenite content and stability. The specified residual austenite content necessary for improving the resistance to indentation fatigue moreover requires, in the case of this steel, subjecting the bearings to a not very convenient heat treatment comprising a step of holding them at approximately 100.degree. C. for more than 10 hours between tempering and annealing without returning to ambient temperature after tempering or before annealing. Moreover, in the presence of multidirectional stresses below the cyclic yield stress, its austenite is stable for more than 2000 hours only for thermal stresses below 120.degree. C., which is too low for some applications.
{ "pile_set_name": "USPTO Backgrounds" }
Large enterprises have many thousands of server computers and tens of thousands or more of individual computing devices. Such organizations also typically use hundreds or thousands of different computer software applications in the course of their business, and have many, often hundreds of system administrators installing, maintaining, operating, upgrading, and otherwise administering these computers and applications. Many applications provide different access or privilege levels for users. For example, a financial application might have privileged accounts that can be used to configure the system (e.g., select currencies used, create or delete accounts) and normal accounts that can only be used for day-to-day operations or data entry. For computer systems, there are typically normal user applications that are only used for running various application software, and administrator accounts (such as the root account in Unix/Linux or Administrator account and Domain Administrator account in Windows) that can be used to install, modify, or delete software on the system or access hardware (e.g., disk drives) directly, bypassing normal security and protection mechanisms on the computer (in practice, such accounts frequently permit kernel-level or operating system level access by allowing the installation of new device drivers or upgrading the operating system kernel). Given the large powers of certain administrator accounts, it is also possible to hide one's actions or insert hidden subvertive code into the system through such accounts. Given the high number of administrators and the ability of some accounts to subvert even the operating system, it is important for organizations to monitor and audit access to and use of privileged accounts. This is important even for many medium-level privileged accounts where such auditing might still be required by regulations or good corporate governance policies. Furthermore, some applications might be so critical that all access to them should be audited, while others might ideally require real-time auditing and control from more than one person while performing administrative actions. Several commercial products exist for controlling and auditing actions by administrators. The PowerBroker product from BeyondTrust, Inc. permits fine-grained control and auditing of certain administrative actions. The Xsuite products from Xceedium permit monitoring of SSH (Secure Shell) and RDP (Remote Desktop Protocol) sessions by requiring all administrative connections to be made through a centralized server, which decides which administrative interfaces a user can connect to and audits the actions performed by the administrator. It has access to the plaintext of even encrypted connections by making the connection from the centralized server and providing an HTTP-based web connection to the administrator. A shortcoming of the solution is that it forces administrators to use the user interface and tools provided by the solution; it is thus intrusive and changes the way administrators need to work. The Privileged Session Management Suite from Cyber-Ark has similar capabilities and functionality as the Xceedium product, and suffers from similar shortcomings. The Shell Control Box from Balabit also permits monitoring and auditing of SSH, RDP, VNC (Virtual Network Computing), and certain other types of sessions. While it can be operated in Bastion Mode, which is somewhat similar to the aforementioned products, it can also act as an intermediate device in the network between the administrative user and the computer running the application to which the administrative connection is. It performs a man-in-the-middle attack on the cryptography, which enables it to decrypt, inspect, and record even the contents of encrypted communications protocols. However, performing such attack smoothly requires that the intermediate device has a copy of the private key of the host being connected to, called destination host (for SSH), or a private key and certificate for the destination host (for, e.g., RDP). If the host key of the destination host is changed (it is prudent security practice to change any keys regularly), the key must be changed also on the intermediate device. When there are many hosts and many applications, this becomes very cumbersome. Furthermore, such keys may also be stored in, e.g., SSH clients, resulting in very confusing error/warning messages to end users when the keys are changed. The Shell Control Box is frequently installed next to a firewall and stores all audit data on the Shell Control Box itself. Sometimes it is installed next to the server. When there are multiple firewalls or multiple servers to protect (possibly at different sites in widely separated geographic locations), logs from multiple users will remain at each Shell Control Box and since sensitive user data (including passwords) is stored at each device, compromise of even a single device may result in compromise of sensitive passwords. Centralized searches from multiple Shell Control Box installations are not possible. The SSH protocol is described in the Internet Engineering Task Force (IETF) standards RFC 4250 The Secure Shell (SSH) Protocol Assigned Numbers, RFC 4251 The Secure Shell (SSH) Protocol Architecture, RFC 4252 The Secure Shell (SSH) Authentication Protocol, RFC 4253 The Secure Shell (SSH) Transport Layer Protocol, and RFC 4254 The Secure Shell (SSH) Connection Protocol. The original protocol was invented and developed by one of the present inventors in 1995-1999, and then standardized by the IETF. The Secure Shell (SSH) protocol and related client and server software applications are now included in nearly all Unix and Linux versions, such as IBM AIX, HP-UX, Solaris, Red Hat, SUSE, Ubuntu, etc. Popular implementations of the SSH protocol include the open source OpenSSH, which is based on the present inventor's free SSH version 1.12 from 1995, and the commercial Tectia SSH client and server from SSH Communications Security (Tectia Corporation). The Secure Sockets Layer (SSL) protocol is described in RFC 6101. Its newer version, Transport Layer Security (TLS) protocol is described in RFC 5246. The Remote Desktop Protocol is based on, and an extension of, the ITU T.120 family of protocols. It is described in detail in Microsoft documentation, available with the Microsoft Developer Network product, under the entry [MS-RDPBCGR]: Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification, Microsoft Corporation, Dec. 14, 2011. An objective of the present invention is to provide an improved system for controlling and auditing SFTP file transfers and file transfers using other encrypted protocols.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to air supply systems and in particular, to a new and improved air supply system incorporating a track along which a vehicle may move and pick up air from the track. The invention will be described herein as used with an air bearing transporter such as is shown by way of example in U.S. Pat. No. 3,796,279. However the air supply system of the present invention is not limited to use with air bearing transporters and may be utilized for supplying air under pressure to any type of vehicle or other load while moving or stationary. An air bearing transporter has a plurality of air bearings which produce an air film between the transporter and the floor or other surface resulting in very low friction permitting the transporter and its load to be moved with a small force. The transporter requires a supply of air under pressure which may be provided by an onboard compressor or by a hose connection or by an air supply in the floor over which the transporter moves. A prior air supply system with an air track is shown in U.S. Pat. No. 3,820,467. The air track comprises one or more ducts in the floor with openings along the upper surface of the duct for air flow into the vehicle positioned above the ducts. In this prior art system, the air passages in the upper wall of the ducts are open at all times, resulting in continuous air flow through all openings even though the vehicle is positioned over only a few of the openings. Such a system requires a relatively high rating for the compressed air source while wasting most of the compressed air. In order to meet this disadvantage, various types of air supply systems have been developed utilizing control valves for the air flow. However the large number of valves required makes these systems expensive, and the valves are subject to damage and jamming and require continuous maintenance. Another form of air track is shown in U.S. Pat. No. 3,722,424. In one embodiment, the spaced openings along the duct are closed by a sealing strip which is moved downward exposing the openings in the duct by the vehicle as it moves along the track. An alternative embodiment utilizes a pair of resilient tubes for closing a continuous opening in the duct, with a support structure carried by the vehicle and moving between the resilient tubes on rollers providing air flow from the duct to the vehicle. Another prior art system is shown in U.S. Pat. No. 3,190,460, utilizing a resilient duct with lips moved inward to an open position by a suction applied to the duct. It is an object of the present invention to provide a new and improved air supply system which is simple to manufacture, install and maintain, relatively inexpensive and trouble free, and having substantially no air losses. A further object is to provide a new and improved air supply system utilizing an air track for the floor and a cooperating probe for the vehicle, with the probe being engageable with and disengageable from the air track as desired permitting control of movement of the vehicle along the track and permitting movement of the vehicle away from the track as desired. An additional object is to provide an air track and movable probe combination which can operate with the track in an overhead or side wall position. Other objects, advantages, features and results will more fully appear in the course of the following description.
{ "pile_set_name": "USPTO Backgrounds" }
According to the National Health and Nutrition Examination Survey (NHANES III, 1988 to 1994), between one third and one half of men and women in the United States are overweight. In the United States, sixty percent of men and fifty-one percent of women, of the age of 20 or older, are either overweight or obese. In addition, a large percentage of children in the United States are overweight or obese. The cause of obesity is complex and multi-factorial. Increasing evidence suggests that obesity is not a simple problem of self-control but is a complex disorder involving appetite regulation and energy metabolism. In addition, obesity is associated with a variety of conditions associated with increased morbidity and mortality in a population. Although the etiology of obesity is not definitively established, genetic, metabolic, biochemical, cultural and psychosocial factors are believed to contribute. In general, obesity has been described as a condition in which excess body fat puts an individual at a health risk. There is strong evidence that obesity is associated with increased morbidity and mortality. Disease risk, such as cardiovascular disease risk and type 2 diabetes disease risk, increases independently with increased body mass index (BMI). Indeed, this risk has been quantified as a five percent increase in the risk of cardiac disease for females, and a seven percent increase in the risk of cardiac disease for males, for each point of a BMI greater than 24.9 (see Kenchaiah et al., N. Engl. J. Med. 347:305, 2002; Massie, N. Engl. J. Med. 347:358, 2002). In addition, there is substantial evidence that weight loss in obese persons reduces important disease risk factors. Even a small weight loss, such as 10% of the initial body weight in both overweight and obese adults has been associated with a decrease in risk factors such as hypertension, hyperlipidemia, and hyperglycemia. Although diet and exercise provide a simple process to decrease weight gain, overweight and obese individuals often cannot sufficiently control these factors to effectively lose weight. Pharmacotherapy is available; several weight loss drugs have been approved by the Food and Drug Administration that can be used as part of a comprehensive weight loss program. However, many of these drugs have serious adverse side effects. When less invasive methods have failed, and the patient is at high risk for obesity related morbidity or mortality, weight loss surgery is an option in carefully selected patients with clinically severe obesity. However, these treatments are high-risk, and suitable for use in only a limited number of patients. It is not only obese subjects who wish to lose weight. People with weight within the recommended range, for example, in the upper part of the recommended range, may wish to reduce their weight, to bring it closer to the ideal weight. Thus, a need remains for agents that can be used to effect weight loss in overweight and obese subjects.
{ "pile_set_name": "USPTO Backgrounds" }
Recovery of copper from oxidic copper bearing raw materials can be realized by leaching the raw materials with sulfuric acid at pH 1 to 2.5 followed by copper recovery by electrowinning after solvent extraction. However, especially with primary sulfide minerals, copper can be leached with sulfuric acid only at high temperatures and pressures resulting in a pregnant leach solution containing high sulfuric acid concentration due to high level of oxidation of elemental sulfur. This makes solvent extraction of copper expensive as excessive amount of acid in the solution has to be neutralized prior to the solvent extraction stage. There are several discloses in the literature for the recovery of metals, in particular copper, from a copper-bearing sulfide ores where either hydrochloric acid or high chloride concentration has been utilized. Although leaching can be performed in reduced pressure and temperature as compared to sulfuric acid processes a high chloride concentration in pregnant leach solution decreases copper extraction yield in solvent extraction and makes the process more unattractive. WO2004035840 for example relates to a method for the recovery of metals, in particular copper, from a copper-bearing raw material, whereby the material is leached into a chloride-containing solution. The leaching of the raw material is performed oxidatively and at a sufficiently high redox potential that the copper in the copper chloride solution from leaching is mainly divalent. The chloride solution obtained, which contains copper and potentially other valuable metals, is fed to liquid-liquid extraction. In the extraction the copper is first transferred to the organic phase with extraction and then to a sulphate solution in stripping, which is fed to copper electrowinning. US2010/0031779A1 on the other hand discloses a process for recovering copper from an acid aqueous solution containing cupric chlorides and alkali metal and/or alkali earth metal chlorides by a solvent extraction with a cation exchange extractant, comprising the step of processing a solvent extraction in the presence of sulfate ions.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention concerns a method for establishing radiofrequency links via a telecommunication satellite having several spots, designated multispot satellite, between at least one terrestrial station (designated as gateway) and a service area composed of a plurality of elementary covering zones, designated as cells, each cell comprising a plurality of terrestrial terminals. This type of satellite allows the use of several antenna spots on board the satellite to cover contiguous geographical zones or cells, instead of a single broad spot. Such multispot satellites allow several radiofrequency links to be established occupying the same frequency band on different spots. In the case of a broadband satellite telecommunication system, the satellite is used in a bidirectional manner, i.e. at the same time for: relaying data emitted by a terrestrial station towards a plurality of terrestrial terminals: this first link of the point-multipoint type constitutes the forward link; relaying towards the terrestrial station the data emitted by the terrestrial terminals this second link, of the multipoint-point type, constitutes the return link. It will be noted that a radiodiffusion service by satellite can be considered as equivalent to the forward link of a bidirectional system such as described above. An example of forward link in a multispot configuration is illustrated in FIG. 1. Signals are sent towards a multispot satellite 3 on an uplink LM by a terrestrial station 2 such as a gateway connected to an internet backbone 5. These signals are then processed at the level of the satellite 3 then retransmitted on a downlink LD in the form of a plurality of spots forming elementary covering zones or cells C1 to C8 in which terrestrial terminals 6 are situated. Each cell C1 to C8 is associated with a spot SP1 to SP8. It will be noted that in the case of configuration 1, the eight cells C1 to C8 associated respectively to the eight spots SP1 to SP8 form a group of cells served by the same terrestrial station 2. The return link of the terrestrial terminals 6 towards the terrestrial station 2 functions in an identical manner with an inverse direction of communication. The coordination of the frequencies between operators is carried out within the framework of a regulation decreed by the International Union of Telecommunications (IUT): thus, by way of example, the Ka band for Region 1 (Europe, Africa, Middle East) is defined in Table 1 below: TABLE 1Forward linkUplink (of the terrestrial station)27.5 GHz to 29.5 GHzDownlink (towards the terrestrial19.7 GHz to 20.2 GHzterminals)Return linkUplink (of the terrestrial terminals)29.5 GHz to 30.0 GHzDownlink (towards the terrestrial17.7 GHz to 19.7 GHzstation) Other bands such as band Ku can likewise be used. Given that the gain of an antenna is inversely proportional to the opening of the spot, it is necessary to use multispot antennae to cover an extensive zone with a homogeneous and high gain. The greater number of spots, the smaller the opening of each spot will be. Thus, the gain on each spot and hence the gain on the service area to be covered will be increased. As we have mentioned above, a service area to be covered is formed by a plurality of contiguous cells (elementary covering zones), a spot being associated with each cell. A homogeneous multispot covering zone SA is represented in FIG. 2a), each cell being represented by a hexagon FH such that the covering zone is composed of a plurality of hexagons FH in which φcell is the external dimension of the cell expressed by the angle of the satellite associated with the covering. However, the antenna spot associated with each cell is not capable of producing a hexagonal shape, a good approximation consisting in considering a plurality of circular spots FC such as represented in FIG. 2 b). The association of a spot with a cell is carried out taking into account the best performances of the satellite for said spot, in particular in terms of EIRP (Effective Isotropic Radiated Power) and of merit factor G/T (ratio gain over noise temperature): a cell is determined as the part of the service area associated with the spot offering the highest gain on this zone from all the spots of the satellite. Configuration 1, as represented in FIG. 1, uses a technique designated frequency re-use: this technique allows the same range of frequencies to be used several times in the same satellite system so as to increase the total capacity of the system without increasing the attributed band pass. Frequency re-use schemes are known, designated as color schemes, making a color correspond to each of the spots of the satellite. These color schemes are used to describe the attribution of a plurality of frequency bands to the spots of the satellite with a view to radiofrequency transmissions to be realized in each of these spots. In these schemes, each color corresponds to one of these frequency bands. In addition, these multispot satellites allow polarised transmissions to be emitted (and received): the polarisation can be linear (in this case the two directions of polarisation are respectively horizontal and vertical) or circular (in this case the two directions of polarisation are respectively circular left or circular right). It will be noted that in the example of FIG. 1, the uplink leaving the station 2 uses two polarisations with four channels for each polarisation, respectively Ch1 to Ch4 for the first polarisation and Ch5 to Ch8 for the second polarisation: the use of two polarisations allows the total number of terrestrial stations to be reduced. The eight channels Ch1 to Ch8, after processing by the payload of the satellite 3 will form the eight spots SP1 to SP8 (one channel being associated with one spot in this example). According to a scheme with four colors (red, yellow, blue, green) with a frequency spectrum of 500 MHz for each polarisation, the transmissions being polarised in one of the two polarisation directions: circular right or circular left, each color is associated with a band of 250 MHz and a polarisation direction. In the whole of the following description, we will take the following convention: the color red is represented by hatched lines toward the right; the color yellow is represented by dense points; the color blue is represented by hatched lines toward the left; the color green is represented by dispersed points. A color is thus associated with each spot of the satellite (and hence a cell) so that the spots of a same “color” are non-adjacent: the contiguous cells therefore correspond to different colors. FIGS. 3a) and 3b) take up again the example of FIGS. 2a) and 2b) with a scheme having four colors. FIG. 3a) illustrates a homogeneous multispot covering zone, each cell being represented by a hexagon associated with a color so that the contiguous cells therefore correspond to different colors. FIG. 3b) represents the circular spots associated with each cell (the color of which is identical to that of the associated cell). An example of a scheme with four colors for the coverage of Europe is represented in FIG. 4. In this case, 80 cells are necessary to cover Europe. This scheme allows there to be a European coverage towards and from terminals using a spectrum of 500 MHz but with the re-use of the frequencies. The coverage for the terrestrial stations is less constraining and can be provided by a sub-assembly of spots or a separate coverage. This type of scheme is equally applicable in uplink and in downlink. At the satellite level, the creation of a spot is made from a horn radiating towards a reflector. A reflector can be associated with a color so that a coverage with four colors is ensured by four reflectors. FIG. 5 illustrates a frequency plan broken down into an uplink frequency plan PMVA on the forward link, a downlink frequency plan PDVA on the forward link, an uplink frequency plan PMVR on the return link and a downlink frequency plan PDVR on the return link. The notations RHC and LHC designate respectively the right and left circular directions of polarisation. The PMVA plan corresponding to the uplink on the forward link (of the terrestrial station to the satellite) has 2 GHz available frequency spectrum so that 16 channels of 250 MHz band pass are generated by a terrestrial station (8 channels for each polarisation). These 16 channels, after processing by the payload of the satellite will form 16 spots. In this example, 16 spots (and hence 16 cells) are generated by a terrestrial station. It will be noted that the scheme with four colors, for the forward link, associates one of the following four colors with each spot of a pattern of four adjacent spots: a first color red corresponding to a first band of 250 MHz (lower part of the available spectrum of 500 MHz) and to the circular right polarisation direction; a second color blue corresponding to the same first band of 250 MHz and to the circular left polarisation direction; a third color yellow corresponding to a second band of 250 MHz (upper part of the available spectrum of 500 MHz) and to the circular right polarisation direction; a fourth color green corresponding to the same second band of 250 MHz and to the circular left polarisation direction. On the return link, the polarisations are inverted so that the colors red and yellow have a circular left polarisation and the colors blue and green have a circular right polarisation. However, such a configuration is liable to involve certain difficulties.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a support frame and, more particularly, to a support frame that is stably installed on a ground where it is difficult to maintain balance such as an uneven ground or a slope. 2. Description of the Related Art For example, according to the support frames for beach umbrellas that are used at present, weight is ensured at the lower end by cement or a casting (cast iron), a support of the beach umbrella is coupled to the center to support the support frame, a support side is stuck in the ground, and the support of the beach umbrella is placed thereon. The existing support frames should be used for their use environments and functions and users have to purchase those support frames having different functions. Further, a weight type of support frame is difficult to carry and support frames that are designed to be stuck in a support floor can be used only on the ground and the like, where support pins can be stuck. That is, the existing support frames are designed to support beach umbrellas that are supported at the center, so they are not enough for supporting a beach umbrella or an object of which the center of gravity is inclined. Further, legs of the present invention can be moved and fixed at 180 degrees in a tripod shape to be available for a support frame having a tripod-shaped support such as the tripod for a camera. Accordingly, the present invention provides a support frame that can support an object regardless of the ground such as a flat ground, an uneven ground, a slope, asphalt, or cement and that can support a beach umbrella of which the center of gravity is inclined, a support frame that is stuck in the ground, and an object supported in a tripod-shaped support such as the tripod for a camera.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention generally relates to a throttle control apparatus for an internal combustion engine. This invention specifically relates to an apparatus including a sensor for detecting the degree of opening of a throttle valve in an internal combustion engine, and a device for feedback-controlling the actual degree of opening of the throttle valve at a target degree in response to the detected degree of opening of the throttle valve. 2. Description of the Prior Art In recent years, most automotive internal combustion engines have been equipped with a sensor for detecting the degree of opening of a throttle valve. The output signal of the throttle opening degree sensor (throttle position sensor) is used by various types of control. A known throttle control apparatus includes a DC motor for moving a throttle valve, a sensor for detecting the degree of opening of the throttle valve, and a device for driving the DC motor in response to the detected degree of opening of the throttle valve to control the actual degree of opening of the throttle valve. In some automotive vehicles with automatic transmissions, a sensor detects the degree of opening of a throttle valve, and the automatic transmission is controlled in response to the detected degree of opening of the throttle valve according to a predetermined transmission control map. The characteristics of throttle opening degree sensors (throttle position sensors) tend to vary from sensor to sensor. In addition, the characteristics of throttle opening degree sensors tend to vary with ageing thereof. Such variations in the sensor characteristics cause errors in the sensor output signal. As will be described hereinafter, there are various known apparatus for correcting an error in the output signal of a throttle opening degree sensor. Japanese published unexamined patent application 58-10131 and Japanese published unexamined patent application 63-180755 disclose throttle control apparatus in which a switch serves to detect the fully-closed position of a throttle valve, and the output signal of a throttle opening degree sensor which occurs when the switch is turned on is used as an indication of the fully-closed position of the throttle valve to correct an error in the sensor output signal. Japanese published unexamined patent application 58-122326 and Japanese published unexamined patent application 3-107561 disclose throttle control apparatus in which the detected value currently prodded by a throttle opening degree sensor is compared with a memorized idle value (fully-closed position value). When the current detected value is smaller than the memorized idle value, the current detected value is memorized as a new idle value so that the memorized idle value is updated. Otherwise, the memorized idle value is held as it is. The updating of the memorized idle value corrects an error in the sensor output signal. In the throttle control apparatus of Japanese patent application 58-122326, a determination is made as to whether the detected value provided by the throttle opening degree sensor equals a same value a given number of times or for a given length of time. In cases where the detected value provided by the throttle opening degree sensor equals a same value the given number of times or for the given length of time, when the same value is smaller than the memorized idle value, the current detected value is memorized as a new idle value so that the memorized idle value is updated. In the throttle control apparatus of Japanese patent application 3-107561, engine operating conditions corresponding to the throttle fully-closed position can be detected by a suitable device. In cases where such engine operating conditions are actually detected, when the memorized idle value is smaller than the detected value currently provided by the throttle opening degree sensor, the memorized idle value is corrected into an increased idle value. The correction of the memorized idle value is intended to prevent am adverse affection of noise components of the sensor output signal. The above-mentioned known throttle control apparatus have problems as follows. Generally, operating conditions of engines (for example, the rates of air flow into the engines) which occur at the fully-closed position of a throttle valve vary from engine to engine. Specifically, air leaks through throttle valves of engines even when the throttle valves are fully closed, and the rates of air leakage vary from engine to engine. Therefore, the relations between the throttle opening degrees detected by throttle position sensors and the engine operating conditions vary from engine to engine. Such a variation in the relations causes another type of error in the sensor output signal which adversely affects control responsive to the sensor output signal and the engine operating conditions. The above-mentioned known throttle control apparatus can not correct this type of error in the sensor output signal. In addition, the relation between the throttle opening degree detected by the throttle position sensor and the engine operating conditions varies with ageing of the sensor and a change in the engine operating conditions. Such a variation in the relation causes a type of error in the sensor output signal which adversely affects control responsive to the sensor output signal and the engine operating conditions. The above-mentioned known throttle control apparatus can not correct this type of error in the sensor output signal.
{ "pile_set_name": "USPTO Backgrounds" }
Anticancer treatment with monoclonal antibodies (mAbs) has significantly improved the clinical outcome in patients with cancer, especially when combined with chemotherapy. However, often the patients ultimately relapse. Natural killer cells could also be used as cytotoxic effector cells for cell-based immunotherapy. NK-92 is a cytolytic cancer cell line which was discovered in the blood of a subject suffering from a non-Hodgkins lymphoma and then immortalized ex vivo. NK-92 cells are derived from NK cells, but lack the major inhibitory receptors that are displayed by normal NK cells, while retaining the majority of the activating receptors. NK-92 cells do not, however, attack normal cells nor do they elicit an unacceptable immune rejection response in humans. Characterization of the NK-92 cell line is disclosed in WO 1998/49268 and U.S. Patent Application Publication No. 2002-0068044. NK-92 cells have also been evaluated as a potential therapeutic agent in the treatment of certain cancers. Although NK-92 cells retain almost all of the activating receptors and cytolytic pathways associated with NK cells, they do not express CD16 on their cell surfaces. CD16 is an Fc receptor which recognizes and binds to the Fc portion of an antibody to activate NK cells for antibody-dependent cellular cytotoxicity (ADCC). Due to the absence of CD16 receptors, NK-92 cells are unable to lyse target cells via the ADCC mechanism. The present invention provides a solution to the aforementioned problems, by augmenting the cytotoxic effect of some molecular antibodies by simultaneously or consequently administering to a subject in need of anticancer treatment NK-92 cells that express Fc receptors.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to an antenna reflector support which, in the radiation field, supports the passive parabolic reflector on an omnidirectional antenna for a microwave transmitter and consists in a cylindrical wall coaxial with the reflector. Originally the parabolic reflector of such an antenna was supported by two or more metal posts. These posts, however, affected the homogeneity of the field, so that the radiation diagram was no longer rotation-symmetrical. In order to overcome this difficulty the posts were replaced by a cylindrical wall of dielectic material. A reflector support of this type is described in publication A454 TBr 5 of the German Post Office Telecommunications Research Institute, January 1969. Such a dielectric support provides, on the one hand, a sufficient rigidity of the support and, on the other, a protection of the antenna components from the influence of the weather. However the use of a dielectric material for this support has the drawback that, due to ultra-violet irradiation, it becomes brittle, owing to which its strength decreases, so that frequent maintenance of the usually difficulty accessible antenna is necessary. Moreover, owing to the change of the dielectric properties of the material, the reflection increased, to the detriment of the quality of the antenna. On the other hand utilization of a wall made of a good conductor for electricity and provided with slots as active elements was known in itself, e.g. from the so-called waveguide slot antennae, in which, however, the wall is the outer conductor of a closed transmission line and, as such, an active current-carrying element. In that case the waves travel lengthwise through the space enclosed by the wall. Moreover, the wall has no supporting function.
{ "pile_set_name": "USPTO Backgrounds" }
With the development of electronic technologies, power conversion frequencies are higher and higher, and when the power switch tube is used to turn on or off a circuit, a manner of using a driver chip to directly drive a power switch tube poses high loss to the driver chip. The driver chip may use a rectangular wave to drive the power switch tube. FIG. 1A is a schematic diagram of using a driver chip to drive a power switch tube, where an output end of the driver chip and the gate of the power switch tube are connected; and FIG. 1B is a waveform chart of a drive signal that is input by the power switch tube, where the driver chip has high loss and low reliability, which are disadvantageous for improving power conversion frequencies.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to luminescence spectroscopy and in particular to spectrofluorimeters for measuring in terms of wavelength the luminescence emitted by sample specimens including measurements of fluorescence and phosphorescence. Luminescence spectroscopy has found wide acceptance for both qualitative and quantitative measurements of a wide variety of materials including drugs and other pharmaceuticals, biochemical and biological materials and organic and inorganic substances. For example, clinical analyses employ fluorescence methods for determination of steroids, estrogens, catecholamines, nucleic acids, enzymes and proteins. Pharmaceutical applications include measurement of aspirin in blood and riboflavin and other medicines. Organic substances in general can often be characterized by fluorescence measurements and there are numerous applications in industries as diverse as tobacco, beer, detergent, printing, oil and insecticides. The present invention relates to spectrofluorimeters in which light from a source with a continuous spectrum is passed through an excitation monochromator and used to excite a fluorescence sample. Light emitted from the sample is passed through an emission monochromator and subsequently detected. By using a scanning spectrofluorimeter in which the wavelengths transmitted by both the excitation monochromator and emission monochromator is variable, it is possible to examine both emission and excitation spectra. With emission spectra the wavelength of the exciting radiation is maintained constant and measurements on the emitted radiation are carried out at varying wavelengths. With excitation spectra the wavelength of the detected radiation is maintained constant while the wavelength of the exciting radiation is varied. The sensitivity and selectivity of emission measurements in luminescence spectroscopy is several orders of magnitude higher than conventional absorption spectroscopy measurements. In existing instruments, D.C. methods of detection limit the maximum sensitivity obtainable because of shot noise, etc. Furthermore, optical systems using lenses and non-achromatic mirrors together with the absence of any device to monitor and correct for fluctuations in excitation beam intensities (for both time and wavelength), do not allow accurate excitation and emission spectra to be recorded because of inherent instrumental defects. The preferred embodiment described here has exceptional sensitivity and selectivity and provides corrected excitation spectra and emission spectra which may be corrected easily with the use of a standard light source. The high sensitivity of the instrument allows low excitation beam light levels to be used thereby avoiding sample photodecomposition. It is an object of the present invention to provide an improved sensitive spectrofluorimeter capable of measuring both emission and excitation spectra.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a semiconductor storage device comprising a memory cell, a bit line connected to the memory cell, a precharge circuit which steps up a voltage of the bit line up to a power supply voltage, and a step-down circuit which steps down the voltage of the bit line to a voltage level lower than the power supply voltage before data is read from the memory cell. 2. Description of the Related Art In the field of a semiconductor storage device, there is a conventional technology for improving a data reading speed by stepping down a bitline precharged with a power supply voltage to a voltage level lower than the power supply voltage before data is read so that the power supply voltage level in the bit line can change to a ground level sooner. The change from the power supply voltage level to the ground level in the bit line is detected by a PMO transistor at a subsequent gate. However, when a step-down level in the bit line is below an operation region of a transistor for detection, through current and a data-read error may occur. A similar data-read error also occur in the case where a sense amplifier or a PMOS cross driver is connected to the bit line. Therefore, it is necessary to keep a step-down level of the bit line around a threshold voltage of the PMOS transistor. In a SRAM circuit where the bit line is precharged with the power supply voltage, charges of the power supply voltage level of the bit line flow into a node at which “L” data of SRAM is retained as soon as a word line is activated, in a non-selected column in which reading or writing is being performed. The inflow of too many charges at the time results in the generation of a data-write error. An indicator called a static noise margin shows a level of resistance against the data-write error. The static noise margin has been reduced in recent years as the semiconductor is increasingly miniaturized, and the data-write error is more likely to occur. In order to respond to the recent trend, there is a technology wherein a potential of the power supply voltage level of the bit line is stepped down so as to reduce the current flow into the node of the memory cell at which “L” data is stored when the word line is activated. When the voltage step-down level in the bit line at that time is not enough, the data-write error occurs due to the reason described above. When the voltage step-down level in the bit line is excessive, an data-write error is caused by charges of “L” level of the bit line which flow into the node at which “H” data of the SRAM is retained. Therefore, it is necessary to step down the voltage of the bit line to such a voltage level that can assure the static noise margin. Below is described a technology for stepping down the voltage of the bit line in a conventional semiconductor storage device referring to FIGS. 7A and 7B. FIG. 7A is a circuit diagram illustrating a constitution of a conventional semiconductor storage device, and FIG. 7B is a timing chart illustrating an operation of the semiconductor storage device. In FIG. 7A, 11 denotes a SRAM memory cell, 12 denotes a precharge circuit, 13 denotes an equalizing circuit, 14 denotes a reading circuit, 15 denotes a step-down circuit, BL and /BL are complementary bit lines, WL denotes a word line, PC denotes a precharge control signal, DEC denotes a step-down/equalizing control signal, QP31, QP32 and QP 33 denote PMOS transistors constituting the precharge circuit 12, QP34 denotes a PMOS transistor constituting the equalizing circuit 13, QN31 and QN32 denote NMOS transistors constituting the step-down circuit 15, and Inv0 denotes an inverter. The step-down circuit 15 comprising the step-down transistors QN31 and QN32 is additionally provided in order to step-down voltages of the bit lines BL and /BL prior to the activation of the word line WL. Sources of the step-down transistors QN 31 and QN32 are connected to the ground, drains thereof are directly connected to the bit lines BL and /BL, and gates thereof are connected to a gate of the equalizing transistor QP34 via the inverter Inv0. The gates of the step-down transistors QN 31 and QN32 are driven by the step-down/equalizing control signal DEC. As shown in FIG. 7B, prior to the activation of the word line WL, the precharge control signal PC is negated and turns to “H” level at a timing t31, the precharge transistors QP31 and QP32 and the equalizing transistor QP33 are turned off, which leaves the bit lines BL and /BL in a floating state. At a timing t32, the step-down/equalizing control signal DEC is asserted and turns to “H” level, and the step-down transistors QN31 and QN32 in the step-down circuit 15 are turned on. Further, the equalizing transistor QP34 in the equalizing circuit 13 is turned on, charges of the bit line BL and /BL are then discharged, and potentials of the bit lines BL and /BL are stepped down to a predetermined voltage level. A possible example of the predetermined voltage level is VDD−Vth. VDD is a power supply voltage used for the precharge, and Vth is a threshold voltage of the MOS transistors. When the step-down/equalizing control signal DEC is negated and turns to “L” level at a timing t33, the step-down transistors QN31 and QN 32 are turned off, and the equalizing transistor QP34 is turned off. As a result, the step-down and equalizing operations for the bit lines BL and /BL are halted. At a timing t34, the word line WL is asserted, and data is read from the memory cell 11. In the case where “0” is stored in the memory cell 11, current flows from the bit line BL into the memory cell 11, and the potential of the bit line BL is lowered; however, the potential of the complementary bit line /BL is not stepped down. The state in which the bit line BL=“L” level and the complementary bit line /BL=“H” level is judged by the reading circuit 14 as “0” data. In the case where “1” is stored in the memory cell 11, the current flows from the complementary bit line /BL into the memory cell 11, and the potential of the complementary bit line /BL is lowered, however, the potential of the bit line BL is not stepped down. The bit line BL=“H” level and the complementary bit line /BL=“L” level is judged by the reading circuit 14 as “1” data. Broken lines denoting the potentials of the bit lines BL and /BL illustrate the potential reduction irrespective of whether the reduction occurs in the bit line BL or the complementary bit line /BL. At a timing t35, the word line WL is at “L” level, and the data reading operation is terminated. At a timing t36, the precharge control signal PC is asserted and turns to “L” level, and the precharge transistors QP31 and QP32 and the equalizing transistor QP33 are turned on. Then, the bit lines BL and /BL are precharged with the power supply voltage. In the foregoing description, the step-down levels of the bit lines BL and /BL are adjusted in accordance with a pulse width of the step-down/equalizing control signal DEC. Provided that the step-down level is ΔV, and the pulse width of the step-down/equalizing control signal DEC is Tw, ΔV∝Tw, which means that the step-down level ΔV is substantially in proportion with the pulse width Tw of the step-down/equalizing control signal DEC. In the conventional technology, since the step-down transistors QN31 and QN32 of the step-down circuit 15 are directly connected to the bit lines BL and /BL, load capacities of the bit lines BL and /BL are increased, which results in the deterioration of a reading time in a data cycle of reading data from the memory cell. Further, a timing of the termination of the step-down control is likely to vary when the load capacities of the bit lines BL and /BL are increased. As a result, the step-down levels of the bit lines BL and /BL also vary, which may result in a data-read error.
