Search is not available for this dataset
name
stringlengths
2
112
description
stringlengths
29
13k
source
int64
1
7
difficulty
int64
0
25
solution
stringlengths
7
983k
language
stringclasses
4 values
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
n, m, q = list(map(int, input().split())) s = list(input()) t = list(input()) a = [list(map(int, input().split())) for i in range(q)] if n < m: for i in range(q): print(0) exit() res = [0] * (n - m + 1) for i in range(n - m + 1): if s[i:(i + m)] == t: res[i] = 1 for u in range(q): l = a[u][0] r = a[u][1] ans = 0 for y in range(l - 1, r - m + 1): # print(y) if res[y] == 1: ans += 1 print(ans)
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import sys from array import array def readline(): return sys.stdin.buffer.readline().decode('utf-8') n, m, q = map(int, readline().split()) s, t = '*' + readline().rstrip(), readline().rstrip() dp_r = [0]*(n+1) dp_l = [0]*(n+1) for i in range(m, n+1): if s[i-m+1:i+1] == t: dp_r[i] = 1 dp_l[i-m+1] = 1 for i in range(n): dp_r[i+1] += dp_r[i] dp_l[i+1] += dp_l[i] ans = [0]*q for i in range(q): l, r = map(int, readline().split()) if r - l + 1 >= m: ans[i] = dp_r[r] - dp_l[l-1] sys.stdout.buffer.write(('\n'.join(map(str, ans))).encode('utf-8'))
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class SegmentOccurrences { static class MyScanner { private BufferedReader br; private StringTokenizer st; MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } private static boolean[] precalculate(String s, String t) { boolean [] match = new boolean[s.length()]; for (int i=0; i<=s.length() - t.length(); ++i) { boolean matches = true; for (int j=0; j<t.length(); ++j) { if (s.charAt(i+j) != t.charAt(j)) { matches = false; break; } } match[i] = matches; } return match; } public static void main(String[] args) { MyScanner sc = new MyScanner(); int sLength = sc.nextInt(); int tLength = sc.nextInt(); int queries = sc.nextInt(); String s = sc.next(); String t = sc.next(); boolean[] matches = precalculate(s, t); for (int i=0; i<queries; ++i) { int left = sc.nextInt() - 1; int right = sc.nextInt(); int occurrences = 0; for (int j=left; j<=right - t.length(); ++j) { if (matches[j]) { occurrences++; } } System.out.println(occurrences); } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
from __future__ import print_function,division import sys if sys.version_info < (3, 0): range = xrange input = sys.stdin.readline class SegmentSum: def __init__(S,n): sz = 1 while sz < n: sz <<= 1 S.data = [0]*(n + sz) S.sz = sz def sum(S,l,r): sz = S.sz data = S.data summa = 0 l += sz r += sz while l < r: if l%2==1: summa += data[l] l += 1 if r%2==1: r -= 1 summa += data[r] l >>= 1 r >>= 1 return summa def inc(S,pos): pos += S.sz while pos > 0: S.data[pos] += 1 pos >>= 1 n,m,q = map(int,input().split()) s = input().strip() t = input().strip() T = SegmentSum(n) i = 0 while True: i = s.find(t,i) if i == -1: break T.inc(i) i += 1 for _ in range(q): l,r = map(int,input().split()) l -= 1 r -= 1 print(T.sum(l,r+2-m))
PYTHON
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
n,m,q=map(int,input().split()) a=input() b=input() flags=[0]*(1007) pr=[0]*(1007) for i in range(n-m+1): f=1 for j in range(m): if a[i+j]!=b[j]: f=0 flags[i]=f pr[i+1]=pr[i]+flags[i] for i in range(max(0,n-m+1),n): pr[i+1]=pr[i] for i in range(q): l,r=map(int,input().split()) l-=1 r-=(m-1) if r>=l: print(pr[r]-pr[l]) else: print(0)
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.util.ArrayList; import java.util.HashMap; import java.util.HashSet; import java.util.Scanner; import java.util.Set; public class edu { public static void main(String[] args) { // TODO Auto-generated method stub Scanner in=new Scanner(System.in); ArrayList<Integer> list=new ArrayList<Integer>(); int n=in.nextInt();int a[]=new int[n]; int m=in.nextInt(); int q=in.nextInt(); String s=in.next(); String t=in.next(); for(int i=0;i+m<=n;i++) { if(s.substring(i,i+m).equals(t)) list.add(i+1); } while(q-->0) {int c=0; String sub=" "; int l=in.nextInt(); int r=in.nextInt(); for(int h:list) { if(h>=l&&h+m-1<=r) c++; } System.out.println(c); } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#coding:utf-8 tmp = raw_input() n = int(tmp.split()[0]) m = int(tmp.split()[1]) q = int(tmp.split()[2]) s = raw_input() t = raw_input() st = [0]*n for i in range(n-m+1): if t == s[i:i+m]: st[i] += 1 data = [] res = [] for i in range(q): da = [int(i) for i in raw_input().split()] L = da[0] R = da[1] cnt = 0 if L-1+m <= R: cnt = st[L-1:R-m+1].count(1) res.append(str(cnt)) print("\n".join(res))
PYTHON
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
/*** * ██████╗=====███████╗====███████╗====██████╗= * ██╔══██╗====██╔════╝====██╔════╝====██╔══██╗ * ██║==██║====█████╗======█████╗======██████╔╝ * ██║==██║====██╔══╝======██╔══╝======██╔═══╝= * ██████╔╝====███████╗====███████╗====██║===== * ╚═════╝=====╚══════╝====╚══════╝====╚═╝===== * ============================================ */ import java.io.*; import java.lang.reflect.AccessibleObject; import java.lang.reflect.Array; import java.util.*; import java.math.*; import java.lang.*; public class AA implements Runnable { public void run() { InputReader sc = new InputReader(); PrintWriter out = new PrintWriter(System.out); int i=0,j=0,k=0; int t=0; //t=sc.nextInt(); for(int testcase = 0;testcase < t; testcase++) { } int n=sc.nextInt(); int n2=sc.nextInt(); int queries=sc.nextInt(); String first=sc.next(); String second=sc.next(); int last=-1; //out.println(first.indexOf(second)+" ||||"); List<Integer> ind=new ArrayList<>(); while (first.indexOf(second,last+1)>=0) { last=first.indexOf(second,last+1); ind.add(last+1); } //out.println(ind); int arr[][]=new int[queries][2]; for (i=0;i<queries;i++) { arr[i][0]=sc.nextInt(); arr[i][1]=sc.nextInt(); } /* Arrays.sort(arr, new Comparator<int[]>() { @Override public int compare(int[] o1, int[] o2) { if(o1[0] == o2[0]){ return o1[1]-o2[1]; } return o1[0]-o2[0] ; } });*/ int lis=ind.size(); for (i=0;i<queries;i++) { j=0; int counter=0; while (j<lis&&ind.get(j)<arr[i][0]) { j++; } while (j<lis&&ind.get(j)+n2-1<=arr[i][1]) { counter++; j++; } out.println(counter); } //================================================================================================================================ out.flush(); out.close(); } //================================================================================================================================ public static int[] sa(int n,InputReader sc) { int inparr[]=new int[n]; for (int i=0;i<n;i++) inparr[i]=sc.nextInt(); return inparr; } public static long gcd(long a,long b){ return (a%b==0l)?b:gcd(b,a%b); } private static long lcm(long a, long b) { return a * (b / gcd(a, b)); } public int egcd(int a, int b) { if (a == 0) return b; while (b != 0) { if (a > b) a = a - b; else b = b - a; } return a; } public int countChar(String str, char c) { int cnt = 0; for(int i=0; i < str.length(); i++) { if(str.charAt(i) == c) cnt++; } return cnt; } static int binSearch(Integer[] inparr, int number){ int left=0,right=inparr.length-1,mid=(left+right)/2,ind=0; while(left<=right){ if(inparr[mid]<=number){ ind=mid+1; left=mid+1; } else right=mid-1; mid=(left+right)/2; } return ind; } static int binSearch(int[] inparr, int number){ int left=0,right=inparr.length-1,mid=(left+right)/2,ind=0; while(left<=right){ if(inparr[mid]<=number){ ind=mid+1; left=mid+1; } else right=mid-1; mid=(left+right)/2; } return ind; } static class Pair { int a,b; Pair(int aa,int bb) { a=aa; b=bb; } String get() { return a+" "+b; } String getrev() { return b+" "+a; } } static boolean isPrime(long n) { if(n < 2) return false; if(n == 2 || n == 3) return true; if(n%2 == 0 || n%3 == 0) return false; long sqrtN = (long)Math.sqrt(n)+1; for(long i = 6L; i <= sqrtN; i += 6) { if(n%(i-1) == 0 || n%(i+1) == 0) return false; } return true; } static long factorial(long n) { if (n == 0) return 1; return n*factorial(n-1); } //================================================================================================================================ static class InputReader { BufferedReader br; StringTokenizer st; public InputReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String args[]) throws Exception { new Thread(null, new AA(),"Main",1<<27).start(); } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
m, n, x = raw_input().split() s = raw_input() t = raw_input() m, n, x = int(m), int(n), int(x) class TreeNode(object): def __init__(self, l, r): self.left = None self.right = None self.interval = (l, r) self.val = 0 def build(start, end): # print start, end node = TreeNode(start, end) if start == end: if s[start:start+n] == t: node.val = 1 elif start < end: mid = (start + end) / 2 node.left = build(start, mid) node.right = build(mid+1, end) node.val = node.left.val + node.right.val # print node.val return node def pt(root): print root.interval, root.val if root.left: pt(root.left) if root.right: pt(root.right) root = build(0, m-1) # pt(root) def find(node, target): if target == node.interval[0]: return node.val if target > node.interval[1]: return 0 mid = sum(node.interval) / 2 if target == mid + 1: return node.right.val elif target < mid + 1: return node.right.val + find(node.left, target) else: return find(node.right, target) for _ in xrange(int(x)): l, r = raw_input().split() l, r = int(l) - 1, int(r) - len(t) if r < l: print 0 continue left = find(root, l) right = find(root, r + 1) print left - right
PYTHON
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.util.*; import java.io.*; public class Main { public static void main(String args[]) { // int n,m; { Scanner sc= new Scanner(System.in); int n= sc.nextInt(); int m= sc.nextInt(); int q= sc.nextInt(); String s=sc.next(); String t= sc.next(); int ns= s.length(); int nt= t.length(); // nt>ns case if(nt>ns) { for(int i=0;i<q;i++) { System.out.println(0); } return; } else { ArrayList<Integer> occur= new ArrayList(); for(int i=0;i<ns;i++) { int flag=0; for(int j=0;j<nt;j++) { if(i+j<ns) { if(s.charAt(i+j)!=t.charAt(j)) { flag=1; break; } } else { flag=1; break; } } if(flag==0) { occur.add(i); } } int nn= occur.size(); for(int i=0;i<q;i++) { int li= sc.nextInt(); li--; int ri= sc.nextInt(); ri--; int count=0; for(int j=0;j<nn;j++) { if(occur.get(j)+nt-1<=ri && occur.get(j)>=li) { count++; } else if(occur.get(j)+nt-1>ri) break; } System.out.println(count); } } } // { // int n= sc.nextInt(); // int arr1[]= new int[n]; // int pref1[]= new int[n]; // int suff1[]= new int[n]; // int arr2[]= new int[n]; // int pref2[]= new int[n]; // int suff2[]= new int[n]; // for(int i=0;i<n;i++) // { // arr1[i]= sc.nextInt(); // if(i==0) // pref1[i]=arr1[i]; // else // pref1[i]=pref1[i-1]+arr1[i]; // } // for(int i=0;i<n;i++) // { // arr2[i]= sc.nextInt(); // if(i==0) // pref2[i]=arr2[i]; // else // pref2[i]=pref2[i-1]+arr2[i]; // } // for(int i=n-1;i>=0;i--) // { // if(i==n-1) // suff1[i]=arr1[i]; // else // suff1[i]=suff1[i+1]+arr1[i]; // } // for(int i=n-1;i>=0;i--) // { // if(i==n-1) // suff1[i]=arr1[i]; // else // suff1[i]=suff1[i+1]+arr1[i]; // } // } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
n, m, q = map(int, input().split()) a = input() b = input() c = [0] for i in range(1, n + 1): # print(a[max(i - m, 0):i]) c.append(c[i - 1] + (a[max(i - m, 0):i] == b)) # print(c) for i in range(q): l, r = map(int, input().split()) if r - l >= m - 1: print(max(c[r] - c[l + m - 2], 0)) else: print(0)
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
n,m,q = map(int, input().split()) s = input() t =input() res="" if n>=m: for i in range(n): if (s[i:i+m]==t): res+="1" else: res+="0" for i in range(q): c0,c1 = map(int, input().split()) if (m>n) or (c1-c0+1<m): print (0) else : print (res[c0-1:c1-m+1].count("1"))
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
n,m,q = map(int, input().split()) s = input() t = input() a = [0]*(n+1) for i in range(n-m+1): if s[i:i+m]==t: a[i] = 1 for i in range(n-1,-1,-1): a[i]+=a[i+1]; for k in range(q): l, r = map(int, input().split()) l = l-1 r = r-m res = a[l]-a[r+1] if l<=r else 0 print(res)
