File size: 17,022 Bytes
476d115 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# PyTorch Differential Privacy Experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -qqq torch torchvision opacus numpy pandas\n",
"%pip install -qqq wandb datasets tqdm\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import torch \n",
"from dotenv import load_dotenv\n",
"import wandb \n",
"import logging\n",
"import shutil\n",
"import sys\n",
"from datetime import datetime, timedelta\n",
"\n",
"import argparse\n",
"from collections import Counter\n",
"from pathlib import Path\n",
"from statistics import mean\n",
"\n",
"import torch\n",
"import torch.nn as nn\n",
"from opacus import PrivacyEngine\n",
"from opacus.layers import DPGRU, DPLSTM, DPRNN\n",
"from torch.nn.utils.rnn import pad_sequence\n",
"from torch.utils.data import DataLoader, Dataset\n",
"from tqdm import tqdm, tqdm_notebook"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"device = \"mps\" if torch.backends.mps.is_available() else \"cpu\"\n",
"if os.path.exists('.env'):\n",
" load_dotenv('.env')\n",
"device\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"logging.basicConfig(\n",
" format=\"%(asctime)s:%(levelname)s:%(message)s\",\n",
" datefmt=\"%m/%d/%Y %H:%M:%S\",\n",
" stream=sys.stdout,\n",
")\n",
"logger = logging.getLogger(\"ddp\")\n",
"logger.setLevel(level=logging.INFO)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"wandb.login(key=os.getenv('WANDB_API_KEY'))\n",
"wandb.init(project=\"verida-pii\", name=\"deberta_finetune\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Fine Tuning w/ Unsloth (Colab Only)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Datasets\n",
"# Original data_name = 'Ezi/medical_and_legislators_synthetic'\n",
"# Tutorial: https://huggingface.co/blog/Andyrasika/finetune-unsloth-qlora\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Get the major and minor version of the current CUDA device (GPU)\n",
"major_version, minor_version = torch.cuda.get_device_capability()\n",
"\n",
"# Apply the following if the GPU has Ampere or Hopper architecture (RTX 30xx, RTX 40xx, A100, H100, L40, etc.)\n",
"if major_version >= 8:\n",
" # Install the Unsloth library for Ampere and Hopper architecture from GitHub\n",
" !pip install \"unsloth[colab_ampere] @ git+https://github.com/unslothai/unsloth.git\" -q\n",
"\n",
"# Apply the following for older GPUs (V100, Tesla T4, RTX 20xx, etc.)\n",
"else:\n",
" # Install the Unsloth library for older GPUs from GitHub\n",
" !pip install \"unsloth[colab] @ git+https://github.com/unslothai/unsloth.git\" -q\n",
"\n",
"# Placeholder statement (does nothing)\n",
"pass\n",
"\n",
"# Install the Hugging Face Transformers library from GitHub, which allows native 4-bit loading\n",
"!pip install \"git+https://github.com/huggingface/transformers.git\" -q\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer, AutoModelForTokenClassification\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"lakshyakh93/deberta_finetuned_pii\")\n",
"model = AutoModelForTokenClassification.from_pretrained(\"lakshyakh93/deberta_finetuned_pii\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = FastLanguageModel.get_peft_model(\n",
" model,\n",
" # Specify the existing model\n",
"\n",
" r=16, # Choose any positive number! Recommended values include 8, 16, 32, 64, 128, etc.\n",
" # Rank parameter for LoRA. The smaller this value, the fewer parameters will be modified.\n",
"\n",
" target_modules=[\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n",
" \"gate_proj\", \"up_proj\", \"down_proj\",],\n",
" # Specify the modules to which LoRA will be applied\n",
"\n",
" lora_alpha=16,\n",
" # Alpha parameter for LoRA. This value determines the strength of the applied LoRA.\n",
"\n",
" lora_dropout=0, # Currently, only supports dropout = 0\n",
" # Dropout rate for LoRA. Currently supports only 0.\n",
"\n",
" bias=\"none\", # Currently, only supports bias = \"none\"\n",
" # Bias usage setting. Currently supports only the setting without bias.\n",
"\n",
" use_gradient_checkpointing=True,\n",
" # Whether to use gradient checkpointing to improve memory efficiency\n",
"\n",
" random_state=3407,\n",
" # Seed value for random number generation\n",
"\n",
" max_seq_length=max_seq_length,\n",
" # Set the maximum sequence length\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# @TODO - Add the relevant prompt\n",