{ "pile_set_name": "USPTO Backgrounds" }
Since electrochemical capacitors including an electric double-layer capacitor can be easily made small in size and light in weight, they are expected as, for example, backup power sources for the power sources of portable equipment (small-sized electronic equipment) etc., and auxiliary power sources for an electric automobile and a hybrid vehicle, and various studies have been made for enhancing the performances of the electrochemical capacitors. Especially in a case where a large capacity is required as in the power source for the electric automobile, it has been desired to develop an electrochemical capacitor in which a capacitance per unit volume of electrodes (hereinbelow, termed “volume capacitance”) is high. Each electrode for use in such an electrochemical capacitor has a laminated structure which includes a current collector and a polarizable electrode layer, and it can be fabricated by coating the front surface of the sheet-like current collector with a solution which is to become the material of the polarizable electrode layer, and which is subjected to drying (refer to Patent Document 1). Since, however, the density of the polarizable electrode layer to be formed is low merely by coating the front surface of the current collector with such a solution and then drying the solution, a sufficient volume capacitance cannot be attained. In order to attain a higher volume capacitance, therefore, the polarizable electrode layer needs to be compressed by roll press or the like after the formation thereof by the coating. [Patent Document 1] JP-A-2000-106332
{ "pile_set_name": "USPTO Backgrounds" }
Electronic document scanners and facsimile machines transform an optical image of a document into an electric signal suitable for storing, displaying, printing or electronic transmission. These devices typically use illumination and optical systems to illuminate the object and focus a small area of the illuminated object, usually referred to as the "scan line", onto an optical photosensor array. This direction is typically called the scan width or X-direction. The entire object is then scanned by sweeping the illuminated scan line across the entire object, either by moving the object with respect to the illumination and optical assemblies, or by moving the illumination and optical assemblies relative to the object. This is typically called the scan length or Y-direction. An optical scanner has a native or optical resolution that is the maximum sample rate of the object to be scanned. In a typical scanner this resolution is usually 600 or 1200 samples or pixels per inch (ppi). Typically a scanner can scan at a range of resolutions or sample rates ranging from a small fraction (1/20) of the optical resolution up to 2 times the optical resolution. For example a scanner with an optical resolution of 600 ppi could scan using a resolution ranging from 30 ppi up to 1200 ppi. Scanners typically have the ability to scan the object using different image types. The different image types typically vary the amount of information stored for each sample or pixel. Some of the image types of a typical scanner are full color scans, grayscale scans, and line art or black and white scans. For a line art scan the image is either black or white. This type of image would contain one bit of information for each pixel in the image. Grayscale scans typically represent the image as one of 256 levels of gray for each pixel. Therefore, grayscale scans can be represented by 8 bits of information for each pixel in the image. For a full color scan the scanner typically generates a red, green, and blue component. Each component is 8 bits (or 256 levels), for a total of 24 bits (or three bytes) of information for each pixel in the full color image. Images that scanners scan range in size from small objects or photos up to full pages. Typically scanners allow the size of the scanned area or window to be adjusted to match the size of the object to be scanned. A typical scanner allows the window to be adjusted in the x and y directions from one pixel in length up to the full size of the scanning bed. One of the reasons that scanners have different resolution and image types is to allow the trade off between the required image quality and the image size. If each image was scanned as a color image at the maximum resolution the size of the file would typically be too large. For example an 8.5.times.11 inch image scanned as a full color image at 600.times.600 ppi resolution would contain 100.98 megabytes (8.5 * 11 * 600 * 600 * 3). The electronic images created by the scanner are used in a large number of Ways. Some images are enlarged and then printed, some are reduced and printed, some are printed at the same size as the original. Some images are displayed on computer displays, some images are faxed. Some of the images are printed on very high-resolution color printers, and some are printed on lower resolution black and white printers. The end use of the image helps determine the resolution and data type needed for the scan. Typically the resolution of the scan is proportional to the resolution of the printer to be used. For example a scan to be printed on a 1200 dot per inch (dpi) printer would need to be scanned at a higher resolution than a scan to be printed on a 300 dpi printer. Typically computer displays have much lower resolutions than printers, therefore the image scanned for a computer display need not be scanned at as high a resolution as an image scanned for a printer. The end use of the image also helps determines the image type for the scan. A scan to be printed on a black and white printer would not be scanned as a color image because it would be three times the size of the black and white image. The image type can also affect the required scan resolution. Typically a color image needs a lower scanned resolution than a line art image. Typically scanners can enlarge or reduce (scale) the output size of an image. The amount of enlargement or reduction of the image affects the optimum resolution for the scan. The required resolution is typically proportional to the amount of enlargement. For example an image to be enlarged by 3 times would require a resolution 3 time greater than an image that was to be printed at the same size as the original image. Setting the optimal resolution and image type to give the best quality image while minimizing memory requirements is a complex task. Scanning has moved into areas where non-experts do the scanning. Selecting the optimal resolution and image type has become a task for the scanning solution and not for the user. Scanning solutions currently make use of the destination or end use of the scanned image and the final size or scaling of the image to select the resolution and image type. For example the user would choose between destinations that include a plurality of printer types, the computer display screen, and fax types. The scanning solution, using the known output resolutions and capabilities of these destinations and the final image size, would select the optimal resolution and image type for the scanned image. Today scanned images often are used more than one time. The scanned image stored on a computer may be used for creating multiple outputs. For example a scanned image may be used to create a small part of an advertisement and then that same image may be enlarged and printed in a news letter. If the scanned image was originally created for a small image size (at a lower resolution) and then printed at a large size, the larger sized image will not be of proper output quality. There is a need for the scanning solution to be able to predict the final image output size or scaling such that the scanning resolution can be correctly selected.
{ "pile_set_name": "USPTO Backgrounds" }
In a conventional device, a backplane is horizontally disposed at the bottom of a subrack, and a PCB board is vertically inserted from the front of the subrack into the subrack and then moved downward to fit into the backplane. In this way, the resistance and restraint from the backplane on the back side of the subrack can be eliminated, a direct front-to-back air duct is formed in the subrack, and heat dissipation is implemented through the front-to-back air duct, thereby improving the heat dissipation capability. Usually, a pluggable mechanism is used to drive the PCB board to implement the two-dimensional operation of inserting the PCB board into the subrack horizontally, then inserting the PCB board into or removing the PCB board from the backplane vertically. The conventional pluggable mechanism has at least the following disadvantages: 1. Complex structure, multi-step drive, and insufficient operation reliability. 2. Occupation of vertical space. 3. Great motion resistance, laborious operation, and poor operability, especially unsuitable for the PCB board plugging requiring great force for inserting or removing.
{ "pile_set_name": "USPTO Backgrounds" }
In a pneumatic tire, one of causes for generating noise is cavity resonance noise resulting from vibration of air filled in the tire. This cavity resonance noise is generated due to the vibration of air inside the tire, the vibration being caused by a tread portion vibrating due to irregularities of a road surface, when the tire is rolled. As a method of reducing noise caused by a cavity resonance phenomenon as described above, it has been proposed that a time period during which resonance occurs at a single resonance frequency is reduced by having cross-sectional areas of a cavity portion, which is formed between a tire and a rim of a wheel, varied in a tire circumferential direction (for example, refer to Patent Document 1). Furthermore, in order to realize variations in cross-sectional area of the cavity portion at regular intervals, it has been proposed that a plurality of objects are mounted on an inner surface of the tire by using an annular jig (for example, refer to Patent Document 2). In the above methods, however, the plurality of objects have to be arranged in locations facing each other inside the cavity portion, and therefore, it is difficult to even a weight balance of the tire in the tire circumferential direction. As a result, there is a problem that uniformity of the pneumatic tire is deteriorated. [Patent Document 1] Japanese patent application Kokai publication No. 2001-113902 [Patent Document 2] Japanese patent application Kokai publication No. 2003-226104
{ "pile_set_name": "USPTO Backgrounds" }
The following Patent Literature 1 discloses that the above-mentioned lens plate for an illumination lamp forms a Fresnel lens for condensing light on a surface to which light enters from the light source. Patent Literature 2 discloses a Fresnel lens for an illumination lamp wherein a fine pattern of a Fresnel lens is transformed by heat-pressing a transparent soft silicone rubber sheet with a master mold.
{ "pile_set_name": "USPTO Backgrounds" }
The present application claims priority to Japanese Application No. P2000-233321 filed Aug. 1, 2000, which application is incorporated herein by reference to the extent permitted by law. 1. Field of the Invention The invention relates to a memory device for holding data by storing in a storage region an electric charge transferred from a conduction region, a method of manufacturing the same, and an integrated circuit on which the memory devices are integrated. 2. Description of the Related Art Conventional memory devices, typified by an EEPROM (electric erasable-programmable read only memory), a flash memory and the like, comprise one gate electrode; a source region, a conduction region and a drain region, which are made of a semiconductor; and a storage region having two-dimensional space, which is provided between the gate electrode and the conduction region with an insulating film in between. The memory device operates by a quantum mechanical tunnel effect allowing the transfer of an electric charge between the conduction region and the storage region. That is, the writing of data is performed by storing in the storage region an electric charge transferring from the conduction region to the storage region, whereas the erasing of data is performed by the transfer of an electric charge previously stored in the storage region to the conduction region. The reading of data is performed by measuring the conductivity of the conduction region for an electric potential of the gate electrode and the amount of electric current passing through the conduction region. A series of above-mentioned functions of the memory device (the writing, erasing and reading of data, and so on) is made executable by applying a predetermined electric potential to one gate electrode according to the above-mentioned functions. However, the conventional memory device has the following malfunction because the memory device is operated by the application of an electric potential to one gate electrode. That is, for example, when an electric potential is applied to one gate electrode at the time of the reading of data, the action of the application of the electric potential causes a change in an electric potential between the conduction region and the storage region. In this case, the change in the electric potential between the conduction region and the storage region causes the transfer of an additional electric charge from the conduction region to the storage region, or the transfer of a part of electric charge previously stored in the storage region to the conduction region. Therefore, the writing or erasing of data is unintentionally performed at the time of the reading of data, so that written data cannot be accurately read out. The invention is designed to overcome the foregoing problem. It is an object of the invention to provide a memory device capable of accurately reading out data, a method of manufacturing the same, and an integrated circuit. A memory device of the invention comprises an underlayer portion made of an insulator; a first control electrode provided on a surface of the underlayer portion; a conduction region made of a semiconductor, provided so as to correspond to the first control electrode; a second control electrode provided in a region opposite to a region in which the first control electrode is provided, with the conduction region between the first and second control electrodes; a first impurity region provided adjacent to the conduction region; a second impurity region provided apart from the first impurity region and adjacent to the conduction region; a storage region provided in either a region between the first control electrode and the conduction region or a region between the second control electrode and the conduction region, the storage region for storing an electric charge transferring from the conduction region; a tunnel insulating film provided in a region between the storage region and the conduction region; a first control insulating film provided between the first control electrode and the conduction region; and a second control insulating film provided between the second control electrode and the conduction region. Incidentally, an arrangement of the first control electrode includes not only the above-mentioned arrangement in which the first control electrode is formed on a surface of the underlayer portion, but also an arrangement in which the first control electrode is formed in a concave portion provided in a part of the underlayer portion. In the memory device of the invention, an electric potential is applied to at least one of the first control electrode and the second control electrode, whereby an electric charge transfers between the conduction region and the storage region, so that the writing or erasing of data, or the like is performed. The conductivity of the conduction region for the electric potential of at least one of the first and second control electrodes and the amount of electric current passing through the conduction region are measured, whereby the reading of data is performed. Since the reading of data is performed in a state in which an electric potential is applied to the first control electrode, a change in an electric potential between the conduction region and the storage region is prevented. A method of manufacturing a memory device of the invention includes the steps of forming a first control electrode on an underlayer portion made of an insulator; forming a conduction region made of a semiconductor so as to correspond to the first control electrode; forming a second control electrode in a region opposite to a region in which the first control electrode is provided, with the conduction region between the first and second control electrodes; forming a first impurity region adjacent to the conduction region; forming a second impurity region apart from the first impurity region and adjacent to the conduction region; forming a storage region made of a plurality of dispersed particles in either a region between the first control electrode and the conduction region or a region between the second control electrode and the conduction region; forming a tunnel insulating film in a region between the storage region and the conduction region; forming a first control insulating film between the first control electrode and the conduction region; and forming a second control insulating film between the second control electrode and the conduction region. Incidentally, the above-mentioned first control electrode is formed not only on the underlayer portion as mentioned above, but also in a concave portion provided in a part of the underlayer portion. In the method of manufacturing a memory device of the invention, the first control electrode and the second control electrode are formed in such a manner that the conduction region and the storage region are sandwiched in between the first control electrode and the second control electrode. In an integrated circuit of the invention on which a plurality of memory devices are integrated, each of the memory devices has an underlayer portion made of an insulator; a first control electrode provided on a surface of the underlayer portion; a conduction region made of a semiconductor, provided so as to correspond to the first control electrode; a second control electrode provided in a region opposite to a region in which the first control electrode is provided, with the conduction region between the first and second control electrodes; a first impurity region provided adjacent to the conduction region; a second impurity region provided apart from the first impurity region and adjacent to the conduction region; a storage region provided in either a region between the first control electrode and the conduction region or a region between the second control electrode and the conduction region, the storage region for storing an electric charge transferring from the conduction region; a tunnel insulating film provided in a region between the storage region and the conduction region; a first control insulating film provided between the first control electrode and the conduction region; and a second control insulating film provided between the second control electrode and the conduction region. Incidentally, an arrangement of the first control electrode includes not only the above-mentioned arrangement in which the first control electrode is formed on a surface of the underlayer portion, but also an arrangement in which the first control electrode is formed in a concave portion provided in a part of the underlayer portion. The integrated circuit of the invention uses the memory device of the invention. Since the reading of data is performed in a state in which an electric potential is applied to the first control electrode, a change in an electric potential between the conduction region and the storage region is prevented. Other and further objects, features and advantages of the invention will appear more fully from the following description.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a magnetic transfer method for transferring a recording information to a magnetic recording medium used in a large capacity and high recording density magnetic recording and reproducing system. In particular, the invention relates to a magnetic transfer method to be used in the recording of servo signal, address signal, other normal video signal, audio signal, data signal, etc. With rapid propagation and progress in the technique to utilize digital image, the amount of information processed by devices such as personal computer has extensively increased. To cope with the increase of the amount of information, there are now strong demands on a magnetic recording medium, which has large capacity for information recording and is available at low cost, and further, can record and read within shorter time. In a high density recording medium, e.g. hard disk or large capacity removable type magnetic recording medium such as ZIP (Iomega Inc.), the information recording region has narrower tracks compared with floppy disk. In order to accurately scan the magnetic head with narrower track width and to record and reproduce signals at high S/N ratio, it is necessary to perform accurate scanning by using tracking servo technique. In a large capacity magnetic recording medium such as hard disk or removable type magnetic recording medium, there are provided regions where servo signal for tracking, address information signal, reproduction clock signal, etc. are recorded at a given angular spacing. The magnetic head reproduces these signals at a given spacing and accurately scans on the track while confirming and correcting the position of the head. These signals are recorded on the magnetic recording medium in advance by the so-called “preformat” process when the magnetic recording medium is manufactured. Accurate positioning is required for recording of servo signal for tracking, address information signal, reproduction clock signal, etc. In this respect, after the magnetic recording medium is incorporated in the drive, the preformat recording is performed by the magnetic head under strict position control using a special-purpose servo recording system. However, in the preformat recording of servo signal, address signal, and reproduction clock signal, recording is performed under strict position control of the magnetic head using a special-purpose servo recording system, and this means that much time is required for the preformat recording. Also, magnetic recording density is increased and the amount of signals to be recorded by the preformat recording is also increased, and this means that much more time is required. The percentage of the cost required for the preformat recording process of servo signal in the total manufacturing cost of the magnetic recording medium is increased, and there are now strong demands on the reduction of the cost in this process. On the other hand, a method is proposed, by which magnetic transfer of a preformat information is performed from the master carrier to the slave medium without recording the preformat information track by track. For instance, JP-63-183623 and EP-0915456 (JP-10-040544, JP-10-269566) describe such transfer technique. According to the methods described in JP-63-183623 or EP-0915456, surface irregularities (i.e. convex and concave portions) corresponding to an information signal are formed on the surface of a substrate used as a master carrier for magnetic transfer, and a ferromagnetic thin film is formed at least on the surface of convex portions among the surface irregularities of the master carrier for magnetic transfer. The surface of the master carrier is brought into contact with the surface of a sheet-type or a disk-type magnetic recording medium where a ferromagnetic thin film or a coating layer of a composition containing ferromagnetic powder is formed. Or, AC bias magnetic field or DC magnetic field is applied on the surface, and the ferromagnetic material on the surface of the convex portions is excited. Thus, a magnetization pattern corresponding to the surface irregularities (convex and concave portions) is recorded on the magnetic recording medium. According to this method for magnetic transfer, the surface of convex portions of the master carrier for magnetic transfer is brought into close contact with the magnetic recording medium to be preformatted, i.e. the slave medium, and the ferromagnetic material of the convex portions is excited. Then, a predetermined preformat information is recorded on the slave medium. By this method, static recording can be achieved without changing relative positions of the master carrier and the slave medium, and accurate preformat recording can be performed. Also, this method is characterized in that the time required for the recording is very short. This magnetic transfer method is a method to transfer by bringing the master carrier for magnetic transfer and the slave medium in stationary condition. In this respect, damage occurs less frequently on the master carrier and the slave medium in the process for recording the servo signal, and this method is considered as a method to provide high durability. As the magnetic material used for the master carrier for magnetic transfer, a soft magnetic material is used. Initially, it has been believed that magnetic permeability of the magnetic layer gives extensive influence on the transfer property, and the priority has been given on high magnetic permeability when the material is selected. However, signal quality is in marginal region, and it is necessary to improve the signal quality further. Also, transfer magnetic field intensity region where magnetic transfer of the signal of good quality can be accomplished is very narrow, and there are problems relating to the facilities. It is an object of the present invention to provide a magnetic transfer method, by which it is possible to increase the quality of the signal transferred when a recording information recorded on the carrier for magnetic transfer is transferred to the slave medium and which can provide extensive transfer magnetic field intensity region.
{ "pile_set_name": "USPTO Backgrounds" }
Investigation of spatial dependences of NMR phenomena are most often obtained as maps of a two-dimensional section (slice) of the object under examination. Three-dimensional distributions are frequently obtained by obtaining a set of slices spanning the coordinate normal to such slices. A particular class of such methods that collect data from many slices in a time comparable to the NMR relaxation times is called multislice imaging. Selection of a slice is often effectuated by imposing a magnetic field gradient along a selected axis in space called the slice selection axis (denoted herein as the A-axis) such that the component of the magnetic field along the slice selection axis is a precisely known (usually linear) function of A. Thus the resonant frequency for the nuclear spins of interest is a function of A. The resonance phenomenon is constrained to an interval on the slice selection axis thorugh use of selective RF irradiation. The excitation profile of an isolated slice would ideally exhibit a rectangular shape to permit the acquisition of an ideal set of precisely contiguous slices without intervening gaps. In non-ideal situations, the shape of the profile has some finite extension along the A-axis outside of the nominal ideal slice; that is, the edges of a slice are not defined precisely. In such cases, the acquisition of contiguous slices is, in reality, an acquisition of partially overlapping slices. Spatial and temporal proximity for consecutive NMR excitations are recognized to be likely to lead to a degradation in image quality due to overlapping excitation with adjacent slices. It is apparent that one may arrange to obtain a set of adjacent slices by consecutive excitation of every other slice of the set, e.g., even numbered slices and odd numbered slices are separately acquired, each in consecutive order. The spatial and temporal proximity of consecutively excited slides is a matter of degree depending upon the slice thickness (power spectrum bandwidth and shape) as well as the duration of the data acquisition process associated with each such slice.
{ "pile_set_name": "USPTO Backgrounds" }
An Internet of Things (IoT) may include several electronic devices or gadgets connected with Internet. Electronic devices are capable of understanding and processing data according to user needs. These electronic devices can effectively communicate with other devices or nearby systems. However, these electronic devices demand frequent and periodic service and maintenance. Failing to service or maintenance may cause serious hardware malfunction of these electronic devices. Conventional service and maintenance approach include manual activities such as getting connected to an appropriate call center, providing device related details and issues, lodging a complaint and following with follow-up calls to a technician. The above mentioned activities can be time consuming in nature and may take days or months to get resolved.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a method and equipment for automatically changing tools on hobbing machines.
{ "pile_set_name": "USPTO Backgrounds" }
The use of a wide variety of toxic chemicals in agriculture has presented recognizable problems, as well as potential hazards in terms of land use, and extant danger to wetland systems. Moreover, an array of toxic chemicals are discharged from diverse industrial facilities, these including accidental spills and the creation of dump areas which form a continuing source of pollution. These discharges, spills and dump sites create direct hazards to the use of land, and have caused serious drinking water contamination, and other health problems. Often these chemicals find their way into wetlands systems. For example, the coastal zone of Louisiana contains an ecosystem of more than seven million acres of marshes and estuaries representing approximately 40 percent of the total coastal wetland area of the lower forty-eight states of the United States. The gulfward movement of water introduces a wide variety of organic materials, including potentially hazard chemicals, into highly productive shrimp nursery grounds. The widespread use over the last several decades of herbicides, pesticides, and other chemicals in this geographical area has raised serious questions concerning the effect of these chemicals on the environment. Such toxic agents include e.g., organochlorides, polychlorobiphenyls (PCB's) and chlorinated phenols all of which have been noted for their recalcitrant nature as regards elimination of these contaminants from the environment. Large volumes of process waters, containing a changing organic chemical matrix of these and other toxic contaminants, are discharged by industrial plants located in this area following biological oxidation in aerated lagoons and/or activated sludge systems. Such aerobic systems have the ability to reduce the total BOD and COD of the effluents but are subject to upsets due to shifting effluent load from one toxicant class to another. It has been deemed advantageous to apply enzymes to the treatment of these systems since enzymes are biocatalytic materials which possess extraordinary high efficiency, have specific properties, and can be used to catalyze almost any chemical reaction, without producing harmful substances. The use of enzymes, and microorganisms to biotransform and biodegrade these materials into harmless substances, however, has met with limited success largely because of the difficulty in accomplishing such objective within an acceptable time frame. Solutions of metal salts are another class of by-product of industrial facilities which presents an environmental clean-up problem; or the problem may be born of a need, or desire, to economically recover the metals values. Silver salts, e.g., silver chloride, a metal or salt of considerable value, is thus found in the waste streams of certain industrial processes, for which reason per se its recovery is highly desirable. Other contaminant metals, e.g., such heavy metals as lead, mercury and arsenic, are hazardous per se and may present a health hazard if not removed from the by-product streams of industrial plants prior to discharge to the environment. Yet other contaminant metals may raise both a health hazard, and an economic loss due to the potential value of the metals, e.g., zinc, chromium, cadmium and nickel.
{ "pile_set_name": "USPTO Backgrounds" }
Recent design changes in fabrication of area array packages (e.g., Ball Grid Arrays (BGAs) and Chip Scale Packages (CSPs)) have resulted in a change in the reflectivity of the solder balls placed on these devices. In previous area array package designs, solder ball surfaces were relatively uneven and rough. When illuminated by a laser beam, for instance, the uneven and rough solder ball surfaces resulted in a strongly diffused and scattered incident light. More recent area array packages are characterized by solder balls that maintain a smooth and highly reflective surface. Laser triangulation systems for the measurement of solder ball height and position on area array devices typically use a light emission source (e.g., a laser) and a receiver arrangement (e.g., a laser beam sensor). The laser projects a laser beam vertically down onto the surface of the area array device such that the surfaces of the solder balls are illuminated. Position sensing devices then record the position of the reflected light. The position sensing devices in the receiver arrangement of the sensor typically are arranged to operate at an angle between 20° to 30° from the normal plane of the solder ball, but may also operate in a range from 10° to 45°. When the solder ball surfaces are highly reflective, as in the case of new area array devices, the intensity of the reflected light in the receiver section varies over a very large range as the laser beam traverses across the surface of the solder ball. When the laser beam reaches the apex (the highest elevation) of the solder ball, the solder ball surface is generally normal to the incoming laser beam. As a result of the positioning of the laser beam relative to the solder ball surface, as well as the reflectiveness of the solder ball surface, most of the laser beam light is reflected back towards the laser. The smooth surface of the solder ball results in minimal scattering of light toward the receiver arrangement. The receiver arrangement signal reception intensity and signal-to-noise ratio are low, resulting in very low signal quality. When the laser beam reaches a point on the solder ball surface where the ball surface normal is at approximately half the receiver angle, in most instances 10° to 15°, the laser beam is strongly specularly reflected directly into the receiver arrangement. This strong reflection results in a high amount of reflected laser beam light and a high signal intensity at the receiving arrangement. The large amount of reflected laser light often saturates the receiver arrangement and consequently the position sensing devices, resulting in poor overall signal quality at this location on the solder ball surface. Beyond this point, (i.e. progressing down the sides of the solder ball towards the bottom of the solder ball) most of the laser light is reflected more horizontally, and eventually towards the device floor, away from the receiver arrangement and corresponding position sensing devices. A single laser beam intensity may not be able to provide high quality receiver signals over the entire ball surface. There is therefore a need to provide a method to accurately measure highly reflective solder balls placed upon area array packages. U.S. Patent No. 4,991,968 describes conventional methods and apparatus for obtaining three dimensional object surface determination. As can be seen in FIG. 1 of U.S. Pat. No. 4,991,968, included as FIG. 1 of the present application, the prior art system 1 includes a projector assembly 3 with a projector 3A, variable power supply 3B, power controller 3C, video amplifer 8, processing unit 9, master timing control 29, and control circuitry 14. The method and apparatus disclosed in U.S. Pat. No. 4,991,968 have a significant drawback of being costly to produce due to the number of components used. Additionally, these conventional system are bulky to operate and do not adapt to chip scale packages used today. There is therefore an additional need to provide a method and apparatus for scanning the surface of an object that is not cumbersome to the user.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention is related to processing systems and processors, and more specifically to techniques for controlling resources allocated to hardware threads by measuring rates of instruction completion for multiple threads. 2. Description of Related Art Allocation of resources to hardware threads executing within a simultaneous multi-threaded (SMT) processor has been controlled by a variety of techniques. Typically, various priority values are set by either properties of the programs to which threads belong and the functions of the threads, in order to allocate more resources to high-priority threads and less resources to lower-priority threads. Also typically, the mechanism for controlling the resources allocated to a thread is implemented by controlling the relative instruction fetch rate for the threads. More recently, control of the instruction decode rate for each thread has been used to control relative thread priority. The input to thread priority control schemes has been determined from various metrics that indicate whether or not a thread will execute efficiently. For example, a thread that is generated a large number of cache misses or translation look-aside buffer (TLB) misses may be throttled to improve performance, e.g., by reducing the fetch rate or decode rate for that thread. Other techniques measure the average memory latency for a thread, or the number of branches present in a thread, as the number of branches is a predictor of how many stalls or speculative instructions may be encountered in execution of a thread, which is a predictor of thread performance. Further, in processors supporting speculative execution of instructions, the speculatively executed instructions are sometimes executed at a lower priority in order to reduce the impact of mis-speculation on performance. However many of the above techniques require multiple metrics to control thread priority may measure irrelevant events, such as cache misses in non-taken branch paths, and in some cases the events on which thread priority control is based can be difficult to measure. Therefore, it would be desirable to provide thread scheduling control from single metric that is easy to measure and that has a strong relationship to actual thread performance.