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.io.*; import java.util.StringTokenizer; public class Solution { public static void main(String[] args) throws IOException { FastScanner in = new FastScanner(System.in); PrintWriter out = new PrintWriter(System.out); int n = in.nextInt(); int m = in.nextInt(); int q = in.nextInt(); String s = in.nextToken(); String t = in.nextToken(); int[] dp = new int[n + 1]; for (int i = 0; i < n; i++) { if (checkSubstring(i , n, m, s, t)) dp[i]++; dp[i + 1] += dp[i]; } while (q-- > 0) { int l = in.nextInt(); int r = in.nextInt(); int before; int all; if (l == 1) before = 0; else before = dp[l - 2]; if (r<m) all=0; else all=dp[r-m]; out.println(Math.max(0,all-before)); } out.close(); } private static boolean checkSubstring(int i, int n, int m, String s, String t) { if (i + m > n) return false; for (int k = 0; k < m; k++) { if (s.charAt(i + k) != t.charAt(k)) return false; } return true; } private static class FastScanner { BufferedReader br; StringTokenizer stok; FastScanner(InputStream is) { this.br = new BufferedReader(new InputStreamReader(is)); } String nextToken() throws IOException { while (stok == null || !stok.hasMoreTokens()) { String s = br.readLine(); if (s == null) return null; stok = new StringTokenizer(s); } return stok.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#import io, os #input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline from sys import stdout print = stdout.write ## reference from pajendoc n, m, q = map(int, input().split()) s = str(input()) t = str(input()) ans = [] i = j = 0 while True: x = s.find(t, i) if x != -1: for _ in range(x-i+1): ans.append(j) j += 1 i = x + 1 else: ans += [j]*(n-i+2) break for _ in range(q): l, r = map(int, input().split()) l -= 1 r -= m-1 print(str(ans[r] - ans[l]) if r > l else str(0)) print('\n')
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import sys, math from sys import stdin, stdout rem = 10 ** 9 + 7 sys.setrecursionlimit(10 ** 6) take = lambda: map(int, raw_input().split()) from bisect import bisect_right,bisect_left n,m,q=take() arr=list(raw_input()) new=list(raw_input()) left=[-1] right=[-1] for i in range(n-m+1): #print arr[i:i+m] if arr[i:i+m]==new: left.append(i+1) right.append(i+m) right.append(10**5) left.append(10**5) #print left #print right for i in range(q): a,b=take() c=bisect_left(left,a) d=bisect_right(right,b) if d>=c: print d-c else: print 0
PYTHON
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
n,m,q=map(int,input().split()) s=input() t=input() x=0 dp1=[0 for i in range(n)] while x<n: if s[x-m+1:x+1]==t: dp1[x]=1 else: dp1[x]=0 x+=1 dp=[] for i in range(n): acum=0 dp.append([]) for j in range(i): dp[-1].append(0) for j in range(i,n): if dp1[j]!=0 and j-m+1>=i: acum+=dp1[j] dp[-1].append(acum) ans="" for i in range(q): l,r=map(int,input().split()) ans+=str(dp[l-1][r-1])+chr(10) print(ans)
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.util.Scanner; public class Codeforces { public static String slovo(String s, int pos, int dl) { String rt = ""; for (int i = pos; i < pos + dl; i++) { rt += s.charAt(i); } return rt; } public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(), m = in.nextInt(), q = in.nextInt(); int[] a = new int[1111]; String s = in.next(), t = in.next(); for (int i = 0; i < n - m + 1; i++) { String s1 = slovo(s, i, m); if (s1.equals(t)) { a[i]++; } } for (int i = 1; i <= n; i++) { a[i] += a[i-1]; } for(int i = n; i >= 1; i--) { a[i] = a[i-1]; } a[0] = 0; for (int p = 1; p <= q; p++) { int l = in.nextInt(), r = in.nextInt(); if (r - m + 1 < 1) { System.out.println(0); } else { System.out.println (( (a[r - m + 1] - a[l-1]) >= 0 ) ? (a[r - m + 1] - a[l-1]) : 0); } } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> using namespace std; const int maxn = 1e3 + 10; char str[maxn], s[maxn]; struct node { char ch; int val; node() {} node(char _ch, int _val) : ch(_ch), val(_val) {} }; node stk[maxn]; int top; int f[maxn]; int tr[maxn]; int len1, len2; void update(int x, int v) { while (x <= len1) { tr[x] += v; x += (x & (-x)); } } int get_sum(int x) { int ans = 0; while (x > 0) { ans += tr[x]; x -= (x & (-x)); } return ans; } int fail[maxn]; void getFail(char* P, int len) { fail[0] = fail[1] = 0; for (int i = 1; i < len; i++) { int j = fail[i]; while (j && P[i] != P[j]) j = fail[j]; fail[i + 1] = (P[i] == P[j] ? j + 1 : 0); } } int main() { int m; scanf("%d %d %d", &len1, &len2, &m); scanf(" %s", str); scanf(" %s", s); getFail(s, len2); int j = 0; for (int i = 0; i < len1; i++) { while (j && s[j] != str[i]) j = fail[j]; if (s[j] == str[i]) ++j; if (j == len2) { int x = i - len2 + 1; update(x + 1, 1); } } for (int i = 0; i < m; i++) { int l, r; scanf("%d %d", &l, &r); if (r - l + 1 < len2) { printf("0\n"); } else { printf("%d\n", get_sum(r - len2 + 1) - get_sum(l - 1)); } } return 0; }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.io.IOException; import java.io.InputStream; public class B1016 { public static void main(String[] args) throws IOException { InputReader reader = new InputReader(System.in); int N = reader.readInt(); int M = reader.readInt(); int Q = reader.readInt(); String S = reader.readString(); String T = reader.readString(); boolean[] match = new boolean[N]; for (int n=0; n<N; n++) { match[n] = S.substring(n).startsWith(T); } StringBuilder output = new StringBuilder(); for (int q=0; q<Q; q++) { int L = reader.readInt()-1; int R = reader.readInt()-1; R -= M-1; int answer = 0; for (int i=L; i<=R; i++) { if (match[i]) answer++; } output.append(answer).append('\n'); } System.out.println(output); } static final class InputReader { private final InputStream stream; private final byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } private int read() throws IOException { if (curChar >= numChars) { curChar = 0; numChars = stream.read(buf); if (numChars <= 0) { return -1; } } return buf[curChar++]; } public final int readInt() throws IOException { return (int)readLong(); } public final long readLong() throws IOException { int c = read(); while (isSpaceChar(c)) { c = read(); if (c == -1) throw new IOException(); } boolean negative = false; if (c == '-') { negative = true; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return negative ? -res : res; } public final int[] readIntArray(int size) throws IOException { int[] array = new int[size]; for (int i=0; i<size; i++) { array[i] = readInt(); } return array; } public final long[] readLongArray(int size) throws IOException { long[] array = new long[size]; for (int i=0; i<size; i++) { array[i] = readLong(); } return array; } public final String readString() throws IOException { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { res.append((char)c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> using namespace std; const int MAXN = 1005, MAXM = 1005; string T, P, tt; int Next[MAXM], N, M, C; void MakeNext(int M) { int i = 0, j = -1; Next[i] = -1; while (i < M) { if (j == -1 || P[i] == P[j]) Next[++i] = ++j; else j = Next[j]; } } int KMP(int pos, int N, int M) { int i = pos, j = 0, ans = 0; while (i < N) { if (T[i] == P[j] || j == -1) i++, j++; else j = Next[j]; if (j == M) { ans++; j = Next[j - 1]; i--; } } return ans; } int main() { int n, m, q; cin >> n >> m >> q; cin >> tt >> P; int l, r; while (q--) { cin >> l >> r; T = tt.substr(l - 1, r - l + 1); N = r - l + 1; M = m; MakeNext(M); printf("%d\n", KMP(0, N, M)); } return 0; }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { public void solve(int testNumber, FastScanner in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); String s = in.nextLine(); String t = in.nextLine(); int q = in.nextInt(); int[] a = new int[n + 1]; for (int i = 0; i < n; i++) { int j = 0; for (; j < m && i + j < n; j++) { if (t.charAt(j) != s.charAt(i + j)) break; } if (j == m) a[i] = 1; } int[] b = new int[n + 1]; b[n] = n; for (int i = n - 1; i >= 0; i--) { b[i] = b[i + 1]; if (a[i] == 1) { b[i] = i; } } // out.println(Arrays.toString(b)); for (int i = 0; i < q; i++) { int x = in.nextInt() - 1; int y = in.nextInt() - 1; int cnt = 0; for (int j = b[x]; j < n && j <= y; j = b[j + 1]) { if (j + t.length() - 1 <= y) cnt++; } out.println(cnt); } } } static class FastScanner { private BufferedReader bufferedReader; private StringTokenizer stringTokenizer; public FastScanner(InputStream inputStream) { bufferedReader = new BufferedReader(new InputStreamReader(inputStream)); } public String next() { while (stringTokenizer == null || !stringTokenizer.hasMoreElements()) { try { stringTokenizer = new StringTokenizer(bufferedReader.readLine()); } catch (IOException e) { e.printStackTrace(); } } return stringTokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public String nextLine() { String ret = ""; try { ret = bufferedReader.readLine(); } catch (IOException e) { e.printStackTrace(); } return ret; } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> using namespace std; int main() { int n, m, q; cin >> n >> m >> q; string s, t; cin >> s >> t; int ans[1000003] = {0}; for (int i = 0; i < n; i++) { if (s.substr(i, m) == t) { ans[i] = 1; } } while (q--) { int l, r, cnt = 0; cin >> l >> r; if (r - l + 1 < m) { cout << 0 << endl; } else { l--; r--; for (int i = l; i <= r; i++) { if (ans[i] == 1 && i + m - 1 <= r) cnt++; } cout << cnt << endl; } } return 0; }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
//6000 KB memory import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; public class Main //main class { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String args[]){ FastReader in=new FastReader(); int n=in.nextInt(),m=in.nextInt(),q=in.nextInt(); String s1=in.next(),s2=in.next(); if (m>n||!(s1.contains(s2))) { for (int i = 0; i < q; i++) { n=in.nextInt(); n=in.nextInt(); System.out.println("0"); } }else{ int arr[]=new int[n+1]; for (int i = 1; i <= n; i++) { if (i<=(n-m+1)) { if (s1.substring(i-1, i+m-1).matches(s2)) { arr[i]++; }} arr[i]+=arr[i-1]; } for (int i = 0; i <q; i++) { n=in.nextInt(); m=in.nextInt(); if (m-n+1<s2.length()) { System.out.println("0"); }else System.out.println(arr[m-s2.length()+1]-arr[n-1]); } } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> using namespace std; string a; string b; int ans[1000 + 7]; int main() { int m, n, q; cin >> m >> n >> q; cin >> a >> b; int tmp = 0; for (int i = 0; i < m; i++) { if (a[i] == b[0]) { int cnt = 0; for (int j = 0; j < n; j++) { if (a[i + j] == b[j]) cnt++; else break; } if (cnt == n) tmp += 1; } ans[i + 1] = tmp; } for (int i = 0; i < q; i++) { int x, y; cin >> x >> y; y = y - n + 1; if (x > y) cout << "0" << endl; else cout << ans[y] - ans[x - 1] << endl; } }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.util.*; import java.io.*; import java.lang.*; import java.math.*; public class B { public static void main(String[] args) throws Exception { BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); // Scanner scan = new Scanner(System.in); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); // int n = Integer.parseInt(bf.readLine()); StringTokenizer st = new StringTokenizer(bf.readLine()); // int[] a = new int[n]; for(int i=0; i<n; i++) a[i] = Integer.parseInt(st.nextToken()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); int q = Integer.parseInt(st.nextToken()); String s = bf.readLine(); String t = bf.readLine(); int MOD = 1000000009; int base = 70709; Random rand = new Random(); int[] hash_value = new int[26]; for(int i=0; i<26; i++) hash_value[i] = 2+rand.nextInt(MOD-4); long[] hash = new long[n+1]; hash[0] = 0; for(int i=1; i<=n; i++) { hash[i] = (hash[i-1] + 1L*hash_value[(s.charAt(i-1)-'a')]*exp(base, i-1, MOD) % MOD) % MOD; } long desired = 0; for(int i=1; i<=m; i++) { desired = (desired + 1L*hash_value[(t.charAt(i-1)-'a')]*exp(base, i-1, MOD) % MOD)% MOD; } // out.println(desired); int[] count = new int[n]; for(int i=0; i<=n-m; i++) { long hash_Val = ((hash[i+m]-hash[i] + MOD) % MOD)*inv(exp(base, i, MOD), MOD) % MOD; // out.println(hash_Val); if(hash_Val == desired) count[i]++; } //out.println(Arrays.toString(count)); int[] pref_sum = new int[n+1]; pref_sum[0] = 0; for(int i=1; i<n+1; i++) pref_sum[i] = pref_sum[i-1] + count[i-1]; for(int i=0; i<q; i++) { st = new StringTokenizer(bf.readLine()); int l = Integer.parseInt(st.nextToken()) - 1; int r = Integer.parseInt(st.nextToken()) - 1; r = r-m+1+1; l = l-1+1; if((l <= r) && (0 <= l) && (r <= n)) out.println((pref_sum[r]-pref_sum[l])); else out.println(0); } // int n = scan.nextInt(); out.close(); System.exit(0); } public static int exp(int base, int e, int mod) { if(e == 0) return 1; if(e == 1) return base; int val = exp(base, e/2, mod); int ans = (int)(1L*val*val % mod); if(e % 2 == 1) ans = (int)(1L*ans*base % mod); return ans; } public static int inv(int base, int mod) { return exp(base, mod-2, mod); } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
from sys import stdin n,m,q = [int(x) for x in stdin.readline().rstrip().split()] s=stdin.readline().rstrip().split()[0] t=stdin.readline().rstrip().split()[0] temp=[] for j in range (0, n-m+1): if s[j:j+m]==t: temp.append(1) else: temp.append(0) for i in range(q): query=[int(x) for x in stdin.readline().rstrip().split()] if query[1]-m + 1<0: print 0 else: print sum(temp[query[0]-1:query[1]-m + 1])
PYTHON
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.io.*; import java.util.*; public class CF1016B { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); int q = Integer.parseInt(st.nextToken()); char[] ss = br.readLine().toCharArray(); char[] tt = br.readLine().toCharArray(); int[] kk = new int[n]; for (int i = 0; i <= n - m; i++) { boolean match = true; for (int j = 0; j < m; j++) if (ss[i + j] != tt[j]) { match = false; break; } if (match) kk[i + m - 1] = 1; } for (int i = 1; i < n; i++) kk[i] += kk[i - 1]; while (q-- > 0) { st = new StringTokenizer(br.readLine()); int l = Integer.parseInt(st.nextToken()) - 1; int r = Integer.parseInt(st.nextToken()) - 1; int l_ = l + m - 1; int ans; if (r < l_) ans = 0; else ans = kk[r] - (l_ - 1 >= 0 ? kk[l_ - 1] : 0); pw.println(ans); } pw.close(); } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