"alpaca_prompt = \"\"\"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
"\n",
"### Instruction:\n",
"{}\n",
"\n",
"### Input:\n",
"{}\n",
"\n",
"### Response:\n",
"{}\"\"\"\n",
"# Define the prompt format for the Alpaca dataset\n",
"\n",
"def formatting_prompts_func(examples):\n",
" # Define a function to format each example in the dataset\n",
"\n",
" instructions = examples[\"instruction\"]\n",
" inputs = examples[\"input\"]\n",
" outputs = examples[\"output\"]\n",
" # Get instructions, inputs, and outputs\n",
"\n",
" texts = []\n",
" for instruction, input, output in zip(instructions, inputs, outputs):\n",
" # Generate text by combining instructions, inputs, and outputs\n",
"\n",
" text = alpaca_prompt.format(instruction, input, output)\n",
" # Format the text according to the prompt format\n",
"\n",
" texts.append(text)\n",
" return { \"text\" : texts, }\n",
" # Return a list of formatted texts\n",
"\n",
"pass\n",
"# Placeholder (does nothing)\n",
"\n",
"from datasets import load_dataset\n",
"# Import the load_dataset function from the datasets library\n",
"\n",
"dataset = load_dataset(\"yahma/alpaca-cleaned\", split=\"train\")\n",
"# Load the training data of the cleaned version of the Alpaca dataset from yahma\n",
"\n",
"dataset = dataset.map(formatting_prompts_func, batched=True,)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from trl import SFTTrainer\n",
"# Import SFTTrainer from the TRL library\n",
"\n",
"from transformers import TrainingArguments\n",
"# Import TrainingArguments from the Transformers library\n",
"\n",
"trainer = SFTTrainer(\n",
" # Initialize the SFTTrainer\n",
"\n",
" model=model,\n",
" # Specify the model to be used\n",
"\n",
" train_dataset=dataset,\n",
" # Specify the training dataset\n",
"\n",
" dataset_text_field=\"text\",\n",
" # Specify the text field in the dataset\n",
"\n",
" max_seq_length=max_seq_length,\n",
" # Specify the maximum sequence length\n",
"\n",
" args=TrainingArguments(\n",
" # Specify training arguments\n",
"\n",
" per_device_train_batch_size=2,\n",
" # Specify the training batch size per device\n",
"\n",
" gradient_accumulation_steps=4,\n",
" # Specify the number of steps for gradient accumulation\n",
"\n",
" warmup_steps=5,\n",
" # Specify the number of warm-up steps\n",
"\n",
" max_steps=20,\n",
" # Specify the maximum number of steps\n",
"\n",
" learning_rate=2e-4,\n",
" # Specify the learning rate\n",
"\n",
" fp16=not torch.cuda.is_bf16_supported(),\n",
" # Set whether to use 16-bit floating-point precision (fp16)\n",
"\n",
" bf16=torch.cuda.is_bf16_supported(),\n",
" # Set whether to use Bfloat16\n",
"\n",
" logging_steps=1,\n",
" # Specify the logging steps\n",
"\n",
" optim=\"adamw_8bit\",\n",
" # Specify the optimizer (here using 8-bit AdamW)\n",
"\n",
" weight_decay=0.01,\n",
" # Specify the weight decay value\n",
"\n",
" lr_scheduler_type=\"linear\",\n",
" # Specify the type of learning rate scheduler (linear)\n",
"\n",
" seed=3407,\n",
" # Specify the random seed\n",
"\n",
" output_dir=\"outputs\",\n",
" # Specify the output directory\n",
"\n",
" ),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gpu_stats = torch.cuda.get_device_properties(0)\n",
"# Get properties of the GPU device at index 0\n",
"\n",
"start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
"# Get the maximum reserved GPU memory in GB and round to 3 decimal places\n",
"\n",
"max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)\n",
"# Get the total GPU memory in GB and round to 3 decimal places\n",
"\n",
"print(f\"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.\")\n",
"# Display the GPU name and maximum memory\n",
"\n",
"print(f\"{start_gpu_memory} GB of memory reserved.\")\n",
"# Display the reserved memory amount"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"trainer_stats = trainer.train()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Convert to GGUF"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def colab_quantize_to_gguf(save_directory, quantization_method=\"q4_k_m\"):\n",
" # Define a function for conversion to GGUF\n",
"\n",
" from transformers.models.llama.modeling_llama import logger\n",
" import os\n",
" # Import necessary libraries\n",
"\n",
" logger.warning_once(\n",
" \"Unsloth: `colab_quantize_to_gguf` is still in development mode.\\n\"\\\n",
" \"If anything errors or breaks, please file a ticket on Github.\\n\"\\\n",
