language:
- he
size_categories:
- 1K<n<10K
task_categories:
- token-classification
pretty_name: HebrewMetaphors
dataset_info:
features:
- name: text
dtype: string
- name: source
dtype: string
- name: label
dtype: int64
- name: verb
dtype: string
- name: tweet_id
dtype: string
splits:
- name: train
num_bytes: 669160
num_examples: 4944
- name: val
num_bytes: 168781
num_examples: 1271
- name: test
num_bytes: 206836
num_examples: 1593
download_size: 449410
dataset_size: 1044777
model:
- tdklab/hebert-finetuned-hebrew-metaphor
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: val
path: data/val-*
- split: test
path: data/test-*
Dataset Card for "HebrewMetaphors"
Dataset Summary
A common dataset for text classification task is IMDb. Large Movie Review Dataset. This is a dataset for binary sentiment classification. The first step in our project was to create a Hebrew dataset with an IMDB-like structure but different in that, in addition to the sentences we have, there will also be verb names, and a classification of whether the verb name is literal or metaphorical in the given sentence. Using an API, sentences that contained the verbs we selected were pulled from Twitter and Wikipedia and Prodigy was used to classify them. The accuracy of the classification was confirmed by having two different persons classify each line twice.
Supported Tasks and Leaderboards
Classification
Languages
Hebrew
Dataset Structure
The IMDb dataset is a json file with objects containing the text of the review, and a number 0 or 1 which is a negative or positive review
For example:
{
"label": 1, //(pos)
"text": "A wonderful little production ... "
}, {
"label": 0, //(neg)
"text": ""It actually pains me to say it, but this movie was horrible on every level ..."
}
After retrieving data from Wikipedia and Twitter, classifying and processing, we received the following data:
{'text': 'ืืชืืื ืืืืฅ ืืฉืืื ืืช ืืืืืื ืืืืืกื ืืืจื ืืืื ืืืื ืื ืืื ืืฉ ืืื ืืืืก ืื ืื ืืจืื ืืืืื ืืืจื ืืืคืฉ',
'source': 'twitter',
'label': 0,
'verb': 'ืืืืก',
'tweet_id': '1546803262065606658'},
{'text': ' ืืื ื ืืื ื ืืืื ืื ืืืขืจื ืืืชืืื ืืืจืืข ืืจืก ืืืืืืช ืขืืฅ',
'source': 'wikipedia',
'label': 1, //(Metaphor)
'verb': 'ืืืจืืข',
'tweet_id': None},
{'text': 'ืื ืืฉืชืืฉื ืืืขืจืื ืืื ืืืคื ืืช ืืช ืืืืืก ืืฉืื ืืชืขืืคื ืฉืื ืืืืจื ืืื ืืฉืืื ืืืชื',
'source': 'wikipedia',
'label': 0, //(Literal)
'verb': 'ืืฉืืื',
'tweet_id': None}
As you can see, we have the following fields:
- 'text': A sentence in Hebrew that was taken from Wikipedia or Twitter that included the verb name.
- 'source': There are two possible sources for this text: 'twitter' or 'wikipedia'.
- 'label': Classification of whether the verb name is literal ('label': 0) or metaphorical ('label': 1) in the given sentence.
- 'verb': A verb name in Hebrew on which the text is labeled.
- 'tweet_id': If the text was taken from Twitter, the tweet's id, or None if it was retrieved from Wikipedia.
In the next section we will explain how we created the dataset.
