Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
language: | |
- ace | |
- bg | |
- da | |
- fur | |
- ilo | |
- lij | |
- mzn | |
- qu | |
- su | |
- vi | |
- af | |
- bh | |
- de | |
- fy | |
- io | |
- lmo | |
- nap | |
- rm | |
- sv | |
- vls | |
- als | |
- bn | |
- diq | |
- ga | |
- is | |
- ln | |
- nds | |
- ro | |
- sw | |
- vo | |
- am | |
- bo | |
- dv | |
- gan | |
- it | |
- lt | |
- ne | |
- ru | |
- szl | |
- wa | |
- an | |
- br | |
- el | |
- gd | |
- ja | |
- lv | |
- nl | |
- rw | |
- ta | |
- war | |
- ang | |
- bs | |
- eml | |
- gl | |
- jbo | |
- nn | |
- sa | |
- te | |
- wuu | |
- ar | |
- ca | |
- en | |
- gn | |
- jv | |
- mg | |
- no | |
- sah | |
- tg | |
- xmf | |
- arc | |
- eo | |
- gu | |
- ka | |
- mhr | |
- nov | |
- scn | |
- th | |
- yi | |
- arz | |
- cdo | |
- es | |
- hak | |
- kk | |
- mi | |
- oc | |
- sco | |
- tk | |
- yo | |
- as | |
- ce | |
- et | |
- he | |
- km | |
- min | |
- or | |
- sd | |
- tl | |
- zea | |
- ast | |
- ceb | |
- eu | |
- hi | |
- kn | |
- mk | |
- os | |
- sh | |
- tr | |
- ay | |
- ckb | |
- ext | |
- hr | |
- ko | |
- ml | |
- pa | |
- si | |
- tt | |
- az | |
- co | |
- fa | |
- hsb | |
- ksh | |
- mn | |
- pdc | |
- ug | |
- ba | |
- crh | |
- fi | |
- hu | |
- ku | |
- mr | |
- pl | |
- sk | |
- uk | |
- zh | |
- bar | |
- cs | |
- hy | |
- ky | |
- ms | |
- pms | |
- sl | |
- ur | |
- csb | |
- fo | |
- ia | |
- la | |
- mt | |
- pnb | |
- so | |
- uz | |
- cv | |
- fr | |
- id | |
- lb | |
- mwl | |
- ps | |
- sq | |
- vec | |
- be | |
- cy | |
- frr | |
- ig | |
- li | |
- my | |
- pt | |
- sr | |
multilinguality: | |
- multilingual | |
size_categories: | |
- 10K<100k | |
task_categories: | |
- token-classification | |
task_ids: | |
- named-entity-recognition | |
pretty_name: WikiAnn | |
# Dataset Card for "tner/wikiann" | |
## Dataset Description | |
- **Repository:** [T-NER](https://github.com/asahi417/tner) | |
- **Paper:** [https://aclanthology.org/P17-1178/](https://aclanthology.org/P17-1178/) | |
- **Dataset:** WikiAnn | |
- **Domain:** Wikipedia | |
- **Number of Entity:** 3 | |
### Dataset Summary | |
WikiAnn NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project. | |
- Entity Types: `LOC`, `ORG`, `PER` | |
## Dataset Structure | |
### Data Instances | |
An example of `train` of `ja` looks as follows. | |
``` | |
{ | |
'tokens': ['#', '#', 'ユ', 'リ', 'ウ', 'ス', '・', 'ベ', 'ー', 'リ', 'ッ', 'ク', '#', '1', '9','9','9'], | |
'tags': [6, 6, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6] | |
} | |
``` | |
### Label ID | |
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/btc/raw/main/dataset/label.json). | |
```python | |
{ | |
"B-LOC": 0, | |
"B-ORG": 1, | |
"B-PER": 2, | |
"I-LOC": 3, | |
"I-ORG": 4, | |
"I-PER": 5, | |
"O": 6 | |
} | |
``` | |
### Data Splits | |
| language | train | validation | test | | |
|:-------------|--------:|-------------:|-------:| | |
| ace | 100 | 100 | 100 | | |
| bg | 20000 | 10000 | 10000 | | |
| da | 20000 | 10000 | 10000 | | |
| fur | 100 | 100 | 100 | | |
| ilo | 100 | 100 | 100 | | |