{ "pile_set_name": "USPTO Backgrounds" }
Field of the Invention The present invention relates to signal processors and to a signal format. In particular the invention relates to a signal format, a signal encoder for encoding a signal according to the format, a corresponding decoder, and a signal transmission system including the encoder and decoder. It is desired to transmit packetised signals such as MPEG 2 TS (Transport Stream) packets from one location or piece of equipment to another. It is known to transmit MPEG 2 TS packets via a DVB Asynchronous Serial Interface (ASI). DVB ASI is effective for the transmission of one transport stream from point to point such as between specific items of equipment but is otherwise relatively inflexible. According to one aspect of the invention, there is provided a transmission system in which MPEG 2 TS packets are transmitted via an SDTI system. Such a system provides greater flexibility than using DVB ASI. The SDTI (Serial Data Transport Interface) is defined in SMPTE 305M. SDTI transmits packets in a signal structure comprising frames of television lines. Ancillary data is carried in the horizontal blanking area of lines and data is carried in a payload area of each line. The payload area is in the active line interval. SDTI allows TS packets to be routed wherever SDI connections are available and also allows TS packets from more than one source to be transmitted. However, the carriage of TS packets over SDTI requires buffering to ensure that the packets are confined to the payload area of the SDTI and to allow multiple packets on each line for efficiency. The buffering process introduces delay and jitter (i.e. variation in the timing of the packets relative to each other) to the packets but, for accurate decoding of an MPEG 2 signal, the packets of that signal must be provided to the MPEG decoder with accurate timing relative to one another to allow correct decoding. Whilst absolute delay of packets is not a problem because it affects all packets equally, there is a need to correct jitter at or before the MPEG decoder. Whilst the foregoing discussion describes the technical problem faced by the present invention with reference to the transmission of MPEG 2 TS packets via SDTI, similar problems may occur in the transmission of other types of time sensitive packets over other data transmission systems.
{ "pile_set_name": "USPTO Backgrounds" }
Field of the Invention The invention relates to a sensor and more particularly, to a liquid level sensor and a method for sensing a liquid level. Description of Related Art In a home appliance, if a liquid level display function is needed (for example, in a washing machine, a water dispenser, a pumping motor, or the like), a floating ball or a glass tube marked with a scale is usually used to achieve displaying an internal water level. When a liquid level is measured by using the aforementioned structure in the home appliance, the volume of the structure can be shrunk in a limited degree, and as a result, the overall volume cannot be lighter and thiner. Therefore, how to make the liquid level measurement apparatus lighter and thinner has become a subject to modern home appliances.
{ "pile_set_name": "USPTO Backgrounds" }
Advancements in the delivery of therapeutic agents is an ongoing endeavor. Polymeric carriers have been developed for the delivery of therapeutic agents with the goal of effective administration to treat diseases and conditions treatable by the therapeutic agents. Many conventional polymeric carriers suffer from disadvantages associated with solubility and stability in the circulatory system as well as relative low therapeutic agent capacity. Further disadvantages of conventional polymeric carriers include uncontrollable release, including premature release, of their therapeutic agent cargo. A need exists for improved polymeric carriers of therapeutic agents that are stable and soluble under physiological conditions such as the circulatory system, that offer high therapeutic agent densities, and that provide controllable release of their therapeutic agent cargo. The present invention seeks to fulfill these needs and provides further related advantages.
{ "pile_set_name": "USPTO Backgrounds" }
In the field of cancer chemotherapy, a variety of microbial metabolites such as bleomycins or adriamycin have been used in clinical practice. However, many of these substances are not sufficiently effective for many of tumors which are clinically encountered and, moreover, the acquisition of resistance of tumor cells to these drugs, which is being made increasingly clear, has been interfering with their use in clinical cases (the Proceedings of the 47th Congress of the Japanese Cancer Association, pages 12 to 15, 1988). Under these circumstances, there is naturally a constant demand for the development of new anticancer agents. Thus, a strong demand exists for a substance which would overcome the resistance of various types of tumors to the existing anticancer agents and be effective even in those cases which do not respond to the anticancer drugs heretofore available. The inventors of the present invention screened a variety of microbial metabolites in search of candidate antitumor agents. As a result, it has been found that a novel compound of the following formula has an excellent antitumor activity. The present invention has been achieved on the basis of the above finding.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to thermoset resins. More particularly, this invention relates to a curable resin composition including a mixture of epoxy vinyl ester resins and urethane vinyl ester resins. Thermoset resins prepared from a mixture of epoxy vinyl ester resins and urethane vinyl ester resins are described in U.S. Pat. No. 4,824,919 (the ""919 patent). The ""919 patent describes the use of urethane oligomers as flexibilizers added to epoxy vinyl esters to impart a toughening effect, that is, increased impact resistance, to the vinyl ester resin. The ""919 teaches that vinyl ester/styrene mixtures are flexibilized by adding thereto minor amounts of urethanes which (1) comprise at least one polyglycol moiety and two urethane groups and are terminated by vinyl-reactive end groups, and (2) form a dispersed second phase in the cured mixture. The flexibilized compositions otherwise largely retain the characteristic properties of the unflexibilized mixtures. The flexibilizer described in the ""919 patent xe2x80x9cis of a nature such that the uncured mixture of resin, monomer and flexibilizer is a homogeneous liquid at ordinary temperatures.xe2x80x9d Phase separation of the flexibilizer on cure is seen as essential to obtain the desired good flexibilization effect. The preferred flexibilizers described in the ""919 patent are urethane oligomers derived from one molecular proportion of a polyalkylene glycol (for example, polyether glycols such as VORANOL* (Trademark of The Dow Chemical Company)), about two molecular proportions of an aromatic diisocyanate and about two molecular proportions of a hydroxyalkyl acrylate or methacrylate. The thermoset resins described in the ""919 patent are known to have good impact resistance when using urethane vinyl ester resins in combination with epoxy vinyl ester resins. These type of resins, which show microphase separation on cure, give better impact resistance and good thermal performance than other comparable known resins based on CTBN (carboxy-terminated-butadiene-acrylonitrile) rubber. While the urethane oligomers disclosed in the ""919 patent provide resins with good impact resistance, there still exists a need for more suitable flexibilizers which exhibit a phasing behavior (that is, phase separation upon curing) for vinyl ester resin systems and which are compatible with and stable with vinyl ester resin prior to cure. It is desired to provide resins with good impact resistance using such flexibilizers. It has been found that the properties of oligomeric urethanes used as flexibilizers in the composition of the present invention are critically dependent on the structure of the diisocyanate component and the mixture of polyalkylene glycols used in preparing the oligomeric urethane flexibilizer. Thus, the choice of diisocyanate component and mixture of polyalkylene glycols used in the present invention is important in obtaining a final resin product with good properties. Accordingly, one aspect of the present invention is directed to a curable thermoset resin composition which contains a homogeneous mixture of: (a) an epoxy vinyl ester resin; (b) a urethane vinyl ester resin having a weight average molecular weight of greater than 8,000 which forms a dispersed second phase in the epoxy vinyl ester resin upon curing of the curable formulation; and (c) optionally a co-reactive monomer, characterized in that the urethane vinyl ester resin is preparable by reacting: (1) an alkylene bis(phenyl isocyanate) compound; (2) at least two polyalkylene glycols having different molecular weights, including a first polyalkylene glycol with an average molecular weight of from about 1,500 to about 10,000 wherein the amount of the first polyalkylene glycol is from about 1.45 to about 12.6 weight percent based on the curable resin composition; and a second polyalkylene glycol with an average molecular weight of from about 200 to about 800 wherein the amount of the second polyalkylene glycol is from about 0.15 to about 3.75 weight percent, based on the curable resin composition; and, optionally a branched-polyalkylene polyol with a hydroxy functionality of greater than 2 and an average molecular weight of from about 450 to about 4600; and (3) a hydroxyalkyl acrylate or hydroxyalkyl methacrylate. The invention also provides a urethane vinyl ester resin having a weight average molecular weight of greater than 8,000 which may be prepared by reacting (1) an alkylene bis(phenyl isocyanate) compound with (2) at least two polyalkylene glycols having different molecular weights, including a first polyalkylene glycol with an average molecular weight of from about 1,500 to about 10,000 and a second polyalkylene glycol with an average molecular weight of from about 200 to about 800 and, optionally, (3) a branched polyalkylene polyol with a hydroxy functionality of greater than 2 and an average molecular weight of from 450 to 4600, and (4) a hydroxyalkyl acrylate or hydroxyalkyl methacrylate. Such vinyl ester resins may be compounded with an epoxy vinyl ester resin and, optionally, other co-reactive monomers, to produce the curable resin. Another aspect of the present invention is directed to a process of making a curable composition comprising blending such a urethane vinyl ester resin with an epoxy vinyl ester resin. Still another aspect of the present invention is a process of making a cured article comprising curing such a composition It has been found that the properties of oligomeric urethanes used as flexibilizers in the composition of the present invention are critically dependent on the structure of the diisocyanate component and the mixture of polyalkylene glycols used in preparing the oligomeric urethane flexibilizer. Thus, the choice of diisocyanate component and mixture of polyalkylene glycols used in the present invention is important in obtaining a final resin product with good properties. The present invention relates to thermoset resins comprising blends or mixtures of epoxy vinyl ester resins and urethane vinyl ester resins. The epoxy vinyl ester resins as well as the urethane vinyl ester resins used in the present invention can be dissolved in a solvent monomer such as, for example, styrene, resulting in transparent and clear solutions at room temperature and elevated temperatures. When styrene solutions of epoxy vinyl ester resins are blended with urethane vinyl ester resins at various blend ratios surprisingly, depending on the composition of the urethane vinyl ester resin and the amount of urethane vinyl ester resin blended with the epoxy vinyl ester resin, a solution is obtained which has a clear transparent to a slight hazy visual appearance and which undergoes a microphase separation on cure. Resins with a turbid or opaque visual appearance show a phase- instability and separate in a short period of time (for example, a maximum of one day) in two separate resin layers. Such resins which phase separate prior to cure do not provide the improvements of the present invention. The resin blends of the present invention that give a microphase separation on cure provide a much better impact resistance than comparable vinyl ester resins that contain, for example, a CTBN rubber as a flexibilizer. In addition, the thermal performance (glass transition temperature) of the epoxy/urethane vinyl ester blends of the present invention is only slightly decreased compared to unmodified epoxy vinyl ester resins. The epoxy vinyl ester resins used in the present invention may be, for example, the epoxy vinyl ester resins described in U.S. Pat. No. 4,824,919 incorporated herein by reference. The epoxy vinyl esters suitable for the practice of the present invention are generally preparable by the adduction of an at least difunctional epoxide with at least two molecules of an unsaturated monocarboxylic acid in which the carbon-to-carbon double bond is vinyl reactive. Exemplary of suitable epoxy resins are the well-known polyglicidyl ethers of polyphenylol alkanes and the xe2x80x9cadvancedxe2x80x9d resins (higher polymers) formed by the reaction of polyphenols-such as bisphenol A, for example, with polyglycidyl ethers, such as the diglycidyl ether of bisphenol A, for example. Epoxy novolacs are also suitable, as are cycloaliphatic diepoxides. The glycidyl ethers of polyphenols, such as lower alkanes (or alkenes) substituted with 3 or 4 hydroxyphenyl groups, for example, are of particular interest for the preparation of vinyl esters suitable for the practice of the present invention. Most notable among such epoxides are the triglycidyl ethers of tri(hydroxyphenyl)methanes, ethanes and propanes and the tetraglycidyl ethers of tetra(hydroxyphenyl)ethanes and propanes. Suitable epoxides having functionalities higher than four are exemplified by the oligomeric reaction products of tri(hydroxyphenyl)methanes with epichlorohydrin, which may comprise as many as 7 glycidylether groups. Similarly, phenol/formaldehyde or bisphenol/formaldehyde novolacs containing 5 or more hydroxyphenyl groups are well-known as the corresponding polyglycidyl ethers. Exemplary of suitable acids are the ethylenically unsaturated monoacids such as, for example, acrylic, methacrylic, crotonic and cinnamic acids. Also suitable are half-esters derived from unsaturated dicarboxylic acids and/or unsaturated alcohols-such as hydroxyalkyl acrylates, for example. Preferably, the acid is one in which the reactive vinyl group is a terminal group. Another class of suitable acids are bicycloalkenyl acids, such as, for example, 5-norbornene-2-carboxylic acid. The epoxy vinyl ester is prepared by reacting the polyepoxide and the acid in about stoichiometric amounts, generally with heating and in the presence of a catalyst, such as a trivalent chromium salt, as for example CrCl3; or a phosphine; alkali, onium salt; or a tertiary amine, for example, tris(N,N-dimethylaminomethyl phenol). Optionally, the epoxy vinyl ester resin can be formed in the presence of a non-resinous, vinyl monomer such as styrene and the resulting mixture, in this instance, will constitute what is meant by the term xe2x80x9cepoxy vinyl ester resin.xe2x80x9d The non-resinous, vinyl monomers (xe2x80x9cdiluents,xe2x80x9d commonly) believed suitable for the practice of the present invention include, for example, styrene, xcex1-methylstyrene, methylstyrene, divinylbenzene and acrylonitrile and others disclosed in U.S. Pat. No. 4,824,919 incorporated herein by reference. A substantial number of different epoxy vinyl ester resins having distinct characteristics may be prepared by reacting different epoxides (or mixtures thereof) with various unsaturated acids (or mixtures thereof). Similarly, the properties of the epoxy vinyl ester resin/non-resinous, vinyl monomer mixture may be varied by selecting various such monomers (or mixtures thereof). Preferably, epoxy vinyl ester resin/styrene monomer compositions marketed under the trademarkxe2x80x9cDERAKANE*xe2x80x9d by The Dow Chemical Company are used in preparing the composition of the present invention. The urethane vinyl ester resins used in the present invention as a flexibilizer is a urethane oligomer derived from the reaction of an isocyanate group with an xe2x80x94OH function. A most preferred flexibilizer is a urethane oligomer derived from (i) a blend of 2 or more long- and short-chain polyalkylene glycols with a functionality equal to or greater than 2, said blend of polyalkylene glycols exhibiting a bimodal distribution of weight average molecular weight, (ii) a diphenyl alkylene diisocyanate and (iii) a hydroxyalkyl acrylate or methacrylate. The urethane oligomers of this type may be exemplified by a reaction product of (i) a blend of polypropylene glycol having a weight average molecular weight of 2,000 (for example, VORANOL* P2000 commercially available from The Dow Chemical Company), and a polypropylene glycol having a weight average molecular weight of 400 (for example, VORANOL* P400 commercially available from The Dow Chemical Company) or, alternatively, a mixture of for example VORANOL* P2000, VORANOL* P400, and a branched chain polypropylene glycol with weight average molecular weight of 755 for example VORANOL* CP755 commercially available from The Dow Chemical Company; (ii) diphenylmethane diisocyanate; and (iii) hydroxypropyl acrylate. As an illustration, the resulting urethane oligomer reaction product may have the following ideal or statistical Formula (Ia) or (Ib): The polyalkylene glycols used to make a blend thereof are those containing an alkylene linked by oxygen as shown in the following Formula (II): HO"Parenopenst"Rxe2x80x94O"Parenclosest"Hxe2x80x83xe2x80x83(II) wherein the alkylene group R is preferably an average of at least 2 carbons, more preferably 2.5 carbons and preferably at most 10 carbons, more preferably at most 6 carbons and most preferably at most 4 carbons. The polyalkylene glycols useful in the present invention include, for example, polyethylene glycol, polypropylene glycol and copolymers thereof as well as polyols based on polyethylene or polypropylene glycols and glycerine. The blend of polyalkylene glycols is a mixture or blend of at least two or more polyalkylene glycols having a bimodal distribution of weight average molecular weight. As known to those skilled in the art such a bimodal distribution is shown in dual peaks graphically illustrating each of the weighted average molecular weights of the polyglycols. Preferably the blend of polyalkylene glycols exhibits a weight average molecular weight peak at above about 1200 and a peak at below about 1000 weight average molecular weight. The lower peak is preferably below about 800, more preferably below about 600 and preferably above 200. The higher peak is preferably above about 1,500, more preferably above about 1,800 and preferably below 10,000 and more preferably below 5,000. The first long-chain polyalkylene glycol useful in preparing the urethane oligomer can be, for example, a polyalkylene glycol having an average molecular weight of from about 1,500 to about 10,000. The second short-chain polyalkylene glycol useful in preparing the urethane oligomer can be, for example, a polyalkylene glycol having an average molecular weight at from about 200 to about 800. The third polyalkylene polyol with a functionality of greater than 2 can be a polypropylene polyol having an average functionality of 3 and an average molecular weight of from 450 to 4600. The ratio of long-chain polyalkylene glycol to short-chain polyalkylene glycol used in the present invention is generally from about 99:1 to about 0.1:1 and preferably from about 1.66:1 to about 16:1. The ratio of 2 functional polyalkylene glycols to multifunctional polyalkylene polyols is preferably from about 10:1 to about 1.05:1. The amount of the first polyalkylene glycol is preferably from about 1.45 to about 12.6 more preferably from about 2.9 to about 10.6 weight percent, based on the curable resin composition. The amount of the second polyalkylene glycol is preferably from about 0.15 to about 3.75 weight percent, more preferably from 0.35 about to about 3.2 based on the curable resin composition. The amount of branched-polyalkylene polyol is preferably from about 0.14 to about 1.5 weight percent, more preferably from about 0.3 to about 1.2 based on the curable resin composition. The amount of diphenylmethane diisocyanate is preferably from about 1.15 to about 7.75 weight percent, more preferably from about 2.3 to about 6.6, based on the curable resin composition. The amount of hydroxyalkyl acrylate or methacrylate is preferably from about 0.45 to about 3.2 weight percent, more preferably from about 0.9 to about 2.7, based on the curable resin composition. The present invention uses an aromatic diisocyanate compound in preparing the urethane oligomer. The aromatic diisocyanate is preferably an alkylene bis(phenyl isocyanate) compound or an inertly-substituted variation thereof which preferably meets the following Formula (III): NCOxe2x80x94Arxe2x80x94Rxe2x80x94Arxe2x80x94OCNxe2x80x83xe2x80x83(III) wherein Ar is an aromatic preferably having from about 1 to about 10 carbons and more preferably Ar is phenylene; and R is an alkyl having from about 1 to about 6 carbons, more preferably about 1 to 3 carbons and most preferably methylene. The alkylene group preferably contains no more than about 6 carbon atoms, more preferably no more than about 3 carbon atoms, and most preferably no more than about 1 carbon atom. The isocyanate groups are preferably in para-position with respect to the alkylene group. The diisocyanate reactant used in preparing the urethane oligomer of the present invention is preferably methylene diphenyl diisocyanate (MDI) or an inertly-substituted variation thereof, and most preferably MDI. The hydroxyalkyl acrylate or methacrylate used in preparing the urethane oligomer preferably contains a C1-C6 alkyl group, more preferably a C2-C4 alkyl group and most preferably an ethylene or 1,2-propylene group. Preferred examples include 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate. The urethane vinyl ester resin is prepared by mixing the above-mentioned reactants: (i) blend of polyalkylene glycols, (ii) diisocyanate and (iii) hydroxyalkyl acrylate or methacrylate and allowing them to react. Optionally, the reaction can be carried out in the presence of one or more of the following components: a polymerizable monomer or a solvent, a polymerization inhibitor and/or a catalyst for the urethane-forming reaction. Preferably, the reaction to form the urethane vinyl ester resin is carried out by charging the ratio of starting materials into a reactor in the following order: first adding isocyanate followed by the blend of polyalkylene glycols and then adding the hydroxyalkyl acrylate or methacrylate. The styrene monomer, if used, can be added before or after the hydroxyalkyl acrylate or methacrylate. An optional component useful in making the urethane vinyl ester resin is a polymerizable monomer, such as the non-resinous, vinyl monomer described above. In order to decrease the viscosity of the reaction product and cause the reaction to proceed uniformly, use is made of the polymerizable monomer such as a styrene or substituted styrene or alkylated styrene. Other monomers useful in the present invention are described in U.S. Pat. No. 4,824,919. Another optional component useful in preparing the urethane vinyl ester resin is a polymerization inhibitor. A polymerization inhibitor such as a heterocyclic component, for example phenothiazine or a phosphite such as an aryl or alkyl phosphite for example triphenyl phosphite or tributyl phosphite, may be added to the reaction system to prevent polymerization due to the acrylic or methacrylic residual groups and the polymerizable monomer. Still another optional component useful in making the urethane vinyl ester resin is a catalyst. The catalyst used can be, for example, dibutyltin dilaurate. The urethane-forming reaction can be carried out without a catalyst, but the reaction may require a longer period of time to be completed. The urethane-forming reaction temperature is generally from about 40xc2x0 C. to t 100xc2x0 C. and preferably from about 60xc2x0 C. to about 80xc2x0 C. The overall blending of the urethane vinyl ester resin with the epoxy vinyl ester resin is also generally carried out at a temperature of from about 40xc2x0 C. to about 100xc2x0 C. and preferably from about 60xc2x0 C. to about 80xc2x0 C. The weight ratio of epoxy vinyl ester resin to urethane vinyl ester resin (flexibilizer) useful in the present invention is generally from about 4:1 parts by weight to about 19:1 parts by weight and preferably from about 9:1 parts by weight to about 5.65:1 parts by weight. Other additives suitable for a particular application can be included in the composition of the present invention if desired. In another embodiment of the present invention, resins that show a phase separation at room temperature surprisingly can be stabilized against phase separation by using small amounts of phase separation stabilizer in the composition of the present invention. By xe2x80x9cstabilizedxe2x80x9d herein it is meant that the system does not separate into 2 or more different resin layers. The amount of stabilizer used in the composition of the present invention depends on the composition, but generally is up to about 2 percent and preferably from about 1 to about 2 percent. The stabilizer used in the present invention includes, for example, benzyl alcohol or acetyl acetone. This is important for resin systems that are applied in hot-cure (70xc2x0 C. to 120xc2x0 C.) applications because the resin blends that give a microphase separation at room temperature cure do not necessarily give the same effect at higher cure temperatures. A process for preparing each of the following examples consists of a two-step process. In one step the urethane vinyl ester is prepared in styrene monomer and blended in the second step with a bisphenol A epoxy vinyl ester resin that is also dissolved in styrene monomer. A calculated amount of 4,4xe2x80x2-diphenylmethane-diisocyanate is charged to a reactor, equipped with a stirring devise, a temperature control system, a condenser, a dropping funnel and a heating/cooling device. The reactor content is heated to about 60xc2x0 C. Over about 30 minutes a mixture of calculated amounts of polypropyleneglycols (having an average molecular weight of 2000 and 400) and an appropriate catalyst (preferably dibutyltin dilaureate. 1500 ppm based on the amount of polypropyleneglycols) is added to the reactor under agitation. The temperature inside the reactor is kept at about 60xc2x0 C. to 65xc2x0 C. After the addition of the polypropyleneglycol mixture, the reaction mixture is agitated at the given temperature for 3 to 4 hours. After that time, a sample is taken and analyzed for the residual amount of isocyanate. When the calculated level of isocyanate has been reached the calculated amount of styrene monomer as well as an appropriate inhibitor (for example, phenothiazine) is added to the reaction mixture. Then hydroxy-ethyl- or -propylacrylate is carefully added to the reaction mixture in such a manner that the temperature of the reaction mixture does not rise above 80xc2x0 C. After the addition of the hydroxyalkyl acrylate to the reaction mixture, the mixture is kept under agitation at 65xc2x0 C. to 70xc2x0 C. for another 3 to 4 hours. After that time the reactor contents is cooled to 40xc2x0 C. The resulting urethane vinyl ester is a colorless to straw-yellow low viscous liquid. The preparation of the bisphenol A based vinyl ester resin is described in U.S. Pat. No. 4,824,919 incorporated herein by reference. The urethane vinyl ester is preferably added to the bisphenol A based vinyl ester at 80xc2x0 C. together with the residual amount of styrene, additives and inhibitors. After a maximum mixing time of 60 minutes, the blend is finished and is cooled to room temperature (25xc2x0 C.). Depending on the composition, the resulting epoxy-urethane-vinyl-ester blend is a colorless to slightly straw-yellow, low viscous liquid of transparent to slight hazy appearance. In all cases, Parts A and B were mixed in a ratio of 1:3 to form the final resin composition.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a nuclear reactor start-up monitoring apparatus installed in, for example, a boiling-water reactor, particularly relates to the contrivance of the constitution of a digital apparatus for signal-processing of an output pulse from a radiation sensor disposed inside or outside of a reactor pressure vessel as data for measuring and monitoring reactor power. 2. Description of the Related Art In a recent boiling-water reactor, there are provided with radiation sensors such as six to ten SRNM (Start up Ranged Neutron Monitor) detectors and 100 to 200 LPRM (Local Power Ranged Monitor) sensors installed in a reactor pressure vessel of the reactor, and a reactor power monitoring apparatus such as, for example, a start-up ranged monitor and power ranged monitor, for measuring and monitoring reactor power based on the detected signals by these radiation sensors. Among them, the start up ranged neutron monitor (to be referred to as "reactor start-up monitoring apparatus " hereinafter) monitors reactor power at the time of reactor start-up or the like based on output pulses in accordance with neutron fluxes detected by the SRNM detectors. This apparatus performs processing for counting the number of output pulses of the SRNM detectors (to be referred to as "pulse measurement" hereinafter) in low reactor power ranges (10.sup.-9 % to 10.sup.-4 %) and performs processing for measuring the power of a fluctuabon component generated by the overlapping output pulses of the SRNM detectors, i.e., processing based on the principle of Campbell Law (to be referred to as "Campbell measurement" hereinafter) in high reactor power ranges (10.sup.-5 % to 10%). An example of a reactor start-up monitoring apparatus conducting the pulse measurement and Campbell measurement as stated above will be described based on FIGS. 5 and 6. A reactor start-up monitoring apparatus shown in FIG. 5 consists of an SRNM detector 100 detecting, as data for measuring reactor power, neutron fluxes in the reactor, an analog amplifier 101 amplifying and rectifying the detector output pulses, two signal processing systems connected in parallel to the signal output side, i.e., a pulse measurement system 102 and a Campbell measurement system 103, and reactor power evaluating (monitoring) means 104 for continuously monitoring/evaluating reactor power at least at time of starting up the reactor based on the processing results of the measurement systems 102 and 103. Among those elements, the pulse measurement system 102 consists of a pulse wave height comparator 105 comparing the wave height value of the detector output pulse amplified by the analog amplifier 101 with a preset wave height value and counting the number of the detector output pulses having wave heights higher than the preset wave height value, and pulse measurement evaluating means 106 evaluating reactor power at the time of low power output by converting the counted pulse number to the output level of the reactor power. Also, the Campbell measurement system 103 consists of a plurality of amplifiers (a small gain amplifier 107, a medium gain amplifier 108 and a large gain amplifier 109) amplifying and attenuating the detector output pulses amplified by the analog amplifier 101 under different conditions of a plurality of amplification factors and thereby limiting frequency bands to a specified band, a plurality of MS (Mean Square) operators 110, 111, 112 calculating mean square roots of the outputs of the amplifiers 107 to 109 and Campbell output evaluating means 113 for selecting an optimum value from the outputs of the operators 110 to 112 and for evaluating reactor power at the time of high power output. In the reactor start-up monitoring apparatus stated above, if reactor power is low, pulse measurement is executed to adjust an output pulse to a signal level optimal to the pulse wave height comparator 105 and to accurately count the number of output pulses of the SRNM detector 100 by the analog amplifier 101. If reactor power is high, Campbell measurement is executed. When the Campbell measurement is executed, about five figures which is the measurement range thereof, cannot be covered by a single MS (Mean Square) arithmetic element 110, 111 or 112. Due to this, as shown in this example, a plurality of amplifiers 107 to 109 amplify the output of the SRNM detector 100 at different amplification factors to thereby cover the overall measurement range. In that case, an amplifier can be formed of a single logarithmic amplifier. Recently, however, there are many cases where divided amplifiers are employed as described above in light of temperature characteristics and the like, which constitution makes it possible to continuously monitor the wide measurement range of the reactor. Nevertheless, since the above-stated reactor start-up monitoring apparatus is constituted to signal-process detector output pulses with an analog circuit, there is a possibility that counting only based on the magnitude of pulses may cause error measurement by the influence of discharge pulses generated as a result of discharge within the SRNM detector and noise erroneously generated by electromagnetic induction in the vicinity of the monitoring apparatus. As a result, this apparatus has a disadvantage in that information contained in the waveforms of the detector output pulses cannot be always utilized efficiently. To deal with the above disadvantage, it is necessary to sufficiently shield signal cables and the like to prevent the induction of external noise at the time of execution. Additonally, as measures to prevent erroneous measurement due to the external noise during execution, there is a method of using not only pulse wave heights but also other waveform information since the waveforms of the erroneous pulses are, in most cases, different from those of signal pulses. Further, since a detector output pulse is changed by the leakage of gas sealed in the detector or by the abnormal distance between electrodes, it is possible to detect these abnormal states during measurement by monitoring waveforms. In the present system, however, it is necessary to, for example, diagnose the detector while precluding the system from monitoring targets. According to the present system, it is necessary to provide circuits dedicated to Campbell measurement and pulse measurement, respectively to simultaneously conduct the measurements, which results in larger-sized and complicated circuits. Due to this, the measurements are conducted by different hardware and, therefore, the apparatus shown in FIG. 5 has a problem that maintenance and inspection operations are carried out for the measurements, respectively. To solve this problem, it is desired that hardware parts are integrated, particularly, signal processing parts are integrated. Considering the above, as means for solving the erroneous measurement problems with the analog circuit of that type, there is proposed a digital type reactor start-up monitoring apparatus for converting a detector output pulse to a digital signal and for conducting signal processing (e.g., in Japanese Patent Application Laid-Open No. 9-274095). Description will now be given to an example of this apparatus based on FIG. 6. A digital type reactor start-up monitoring apparatus shown in FIG. 6 consists of an SRNM detector 100, an analog amplifier 101, as in the case of the above apparatus, a pulse measurement system 102 and a Campbell measurement system 103 connected to the signal output side in parallel, and reactor power evaluating (monitoring) means 104, such as a monitor, for continuously monitoring reactor power at the time of reactor start-up based on the measurement results of the measurement systems 102 and 103. Among the elements, the pulse measurement system 102 consists of the first A/D converter 120 sampling the detector output pulse amplified by the analog amplifier 101 at intervals shorter than the pulse width, pulse counting means 121 for counting the number of detector output pulses from the obtained sampling data and pulse measurement evaluating means 106 for converting the counted pulse number to a reactor power level and evaluating reactor power at the time of low power output. The pulse counting means 121 performs arithmetic processing to not only pulse wave height values but also other features using sampling data and recognizes output pulses. Thus, it is possible to count only the output pulses and to remove different signals such as noise. In addition, the Campbell measurement system 103 consists of a plurality of analog amplifiers (a small gain amplifier 107, a medium gain amplifier 108 and a large gain amplifier 109) amplifying and attenuating the detector output pulse amplified by the analog amplifier 101 under different conditions of a plurality of amplification factors, at least one, the second A/D converter 122 A/D converting the outputs of the respective amplifiers 107 to 109 and Campbell measurement evaluating means 113 for calculating a mean square value corresponding to the power of a specific frequency band using the obtained sampling data and then evaluating reactor power at the time of high power output. Among them, the Campbell measurement evaluating means 113 limits a frequency band after A/D conversion and operates the mean square value. Since the operation of the means 113 can be processed by software-based calculation, the measurement frequency band can be advantageously easily changed. The above-stated conventional digital type reactor start-up monitoring apparatus has, however, the following problems. 1): The pulse measurement and Campbell measurement differ in necessary sampling cycle (interval) and A/D conversion accuracy and require individual A/D converters, respectively. PA0 2): Since Campbell measurement has a sampling cycle of about 2 MH.sub.Z as stated above, it is necessary to remove frequency components of 1 MH.sub.Z or more before sampling according to the sampling theorem. For that reason, an antialiasing analog filter is normally provided. PA0 3): If a digital filter is used as a band limiting filter for Campbell measurement, it is necessary to execute a simple method capable of real-time processing operation using the digital filter. This is because the present Campbell measurement elements do not have enough operation speeds. PA0 4): In regard to an algorithm for digitally sampling pulse waveforms and selecting a detector output pulse from the sampling values, it is difficult to make waveform selection in a real-time manner at a cycle of 100 nsec or less as in the case of the digital filter for Campbell measurement. To deal with this, a method for simplifying a waveform selection algorithm is desired. That is, in pulse measurement, it is required that a sampling cycle is shorter than the pulse width of a detector output pulse. Since the width of the output pulse is about 100 nsec, an N/D converter capable of digitizing a pulse with 20 MH.sub.Z is required for the pulse measurement. For example, a commercially available A/D converter having accuracy of about eight to ten bits is employed. In Campbell measurement, by contrast, the measurement band is normally 1 MH.sub.Z or less and an A/D converter having a sampling cycle of about 2 MH.sub.Z is, therefore, required. Besides, to broaden the measurement range, the accuracy of the converter needs to be higher than that of the above-stated N/D converter for pulse measurement. For example, a commercially available AND converter having accuracy of about 16 bits is employed. Meanwhile, Campbell measurement, as in the case of the conventional analog type apparatus described above, covers a measurement range as wide as five figures and a plurality of analog amplifiers are, therefore, required. As stated above, due to the need to prepare a plurality of A/D converters and analog amplifiers, the overall constitution of the conventional digital type reactor start-up monitoring apparatus becomes disadvantageously complicated. If such an antialiasing analog filter is provided, however, analog filtering characteristics play a major role and digital response expected by the digital type reactor start-up monitoring apparatus cannot be disadvantageously realized. That is to say, since power operation is performed by the Campbell measurement system in the digital type reactor start-up monitoring apparatus in a frequency band of about 100 kH.sub.Z to 400 kH.sub.Z, a digital filter instead of an analog filter is expected to be adopted as the band limiting filter to enhance time response and performance against external noise.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates, in general, to means for removing nails, pins, spikes and the like from wood and the like. 2. Description of the Related Art Various means and methods have been developed over the years for use in extracting or removing nails, pins, spikes and the like from wood and the like. Perhaps, the most common nail extraction tools are the typical claw hammer and the typical crowbar. These tools require the user to force the distal end of the claw hammer or crowbar under the head of the nail, and then to use the claw hammer or crowbar as a lever to urge the head of the nail upward. The problems associated with removing a nail or the like that has been completely driven into a workpiece or the like so that the head of the nail is flush or even slightly below the outer surface of the workpiece are well known and include sever damage to the surface of the workpiece, injury to the worker attempting to use a claw hammer or crowbar to remove such nails, etc. Typically, a claw hammer, crowbar or pry bar is used to first pry the workpiece from its attached structure in hopes of exposing the head of the nail. However, this often results in breaking the lumber or underlying structure. Present devices and methods used to remove nails holding plywood or sheeting to existing structure usually results in broken plywood or sheeting. A preliminary patentability search was conducted in class 254, subclasses 18, 20 and 21. Devine, U.S. Pat. No. 155,429, issued Sep. 29, 1874, discloses a spike extractor for removing spikes from wood. The spike extractor includes a frame, a screw mounted for vertical movement in the frame, a grapple for being attached to the lower end of the screw and having a pair of jaws for being driven into the wood around the upper end of the spike, and a becket or ring for compressing the jaws against the spike so that rotation of the screw will cause the grapple to move and cause the spike to be extracted from the wood. Baumeister, U.S. Pat. No. 401,113, issued Apr. 9, 1889, discloses a nail extractor for withdrawing nails from wood. The nail extractor includes a shell, a sliding carrier mounted within the shell, jaws within the carrier projecting below the carrier and having inwardly-turned edges at their extremities to undercut the head of a nail, a spring for urging the jaws downward, another spring for opening the jaws when raised, and cam means for turning the carrier and jaws backward to cut away the wood from under the head of the nail and for raising them straight outward to withdraw the nail from the wood. Johnson, U.S. Pat. No. 559,803, issued May 12, 1896, discloses a horseshoe-calk extractor including a tubular body, a branched standard received in one end of the body, a pair of semicylindrical clamping-jaws coupled to one end of the standard, and a cam-crank arm combination coupled to the other end of the standard for drawing the standard and the clamping jaws into the body. Morrill, U.S. Pat. No. 712,083, issued Oct. 28, 1902, discloses a spike extractor including an upright frame, a lifting block mounted for vertical movement within the frame, a lever cam pivotally attached to the frame for engaging the lifting block through antifriction rollers, and a pair of gripping jaws coupled to the lifting block through a rod whereby movement of the lever cam will cause vertical movement of the lifting block and, thereby, the gripping jaws. Swallert, U.S. Pat. No. 2,735,649, issued Feb. 21, 1956, discloses a pneumatic spike extractor including a pneumatic piston having a piston rod, two jaws pivotably mounted on the outer end of the rod, a double-armed lever pivotably mounted on the piston rod for locking the jaws in an opened position when the piston rod is retracted and in a gripping position when the piston rod is protruded. Mustoe, Jr., U.S. Pat. No. 3,978,576, issued Sep. 7, 1976, discloses a nail extractor including a cylinder, a piston reciprocable in the cylinder under the influence of fluid pressure, a pair of gripping jaws located externally of the cylinder, at least one of which is movable between nail gripping and non-gripping positions as a result of mechanical interactions between the piston and the movable jaw upon displacement of the piston towards and away from the jaws under the action of fluid pressure. Saurwein, U.S. Pat. No. 4,078,766, issued Mar. 14, 1978, discloses a fluid actuated nail extractor including a pair of jaws pivotally mounted on a reciprocable rod. An impact piston impacting a second rod coupled to the jaws closes the jaws about a nail embedded in a workpiece when the extractor is positioned adjacent the nail. A second piston actuates the reciprocable rod to extract the nail from the workpiece. Pressurized fluid, controlled by a plurality of poppet valves, drives the pistons through a predetermined sequence of operations. Nothing in the prior art discloses or suggests the present invention. More specifically, nothing in the prior art discloses or suggests a nail extractor including a body member having a first end and a second end; at least three leg members, each of the leg members having a first end and a second end, the first end of each of the leg members being attached to the second end of the body member; and collar means slidably positioned over at least a portion of the leg members for causing the second ends of the leg members to be urged inwardly.
