metadata
annotations_creators:
- found
language_creators:
- found
license:
- unknown
multilinguality:
- monolingual
pretty_name: Extreme Summarization (XSum)
paperswithcode_id: xsum
size_categories:
- 100K<n<1M
source_datasets:
- xsum
task_categories:
- summarization
task_ids:
- news-articles-summarization
train-eval-index:
- config: default
task: summarization
task_id: summarization
splits:
train_split: train
eval_split: test
col_mapping:
document: text
summary: target
metrics:
- type: rouge
name: Rouge
dataset_info:
features:
- name: document
dtype: string
- name: summary
dtype: string
- name: id
dtype: string
splits:
- name: train
num_bytes: 27627858
num_examples: 10
- name: validation
num_bytes: 27627858
num_examples: 3
- name: test
num_bytes: 27627858
num_examples: 4
download_size: 27627858
dataset_size: 27627858
Dataset Card for "xsum"
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage:
- Repository: https://github.com/EdinburghNLP/XSum
- Paper: Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization
- Point of Contact: Shashi Narayan
- Size of downloaded dataset files: 257.30 MB
- Size of the generated dataset: 532.26 MB
- Total amount of disk used: 789.56 MB
Dataset Summary
Extreme Summarization (XSum) Dataset.
There are three features:
- document: Input news article.
- summary: One sentence summary of the article.
- id: BBC ID of the article.
Supported Tasks and Leaderboards
Languages
Dataset Structure
Data Instances
default
- Size of downloaded dataset files: 257.30 MB
- Size of the generated dataset: 532.26 MB
- Total amount of disk used: 789.56 MB
An example of 'validation' looks as follows.
{
"document": "some-body",
"id": "29750031",
"summary": "some-sentence"
}
Data Fields
The data fields are the same among all splits.
default
document
: astring
feature.summary
: astring
feature.id
: astring
feature.
Data Splits
name | train | validation | test |
---|---|---|---|
default | 204045 | 11332 | 11334 |
Dataset Creation
Curation Rationale
Source Data
Initial Data Collection and Normalization
Who are the source language producers?
Annotations
Annotation process
Who are the annotators?
Personal and Sensitive Information
Considerations for Using the Data
Social Impact of Dataset
Discussion of Biases
Other Known Limitations
Additional Information
Dataset Curators
Licensing Information
Citation Information
@article{Narayan2018DontGM,
title={Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization},
author={Shashi Narayan and Shay B. Cohen and Mirella Lapata},
journal={ArXiv},
year={2018},
volume={abs/1808.08745}
}
Contributions
Thanks to @thomwolf, @lewtun, @mariamabarham, @jbragg, @lhoestq, @patrickvonplaten for adding this dataset.