| lij | 100 | 100 | 100 | | |
| mzn | 100 | 100 | 100 | | |
| qu | 100 | 100 | 100 | | |
| su | 100 | 100 | 100 | | |
| vi | 20000 | 10000 | 10000 | | |
| af | 5000 | 1000 | 1000 | | |
| bh | 100 | 100 | 100 | | |
| de | 20000 | 10000 | 10000 | | |
| fy | 1000 | 1000 | 1000 | | |
| io | 100 | 100 | 100 | | |
| lmo | 100 | 100 | 100 | | |
| nap | 100 | 100 | 100 | | |
| rm | 100 | 100 | 100 | | |
| sv | 20000 | 10000 | 10000 | | |
| vls | 100 | 100 | 100 | | |
| als | 100 | 100 | 100 | | |
| bn | 10000 | 1000 | 1000 | | |
| diq | 100 | 100 | 100 | | |
| ga | 1000 | 1000 | 1000 | | |
| is | 1000 | 1000 | 1000 | | |
| ln | 100 | 100 | 100 | | |
| nds | 100 | 100 | 100 | | |
| ro | 20000 | 10000 | 10000 | | |
| sw | 1000 | 1000 | 1000 | | |
| vo | 100 | 100 | 100 | | |
| am | 100 | 100 | 100 | | |
| bo | 100 | 100 | 100 | | |
| dv | 100 | 100 | 100 | | |
| gan | 100 | 100 | 100 | | |
| it | 20000 | 10000 | 10000 | | |
| lt | 10000 | 10000 | 10000 | | |
| ne | 100 | 100 | 100 | | |
| ru | 20000 | 10000 | 10000 | | |
| szl | 100 | 100 | 100 | | |
| wa | 100 | 100 | 100 | | |
| an | 1000 | 1000 | 1000 | | |
| br | 1000 | 1000 | 1000 | | |
| el | 20000 | 10000 | 10000 | | |
| gd | 100 | 100 | 100 | | |
| ja | 20000 | 10000 | 10000 | | |
| lv | 10000 | 10000 | 10000 | | |
| nl | 20000 | 10000 | 10000 | | |
| rw | 100 | 100 | 100 | | |
| ta | 15000 | 1000 | 1000 | | |
| war | 100 | 100 | 100 | | |
| ang | 100 | 100 | 100 | | |
| bs | 15000 | 1000 | 1000 | | |
| eml | 100 | 100 | 100 | | |
| gl | 15000 | 10000 | 10000 | | |
| jbo | 100 | 100 | 100 | | |
| map-bms | 100 | 100 | 100 | | |
| nn | 20000 | 1000 | 1000 | | |
| sa | 100 | 100 | 100 | | |
| te | 1000 | 1000 | 1000 | | |
| wuu | 100 | 100 | 100 | | |
| ar | 20000 | 10000 | 10000 | | |
| ca | 20000 | 10000 | 10000 | | |
| en | 20000 | 10000 | 10000 | | |
| gn | 100 | 100 | 100 | | |
| jv | 100 | 100 | 100 | | |
| mg | 100 | 100 | 100 | | |
| no | 20000 | 10000 | 10000 | | |
| sah | 100 | 100 | 100 | | |
| tg | 100 | 100 | 100 | | |
| xmf | 100 | 100 | 100 | | |
| arc | 100 | 100 | 100 | | |
| cbk-zam | 100 | 100 | 100 | | |
| eo | 15000 | 10000 | 10000 | | |
| gu | 100 | 100 | 100 | | |
| ka | 10000 | 10000 | 10000 | | |
| mhr | 100 | 100 | 100 | | |
| nov | 100 | 100 | 100 | | |
| scn | 100 | 100 | 100 | | |
| th | 20000 | 10000 | 10000 | | |
| yi | 100 | 100 | 100 | | |
| arz | 100 | 100 | 100 | | |
| cdo | 100 | 100 | 100 | | |
| es | 20000 | 10000 | 10000 | | |
| hak | 100 | 100 | 100 | | |
| kk | 1000 | 1000 | 1000 | | |
| mi | 100 | 100 | 100 | | |
| oc | 100 | 100 | 100 | | |
| sco | 100 | 100 | 100 | | |
| tk | 100 | 100 | 100 | | |
| yo | 100 | 100 | 100 | | |
| as | 100 | 100 | 100 | | |
| ce | 100 | 100 | 100 | | |
| et | 15000 | 10000 | 10000 | | |
| he | 20000 | 10000 | 10000 | | |
| km | 100 | 100 | 100 | | |
| min | 100 | 100 | 100 | | |
| or | 100 | 100 | 100 | | |
| sd | 100 | 100 | 100 | | |
| tl | 10000 | 1000 | 1000 | | |
| zea | 100 | 100 | 100 | | |
| ast | 1000 | 1000 | 1000 | | |
| ceb | 100 | 100 | 100 | | |
| eu | 10000 | 10000 | 10000 | | |
| hi | 5000 | 1000 | 1000 | | |
