Datasets:
Tasks:
Multiple Choice
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10K - 100K
License:
metadata
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- multiple-choice
task_ids:
- multiple-choice-qa
paperswithcode_id: quail
pretty_name: Question Answering for Artificial Intelligence (QuAIL)
dataset_info:
config_name: quail
features:
- name: id
dtype: string
- name: context_id
dtype: string
- name: question_id
dtype: string
- name: domain
dtype: string
- name: metadata
struct:
- name: author
dtype: string
- name: title
dtype: string
- name: url
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: question_type
dtype: string
- name: answers
sequence: string
- name: correct_answer_id
dtype: int32
splits:
- name: train
num_bytes: 23432601
num_examples: 10246
- name: validation
num_bytes: 4989531
num_examples: 2164
- name: challenge
num_bytes: 1199792
num_examples: 556
download_size: 2286403
dataset_size: 29621924
configs:
- config_name: quail
data_files:
- split: train
path: quail/train-*
- split: validation
path: quail/validation-*
- split: challenge
path: quail/challenge-*
default: true
Dataset Card for "quail"
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: https://text-machine-lab.github.io/blog/2020/quail/
- Repository: https://github.com/text-machine-lab/quail
- Paper: Getting Closer to AI Complete Question Answering: A Set of Prerequisite Real Tasks
- Point of Contact: More Information Needed
- Size of downloaded dataset files: 6.41 MB
- Size of the generated dataset: 29.62 MB
- Total amount of disk used: 36.03 MB
Dataset Summary
QuAIL is a reading comprehension dataset. QuAIL contains 15K multi-choice questions in texts 300-350 tokens long 4 domains (news, user stories, fiction, blogs).QuAIL is balanced and annotated for question types.
Supported Tasks and Leaderboards
Languages
Dataset Structure
Data Instances
quail
- Size of downloaded dataset files: 6.41 MB
- Size of the generated dataset: 29.62 MB
- Total amount of disk used: 36.03 MB
An example of 'train' looks as follows.
This example was too long and was cropped:
{
"answers": ["the cousin is not friendly", "the cousin could have been pretier", "not enough information", "the cousin was too nice"],
"context": "\"That fall came and I went back to Michigan and the school year went by and summer came and I never really thought about it. I'm...",
"context_id": "f001",
"correct_answer_id": 0,
"domain": "fiction",
"id": "f001_19",
"metadata": {
"author": "Joseph Devon",
"title": "Black Eyed Susan",
"url": "http://manybooks.net/pages/devonjother08black_eyed_susan/0.html"
},
"question": "After the events in the text what does the author think about the cousin?",
"question_id": "19",
"question_type": "Subsequent_state"
}
Data Fields
The data fields are the same among all splits.
quail
id
: astring
feature.context_id
: astring
feature.question_id
: astring
feature.domain
: astring
feature.author
: astring
feature.title
: astring
feature.url
: astring
feature.context
: astring
feature.question
: astring
feature.question_type
: astring
feature.answers
: alist
ofstring
features.correct_answer_id
: aint32
feature.
Data Splits
name | train | challenge | validation |
---|---|---|---|
quail | 10246 | 556 | 2164 |
Dataset Creation
Curation Rationale
Source Data
Initial Data Collection and Normalization
Who are the source language producers?
Annotations
Annotation process
Who are the annotators?
Personal and Sensitive Information
Considerations for Using the Data
Social Impact of Dataset
Discussion of Biases
Other Known Limitations
Additional Information
Dataset Curators
Licensing Information
Citation Information
@inproceedings{DBLP:conf/aaai/RogersKDR20,
author = {Anna Rogers and
Olga Kovaleva and
Matthew Downey and
Anna Rumshisky},
title = {Getting Closer to {AI} Complete Question Answering: {A} Set of Prerequisite
Real Tasks},
booktitle = {The Thirty-Fourth {AAAI} Conference on Artificial Intelligence, {AAAI}
2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, {IAAI} 2020, The Tenth {AAAI} Symposium on Educational
Advances in Artificial Intelligence, {EAAI} 2020, New York, NY, USA,
February 7-12, 2020},
pages = {8722--8731},
publisher = {{AAAI} Press},
year = {2020},
url = {https://aaai.org/ojs/index.php/AAAI/article/view/6398},
timestamp = {Thu, 04 Jun 2020 13:18:48 +0200},
biburl = {https://dblp.org/rec/conf/aaai/RogersKDR20.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
Contributions
Thanks to @sai-prasanna, @ngdodd for adding this dataset.