{ "pile_set_name": "USPTO Backgrounds" }
The apparatus and method disclosed here relate to the field of electrical power transmission and distribution and the need to insulate electrical power systems from short circuits caused by birds and other animals. Long-distance electricity transmission is typically carried with high voltage conductors. Higher voltages reduce resistance power loss, and line voltage for long distance lines is stepped up with generating stations at selected locations. Transmission lines traverse large regions and require numerous support towers. The conductors in high tension powerlines are typically uninsulated because of the cost and additional weight of insulated versus uninsulated conductors. Electric poles, towers, including substations provide attractive roosts for birds, particularly in treeless regions. If the wings of a bird simultaneously contact a conductor and another object such as an adjacent conductor, support tower or tree, the resulting electrical short-circuit can kill the bird and also damage the power system. The electrical short can further cause electrical system damage resulting in power outages. Because large (and typically protected) birds are more susceptible to such incidental contact, electrocution hazards disproportionately affect large bird species such as raptors. In particular, substations transform power from transmission voltages to distribution voltages (typically ranging from 2400 volts to 37,500 volts. Distribution voltages allow for reduced system clearences. These reduced clearences between Phase to ground and phase to phase, increase station susceptibility to bird or animal caused outages. During animal or bird caused fault conditions, close in faults often trigger sensitive relay protection schemes resulting in Substation lockouts interupting service to thousands or possibly tens of thousands of customers and at the same time damaging expensive substation equipment. The variety and number of proposed solutions for repelling birds and other animals from electrocution risks highlights the persistence and magnitude of the problems created by such undesirable intrusion. Many different types of scarecrows and other moving devices have been developed to repel birds. In addition to moving devices, various physical structures have been developed to discourage birds from roosting on structures, particularly involving spikes or other physical barriers. Other bird repelling concepts use electricity or magnetics to discourage bird intrusion. Shield and cage devices have been specifically designed to restrict birds and other animals from short-circuiting electrical leads, such as U.S. Pat. Nos. 5,153,383 and 5,485,307. The inventor's own prior patent application discloses a method of in situ application of a dielectric coating to live power transmission components, see United States publication no. 20040265497. The variety and number of these efforts indicate significant problems in the exclusion of birds from undesirable areas, and the inherent difficulties in effectively accomplishing such exclusion. Many of these techniques are expensive to employ and are ineffective in preventing birds from landing in a particular spot. While the inventor's own prior patent application supplies a solution for many applications, there remains a need for an improved method and apparatus capable of resisting electrical wire short circuits deleterious to birds and other animals.
{ "pile_set_name": "USPTO Backgrounds" }
Recently, multicarrier transmissions utilizing CDTD (Cyclic Delay Transmit Diversity) have been proposed in which a multicarrier-signal transmitting apparatus including multiple transmission antennas adds different cyclic delays to transmission signals to be simultaneously transmitted from the transmission antennas (see Non-patent Document 1). When CDTD is used, the channel frequency selectivity always increases, thereby preventing the reception power from decreasing over the entire frequency of a reception channel, and achieving excellent average BER (Bit Error Rate) characteristics in a receiving apparatus. FIG. 11 shows a case where a signal is transmitted from transmission antennas 1a and 1b included in a multicarrier-signal transmitting apparatus to a reception antenna 2a included in a multicarrier-signal receiving apparatus. As shown in FIG. 11, signals s1 and s2 are respectively transmitted from the transmission antennas 1a and 1b, and a multiplexed wave thereof is received by the reception antenna 2a. The multicarrier-signal transmitting apparatus utilizing CDTD adds different cyclic delays to the signals s1 and s2 to be respectively transmitted from the transmission antennas 1a and 1b. FIG. 12 shows the configuration and the power of the reception signal. FIG. 12 (a) shows an example state of subcarriers and OFDM symbols being respectively arranged along the horizontal and the vertical axes representing frequency and time. As shown in FIG. 12, channel estimation symbols P1 to P5 are arranged at every 6 subcarriers. FIG. 12 (b) shows a state of the reception signal being distorted in the frequency domains with respect to the power where the vertical and the horizontal axes represent frequency and power. When a transmission apparatus uses CDTD, the frequency selectivity increases as shown in FIG. 12 (b). Therefore, enhancement of the reception characteristics can be expected. Non-patent Document 1: IEICE technical report RCS2004-392, “Application of Cyclic Delay Transmit Diversity to DS-CDMA using Frequency-domain Equalization”, issued on March, 2005 by the Institute of Electronics, Information and Communication Engineers.
{ "pile_set_name": "USPTO Backgrounds" }
In 2001, over 1.2 million new cases of human cancer will be diagnosed and over 0.5 million people will die from cancer (American Cancer Society estimate). Despite this, more people than ever are living with and surviving cancer. In 1997, for example, approximately 8.9 million living Americans had a history of cancer (National Cancer Institute estimate). People are more likely to survive cancer if the disease is diagnosed at an early stage of development, since treatment at that time is more likely to be successful. Early detection depends upon availability of high-quality methods. Such methods are also useful for determining patient prognosis, selecting therapy, monitoring response to therapy and selecting patients for additional therapy. Consequently, there is a need for cancer diagnostic methods that are specific, accurate, minimally invasive, technically simple and inexpensive. Colorectal cancer (i.e., cancer of the colon or rectum) is one particularly important type of human cancer. Colorectal cancer is the second most common cause of cancer mortality in adult Americans (Landis, et al., 1999, CA Cancer J Clin, 49:8-31). Approximately 40% of individuals with colorectal cancer die. In 2001, it is estimated that there will be 135,400 new cases of colorectal cancer (98,200 cases of colon and 37,200 cases of rectal cancer) and 56,700 deaths (48,000 colon cancer and 8,800 rectal cancer deaths) from the disease (American Cancer Society). As with other cancers, these rates can be decreased by improved methods for diagnosis. Although methods for detecting colon cancer exist, the methods are not ideal. Digital rectal exams (i.e., manual probing of rectum by a physician), for example, although relatively inexpensive, are unpleasant and can be inaccurate. Fecal occult blood testing (i.e., detection of blood in stool) is nonspecific because blood in the stool has multiple causes. Colonoscopy and sigmoidoscopy (i.e., direct examination of the colon with a flexible viewing instrument) are both uncomfortable for the patient and expensive. Double-contrast barium enema (i.e., taking X-rays of barium-filled colon) is also an expensive procedure, usually performed by a radiologist. Because of the disadvantages of existing methods for detecting colon cancer, new methods are needed.
{ "pile_set_name": "USPTO Backgrounds" }
The Public Land Mobile Network (PLMN) defined by the 3rd Generation Partnership Project (3GPP) can be logically divided into two parts: a Core Network (CN) and an Access Network (AN). The CN can be subdivided into a Circuit Switched (CS) domain, a Packet Switched (PS) domain, and an IMS. In different CN, a user must use a different access mode. (i) CS Domain and User Access The CS domain provides CS services for users, including voice, CS data, and fax. Typical entities of the CS domain include: a Mobile Switching Center (MSC), adapted to handle call signaling and complete call routing; a Wireless Media Gateway (WMG), adapted to set up media connections and convert voice codes; a Visitor Location Register (VLR), adapted to store information about the current location of a user and the service data; a Home Location Register (HLR), adapted to store subscription data of a user and the information about the current serving VLR; an Equipment Identity Register (EIR), adapted to store user equipment identities; and an Authentication Center (AuC), adapted to generate authentication data. To ensure the services in the CS domain to be accessible to users, the 3GPP protocol defines a mechanism for a mobile CS user to access a CN. Through this mechanism, the network can obtain the user location information and implement network access security protection. The network needs to handle access requests when a mobile CS user powers on a Mobile Equipment (ME), roams to a new MSC/VLR service area, updates the location periodically, or invokes a service. A network operator can decide to use or not to use certain access-related processes, for example, authentication process, encryption process, process of allocating a Temporary Mobile Subscriber Identity (TMSI), in different access operations according to specific policies. A typical access process of a 3G CS user is shown in FIG. 1. A Mobile Equipment (ME) sends a location update request to the Radio Network Controller (RNC), and sends an authentication information request to the HLR/AUC through an MSC/VLR in turn; afterward, the HLR/AUC returns an authentication request message to the MSC/VLR, RNC and ME in turn. The process for a CS user to access a network further includes a process of starting security protection. The identities for use in an access process of a CS user include: Mobile Subscriber ISDN Number (MSISDN), International Mobile Subscriber Identity (IMSI), and TMSI. The composition of an IMSI is shown in FIG. 2. An IMSI uniquely identifies a user in a global mobile network, and is bound to the MSISDN of the user at the time of subscription. As shown in FIG. 2, an IMSI consists of three parts: Mobile Country Code (MCC), Mobile Network Code (MNC), and Mobile Subscriber Identification Number (MSIN). The MCC is promulgated by the ITU-T and applied globally. An MNC is allocated by the country that governs the MCC according to the actual conditions, and is expressed by two or three digits. An MSIN is allocated by an operator who holds the MCC and MNC. A National Mobile Subscriber Identity (NMSI) is expressed as “MNC+MSIN”. As shown in FIG. 3, an MSISDN is allocated according to the ITU E.164 numbering plan and E.213 specifications, and consists of three parts: Country Code (CC), National Destination Code (NDC), and Mobile Subscriber Identification Number (MSIN). A CC is an international toll area code, and is promulgated by the ITU-T and applied globally. An NDC is defined by the country that governs the CC and allocated according to the conditions of the country. A mobile operator may have more than one NDC, for example, 135-139 held by China Mobile, and 130-134 held by China Unicom. A national number is defined by the operator holding “CC+NDC”. A national number is expressed as “NDC+SN”. An MSISDN should be able to serve as a Global Title (GT) of the Signaling Connection Control Part (SCCP) to locate the HLR of the user. In the addressing process, the HLR that serves the user can be located according to the “CC+NDC” of the number, or optionally, plus part of the Subscriber Number (SN). The identity of the HLR related to user registration may be an HLR number compliant with the E.164 specifications, or an HLR ID. The format of an HLR number is the same as that of an MSISDN. An HLR ID consists of several parts of an IMSI, namely, the first few digits of “MCC+MNC+MSIN”. The TMSI is a locally effective identity in the MSC/VLR service area. It is used with a Location Area Identity (LAI). Therefore, the network operator can stipulate that a TMSI should be reallocated for every access. To prevent an eavesdropper from determining the user location through a unique ID, the GSM/WCDMA network generally allocates a TMSI to the user who accesses an MSC/VLR service area initially. The CS user who accesses the network should be authenticated. The authentication process includes: obtaining an authentication vector (AV) through the MSC/VLR (MSC is combined with VLR), and performing bidirectional authentication with the user. The process for an MSC/VLR to obtain an AV includes: when an MSC/VLR of the CN receives a user location update request for access, if the MSC/VLR determines that the user needs authentication, the MSC/VLR requests an AV from the HLR/AUC (HLR is combined with AUC). The AUC generates several groups of AVs arranged sequentially according to the IMSI of the user. An AV includes five elements (RAND, AUTN, CK, IK, RES). The HLR returns all the generated AVs to the MSC/VLR through a response. After obtaining an AV, the MSC/VLR performs a bidirectional authentication process with the user, including: after receiving the AV groups, the MSC/VLR selects an intact AV, removes the response (RES), and sends it to the RNC to require initiation of authentication. The RNC removes the cipher key (CK) and the integrity key (IK) of the remaining AVs, and sends an authentication request to the ME (USIM). The USIM in the ME can calculate out the CK, IK and RES in the AV group by using different algorithms shared with the network according to the key (K) which is allocated at the time of subscription and shared in the AUC of the network as well as the received random number (RAND). According to the RAND, authentication token (AUTN) and the shared key (K), the ME calculates out the MAC, and compares the value with the MAC value received from the AUTN. If the two values are the same, the ME returns the calculated RES to the MSC/VLR. The MSC/VLR compares the value with the RES stored in the AV, and, if the two values are the same, determines that the ME passes the authentication and is legal. In a GSM system, the access process of a GSM user is similar to that of a CS user in a 3G system such as CDMA system. As shown in FIG. 4, the differences between the access process of a GSM user and that of a 3G CS user include: The GSM system has no ME for network authentication, so the AV contains no AUTN parameter; The GSM system has no data integrity protection, so the AV contains no IK parameter; and A cipher key (Kc) of the GSM system contains only 64 digits while a CK used in the 3G system contains 128 digits, and the encryption algorithm applied in the 3G system is more intense. The signed response (SRES) of a GSM system differs from the RES of a 3G system in algorithm and length. The access process of a 3G and 2G CS user described above reveals that a security mechanism is set for the mobile CS domain to provide security assurance to some extent. The security mechanism of a 3G user is an enhancement of the GSM user security mechanism. That is, the 3G security mechanism is a smooth evolution from the 2G security mechanism. The foregoing is an access process of the CS network and CS user. The following describes an access process of the IMS network and IMS user. The IMS is a subsystem that is overlaid on the existing PS domain and supports IP multimedia services. It is intended to provide rich multimedia services such as audio, video, text, interactive session, or combination thereof. The IMS uses the Session Initiation Protocol (SIP), and is independent of access. As shown in FIG. 5, the function entities in an IMS include: a Call Session Control Function (CSCF) entity that controls user registration and session, an Application Server (AS) that provides various service logic control functions, and a Home Subscriber Server (HSS) that manages subscription data altogether. A user accesses the IMS through the Proxy-CSCF (P-CSCF) of a current visited location. The Serving-CSCF (S-CSCF) in the home domain controls triggering of sessions and services and interacts with the AS about service control. In an IMS network, each user who subscribes to the IMS service owns one or more private user identities allocated by the home network operator for the purpose of registration, authorization, management and charging. Each IMS user owns one or more public user identities intended for use in service session processes and for identifying the user during communication with other users. FIG. 6 shows the IMS subscription and the relationship between the public user identity and the private user identity in an IMS. One private user identity corresponds to one or more public user identities. In an IMS network, the access process of an IMS user can be divided into: initial registration of the user, re-registration of the user, deregistration of the user, re-authentication initiated by the network, deregistration initiated by the network, and event subscription after registration. In the registration initiated by a user, these parameters must be carried in the request: an IP Multimedia Public Identity (IMPU), an IP Multimedia Private Identity (IMPI), and a home domain name of the user. Other parameters such as the authentication capability and IP address of a User Equipment (UE) may also be carried. As shown in FIG. 7, the initial registration process initiated by an IMS user includes: The user uses the IMPU, IMPI, contact address and home domain name stored in the ISIM module to construct a SIP Register message. The message also carries the information about the type and ID of the user access network, the supported encryption, integrity algorithm options, port required for setting up a Security Association (SA) with the P-CSCF, and timeout duration. Afterward, the user sends the message to the default address of the P-CSCF found previously by the UE in the P-CSCF discovery process. After receiving the message, the P-CSCF stores the user identity and other necessary information, queries for the address of the Interrogating-CSCF (I-CSCF) of the home domain according to the home domain name, and constructs a new Register message which carries the information about the visited network and sends the message to the I-CSCF address indicated by the query result. According to the private identity of the user, the I-CSCF queries the HSS for the registration state of the user. If the user is not registered, the I-CSCF selects an S-CSCF for handling the Register request of the user. After selecting an S-CSCF, the I-CSCF sends the Register request to the S-CSCF for further processing. After receiving the Register message, the S-CSCF checks and determines that the user is registered initially, and requests the HSS to allocate an authentication vector (AV) to the user. The composition of the AV is the same as that of a 3G user AV, and is a quintuplet vector. After receiving the allocation result of the HSS, the S-CSCF selects a group of vectors from the SIP 401 message, removes the XRES in the vectors and sends the vectors to the P-CSCF through the I-CSCF. After removing the CK and IK in the AV, the P-CSCF selects a preferred algorithm according to the encryption and integrity algorithm capabilities of the P-CSCF and the UE, and sets the parameters of the security association in the P-CSCF. The P-CSCF puts such parameters into the 401 message, and initiates an authentication challenge to the UE. The UE calculates out the CK, IK and RES according to the Authentication Key (K) shared with the network and the received RAND, and authenticates the network in the same way as in a 3G CS domain. Then it negotiates the security association according to the relevant parameters returned by the P-CSCF. After negotiation of the security association, the signaling at the UE and the network side uses the port defined by the security association for communication. After calculating the RES required by the network, the UE needs to construct a new Register message. After encryption and integrity protection, the message is sent to the P-CSCF through the security channel connected to the P-CSCF. The P-CSCF decrypts the received message. If the message is resolved successfully, the network and the UE have completed encryption and integrity protection. Afterward, the P-CSCF sends the authentication result to the S-CSCF through the I-CSCF. After receiving the Register message, the S-CSCF compares the RES in the message with the RES stored previously. If they are the same, the authentication succeeds. After the authentication is completed, the S-CSCF notifies the HSS of authentication success, and downloads user data from the HSS. Afterward, the S-CSCF sends a 200 OK message to the UE, indicating that the registration succeeds. The message carries the registration lifetime measured in seconds, which is specified by the network. Besides, the S-CSCF may initiate third-party registration to the Application Server (AS) specified in the triggering conditions according to the triggering conditions in the user data. After receiving a 200 OK response, the P-CSCF initiates a process of subscribing to the registration event packet of the UE to the S-CSCF. After the subscription succeeds, the S-CSCF returns the registration state to the P-CSCF. After receiving the 200 OK response, the UE initiates a process of subscribing to the registration event packet of the UE to the S-CSCF. After the subscription succeeds, the S-CSCF returns the registration state to the UE. After completion of the registration, the following processes may be performed for a user who accesses the IMS network: (1) The re-registration process initiated by the user is shown in FIG. 8. Before expiry of the registration lifetime, the UE initiates re-registration to the network, and indicates support of integrity protection to the network. As shown in the figure, the S-CSCF judges whether to re-authenticate the user. If no authentication is required, the S-CSCF returns a 200 OK response to the UE. (2) The deregistration process initiated by the user is: In the Register message, the UE set “expires” (a parameter that indicates the registration lifetime) to 0. The S-CSCF notifies the HSS that the user is deregistered. If the UE has no other triggering conditions of the unregistered state, the S-CSCF will no longer store information about the user. (3) As shown in FIG. 9, the re-registration process initiated by an IMS network includes: The S-CSCF in the network initiates re-registration of the UE. Re-registration is to send a SIP NOTIFY message to the UE. After the user initiates re-registration, the network decides whether to re-authenticate the user according to the operation policy. After sending a NOTIFY message, the S-CSCF shortens the registration lifetime of the corresponding IMPI of the user. In this period, if the UE initiates no re-registration process, the S-CSCF initiates a deregistration process. (4) The deregistration process initiated by the IMS network is shown in FIG. 10. When the user data is deleted from the HSS, or deregistration is triggered by an internal event (re-registration timer timeout) of the S-CSCF, the IMS network initiates a deregistration process. In the deregistration process, different parameters are carried in the NOTIFY message, depending on whether the IMS network expects the UE to initiate registration again. With the development of network communication technologies, integration of an IMS network with a CS network becomes a megatrend in the industry. To meet the increasing IP multimedia application requirements, the 3GPP proposes an IMS of an all-IP service network architecture on the basis of a packet bearer network. The integrated network is intended to shield the user access mode and improve the multimedia communication experience. Therefore, a solution is required as regards how an existing CS user accesses an IMS network. Radio interface CS signaling (for example, GSM 04.08 signaling) is used to register a mobile CS user at the CS domain, but the SIP signaling based on a PS network is used to register a user in the IMS. Therefore, a CS user is unable to be registered to the IMS directly. In the prior art, therefore, it is impossible for a CS user to access an IMS network through registration in the IMS network.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a method for the prevention and treatment of eye inflammation due to exposure to an irritant. It has long been known that eye irritation and inflammation can occur from exposure to a wide variety of chemical irritants, e.g., smog, building fires, tobacco smoke and industrial chemicals. More recently, contact lenses have become a major source of such eye irritation and inflammation. There are several non-prescription products marketed today to treat such eye ailments. However, some patients are sensitive to the chemicals in them, some do not respond thereto and none are reliably effective in preventing the irritation which often is associated with wearing contact lenses. The prescription drugs, such as antibiotics and steroidal anti-inflammatory agents, while generally more effective have their own disadvantages. There therefore is a long standing need for safe and effective opthalmic anti-inflammatory agent for treating eye irritation, especially that associated with contact lens use. There is also a need for a non-toxic, non-allergenic bacteriostat and fungistat which is also effective in promoting the normal healing of the surface of the eye by suppressing infection and/or the natural inflammatory process. The present invention meets those needs. The compositions employed in this invention comprise biphenamine (.beta.-diethylaminoethyl 3-phenyl-2-hydroxybenzoate), either as the free base or a pharmaceutically acceptable acid addition salt thereof. Salts of this compound are known to have a variety of activities, including local anesthetic (U.S. Pat. No. 1,976,922); treatment of seborrhea capitis in a shampoo (U.S. Pat. No. 3,123,531); as well as antihistaminic and bactericidal activity and fungicidal properties (U.S. Pat. No. 2,593,350; Report Annual Meeting So. Med. Assoc., Nov. 6, 1961). Biphenamine hydrochloride has been sold as a 1% ointment, under the trademark "Melsaphine," as a topical anesthetic agent possessing bactericidal, fungicidal and antihistamine properties and as a 1% aqueous shampoo under the trademark "Alvinine," Federal Register, Vol. 34, No. 189, page 153, Oct. 2, 1969. See also U.S. Pat. No. 3,123,531. Although its use in a shampoo for treating seborrhea and related conditions is claimed in U.S. Pat. No. 3,123,531, nothing was known concerning its ability to prevent or ameliorate inflammation in eyes which are exposed to an irritant. The topical compositions employed in the method of this invention preferably also comprise a small amount of a skin penetrant, e.g., DMSO (dimethyl sulfoxide) or polypropylene glycol, which has no anti-inflammatory effects in the eye at the concentration employed. U.S. Pat. No. 3,551,554 and 3,711,602 disclose that DMSO is effective as an agent for enhancing tissue penetration of physiologically active agents. U.S. Pat. No. 3,549,770 discloses (Example 36) the topical application of a mixture of acetylsalicylic acid and DMSO is more effective than DMSO alone to relieve the pain and muscle spasm of rheumatoid spondylitis. See also U.S. Pat. Nos. 3,711,602; 3,711,606; and 3,743,727 and references cited therein. These patents disclose that the tissue penetration of physiologically active compounds, inter alia, steroidal agents and certain antimicrobial agents, can be enhanced by DMSO. U.S. Pat. No. 3,740,420 discloses DMSO compositions for topical administration containing thickening agents. The foregoing patents disclose that concentrations of DMSO of 10% by weight and above can effect penetration of such agents through various mucous membrane barriers and that concentrations of 50% by weight and above are effective to achieve penetration thereof through the skin. DMSO is also known to enhance the antiperspirant activity astringent of aluminum, zinc and zirconium salts (U.S. Pat. No. 3,499,961). DMSO has been disclosed as useful for treating a variety of pathological conditions. U.S. Pat. No. 3,549,770 discloses topical application as a particularly advantageous route. This patent claims methods of relieving the signs and symptoms of tissue inflammation; of vascular insufficiency in the blood and lymph circulatory system; of respiratory distress; of arthritis and a method of promoting tissue repair, by administering an effective amount of DMSO, preferably topically. Dosages as low as 0.01 g/kg and up to 1.0 g/kg per day and sometimes higher dosages are contemplated with 0.1-0.2 g/kg individual doses being average. Higher concentrations of DMSO, such as at least 25% and more often at least about 50% are preferred for topical application. In one example (Example 27) the pain associated with skin abrasion was relieved with 15% DMSO in isotonic saline. 10% to 90% water solutions of DMSO, preferably 20% to 40%, in water, alcohol or glycerine are useful for topical application to the mucous membranes of the body although " . . . lower concentrations of DMSO say down to 3% by weight may be useful in some instances." The use of DMSO as an ataratic agent is disclosed in U.S. Pat. No. 3,790,682. Pharmaceutical compositions containing DMSO and thickening agents are disclosed in U.S. Pat. No. 3,740,420, along with their use to treat and repair damaged tissue, as an anti-inflammatory agent, as an analgesic agent, as a muscle relaxant, as an agent for treating vascular insufficiency, and relieve the signs and symptoms of certain specific syndromes, viz., respiratory distress, arthritis and burns. None of the foregoing references disclose or suggest that the prevention and amelioration of eye inflammations can be achieved with low concentration of DMSO at concentrations below 10%, although U.S. Pat. No. 3,549,770 discloses (Col. 10, lines 42-49) that for pharyngitis or hiccups, the subject may gargle with a more dilute aqueous solution, e.g., containing 1% or preferably 10% by weight of DMSO, and (Col. 28, lines 44-56) that concentrations of DMSO down to 3% by weight may be useful in some instances, with 10% to 90% water solutions being particularly suitable. The use of DMSO in ophthalmic solutions at concentrations below 10% by weight is not suggested in the prior art. Moreover, low concentrations of DMSO or propylene glycol alone have little if any beneficial effect in treating eye inflammations.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to novel herbicidal compositions, particularly aqueous solutions, containing the herbicide N-phosphonomethylyglycine (also known as glyphosate) and an alkyl phenol polyoxyalkylene carboxylic acid-containing surfactant. N-phosphonomethylglycine, as well as analogous compounds including salts, and the herbicidal properties and formulations containing them, are described in numerous patents, such as U.S. Pat. No. 3,799,758. This patent describes a number of compositions containing N-phosphonomethylglycine and analogous compounds and discloses that the incorporation of a surface-active agent into such compositions "greatly enhances their efficiency". A number of surface-active agents are disclosed in that patent. The patent also mentions that because N-phosphonomethylglycine itself is relatively insoluble in water, it is generally preferred to utilize the more readily soluble derivatives of N-phosphonomethylglycine, including metal salts and salts of N-phosphonomethylglycine and strong acids, namely those having a pK of 2.5 or less, such as hydrochloric, sulfuric, phosphoric, trifluoracetic, trichloracetic, and the like. A number of subsequent patents and patent applications describe in more detail particular surfactants which may be used with N-phosphonomethylglycine or its salts. For instance, U.S. Pat. No. 5,180,414 describes compositions of N-phosphonomethylglycine containing certain alkyl polyoxyethylene phosphoric acid ester surfactants. European Patent Application 290,416 describes compositions containing N-phosphonomethylglycine or its salts and an alkoxylated amine having at the most 12 alkoxy groups per molecule. European Patent Application 472,310 describes new surfactant compositions for use with pesticides, including glyphosate, which comprise a polyoxyalkylene alkyl amine containing at least about 7 moles of an oxyalkylene group combined with a second compound which has the property of reducing eye irritantcy. Such eye irritant-reducing compounds include sulfated polyoxyalkylene alkyl phenols, polyoxyalkylene alcohol sulfates, mono- and di-(polyoxyalkylene alcohol)phosphates, mono- and di-(polyoxyalkylene alkyl phenol)phosphates, polyoxyalkylene alkyl phenol carboxylates and polyoxyalkylene carboxylates. It is an object of the present invention to provide new phosphonomethylglycine-containing compositions, particularly aqueous solutions of N-phosphonomethylglycine which may be readily used for herbicidal application and control of undesirable plants.