| kn | 100 | 100 | 100 | | |
| mk | 10000 | 1000 | 1000 | | |
| os | 100 | 100 | 100 | | |
| sh | 20000 | 10000 | 10000 | | |
| tr | 20000 | 10000 | 10000 | | |
| zh-classical | 100 | 100 | 100 | | |
| ay | 100 | 100 | 100 | | |
| ckb | 1000 | 1000 | 1000 | | |
| ext | 100 | 100 | 100 | | |
| hr | 20000 | 10000 | 10000 | | |
| ko | 20000 | 10000 | 10000 | | |
| ml | 10000 | 1000 | 1000 | | |
| pa | 100 | 100 | 100 | | |
| si | 100 | 100 | 100 | | |
| tt | 1000 | 1000 | 1000 | | |
| zh-min-nan | 100 | 100 | 100 | | |
| az | 10000 | 1000 | 1000 | | |
| co | 100 | 100 | 100 | | |
| fa | 20000 | 10000 | 10000 | | |
| hsb | 100 | 100 | 100 | | |
| ksh | 100 | 100 | 100 | | |
| mn | 100 | 100 | 100 | | |
| pdc | 100 | 100 | 100 | | |
| simple | 20000 | 1000 | 1000 | | |
| ug | 100 | 100 | 100 | | |
| zh-yue | 20000 | 10000 | 10000 | | |
| ba | 100 | 100 | 100 | | |
| crh | 100 | 100 | 100 | | |
| fi | 20000 | 10000 | 10000 | | |
| hu | 20000 | 10000 | 10000 | | |
| ku | 100 | 100 | 100 | | |
| mr | 5000 | 1000 | 1000 | | |
| pl | 20000 | 10000 | 10000 | | |
| sk | 20000 | 10000 | 10000 | | |
| uk | 20000 | 10000 | 10000 | | |
| zh | 20000 | 10000 | 10000 | | |
| bar | 100 | 100 | 100 | | |
| cs | 20000 | 10000 | 10000 | | |
| fiu-vro | 100 | 100 | 100 | | |
| hy | 15000 | 1000 | 1000 | | |
| ky | 100 | 100 | 100 | | |
| ms | 20000 | 1000 | 1000 | | |
| pms | 100 | 100 | 100 | | |
| sl | 15000 | 10000 | 10000 | | |
| ur | 20000 | 1000 | 1000 | | |
| bat-smg | 100 | 100 | 100 | | |
| csb | 100 | 100 | 100 | | |
| fo | 100 | 100 | 100 | | |
| ia | 100 | 100 | 100 | | |
| la | 5000 | 1000 | 1000 | | |
| mt | 100 | 100 | 100 | | |
| pnb | 100 | 100 | 100 | | |
| so | 100 | 100 | 100 | | |
| uz | 1000 | 1000 | 1000 | | |
| be-x-old | 5000 | 1000 | 1000 | | |
| cv | 100 | 100 | 100 | | |
| fr | 20000 | 10000 | 10000 | | |
| id | 20000 | 10000 | 10000 | | |
| lb | 5000 | 1000 | 1000 | | |
| mwl | 100 | 100 | 100 | | |
| ps | 100 | 100 | 100 | | |
| sq | 5000 | 1000 | 1000 | | |
| vec | 100 | 100 | 100 | | |
| be | 15000 | 1000 | 1000 | | |
| cy | 10000 | 1000 | 1000 | | |
| frr | 100 | 100 | 100 | | |
| ig | 100 | 100 | 100 | | |
| li | 100 | 100 | 100 | | |
| my | 100 | 100 | 100 | | |
| pt | 20000 | 10000 | 10000 | | |
| sr | 20000 | 10000 | 10000 | | |
| vep | 100 | 100 | 100 | | |
### Citation Information | |
``` | |
@inproceedings{pan-etal-2017-cross, | |
title = "Cross-lingual Name Tagging and Linking for 282 Languages", | |
author = "Pan, Xiaoman and | |
Zhang, Boliang and | |
May, Jonathan and | |
Nothman, Joel and | |
Knight, Kevin and | |
Ji, Heng", | |
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", | |
month = jul, | |
year = "2017", | |
address = "Vancouver, Canada", | |
publisher = "Association for Computational Linguistics", | |
url = "https://aclanthology.org/P17-1178", | |
doi = "10.18653/v1/P17-1178", | |
pages = "1946--1958", | |
abstract = "The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating {``}silver-standard{''} annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.", | |
} | |
``` |