body_hash
stringlengths 64
64
| body
stringlengths 23
109k
| docstring
stringlengths 1
57k
| path
stringlengths 4
198
| name
stringlengths 1
115
| repository_name
stringlengths 7
111
| repository_stars
float64 0
191k
| lang
stringclasses 1
value | body_without_docstring
stringlengths 14
108k
| unified
stringlengths 45
133k
|
---|---|---|---|---|---|---|---|---|---|
e311d33e2ee6dab690e5d9ac8e9714d2c754e61cf5dc0f65cff1cf0d381a8f65 | def main():
'Send the RPC command to the server and print the result.'
parser = argparse.ArgumentParser('Send electrumx an RPC command')
parser.add_argument('-p', '--port', metavar='port_num', type=int, help='RPC port number')
parser.add_argument('command', nargs=1, default=[], help='command to send')
parser.add_argument('param', nargs='*', default=[], help='params to send')
args = parser.parse_args()
if (args.port is None):
args.port = int(environ.get('RPC_PORT', 8000))
loop = asyncio.get_event_loop()
coro = loop.create_connection(RPCClient, 'localhost', args.port)
try:
(transport, protocol) = loop.run_until_complete(coro)
coro = protocol.send_and_wait(args.command[0], args.param, timeout=15)
loop.run_until_complete(coro)
except OSError:
print('error connecting - is ElectrumX catching up or not running?')
finally:
loop.close() | Send the RPC command to the server and print the result. | electrumx_rpc.py | main | Skirmant/electrumx-trump | 0 | python | def main():
parser = argparse.ArgumentParser('Send electrumx an RPC command')
parser.add_argument('-p', '--port', metavar='port_num', type=int, help='RPC port number')
parser.add_argument('command', nargs=1, default=[], help='command to send')
parser.add_argument('param', nargs='*', default=[], help='params to send')
args = parser.parse_args()
if (args.port is None):
args.port = int(environ.get('RPC_PORT', 8000))
loop = asyncio.get_event_loop()
coro = loop.create_connection(RPCClient, 'localhost', args.port)
try:
(transport, protocol) = loop.run_until_complete(coro)
coro = protocol.send_and_wait(args.command[0], args.param, timeout=15)
loop.run_until_complete(coro)
except OSError:
print('error connecting - is ElectrumX catching up or not running?')
finally:
loop.close() | def main():
parser = argparse.ArgumentParser('Send electrumx an RPC command')
parser.add_argument('-p', '--port', metavar='port_num', type=int, help='RPC port number')
parser.add_argument('command', nargs=1, default=[], help='command to send')
parser.add_argument('param', nargs='*', default=[], help='params to send')
args = parser.parse_args()
if (args.port is None):
args.port = int(environ.get('RPC_PORT', 8000))
loop = asyncio.get_event_loop()
coro = loop.create_connection(RPCClient, 'localhost', args.port)
try:
(transport, protocol) = loop.run_until_complete(coro)
coro = protocol.send_and_wait(args.command[0], args.param, timeout=15)
loop.run_until_complete(coro)
except OSError:
print('error connecting - is ElectrumX catching up or not running?')