{ "pile_set_name": "USPTO Backgrounds" }
The production of polymers or copolymers of lower .alpha.-olefins, particularly ethylene and propylene, has gained substantial commercial significance. The polymeric products are inexpensive and exhibit a number of commercially useful properties. In the case of the polymerization of ethylene, the process is relatively uncomplicated in that the product type is not influenced by the manner in which the ethylene molecules add to the growing polymeric chain and the product does not exist in stereoisomeric forms. In the case of the polymerization of propylene, however, the presence of pendant methyl groups on the polymeric chain provides the possiblity of several types of product depending on the steric regularity with which the propylene units add to the growing chain. Much if not most of the commercial polypropylene results from the stereoregular addition of propylene units in a regular head-to-tail manner. The propylene in which the addition of units is random is termed atactic. This amorphous form is less desirable and, if present in significant quantities, must be removed as by extraction in order to obtain a more desirable crystalline product. Also significant from a commercial standpoint is the activity of the polymerization catalyst. A number of the early polymerization catalysts, e.g., trivalent titanium, chromium or vanadium catalysts, were of relatively low activity and the product contained significant proportions of catalyst residues. The removal of such residues as by a deashing step was required in order to obtain commercially acceptable properties. The more recent olefin polymerization catalysts are more stereo-regulating and of sufficient catalytic activity so that extraction and/or deashing steps are not required. In the terms now conventionally employed for the components, the high activity olefin polymerization catalysts are formed from a procatalyst which typically contains magnesium, titanium and halide moieties as well as an electron donor, a cocatalyst which is usually an organoaluminum compound and a selectivity control agent which may be provided as a partial or total complex with the cocatalyst. Although each of these catalyst components has a considerable influence on the polymerization catalyst and process and the product thereby produced, the nature of the catalyst as well as the polyolefin product seem to be most influenced by the procatalyst. Much of the research toward improvement of the olefin polymerization catalyst has been directed toward improvemen of the procatalyst component. Kioka et al, U.S. Pat. No. 4,330,649, describe a solid catalyst component (procatalyst) obtained by heating a soluble magnesium compound such as magnesium chloride with a higher alcohol in the presence of an ester to produce a solution which is added to titanium tetrachloride and an electron donor to form the procatalyst. Band, U.S. Pat. No. 4,472,521, reacts a magnesium alkoxide with a titanium alkoxide of 4 or more carbon atoms in each alkoxide in the presence of aromatic hydrocarbon. Titanium tetrachloride and an electron donor are added to the resulting solution to produce a solid procatalyst which is post-treated with transition metal halide. Arzoumanides, U.S. Pat. No. 4,540,679, produces a catalyst component by contacting a suspension of magnesium ethoxide in ethanol with carbon dioxide. The addition of an organoaluminum compound in a hydrocarbon to the resulting solution produces granular particles which are employed as a support for titanium upon treatment with titanium tetrachloride. Nestlerode et al, U.S. Pat. No. 4,728,705, solubilize magnesium ethoxide in ethanol with carbon dioxide and spray dry the resulting solution or alternatively use the solution to impregnate catalyst support particles. The particles resulting from either modification are useful in the production of a procatalyst of desirable morphology. A somewhat different type of catalyst component precursor is described by Job, U.S. Pat. No. 4,710,428, wherein a magnesium compound of the general formula EQU Mg.sub.4 (OR).sub.6 (ROH).sub.10 A (I) is formed wherein R independently is lower alkyl of up to 4 carbon atoms inclusive and A is one or more anions having a total oxidation state of -2. This complex magnesium compound is contacted with a tetravalent titanium halide, a halohydrocarbon and an electron donor to form the procatalyst. The use of such magnesium compounds has certain advantages in that they are crystalline materials of desirable morphology whereas magnesium ethoxide is not. The conversion of the crystals of such magnesium compounds to olefin polymerization procatalysts is by conventional technology. The catalysts produced from such procatalysts are good high activity olefin polymerization catalysts, particularly for the polymerization or copolymerization of propylene. It would be of advantage, however, to provide improved olefin polymerization catalysts.
{ "pile_set_name": "USPTO Backgrounds" }
A method of this kind has been described. Only the actual tracks are refilled in this known method, whereas the roadway strip lying between two neighbouring tracks is not renewed (German Specification No. is DE-A-25 24 762). The invention also relates to a device for carrying out the method. In this connection an apparatus is known which comprises two stripping-laying apparatus graders which are arranged at a distance from one another laterally of the working direction and serve to fill two adjacent tracks. The strip of roadway lying between the graders is not therefore covered by this apparatus as well, as a result of which this intermediate strip remains at the original, low road level as compared with the inner edges of the asphalt strips filling the tracks. According to this prior art, pools of water, which may give rise to accidents, are often formed between the two inner edges of the track-filling material, laid in strips, as a result of rain or melted snow. Road users are also presented with a disturbing optical effect, caused by the two separate asphalt tracks.
{ "pile_set_name": "USPTO Backgrounds" }
Optical discs have fast become an industry standard for data storage in the fields of computers, video, and music. Optical discs include, but are not limited to, compact discs (CDs), Digital Video (or Versatile) Discs (DVDs), and game system discs in a variety of formats. Commercially produced optical discs usually have digital data recorded on one side of the disc and a visual display printed on the opposite side of the disc. In some instances, optical discs are created that can store data on both sides of the disc. However, in most cases, it is desirable to limit the optical disc data to a single side of the disc, leaving the other side of the disc for printed text, patterns, or graphics. The printed labeling on a non-data side of an optical disc can include a decorative design, text identifying the data stored on the disc, or both. As optical technology has advanced, writeable and rewritable optical discs as well as equipment for writing onto the discs have become reasonably priced and are now within the financial grasp of many consumers. Thus, many consumers currently have the ability to store data on an optical disc with home office computer equipment. However, very specialized and expensive equipment is required to professionally label an optical disc. Consequently, the labeling of discs by most consumers is typically limited to either printing on separate adhesive labels that are subsequently adhered to the non-data side of the disc, handwriting with a marker directly on the disc, or handwriting on an adhesive label. As label-printing technology has advanced, new methods for printing on imageable surfaces have emerged. Some optical disks allow for labels to be printed directly on the non-data side of the disc using the laser of an optical disc drive. This direct writing method, however, is limited by the resolution of the optical disc drive to track the position of the laser with respect to the non-data surface of the disc as well as the need for motor speed control.
{ "pile_set_name": "USPTO Backgrounds" }
I. Field of the Invention The present invention relates generally to wireless communications. More particularly, the present invention is directed to a novel and improved system and method for the monitoring and management of the loading of a Code Division Multiple Access (CDMA) wireless communication system. II. Description of the Related Art In the field of Code Division Multiple Access (CDMA) wireless communication, a wideband frequency channel is shared by multiple communication devices, with each communication device employing a different pseudo-noise (PN) spreading code. In a typical CDMA wireless communication system, a first frequency band is used for forward channel communications (base station to mobile station), while a second frequency band, different from the first frequency band, is used for reverse channel communications (mobile station to base station). An example of such a system is given in U.S. Pat. No. 4,901,307 entitled "SPREAD SPECTRUM MULTIPLE ACCESS COMMUNICATION SYSTEM USING SATELLITE OR TERRESTRIAL REPEATERS," issued Feb. 13, 1990, assigned to the assignee of the present invention, and incorporated herein by reference. Fundamental to the concept of maximizing system capacity in a CDMA wireless communication system as described above is the process of power control. Subscriber units'output power must be controlled to guarantee enough signal strength received at the base station and to maintain good quality audio while minimizing the potential for interference. Since a CDMA wideband channel is reused in every cell, self interference caused by other users of the same cell and interference caused by users in other cells is the most limiting factor to the capacity of the system. Due to fading and other channel impairments, maximum capacity is achieved when the signal-to-noise ratio (SNR) for every user is, on the average, at the minimum point needed to support "acceptable" channel performance. Since noise spectral density is generated almost entirely by other user's interference, all signals must arrive at the CDMA receiver with the same average power. In the mobile propagation environment, this is achieved by providing dynamic power control of the mobile station transceiver. Power control guards against changes in system loading, jamming, slow and fast variations in channel conditions, and sudden improvements or degradations in the channel (shadowing). Power control of the mobile station's transmitter consists of two elements: open loop estimation of transmit power by the mobile station, and closed loop correction of the errors in this estimate by the base station. In open loop power control, each mobile station estimates the total received power on the assigned CDMA frequency channel. Based on this measurement and a correction supplied by the base station, the mobile station's transmitted power is adjusted to match the estimated path loss, to arrive at the base station at a predetermined level. All mobile stations use the same process and arrive with equal average power at the base station. However, uncontrolled differences in the forward and reverse channels, such as opposite fading that may occur due to the frequency difference and mismatches in the mobile station's receive and transmit chains, can not be estimated by the mobile. To reduce these residual errors, each mobile station corrects its transmit power with closed loop power control information supplied by the base station via low rate data inserted into each Forward Traffic Channel. The base station derives the correction information by monitoring the Reverse CDMA Channel quality of each mobile station, compares this measurement to a threshold, and requests either an increase or decrease depending on the result. In this manner, the base station maintains each reverse channel, and thus all reverse channels, at the minimum received power needed to provide acceptable performance. An example of a communication system employing the open loop and closed loop power control methods described above is given in U.S. Pat. No. 5,056,109 entitled "METHOD AND APPARATUS FOR CONTROLLING TRANSMISSION POWER IN A CDMA CELLULAR MOBILE TELEPHONE SYSTEM," assigned to the assignee of the present invention, and incorporated herein by reference. In a CDMA wireless communication system as described above, a predetermined number of radio frequency resources, such as transceivers and channel modulator/demodulators (modems) are located at each base station. The number of resources allocated to a particular base station is a function of the anticipated traffic loading conditions. For example, a system in a rural area may only have one omni-directional antenna at each base station, and enough channel modems to support eight simultaneous calls. On the other hand, a base station in a dense urban area may be co-located with other base stations, each have several highly directional antennas, and enough modems to handle forty or more simultaneous calls. It is in these more dense urban areas that cell site capacity is at a premium and must be monitored and managed closely in order to provide the most efficient allocation of limited resources while maintaining acceptable quality of communications. Sector/cell loading is the ratio of the actual number of users in the sector to the maximum theoretical number that the sector can support. This ratio is proportional to total interference measured at the receiver of the sector/cell. The maximum number of users that the sector/cell can support is a function of the aggregate signal-to-noise ratio, voice activity, and interference from other cells. The individual subscriber unit signal-to-noise ratio depends on subscriber unit speed, radio frequency propagation environment, and the number of users in the system. Interference from other cells depends on the number of users in these cells, radio frequency propagation losses and the way users are distributed. Typical calculations of the capacity assumes equal signal-to-noise ratio for all users and nominal values of voice activity and interference from other cells. However, in real systems, signal-to-noise ratio changes from user to user and frequency reuse efficiency varies from sector to sector. Hence there is a need to continuously monitor the loading of a sector or cell. A conventional way to monitor cell site loading conditions is for a person, usually a network engineer or technician employed by a wireless communication service provider, to travel from cell to cell making loading condition readings using specially designed and expensive test equipment. The logged data is then returned to a central processing facility for postprocessing and analysis. Some significant drawbacks to this method are that the data can not be evaluated in real-time, and that significant errors are introduced due to propagation effects between the base station and the measurement equipment. Thus, this monitoring method only provides a rough estimate of cell site loading conditions, and can only be used in a time-delayed fashion to take corrective action, such as reassigning resources for the future. It does not enable the service provider to take any real-time action to improve loading conditions and their effect on system performance. Additionally, it requires a person to travel to each site serially, thus providing a discontinuous "hit or miss" estimate of the peak loading condition and consequent system performance depending on whether the visit coincided with the actual (rather than assumed) peak usage times. Another possible way of monitoring cell site loading conditions is to access the performance data logged by the base station itself, or the base station controller. However, this requires that the scarce base station processing resources be diverted to collect and retrieve the data. Additionally, it suffers from the non-real time post-processing problems as previously mentioned. Lastly it also requires that a person visit each cell site serially to retrieve the data. What is needed is a simple and accurate remote real-time load monitoring and management system which does not require access to the base station or base station controller logged data, and hence does not impact processor performance.
{ "pile_set_name": "USPTO Backgrounds" }
A. Field of the Invention The present invention relates to lighting fixtures that produce high intensity, controlled, and concentrated light beams for use at relatively distant targets. In particular, the invention relates to such lighting fixtures, their methods of use, and their use in systems where a plurality of such fixtures are used in combination, usually elevated on poles, to compositely illuminate a target area energy-efficiently, with reduced glare and spill light. One primary example is illumination of a sports field. Furthermore, the present invention relates to lighting fixtures with visors that include an uplighting feature. B. Problems in the Art In recent times, sports lighting has also had to deal with the issue of glare and spill light. For example, if light travels outside the area of the sports field, it can spill onto residential houses near the sports field. Also, the high intensity of the lamps can cause glare to such homeowner or create safety issues for drivers on nearby roads. Some communities have enacted laws regulating how much glare or spill light can be caused by sports lighting or other wide-area outdoors lighting. While a number of attempted remedies exist, many result in blocking, absorbing, or otherwise reducing the amount of light going to the field. This can not only increase cost of the lighting system because of the glare or spill control measures, but in some cases requires additional fixtures to meet minimum light quantity and uniformity specifications. More cost might therefore be incurred, to make up for the light lost in glare and spill control measures. In some cases, it can even require more costly and/or additional poles to support the additional fixtures. Therefore, competing interests and issues provide challenges to sports lighting designers. Some of the interests and issues can be at odds with one another. For example, the need always remains for more economical sports lighting. On the other hand, glare and spill control can actually add cost and/or reduce the amount of light available to light the field. One approach is to use a visor extending from the top side of the fixture to block light from traveling outside the target space. Designers have to balance a number of factors, for example, cost, durability, size, weight, wind load, longevity, and maintenance issues, to name a few. Attempts to advance the art have mainly focused on discrete aspects of sports lighting. For example, computerized design of lighting systems tends to minimize hardware costs and system installation costs but uses conventional lamp and fixture technology, with their weaknesses. Also, larger lumen output lamps produce more light, but are used with conventional fixture technology. A need, therefore, still exists for advancement in the art of sports lighting. However, playability is also important. There must be sufficient light in the volume of space above the sports field so that players can see balls that travel into the air. For example, footballs, softballs, baseballs, soccer balls all can be kicked, thrown or hit quite high off the ground. Attempts to greatly curtail spill and glare light can be inconsistent with sufficient light above the field. There is a need in the art for an improvement in this area.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to implantable medical devices, and more particularly to an implantable cardioverter defibrillator (ICD) configured to provide a low pain defibrillation waveform. An ICD continues to be a relatively large device for implantation in the human body. The size of the ICD is primarily determined by the battery and capacitors used therein. The size of the battery (or batteries, in some instances) and capacitors, in turn, is determined by the shock energy requirements for a defibrillation pulse. Thus, a design approach that reduces the energy requirements for defibrillation results in a direct reduction in the overall ICD size. In existing ICD devices, the defibrillation waveform or pulse used to deliver a defibrillation shock to the heart is generated by first charging the equivalent of a single capacitor (most ICDs use two capacitors connected in series to function as a single capacitor, thereby reducing the working voltage requirements for each capacitor of the series stack, as explained below) to a desired charge level (voltage) and then discharging the single capacitor through the cardiac tissue for a prescribed period of time during a first or positive phase of the defibrillation waveform, and then reversing the polarity of the discharge for a second prescribed period of time during a second or negative phase of the defibrillation waveform, thereby producing a biphasic stimulation pulse or waveform. It should be noted that in this context the term xe2x80x9csingle capacitorxe2x80x9d is used to refer to a single capacitance, which may be, and usually is obtained by a hardwired connection of two capacitors in series such that the two series capacitors always function and act as though they were a single capacitor. (Two or more capacitors are connected in series in this manner in order to achieve a higher working voltage for the series-connected capacitor. That is, when two capacitors are connected in series, and each has a working voltage of, e.g., 375 volts (V), then the overall or total working voltage of the series combination becomes 750 V.) The purpose of applying a defibrillation shock to the heart is to shock the heart out of a state of fibrillation, or other non-functional state, into a functional state where it may operate efficiently as a pump to pump blood through the body. To this end, the positive phase of the biphasic waveform is preferably a very high voltage that serves to synchronously capture as many heart membrane cells as possible. See, Kroll, xe2x80x9cA minimum model of the signal capacitor biphasic waveformxe2x80x9d Pace, November 1994. The negative phase of the biphasic waveform, in contrast, simply serves to remove the residual electrical charge from the membrane cells and bring the collective membrane voltage back to its original position or value. See, e.g., Kroll, supra; Walcott, et al., xe2x80x9cChoosing The Optimal Monophasic and Biphasic Wave-Forms for Ventricular Defibrillationxe2x80x9d, Journal of Cardiovascular Electrophysiology (September 1995). A biphasic pulse generator of the type used in an ICD device is shown, e.g., in U.S. Pat. No. 4,850,357, issued to Bach, Jr.; and U.S. Pat. No. 5,083,562, issued to de Coriolis et al. When a voltage shock is first applied to a membrane cell, the membrane does not respond to the shock immediately. Rather, the cell response lags behind the applied voltage. This time lag is more or less predictable in accordance with the Blair membrane model. See, e.g., Blair, xe2x80x9cOn the intensity-time relations for stimulation by electric currents Ixe2x80x9d, J. Gen Physiol., Vol. 15, pp. 709-729 (1932), and Blair, xe2x80x9cOn the intensity time relations for stimulation by electric currents II xe2x80x9d, J. Gen Physiol., Vol. 15, pp. 731-755 (1932); Pearce et al., xe2x80x9cMyocardial stimulation with ultrashort duration current pulses,xe2x80x9d PACE, Vol. 5, pp. 52-58 (1982). When the applied voltage comprises a biphasic pulse having a constant voltage level for the duration of the positive phase (a condition achievable only when the voltage originates from an ideal battery), the membrane cell response to the positive phase reaches a peak (i.e., is at an optimum level) at the trailing edge of the positive phase. Unfortunately, when the applied voltage originates from a charged capacitor, as is the case for an ICD device, the applied voltage waveform does not remain at a constant voltage level, but rather has a significant xe2x80x9ctiltxe2x80x9d or discharge slope associated therewith. Such tilt or slope causes the peak membrane cell response to occur at some point prior to the trailing edge of the positive phase, which is less than optimum. What is needed, therefore, is a way to optimize the applied voltage waveform so that a maximum membrane cell response occurs coincident with, or nearly coincident with, the trailing edge of the positive phase. It is known in the art to switch the capacitors of an ICD from a parallel configuration during the positive phase of a biphasic defibrillation pulse to a series configuration during the negative phase of the biphasic defibrillation pulse. See, e.g., U.S. Pat. No. 5,199,429 (FIG. 7A) and U.S. Pat. No. 5,411,525. While such action produces a defibrillation waveform having a somewhat different shape, i.e., a waveform having a leading edge voltage of the second or negative phase which is approximately twice the trailing edge voltage of the first or positive phase, such action does little to achieve a maximum cell membrane response coincident with the trailing edge of the first or positive phase. It is also known in the art to sequentially switch capacitors in an ICD device in order to allow waveform xe2x80x9ctailoringxe2x80x9d, e.g., prolong the positive phase duration by sequentially switching in a second charged capacitor as shown in U.S. Pat. No. 5,199,429, or by sequentially switching in second, third and fourth charged capacitors, as shown in FIG. 6C of U.S. Pat. No. 5,199,429. However, such xe2x80x9ctailoringxe2x80x9d still does not address the main concern of achieving a maximum cell membrane response coincident with the trailing edge of the positive phase. It is thus evident that what is needed is a capacitor switching scheme and/or method for use within an ICD device which achieves a maximum cell membrane response near or coincident with the trailing edge of the positive phase. It is also desirable to provide an ICD that is as small as possible. The limiting factor on ICD thickness is the diameter of the high-energy capacitors. As indicated above, current ICDs typically use two electrolytic capacitors. Current technology in electrolytic capacitors limits the stored voltage to about 450 V per capacitor. Therefore, the current approach is to use two large (200 xcexcF or more) capacitors to achieve the stored energy of 25J-40J required for defibrillation. Therefore, the thickness of the ICD is determined by the thickness of the large capacitors. There is thus a need for an ICD construction, which would permit the needed energy for defibrillation to be stored in the ICD, while allowing a thinner ICD thickness. The inventions described in predecessor patent application Ser. No. 09/073,394 advantageously address the above and other needs. In particular, that patent application described a technique for generating a highly efficient biphasic defibrillation pulse by switching at least two charged capacitors from a parallel connection to various combinations of a parallel/series connection or a series connection during the first phase of the defibrillation pulse. Such mid-stream parallel/series connection changes step up the voltage applied to the cardiac tissue during the first phase. A stepped-up voltage during the first phase, in turn, gives an extra boost to, and thereby forces additional charge (current) into, the cardiac tissue cells, and thereby transfers more charge to the membrane of the excitable cardiac cell than if the capacitors were continuously discharged in series. Phase reversal is timed with the cell membrane reaching its maximum value at the end of the first phase. The inventions described in the predecessor patent application Ser. No. 09/976,603 are directed to achieving still other advantages. More specifically, the inventions of that patent application were directed techniques for generating a defibrillation waveform that requires even less shock energy to reach the myocardial defibrillation threshold so that battery power can be saved and device longevity improved, while still providing effective defibrillation. Techniques were also described for generating a defibrillation waveform that reduces the total time required to reach the myocardial defibrillation threshold thereby permitting the patent to be defibrillated more quickly. Although the techniques of the predecessor patent applications are quite effective in generating a wide variety of useful defibrillation waveforms, room for further improvement remains. A significant problem with conventional defibrillation techniques is the defibrillation pulses cause substantial pain to the patient. In many cases, the patient is unconscious by the time the shock is administered and hence the pain is experienced upon the patient regaining consciousness. In other cases, however, the shock is administered while the patient is still conscious. In either case, it would be highly desirable to reduce the pain experienced by the patient. U.S. Pat. No. 5,906,633 entitled xe2x80x9cSystem for Delivering Rounded Low Pain Therapeutic Electrical Waveforms To The Heartxe2x80x9d by Mouchawar et al. provides various systems and techniques for reducing patient pain by eliminating sharp voltage peaks in the shocking pulse waveform. More specifically, the patent describes a system for delivering a low pain waveform that is biphasic and has rounded leading and trailing edges. The rounded leading and trailing edges are believed to decrease the discomfort experienced by the patient. In one embodiment, the circuit has two capacitors connected in parallel with one another and with an H-bridge. The two capacitors are connected via a switch that can be closed so as to simultaneously charge one capacitor from the other while simultaneously applying voltage to the H-bridge. The circuit also includes a dump resistor that can be connected in parallel with the capacitors so as to increase the rounding of the trailing edges of the waveform. In another embodiment, controllable switches can also be included so as to be able to connect the capacitors in series and apply a sharp peak defibrillation waveform to the heart. U.S. Pat. No. 5,906,633 is incorporated by reference herein in its entirety. Although the system of U.S. Pat. No. 5,906,633 is effective is providing shocks that yield reduced pain, room for further improvement remains, particularly insofar as the generation of shocks for defibrillation is concerned. In particular, the circuit provided therein is fairly inefficient because much of the energy stored in the capacitors is not used in the shocking pulse and is instead lost as heat. Also it requires fairly large values for either voltage or power so as to achieve sufficient filtering to provide a smooth waveform shape. Alternatively, a larger capacitor can be used, but that requires larger ICD size and weight. Accordingly, it would be desirable to provide alternative techniques for generating rounded shocking waveforms and it is to these ends that aspects of the invention of the present CIP application are directed. In particular it is desirable to exploit the stepped waveform techniques of the predecessor patent applications summarized above for generating low pain rounded waveforms and further aspects of the invention are directed to novel waveform shapes achieved thereby. In accordance with a first aspect of the invention, systems and methods are provided for generating a rounded low-pain waveform formed of multiple steps or segments. In a system embodiment, a shocking circuit is provided that includes a set of capacitors, a resistive-capacitive (RC) filter, and low pain waveform control unit connected to the capacitors and operative to selectively discharge the capacitors through the RC filter to generate the rounded, multi-step defibrillation pulse waveform. In one example, dual shocking capacitors are configured so as to be discharged either in parallel or in series during the positive phase of the pulse waveform. The low pain waveform control unit operates to first discharge the capacitors in parallel to generate a first step or portion of the positive phase of the waveform while periodically shunting a portion of charge through the RC filter to reduce the peak voltage of the first step. Then the low pain waveform control unit discharges the capacitors in series to generate a second step of the positive phase of the waveform while also periodically shunting a portion of charge through the RC filter to thereby also reduce the peak voltage of the second step. With this circuit arrangement, a rounded, multi-step waveform can readily be generated for use within an ICD without requiring a high voltages or large capacitors. In accordance with a second aspect of the invention, systems and methods are provided for generating a shocking waveform that approximates a monotonically increasing input waveform shape. In an exemplary embodiment of the method, steps are performed so as to generate a waveform having a positive phase that approximates an input waveform shape having an initial portion increasing sharply from zero voltage to a initial voltage (Vinitial), a central portion increasing exponentially from the initial voltage to a peak voltage (Vpeak), and a tail portion decreasing sharply back to zero voltage. The central portion of the target waveform being approximated has an exponential shape represented by: Vwaveform=Vinitial+(xe2x88x92VpeakVinitial)*(1xe2x88x92exe2x88x92t/T). The monotonically-increasing waveform is believed to be particularly effective in reducing patient pain. The monotonically-increasing waveform can be generated using the dual capacitor system summarized above configured to produce a single monotonically-increasing waveform from the two steps of the multi-step waveform to thereby achieve significant pain reduction while also gaining the benefits of the use of multi-step waveforms. In accordance with a third aspect of the invention, systems and methods are provided for generating shocking waveforms that approximate any input waveform shape, rounded or otherwise. In a method example, a shocking waveform is generated by inputting a waveform to be approximated then increasing a magnitude of a voltage of an output shocking waveform as a function of time. The magnitude of the voltage of the shocking waveform is compared to a magnitude of the voltage of the input waveform as a function of time and, whenever the magnitude of the shocking waveform exceeds the magnitude of the voltage of the input waveform, the magnitude of the shocking waveform is decreased until it again falls below the voltage of the magnitude of the input waveform. These steps are repeated so that the magnitude of the output shocking waveform generally approximates the input waveform. In one example, the method is employed within a defibrillator having a shocking capacitor, a resistive-capacitive (RC) filter, and a chopping switch interconnecting the shocking capacitor and the RC filter. The magnitude of the voltage of the shocking waveform is decreased whenever the magnitude of the shocking waveform exceeds the magnitude of the voltage of the input waveform by opening and closing the chopping switch so as to produce an output from the RC filter that approximates the input waveform. With this technique, virtually any desired positive-phase waveform shape can be approximated. Preferably, the technique is employed to generate the monotonically-increasing waveform summarized above to reduce patient pain. Also preferably, the technique is exploited using the dual capacitor multistep shocking system also summarized above to permit the use of relatively small capacitors using relatively low voltages.