n,m,q = [int(x) for x in input().split()] s = input() t = input() #precalculate all possible matches cnt_lst = [0] for i in range(len(s)): val = 1 if s.startswith(t,i) else 0 cnt_lst.append(cnt_lst[-1] + val) #print(cnt_lst) for i in range(q): l,r = [int(x) for x in input().split()] x,y = l-1, r - len(t) + 1 if x < y: print(cnt_lst[y] - cnt_lst[x]) else: print(0)
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> #pragma GCC optimize("O3", "unroll-loops") using namespace std; template <class T1, class T2> inline void checkmin(T1 &x, T2 y) { if (x > y) x = y; } template <class T1, class T2> inline void checkmax(T1 &x, T2 y) { if (x < y) x = y; } template <class T1> inline void sort(T1 &arr) { sort(arr.begin(), arr.end()); } template <class T1> inline void rsort(T1 &arr) { sort(arr.rbegin(), arr.rend()); } template <class T1> inline void reverse(T1 &arr) { reverse(arr.begin(), arr.end()); } template <class T1> inline void shuffle(T1 &arr) { for (int i = -int(arr.size()); i < int(arr.size()); ++i) swap(arr[rand() % arr.size()], arr[rand() % arr.size()]); } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cout << fixed << setprecision(20); srand(time(NULL)); long long n, m, q; cin >> n >> m >> q; string second, t; cin >> second >> t; vector<int> cnt(second.size()); for (int i = 0; i <= int(second.size()) - int(t.size()); ++i) { string news = ""; for (int j = i; j < i + t.size(); ++j) news += second[j]; if (news == t) ++cnt[i]; } for (int i = 1; i < cnt.size(); ++i) cnt[i] += cnt[i - 1]; for (int i = 0; i < q; ++i) { int u, v; cin >> u >> v; --u; v -= int(t.size()); if (v < u) cout << 0 << '\n'; else { if (u == 0) cout << cnt[v] << '\n'; else cout << cnt[v] - cnt[u - 1] << '\n'; } } return 0; }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> using namespace std; const int MaxN = 100005; int BIT[MaxN]; void update(int pos) { int i, j, p, q; for (i = pos; i < MaxN; i += i & (-i)) { BIT[i] += 1; } } int query(int pos) { int i, j, p = 0, q; for (i = pos; i > 0; i -= i & (-i)) { p += BIT[i]; } return p; } int main() { cin.tie(0), ios_base::sync_with_stdio(0); int N, M, K, i, j, p, q; bool proof; cin >> N >> M >> K; string a, b; cin >> a >> b; for (i = 0; i <= N - M; i++) { proof = 1; for (j = i; j < i + M; j++) { if (a[j] != b[j - i]) { proof = 0; continue; } } if (proof) { update(i + 1); } } for (i = 0; i < K; i++) { cin >> p >> q; if (q - M - p + 1 < 0) cout << "0\n"; else cout << query(q - M + 1) - query(p - 1) << "\n"; } }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> using namespace std; char s[2000], t[2000]; int f[2000]; int main() { int n, m, q; scanf("%d%d%d", &n, &m, &q); scanf("%s", s + 1); scanf("%s", t + 1); for (int i = 1; i <= n - m + 1; i++) { int flag = 1; for (int j = 1; j <= m; j++) if (s[i + j - 1] != t[j]) { flag = 0; break; } f[i] = f[i - 1] + flag; } for (int i = 1; i <= q; i++) { int l, r; scanf("%d%d", &l, &r); if (r - l + 1 < m) printf("0\n"); else printf("%d\n", f[r - m + 1] - f[l - 1]); } }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import sys range = xrange input = raw_input n,m,q = [int(x) for x in input().split()] s = input() t = input() is_start = [False]*n for i in range(n): j = 0 while j<m and i+j<n and s[i+j]==t[j]: j+=1 if j==m: is_start[i]=True A = [0] for val in is_start: if val: A.append(A[-1]+1) else: A.append(A[-1]) inp = [int(x) for line in sys.stdin for x in line.split()] out = [] for i in range(q): l,r = inp[2*i],inp[2*i+1] l-=1 r-=m-1 if l<r: out.append(str(A[r]-A[l])) else: out.append('0') print '\n'.join(out)
PYTHON
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.ArrayList; import java.util.HashSet; import java.util.List; import java.util.Set; import java.util.StringTokenizer; public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Task solver = new Task(); solver.solve(1, in, out); out.close(); } static class Task { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); int q = in.nextInt(); String s = in.next(); String t = in.next(); List<Integer> occurs = new ArrayList<>(); for (int i = 0; i + t.length() <= s.length(); i++) { int ind = s.indexOf(t, i); if (ind != -1) { occurs.add(ind); i = ind; } else { break; } } if (occurs.isEmpty()) { for (int i = 0; i < q; i++) { out.println(0); } return; } for (int i = 0; i < q; i++) { int l = in.nextInt() - 1; int r = in.nextInt() - 1; int count = 0; for (int j = 0; j < occurs.size(); j++) { if (occurs.get(j) < l) { continue; } else if (occurs.get(j) + t.length() - 1 <= r) { count++; } else if (occurs.get(j) + t.length() - 1 > r) { break; } } /* * for (int j = l; j <= r - t.length() + 1; j++) { if (occurs.contains(j)) { count++; } } */ out.println(count); } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public Long nextLong() { return Long.parseLong(next()); } public Double nextDouble() { return Double.parseDouble(next()); } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
n,m,q=map(int,raw_input().split()) s=raw_input() t=raw_input() pre=[0]*(n+1) for i in xrange(n-m+1): j=0 k=i pre[i+1]=pre[i] while(j<m): if t[j]==s[k]: j+=1 k+=1 else: break if j==m: pre[i+1]+=1 for i in xrange(q): l,r=map(int,raw_input().split()) if r-l+1<m:print 0 else: print pre[r-m+1]-pre[l-1]
PYTHON
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
n,m,q=map(int,input().split()) s=input() s1=input() st=[] en=[] l=[] for i in range(n): st.append(0) en.append(0) for i in range(n): if s[i:i+len(s1)] ==s1: l.append(1) st[i]=1 en[i+len(s1)-1]=1 else: l.append(0) sums=0 sume=0 sa=[] se=[] a=[] for i in range(n): sums=sums+st[i] sume=sume+en[i] sa.append(sums) se.append(sume) #print(sa,se) for i in range(q): a1,b1=map(int,input().split()) #print(se[b1-1],sa[a1-2],b1-1) if(a1==1): print(se[b1-1]-0) else: if(se[b1-1]-sa[a1-2]<0): print(0) else: print(se[b1-1]-sa[a1-2])
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; MyScan in = new MyScan(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { public void solve(int testNumber, MyScan in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); int q = in.nextInt(); String t1 = in.next(); String t2 = in.next(); int[] ans = new int[Math.max(n - m + 1, 0)]; for (int l = 0; l < n - m + 1; l++) { ans[l] = t2.equals(t1.substring(l, l + t2.length())) ? 1 : 0; } while (q-- > 0) { int fr = in.nextInt() - 1; int to = in.nextInt() - t2.length(); int r = 0; for (int s = fr; s <= to; s++) { r += ans[s]; } out.println(r); } } } static class MyScan { private final InputStream in; private byte[] inbuf = new byte[1024]; public int lenbuf = 0; public int ptrbuf = 0; public MyScan(InputStream in) { this.in = in; } private int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try { lenbuf = in.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++]; } public boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } public int skip() { int b; while ((b = readByte()) != -1 && isSpaceChar(b)) ; return b; } public String next() { int b = skip(); StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public int nextInt() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
[n,m,q] = input().split() n=int(n) m=int(m) q=int(q) s=input() t=input() a=[0 for i in range(n + 5)] for i in range(0,n-m+1): if s[i:i+m]==t: a[i + 1]=1 for i in range(1,n + 3): a[i]+=a[i-1] for i in range(q): [l,r]=input().split() l=int(l) r=int(r) if (r - l + 1 < m): print(0) else: print(a[r-m+1]-a[l-1])
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
def mi(): return map(int, input().split()) n,m,q = mi() s = list(input()) t = list(input()) pre1 = [0]*n pre2 = [0]*n if n>=m: for i in range(n-m+1): if (s[i:i+m]==t): pre1[i+m-1] = 1 pre2[i] = 1 for i in range(1,n): pre1[i]+=pre1[i-1] pre2[i]+=pre2[i-1] pre1.insert(0,0) pre2.insert(0,0) while q: q-=1 l,r = mi() s1, s2 = 0,0 #for i in range(l, r+1): #s1+=pre1[i] #s2+=pre2[i] if m>n: print (0) continue if r<m or r-l+1<m or n-l+1<m: print (0) continue s1 = pre1[r]-pre1[l-1+m-1] s2 = pre2[r-m+1]-pre2[l-1] if s1>0 and s2>0: print (min(s1,s2)) else: print (0)
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import sys def get_array(): return list(map(int, sys.stdin.readline().split())) def get_ints(): return map(int, sys.stdin.readline().split()) def input(): return sys.stdin.readline().strip('\n') n , m , q = get_ints() s = input() p = input() ans = [] i = 0 count = 0 while True: si = s.find(p,i) if si != -1: ans += [count]*(si-i+1) count += 1 i = si+1 else: ans += [count]*(n-i+2) break out = [] for i in range(q): a , b = get_ints() a -= 1 b -= m-1 out.append(str(ans[b]-ans[a] if b >= a else 0 )) print('\n'.join(out))
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
from collections import Counter def main(): n, m, q = [int(c) for c in input().split()] s = input() t = input() ok = [] pr = [0] for i in range(0, n): ok.append(1 if t == s[i:i+m] else 0) pr.append(pr[-1] + ok[-1]) # print('[' + ', '.join(list(s)) + ']') # print(ok) # print(pr) res = [] for i in range(q): li, ri = [int(c) for c in input().split()] res.append(0 if ri-li+1 < m else pr[ri-m+1] - pr[li-1]) for e in res: print(e) if __name__ == '__main__': main()
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
def main(): n, m, q = map(int, input().split()) s, t = input(), input() start, ps = [0] * n, [0] * (n+1) for i in range(n): curr, left = 0, i while left < n and s[left] == t[curr]: curr += 1 left += 1 if curr == m: start[i] = 1 break for i in range(n): ps[i+1] = ps[i] + start[i] for i in range(q): l, r = map(int, input().split()) print(0) if r - l + 1 < m else print(ps[r-m+1]-ps[l-1]) if __name__ == '__main__': main()
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
R=lambda:map(int,input().split()) n,m,q=R() s,t=input(),input() a=[0] b=0 for i in range(n): if s[i:i+m]==t:b+=1 a+=[b] for _ in[0]*q:l,r=R();print(a[max(l-1,r-m+1)]-a[l-1])
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
def mmhaxor(n,m,q,s,t): a = [0]*(10000) for i in range(n): a[i+2] = a[i+1]+(s[i:i+m]==t) for i in range(q): ans = 0 l,r = map(int,input().split()) print(a[max(r-m+2,l)]-a[l]) n,m,q = map(int,input().split()) s =input() t =input() mmhaxor(n,m,q,s,t)
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import sys n,m,q = map(int,raw_input().split()) s = list(raw_input()) t = list(raw_input()) if n<m: for i in range(q): print 0 sys.exit() arr = [0 for x in range(n+1)] for i in range(n-m+1): if s[i:i+m]==t: arr[i+1] = 1 arr[i+1] += arr[i] for i in range(n-m+1,n): arr[i+1] += arr[i] for i in range(q): l,r = map(int,raw_input().split()) if r < m: print 0 continue print max(0,arr[r-m+1]-arr[l-1]) ''' 5 1 5 aaaaa a 1 5 '''
PYTHON
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
n, m, q = map(int, input().split()) s = input() t = input() dp = [[0 for i in range(n)] for i in range(n)] for left in range(n): for right in range(left + m - 1, n): if s[right - m + 1:right+ 1] == t: dp[left][right] = dp[left][right - 1] + 1 else: dp[left][right] = dp[left][right - 1] for i in range(q): left, right = map(int, input().split()) print(dp[left- 1][right - 1])