finally:
loop.close()<|docstring|>Send the RPC command to the server and print the result.<|endoftext|> |
7acb56f3d1695444b6d99a7ba84782b730773d46e07d620b62c76bf248cf472a | def __init__(self, n_topics, vocab_size, doc_count, batch_size, batch_steps, num_collection_passes, num_documents_passes, device, dtype, phi_smooth_sparse_tau=0.0, theta_smooth_sparse_tau=0.0, vocab_stat=None, mode='v1', dump_phi_freq=None, dump_phi_path=None, log_perplexity=False, log_matrix_norms=False):
'\n :param n_topics:\n :param vocab_size:\n :param doc_count:\n :param context_size:\n :param batch_size:\n :param batch_steps:\n :param num_collection_passes:\n :param num_documents_passes:\n :param device:\n :param dtype:\n :param phi_smooth_sparse_tau:\n :param theta_smooth_sparse_tau:\n :param vocab_stat: TF for phi sparse/smooth reg.\n :param mode: v1/v2; v1 - e-step for all batches, m-step after all\n v2 - em-step on each batch\n '
self.n_topics = n_topics
self.vocab_size = vocab_size
self.doc_count = doc_count
self.num_collection_passes = num_collection_passes
self.num_documents_passes = num_documents_passes
self.phi_smooth_sparse_tau = phi_smooth_sparse_tau
self.theta_smooth_sparse_tau = theta_smooth_sparse_tau
self.batch_size = batch_size
self.batch_steps = batch_steps
self.device = device
self.dtype = dtype
self.log_perplexity = log_perplexity
self.log_matrix_norms = log_matrix_norms
self.__init_matrices()
self.__init_aux_vars()
self.vocab_stat = vocab_stat
self.__init_regularizers()
self.phi_log = []
self.theta_log = []
self.perplexity_log = []
if dump_phi_freq:
self.dump_phi_freq = dump_phi_freq
self.dump_phi_path = dump_phi_path
else:
self.dump_phi_freq = None
self.steps_trained = 0
if (mode == 'v1'):
self.run = self.run
self.__rectify = self.__rectify
elif (mode == 'v2'):
self.run = self.run_v2
self.__rectify = self.__rectify_v2
else:
raise NotImplementedError | :param n_topics:
:param vocab_size:
:param doc_count:
:param context_size:
:param batch_size:
:param batch_steps:
:param num_collection_passes:
:param num_documents_passes:
:param device:
:param dtype:
:param phi_smooth_sparse_tau:
:param theta_smooth_sparse_tau:
:param vocab_stat: TF for phi sparse/smooth reg.
:param mode: v1/v2; v1 - e-step for all batches, m-step after all
v2 - em-step on each batch | model_fn.py | __init__ | ilyakhov/pytorch-wntm | 3 | python | def __init__(self, n_topics, vocab_size, doc_count, batch_size, batch_steps, num_collection_passes, num_documents_passes, device, dtype, phi_smooth_sparse_tau=0.0, theta_smooth_sparse_tau=0.0, vocab_stat=None, mode='v1', dump_phi_freq=None, dump_phi_path=None, log_perplexity=False, log_matrix_norms=False):
'\n :param n_topics:\n :param vocab_size:\n :param doc_count:\n :param context_size:\n :param batch_size:\n :param batch_steps:\n :param num_collection_passes:\n :param num_documents_passes:\n :param device:\n :param dtype:\n :param phi_smooth_sparse_tau:\n :param theta_smooth_sparse_tau:\n :param vocab_stat: TF for phi sparse/smooth reg.\n :param mode: v1/v2; v1 - e-step for all batches, m-step after all\n v2 - em-step on each batch\n '
self.n_topics = n_topics
self.vocab_size = vocab_size
self.doc_count = doc_count
self.num_collection_passes = num_collection_passes
self.num_documents_passes = num_documents_passes
self.phi_smooth_sparse_tau = phi_smooth_sparse_tau
self.theta_smooth_sparse_tau = theta_smooth_sparse_tau
self.batch_size = batch_size
self.batch_steps = batch_steps
self.device = device
self.dtype = dtype
self.log_perplexity = log_perplexity
self.log_matrix_norms = log_matrix_norms
self.__init_matrices()
self.__init_aux_vars()
self.vocab_stat = vocab_stat
self.__init_regularizers()
self.phi_log = []
self.theta_log = []
self.perplexity_log = []
if dump_phi_freq:
self.dump_phi_freq = dump_phi_freq
self.dump_phi_path = dump_phi_path
else:
self.dump_phi_freq = None
self.steps_trained = 0
if (mode == 'v1'):
self.run = self.run
self.__rectify = self.__rectify
elif (mode == 'v2'):
self.run = self.run_v2