" \"Also, if you used this successfully, please tell us on Discord!\"\n",
" )\n",
" # Warn that it's still in development mode and encourage reporting any issues\n",
"\n",
" # From https://mlabonne.github.io/blog/posts/Quantize_Llama_2_models_using_ggml.html\n",
" ALLOWED_QUANTS = \\\n",
" {\n",
" # Define currently allowed quantization methods\n",
" # Including descriptions for each quantization method\n",
" \"q2_k\" : \"Uses Q4_K for the attention.vw and feed_forward.w2 tensors, Q2_K for the other tensors.\",\n",
" \"q3_k_l\" : \"Uses Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K\",\n",
" \"q3_k_m\" : \"Uses Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K\",\n",
" \"q3_k_s\" : \"Uses Q3_K for all tensors\",\n",
" \"q4_0\" : \"Original quant method, 4-bit.\",\n",
" \"q4_1\" : \"Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.\",\n",
" \"q4_k_m\" : \"Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K\",\n",
" \"q4_k_s\" : \"Uses Q4_K for all tensors\",\n",
" \"q5_0\" : \"Higher accuracy, higher resource usage and slower inference.\",\n",
" \"q5_1\" : \"Even higher accuracy, resource usage and slower inference.\",\n",
" \"q5_k_m\" : \"Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K\",\n",
" \"q5_k_s\" : \"Uses Q5_K for all tensors\",\n",
" \"q6_k\" : \"Uses Q8_K for all tensors\",\n",
" \"q8_0\" : \"Almost indistinguishable from float16. High resource use and slow. Not recommended for most users.\",\n",
" }\n",
"\n",
" if quantization_method not in ALLOWED_QUANTS.keys():\n",
" # If the specified quantization method is not allowed, raise an error\n",
" error = f\"Unsloth: Quant method = [{quantization_method}] not supported. Choose from below:\\n\"\n",
" for key, value in ALLOWED_QUANTS.items():\n",
" error += f\"[{key}] => {value}\\n\"\n",
" raise RuntimeError(error)\n",
"\n",
" # Display information about the conversion\n",
" print_info = \\\n",
" f\"==((====))== Unsloth: Conversion from QLoRA to GGUF information\\n\"\\\n",
" f\" \\\\\\ /| [0] Installing llama.cpp will take 3 minutes.\\n\"\\\n",
" f\"O^O/ \\_/ \\\\ [1] Converting HF to GUUF 16bits will take 3 minutes.\\n\"\\\n",
" f\"\\ / [2] Converting GGUF 16bits to q4_k_m will take 20 minutes.\\n\"\\\n",
" f' \"-____-\" In total, you will have to wait around 26 minutes.\\n'\n",
" print(print_info)\n",
" # Display information about the conversion process\n",
"\n",
" if not os.path.exists(\"llama.cpp\"):\n",
" # If llama.cpp does not exist, install it\n",
" print(\"Unsloth: [0] Installing llama.cpp. This will take 3 minutes...\")\n",
" !git clone https://github.com/ggerganov/llama.cpp\n",
" !cd llama.cpp && make clean && LLAMA_CUBLAS=1 make -j\n",
" !pip install gguf protobuf\n",
" pass\n",
"\n",
" print(\"Unsloth: Starting conversion from HF to GGUF 16bit...\")\n",
" # Display that conversion from HF to GGUF 16bit is starting\n",
" # print(\"Unsloth: [1] Converting HF into GGUF 16bit. This will take 3 minutes...\")\n",
" !python llama.cpp/convert.py {save_directory} \\\n",
" --outfile {save_directory}-unsloth.gguf \\\n",
" --outtype f16\n",
"\n",
" print(\"Unsloth: Starting conversion from GGUF 16bit to q4_k_m...\")\n",
" # Display that conversion from GGUF 16bit to the specified quantization method is starting\n",
" # print(\"Unsloth: [2] Converting GGUF 16bit into q4_k_m. This will take 20 minutes...\")\n",
" final_location = f\"./{save_directory}-{quantization_method}-unsloth.gguf\"\n",
" !./llama.cpp/quantize ./{save_directory}-unsloth.gguf \\\n",
" {final_location} {quantization_method}\n",
"\n",
" print(f\"Unsloth: Output location: {final_location}\")\n",
" # Display the output location of the converted file\n",
"pass"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from unsloth import unsloth_save_model\n",
"# Import the unsloth_save_model function from the Unsloth library\n",
"\n",
"# unsloth_save_model has the same args as model.save_pretrained\n",
"# unsloth_save_model has the same arguments as model.save_pretrained\n",
"unsloth_save_model(model, tokenizer, \"output_model\", push_to_hub=False, token=None)\n",
"# Save the model and tokenizer as \"output_model\". Do not push to the Hugging Face Hub\n",
"\n",
"colab_quantize_to_gguf(\"output_model\", quantization_method=\"q4_k_m\")\n",
"# Convert \"output_model\" to GGUF format. Use the quantization method \"q4_k_m\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|