File size: 3,746 Bytes
49249de
 
 
 
 
 
c4355bf
 
 
49249de
c4355bf
49249de
 
 
 
 
 
 
 
c4355bf
49249de
 
c4355bf
49249de
 
 
 
c4355bf
 
49249de
c4355bf
49249de
 
 
 
9737a06
49249de
 
 
 
ce7483a
49249de
 
 
ce7483a
 
49249de
 
 
 
c4355bf
49249de
 
9737a06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49249de
 
 
 
 
f0cbb65
 
 
 
 
 
 
 
 
 
 
49249de
 
 
 
c4355bf
 
 
 
 
 
 
 
 
 
 
49249de
c4355bf
 
 
 
49249de
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
language:
- de
- en
- es
- fr
- it
- nl
- pl
- pt
- ru
multilinguality:
- multilingual
size_categories:
- 10K<100k
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: WikiNeural
---

# Dataset Card for "tner/wikineural"

## Dataset Description

- **Repository:** [T-NER](https://github.com/asahi417/tner)
- **Paper:** [https://aclanthology.org/2021.findings-emnlp.215/](https://aclanthology.org/2021.findings-emnlp.215/)
- **Dataset:** WikiNeural
- **Domain:** Wikipedia
- **Number of Entity:** 16


### Dataset Summary
WikiAnn NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
- Entity Types: `PER`, `LOC`, `ORG`, `ANIM`, `BIO`, `CEL`, `DIS`, `EVE`, `FOOD`, `INST`, `MEDIA`, `PLANT`, `MYTH`, `TIME`, `VEHI`, `MISC`

## Dataset Structure

### Data Instances
An example of `train` of `de` looks as follows.

```
{
    'tokens': [ "Dieses", "wiederum", "basierte", "auf", "dem", "gleichnamigen", "Roman", "von", "Noël", "Calef", "." ],
    'tags': [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0 ]
}
```

### Label ID
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/wikineural/raw/main/dataset/label.json).
```python
{
"O": 0,
"B-PER": 1,
"I-PER": 2,
"B-LOC": 3,
"I-LOC": 4,
"B-ORG": 5,
"I-ORG": 6,
"B-ANIM": 7,
"I-ANIM": 8,
"B-BIO": 9,
"I-BIO": 10,
"B-CEL": 11,
"I-CEL": 12,
"B-DIS": 13,
"I-DIS": 14,
"B-EVE": 15,
"I-EVE": 16,
"B-FOOD": 17,
"I-FOOD": 18,
"B-INST": 19,
"I-INST": 20,
"B-MEDIA": 21,
"I-MEDIA": 22,
"B-PLANT": 23,
"I-PLANT": 24,
"B-MYTH": 25,
"I-MYTH": 26,
"B-TIME": 27,
"I-TIME": 28,
"B-VEHI": 29,
"I-VEHI": 30,
"B-MISC": 31,
"I-MISC": 32
}
```

### Data Splits

| language   |   train |   validation |   test |
|:-----------|--------:|-------------:|-------:|
| de         |   98640 |        12330 |  12372 |
| en         |   92720 |        11590 |  11597 |
| es         |   76320 |         9540 |   9618 |
| fr         |  100800 |        12600 |  12678 |
| it         |   88400 |        11050 |  11069 |
| nl         |   83680 |        10460 |  10547 |
| pl         |  108160 |        13520 |  13585 |
| pt         |   80560 |        10070 |  10160 |
| ru         |   92320 |        11540 |  11580 |

### Citation Information

```
@inproceedings{tedeschi-etal-2021-wikineural-combined,
    title = "{W}iki{NE}u{R}al: {C}ombined Neural and Knowledge-based Silver Data Creation for Multilingual {NER}",
    author = "Tedeschi, Simone  and
      Maiorca, Valentino  and
      Campolungo, Niccol{\`o}  and
      Cecconi, Francesco  and
      Navigli, Roberto",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-emnlp.215",
    doi = "10.18653/v1/2021.findings-emnlp.215",
    pages = "2521--2533",
    abstract = "Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.",
}
```