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.util.*; import java.util.regex.*; import java.io.*; public class Codeforces{ public static void main(String[] args) throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); // BufferedReader br = new BufferedReader(new FileReader(new File("D:\\Shivang\\Java\\JavaFile.txt"))); String[] s1 = input(br).split(" "); int n = Integer.parseInt(s1[0]); int m = Integer.parseInt(s1[1]); int q = Integer.parseInt(s1[2]); String sup = input(br); String sub = input(br); NavigableSet<Integer> start = new TreeSet<>(); NavigableSet<Integer> end = new TreeSet<>(); HashMap<Integer, Integer> startHashMap = new HashMap<>(); HashMap<Integer, Integer> endHashMap = new HashMap<>(); int curIndex = 0; for(int i = 0; i <= n - m; i++){ if(sub.equals(sup.substring(i, i + m))){ start.add(i + 1); end.add(i + m); startHashMap.put(i + 1, curIndex); endHashMap.put(i + m, curIndex); curIndex++; } } // System.out.println(start); // System.out.println(end); // System.out.println(startHashMap); // System.out.println(endHashMap); while(q-- > 0){ String[] s2 = input(br).split(" "); int left = Integer.parseInt(s2[0]); int right = Integer.parseInt(s2[1]); int curStart = (start.ceiling(left) == null)? -1: start.ceiling(left); int curEnd = (end.floor(right) == null)? -1: end.floor(right); // System.out.println(curStart + " " + curEnd); if(curEnd == -1 || curStart == -1){ System.out.println(0); continue; } int ansS = startHashMap.get(curStart); int ansE = endHashMap.get(curEnd); int finalAns = ansE - ansS + 1; if(finalAns < 0) finalAns = 0; System.out.println(finalAns); } br.close(); } private static String input(BufferedReader br) throws IOException{ // BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String line; while((line = br.readLine()) != null){ if(line.trim().length() == 0) continue; return line; } return ""; } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.io.*; import java.util.*; /** * @author baito */ @SuppressWarnings("unchecked") public class Main { static StringBuilder sb = new StringBuilder(); static FastScanner sc = new FastScanner(System.in); static int INF = 123456789; static int MINF = -123456789; static long LINF = 123456789123456789L; static long MLINF = -123456789123456789L; static long MOD = 1000000007; static int[] y4 = {0, 1, 0, -1}; static int[] x4 = {1, 0, -1, 0}; static int[] y8 = {0, 1, 0, -1, -1, 1, 1, -1}; static int[] x8 = {1, 0, -1, 0, 1, -1, 1, -1}; static long[] Fa;//factorial static boolean[] isPrime; static int[] primes; static char[][] map; static int N, M, K; static long[] A; public static void main(String[] args) { //longを忘れるなオーバーフローするぞ int N = sc.nextInt(); int M = sc.nextInt(); int Q = sc.nextInt(); String s = sc.next(); String t = sc.next(); int[] srui = new int[N]; int[] erui = new int[N]; for (int i = 0; i + M <= N; i++) { if (s.substring(i, i + M).equals(t)) { srui[i]++; erui[i + M-1]++; } } for (int i = 1; i < N; i++) { srui[i] += srui[i - 1]; erui[i] += erui[i - 1]; } for (int q = 0; q < Q; q++) { int l = sc.nextInt() - 1; int r = sc.nextInt() - 1; long res = upper0(erui[r] - (l > 0 ? srui[l - 1] : 0)); if (r - l + 1 < M) { System.out.println("0"); continue; } System.out.println(res); } } public static long sqrt(long v) { long res = (long) Math.sqrt(v); while (res * res > v) res--; return res; } public static int upper0(int a) { if (a < 0) return 0; return a; } public static long upper0(long a) { if (a < 0) return 0; return a; } public static Integer[] toIntegerArray(int[] ar) { Integer[] res = new Integer[ar.length]; for (int i = 0; i < ar.length; i++) { res[i] = ar[i]; } return res; } //k個の次の組み合わせをビットで返す 大きさに上限はない 110110 -> 111001 public static int nextCombSizeK(int comb, int k) { int x = comb & -comb; //最下位の1 int y = comb + x; //連続した下の1を繰り上がらせる return ((comb & ~y) / x >> 1) | y; } public static int keta(long num) { int res = 0; while (num > 0) { num /= 10; res++; } return res; } public static long getHashKey(int a, int b) { return (long) a << 32 | b; } public static boolean isOutofIndex(int x, int y) { if (x < 0 || y < 0) return true; if (map[0].length <= x || map.length <= y) return true; return false; } public static void setPrimes() { int n = 100001; isPrime = new boolean[n]; List<Integer> prs = new ArrayList<>(); Arrays.fill(isPrime, true); isPrime[0] = isPrime[1] = false; for (int i = 2; i * i <= n; i++) { if (!isPrime[i]) continue; prs.add(i); for (int j = i * 2; j < n; j += i) { isPrime[j] = false; } } primes = new int[prs.size()]; for (int i = 0; i < prs.size(); i++) primes[i] = prs.get(i); } public static void revSort(int[] a) { Arrays.sort(a); reverse(a); } public static void revSort(long[] a) { Arrays.sort(a); reverse(a); } public static int[][] copy(int[][] ar) { int[][] nr = new int[ar.length][ar[0].length]; for (int i = 0; i < ar.length; i++) for (int j = 0; j < ar[0].length; j++) nr[i][j] = ar[i][j]; return nr; } /** * <h1>指定した値以上の先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値以上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static int lowerBound(final int[] arr, final int value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] < value) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値より大きい先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値より上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static int upperBound(final int[] arr, final int value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] <= value) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値以上の先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値以上で、先頭になるインデクス * 値がなければ挿入できる最小のインデックス */ public static long lowerBound(final long[] arr, final long value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] < value) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値より大きい先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値より上で、先頭になるインデクス * 値がなければ挿入できる最小のインデックス */ public static long upperBound(final long[] arr, final long value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] <= value) { low = mid + 1; } else { high = mid; } } return low; } //次の順列に書き換える、最大値ならfalseを返す public static boolean nextPermutation(int A[]) { int len = A.length; int pos = len - 2; for (; pos >= 0; pos--) { if (A[pos] < A[pos + 1]) break; } if (pos == -1) return false; //posより大きい最小の数を二分探索 int ok = pos + 1; int ng = len; while (Math.abs(ng - ok) > 1) { int mid = (ok + ng) / 2; if (A[mid] > A[pos]) ok = mid; else ng = mid; } swap(A, pos, ok); reverse(A, pos + 1, len - 1); return true; } //次の順列に書き換える、最小値ならfalseを返す public static boolean prevPermutation(int A[]) { int len = A.length; int pos = len - 2; for (; pos >= 0; pos--) { if (A[pos] > A[pos + 1]) break; } if (pos == -1) return false; //posより小さい最大の数を二分探索 int ok = pos + 1; int ng = len; while (Math.abs(ng - ok) > 1) { int mid = (ok + ng) / 2; if (A[mid] < A[pos]) ok = mid; else ng = mid; } swap(A, pos, ok); reverse(A, pos + 1, len - 1); return true; } //↓nCrをmod計算するために必要。 ***factorial(N)を呼ぶ必要がある*** static long ncr(int n, int r) { if (n < r) return 0; else if (r == 0) return 1; factorial(n); return Fa[n] / (Fa[n - r] * Fa[r]); } static long ncr2(int a, int b) { if (b == 0) return 1; else if (a < b) return 0; long res = 1; for (int i = 0; i < b; i++) { res *= a - i; res /= i + 1; } return res; } static long ncrdp(int n, int r) { if (n < r) return 0; long[][] dp = new long[n + 1][r + 1]; for (int ni = 0; ni < n + 1; ni++) { dp[ni][0] = dp[ni][ni] = 1; for (int ri = 1; ri < ni; ri++) { dp[ni][ri] = dp[ni - 1][ri - 1] + dp[ni - 1][ri]; } } return dp[n][r]; } static long modNcr(int n, int r) { if (n < r) return 0; long result = Fa[n]; result = result * modInv(Fa[n - r]) % MOD; result = result * modInv(Fa[r]) % MOD; return result; } public static long modSum(long... lar) { long res = 0; for (long l : lar) res = (res + l % MOD) % MOD; if (res < 0) res += MOD; res %= MOD; return res; } public static long modDiff(long a, long b) { long res = a % MOD - b % MOD; if (res < 0) res += MOD; res %= MOD; return res; } public static long modMul(long... lar) { long res = 1; for (long l : lar) res = (res * l % MOD) % MOD; if (res < 0) res += MOD; res %= MOD; return res; } public static long modDiv(long a, long b) { long x = a % MOD; long y = b % MOD; long res = (x * modInv(y)) % MOD; return res; } static long modInv(long n) { return modPow(n, MOD - 2); } static void factorial(int n) { Fa = new long[n + 1]; Fa[0] = Fa[1] = 1; for (int i = 2; i <= n; i++) { Fa[i] = (Fa[i - 1] * i) % MOD; } } static long modPow(long x, long n) { long res = 1L; while (n > 0) { if ((n & 1) == 1) { res = res * x % MOD; } x = x * x % MOD; n >>= 1; } return res; } //↑nCrをmod計算するために必要 static int gcd(int n, int r) { return r == 0 ? n : gcd(r, n % r); } static long gcd(long n, long r) { return r == 0 ? n : gcd(r, n % r); } static <T> void swap(T[] x, int i, int j) { T t = x[i]; x[i] = x[j]; x[j] = t; } static void swap(int[] x, int i, int j) { int t = x[i]; x[i] = x[j]; x[j] = t; } public static void reverse(int[] x) { int l = 0; int r = x.length - 1; while (l < r) { int temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(long[] x) { int l = 0; int r = x.length - 1; while (l < r) { long temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(char[] x) { int l = 0; int r = x.length - 1; while (l < r) { char temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(int[] x, int s, int e) { int l = s; int r = e; while (l < r) { int temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } static int length(int a) { int cou = 0; while (a != 0) { a /= 10; cou++; } return cou; } static int length(long a) { int cou = 0; while (a != 0) { a /= 10; cou++; } return cou; } static int cou(boolean[] a) { int res = 0; for (boolean b : a) { if (b) res++; } return res; } static int cou(String s, char c) { int res = 0; for (char ci : s.toCharArray()) { if (ci == c) res++; } return res; } static int countC2(char[][] a, char c) { int co = 0; for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) if (a[i][j] == c) co++; return co; } static int countI(int[] a, int key) { int co = 0; for (int i = 0; i < a.length; i++) if (a[i] == key) co++; return co; } static int countI(int[][] a, int key) { int co = 0; for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) if (a[i][j] == key) co++; return co; } static void fill(int[][] a, int v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) a[i][j] = v; } static void fill(long[][] a, long v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) a[i][j] = v; } static void fill(int[][][] a, int v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) for (int k = 0; k < a[0][0].length; k++) a[i][j][k] = v; } static int max(int... a) { int res = Integer.MIN_VALUE; for (int i : a) { res = Math.max(res, i); } return res; } static long min(long... a) { long res = Long.MAX_VALUE; for (long i : a) { res = Math.min(res, i); } return res; } static int max(int[][] ar) { int res = Integer.MIN_VALUE; for (int i[] : ar) res = Math.max(res, max(i)); return res; } static int min(int... a) { int res = Integer.MAX_VALUE; for (int i : a) { res = Math.min(res, i); } return res; } static int min(int[][] ar) { int res = Integer.MAX_VALUE; for (int i[] : ar) res = Math.min(res, min(i)); return res; } static int sum(int[] a) { int cou = 0; for (int i : a) cou += i; return cou; } static long sum(long[] a) { long cou = 0; for (long i : a) cou += i; return cou; } static int abs(int a) { return Math.abs(a); } static class FastScanner { private BufferedReader reader = null; private StringTokenizer tokenizer = null; public FastScanner(InputStream in) { reader = new BufferedReader(new InputStreamReader(in)); tokenizer = null; } public String next() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } /*public String nextChar(){ return (char)next()[0]; }*/ public String nextLine() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken("\n"); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public int[] nextIntArrayOneIndex(int n) { int[] a = new int[n + 1]; for (int i = 1; i < n + 1; i++) { a[i] = nextInt(); } return a; } public int[] nextIntArrayDec(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt() - 1; } return a; } public int[][] nextIntArray2(int h, int w) { int[][] a = new int[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = nextInt(); } } return a; } public int[][] nextIntArray2Dec(int h, int w) { int[][] a = new int[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = nextInt() - 1; } } return a; } //複数の配列を受け取る public void nextIntArrays2ar(int[] a, int[] b) { for (int i = 0; i < a.length; i++) { a[i] = sc.nextInt(); b[i] = sc.nextInt(); } } public void nextIntArrays2arDec(int[] a, int[] b) { for (int i = 0; i < a.length; i++) { a[i] = sc.nextInt() - 1; b[i] = sc.nextInt() - 1; } } //複数の配列を受け取る public void nextIntArrays3ar(int[] a, int[] b, int[] c) { for (int i = 0; i < a.length; i++) { a[i] = sc.nextInt(); b[i] = sc.nextInt(); c[i] = sc.nextInt(); } } //複数の配列を受け取る public void nextIntArrays3arDecLeft2(int[] a, int[] b, int[] c) { for (int i = 0; i < a.length; i++) { a[i] = sc.nextInt() - 1; b[i] = sc.nextInt() - 1; c[i] = sc.nextInt(); } } public Integer[] nextIntegerArray(int n) { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public char[] nextCharArray(int n) { char[] a = next().toCharArray(); return a; } public char[][] nextCharArray2(int h, int w) { char[][] a = new char[h][w]; for (int i = 0; i < h; i++) { a[i] = next().toCharArray(); } return a; } //スペースが入っている場合 public char[][] nextCharArray2s(int h, int w) { char[][] a = new char[h][w]; for (int i = 0; i < h; i++) { a[i] = nextLine().replace(" ", "").toCharArray(); } return a; } public char[][] nextWrapCharArray2(int h, int w, char c) { char[][] a = new char[h + 2][w + 2]; //char c = '*'; int i; for (i = 0; i < w + 2; i++) a[0][i] = c; for (i = 1; i < h + 1; i++) { a[i] = (c + next() + c).toCharArray(); } for (i = 0; i < w + 2; i++) a[h + 1][i] = c; return a; } //スペースが入ってる時用 public char[][] nextWrapCharArray2s(int h, int w, char c) { char[][] a = new char[h + 2][w + 2]; //char c = '*'; int i; for (i = 0; i < w + 2; i++) a[0][i] = c; for (i = 1; i < h + 1; i++) { a[i] = (c + nextLine().replace(" ", "") + c).toCharArray(); } for (i = 0; i < w + 2; i++) a[h + 1][i] = c; return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } public long[][] nextLongArray2(int h, int w) { long[][] a = new long[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = nextLong(); } } return a; } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
n, m, q = map(int, input().split()) s = input() t = input() gas = ['LOL'] otv = [] c = m - 2 for i in range(n): if s[i:i+m] == t: gas.append(1) else: gas.append(0) for i in range(q): l, r = map(int, input().split()) if r - m >= 0: otv.append(str(sum(gas[l:r - c]))) else: otv.append('0') print('\n'.join(otv))