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates generally to communication within a mobile telecommunications system, and more particularly this invention relates to communication between a base station (Node B) and a radio network controller (RNC) in order to enhance call control and resource management. The telecommunications industry is in the process of developing a new generation of flexible and affordable communications that includes high-speed access while also supporting broadband services. Many features of the third generation mobile telecommunications system have already been established, but many other features have yet to be perfected. One of the most important systems within the third generation of mobile communications is the Universal Mobile Telecommunications System (UMTS) which will deliver voice, data, multimedia, and wideband information to stationary as well as mobile customers. UMTS is designed to accommodate increased system capacity and data capability (UMTS is synonymous with WCDMA or wideband code division multiple access). Efficient use of the electromagnetic spectrum is vital in UMTS. It is known that spectrum efficiency can be attained using frequency division duplex (FDD) or with time division duplex (TDD) schemes, and these schemes can be employed in the context of UMTS and WCDMA. As can be seen in FIG. 1, the UMTS architecture consists of user equipment 102 (UE), the UMTS Terrestrial Radio Access Network 104 (UTRAN), and the Core Network 126 (CN). The air interface between the UTRAN and the UE is called Uu, and the interface between the UTRAN and the Core Network is called Iu. The UTRAN consists of a set of Radio Network Subsystems 128 (RNS), each of which has geographic coverage of a number of cells 110 (C), as can be seen in FIG. 1. The interface between the subsystems is called lur. Each Radio Network Subsystem 128 (RNS) includes a Radio Network Controller 112 (RNC) and at least one Node B 114, each Node B having geographic coverage of at least one cell 110. As can be seen from FIG. 1, the interface between an RNC 112 and a Node B 114 is called Iub, and the Iub is hard-wired rather than being an air interface. For any Node B 114 there is only one RNC 112. A Node B 114 is responsible for radio transmission and reception to and from the UE 102 (Node B antennas can typically be seen atop towers or preferably at less visible locations). The RNC 112 has overall control of the logical resources of each Node B 114 within the RNS 128, and the RNC 112 is also responsible for handover decisions which entail switching a call from one cell to another or between radio channels in the same cell. The FDD method uses separate frequency bands for uplink and downlink transmissions over the Uu interface (i.e. over the air interface between UTRAN 104 and the User Equipment 102). In contrast, the TDD method allocates different time slots (compared to different frequencies) for these uplink and downlink communications. Generally, TDD is very flexible regarding the allocation of time slots, and therefore is very well-suited to applications that are asymmetric with respect to uplink and downlink data volume (e.g. web browsing entails a much higher downlink than uplink data volume). Combining FDD and TDD modes provides maximum efficiency and flexibility for third generation networks. In order for the RNC 112 to provide effective call control and resource management to each Node B 114, it must receive information from the Node B 114 about Node B""s time-dependent resources. The problem of obtaining appropriate resource information from Node B 114 has not been adequately addressed by the related art, especially with regard to TDD (as compared to FDD), and therefore the ability of an RNC 112 to provide call control and resource management has suffered. A particularly important piece of information for the RNC 112 to receive is information about the currently available processing capacity at Node B 114. Processing capacity is to be distinguished from air interface capacity. Air interface capacity is limited by factors such as noise and interference, whereas processing capacity refers to the capacity of the Node B 114 itself to process calls. When the RNC 112 does not accurately know the processing capacity of Node B 114 that is currently available, it is very difficult or impossible for the RNC 112 to accurately allocate call traffic to the Node B 114. It is important to understand that the processing capacity at Node B 114 varies from time to time even if the number of user equipments 102 (UE) remains the same. This variation is due to the fact that the required processing per UE 102 depends upon how the logical resources of Node B resources are used for each of the particular UEs. The required processing for a particular user can depend upon what kind of coding a user has, how many multicodes are involved, how the users are divided in different time slots (TDD only), the number of users involved in a handover (FDD only), how the user""s data stream is divided if there are multiple channel elements, the quality of service assigned to a call, et cetera. Thus, it is not adequate for the RNC 112 to simply know the number of UE""s that a Node B 114 is handling, because each Node B 114 may require a different type of implementation. Rather, the RNC 112 should ideally receive from the Node B 114, over the Iub interface, a simple and accurate measure of the Node B""s available processing capacity without any need for specifying the particular implementations that Node B 114 is providing to each UE 102. In TDD, no adequate solution to this problem has been developed. In FDD, the problem has been partially addressed by using the spreading factor of Node B 114 as an indicator of processing capacity, and reporting this spreading factor over the Iub. With WCDMA, information bits are spread over an artificially broadened bandwidth. This task is accomplished by multiplying the bits, using a pseudorandom bit stream. The bits in the pseudorandom bit stream are referred to as chips, so the stream is known as a chipping, or spreading, code. This spreading increases the bit-rate of the signal, and increases the amount of bandwidth occupied by the signal, by a ratio known as the spreading factor, namely, the ratio of the chip rate to the original information rate. The spreading factor can be used with limited success to indicate processing capacity in FDD, but the spreading factor is almost completely insufficient in TDD, because the TDD spreading factor is substantially constant in the downlink to the UE 102, and furthermore the TDD spreading factor range is very narrow as compared with the FDD spreading factor range (e.g. 1-16 in TDD as compared with 4-512 in FDD). In particular cases, the spreading factor might vary between two values in TDD, but such a rough measurement would not allow the RNC 112 to meaningfully model the processing capacity of Node B 114, and thus the processing capacity parameter is currently undefined in TDD. Even in FDD, using the spreading factor is not an ideal solution, because the FDD spreading factor becomes imprecise at the start of the 4-512 scale (e.g. the spreading factor between 4 and 8 corresponds to a very large difference in processing capacity). Information about the use of the spreading factor as an indicator of FDD processing capacity can be found, for example, in publications of the 3rd Generation Partnership Project (3GPP). In particular, 3GPP TS 25.433 xe2x80x9cUTRAN Iub Interface NBAP Signalingxe2x80x9d (Version 3.3.0, September 2000) describes how the RNC 112 audits resources at the Node B 114, which then reports processing capacity by way of an audit response (section 8.2.7). The 3GPP TS 25.433 publication also describes how the Node B 114 may report to the RNC 112 at the Node B""s own initiative by way of a resource status indication (section 8.2.15). These are the only two instances in which the prior art suggests reporting processing capacity from the Node B 114 to the RNC 112, and this fact unnecessarily limits the accuracy of the processing capacity of Node B 114, as perceived by the RNC 112. The 3GPP TS 25.433 publication also describes various exchanges of signal between the RNC 112 and the Node B 114 that do not involve processing capacity (see section 8.2.17 on radio link setup, section 8.3.1 on radio link addition, and section 8.3.6 on radio link deletion). Publication 3GPP TS 25.433 furthermore describes that the spreading factor is the parameter which is used to tell the RNC 112 how much capacity is being consumed by the Node B 114 (see especially sections 9.2.2.3 and 9.2.2.6). The presently disclosed method is based upon a system structure similar or identical to the prior art Universal Mobile Telecommunications System (UMTS) architecture shown in FIG. 1, but the present invention solves the problem of how to report the amount of processing capacity that is currently available at a Node B 114 to an RNC 112. This invention may occur in the context of UMTS, utilizing wideband code division multiple access (WCDMA) as well as UMTS terrestrial radio access (UTRA). The presently disclosed method, which enables the RNC 112 to enhance call control and resource management, begins with generation of a processing capacity inquiry signal. Then, a processing capacity report signal is generated and sent from the Node B 114 to the RNC 112, in response to the processing capacity inquiry signal. The processing capacity report signal has a magnitude indicative of available bit rate (ABR) associated with the base station. Thus, the present invention utilizes the available bit rate (ABR) as a measure of processing capacity, whereas the prior art only utilizes the spreading factor for this purpose. As described previously, the spreading factor is generally not a good measure of processing capacity, especially when using TDD. Using the available bit rate (ABR) as the TDD capacity parameter is the optimal solution to this problem. The ABR addresses the fundamental gap in the capacity modelling of Node B 114, inasmuch as a capacity parameter is currently undefined for TDD. According to the present invention, processing capacity information is not sent from Node B 114 to the RNC 112 on a dynamic basis, but rather is sent at discrete times, and the RNC 112 uses this discrete processing capacity information to model the actual continuous processing capacity at Node B 114. When the RNC 112 inputs the ABR into its capacity model for Node B 114, the RNC 112 obtains a vastly more accurate characterization of Node B""s processing capacity (in TDD) than would be obtained by inputting the Node B""s spreading factor into the capacity model of Node B 114. Available bit rate (ABR) can provide for transport of traffic at the bit rate available at a given time, and therefore ABR is well-suited as a processing capacity parameter in TDD. Even in FDD, the ABR is an excellent alternative (or supplement) to the spreading factor, for the purpose of communicating processing capacity from the Node B 114 to the RNC 112. The ABR provides better granularity than the spreading factor parameter, especially at the low end of spreading factor values where a unit change in spreading factor means a difference in spreading factor on the order of 100%. Furthermore, this ABR parameter is appropriate for FDD because it can be used independently of whichever radio transmission technology resources are being used by the system, and independent of hardware. The present method can be used if Node B 114 utilizes an FDD system or a TDD system, or both. Likewise, the ABR may include an uplink ABR or a downlink ABR, or both. Furthermore, in FDD, the ABR can be used as the sole parameter indicative of processing capacity, or the ABR can be used in conjunction with the spreading factor to indicate processing capacity. The capacity inquiry signal can be provided either by the RNC 112 or by a component of Node B 114 itself, as in the prior art. However, the present invention discloses additional ways by which the capacity inquiry signal can be provided by the RNC 112, and thus the present invention remedies the prior art situation in which the accuracy of the Node B""s processing capacity, as perceived by the RNC 112, is unnecessarily limited. These additional ways of providing the capacity inquiry signal can be employed regardless of whether the processing capacity parameter is the spreading factor or is the available bit rate. At a Node B 114 utilizing TDD, different bit rates occur when more codes are allocated to a user or when more time slots are allocated to the user. The Node B 114 processing resource is thus likely to be utilized at a higher rate when one time slot is allocated to multiple users as opposed to being allocated to a single user, and when one user has been allocated several time slots as opposed to a single time slot. Whatever the allocations may be, the present invention ensures that the processing capacity parameter is reported by the Node B 114 to the RNC 112 independently of the particular hardware and software implementations that each UE 102 is using.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to transmission of data in a network environment. More specifically, the present invention relates to methods and apparatus redirecting network traffic. Still more specifically, techniques are described herein for replicating packet flows for a variety of purposes including, for example, troubleshooting, load balancing, and reliability. Generally speaking, when a client platform communicates with some remote server, whether via the Internet or an intranet, it crafts a data packet which defines a TCP connection between the two hosts, i.e., the client platform and the destination server. More specifically, the data packet has header fields which include the destination IP address, the destination port, the source IP address, the source port, and the protocol type. The destination IP address might be the address of a well known World Wide Web (WWW) search engine such as, for example, Yahoo, in which case, the protocol would be TCP and the destination port would be port 80, a well known port for http and the WWW. The source IP address would, of course, be the IP address for the client platform and the source port would be one of the TCP ports selected by the client. These five pieces of information define the TCP connection. Given the increase of traffic on the World Wide Web and the growing bandwidth demands of ever more sophisticated multimedia content, there has been constant pressure to find more efficient ways to service data requests than opening direct TCP connections between a requesting client and the primary repository for the desired data. Interestingly, one technique for increasing the efficiency with which data requests are serviced came about as the result of the development of network firewalls in response to security concerns. In the early development of such security measures, proxy servers were employed as firewalls to protect networks and their client machines from corruption by undesirable content and unauthorized access from the outside world. Proxy servers were originally based on Unix machines because that was the prevalent technology at the time. This model was generalized with the advent of SOCKS which was essentially a daemon on a Unix machine. Software on a client platform on the network protected by the firewall was specially configured to communicate with the resident demon which then made the connection to a destination platform at the client's request. The demon then passed information back and forth between the client and destination platforms acting as an intermediary or “proxy”. Not only did this model provide the desired protection for the client's network, it gave the entire network the IP address of the proxy server, therefore simplifying the problem of addressing of data packets to an increasing number of users. Moreover, because of the storage capability of the proxy server, information retrieved from remote servers could be stored rather than simply passed through to the requesting platform. This storage capability was quickly recognized as a means by which access to the World Wide Web could be accelerated. That is, by storing frequently requested data, subsequent requests for the same data could be serviced without having to retrieve the requested data from its original remote source. Currently, most Internet service providers (ISPs) accelerate access to their web sites using proxy servers. Unfortunately, interaction with such proxy servers is not transparent, requiring each end user to select the appropriate proxy configuration in his or her browser to allow the browser to communicate with the proxy server. For the large ISPs with millions of customers there is significant overhead associated with handling tech support calls from customers who have no idea what a proxy configuration is. Additional overhead is associated with the fact that different proxy configurations must be provided for different customer operating systems. The considerable economic expense represented by this overhead offsets the benefits derived from providing accelerated access to the World Wide Web. Another problem arises as the number of WWW users increases. That is, as the number of customers for each ISP increases, the number of proxy servers required to service the growing customer base also increases. This, in turn, presents the problem of allocating packet traffic among multiple proxy servers. Network caching represents an improvement over the proxy server model which is transparent to end users, high performance, and fault tolerant. By altering the operating system code of an existing router, the router is enabled to recognize and redirect data traffic having particular characteristics such as, for example, a particular protocol intended for a specified port (e.g., TCP with port 80), to one or more network caches connected to the router via an interface having sufficient bandwidth. If there are multiple caches connected to the cache-enabled router, the router selects from among the available caches for a particular request based on a load balancing mechanism. The network cache to which the request is re-routed “spoofs” the requested destination platform and accepts the request on its behalf via a standard TCP connection established by the cache-enabled router. If the requested information is already stored in the cache it is transmitted to the requesting platform with a header indicating its source as the destination platform. If the requested information is not in the cache, the cache opens a direct TCP connection with the destination platform, downloads the information, stores it for future use, and transmits it to the requesting platform. All of this is transparent to the user at the requesting platform which operates exactly as if it were communicating with the destination platform. Thus, the need for configuring the requesting platform to suit a particular proxy configuration is eliminated along with the associated overhead. An example of such a network caching technique is embodied in the Web Content Caching Protocol (WCCP) provided by Cisco Systems, Inc., a specific embodiment of which is described in commonly assigned, U.S. patent application Ser. No. 08/946,867 (now U.S. Pat. No. 6,240,461) for METHOD AND APPARATUS FOR FACILITATING NETWORK DATA TRANSMISSIONS filed Oct. 8, 1997, the entirety of which is incorporated herein by reference for all purposes. Another specific embodiment of a packet redirection protocol which may be used to implement such a network caching technique is described in copending, commonly assigned, U.S. Provisional Patent Application No. 60/168,862 for METHOD AND APPARATUS FOR REDIRECTING NETWORK TRAFFIC filed Dec. 2, 1999, the entirety of which is incorporated herein by reference for all purposes. According to a specific embodiment described in that application, the network caches have the capability of determining that particular redirected packets should be transmitted back to the redirecting router and reinserted into the original traffic flow. This may be done in a manner transparent to the source or destination of the packets. An example of a case in which packets would need to be reinserted in the original flow might be where the cache recognizes the source and destination pairs identified by the packets as corresponding to a connection requiring IP-based authentication. Another example would be where the cache is overloaded and is currently unable to handle all of the redirected traffic. When information in a packet flow between two devices, e.g., a router and a network cache, is corrupted, it is useful for troubleshooting purposes to examine the sequence of packets as they are transmitted over the link. One technique for determining the cause of such corruption involves the insertion of a hub between the two devices and the connection of a network sniffer to the hub. The hub duplicates all the packets in the flow and the sniffer allows a technician to view the packet sequence. Unfortunately, this troubleshooting technique requires physically connecting the hub in close proximity to one of the two devices. As will be understood, this may not be practicable at geographically remote or isolated customer sites. Therefore, a technique is needed by which the troubleshooting of packet flows in particular routers may be made more practicable. Another problem associated with network transmissions is reliability. That is, because of a variety of network conditions (e.g., hardware and software failures, network congestion, etc.), transmitted packets occasionally fail to reach their intended destinations. When a packet flow encounters such a condition, a new packet flow must typically be established to avoid the condition and make the specified connection. Not only is there a noticeable latency involved with reestablishing the packet flow, but there are certain client/server connections for which such an interruption is completely unacceptable. Therefore, there is also a need for improving the reliability with which data traffic is transmitted in network environments.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to the art of portable commodes for patient care and invalid assistance. It finds particular application in conjunction with portable commodes having separate, detachable seats or lids, and will be described with particular reference thereto. It is to be appreciated, however, that the invention has broader application and may be advantageously employed in other environments. Heretofore, commode seats and lids have been received on portable commode frames by various means. For instance, fastening devices such as nuts, bolts or screws have been used to mount seats and lids directly to portable commode frames. Fasteners have also been used to mount seats and lids when hinges were used. It has also been known to mount commode seats or lids to portable commode frames using clamps. These clamps were fastened onto the seat or lid with a metal fastener, and were configured to clip around the outer periphery of a portable commode tubular cross bar member. There are a number of problems with the above-mentioned techniques for attaching seats or lids to portable commode frames. First, such techniques require extra manufacturing steps. Hinges and clamps must be fastened into place, and the seat or lid must then be attached to the frame. Second, many of the prior art clamps, hinges and fasteners are made of metal, and tend to rust or fall away. Finally, many of the prior art clamps are flimsy, and often loosen or loose their shape. This problem results in the seat not remaining securely in place. In portable commodes which have separately detachable seats or lids, it is desirable that no separate fasteners, hinges or clamps be required in mounting the seat or lid on the portable commode frame. Previous portable commodes which had separately detachable seats or lids required additional fasteners and hinge members, and provided excessive manufacturing steps in forming the portable commode. It would be desirable to have a portable commode with a detachable seat or lid wherein the seat or lid would be securely received on the portable commode frame without the use of additional fasteners, clamps or hinges. The present invention contemplates a new and improved portable commode which overcomes the above-referenced problems and others.
{ "pile_set_name": "USPTO Backgrounds" }
Confocal microscopes are particularly suitable for the high-resolution measurement in the direction of the Z-axis, i.e., in longitudinal directions of the beam path of the microscope. To this end, confocal microscopes comprise an illuminating unit that typically is a laser. A specimen held by the specimen holding device is illuminated by the illuminating unit. To this end, an optics unit is provided which directs radiation produced by the illuminating unit toward the specimen and directs radiation given off by the specimen toward a detector unit. As a part of the optics, conventional confocal microscopes comprise a beam splitter. On the one hand, the beam splitter directs the light emitted from the illuminating unit toward the specimen and on the other hand, it leaves through the light reflected by the specimen so that it can reach a detector unit arranged behind the beam splitter in the beam path through an aperture diaphragm. As an illuminating unit, different illuminating units may be provided which, for example, produce visible light or also wavelengths in the non-visible range. In front of the detector unit, an aperture diaphragm is arranged and a focusing lens is arranged in front of the latter. By means of the focusing lens, the beam path is focused in the opening of the aperture diaphragm. By focusing the beam path in the opening of the aperture diaphragm, a relatively high light flux reaches the detector. Even a slight defocusing by displacing the object plane in Z-direction leads to a blurred image on the aperture diaphragm. This results in a smaller light flux since the focus of the focusing lens is no longer focused in the opening of the aperture diaphragm and thus, a smaller light flux comes through the diaphragm opening. Displacing the object plane in the X-Y-plane also results in a displacement of the focus in the plane of the aperture diaphragm. Thereby, the light quantity passing the aperture diaphragm is reduced since the focus is no longer focused in the opening of the aperture diaphragm. When confocal microscopes are used in high-throughput screening, the focus of the microscope objective is arranged in a biological or chemical specimen. Since the specimens are minimum quantities of specimen liquid having a volume in the microliter or nanoliter range, the confocal microscope used in high-throughput screening must be a highly precise device. This requirement exists all the more as specimens in the submicroliter range are examined in modern high-throughput screening installations. Because of the required very high accuracy of the focusing in the specimen, even very small temperature changes lead to the maladjustment of the confocal microscope. Particularly, a temperature-dependent maladjustment of the aperture diaphragm itself leads to the impairment of the accuracy of the microscope. Even slight maladjustments lead to that the illumination-side and the detection-side focus are no longer congruent. This results in a signal displacement and a considerable falsification of the measuring results. In addition, in the single-molecule detection, the assumption of the focus geometry is no longer valid in case of even a slight maladjustment. Further, the accuracy of the measuring results is influenced by inaccuracies of the laser by which the focus is displaced as well. Further, the measuring accuracy of confocal microscopes is influenced by the fact that the beam splitter provided in the optics unit has to be exchanged in dependence on the wavelength produced by the laser and given off by the specimen. Upon exchanging the beam splitter, slight position changes thereof occur. This also leads to a focus displacement and thus to a falsification of the measuring results. The beam splitter can displace relative to the excitation optics and the objective by temperature influences. For adjusting, it is known from U.S. Pat. No. 4,863,226 to provide an adjusting mechanism for the aperture diaphragm. By the adjusting mechanism, the aperture diaphragm can be displaced in the direction of the X-Y- and Z-axis. Since the distance and the leading position between the aperture diaphragm and the detector arranged behind the aperture diaphragm have to be observed very closely, it is required to displace the entire detector unit together with the aperture diaphragm. Particularly with modern confocal microscopes, very complicated and sensitive detectors such as photo multiplier or spectographic multidetector arrangements are used. This results in that the detector unit occupies a large building space and is heavy. Therefore, the accurate positioning of the aperture diaphragm in the direction of the three axes is accompanied with considerable mechanical efforts. In this connection, it has to be considered that the adjustment of the aperture diaphragm has to be effected in the micrometer range. From U.S. Pat. No. 5,334,830, it is further known to arrange additional adjustable tilted mirrors for adjusting the aperture diaphragm in the beam path. Aligning the focus with the opening of the aperture diaphragm is thus effected by adjusting the tilted mirrors arranged in the beam path. By arranging additional components such as transparent camera wedges in the beam path, color errors as well as reflection losses occur. Further, the structural length of the microscope increases. It is the object of the invention to provide a microscope which is well adjustable with as small mechanical efforts as possible, particularly in case of highly precise requirements.
{ "pile_set_name": "USPTO Backgrounds" }
The present disclosure relates to a control apparatus and a control method. In recent years, apparatuses, such as personal computers (PCs), that allow caller-callee communication with an external apparatus between users while reproducing content data have been in widespread use. Among such apparatuses, some apparatuses allow a user to independently control the sound volume of content data and the sound volume of speech of the user by, for example, using a sound mixing function of an application regarding reproduction of content data and an application regarding voice communication. However, it is necessary for a user of such an apparatus to manually control the volume in accordance with, for example, communication conditions as necessary. Therefore, users who use such apparatuses experience inconvenience. Accordingly, a technology for automatically controlling sound volume has been developed. For example, in order to output, while one type of sound is being output, sound corresponding to another type of sound data, Japanese Unexamined Patent Application Publication No. 11-45096 describes a technology for decreasing the volume of the one type of sound. When outputting, while one type of sound is being output, sound corresponding to another type of sound data, a control apparatus that employs an existing technology for automatically controlling the volume (hereinafter referred to as an “existing control apparatus”) decreases the volume of the one type of sound. That is, if, for example, an existing control apparatus performs caller-callee communication with an external apparatus between users while reproducing content data, an existing control apparatus automatically decreases the volume of sound of reproduced content data (hereinafter referred to as “content sound”) every time speech of the user is output. Therefore, when an existing technology is used, it is not necessary for a user to manually control the volume of content sound and the volume of speech as necessary. As a result, the user can experience some level of convenience. However, as described above, if, while one type of sound is being output, sound corresponding to another type of sound data is output, an existing apparatus decreases the volume of the one type of sound. Therefore, in an existing apparatus, even when the user does not want to decrease the volume of, for example, content sound, the volume is disadvantageously decreased automatically. Thus, even when an existing technology is employed, it is very difficult to increase the convenience that the user experiences.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to systems and methods for flow control within a digital communications network. In particular, this invention is related to systems and methods for performing service differentiation regarding the treatment of packets within a network device. 2. Description of the Related Art Over the last several years, the Internet has grown into an enormous network to which virtually any large or small computer network may be connected. Thus, the unprecedented growth of Internet users has placed even greater demands on the current Internet infrastructure, especially resources of a network that are shared by multiple network devices. For example, switches, routers and hubs are resources that are shared among a network to assist in transferring packets from one network device to another network device. Unfortunately, the buffer memory and the bandwidth of these shared devices have a limited amount of resources that must be allocated among these competing network devices. Thus, in order to prevent starvation of any particular network device, a network typically provides a service differentiation priority scheme such as Class of Service (CoS) to allocate these shared resources among the competing network devices. Competition for these shared resources may occur at both the input ports and the output ports of a network device. Competition for entry into the network device may occur at the input ports due to congestion. Namely, when packets are transmitted to a receiver, the receiver might not be able to process the incoming packets at the same speed as the sender transmits the packets. Therefore, the receiver may need to store the incoming packets in a buffer to temporarily hold the packets until the packets can be processed. However, since buffers are created to hold a finite amount of data, a buffer overflow may occur when the packets entering the buffer exceeds the buffer's capacity. To prevent a buffer overflow from occurring, a buffer manager may decide to drop the last few packets of the incoming packets. The buffer manager must also make a service differentiation to determine which class or queue a packet should be dropped from when there is no available buffer space. To avoid congestion wherever possible a network may use conventional algorithms such as Random Early Detection (RED) or Early Random Drop (ERD) to drop the packets from the incoming queues, in proportion to the bandwidth which is being used by each network device. At the output ports, competition over the bandwidth may also occur. Having enough bandwidth for packet transmissions has been a problem that has plagued many conventional network systems. If the traffic flow of the outgoing packets exceeds the available rate, the packets are typically dropped by the network, which adversely affects a network's Quality of Service (QoS). QoS is usually associated with a network being able to deliver time-sensitive information such as live video and voice while still having enough bandwidth to deliver other traffic. Prioritization, which is also referred to as Class of Service (CoS) or service differentiation, is a technique employed by some networks to identify traffic according to different classifications so that the traffic having a higher priority is delivered before lower-priority traffic. One service differentiation scheduling mechanism that has been used to allocate the available bandwidth is Weighted Fair Queuing (WFQ) in conjunction with a “leaky bucket” to control the data flow between a network device, the Internet and World Wide Web (WWW) and another device. The leaky bucket method involves configuring a network device to restrict the amount of information (i.e., packets) that a user may receive (e.g., via a port of the network device), by tokenizing the information and setting a threshold. Thus, the network device must determine whether there are enough credits in the token bucket for a packet to be sent or whether that packet must be delayed. To ensure that the network device uses the WFQ to transmit packets according to the bandwidth policy established in the Service Level Agreement (SLA), the network may establish specified rate parameters for receiving and transmitting the packets. The manner in which these parameters are established and controlled directly influences the network's ability to monitor, manage and control traffic flow having multiple classes of services. Accordingly, new and improved systems and methods for establishing the operating parameters that govern the service differentiation applied to multiple CoS's as packets are transmitted by a network device are needed.
{ "pile_set_name": "USPTO Backgrounds" }
When using radar level gauging to determine the level of certain products, in particular products which are relatively transparent to microwaves, such as liquid gases, the bottom of the tank, which may be of a highly reflective material such as metal, may cause a relatively strong reflection, interfering with the surface reflection. In some situations, e.g. when the product surface is close to the bottom, this bottom reflection can make it difficult to determine the product level correctly. A solution to this problem is presented in WO01/29523, disclosing an absorbing element to be arranged at the bottom of the tank, below the opening of a pipe used as a wave guide. Such a pipe is sometimes used to avoid reflection of the waves in structures present in the tank. The pipe also serves to provide an area of the product surface with less wave motion and turbulence, thus improving the quality of the surface reflection. Such pipe wave guides are used in various implementations where the surface reflection from the product is weak, e.g. in tanks containing liquid gases. The damping element disclosed in WO 01/29523 will serve to reduce or even eliminate any reflection in the bottom of the tank. However, in some situations, it may be advantageous to acquire a reflection from a known position in the tank, e.g. to verify the RLG system. It may thus be undesirable to completely eliminate the bottom reflection.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to a bearing assembly and more particularly to a new and novel bearing assembly for use in supporting a water lubricated propeller shaft as in large naval ships. 2. Description of the Prior Art Bearing assemblies with elastomeric bearing elements are particularly suited for this purpose because of their excellent ability to withstand the effects of corrosive fluids and to abrasion resulting from particulars of foreign matter carried in suspension in the sea water in which the shaft and bearing assembly operates. Such bearing assemblies with their elastomeric bearing elements have been made and are still being made with outer non-corrosive support or shell with a plurality of circumferentially evenly spaced elastomeric staves therein. The science of lubricated bearings commenced in the 1880's with the discovery of considerable fluid pressure in the oil-film of bearings, from which oil-lubricated bearings were developed. In the 1890's tilting-pad oil-lubricated metal bearings were invented and later tilting-pad journal bearings were developed. In tilting-pad bearings, the pads physically move (rather than deflect) because of the very high modules or stiffness of the metal, to give the right approach angles required to develop very low hydrodynamic (self pumping) lubrication. The term “elastohydrodynamic” evolved to cover those dynamic cases (like gear teeth) where the bearing surfaces were rapidly moving in and out of contact yet were apparently hydrodynamically lubricated, if only for periodic, very short time intervals. It was later theorized that the low friction of certain oil-lubricated plastic bearings was due to a fluid-trapping pocket being formed in the plastic. Early water-lubricated rubber bearings were not very effective because the bearings did not develop hydrodynamic lubrication. Water-lubricated bearings in the 1960's were in the category of medium wear devices, the same category as automotive brake linings. This was because the rubber was too thick, the surface was too rough and the side edges were rounded. Thin rubber bearings have different wear and friction action from harder nonmetallic materials used in bearings. When a radial load is initially applied to a thin rubber bearing, the deflection is elastic and disappears if the load is removed. After a short period of time under load, the deformation becomes permanent and remains after load removal because of the compression set present in every rubber compound. This action is called Plasto-Elastohydrodynamic lubrication. This type of favorable lubrication action is enhanced by the special elastic-creep properties of some rubber compounds. It was found that thin nitrile rubber bearings for rotating shafts or journals partially immersed in water developed a continuous, unbroken film of water resulting from hydrodynamic lubrication. Tests of rotating journals on thin rubber bearings formed a plastic-elastohydrodynamic pocket in the rubber. It was determined that the pressure developed by the hydrodynamic pumping process deformed the rubber, pushing it out towards the rides and ends of the bearing contact patch forming a non-contact region or pocket in the center of the contact patch rubber, i.e. plasto-elastohydrodynamic (“PEH”) lubrication. It was further found that bearing sample patches made of polymeric plastic materials harder than rubber initially deflected less than samples made of thin rubber, but eventually developed deep grooves and wore away after partially completing the twenty-eight day test procedure. There have been developed brass backed rubber staves since the 1920's, and plastic backed rubber staves since 1976. The prior art further includes rubber in compression impinging on slippery surfaces such as Teflon, ultra high molecular weight, poletheylene (UHMWPE) and other materials. See U.S. Pat. Nos. 3,743,306, 4,568,056, 4,626,112 and 4,737,688.
{ "pile_set_name": "USPTO Backgrounds" }
A wide range of medical procedures involve placing objects, such as sensors, tubes, catheters, dispensing devices and implants, within the body. Position sensing systems have been developed for tracking such objects. Magnetic position sensing is one of the methods known in the art. In magnetic position sensing, magnetic field generators are typically placed at known positions external to the patient. One or more magnetic field sensors within the distal end of a probe generate electrical signals in response to these magnetic fields, which are processed in order to determine the position coordinates of the distal end of the probe. These methods and systems are described in U.S. Pat. Nos. 5,391,199, 6,690,963, 6,484,118, 6,239,724, 6,618,612 and 6,332,089, in PCT International Publication WO 1996/005768, and in U.S. Patent Application Publications 2002/0065455 A1, 2003/0120150 A1 and 2004/0068178 A1, whose disclosures are all incorporated herein by reference. U.S. Pat. No. 6,370,411, whose disclosure is incorporated herein by reference, describes a probe having two parts: a catheter of minimal complexity which is inserted into a patient's body, and a connection cable that connects between the proximal end of the catheter and the console. The catheter comprises a microcircuit that carries substantially only information specific to the catheter, which is not in common with other catheters of the same model. The cable comprises an access circuit which receives the information from the catheter and passes it in a suitable form to the console. In some embodiments, the cable operates with all catheters of a specific model or type, and therefore when a catheter is replaced, there is no need to replace the cable. Catheters that are planned for one-time use do not require replacement of the cable, which does not come in contact with patients. U.S. Patent Application Publication 2006/0074289 A1, whose disclosure is incorporated herein by reference, discusses an endoscopic probe, whose handle has an orientation sensor that generates signals indicative of the orientation of the handle in an external frame of reference. The output of the orientation sensor may be used to sense movement of the handle relative to its initial position and orientation at the beginning of the endoscopic procedure.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field Example embodiments of inventive concepts described herein relate to user devices supporting defragmentation and/or zone-based defragmentation methods thereof. 2. Description of Conventional Art Unlike a hard disk, a flash memory may not support an overwrite operation. For this reason, an erase operation may be performed before a write operation. The flash memory may perform an erase operation by a block unit, and a time taken to perform the erase operation may be long. The flash memory characteristics may make it difficult to apply a file system for hard disk to the flash memory without modification. To solve such problems, a flash translation layer FTL may be used as middleware between the file system for hard disk and the flash memory. The FTL may enable the flash memory to be freely read and written like a conventional hard disk. Defragmentation or defrag may mean a work of reducing the amount of fragmented files of a file system on a hard disk. The defragmentation may be made to speed up by reorganizing, concatenating and/or compacting fragmented files within a hard disk physically. Periodic defragmentation may help maintain the optimal performance of memory systems and constituent data media by reducing the file system overhead and data search time caused by excessive fragmentation.
