File size: 7,014 Bytes
476d115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import json
import os
import random
from typing import Any, Dict, Tuple

import pandas as pd
import torch
from dotenv import load_dotenv
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import (accuracy_score, classification_report,
                             confusion_matrix, f1_score, roc_auc_score)
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC

import wandb

# Load environment variables
load_dotenv()

# Load project details
from eda_code_final_fixed import project, version


def initialize_project(project: str, version: str) -> Tuple[pd.DataFrame, pd.Series, pd.DataFrame, pd.Series, Dict[str, Any]]:
    """
    Initializes a project and performs a train-test split on the processed data.

    Parameters:
        project (str): The name of the project.
        version (str): The version of the project.

    Returns:
        tuple: A tuple containing the following:
            - X_train (pd.DataFrame): The training features.
            - X_test (pd.DataFrame): The testing features.
            - y_train (pd.Series): The training targets.
            - y_test (pd.Series): The testing targets.
            - models (dict): A dictionary of model instances.
    """
    data_path = "/Users/nullzero/Documents/repos/github.com/privacy-identity/vda-simulation-medical/vda-sim-medical/data/processed/PII_Customer_Personality_Analysis/data/2024_08_25_PII_Customer_Personality_Analysis_v0.1.csv"
    
    # Load the processed data
    df_processed = pd.read_csv(data_path)
    
    # Train-Test Split
    X = df_processed.drop(columns=['target'])
    y = df_processed['target']

    # Select the top 10 features
    selector = SelectKBest(score_func=f_classif, k=10)
    X_new = selector.fit_transform(X, y)
    selected_features = X.columns[selector.get_support()]
    X = pd.DataFrame(X_new, columns=selected_features)

    # Log the selected features to W&B
    wandb.init(project=project, entity="orionai", name="supervized_binary_classification", job_type="supervized_train")
    wandb.log({"selected_features": selected_features.tolist()})

    # Normalize the data
    scaler = StandardScaler()
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)

    # Define models
    models = {
        "Logistic Regression": LogisticRegression(random_state=42, max_iter=1000),
        "Random Forest": RandomForestClassifier(random_state=42, n_estimators=100),
        "SVM": SVC(random_state=42, probability=True)
    }
    
    return X_train, X_test, y_train, y_test, models


def training_clf(X_train: pd.DataFrame, X_test: pd.DataFrame, y_train: pd.Series, y_test: pd.Series, models: Dict[str, Any], project: str, version: str) -> Dict[str, Any]:
    """
    Trains and logs multiple classification models using Weights & Biases (W&B).

    Args:
        X_train (pd.DataFrame): The training features.
        X_test (pd.DataFrame): The testing features.
        y_train (pd.Series): The training targets.
        y_test (pd.Series): The testing targets.
        models (dict): A dictionary of classification models to train and log.
        project (str): The W&B project name.
        version (str): The model version.

    Returns:
        dict: A dictionary containing the model name, classification report, confusion matrix, accuracy, ROC AUC, and F1 score for each model.
    """
    results = {}

    for model_name, model in models.items():
        # Initialize a new W&B run for each model
        run = wandb.init(project=project, entity="orionai", job_type="supervized_train", name=model_name)
        
        # Train the model
        model.fit(X_train, y_train)
        
        # Predict and evaluate
        y_pred = model.predict(X_test)
        y_prob = model.predict_proba(X_test)[:, 1] if hasattr(model, "predict_proba") else None
        accuracy = accuracy_score(y_test, y_pred)
        roc_auc = roc_auc_score(y_test, y_prob) if y_prob is not None else None
        f1_metric = f1_score(y_test, y_pred)
        
        # Log metrics
        wandb.log({
            "accuracy": accuracy,
            "roc_auc": roc_auc,
            "f1_score": f1_metric
        })
        
        # Log model
        wandb.sklearn.plot_classifier(model, X_train, X_test, y_train, y_test, y_pred, y_prob, labels=["Not Buy", "Buy"])
        
        # Save the model to a file
        model_filename = f"{model_name.replace(' ', '_').lower()}_model_v{version}.pkl"
        torch.save(model, model_filename)
        
        # Create and log the W&B artifact for the model
        model_artifact = wandb.Artifact(name=f"{model_name.replace(' ', '_').lower()}_v{version}", type='model')
        model_artifact.add_file(model_filename)
        wandb.log_artifact(model_artifact)
        
        # Log classification report and confusion matrix
        class_report = classification_report(y_test, y_pred, output_dict=True)
        conf_matrix = confusion_matrix(y_test, y_pred)
        
        wandb.log({
            "classification_report": class_report,
            "confusion_matrix": conf_matrix
        })
        
        results[model_name] = {
            "clf_report": class_report,
            "conf_matrix": conf_matrix,
            "accuracy": accuracy,
            "roc_auc": roc_auc,
            "f1_score": f1_metric
        }
        
        # End W&B run for this model
        run.finish()

    return results


def json_convert(input_dict: Dict[str, Any], project: str) -> str:
    """
    Converts a dictionary into a JSON file and saves it to a specified directory.

    Args:
        input_dict (dict): The dictionary to be converted into a JSON file.
        project (str): The name of the project for directory organization.

    Returns:
        str: The file path where the JSON file is saved.
    """
    # Ensure the folder exists
    folder_path = f"../data/{project}/results/"
    os.makedirs(folder_path, exist_ok=True)

    file_name = f"{project}_supervized_v{random.randint(1, 100)}.json"
    file_path = os.path.join(folder_path, file_name)

    with open(file_path, 'w') as json_file:
        json.dump(input_dict, json_file, indent=4)
    
    print(f"Results saved to {file_path}")
    
    return file_path


def main():
    device = "mps" if torch.backends.mps.is_available() else "cpu"
    
    print("Initializing project...")
    X_train, X_test, y_train, y_test, models = initialize_project(project, version)
    
    print("Training classifiers...")
    clf_train_results = training_clf(X_train, X_test, y_train, y_test, models, project, version)
    
    print("Saving results to JSON...")
    json_convert(clf_train_results, project)
    
    print("Finished.")


if __name__ == '__main__':
    main()