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
n, m, q = map(int, input().split()) s = input() t = input() pr = [0] * (1000 + 7) ok = [0] * (1000 + 7) pr[0] = 0 for i in range(n - m + 1): fl = 1 for j in range(m): if(s[i+j] != t[j]): fl = 0 ok[i] = fl pr[i+1] = pr[i] + ok[i] for i in range(max(0, n - m + 1), n): pr[i+1] = pr[i] while q > 0: l, r = map(int, input().split()) l -= 1 r -= m - 1 if(r >= l): print(pr[r] - pr[l]) else:print(0) q -= 1
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
Input = lambda: map(int, input().split()) n, m, q = Input() s = input() t = input() pre = [ 0 for i in range(n + 5)] for i in range(0, n - m + 1): if s[i:i+m] == t: pre[i + 1] = 1 for i in range(1, n + 3): pre[i] += pre[i - 1] for i in range(q): l, r = Input() if r - l + 1 < m: print(0) continue print(pre[r - m + 1] - pre[l - 1])
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.util.Scanner; public class SegmentOccurrence { static class Query { int l; int r; public Query(int l, int r) { this.l = l; this.r = r; } } public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int m = in.nextInt(); int q = in.nextInt(); String s = in.next(); String t = in.next(); Query[] queries = new Query[q]; for (int i = 0; i < q; i++) { queries[i] = new Query(in.nextInt(), in.nextInt()); } int[] posCount = new int[s.length()]; for (int start = 0; start + t.length() <= s.length(); start++) { boolean allMatch = true; for (int i = 0; i < t.length(); i++) { if (s.charAt(start + i) != t.charAt(i)) { allMatch = false; break; } } if (allMatch) { posCount[start] = 1; } } for (Query query : queries) { int count = 0; for (int i = query.l - 1; i + t.length() <= query.r; i++) { count += posCount[i]; } System.out.println(count); } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> using namespace std; int main() { int i, j, n, m, l, r, q, nr; string s; string t; cin >> n >> m >> q; cin >> s >> t; int cnt[1001] = {0}; for (int i = 0; i <= n - m; i++) { if (s.substr(i, m) == t) { cnt[i] = 1; } } l = 0; r = 0; for (i = 1; i <= q; i++) { cin >> l >> r; nr = 0; for (j = l - 1; j <= r - m; j++) { if (cnt[j]) nr++; } cout << nr << '\n'; } return 0; }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import bisect n,m,q=map(int,input().split()) s=input() t=input() def find_substring(substring, string): indices = [] index = -1 # Begin at -1 so while True: index = string.find(substring, index + 1) if index == -1: break indices.append(index+1) return indices l=find_substring(t,s) ans=[] d=0 f=0 while(q): a,b=map(int,input().split()) d=0 if b-a+1>=len(t): b=b-len(t)+1 d=bisect.bisect_left(l,a) f=bisect.bisect_right(l,b) ans.append(str(f-d)) else: ans.append("0") q=q-1 print("\n".join(ans))
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> using namespace std; long long const MOD = 1e9 + 7; long long const N = 1e3 + 10; long long ara[N + 1]; long long bra[N + 1]; int main() { (ios_base::sync_with_stdio(false), cin.tie(NULL)); long long n, m, q; cin >> n >> m >> q; string str, s; cin >> str >> s; for (long long i = 0; i < n - m + 1; i++) { long long j = 0, pre = i; while (j < m) { if (str[i] == s[j]) { i++; j++; } else break; } if (j == m) { bra[pre + 1]++; i--; bra[i]--; ara[pre + 1]++; } i = pre; } for (long long i = 1; i <= n + 10; i++) { ara[i] += ara[i - 1]; bra[i] += bra[i - 1]; } while (q--) { long long a, b; cin >> a >> b; b = b - m + 1; cout << max(0ll, ara[max(b, 0ll)] - ara[a - 1]) << endl; } }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> #pragma GCC optimize("O3") using namespace std; const long long MAXN = 1e3 + 10; long long n, m, q; string a, b; long long pref[MAXN]; inline void precalc() { for (long long i = 0; i < n - m + 1; ++i) { bool flag = true; for (long long j = i; j < i + m; ++j) { if (a[j] != b[j - i]) { flag = false; break; } } if (i == 0) { pref[i] = flag; continue; } pref[i] = pref[i - 1] + flag; } } inline long long get(long long i) { if (i < 0) return 0; return pref[i]; } inline long long get_ans(long long L, long long R) { if (R - m + 1 < 0 || L + m - 1 > R) return 0; return pref[R - m + 1] - get(L - 1); } signed main() { ios::sync_with_stdio(0); cin >> n >> m >> q; cin >> a >> b; precalc(); for (long long i = 0; i < q; ++i) { long long L, R; cin >> L >> R; --L, --R; cout << get_ans(L, R) << "\n"; } }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
a1 = list(map(int, input().split(' ')[:3])) bigString = input() littleString = input() all = 0 left = [0]*len(bigString) right = [0]*len(bigString) leftCount = 0 rightCount = 0 for i in range(len(bigString)): left[i] = leftCount if bigString.find(littleString,i,i + len(littleString)) != -1: leftCount += 1 for i in range(len(bigString) - 1, -1, -1): #print(i) right[i] = rightCount if bigString.find(littleString,i - len(littleString) + 1, i + 1) != -1: rightCount += 1 for i in range(len(bigString)): if bigString.find(littleString,i,i + len(littleString)) != -1: all += 1 #print(left) #print(right) #print(all, "all") for s in range(a1[2]): a2 = list(map(int, input().split(' ')[:2])) a2[0] -= 1 a2[1] -= 1 if a2[1] - a2[0] < len(littleString) - 1: print(0) else: result = all - right[a2[1]] - left[a2[0]] print(result)
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class SO1016Bv2 { public static void main(String[] args) throws IOException { BufferedReader inputs = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer threeInts = new StringTokenizer(inputs.readLine()); int sLength = Integer.parseInt(threeInts.nextToken()); int tLength = Integer.parseInt(threeInts.nextToken()); int queries = Integer.parseInt(threeInts.nextToken()); String superString = inputs.readLine(); String checkString = inputs.readLine(); int subLow; //start index of the substring. int subHigh; //end index of the substring. StringTokenizer queryHandler; int curOccurrences = 0; //Occurrences of checkString. int[] occurrences = new int[sLength]; //Counts if there is an occurrence of checkString at a specified index.. //Calculates if at a given index there is an occurrence of checkString. for(int i = 0; i < sLength - (tLength - 1); i++) { if(superString.substring(i, i + tLength).equals(checkString)) { occurrences[i] = 1; } } //Takes care of the queries. for(int i = 0; i < queries; i++) { queryHandler = new StringTokenizer(inputs.readLine()); subLow = Integer.parseInt(queryHandler.nextToken()); subHigh = Integer.parseInt(queryHandler.nextToken()); for(int j = subLow - 1; j < subHigh - (tLength - 1); j++) { if(occurrences[j] == 1) { curOccurrences++; } } System.out.println(curOccurrences); curOccurrences = 0; } inputs.close(); } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.util.*; public class CodeforcesEdu48 { public static Scanner scn = new Scanner (System.in); public static void main(String[] args) { // Q1(); // Q2(); Q2n(); } private static void Q2n() { int n = scn.nextInt(); int m = scn.nextInt(); int qn = scn.nextInt(); String s = scn.next(); String t = scn.next(); int[][] q = new int[qn][2]; for(int i =0;i<qn;i++) { q[i][0] = scn.nextInt()-1; q[i][1] = scn.nextInt()-1; } if(n<m) { for(int i = 0;i<qn;i++) { System.out.println(0); } return; } for(int i = 0;i<qn;i++) { int l = q[i][0]; int r = q[i][1]; int ans = KMPSearch(t, s.substring(l, r+1)); if(ans==-1) { System.out.println(0); }else { System.out.println(ans); } } } static int KMPSearch(String pat, String txt) { int count = 0; int M = pat.length(); int N = txt.length(); int lps[] = new int[M]; int j = 0; computeLPSArray(pat,M,lps); int i = 0; while (i < N) { if (pat.charAt(j) == txt.charAt(i)) { j++; i++; } if (j == M) { int ans = (i-j); j = lps[j-1]; count++; } else if (i < N && pat.charAt(j) != txt.charAt(i)) { if (j != 0) j = lps[j-1]; else i = i+1; } } if(count!=0)return count; return -1; } static void computeLPSArray(String pat, int M, int lps[]) { int len = 0; int i = 1; lps[0] = 0; while (i < M) { if (pat.charAt(i) == pat.charAt(len)) { len++; lps[i] = len; i++; } else { if (len != 0) { len = lps[len-1]; } else { lps[i] = len; i++; } } } } private static void Q2() { int n = scn.nextInt(); int m = scn.nextInt(); int qn = scn.nextInt(); String s = scn.next(); String t = scn.next(); int[][] q = new int[qn][2]; for(int i =0;i<qn;i++) { q[i][0] = scn.nextInt()-1; q[i][1] = scn.nextInt()-1; } if(n<m) { for(int i = 0;i<qn;i++) { System.out.println(0); } return; } int[] a = new int[n]; int st =0; int i = 0; int last = 0; int count = 0; while(i<n) { int pos = s.indexOf(t,i); if(pos==-1) { for(int j =last+1;j<n;j++) { a[j] = count; } break; }else { count++; int nlast = pos+t.length()-1; a[pos+t.length()-1] = count; for(int j =last+1;j<nlast;j++) { a[j] = count-1; } last = nlast; i = pos+1; } } for(int j = 0;j<qn;j++) { int l = q[j][0]; int r = q[j][1]; if(r-l>=t.length()) System.out.println(a[r]-a[l]); else { int ans = a[r]-a[l]; if(ans>0)System.out.println(ans-1); else System.out.println(0); } } } private static void Q1() { int n = scn.nextInt(); int m = scn.nextInt(); int[]arr = new int[n]; for(int i = 0;i<n;i++) { arr[i] = scn.nextInt(); } int left = m; int[] sol = new int[n]; long pg = 1; for(int i = 0;i<n;i++) { if(arr[i]<left) { left-=arr[i]; sol[i] = 0; }else { int np = (arr[i]-left)/m; sol[i] = np+1; // pg+=np; left = m- (arr[i]-left)%m ; } System.out.print(sol[i]+" "); } System.out.println(); } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> using namespace std; void add_self(int& a, int b) { a += b; if (a >= (int)1e9 + 7) a -= (int)1e9 + 7; } void solve() { int n, m, q; cin >> n >> m >> q; string s, t; cin >> s >> t; vector<int> a(n + 1, 0); int cnt = 0; for (int i = 0; i <= n - m; i++) { bool ok = true; int k = 0; for (int j = i; j < i + m; j++) { if (s[j] != t[k++]) { ok = false; break; } } if (ok) { cnt++; } a[i + 1] = cnt; } for (int i = n - m + 1; i <= n; i++) a[i] = cnt; while (q--) { int l, r; cin >> l >> r; int t = r - m + 1; cout << (a[t] - a[l - 1]) * (r - l + 1 >= m) << endl; } } int main() { ios::sync_with_stdio(false); int q = 1; for (int i = 1; i <= q; i++) { solve(); } }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) { FastReader reader = new FastReader(); PrintWriter writer = new PrintWriter(System.out); int n = reader.nextInt(); int m = reader.nextInt(); int q = reader.nextInt(); char[] s = reader.nextLine().toCharArray(); char[] t = reader.nextLine().toCharArray(); int[] count = new int[n]; for (int i=0; i+m-1<n; i++) { boolean check = true; for (int j=0; j<m; j++) { if (s[j+i] != t[j]) check = false; } if (check) count[i]++; } for (int i=1; i<n; i++) count[i] += count[i-1]; while (q > 0) { int l = reader.nextInt()-1; int r = reader.nextInt()-1; int ans = 0; if (r-m+1 >= 0) ans += count[r-m+1]; if (l-1 >= 0) ans -= count[l-1]; writer.println(Math.max(ans,0)); q--; } writer.close(); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
def count_overlapping_substrings(haystack, needle): count = 0 i = -1 while True: i = haystack.find(needle, i + 1) if i == -1: return count left.append(i) right.append(i + len(needle) - 1) count += 1 def bin_search(lst, x): lower_bound = 0 upper_bound = len(lst) - 1 while lower_bound != upper_bound: compared_value = (lower_bound + upper_bound) // 2 # Целочисленный тип в Python имеет неограниченную длину if x == lst[compared_value]: return compared_value elif x < lst[compared_value]: upper_bound = compared_value else: lower_bound = compared_value + 1 return lower_bound n, m, q = map(int, input().split()) s1 = input() s2 = input() right = [] left = [] count_overlapping_substrings(s1, s2) for i in range(q): l, r = map(int, input().split()) if right == []: print(0) continue a = bin_search(left, l - 1) b = bin_search(right, r - 1) if left[a] < l - 1: a += 1 if right[b] > r - 1: b -= 1 if (a > b): print(0) else: print(b - a + 1)
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
from sys import stdin from math import * line = stdin.readline().rstrip().split() n = int(line[0]) m = int(line[1]) q = int(line[2]) s = stdin.readline().rstrip().split()[0] t = stdin.readline().rstrip().split()[0] bools = [0] * (n - m + 1 + 1) accum = 0 for i in range(n - m, -1, -1): if s[i:i+m] == t: accum += 1 bools[i] = accum for i in range(q): numbers = list(map(int, stdin.readline().rstrip().split())) l = numbers[0] - 1 r = numbers[1] - 1 - m + 1 + 1 if r > l: print(bools[l] - bools[r]) else: print(0)