{ "pile_set_name": "USPTO Backgrounds" }
A. Field of the Invention This invention is related to a method an a machine for the production of glassware articles and more specifically to a method and a machine, as an individual forming section including single or multiple cavities, which can be grouped to constitute a glassware forming machine of the type including multiple individual forming sections, normally including from six to eight individual forming sections, for the production of glass bottles, jars, tumblers and other glassware articles by the blow-and-blow, press-and-blow, press-and-blow paste mold or direct-press processes. B. Description of the Related Art Glassware articles such as narrow neck glass bottles are normally produced in glassware forming machines of the type which may include multiple similar forming sections, by the blow-and-blow process, while wide neck glass jars, tumblers and other glassware articles are produced in the so named “E” and “F” Series forming machines by the press-and-blow process, in both, the so named hot molds and paste mold. Glass bottles known as narrow neck glass containers, can also be produced by the well-known press-and-blow process, in the above mentioned E and F machines. Nowadays the production velocity or forming cycles of the machines including multiple-sections and E and F machines, have reached to an optimum status and the maximum number of glassware articles has been achieved by providing multiple cavities (usually two to four) in each individual forming section of the machine. Looking for an increasing in the number of glassware articles per forming cycle on each section of the machine, attempts have been made to introduce additional forming stations in each section, for example an additional article forming apparatus (blow mold, blow head) which could carry out a forming task (receiving a just formed parison from a single parison forming apparatus and beginning the forming blown), while another similar equipment is carrying out a following forming task on the forming cycle (opening the blow mold for transferring a just formed article to a cooling dead plate and being prepared to receive another following parison from the parison forming apparatus). Representative of such forming machines, are the so named “one-two station machines”, disclosed in U.S. Pat. Nos. 4,094,656; 4,137,061 and 4,162,911 of Mallory, including a single stationary parison forming station and two article finishing stations, one finishing station at each side of the parison forming station in the same line known as the “cold-side” of the machine, eliminating the so named hot-side, and in U.S. Pat. Nos. 4,244,756 and 4,293,327 of Northup, disclosing a single parison forming station placed in the hot-side of the machine, and two article finishing stations, mounted one above the other on a lifting and lowering mechanism, alternatively rising and lowering each forming station for forming the articles. However, by increasing the number of forming stations, the number of forming molds and surrounding equipment (either for single or multiple cavities) are consequently increased, increasing in turn the operation cost of the machine. Other attempts to increase the velocity of production and the quality of the glassware articles in the multiple-section machines and E and F machines, has been focused on providing three consecutive forming stations, comprising a first parison forming station, an intermediate station for re-heating and/or stretching of the parison, and a third station for finishing the glassware article. Representative of these “three station” forming machines are the U.S. Pat. Nos. 3,914,120; 4.009,016; 4,010,021 of Foster; U.S. Pat. No. 4,255,177 of Fenton; U.S. Pat. No. 4,255,178 of Braithwite; U.S. Pat. No. 4,255,179 of Foster; U.S. Pat. No. 4,276,076 of Fenton; U.S. Pat. No. 4,325,725 of Fujimoto and U.S. Pat. No. 4,507,136 of Northup. The differences between each of these tree step forming processes disclosed by the above U.S. patents, can be firstly determined by the parison forming orientation in an upright orientation, as disclosed in U.S. Pat. Nos. 3,914,1.20; 4,009,016; 4,010,021, all of them of Foster, and U.S. Pat. No. 4,255,178 of Braithwait, and in an inverted orientation, as disclosed in U.S. Pat. No. 2,555,177 of Fenton, U.S. Pat. No. 4,255,179 of Foster, U.S. Pat. No. 4,325,725 of Fujimoto, and U.S. Pat. No. 4,507,136 of Northrup. Further differences between the above disclosed three step forming processes, are determined by the apparatuses to transfer the parison and finished article through the parison forming step, the intermediate step and the finishing and take out steps. For example, U.S. Pat. Nos. 3,914,120; 4,009,016; 4,010,021, and 4,255,178 disclose a linear transference of the parison in an upright position from the parison forming station, to the intermediate station, then a linearly transference of the parison from the intermediate station to a blow molding station, and finally, a linearly transference of the finished article, to a cooling dead plate. Unlikely to the above disclosed glassware forming machines and apparatuses, U.S. Pat. Nos. 4,255,177; 4,255,179; 4,325,725, and 4,507,136, disclose a first transference step including inverting of the parison from an inverted position at the parison forming station, to an upright position at the intermediate station; a second linear transference step from the intermediate station to a final forming (blowing) station; and a third linear transference step from the final forming station to the cooling dead plate. The second and third linear transference steps being carried out by a generally similar transference apparatus. Other differences between the apparatuses disclosed in the above-referred patents can be found in connection with the very specific apparatuses to carry out the transference of the parison and the final glassware article. The main objective sought by the introduction of the intermediate station in these glassware forming machines, has been to release the task of a previous mechanism to be in an conditions to repeat a new forming cycle, without having to wait that a following mechanism performs its respective task, to turn back at its original position to begin a new forming cycle. However, the above objectives have been difficult to be achieved because of the configuration of the mechanisms constituting the machine, which have been the same as the conventional and well-known ones. Applicants, looking for a win-to-win machine, i.e. seeking to obtain the objectives of increasing the velocity of the machine and a reduction of the forming cycle time, the efficiency of its performance and an increasing in the quality of the articles to be produced, as well as seeking to make standard some mechanisms which perform similar tasks, and equipping them only with their specific instruments to perform their specific function, reducing as much as possible the cost of equipping a machine, the number of mechanisms in storage, and simplicity of mounting the specific instruments on common mechanisms and apparatuses, applicants reached to the following concept of a new glassware forming machine comprising a combination of some new apparatuses, and a new method for the production of hollow glassware articles. In the first place, applicants visualized that an intermediate station is conveniently necessary so that the re-heating of the glass surface of a just formed parison be continued outside the blank mold in order to immediately release the task of the blank mold, enabling it to carry out another forming cycle, and permitting to carry out a stretching of the parison, all of which also results in an increase in the velocity of production and in a better quality of the article. Additionally, applicants recognized that the inverting arm including a neck ring mold, of a typical inverting mechanism, had to be in a standing position during a parison forming cycle and to wait for the opening of the blank mold, to initiate the inverting cycle, release the parison at the intermediate station and turn back at the parison forming position, to begin another forming cycle. To overcome the former disadvantage, applicants introduced a new inventive concept for the inverting apparatus, consisting in providing two diametrically opposed and stepped inverting arms, each holding a transferable and open-able neck ring mold (either single or multiple-cavity), so that a first one of said arms, after a parison has been formed at a first parison forming cycle, can firstly rotate 180° clockwise (moving the parison upwardly constricting it) or counterclockwise (moving the parison downwardly stretching it) to release the parison held by a first transferable and open-able neck ring mold, at the intermediate station, while the second arm with a second transferable and open-able neck ring mold is simultaneously placed under the blank mold to perform a second parison forming cycle, and then the first arm with an empty transferable and open-able neck ring mold which has been turned back to said first arm, rotates additional 180° completing a 360° turn, to be placed under the blank mold for a third parison forming cycle, while the second arm is releasing the parison held by the corresponding transferable and open-able neck ring mold, at the intermediate station. In this way, the blank mold do not have to wait that the first arm release the parison at the intermediate station and turn back, to initiate a new parison forming cycle. New first and second transferable and open-able neck ring molds (either single or multiple-cavity) are provided to be held and handled with absolute independence by each of the arms of the inverting apparatus, by the longitudinal transference apparatus and by the take out apparatus, have also been provided in order to improve the quality of the final product by handling the parison by the neck ring at a uniform temperature, thus avoiding that the formed parison had to be handled by other components at different temperatures which may cause checks, efforts or deformations in the parison, which result in a poor quality of the finished articles. The independence and transference ability of these transferable and open-able neck ring molds of the present invention, is possible in the machine of the present invention because of the existence of the unidirectional indexing-rotary inverting apparatus including the first and second stepped and diametrically opposed arms, which are able to hold a transferable and open-able neck ring mold, so that, while a first transferable and open-able neck ring mold is transferred from the first arm at the intermediate station to the blown molding station for forming a finished article, the second arm with a second transferable and open-able neck ring mold is placed at the parison forming station, in a parison forming cycle and once the parison is formed and able to be inverted at the intermediate station, the first arm has received back the first transferable and open-able neck ring mold and rotated other 180° completing a 360° turn, to be placed again at the parison forming station. Also, although a typical baffle apparatus could be included in the machine, mainly for the blow-and-blow forming process, this apparatus can be configured in accordance with the machine of the present invention, by including a new oscillating apparatus named “rotolinear apparatus”, which may also be useful for operating a glass gob guide channel, the blank mold apparatus, the final blow apparatus and any other apparatus, for firstly rotate, then place an actuating mechanism to their respective active positions, and then retire them to an initial inactive position, which includes a new configuration of cams and cam followers to impart reliable oscillation and lowering and lifting movements, overcoming any backlash which could cause misalignment of the baffle apparatus or any other apparatuses, with the following apparatuses of the forming sequence. A new equalizing apparatus has also been provided at the baffle apparatus and at the final blow apparatus, for multiple-cavity, for mounting bottom blank mold heads and uniformly place them on the blank molds or the blow molds, effectively adjusting whatever misarrange which may exist both, in the baffle or blow heads, or in the blank mold or blow molds. In this way, this new glassware forming machine overcomes a number of difficulties of the known glassware forming machines, affording a win in the forming cycle time, which is estimated at a 32.6%, and allows an increase in the production and an improvement in the quality of the hollow glassware articles, as will be specifically disclosed in the following detailed description of the invention.
{ "pile_set_name": "USPTO Backgrounds" }
In certain architectures, service providers and/or enterprises may seek to offer sophisticated online conferencing services for their end users. The conferencing architecture can offer an “in-person” conference experience over a network. Conferencing architectures can also deliver real-time interactions between people using advanced visual, audio, and multimedia technologies. Virtual conferences and conferences have an appeal because they can be held without the associated travel inconveniences and costs. In addition, virtual conferences can provide a sense of community to participants who are dispersed geographically.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to the on-demand production of laser ablation transfer ("LAT") imaging films, and, more especially, to the on-demand (or on-line) economical production of LAT imaging films presenting options of flexibility hitherto unknown in laser ablation transfer imaging science ("LATIS"). 2. Description of the Prior Art U. S. Pat. No. 5,156,938 to Diane M. Foley et al, assigned to the assignee hereof and hereby expressly incorporated by reference and relied upon, recounts the LATIS prior art and describes a unique method/system for simultaneously creating and transferring a contrasting pattern of intelligence on and from an ablation-transfer imaging medium to a receptor element in contiguous registration therewith that is not dependent upon contrast imaging materials that must absorb the imaging radiation, typically laser radiation, and is well adopted for such applications as, e.g., color proofing and printing, computer-to-plate, the security coding of various documents and the production of machine-readable or medical items, as well as for the production of masks for the graphic arts and printed circuit industries; the ablation-transfer imaging medium, per se, comprises a support substrate and an imaging radiation-, preferably a laser radiation-ablative topcoat essentially coextensive therewith, such ablative topcoat having a non-imaging ablation sensitizer and an imaging amount of a non-ablation sensitizing contrast imaging material ("CIM") contained therein. Ellis et al copending application Ser. No. 07/707,039, filed May 29, 1991, also assigned to the assignee hereof and hereby expressly incorporated by reference and relied upon, describes improved ablation-transfer imaging media having greater sensitivity, requiring less sensitizer and threshold energy (thus permitting a greater range of mass to be transferred), and which additionally are kinetically more rapid and facilitate the ablative transfer to a receptor element of an imaging radiation-ablative topcoat containing virtually any type of contrast imaging material (whether sensitizing or non-sensitizing). Such Ellis et al method/system for simultaneously creating and transferring a contrasting pattern of intelligence on and from a composite ablation-transfer imaging medium to a receptor element in contiguous registration therewith is improvedly radiation sensitive and versatile, is kinetically rapid and not dependent on a sensitized ablative topcoat, and is also very well adopted for such applications as, e.g., color proofing and printing, computer-to-plate, the security coding of various documents and the production of machine-readable or medical items, as well as for the production of masks for the graphic arts and printed circuit industries; the Ellis et al composite ablation-transfer imaging medium, per se, comprises a support substrate (i), at least one intermediate "dynamic release layer" (ii) essentially coextensive therewith and an imaging radiation-ablative carrier topcoat (iii) also essentially coextensive therewith, said imaging radiation-ablative carrier topcoat (iii) including an imaging amount of a contrast imaging material contained therein, whether or not itself including a laser absorber/sensitizer, and said at least one dynamic release layer (ii) absorbing such imaging radiation, typically laser radiation, at a rate sufficient to effect the imagewise ablation mass transfer of at least said carrier topcoat (iii). By "dynamic release layer" is intended an intermediate layer that must interact with the imaging radiation to effect imagewise ablative transfer of at least the carrier topcoat onto a receptor element at an energy/fluence less than would be required in the absence thereof. The dynamic release layer ("DRL") is believed to release the carrier topcoat by effectively eliminating the adhesive forces that bond or consolidate the carrier topcoat with the support substrate. Preferably, under the same conditions additional propulsion is simultaneously provided by the interaction of the imaging radiation therewith, e.g., by ablation of the dynamic release layer itself, thus further facilitating the imagewise ablative transfer of the entire carrier topcoat to a receptor element. Representative DRLs per Ellis et al include metal, metal alloy, metal oxide and metal sulfide thin films, etc., and the organics. Nonetheless, to data the LAT imaging films employed in, for example, the Foley et al and Ellis et al LATIS' described above have been limited to those "permanent" films available from inventory, namely, pre-manufactured or pre-coated, and, thus, which inventory is typically inadequate to supply the complete spectrum of LAT imaging films that may be required for a particular application, e.g., not all colors, not all color densities, not all film thicknesses, etc., are usually available from inventory.
{ "pile_set_name": "USPTO Backgrounds" }
Wireless communication systems are well known in the art. Generally, such systems comprise communication stations that transmit and receive wireless communication signals between each other. Typically, base stations are provided which are capable of conducting wireless concurrent communications with a plurality of subscriber stations. In Code Division Multiple Access (CDMA) systems specified by the Third Generation Partnership Project (3GPP), base stations are called Node Bs, subscriber stations are called User Equipments (UE) and the wireless interface between the Node Bs and UEs is known as the Uu interface. FIG. 1 illustrates a typical 3GPP CDMA system. The Uu radio interface of a 3GPP communications system uses Transport Channels (TrCH) for transfer of user data and signaling between UEs and Node Bs. In 3GPP Time Division Duplex (TDD) communications, TrCH data is conveyed by one or more physical channels defined by mutually exclusive physical resources. TrCH data is transferred in sequential groups of Transport Blocks (TB) defined as Transport Block Sets (TBS). Each TBS is transmitted in a given Transmission Time Interval (TTI) which may span a plurality of consecutive system time frames. A typical system time frame is 10 milliseconds and TTIs are currently specified as spanning 1, 2, 4 or 8 of such time frames. FIG. 2 illustrates the processing of TrCHs in TTD mode into a Coded Composite TrCH (CCTrCH) and then into one or more physical channel data streams in accordance with 3GPP TS 25.222 v3.8.0. Starting with the TB of data, Cyclic Redundancy Check (CRC) bits are attached and TB concatenation and code block segmentation is performed. Convolution coding or turbo coding is then performed, but in some instances no coding is specified. The steps after coding, include radio frame equalization, a first interleaving, radio frame segmentation and rate matching. The radio frame segmentation divides the data over the number of frames in the specified TTI. The rate matching function operates by means of bit repetition or puncturing and defines the number of bits for each processed TrCH which are thereafter multiplexed to form a CCTrCH data stream. The processing of the CCTrCH data stream includes bit scrambling, physical channel segmentation, a second interleaving and mapping onto one or more physical channels. The number of physical channels corresponds to the physical channel segmentation. For uplink transmissions, UE to Node B, the maximum number of physical channels for transmission of a CCTrCH is currently specified as two. For downlink transmissions, Node B to UEs, the maximum number of physical channels for transmission of a CCTrCH is currently specified as sixteen. Each physical channel data stream is then spread with a channelization code and modulated for over air transmission on an assigned frequency. In the reception/decoding of the TrCH data, the processing is essentially reversed by the receiving station. Accordingly, UE and Node B physical reception of TrCHs require knowledge of TrCH processing parameters to reconstruct the TBS data. For each TrCH, a Transport Format Set (TFS) is specified containing a predetermined number of Transport Formats (TF). Each TF specifies a variety of dynamic parameters, including TB and TBS sizes, and a variety of semi static parameters, including TTI, coding type, coding rate, rate matching parameter and CRC length. The predefined collection of TFSs for the TrCHs of a CCTrCH for a particular frame is denoted as a Transport Format Combination (TFC). Receiving station processing is facilitated by the transmission of a Transport Format Combination Indicator (TFCI) for a CCTrCH. 3GPP optionally provides for “blind transport format detection” by the receiving station, in which case the receiving station considers the potential valid TFCIs. Where there is only one valid TFCI, that TFCI is used in either case. In 3GPP, time slot transmissions are made in predefined bursts where the transmitted physical channel data is divided into a beginning time slot portion and an ending time slot portion. A selected midamble is included between the two physical channel data portions. The TFCI is currently specified as transmitted in two parts on either side of the midamble and also between the two physical channel data portions. Two examples from 3GPP TR 25.944 V3.5.0 are illustrated in FIGS. 3 and 4 respectively where the block labeled MA represents the midamble and the block labeled T represents the parts of the TFCI. In FIG. 4, the CCTrCH is mapped to two physical channels, but only one physical channel includes the TFCI. FIGS. 5A, 5B and 6 are diagrams of channel coding and multiplexing examples in accordance with 3GPP Frequency Division Duplex (FDD) specifications. The various encoding steps implemented in communication systems play a key role in both performance and capacity of a wireless telecommunications systems. In particular, the turbo coding of the data being processed for wireless transmission plays a significant role for both TDD and FDD communications in a 3GPP system. Turbo coding principles have found widespread applications in information theory and, in part, have entered into mainstream telecommunication theory and practice. These principles are used in error control, detection, interference suppression, equalization, and other communications-related areas. Turbo codes are a form of parallel, recursive systematic convolution codes, which can be used for channel coding and decoding in order to detect and correct errors that may occur in the transmission of digital data through different channels. Turbo codes are particularly useful for data transfers in which, under certain conditions, the data transfer rate can approach the theoretical limits of Shannon's Law. These favorable conditions generally include large block size transfers, which are particularly useful in mobile communications. FIG. 7 shows how particular codes created by puncturing exhibit poorer than expected performance. As much as a 4 dB loss can be measured in the critical Signal-to-Noise Ratio (SNR) value. Typically, high-rate Turbo codes are created by puncturing (i.e., eliminating) parity bits of a lower-rate code until the desired code rate is attained. Particular codes created by puncturing exhibit poorer than expected performance due to certain punctured bit patterns. Because the recursive encoding blocks in a Turbo encoder have an infinite impulse response, information about each systematic bit is distributed across many of the parity bits. In any error control coding scheme that employs puncturing, the location of the punctured bits will have an impact on performance. This is because puncturing strings of successive bits can be viewed as burst errors by the decoder. All error control mechanisms can only correct burst errors that are less than some threshold. Therefore, it is important when designing the puncturing scheme that the burst error correcting abilities of the code be considered. In the absence of specific knowledge of the error control coding scheme, a good rule is to minimize the maximum string of punctured bits. For high coding rates this corresponds to distributing the non-punctured bits uniformly across the transmitted block. Puncturing schemes that uniformly distribute the non-punctured bits can deleteriously interact with certain error control codes, causing a degradation of decoder performance. Because the recursive encoding blocks in the Turbo encoder have infinite impulse response, information about each systematic bit is distributed across many of the parity bits. The impact of certain periodic non-puncture patterns in the parity bits can be qualitatively illustrated by considering how much information remains in the surviving parity bits. Regions where performance of the punctured Turbo code is degraded can be determined by measuring how close the puncturing pattern is to being periodic with period related to the period of the semi-periodic impulse response of the recursive encoding blocks of the Turbo encoder. For a 3GPP Turbo encoder, the constituent recursive encoders have an impulse response that is periodic with a period of 7 symbols for positive time (semi-periodic). This can readily be seen by interpretation of the encoder as an M-sequence generator, i.e., if the shift register starts in the zero state and a one is applied only at t=0, then the encoder is exactly a Linear Feedback Shift Register (LFSR) with an associated 3rd order primitive polynomial and initial state {1 0 0}, thus a period 23−1=7 M-sequence is generated for positive time. The encoder is a Linear Time Invariant (LTI) system on a binary field. Therefore, the output of the encoder is a sum of shifted versions of the impulse response of the encoder, each shifted impulse response corresponding to the locations of the 1's in the TB. If we consider an input that is all 0's for t>T, then the output of the constituent recursive encoding block will also be semi-periodic for t>T. Certain non-puncturing periods may result in a loss of distributed information about a small group of bits across the set of parity bits. For example, let the TB consist of 7 bits followed by many zeros. Now consider the problem of trying to determine the seven bits by observation of the output of one encoder after heavy puncturing. Each observation is made at the output is a sum of a subset of the 7 bits, the subset being determined by the non-puncture period and the impulse response of the recursive encoding block. For most non-puncture patterns (those that have a period relatively prime with the period of the semi-periodic impulse response), sums over 7 different subsets can eventually be observed. Therefore, a system of 7 equations with 7 unknowns can be formed. Assuming they are linearly independent, the values of the 7 bits may be determined. However, consider the case where the non-puncture period is simple (one surviving parity bit per period) and the same as the period of the recursive encoding block, 7. Then every observation for t>6 is the sum of the same subset of the 7 bits and so no new information is obtained, i.e., a rank-1 system of equations is formed and a unique solution does not exist. This is due to the periodic nature of the signal. When the non-puncture period is relatively prime with the period of the recursive encoding block, a series of observations of the parity bits will eventually form a rank-7 system of equations. For our 7-bit group, this is sufficient to uniquely determine the bits, i.e., information sufficient to determine the bits is distributed across the surviving parity bits. When the periods are not relatively prime, the rank of the system becomes L/K where L is the period of the recursive encoding block and K is the Greatest Common Divider (GCD) of L and N where N is the period of the non-puncture pattern. In the above illustration, a long sequence of zeros after the small group of bits was supposed for clarity sake. However, allowing additional groups of bits to follow the first group does not add to the distributed information about earlier groups. This can be seen from the causality of the system. It is also possible that some distributed information is lost even for non-simple periods, e.g., consider the case where the non-puncture pattern alternates between a simple period of three and four. This results in a period 7 non-puncture pattern but with two surviving parity bits per period. The same argument above leads to a rank-2 system of seven equations which is still insufficient to uniquely determine the group of bits, but does reduce the dimension of the space they may span. Clearly, some information about the small group of bits is lost for some non-punctured patterns. In order to obtain adequate performance, it is necessary to detect, avoid and/or correct the problematic puncturing patterns in the parity bit streams without having to avoid code rates. Typically, problematic interactions occur between the Turbo coder output and puncturing in the rate matching stages. It would be desirable to have a method for creating high-rate Turbo codes that avoids problematic interactions by modifying the puncturing patterns.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to a wireless mobile communication system, and more particularly, to operations of a User Equipment (UE) including a transmission power control process and a multiplexing process of the UE, operations of a Base Station (BS) corresponding to the operations of the UE, and devices thereof in a state where a device to device communication technology and a wireless cellular communication technology are used together. 2. Description of the Related Art As types of services using a wireless mobile communication system are significantly diversified, a new technology to more efficiently support newly rising services is required, and accordingly, a new method and new technologies have been developed and researched in the wireless mobile communication system. Device to Device (D2D) communication is a new technology which has arisen as a solution for a new service and basically enables a predetermined UE to directly communicate with another UE existing in the surroundings of the device. Through the use of the D2D communication technology, the UE may discover UEs existing in the surroundings of the UE itself and perform direct communication with a device requiring communication. When direct communication is performed between UEs, a large advantage in terms of radio resource efficiency is acquired since the direct communication uses a relatively small amount of radio resources in comparison with communication via a Base Station (BS) using a conventional wireless network. Further, since the direct communication supports a method in which the UE discovers UEs located close to the UE, the UE can directly transmit information to a desired device, thereby greatly increasing efficiency in supporting an advertisement service, a Social Networking Service (SNS), and the like. Currently, a Long Term Evolution-Advanced (LTE-A) also requires supporting the D2D technology and a technical discussion about the D2D technology is progressing. FIG. 1 is a view illustrating a scenario where D2D communication is supported within a cellular system. A BS 101 manages a UE 103 and a UE 104 within a cell 102 managed by the BS 101. The UE 103 performs cellular communication with the BS 101 by using a UE-BS link 106 and the UE 104 also performs cellular communication with the BS 101 by using a UE-BS link 107. When D2D communication is possible between the UE 103 and the UE 104, the UE 103 and the UE 104 can directly exchange information by using a UE-UE link 105 without passing through the BS 101. It is assumed that the D2D communication technology using the cellular wireless mobile communication system such as the LTE-A system is executed to basically prevent a UE using the conventional cellular system from being damaged. To this end, resources which do not overlap radio resources used by a cellular UE (this refers to a UE which performs conventional device to BS communication instead of the D2D communication) may be separately used for the D2D communication. Alternatively, the D2D UE uses the same resources used by the cellular UE but the resources are used to avoid interference to each other as maximally as possible. A backward/forward duplexing method used by the LTE or LTE-A system includes Frequency Division Duplexing (FDD). In FDD, forward and backward directions are distinguished by using different frequency resources. When a system using the FDD uses different resources for the D2D communication and the conventional cellular communication, backward frequency resources are more preferentially used for the D2D communication between forward and backward frequency resources in general. This is because many more types of signals are multiplexed to the forward frequency resources in comparison with the backward frequency resources. As a result, it is difficult to separately allocate the forward frequency resources for the purpose of the D2D communication in comparison with the backward frequency resources. Further, in the FDD system considering only the conventional cellular UE, forward traffic is greater than backward traffic due to the nature of a communication system and forwardly transmitted overheads are greater than backwardly transmitted overheads, so that using the forward frequency resources generally have a heavier burden in comparison with using the backward frequency resources. Accordingly, when the forward resources allocated for the purpose of the D2D communication are used, a burden of the forward resources becomes greater and thus it may be more difficult to adjust a balance between use of the forward and backward resources. If it is assumed that the communication system using FDD performs the D2D communication by using the backward resources, the problems generated when the D2D communication technology uses the forward resources can be solved. However, all problems cannot be solved when the D2D communication technology using the backward resources is applied. For example, as the backward resources used by the LTE system, a predetermined size of resources may be allocated to both ends of an entire band to transmit control information for the conventional cellular UE. The backwardly transmitted control information may include forward link Channel Quality Information (CQI) of the UE, ACK/NACK information corresponding to response information for a Hybrid Automatic Repeat reQuest (HARQ) technology of the forward communication, scheduling request information for backward information transmission, and the like. The control information is transmitted in a backward direction, that is, from predetermined UEs to the BS. The transmission of the control information may be performed when the D2D UEs communicate with each other as well as when only the cellular UEs communicate by the backward resources. That is, a plurality of D2D UEs may communicate with each other and a cellular UE may transmit control information to the BS within the same cell at the same time (for example, within the same subframe in LTE). Of course, in the above case, frequency resources used for control information transmission by the cellular UE and frequency resources used for D2D communication by the D2D UE may be different from or the same as each other. FIG. 2 is a view illustrating a scenario where the cellular UE and the D2D UE within the same cell simultaneously transmit/receive a signal to/from the BS by using backward resources on the same subframe. A BS 201 has a cell 202 and UEs 203, 205, and 206 are located within the cell 202. The UE 203 transmits backward control information to the cellular UE by using backward resources 204. The UE 205 performs the D2D communication with the UE 206 and can transmit information to the UE 206 by using a D2D link 207. At this time, the UE 203 properly sets transmission power for the information transmission such that the BS 201 has proper reception power in receiving the backward control information. Further, the UE 205 properly sets transmission power for the information transmission such that the UE 206 has proper reception power in receiving the D2D transmission. In this event, as a distance between the UE 205 and the UE 206 becomes larger, the UE 205 may perform the D2D transmission after setting large transmission power for proper transmission to the UE 206. At this time, when the UE 205 is located very close to the BS 201, the D2D transmission to the UE 206 by the UE 205 may be received by the BS 201 with very large reception power. At this time, when the reception power (reference numeral 208) that the BS 201 receives from the UE 205 is greater than a signal backwardly transmitted by the cellular UE 203 by a predetermined value or more, reception sensitivity deterioration (desensing phenomenon) occurs in the reception of the signal and thus the backward control information transmitted by the UE 203 may not be received by the BS 201. As described above, a problem exists when the cellular UE and the D2D UE included in one BS simultaneously perform transmission by using backward frequency resources, as a difference between intensities of signals which the BS receives from the cellular UE and the D2D UE is large, and thus the BS cannot receive information transmitted from the cellular UE.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention is directed to a conveyor belt cleaner scraper blade for scraping adherent material from a conveyor belt, and in particular to a conveyor belt cleaner scraper blade including one or more sensors for monitoring the operating conditions of the scraper blade and control system therefore. Some conveyor mechanisms utilize a moving conveyor belt to transport sand, gravel, coal and other bulk materials, from one location to another. As the bulk material is discharged from the conveyor belt, a portion of the material often remains adhered to the belt. Conveyor belt cleaners, including one or more scraper blades, are used to scrape the adherent material from the belt and thereby clean the belt. A primary conveyor belt cleaner may be placed in scraping engagement with the conveyor belt at the head pulley of the conveyor and a secondary conveyor belt cleaner may be placed in scraping engagement with and below the return run of the conveyor belt a short distance behind the primary conveyor belt cleaner. The scraper blades of a conveyor belt cleaner are removably attached to a rotatable or linearly adjustable cross shaft that extends transversely across the width of the conveyor belt. A tensioning device is attached to one or both ends of the cross shaft. The tensioning device applies a rotational or linear biasing force to the cross shaft which in turn moves the scraper blades into scraping engagement with the conveyor belt with a desired amount of force. During operation, the scraping edge of each scraper blade wears due to its scraping engagement with the rotating conveyor belt. The tensioner rotates or linearly adjusts the cross shaft and the scraper blades to maintain the scraper blades in biased scraping engagement with the conveyor belt. In order to obtain optimum performance from the scraper blades of a conveyor belt cleaner, it is preferable that the scraper blades be biased into scraping engagement with the conveyor belt with a predetermined amount of force. If the scraper blades are biased against the conveyor belt with an excessive amount of force, this will result in excessive wear to the scraper blades, potential damage to the conveyor belt, and may cause the tip of the scraper blade to develop an excessively high temperature due to the friction generated between the scraper blade and the rotating conveyor belt. If the scraper blades are biased against the conveyor belt with too small of a force, the scraper blades may not effectively clean the conveyor belt. In addition, the scraping tip of the scraper blades may vibrate or chatter against the conveyor belt depending upon the amount of force with which the scraper blades are biased into engagement with the conveyor belt, thereby potentially damaging the scraper blades and/or the belt, and decreasing cleaning efficiency. It is therefore useful to monitor the conditions and parameters of a scraper blade during operation, such as the scraping tip temperature, the rate of wear of the scraper blade, and the magnitude of the force with which the scraper blade is biased into scraping engagement with the conveyor belt, to optimize the performance of the scraper blade. All of these parameters are subject to change depending on a number of factors including conveyor belt speed and the type of material being conveyed. In addition, a control and monitoring system for the various sensors included in the blade structure would maximize the utility of such a sensor array. Even with a variety of sensors present, the user still must perform periodic inspections of the installation in order to determine whether the blades are excessively worn, and to check for proper engagement force between the belt and the scraper blade assembly. Consequently, a need arises for an economically yet durably constructed system that is capable of alerting the user to various operating conditions that may adversely affect the installation, thus avoiding the need for frequent on-site inspections. Such a control system should also be able to automatically adjust the engagement force between the scraper blades and the belt.
{ "pile_set_name": "USPTO Backgrounds" }
Targeted web advertising has become a very successful business for companies like Google. Such advertising is a success for much the same reason certain search engines are a success—it brings users information that is relevant to them. Advertising is typically provided along with search results, often in an area separate from the actual results themselves. In such a situation, the advertisements selected for display may be matched to terms in the search request. The Google Adwords service is an example of such targeted advertising. Targeted advertisements may also be delivered apart from search, such as on web pages themselves. For example, an ad system may analyze the content of a web page to determine important words or concepts to associate with the page, and may deliver ads directed to those words or concepts when the page is displayed. Such delivery may occur when the page is retrieved for a user, with the host of the page delivering the page content and the ad server delivering the targeted advertising. The Google AdSense service is an example of such targeted advertising.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a method for improving surface properties of a shaped article of a synthetic resin or, in particular, of a vinyl chloride-based resin. More particularly, the invention relates to a method for reducing electrostatic charging or accumulation of static electricity on the surface of a shaped article of a vinyl chloride-based resin or other thermoplastic and thermosetting synthetic resins. As is well known, shaped articles of a vinyl chloride-based resin (hereinafter referred to as PVC resin) or other thermoplastic and thermosetting synthetic resins are remarkably susceptible to the accumulation of static electricity on the surface thereof bringing about several problems of not only the dirtiness of appearance caused by the deposition or clogging of dusts on the surface but also the unpleasant influence to the human body in contact therewith by the electric shock with the static electricity accumulated on the surface and the danger of spark discharge. Various attempts have been made to find an effective way or method for overcoming the above mentioned disadvantages of shaped articles of a synthetic resin by the improvement of the surface properties leading to the decrease of the electrostatic charge on the surface. For example, such an anti-static effect is obtained by coating the surface of the article with a surface active agent known to be effective as an anti-static agent. This method is advantageous when the anti-static effect is to be exhibited instantly but is defective in the relatively poor durability of the effect as well as in the sticky touch of the coated surface which eventually leads to blocking of the shaped articles with each other. 2. Description of the Prior Art Another way to reduce the electrostatic charge on the surface of a shaped article of a synthetic resin is to admix the resin with an anti-static agent, e.g. surface active agent, before the resin is shaped into the shaped article by molding. This method is satisfactory in the durability of the anti-static effect but the effectiveness of the method is impractically low when the amount of the anti-static agent is limited. When the amount of the anti-static agent incorporated into the resin is increased to such an extent that a practically significant anti-static effect is obtained, there may also be caused problems of sticky touch on the surface leading to blocking and readiness of staining in addition to the coloring of the surface as well as the detrimental effect on the heat resistance of the shaped article if not to mention the somewhat adverse effect on the workability of the resin per se admixed with the anti-static agent in such a large amount. On the other hand, there has been recently proposed a method in which the surface of a shaped article of a synthetic resin, e.g. a PVC resin, can be rendered more hydrophilic when the surface is subjected to exposure to a low temperature plasma of certain kinds of inorganic or organic gases whereby the accumulation of static electricity on the surface can be reduced to some extent. This method is, however, not satisfactory due to the relatively low effectiveness and the poor durability of the effect not to warrant the practical application of the method.