Data Statistics
Verb | After Agreement Between Taggers | Disagreements because of different answers | Disagreements because of different ignores | Total Literals After Agreement | Total Metaphors After Agreement | Split For Train Set | Split For Validation Set | Split For Test Set |
---|---|---|---|---|---|---|---|---|
lakhalom_twitter | 131 | 42 | 42 | 26 | 105 | 83 | 21 | 27 |
lakhalom_wiki | 93 | 53 | 69 | 34 | 59 | 58 | 16 | 19 |
lakhatokh_twitter | 220 | 41 | 40 | 100 | 120 | 140 | 36 | 44 |
lakhatokh_wiki | 288 | 54 | 6 | 286 | 2 | 182 | 47 | 59 |
lauf_twitter | 166 | 8 | 29 | 14 | 152 | 104 | 28 | 34 |
lauf_wiki | 172 | 11 | 67 | 161 | 11 | 108 | 28 | 36 |
lefareq_twitter | 70 | 109 | 71 | 21 | 49 | 43 | 12 | 15 |
lefareq_wiki | 96 | 48 | 213 | 89 | 7 | 60 | 16 | 20 |
lehadliq_twitter | 270 | 14 | 19 | 194 | 76 | 172 | 43 | 55 |
lehadliq_wiki | 375 | 13 | 13 | 370 | 5 | 239 | 61 | 75 |
lekhabes_twitter | 203 | 2 | 26 | 155 | 48 | 129 | 33 | 41 |
lekhabes_wiki | 55 | 1 | 0 | 51 | 4 | 34 | 9 | 12 |
lekhofef_twitter | 289 | 7 | 11 | 18 | 271 | 183 | 47 | 59 |
lekhofef_wiki | 107 | 3 | 6 | 73 | 34 | 67 | 18 | 22 |
lerasek_twitter | 141 | 6 | 4 | 18 | 123 | 89 | 23 | 29 |
lerasek_wiki | 154 | 3 | 12 | 110 | 44 | 98 | 25 | 31 |
levashel_twitter | 280 | 3 | 19 | 264 | 16 | 177 | 46 | 57 |
levashel_wiki | 228 | 3 | 19 | 221 | 7 | 144 | 37 | 47 |
limkhoq_twitter | 222 | 16 | 22 | 123 | 99 | 141 | 36 | 45 |
limkhoq_wiki | 212 | 11 | 29 | 109 | 103 | 134 | 35 | 43 |
liqpots_twitter | 178 | 18 | 25 | 77 | 101 | 112 | 29 | 37 |
liqpots_wiki | 168 | 6 | 28 | 163 | 5 | 107 | 27 | 34 |
liqroa_twitter | 261 | 26 | 16 | 36 | 225 | 166 | 42 | 53 |
liqroa_wiki | 226 | 18 | 19 | 147 | 79 | 143 | 37 | 46 |
liqtsor_twitter | 256 | 18 | 28 | 43 | 213 | 163 | 41 | 52 |
liqtsor_wiki | 167 | 11 | 2 | 99 | 68 | 106 | 27 | 34 |
lirqod_twitter | 187 | 14 | 31 | 138 | 49 | 119 | 30 | 38 |
lirqod_wiki | 214 | 18 | 34 | 211 | 3 | 135 | 35 | 44 |
lishbor_twitter | 185 | 8 | 30 | 38 | 147 | 117 | 30 | 38 |
lishbor_wiki | 244 | 6 | 50 | 69 | 175 | 156 | 39 | 49 |
lishdod_twitter | 163 | 21 | 16 | 91 | 72 | 102 | 27 | 34 |
lishdod_wiki | 209 | 2 | 4 | 209 | 0 | 133 | 34 | 42 |
lishtot_twitter | 275 | 6 | 20 | 219 | 56 | 175 | 44 | 56 |
lishtot_wiki | 192 | 7 | 2 | 192 | 0 | 122 | 31 | 39 |
litkhon_twitter | 280 | 13 | 20 | 44 | 236 | 178 | 45 | 57 |
litkhon_wiki | 87 | 0 | 0 | 85 | 2 | 54 | 15 | 18 |
litpor_twitter | 193 | 4 | 13 | 26 | 167 | 122 | 31 | 40 |
litpor_wiki | 178 | 2 | 14 | 153 | 25 | 113 | 29 | 36 |
lizroa_twitter | 246 | 3 | 51 | 11 | 235 | 156 | 40 | 50 |
lizroa_wiki | 127 | 2 | 171 | 67 | 60 | 80 | 21 | 26 |
total | 7808 | 651 | 1291 | 4555 | 3253 | 4944 | 1271 | 1593 |
Contributions
Created by Doron Ben-chorin, Matan Ben-chorin, Tomer Tzipori, Guided by Dr. Oren Mishali. This is our project as part of computer engineering studies in the Faculty of Electrical Engineering combined with Computer Science at Technion, Israel Institute of Technology. For more cooperation, please contact email:
Doron Ben-chorin: [email protected]
Matan Ben-chorin: [email protected]
Tomer Tzipori: [email protected]