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> using namespace std; const int mxn = 1e3 + 5, seed = 131, seed2 = 31, MOD = 1e9 + 9; int n, m, q; string s, t; long long p[mxn], pp[mxn], a[mxn], aa[mxn], b[mxn], bb[mxn]; inline long long strHash(int l, int r) { return (long long)((1LL * a[r] - 1LL * a[l - 1] * p[r - l + 1] % MOD) + MOD) % MOD; } int main() { cin >> n >> m >> q >> s >> t; p[0] = 1; for (int i = 1; i <= max(n, m); i++) p[i] = ((p[i - 1] * seed % MOD) + MOD) % MOD; for (int i = 1; i <= n; i++) a[i] = ((a[i - 1] * seed + s[i - 1]) % MOD + MOD) % MOD; for (int i = 1; i <= m; i++) b[i] = ((b[i - 1] * seed + t[i - 1]) % MOD + MOD) % MOD; for (int i = 1, L, R, ans; i <= q; i++) { cin >> L >> R; ans = 0; for (int j = L; j + m - 1 <= R; j++) { if (strHash(j, j + m - 1) == b[m]) ans++; } cout << ans << "\n"; } }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.io.IOException; import java.util.Scanner; public class Main { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int m = sc.nextInt(); int q = sc.nextInt(); String s = sc.next(); String t = sc.next(); if(n >= m){ int[] occurence = new int[n - m + 1]; for(int i = 0; i < n - m + 1; i ++){ boolean same = true; for(int j = i; j < i + m; j ++){ if(s.charAt(j) != t.charAt(j - i)){ same = false; break; } } occurence[i] = same ? 1 : 0; } int[] sum_occurences = new int[n - m + 2]; sum_occurences[1] = occurence[0]; for(int i = 1; i < n - m + 1; i ++){ sum_occurences[i + 1] = sum_occurences[i] + occurence[i]; } for(int i = 0; i < q; i ++) { int l = sc.nextInt(); int r = sc.nextInt(); if (r - l < m - 1) { System.out.println(0); } else { System.out.println(sum_occurences[r - m + 1] - sum_occurences[l - 1]); } } } else { for (int i = 0; i < q; i++) { int l = sc.nextInt(); int r = sc.nextInt(); System.out.println(0); } } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import sys input = sys.stdin.readline class BIT(): def __init__(self, n): self.size = n self.bit = [0] * (n + 1) def _sum(self, i): s = 0 while i > 0: s += self.bit[i] i -= i & -i return s def add(self, i, val): i += 1 while i <= self.size: self.bit[i] += val i += i & -i def get_sum(self, l, r): return self._sum(r) - self._sum(l) def z_algo(s): res = [0] * len(s) res[0] = len(s) i = 1 j = 0 while i < len(s): while i + j < len(s) and s[j] == s[i + j]: j += 1 res[i] = j if j == 0: i += 1 continue k = 1 while i + k < len(s) and k + res[k] < j: res[i + k] = res[k] k += 1 i += k j -= k return res n, m, q = map(int, input().split()) s = input()[:-1] t = input()[:-1] query = [list(map(int, input().split())) for i in range(q)] ss = t + s tmp = z_algo(ss) ans = [0] * n for i in range(m, n + m): if tmp[i] >= len(t): ans[i - m] = 1 bit = BIT(n) for i in range(n): bit.add(i, ans[i]) for l, r in query: l -= 1 if l > r - len(t) + 1: print(0) else: print(bit.get_sum(l, r - len(t) + 1))
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> using namespace std; int match[1009]; int prefix[1009]; string s, t; bool isMatch(int a) { for (int i = 0; i < t.size(); i++) { if (i + a >= s.size() || s[i + a] != t[i]) { return false; } } return true; } int main() { ios_base::sync_with_stdio(0); int n, m; cin >> n >> m; int q; cin >> q; cin >> s >> t; for (int i = 0; i < s.size(); i++) { match[i] = isMatch(i); } prefix[0] = match[0]; for (int i = 1; i < s.size(); i++) { prefix[i] = prefix[i - 1] + match[i]; } cout << endl; for (int i = 0; i < q; i++) { int p, q; cin >> p >> q; q -= t.size() - 2; q--; p--; q--; p--; int ans; if (q < 0 || q <= p) { ans = 0; } else if (p == -1) { ans = prefix[q]; } else { ans = prefix[q] - prefix[p]; } cout << ans << endl; } }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt() - 1; int m = in.nextInt() - 1; int q = in.nextInt(); char[] s = in.nextCharArray(); char[] t = in.nextCharArray(); int[][] a = new int[n + 1][n + 1]; for (int i = 0; i < n - m + 1; i++) { for (int j = m + i; j <= n; j++) { if (j - i == m) a[i][j] = func(s, t, j); else a[i][j] = a[i][j - 1] + func(s, t, j); } } for (int i = 0; i < q; i++) { out.println(a[in.nextInt() - 1][in.nextInt() - 1]); } } public int func(char[] s, char[] t, int j) { int len = t.length; for (int a = len - 1; a >= 0; a--) { if (s[j--] != t[a]) return 0; } return 1; } } static class InputReader { BufferedReader br; StringTokenizer st; public InputReader(InputStream stream) { br = new BufferedReader(new InputStreamReader(stream)); st = null; } public String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public char[] nextCharArray() { return next().toCharArray(); } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
# import collections, atexit, math, sys, bisect sys.setrecursionlimit(1000000) def getIntList(): return list(map(int, input().split())) try : #raise ModuleNotFoundError import numpy def dprint(*args, **kwargs): print(*args, **kwargs, file=sys.stderr) dprint('debug mode') except ModuleNotFoundError: def dprint(*args, **kwargs): pass inId = 0 outId = 0 if inId>0: dprint('use input', inId) sys.stdin = open('input'+ str(inId) + '.txt', 'r') #标准输出重定向至文件 if outId>0: dprint('use output', outId) sys.stdout = open('stdout'+ str(outId) + '.txt', 'w') #标准输出重定向至文件 atexit.register(lambda :sys.stdout.close()) #idle 中不会执行 atexit N, M, Q = getIntList() s1 = input() s2 = input() tot = 0 zt = [0] for i in range(N): if s1[i:i+M] == s2: tot+=1 zt.append(tot) dprint(zt) for i in range(Q): a,b = getIntList() b0 = b- M+1 if b0<a: print(0) else: print(zt[b0] - zt[a-1])
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
R=lambda:map(int,input().split()) n,m,q=R() s,t=input(),input() a=[0] b=0 for i in range(n):b+=s[i:i+m]==t;a+=[b] for _ in[0]*q:l,r=R();print(a[max(l-1,r-m+1)]-a[l-1])
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
# https://codeforces.com/contest/1016/problem/B n , m , q=map(int,input().split()) goals = '' s , t = input() , input() for _ in range(n - m + 1): if (s[_:_ + m] == t):goals += '1' else:goals += '0' for _ in range(q): arguments = input().split() l = int(arguments[0]) r = int(arguments[1]) if r - l + 1 >= m: print(goals[l - 1 : r - m + 1].count('1')) else: print(0)
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
N, M, Q = map(int, raw_input().split()) s = raw_input()[:N] t = raw_input()[:M] psum = [0 for _ in range(len(s) + 1)] for i in range(len(s)): psum[i+1] = psum[i] if t == s[i:i+len(t)]: psum[i+1] += 1 for q in range(Q): a, b = map(int, raw_input().split()) a -= 1 b -= len(t) - 1 b = max(b, 0) print max(0, psum[b] - psum[a])
PYTHON
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.io.*; import java.util.*; public class CF_segmentoccurences { public static void main (String [] args) throws IOException { //PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("output.txt"))); //Scanner sc = new Scanner(System.in);//new File("input.txt")); BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(f.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); int q = Integer.parseInt(st.nextToken()); String s = f.readLine(); String t = f.readLine(); //HashSet<Integer> b = new HashSet<>(); ArrayList<Integer> a = new ArrayList<>(); int x = -1; loop: while(true){ x = s.indexOf(t, x+1); //throws error out of bounds? +1?? //System.out.println("abc: "+x); if(x == -1) { break loop; } a.add(x+1); } int count = 0; String[] retvals = new String[q]; int curr = 0; for(int i = 0; i < q; i++){ count = 0; st = new StringTokenizer(f.readLine()); int min = Integer.parseInt(st.nextToken()); int max = Integer.parseInt(st.nextToken()); for(int j = 0; j < a.size(); j++){ curr = a.get(j); if(curr >= min){ if(curr+m-1 <= max){ count++; } } } // System.out.println(count); retvals[i] = Integer.toString(count); } for(int i = 0; i < q; i++){ System.out.println(retvals[i]); } //System.out.print(retval); // out.println(retval); // out.close(); // close the output file // sc.close(); } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
n, m, q = map(int, input().split()) s = input() t = input() a=[] b=[] c=[0]*n for i in range(n): if s[i: i+m]==t: b.append([i, i+m]) x=0 y=0 for i in range(n): c[i]=y if x<len(b) and i == b[x][0]: x+=1 y+=1 x=0 y=0 d=[0]*n for i in range(n): if x<len(b) and i+1 == b[x][1]: x+=1 y+=1 d[i]=y for i in range(q): x = list(map(int, input().split())) y = d[x[1]-1]-c[x[0]-1] if y<0: y=0 print(y)
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.util.Arrays; import java.util.Scanner; import java.util.stream.Collectors; import java.util.stream.IntStream; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); sc.nextInt(); sc.nextInt(); int q = sc.nextInt(); String s = sc.next(); String t = sc.next(); int[] l = new int[q]; int[] r = new int[q]; for (int i = 0; i < q; i++) { l[i] = sc.nextInt(); r[i] = sc.nextInt(); } System.out.println(solve(s, t, l, r)); sc.close(); } static String solve(String s, String t, int[] l, int[] r) { int[] beginIndices = IntStream.range(0, s.length()).filter(i -> s.startsWith(t, i)).toArray(); return IntStream.range(0, l.length) .mapToObj(i -> String.valueOf(Arrays.stream(beginIndices) .filter(beginIndex -> beginIndex >= l[i] - 1 && beginIndex + t.length() <= r[i]).count())) .collect(Collectors.joining("\n")); } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n, m, q, t = 0; string a, b, s = ""; cin >> n >> m >> q >> a >> b; vector<pair<int, int> > v; while (t + b.size() - 1 < a.size()) { if (a.substr(t, b.size()) == b) { v.push_back({t + 1, t + b.size()}); } t++; } while (q--) { int l, r; cin >> l >> r; int c = 0; for (int i = 0; i < v.size(); i++) { if (l <= v[i].first && r >= v[i].second) c++; } cout << c << '\n'; } }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> using namespace std; string s, t; int ans[100009]; int lps[100009]; int main() { int n, m, q; cin >> n >> m >> q; cin >> s >> t; int sz = t.size(); int sz1 = s.size(); for (int i = 1; i <= (sz1 + 1 - sz); i++) { int flag = 0; string sb = s.substr(i - 1, sz); if (sb == t) ans[i]++; } for (int i = 1; i <= sz1; i++) ans[i] += ans[i - 1]; while (q--) { int x, y; cin >> x >> y; if (y - x + 1 < sz) cout << 0 << endl; else { int mx = y + 1 - sz; int val; cout << ans[mx] - ans[x - 1] << endl; } } return 0; }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
n,m,q=map(int,input().split()) s=input() t=input() st=[0]*n en=[0]*n for i in range(n): if(s[i:i+m]==t): st[i]=1 en[i+m-1]=1 if(i>0): st[i]+=st[i-1] en[i]+=en[i-1] st.insert(0,0) for i in range(q): l,r=map(int,input().split()) l-=1 r-=1 print(max(0,en[r]-st[l]))
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.util.*; import java.io.*; public class B48 { public static void main(String[] args) { MyScanner sc = new MyScanner(); PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); int n = sc.nextInt(); int m = sc.nextInt(); int q = sc.nextInt(); String s = sc.next(); String t = sc.next(); int [] ok = new int[n]; for (int i = 0; i < n; i++) { int match = 0; for (int j = i; j < Math.min(n, i + m); j++) { if (s.charAt(j) == t.charAt(j - i)) match++; } if (match == m) ok[i] = 1; } int [] pref = new int[n + 1]; for (int i = 1; i <= n; i++) pref[i] = pref[i - 1] + ok[i - 1]; for (int i = 0; i < q; i++) { int l = sc.nextInt(); int r = sc.nextInt(); int sub = pref[l - 1]; int other = r - (m - 1); if (other < l - 1) { out.println(0); } else { out.println(pref[other] - sub); } } out.close(); } //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import sys def solve(ist): _ = ist.next_int() _ = ist.next_int() q = ist.next_int() s = ist.next() t = ist.next() counts = [0 for _ in xrange(len(s) + 1)] for i in xrange(1, len(s) + 1): counts[i] = counts[i - 1] if s[i - 1: i - 1 + len(t)] == t: counts[i] += 1 queries = [(ist.next_int(), ist.next_int()) for _ in xrange(q)] for l, r in queries: if r - l + 1 < len(t): ans = 0 else: ans = counts[r - len(t) + 1] - counts[l - 1] print ans # ----------------------------------------------------------------------------- class InputStream(object): @staticmethod # use as decorator def input_generator(fd): for line in fd: for t in line.split(): yield t def __init__(self, fd): self.stream = InputStream.input_generator(fd) def __iter__(self): return self def next(self): return next(self.stream) def next_int(self): return int(self.next()) def next_float(self): return float(self.next()) def main(): if len(sys.argv) > 1: fd = open(sys.argv[1], "r") else: fd = sys.stdin ist = InputStream(fd) while True: try: solve(ist) except StopIteration: break if __name__ == "__main__": main()
PYTHON
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.util.*; import java.lang.*; import java.io.*; import java.math.BigDecimal; public class ER48B { public static void main (String[] args) throws java.lang.Exception { InputReader in = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); int n = in.nextInt(), m = in.nextInt(), q = in.nextInt(); char[] ca = in.next().toCharArray(), cb = in.next().toCharArray(); int[] occ = new int[n + 1]; for (int i = 0; i < n; i++) { boolean ok = true; if (i + m > n) break; for (int j = 0; j < m && ok; j++) { if (ca[i + j] != cb[j]) { ok = false; } } if (ok) occ[i + 1]++; } for (int i = 1; i <= n; i++) occ[i] += occ[i - 1]; while (q-- > 0) { int l = in.nextInt(),r = in.nextInt(); if (r - l + 1 < m) w.println(0); else { w.println(occ[r - m + 1] - occ[l - 1]); } } w.close(); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new UnknownError(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new UnknownError(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int peek() { if (numChars == -1) return -1; if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { return -1; } if (numChars <= 0) return -1; } return buf[curChar]; } public void skip(int x) { while (x-- > 0) read(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public String nextString() { return next(); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { if (c != '\r') buf.appendCodePoint(c); c = read(); } return buf.toString(); } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public boolean hasNext() { int value; while (isSpaceChar(value = peek()) && value != -1) read(); return value != -1; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