{ "pile_set_name": "USPTO Backgrounds" }
Performing floating point multiplication of binary operands with Booth encoding requires several multiples of the operands. Specifically, for radix-8 Booth encoding with an operand a, the products .+-.a, .+-.2a, .+-.3a, and .+-.4a are required. All such products except .+-.3a are easily obtained with simple bit shifts. One way to obtain 3a is to add 2a to a, where 2a is obtained from a by a bit shift. However, the integer sum of 2a with a is required. We shall refer to an adder for providing a signal indicative of 3a for any binary number a as a 3x adder. A Kogge-Stone adder can be useful for performing integer summation. Like a Carry Look Adder (CLA), the Kogge-Stone adder provides generate and propagate terms. However, to exploit parallelism, various bits of the operands are grouped together and the Kogge-Stone adder operates on these groups in parallel to provide group generate and group propagate terms for these groups. These group generate and group propagate terms are eventually used by the Kogge-Stone adder to provide the carry terms, from which the sum is obtained from these carry terms and the original operands. This is now described in more detail below. A functional diagram for a Kogge-Stone adder is shown in FIG. 1. The binary numbers a and b are added together to obtain their sum s. We denote the i.sup.th component of these binary numbers by a.sub.i, b.sub.i, and s.sub.i, respectively. In FIG. 1, the components of a and b are grouped into n+1 groups, where only the first (group 0), second (group 1), and last (group n) groups are explicitly shown. Not all groups need have the same number of components. For example, in FIG. 1, group 0 has j+1 components, group 1 has k+1 components, and group n has m+1 components. PG generators 102, 104, 106, and 108 provide group generate and group propagate terms. PG generators 102, 104, and 106 constitutes a first stage (level) and may be operated in parallel, and PG generator 108 constitutes a second stage (level). C generator 116 generates carry-out terms. CSS (Conditional Sum Selector) generators 110, 112, and 114 provide the sum s, and may be operated in parallel. Pipelining may be employed in which the first stage of PG generators operates on new data when the CSS generators are operating on old data. The lines in FIG. 1 represent data flow lines. Their physical realization may comprise more than one wire for carrying a signal, or signals may be time-multiplexed on a single wire (and ground plane). The designation of data represented by a data flow line is indicated in FIG. 1. For example, PG generator 102 provides the terms gg.sub.m.sup.n and gp.sub.m.sup.n on data flow line 116. These terms represent, respectively, the highest order (m) group generate and group propagate terms for group n. When describing group generate and group propagate terms for an arbitrary group, the superscripts for these terms will not be indicated. An arbitrary PG generator is shown in FIG. 2. For an arbitrary index i, gg.sub.i =1 if a carry-out term is generated when adding the binary number (x.sub.i x.sub.i-1 . . . x.sub.0) to the binary number (y.sub.i y.sub.i-1 . . . y.sub.0). The group generate term is zero otherwise. The group propagate term is given by gp.sub.i =1 if a carry-in term is propagated when adding the binary numbers (x.sub.i x.sub.i-1 . . . x.sub.0) and (y.sub.i y.sub.i-1. . . y.sub.0). The group propagate term is zero otherwise. The group generate and group propagate terms can be written in terms of the generate terms g.sub.i and propagate terms p.sub.i as indicated in FIG. 2, where p.sub.i =x.sub.i +y.sub.i and g.sub.i 32 x.sub.i y.sub.i. Although the symbol + has been used before to indicate the ordinary summation symbol in the field of integers, in the previous sentence and elsewhere it is also used to indicate the logical (Boolean) OR in which the operands are now the Boolean elements "1" and "0", and its particular meaning will be clear from context. The product of Boolean variables indicates the logical AND of the Boolean variables. In FIG. 1, the summation symbol .SIGMA. indicates the logical OR sum. By definition, gg.sub.0 =g.sub.0. As shown in FIG. 1, the input data to PG generator 108 are the highest order group generate and group propagate terms from each PG generator in the first stage of the CLA. These quantities are operated on by PG generator 108 to provide new (effective) group generate and group propagate terms gg.sup.i and gp.sup.i, i=0, 1, . . . , n. These effective group generate and group propagate terms are interpreted as follows. Let a.sup.i denote group i of the components of a. Similarly for b.sup.i. For example, according to the grouping indicated in FIG. 1, a.sup.0 =(a.sub.j a.sub.j-1 . . . a.sub.0). Then, gg.sup.i =1 indicates that a carry-out term is generated when adding the two binary numbers (a.sup.i a.sup.i-1 . . . a.sup.0) and (b.sup.i b.sup.i-1 . . . b.sup.0), where these two binary numbers are formed from the concatenation of the first i+1 groupings of a and b, respectively. If gg.sup.i =0, then no carry-out term is generated. Similarly, gp.sup.i =1 indicates that a carry-in term is propagated when adding the two binary numbers (a.sup.i a.sup.i-1 . . . a.sup.0) and (b.sup.i b.sup.i-1 . . . b.sup.0). If gp.sup.i =0 , then no carry-in term is propagated. As shown in FIG. 1, C generator 116 provides carry-out terms c.sub.out.sup.i for i=0, 1, . . . n. FIG. 3 also illustrates C generator 116 and provides the Boolean expression for the carry-out terms as a function of the effective group generate and group propagate terms and the carry-in term Cin . A carry-out term c.sub.out.sup.i for some i is the carry-out term obtained by adding (a.sup.i a.sup.i-1 . . . a.sup.0) and (b.sup.i b.sup.i-1 . . . b.sup.0) in which the carry-in term is c.sub.in. This carry-in term may result from the sum of other bits not shown in FIG. 1. For example, a.sub.0 and b.sub.0 need not be the least significant bits of the actual binary numbers to be added, in which case there may be other copies of the adder in FIG. 1 to provide other sum bits, or the adder of FIG. 1 may be used more than once in an iterative manner to obtain all sum bits. As shown in FIG. 1, the carry-out terms from C generator 116 are provided to the CSS generators. For 0.ltoreq.i<n, the carry-out term c.sub.out.sup.i is the carry-in term to the CSS generator corresponding to group i+1. The carry-in term to CSS generator 114 for group 0 is c.sub.in. As shown in FIG. 1, the carry-out term c.sub.out.sup.0 is provided to CSS generator 112 corresponding to group 1 and the carry-out term c.sub.out.sup.n-1 is provided to CSS generator 110 corresponding to group n. Note that carry-out term c.sub.out.sup.n is available for other adders (not shown), or to indicate overflow, etc. FIG. 4 illustrates CSS generator 114 and provides the Boolean expression for the i.sup.th sum bit, s.sub.i. The symbol .sym. denotes exclusive OR. The carry-in term c.sub.i is the carry-in term for bit position i, and its expression in terms of gg.sub.i, gp.sub.i, and c.sub.in (the carry-in term for CSS generator 114) is also given in FIG. 4. Similar expressions are easily generalized for the other CSS generators in the Kogge-Stone adder of FIG. 1. A circuit at the logic gate level for the CSS generator of FIG. 4 is provided in FIG. 5, where MUX 502 switches to line 504 if c.sub.in =0 and switches to line 506 if c.sub.in =1. From the expression for gg.sub.i given in FIG. 2, it is seen that obtaining the highest order group generator term gg.sub.j for a PG generator of size j+1(i.e., a PG generator corresponding to groupings of a and b with j+1 bits each) requires evaluating the logical OR of j+1 product terms, where the most complicated product term is the logical AND of j+1 terms. For example, a domino or dynamic logic gate realization for obtaining the group generator term gg.sub.4 is shown in FIG. 6. Transistors 602 and 604 are gated by a clock signal CLK, where the domino gate is in its precharge phase when CLK is LOW and is in its evaluation phase when CLK is HIGH. The output node of the domino gate is node 610. Transistors 606 and 608 constitute a static inverter gate. The stack depth of the domino gate in FIG. 6 is defined to be 5. That is, the clocked transistors are not counted. For some implementations, clocked transistor 602 is not needed. In general, a stack depth may be defined as the largest number of nFETs (n-Field Effect Transistors) in series between the output node and ground if no clocked nFET is present, or between the output node and the clocked nFET if a clocked nFET is present. For the general case, a domino gate providing gg.sub.i has a stack depth of j+1. Because of the body effect of stacking nFETs in series, a logic gate tends to slow down as its stack depth increases. That is, the latency between output and input increases. Because not all paths in a domino gate between the output node and ground have the same number of nFETs, the increase in latency depends upon the particular input values. For example, in FIG. 6 the worst case scenario for increasing the latency is when all generator terms except g.sub.0 are 0 (LOW) and all propagate terms are 1 (HIGH). On average, latency will increase with increasing stack depth. There are, however, no stack depth problems associated with domino gates for obtaining the group propagate terms because a simple NOR domino gate may be used in which the stack depth is only one. Stack depths for obtaining the group generate terms can be reduced by employing more than one level of logic, but each additional level increases the over-all latency for computing the group generator terms. Thus, for many high-speed circuits the size of a PG generator according to FIG. 2 is limited to a fairly small number (e.g., not much more than four or five). However, decreasing the size of groupings (to decrease the size of PG generators in the first stage of a Kogge-Stone adder) leads to an increase in the number of groups in the first stage, which increases the size of the second stage (i.e., the size of functional unit 108 becomes too large). It is therefore desirable to provide a 3x adder in which the stack depths associated with obtaining the group generate terms can be reduced.
{ "pile_set_name": "USPTO Backgrounds" }
Certain atmospheric conditions can lead to ice formation on aircraft surfaces. Ice formation on aircraft surfaces can increase the weight of the aircraft and can increase the drag of the aircraft. Increasing either the weight or the drag of an aircraft can result in a stall speed that is higher than it would otherwise be in an ice-free condition. Ice formation on lifting surfaces can result in a decrease in a wing's lift and/or a decrease in a propeller's thrust. Ice formation can also affect the controllability of an aircraft by affecting the airflow over control surfaces, such as ailerons. Various atmospheric conditions can cause more or less ice formation on an aircraft. For example, water droplet density, total moisture content, air temperature, water droplet temperature, droplet size distribution, etc. all factor into risk of ice formation. Some atmospheric conditions can present little or no risk of ice formation on an aircraft. Various aircraft flying conditions can affect locations and/or amounts of ice formation on aircraft surfaces. For example, airspeed, angle of attack, angle of side-slip, and presence of de-icing equipment all factor into location and/or risk of ice formation. Some aircraft have been equipped with equipment intended to obtain metrics of the atmosphere so as to predict whether the atmosphere presents a risk of ice-formation on exterior surfaces. Ice formation on aircraft surfaces can be visually perceived by the pilot, should the ice form on a surface within view of the cockpit window.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a method for preparing Fraction I protein from unpurified extracts of a variety of plant species by crystallization with polyethylene glycol, and more particularly to a method which provides for the removal of certain phosphorylated sugars from the polyethylene glycol solution and allows recycling of the solution. 2. Description of the Prior Art Fraction I protein, the most abundant protein found in plants, has been identified as the enzyme ribulose 1, 5-bisphosphate carboxylase (RuBisCO). Fraction I protein is widely distributed in nature and constitutes up to 50% of the water soluble protein contained in leaves and approximately 20% of the total plant protein. The amino acid composition of Fraction I protein is well balanced in terms of the essential and non-essential amino acids, comparing favorably with soybean, casein, and animal proteins. The amounts of the essential amino acids in Fraction I protein, with the exception of methionine, meet and often exceed most published human nutritional requirements. For some years, it has been the goal of a number of scientific and industrial researchers to provide a large-scale method for recovering Fraction I protein from a variety of plant sources. Much work has been done, and substantial steps have been taken toward this goal. See, e.g., Paulsen and Lane (1966) Biochem. 52:2350-2357, describing a method for purifying spinach RuBisCO on a laboratory scale. Compare the more recent work described in U.S. Pat. Nos. 4,347,324 and 4,268,632 to Wildman et al., U.S. Pat. No. 3,340,676 to Bourque, and particularly U.S. Pat. Nos. 4,334,024 and 4,400,471 to Johal, the inventor herein. While the methods taught in these references hold much promise, until the methods can be improved to provide for the efficient production of Fraction I protein on a commercial scale, their promise cannot be realized. For example, heretofore, recycling of polyethylene glycol (PEG) used to crystallize the RuBisCO has been difficult because of the presence of other substances released during fractionation of the plant material. Thus, it would be highly desirable to provide improved methods for the recovery of Fraction I protein from various plant sources on a large scale with relatively low costs, particularly methods which allow recycling of the PEG.
{ "pile_set_name": "USPTO Backgrounds" }
Lead-free interconnection between structures and lead-free die attachment are growing trends, particularly in the semiconductor industry. Part of this trend is driven by concern over the use of lead, with some governing bodies scheduled to ban the use of lead in the semiconductor industry. Soldered interconnections containing lead are commonly used for highly conductive interconnects. Thus, a highly conductive lead-free interconnection that may replace a soldered interconnection would be desirable. Some options for achieving a conductive lead-free interconnection have included sintering or diffusion soldering. In both of these cases, there are a number of important boundary process conditions that require consideration. For example, neither the pressure used for the sintering or diffusion bonding, nor the temperature for the sintering or diffusion bonding may be too high in order to prevent damage to semiconductor structures, as well as being able to be achieved by existing equipment. In addition, prior to the final fixation of a die, it must be placed in position with high precision and remain in that position during subsequent handling steps. These boundary conditions may place requirements that may not be optimal for the processes of sintering or diffusion soldering, or may not be suitable for carrying out the processes with conventional interconnection and die attach equipment. It would be desirable that a final interconnection be achieved at relatively low temperatures and that there is no excess support material in or around an interconnect.
{ "pile_set_name": "USPTO Backgrounds" }
FIG. 1 is a perspective view showing a stacked ceramic capacitor as the background art of the present invention, and FIG. 2 is an illustration diagram showing an internal structure thereof. A stacked ceramic capacitor 10 includes a ceramic body 12 having, for example, a rectangular parallelepiped shape. Ceramic body 12 includes a plurality of stacked dielectric ceramic layers 14. An internal electrode 16 is formed at an interface between these dielectric ceramic layers 14. Internal electrodes 16 face and overlap with each other at a central portion of ceramic body 12, and adjacent internal electrodes 16 are alternately led out to two end surfaces of ceramic body 12 that face in the longitudinal direction. An external electrode 18 is formed at the end surface of ceramic body 12 to which internal electrodes 16 are led out. Internal electrodes 16 led out to the respective end surfaces of ceramic body 12 are connected to two external electrodes 18. Therefore, adjacent internal electrodes 16 are alternately connected to two external electrodes 18 and a capacitance is formed between these external electrodes 18. In order to fabricate stacked ceramic capacitor 10 described above, a ceramic slurry is formed by using a dielectric ceramic composition. This ceramic slurry is formed into a sheet shape, thereby forming a ceramic green sheet 20. As shown in FIG. 3, a plurality of internal electrode patterns 22 are formed on ceramic green sheet 20 by using a conductive paste. Ceramic green sheets 20 each having internal electrode patterns 22 are stacked, and on both sides thereof, ceramic green sheets 20 each having no internal electrode patterns are stacked as needed. Stacked ceramic green sheets 20 are pressure-bonded and a mother stacked body 24 is formed. Mother stacked body 24 is cut and a crude stacked body chip having adjacent internal electrode patterns 22 exposed alternately to both end surfaces is formed. This stacked body chip is fired, thereby forming ceramic body 12 having dielectric ceramic layers 14 and internal electrodes 16. An electrode paste is applied and baked onto the end surface of ceramic body 12 to which internal electrodes 16 are exposed, thereby forming external electrode 18. External electrode 18 is plated as needed. When such stacked ceramic capacitor 10 is used in, for example, a vehicle-mounted application, stacked ceramic capacitor 10 may sometimes be arranged near an engine. In such a case, the temperature around stacked ceramic capacitor 10 changes greatly, and a dielectric constant of dielectric ceramic layers 14 changes in accordance with the aforementioned temperature change, and a capacitance of stacked ceramic capacitor 10 changes in accordance therewith. However, needless to say, stacked ceramic capacitor 10 having a small rate of change in capacitance with respect to the temperature change is preferable. Thus, disclosed is a dielectric material in which a capacitance-temperature change rate in a range of −55° C. to 250° C. becomes ±15% by adding BaO, MgO and Nb2O5 to an alkali niobium-based material (K, Na, Li)(Nb, Ta)O3 (refer to PTD 1). PTD 1: Japanese Patent Laying-Open No. 2009-249244
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates generally to manufacturing processes in the hard disk, compact disk, liquid crystal display, solar cell, and semiconductor fabrication industries. Manufacturing processes for a wide variety of products utilize thin circular or square wafer media fabricated from metal, plastic, silicon or other materials. These and other applications require the use of cassettes to hold the wafers in exact positions, referred to as wafer planes. Several types of wafer cassettes are used to hold these wafers, depending on the particular process being performed. For example, teflon cassettes are typically employed to hold the wafers while they are in chemical processes; ABS plastic traveller cassettes are employed to transport wafers from one process to the next; and quartz cassettes are employed to retain wafers during high temperature processes. These manufacturing processes occur in carefully controlled clean rooms that must not be contaminated by the manufacturer's processes. The largest of the above-mentioned industries in which semiconductor wafer cassettes are employed is the semiconductor processing industry. Standard wafer cassettes are employed to hold twenty-five standard silicon or gallium arsenide wafers of a certain diameter. The semiconductor industry uses these thin, very fragile silicon wafers that are typically 4, 5, 6 or 8 inches in diameter on which to fabricate integrated circuits. More than $100,000 worth of packaged integrated circuits may be fabricated on a single one of these wafers. It is therefore extremely important to prevent damage to the fragile wafers on which as many as 300 separate manufacturing processes may be performed before the wafer is cut into separate dies for final packaging. The processing equipment required to manufacture integrated circuits is very expensive, so any increase in manufacturing speed and yield is highly desirable. In order to increase manufacturing speed and reliability, loading and unloading robots are used to transfer the wafers from one cassette to another. However, wafers are sometimes loaded into incoming cassettes by hand, typically from manual inspection stages. Manual loading of cassettes presents the opportunity for creating a disastrous condition known as cross slotting. This condition occurs when a wafer is not loaded into corresponding slots on each side of the cassette, resulting in one side of a loaded wafer being higher than the other side, rather than the wafer being in a perfectly horizontal position. When a cross slotted wafer is presented to the pickup arm of a robot, the arm jams the fragile wafer, thereby not only shattering that wafer but also contaminating the otherwise good wafers in the cassette and clean room with pieces of the shattered wafer that may be only microscopic in size. An additional problem is presented in prior art cassette handling systems when a cassette coming into a robot stage is only partially filled with wafers. The robot assumes that every slot of a cassette contains a wafer and is therefore designed to traverse each of the twenty-five slot positions of the cassette in its attempts to pick a wafer from each slot position. In the case of wafer cassettes that are not completely filled, valuable time is wasted as the robot searches unfilled wafer positions. Several attempts have been made in the prior art to provide wafer detection systems. One such prior art system is based on non-inductive proximity detection, since silicon, aluminum or plastic wafers are not ferromagnetic. In this type of system, an electrostatic field effect sensor is mounted on the robot arm to detect the presence or absence of a wafer in each slot position of a cassette. These wafer detection systems suffer from long traverse times and, more importantly, make no provision for detecting cross slotted wafers. Another known wafer detection system employs a small video camera which is remotely mounted on the robot's arm. A video framegrabber and image analysis software are integrated with the robot controller. The images obtained by the remote head video camera are used to detect the presence or absence of a wafer in each slot position of a cassette. These video camera systems are expensive and, like the proximity detectors described above, have limited capability for detecting cross slotted wafers. Yet another known wafer detection system is that described in the allowed U.S. patent application referenced above. This system involves separate transmitter and receiver modules mounted on opposite sides of a wafer cassette for transmitting and receiving light across the full width of the wafer cassette in order to detect the presence or absence of a wafer in a particular pair of slots of the wafer cassette and to also detect a cross slotted condition. The use of separate transmitter and receiver modules in this prior art system requires the use of interconnection cables between the two modules, thereby increasing the cost of the system. Since the separate transmitter and receiver modules must be positioned in close proximity to the wafer cassette that is inserted between them, the system must be tailored for use with wafer cassettes of different sizes. It is therefore a principal object of the present invention to provide a wafer cassette mapper that may be used with wafer cassettes of different size and in which a single light transmitter/receiver module is employed to provide information indicating the presence or absence of a wafer in each slot of the wafer cassette, as well as information indicating a cross slotted condition. This and other objects are accomplished in accordance with the illustrated preferred embodiment of the present invention by providing a base member for receiving a standard slotted wafer cassette, the base member supporting a transmitter/receiver module positioned adjacent the rear of the cassette. The transmitter/receiver module contains two vertical columns of light emitting apertures, coupled to an infrared transmitter array, and a single vertical column, positioned between the two columns of light emitting apertures, of light receiving apertures coupled to an infrared receiver array. The infrared transmitting array may be direct or diffused, modulated or on/off keyed. Corresponding light emitting apertures in each of the two columns are positioned to illuminate the rear edge of each of the wafers in the wafer cassette at an angle that will cause the diffused reflected light to enter an associated one of the light receiving apertures. Alternate ones of the light emitting apertures are positioned to illuminate the vertical space between each of the wafer slots of the cassette, and a corresponding alternate one of the light receiving apertures detects light reflected by a cross slotted wafer that is positioned in this otherwise unoccupied space. The infrared transmitter array is powered on for a predetemined period of time, while the infrared receiver array is interrogated during that period of time to determine which of the particular light receiving apertures are receiving light reflected by the wafers in the cassette. This information is then processed for each wafer slot of the cassette to determine if a wafer is present, absent or cross slotted. Several wafer cassette mappers may be connected in a system configuration to serve a semiconductor fabrication process. In such a system configuration, an external host computer is employed to interrogate the various wafer cassette mappers. The user may thereby request cassette map information from selected ones of the wafer cassette mappers and use, store, transmit or make a hard copy of the requested cassette map information.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to an apparatus for cooling skid pipes in a continuous slab reheating furnace. The conventional method for cooling the said skid pipes was such that coolant such as cooling water was passed inside refractory insulating material covering the skid pipes. But evaporative cooling or the method of recirculating coolant requires large-size equipment of complicated structure partly because of necessity of a countermeasure for leakage and safety aid. In another method of passing water as coolant, thermal energy of cooling water is not utilized at all and there is great heat loss from the furnace as the skid pipes are cooling to 30.degree. to 50.degree. C. with cooling water. In addition to these thermal problems, there is a disadvantage that the cooling effect drops due to the precipitation of such salts as calcium and silica, and formation of scale inside the skid pipes during a long period of use. This invention, intended to eliminate defects of the said conventional cooling methods, provides an apparatus for cooling skid pipes in a continuous slab reheating furnace, in which hot water made high in temperature in the skid pipes is cooling by heating other fluid through heat exchangers provided in a closed circuit formed with a passage inside the skid pipes made part of a hot water circulating passage so that the skid pipes may be protected, without reducing the temperature of the circulating hot water too much and with effective utilization of heat and minimized furnace heat loss, and the precipitation of calcium and silica in the piping may be minimized by circulating processing water in the closed circuit.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to an image scanning apparatus and an image scanning method and in particular, to an image scanning apparatus and an image scanning method using a sub scan mechanism for combining a linear partial image obtained by a linear image sensor, thus inputting a two-dimensional manuscript image. 2. Description of the Related Art Conventionally, various types of image scanning apparatus have been suggested. Among them, an image scanner apparatus uses a linear image sensor as a pickup device in the image input mechanism and a sub scan mechanism for combining partial images obtained by the linear image sensor for inputting a two-dimensional manuscript. The image scanner apparatus can be divided into an indirect type image scanner apparatus in which the manuscript surface is apart from the image input mechanism supported by a stand or the like and a flat bed type image scanner in which the manuscript surface is placed downward on the image input mechanism unitizing the manuscript surface and the image input mechanism. In the conventional indirect type image scanner apparatus, the brightness of the manuscript surface depends on the natural light or the ordinary illumination on the ceiling and no particular illumination is used for the image scanner or an auxiliary illumination is used for illuminating the entire manuscript surface. In the indirect image scanner not using any auxiliary illumination, the brightness of the manuscript surface may not be sufficient, which relatively increases the noise level of the image sensor output, adversely affecting the image read in. Moreover, in the indirect image scanner using an auxiliary illumination, the auxiliary illumination may dazzle eyes of a user and cause an unpleasant heat. Such an image scanning apparatus or image scanning method is disclosed, for example, in Japanese Patent Publication 3-136569 [1], in which a manuscript is placed around a cylindrical member and the manuscript is scanned by a CCD line sensor in the main scan direction while the sub scan is performed by rotation of the cylindrical member, so as to store an image of the manuscript. This image scanning apparatus cannot realize a high-speed and stable image reading. Moreover, Japanese Patent Publication 7-177318 [2] discloses an image scanning apparatus in which a unitary block of a light source and a line image sensor is detachably fixed to a slit provided on a manuscript table and displaced manually, so as to enable to read a transient manuscript as well. However, since the unit is displaced manually, it is difficult to obtain a high-speed and stable image reading. Furthermore, Japanese Patent Publication 8-223363 [3] discloses an image scanning apparatus in which three color lights are successively applied by a light emitting device for each line, so as to scan the entire manuscript surface to read an image. This image scanning apparatus, the light emitting device is displaced by a motor and a chain for scanning. Accordingly, it is difficult to perform a high-speed and stable image reading. Furthermore, Japanese Patent Publication 8-315122 [4] discloses a transparent type image scanning apparatus, in which a mesh gradation is inserted between a manuscript and a light source so as to correct a transmitting light amount in the direction of a line image sensor. However, document [4] has no disclosure on the light amount adjustment in a reflection type image scanning apparatus. On the other hand, Japanese Patent Publication 9-261419 [5] discloses a reflection type image scanning apparatus in which a slit-shaped light emitted from a light source is used to scan a manuscript by displacing a reflection mirror and a line image sensor is displaced in synchronization with the slit-shaped light beam scan. However, since the line image sensor moves a great distance as a parallel displacement, a complicated synchronization mechanism is required. Moreover, the parallel displacement of the image sensor may cause a vibration which deteriorates the image. Accordingly, it is difficult to obtain a high-speed and stable image reading. Additionally, Japanese Patent Publication 7-193682 [6] discloses a reflection type image scanning apparatus, in which an optical mark is applied to a position corresponding to a manuscript scan range. Moreover, Japanese Patent Publication 8-9102 [7] discloses a scanner technique associated with an image scanner including an image read unit having an image formation device, an image read device, and an illumination device which are constituted as a unitary block. Furthermore, Japanese Patent Publication 10-336404 [8] discloses a reflection type image scanning apparatus in which a reference region is provided on a manuscript table so as to compensate a brightness change of the illumination light depending on a frequency of a fluorescent lamp provided on a ceiling or the like. However, none of the aforementioned documents [6 ] [7], and [8] discloses an image reading mechanism in a stand type image scanning apparatus for scanning a slit-shaped light beam or a technique for detecting the brightness of the light beam reflection for controlling the light beam light quantity. Among the indirect type image scanners, those not using an auxiliary illumination for the image input mechanism have a problem that the brightness on the manuscript surface is not sufficient, which relatively increases the noise level of the output of the image sensor, adversely affecting the image which has been read in, and those using an auxiliary illumination for illuminating the entire manuscript surface have a problem that eyes of a user are dazzled and the heat is unpleasant for the user. It is therefore an object of the present invention to provide an image scanning apparatus and an image scanning method realized as an indirect type image scanner apparatus capable of a high-speed, high-quality image input without causing to dazzle eyes of a user while securing a necessary brightness. The image scanning apparatus according to a first embodiment of the present invention comprises a support arm, a stand block supporting the support arm, a scan type illumination device mounted on the support arm for applying a slit-shaped light beam onto a surface of a manuscript, and a manuscript image scanning device for scanning a manuscript image illuminated by the slit-shaped light beam and reflected from the surface of the manuscript, wherein the scan type illumination device is constructed so as to apply the slit-shaped light beam in a direction vertical to the longitudinal direction of the slit shape of the slit-shaped light beam, the image scanning device includes a manuscript image input block for inputting a reflected light containing a manuscript image reflected from the surface of the manuscript and a light detecting device supplied with the reflected light containing the manuscript image which is output from the manuscript image input block, and the manuscript image input block is constructed in such a manner that the reflected light containing the manuscript image reflected from the manuscript surface is selectively applied to a predetermined portion of the light receiving surface in the light detecting device in synchronization with the scan operation of the scan type illumination device. The image scanning method according to a second embodiment of the present invention uses an image scanning apparatus comprising a support arm, a stand block supporting the support arm, a scan illumination device mounted on the support arm for applying a slit-shaped light beam onto a surface of a manuscript, and a manuscript image scanning device for inputting a manuscript image illuminated by the slit-shaped light beam and reflected from the manuscript surface; the method comprising steps of: applying the slit-shaped light beam from the scan type illumination device; causing the slit-shaped light beam to scan in a direction vertical to the longitudinal direction of the slit in the slit-shaped light beam; in the manuscript image input block, receiving a light reflected from the manuscript surface containing a manuscript image, and selectively applying the reflected light containing the manuscript image to a predetermined portion of the light receiving elements in the light detecting device provided in the image scanning device; and displacing the manuscript image input block in synchronization with the scan operation by the scan type illumination device.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention generally relates to a locking structure. More particularly, the present invention relates to a locking structure applied to a board sliding in a track. 2. Description of Related Art Recently, the commonly used server host in the industry is mainly a stackable and serially connected rack mount computer host. In the design, the size of a main board in the computer host is greatly reduced, a CPU, a chipset, a memory, and a hard disk are respectively disposed, and then the computer host is guided by a slide rail, so as to be assembled in the rack, such that the space is saved and it is conveniently for replacement. In order to transmit signals, a plurality of connector slots is disposed on the main board of the transmit signal, such that it is conveniently for the main board to serially connect to another main board (or an adapting board), thereby increasing multiplexity of the server, and achieving the high operation performance. However, the server case is usually flat cuboid, and the sockets on the main board are disposed in a narrow space on the back side of the case, thus resulting in the inconvenience of inserting and extracting the connector. Especially, in the process of extracting the connector, complicated steps and particular tools are required, which is inconvenient to users.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to a resin composition having a high impact resistance. 2. Description of the Prior Art Bisphenols the nucleus of which is substituted with a halogen, particularly, tetrabromobisphenol A, are known to be flame retarding agents. The incorporation of tetrabromobisphenol A in various synthetic resins to obtain flame-retardant resin compositions has been proposed. In one process tetrabromobisphenol A is copolymerized with halogen-free bisphenol such as bisphenol A to improve the flame-retardant property of a polycarbonate resin derived from bisphenol A. In addition, it has been proposed to obtain a flame-retardant resin composition by incorporating said copolymerized polycarbonate into a polycarbonate resin derived from bisphenol A (Japanese Patent Publication No. 24660/1972). However, a copolymer composition containing such a copolymerized polycarbonate particularly derived from more than 2 mole percent of a nuclear-halogen-substituted bisphenol, is brittle because of the very low impact strength thereof as shown in FIG. 1. In addition, practical limitations occur such as the need for using a higher temperature in the molding because of its reduced melt fluidity. Therefore, for improving the molding property of the polycarbonate resin, there has been proposed a process wherein a nuclear-halogen-substituted bisphenol A is incorporated therein, or a process wherein a low molecular weight polycarbonate (generally having a polymerization degree of about 2 to 10) derived from a nuclear-halogen-substituted bisphenol is incorporated therein (Japanese Patent Publications Nos. 41422/1972 and 44537/1972). It is impossible, by either of those prior processes, however, to prevent impairment of the physical properties of the resin generally caused by the incorporation of the low molecular weight materials, and it is difficult to retain well-balanced physical properties such as mechanical strength and molding property, even though flame-retardance can be imparted thereto.
{ "pile_set_name": "USPTO Backgrounds" }