def substr(str, start, length): return str[start : (length + start)] def main(): n, m, q = map(int, input().split()) s = input() t = input() a = [0] * n for i in range(n - m + 1): if substr(s, i, m) == t: a[i] = 1 ans = [] for i in range(q): l, r = map(int, input().split()) if (r - l + 1) < m: ans.append(0) continue ans.append(a[l-1:r-m+1].count(1)) print('\n'.join(map(str, ans))) main()
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.util.ArrayList; import java.util.Scanner; // http://codeforces.com/contest/1016/problem/B public class SegmantOccur { public static void main(String[] args) { Scanner in = new Scanner(System.in); int lenS = in.nextInt(); int lenT = in.nextInt(); int q = in.nextInt(); String strS = in.next(); String strT = in.next(); ArrayList<Integer> list = new ArrayList<>(); matchSrtings(list, strS, strT); for (int i = 0; i < q; i++) { int a = in.nextInt(); int b = in.nextInt(); int res = solve( a, b , list , lenT); System.out.println(res); } } static int solve(int a , int b, ArrayList<Integer> list, int patternLen) { a--; b--; if(b - a < patternLen -1) { return 0; } int count= 0; for (int i = 0; i < list.size(); i++) { int from = (int) list.get(i); int to = from + patternLen - 1; if(a <= from && b >= to) { count++; } } return count; } static void matchSrtings(ArrayList list , String str , String pattern) { int patLen = pattern.length(); int index = patLen-1; while(index < str.length()) { int patIndex = pattern.length() - 1; if(str.charAt(index) == pattern.charAt(patIndex)) { int indString = index-1; patIndex--; for (int i = indString; i > indString-patLen+1; i--) { if(str.charAt(i) != pattern.charAt(patIndex)) { patIndex = -3; break; } patIndex--; } if(patIndex != -3) { list.add(index-patLen+1); } index += 1; }else{ index += 1; } } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
a,b,n = map(int,input().split()) s = input() t = input() pre = [0]*100860 def pre_cnt(s1,s2): for i in range(0,len(s1)-len(s2)+1): if s1[i:i+len(s2)]==s2: pre[i+1]=pre[i]+1 else: pre[i+1] = pre[i] pre_cnt(s,t) while n!=0: n-=1 a,b = map(int,input().split()) ans = pre[b-len(t)+1]-pre[a-1] if a-1>b-len(t)+1: ans = 0 print(ans)
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.util.Scanner; public class B { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int m = sc.nextInt(); int[] pos = new int[n+2]; int q = sc.nextInt(); String s = sc.nextLine(); s = sc.nextLine(); String k = sc.nextLine(); positions(pos,s,k); for (int i = 0; i <q ; i++) { int l = sc.nextInt(); int r = sc.nextInt(); int sum=0; for (int j = l; j <=r-m+1 ; j++) { sum+=pos[j]; } System.out.println(sum); } } public static void positions(int[] arr, String s,String sub){ int index = 0; int num=0; while (s.indexOf(sub,index)>-1){ index = s.indexOf(sub,index)+1; arr[index]=1; } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.util.LinkedList; import java.util.List; import java.util.Scanner; public class SegmentOccurrences { static String P, S; static Scanner scanner = new Scanner(System.in); static int n, m, q; static int a, b, length; public static void main(String[] args) { n = scanner.nextInt(); m = scanner.nextInt(); q = scanner.nextInt(); S = scanner.next(); P = scanner.next(); long occurrences; List<Integer> list = KMP(S, P); for(int i = 0; i < q; ++i){ a = scanner.nextInt() - 1; b = scanner.nextInt(); length = b - a; if(b - a < P.length()){ System.out.println(0); continue; } occurrences = list.stream().filter(x -> (x >= a) && x <= (b - P.length())).count(); System.out.println(occurrences); } } static List<Integer> KMP(String T, String P){ String S = P + '$' + T; int[] prefix = prefix(S); List<Integer> result = new LinkedList<>(); for(int i = P.length() + 1; i < S.length(); ++i) if(prefix[i] == P.length()) result.add(i - 2 * P.length()); return result; } static int[] prefix(String P) { int[] prefix = new int[P.length()]; int border = 0; prefix[0] = 0; for(int i = 1; i < P.length(); ++i){ while(border > 0 && P.charAt(i) != P.charAt(border)) border = prefix[border - 1]; if(P.charAt(i) == P.charAt(border)) border = border + 1; else border = 0; prefix[i] = border; } return prefix; } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> using namespace std; int main() { long long n, m, q, i, j, l, r, a[5000]; string s, t; cin >> n >> m >> q; cin >> s >> t; if (m > n) goto label; if (s.compare(0, m, t) == 0) { a[0] = 1; } else a[0] = 0; for (j = 1; j <= n - m + 1; j++) { if (s.compare(j, m, t) == 0) { a[j] = a[j - 1] + 1; } else { a[j] = a[j - 1]; } } for (j = n - m + 2; j < n; j++) { a[j] = a[n - m + 1]; } label: for (i = 0; i < q; i++) { cin >> l >> r; l--; r--; if (r - l < m - 1 || m > n) cout << l - l << endl; else if (l == 0) cout << a[r - m + 1] << endl; else cout << a[r - m + 1] - a[l - 1] << endl; } return 0; }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.util.*; import java.util.Map.Entry; import java.util.concurrent.ThreadLocalRandom; public class Main { final static int c = 1000000009; public static void main(String[] args) { Scanner console = new Scanner(System.in); int n = console.nextInt(), m = console.nextInt(), q = console.nextInt(); console.nextLine(); String s = console.nextLine(), t = console.nextLine(); if(n < m) { for(int i = 0; i < q; i++) { System.out.println(0); } return; } boolean[] occ = new boolean[n]; for(int i = 0; i < n - m + 1; i++) { if(s.substring(i, i + m).equals(t)) occ[i] = true; } // System.out.println(Arrays.toString(occ)); for(int i = 0; i < q; i++) { int l = console.nextInt(), r = console.nextInt(); // if(r - l + 1 < t.length()) { // System.out.println(0); // continue; // } int res = 0; for(int j = l - 1; j <= r - m; j++) { if(occ[j]) res++; } System.out.println(res); } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.io.BufferedInputStream; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.PrintWriter; import java.util.ArrayList; public class B { static int N,M,Q; public static void main(String[] args) { JS in = new JS(); PrintWriter out = new PrintWriter(System.out); N=in.nextInt(); M=in.nextInt(); Q = in.nextInt(); char s[] = in.next().toCharArray(); char t[] = in.next().toCharArray(); ArrayList<Integer> tInds = search(s, t, KMP_Construct(t)); //System.out.println(tInds.toString()); for(int qq = 0; qq < Q; qq++) { int l = in.nextInt()-1; int r = in.nextInt()-1; int res = 0; for(Integer ii : tInds) { if(ii <= r && ii >= l && ii-M+1 >= l) res++; } out.println(res); } out.close(); } // Given a pattern string w, return the prefix array. //% // p[i] indicates the length of the longest prefix //% // that is also a substring ending at i. O(|w|) //% static int[] KMP_Construct(char[] w) { int n = w.length + 1, k = 0; int[] p = new int[n]; p[1] = 0; for(int i = 2; i < n; ++i) { while(k > 0 && w[k] != w[i-1]) k = p[k]; if(w[k] == w[i-1]) k++; p[i] = k; } return p; } // Given the prefix array of a pattern, search the //% // text for all occurrences of the pattern. O(|s|) //% static ArrayList<Integer> search(char[] s, char[] w, int[] p) { int k = 0; ArrayList<Integer> locs = new ArrayList<>(); for(int i = 0; i < s.length; ++i) { while(k > 0 && w[k] != s[i]) k = p[k]; if(w[k] == s[i]) k++; if(k == w.length) { locs.add(i); k = p[k]; } } return locs; } static class JS{ public int BS = 1<<16; public char NC = (char)0; byte[] buf = new byte[BS]; int bId = 0, size = 0; char c = NC; double num = 1; BufferedInputStream in; public JS() { in = new BufferedInputStream(System.in, BS); } public JS(String s) throws FileNotFoundException { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } public char nextChar(){ while(bId==size) { try { size = in.read(buf); }catch(Exception e) { return NC; } if(size==-1)return NC; bId=0; } return (char)buf[bId++]; } public int nextInt() { return (int)nextLong(); } public long nextLong() { num=1; boolean neg = false; if(c==NC)c=nextChar(); for(;(c<'0' || c>'9'); c = nextChar()) { if(c=='-')neg=true; } long res = 0; for(; c>='0' && c <='9'; c=nextChar()) { res = (res<<3)+(res<<1)+c-'0'; num*=10; } return neg?-res:res; } public double nextDouble() { while(c!='.'&&c!='-'&&(c <'0' || c>'9')) c = nextChar(); boolean neg = c=='-'; if(neg)c=nextChar(); boolean fl = c=='.'; double cur = nextLong(); if(fl) return neg ? -cur/num : cur/num; if(c == '.') { double next = nextLong(); return neg ? -cur-next/num : cur+next/num; } else return neg ? -cur : cur; } public String next() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c>32) { res.append(c); c=nextChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c!='\n') { res.append(c); c=nextChar(); } return res.toString(); } public boolean hasNext() { if(c>32)return true; while(true) { c=nextChar(); if(c==NC)return false; else if(c>32)return true; } } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> using namespace std; int max(int a, int b) { return (a > b) ? a : b; } int min(int a, int b) { return (a < b) ? a : b; } int main() { int n, m, k; cin >> n >> m >> k; string s, t; cin >> s; cin >> t; unordered_map<char, int> umap; vector<int> skips; for (int i = 0; i < t.size(); i++) { if (umap.find(t[i]) == umap.end()) { umap[t[i]] = i; skips.push_back(i + 1); } else { skips.push_back(i - umap[t[i]]); umap[t[i]] = i; } } vector<int> counter(n); int count = 0, x = 0; for (int j = 0; j < n && m + j - 1 < n;) { bool ans = 0; for (int x = 0; x < m && m + j - 1 < n; x++) { if (t[x] != s[j + x]) { ans = 0; if (x != 0) j += skips[x - 1]; else j += 1; break; } else { ans = 1; } } if (ans == 1) { count++; counter[j + m - 1] = count; j += skips[m - 1]; } } for (int i = 1; i < n; i++) { if (counter[i - 1] != 0 && counter[i] == 0) counter[i] = counter[i - 1]; } for (int i = 0; i < k; i++) { int l, r; cin >> l >> r; if (l - 1 + m - 2 >= 0) cout << counter[r - 1] - counter[min(r - 1, l - 1 + m - 2)] << endl; else cout << counter[r - 1] << endl; } return 0; }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class Test { static class BIT { private int[] array; private int total; public BIT(int[] ar) { this.total = ar.length; int i = 1; while (i < this.total) { i = i * 2; } array = new int[i]; } public BIT(int N) { this.total = N; int i = 1; while (i < this.total) { i = i * 2; } array = new int[i]; } public void update(int index, int value) { index = index; while (index < total) { array[index] += value; index += index & (-index); } } public long sum(int index) { int sum = 0; index = index; while (index > 0) { sum += array[index]; index -= index & (-index); } return sum; } } // 1000 3 4 // fofofofofofofof // fof // JAVA program for implementation of KMP pattern // searching algorithm static class KMP_String_Matching { List<Integer> list = new ArrayList<Integer>(); void KMPSearch(String pat, String txt) { int M = pat.length(); int N = txt.length(); // create lps[] that will hold the longest // prefix suffix values for pattern int lps[] = new int[M]; int j = 0; // index for pat[] // Preprocess the pattern (calculate lps[] // array) computeLPSArray(pat, M, lps); int i = 0; // index for txt[] while (i < N) { if (pat.charAt(j) == txt.charAt(i)) { j++; i++; } if (j == M) { list.add((i - j)); // System.out // .println("Found pattern " + "at index " + (i - j)); j = lps[j - 1]; } // mismatch after j matches else if (i < N && pat.charAt(j) != txt.charAt(i)) { // Do not match lps[0..lps[j-1]] characters, // they will match anyway if (j != 0) j = lps[j - 1]; else i = i + 1; } } } void computeLPSArray(String pat, int M, int lps[]) { // length of the previous longest prefix suffix int len = 0; int i = 1; lps[0] = 0; // lps[0] is always 0 // the loop calculates lps[i] for i = 1 to M-1 while (i < M) { if (pat.charAt(i) == pat.charAt(len)) { len++; lps[i] = len; i++; } else // (pat[i] != pat[len]) { // This is tricky. Consider the example. // AAACAAAA and i = 7. The idea is similar // to search step. if (len != 0) { len = lps[len - 1]; // Also, note that we do not increment // i here } else // if (len == 0) { lps[i] = len; i++; } } } } } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String readLine = br.readLine(); Scanner sc = new Scanner(readLine); int n = sc.nextInt(); int m = sc.nextInt(); int q = sc.nextInt(); String s = br.readLine(); String t = br.readLine(); // Check all occurrences BIT tree1 = new BIT(n + 2); KMP_String_Matching kmp_String_Matching = new KMP_String_Matching(); kmp_String_Matching.KMPSearch(t, s); int patternLength = t.length(); List<Integer> list = kmp_String_Matching.list; for (int i : list) { tree1.update(i + 1, 1); } while (q-- > 0) { String[] split = br.readLine().split(" "); int start = Integer.parseInt(split[0].trim()); int end = Integer.parseInt(split[1].trim()) - patternLength + 1; if (end >= start) { long temp1 = tree1.sum(end); long temp2 = tree1.sum(start - 1); long answer = temp1 - temp2; System.out.println(answer); } else { System.out.println(0); } } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import sys def mapi(): return map(int,input().split()) def maps(): return map(str,input().split()) #-------------------------------------------------- n,m,q = mapi() s = input().strip() t = input().strip() i = 0 j = m mp = {} pf = [0] for i in range(n-m+1): if s[i:i+m]==t: pf.append(pf[-1]+1) else: pf.append(pf[-1]) for i in range(max(0,n-m+1),n): pf.append(pf[-1]) #print(pf,len(pf)) for _ in range(q): l,r = mapi() l=l-1 r = r-m+1 if l<=r: print(pf[r]-pf[l]) else: print(0)
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
n,m,q=map(int,input().split()) s=input() t=input() tt=[0]*1111 for i in range(n-m+1): j=0 while j<m and s[i+j]==t[j]: j+=1 if j>=m: tt[i+1]=1 for i in range(1,n+1): tt[i]+=tt[i-1] for i in range(q): a,b=map(int,input().split()) if b-a+1<m: print(0) continue print(tt[b-m+1]-tt[a-1]) ''' //////////////// ////// /////// // /////// // // // //// // /// /// /// /// // /// /// //// // //// //// /// /// /// /// // ///////// //// /////// //// ///// /// /// /// /// // /// /// //// // // ////////////// /////////// /////////// ////// /// /// // // // // '''
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author masterbios */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { static final int q = 101; static final int d = 256; static int res[]; public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); int q = in.nextInt(); String text = in.next(); String pattern = in.next(); res = new int[n]; RabinKarp(text, pattern, out); for (int j = 0; j < q; j++) { int x = in.nextInt(); int y = in.nextInt(); x--; y--; int count = 0; for (int i = x; i <= y; i++) { if (res[i] == 1 && i + m - 1 <= y) count += 1; } out.println(count); } } public static void RabinKarp(String text, String pattern, PrintWriter out) { int pl = pattern.length(); int tl = text.length(); int ph = 0; int th = 0; int i, j; int h = 1; int count = 0; if (pl > tl) { return; } if (pl == tl) { if (pattern.equals(text)) { res[0] = 1; return; } } for (i = 0; i < pattern.length() - 1; i++) { h = (h * d) % q; } for (i = 0; i < pl; i++) { ph = (d * ph + pattern.charAt(i)) % q; th = (d * th + text.charAt(i)) % q; } for (i = 0; i <= tl - pl; i++) { if (ph == th) { for (j = 0; j < pl; j++) { if (text.charAt(j + i) != pattern.charAt(j)) break; } if (j == pl) res[i] = 1; } if (i < tl - pl) { th = (d * (th - text.charAt(i) * h) + text.charAt(i + pl)) % q; if (th < 0) th += q; } } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreElements()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
n,m,q=map(int,input().split()) s=input() t=input() ans=[0]*n for i in range(n-m+1): if s[i:i+m]==t: ans[i]=1 # print(ans) for i in range(q): x,y=map(int,input().split()) if y-x+1<m: print(0) else: print(sum(ans[x-1:y-m+1]))
PYTHON3
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
def start(s1,s2): l=[0]*len(s1) for i in range(len(s1)): if(s1[i:i+len(s2)]==s2): l[i]=1 return l def c(a,b,l,m): r,n=0,b-a+1 if(b-a+1<m): return 0 else: return sum(l[a:b-m+2]) n,m,q=map(int,raw_input().split()) s1=raw_input() s2=raw_input() l=start(s1,s2) #print l for i in range(q): a,b=map(int,raw_input().split()) print c(a-1,b-1,l,len(s2))
PYTHON
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.util.*; import java.math.*; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; //--------------->>>>IF YOU ARE HERE FOR QUICKSORT HACK THEN SORRY NO HACK FOR YOU<<<------------------- public class a{ static int[] count,count1,count2; static Node[] nodes; static long[] arr; static int[] dp; static char[] ch,ch1; static long[] darr,farr; static char[][] mat,mat1; static long x,h; static long maxl; static double dec; static long mx = (long)1e9+7; static String s; static long minl; static int start_row; static int start_col; static int end_row; static int end_col; static long mod = 998244353; // static int minl = -1; // static long n; static int n,n1,n2,q; static long a; static long b; static long c; static long d; static long y,z; static int m; static long k; static FastScanner sc; static String[] str,str1; static Set<Integer> set,set1,set2; static SortedSet<Long> ss; static List<Integer> list,list1,list2,list3; static PriorityQueue<Long> pq,pq1; static LinkedList<Integer> ll; static Map<Integer,List<Integer>> map,map1; static StringBuilder sb,sb1,sb2; static int index; static int[] dx = {0,-1,0,1,-1,1,-1,1}; static int[] dy = {-1,0,1,0,-1,-1,1,1}; // public static void solve(){ // FastScanner sc = new FastScanner(); // // int t = sc.nextInt(); // int t = 1; // for(int tt = 0 ; tt < t ; tt++){ // int n = sc.nextInt(); // int m = sc.nextInt(); // int prev = 0; // for(int i = 0 ; i < n ; i++){ // int s = sc.nextInt(); // int e = sc.nextInt(); // if(s > prev){ // System.out.println("NO"); // return; // } // prev = Math.max(prev,e); // } // if(prev == m) // System.out.println("YES"); // else // System.out.println("NO"); // // System.out.println(sb); // } // } //--------------->>>>IF YOU ARE HERE FOR QUICKSORT HACK THEN SORRY NO HACK FOR YOU<<<------------------- public static void solve(){ int len = 0; int[] kmp = new int[m]; kmp[0] = 0; int i = 1; while(i < m){ if(ch1[i] == ch1[len]){ len += 1; kmp[i] = len; i += 1; } else{ if(len == 0){ kmp[i] = 0; i += 1; } else len = kmp[len-1]; } } for(int j = 0 ; j < q ; j++){ len = 0; int matches = 0; int l = sc.nextInt()-1; int r = sc.nextInt(); for(i = l ; i < r ; i++){ while((len > 0) && (ch[i] != ch1[len])){ len = kmp[len-1]; } if(ch[i] == ch1[len]){ len += 1; } if(len == m){ matches += 1; len = kmp[m-1]; } } System.out.println(matches); } } public static void main(String[] args) { sc = new FastScanner(); // Scanner sc = new Scanner(System.in); // int t = sc.nextInt(); int t = 1; // int l = 1; while(t > 0){ // n = sc.nextInt(); // n = sc.nextLong(); // a = sc.nextLong(); // b = sc.nextLong(); // c = sc.nextLong(); // d = sc.nextLong(); // x = sc.nextLong(); // y = sc.nextLong(); // n = sc.nextLong(); n = sc.nextInt(); // n1 = sc.nextInt(); m = sc.nextInt(); q = sc.nextInt(); // k = sc.nextLong(); // s = sc.next(); ch = sc.next().toCharArray(); ch1 = sc.next().toCharArray(); // arr = new long[n]; // for(int i = 0 ; i < n ; i++){ // arr[i] = sc.nextLong(); // } // ch = sc.next().toCharArray(); // m = n; // darr = new long[m]; // for(int i = 0 ; i < m ; i++){ // darr[i] = sc.nextLong(); // } // farr = new int[n]; // for(int i = 0; i < n ; i++){ // farr[i] = sc.nextInt(); // } // mat = new int[n][n]; // for(int i = 0 ; i < n ; i++){ // for(int j = 0 ; j < n ; j++){ // mat[i][j] = sc.nextInt(); // } // } // mat = new char[n][m]; // for(int i = 0 ; i < n ; i++){ // String s = sc.next(); // for(int j = 0 ; j < m ; j++){ // mat[i][j] = s.charAt(j); // } // } // str = new String[n]; // for(int i = 0 ; i < n ; i++) // str[i] = sc.next(); // nodes = new Node[n]; // for(int i = 0 ; i < n ;i++) // nodes[i] = new Node(sc.nextInt(),sc.nextInt()); // System.out.println(solve()?"YES":"NO"); solve(); // System.out.println(solve()); t -= 1; } } public static int log(long n){ if(n == 0 || n == 1) return 0; if(n == 2) return 1; double num = Math.log(n); double den = Math.log(2); if(den == 0) return 0; return (int)(num/den); } public static boolean isPrime(long n) { // Corner cases if (n <= 1) return false; if (n <= 3) return true; // This is checked so that we can skip // middle five numbers in below loop if (n%2 == 0 || n%3 == 0) return false; for (int i=5; i*i<=n; i=i+6) if (n%i == 0 || n%(i+2) == 0) return false; return true; } public static long gcd(long a,long b){ if(b%a == 0){ return a; } return gcd(b%a,a); } // public static void swap(int i,int j){ // long temp = arr[j]; // arr[j] = arr[i]; // arr[i] = temp; // } static final Random random=new Random(); static void ruffleSort(long[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n); long temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static class Node{ Integer first; Integer second; Node(Integer f,Integer s){ this.first = f; this.second = s; } } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
JAVA
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> using namespace std; const long long mod[] = {(long long)1e9 + 7, (long long)1e9 + 9, (long long)1e9 + 21, (long long)1e9 + 33}; const int maxn = 2e3 + 5; const int Nmod = 3; string a, b; int i, j, n, m, q; long long Pow[Nmod][maxn]; static long long Hash[Nmod][maxn], Hash1[Nmod][maxn], Key[Nmod]; static int dp[maxn][maxn]; long long gethash(int i, int j, int type) { return (Hash[type][j] - Hash[type][i - 1] * Pow[type][j - i + 1] + (long long)mod[type] * (long long)mod[type]) % mod[type]; } void init() { cin >> n >> m >> q; cin >> a; a = " " + a; for (int i = 0; i < Nmod; ++i) { Pow[i][0] = 1; for (int j = 1; j <= n; ++j) Pow[i][j] = (Pow[i][j - 1] * 31) % mod[i]; } for (int i = 0; i < Nmod; ++i) { Hash[i][0] = 0; for (int j = 1; j <= n; ++j) Hash[i][j] = (Hash[i][j - 1] * 31 + a[j] - 'a') % mod[i]; } cin >> b; b = " " + b; for (int i = 0; i < Nmod; ++i) { for (int j = 1; j <= m; ++j) { Key[i] = (Key[i] * 31 + b[j] - 'a') % mod[i]; } } for (int t = (1); t <= (n); ++t) { for (int i = t; i <= n - m + 1; ++i) { int ok = 1; for (int j = 0; j < Nmod; ++j) { ok = min(ok, (int)(gethash(i, i + m - 1, j) == Key[j])); } dp[t][i + m - 1] = dp[t][i + m - 2] + ok; } } for (int i = (1); i <= (q); ++i) { int x, y; cin >> x >> y; cout << dp[x][y] << '\n'; } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); init(); return 0; }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
#include <bits/stdc++.h> using namespace std; const int N = 1e3 + 10; int main() { ios_base::sync_with_stdio(false); int n, m, q, l, r, tlen, cnt; char s[N], t[N]; bool match[N] = {0}; cin >> n >> m >> q >> s >> t; tlen = strlen(t); for (int i = 0; s[i]; ++i) { match[i] = !strncmp(s + i, t, tlen); } while (q-- > 0) { cin >> l >> r; --l; --r; cnt = 0; for (int i = l; i <= r - tlen + 1; ++i) { cnt += match[i]; } cout << cnt << "\n"; } return 0; }
CPP
1016_B. Segment Occurrences
You are given two strings s and t, both consisting only of lowercase Latin letters. The substring s[l..r] is the string which is obtained by taking characters s_l, s_{l + 1}, ..., s_r without changing the order. Each of the occurrences of string a in a string b is a position i (1 ≤ i ≤ |b| - |a| + 1) such that b[i..i + |a| - 1] = a (|a| is the length of string a). You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[l_i..r_i]. Input The first line contains three integer numbers n, m and q (1 ≤ n, m ≤ 10^3, 1 ≤ q ≤ 10^5) — the length of string s, the length of string t and the number of queries, respectively. The second line is a string s (|s| = n), consisting only of lowercase Latin letters. The third line is a string t (|t| = m), consisting only of lowercase Latin letters. Each of the next q lines contains two integer numbers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the arguments for the i-th query. Output Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[l_i..r_i]. Examples Input 10 3 4 codeforces for 1 3 3 10 5 6 5 7 Output 0 1 0 1 Input 15 2 3 abacabadabacaba ba 1 15 3 4 2 14 Output 4 0 3 Input 3 5 2 aaa baaab 1 3 1 1 Output 0 0 Note In the first example the queries are substrings: "cod", "deforces", "fo" and "for", respectively.
2
8
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; public class Main { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); int q = Integer.parseInt(st.nextToken()); String s = br.readLine(); String t = br.readLine(); List<Segment> containingSegments = findSubstringSegments(s, t); Segment[] segments = new Segment[q]; for (int i = 0; i < q; ++i) { st = new StringTokenizer(br.readLine()); segments[i] = new Segment(Integer.parseInt(st.nextToken()), Integer.parseInt(st.nextToken())); } for (int i = 0; i < q; ++i) { System.out.println(numberOfContainingSegments(containingSegments, segments[i])); } } private static int numberOfContainingSegments(List<Segment> containingSegments, Segment segment) { int result = 0; for (int i = 0; i < containingSegments.size(); ++i) { if (segment.start <= containingSegments.get(i).start && segment.end >= containingSegments.get(i).end) result++; } return result; } private static List<Segment> findSubstringSegments(String s, String t) { List<Segment> segments = new ArrayList<>(); if (s.length() < t.length()) return segments; for (int i = 0; i < s.length(); ++i) { boolean contains = true; for (int j = 0; j < t.length(); ++j) { if (s.length() > i + j && s.charAt(i + j) != t.charAt(j)) { contains = false; break; } } if (contains) { segments.add(new Segment(i + 1, i + t.length())); } } return segments; } } class Segment { int start; int end; public Segment(int start, int end) { this.start = start; this.end = end; } }
JAVA