self.__rectify = self.__rectify_v2
else:
raise NotImplementedError | def __init__(self, n_topics, vocab_size, doc_count, batch_size, batch_steps, num_collection_passes, num_documents_passes, device, dtype, phi_smooth_sparse_tau=0.0, theta_smooth_sparse_tau=0.0, vocab_stat=None, mode='v1', dump_phi_freq=None, dump_phi_path=None, log_perplexity=False, log_matrix_norms=False):
'\n :param n_topics:\n :param vocab_size:\n :param doc_count:\n :param context_size:\n :param batch_size:\n :param batch_steps:\n :param num_collection_passes:\n :param num_documents_passes:\n :param device:\n :param dtype:\n :param phi_smooth_sparse_tau:\n :param theta_smooth_sparse_tau:\n :param vocab_stat: TF for phi sparse/smooth reg.\n :param mode: v1/v2; v1 - e-step for all batches, m-step after all\n v2 - em-step on each batch\n '
self.n_topics = n_topics
self.vocab_size = vocab_size
self.doc_count = doc_count
self.num_collection_passes = num_collection_passes
self.num_documents_passes = num_documents_passes
self.phi_smooth_sparse_tau = phi_smooth_sparse_tau
self.theta_smooth_sparse_tau = theta_smooth_sparse_tau
self.batch_size = batch_size
self.batch_steps = batch_steps
self.device = device
self.dtype = dtype
self.log_perplexity = log_perplexity
self.log_matrix_norms = log_matrix_norms
self.__init_matrices()
self.__init_aux_vars()
self.vocab_stat = vocab_stat
self.__init_regularizers()
self.phi_log = []
self.theta_log = []
self.perplexity_log = []
if dump_phi_freq:
self.dump_phi_freq = dump_phi_freq
self.dump_phi_path = dump_phi_path
else:
self.dump_phi_freq = None
self.steps_trained = 0
if (mode == 'v1'):
self.run = self.run
self.__rectify = self.__rectify
elif (mode == 'v2'):
self.run = self.run_v2
self.__rectify = self.__rectify_v2
else:
raise NotImplementedError<|docstring|>:param n_topics:
:param vocab_size:
:param doc_count:
:param context_size:
:param batch_size:
:param batch_steps:
:param num_collection_passes:
:param num_documents_passes:
:param device:
:param dtype:
:param phi_smooth_sparse_tau:
:param theta_smooth_sparse_tau:
:param vocab_stat: TF for phi sparse/smooth reg.
:param mode: v1/v2; v1 - e-step for all batches, m-step after all
v2 - em-step on each batch<|endoftext|> |
b5779dd61f7e11cfd0b5268f7a968eddaed9ed3de7d26b69dcad4cc43b563c5b | def perplexity(self):
'\n Full:\n exp(-1/n_m * sum(n_dw * ln(mm(self.phi, self.theta))))\n :return:\n '
phi = self.phi.cpu()
theta = self.theta.cpu()
n_m = torch.sum(self.n_dw)
one = torch.tensor(1, dtype=self.dtype, device='cpu:0')
mm = torch.mm(phi, theta)
mm = torch.where((mm == self.zero.cpu()), (0.0001 * one), mm)
mm = mm.log()
one = ((- 1) * one)
perp = torch.exp(((one / n_m) * torch.sum((self.n_dw * mm))))
return perp.numpy() | Full:
exp(-1/n_m * sum(n_dw * ln(mm(self.phi, self.theta))))
:return: | model_fn.py | perplexity | ilyakhov/pytorch-wntm | 3 | python | def perplexity(self):
'\n Full:\n exp(-1/n_m * sum(n_dw * ln(mm(self.phi, self.theta))))\n :return:\n '
phi = self.phi.cpu()
theta = self.theta.cpu()
n_m = torch.sum(self.n_dw)
one = torch.tensor(1, dtype=self.dtype, device='cpu:0')
mm = torch.mm(phi, theta)
mm = torch.where((mm == self.zero.cpu()), (0.0001 * one), mm)
mm = mm.log()
one = ((- 1) * one)
perp = torch.exp(((one / n_m) * torch.sum((self.n_dw * mm))))
return perp.numpy() | def perplexity(self):
'\n Full:\n exp(-1/n_m * sum(n_dw * ln(mm(self.phi, self.theta))))\n :return:\n '
phi = self.phi.cpu()
theta = self.theta.cpu()
n_m = torch.sum(self.n_dw)
one = torch.tensor(1, dtype=self.dtype, device='cpu:0')
mm = torch.mm(phi, theta)
mm = torch.where((mm == self.zero.cpu()), (0.0001 * one), mm)
mm = mm.log()
one = ((- 1) * one)
perp = torch.exp(((one / n_m) * torch.sum((self.n_dw * mm))))
return perp.numpy()<|docstring|>Full:
exp(-1/n_m * sum(n_dw * ln(mm(self.phi, self.theta))))
:return:<|endoftext|> |
01da978c17506836ad21b2c7c41f4cc9a1e052a0263afe9d907841fc1af609bf | def e_step(self, n_dw, doc_inxs, context_batch, gather_ndw=False):
"\n :param n_dw: freq of term 'w' occurrence in doc 'd'\n [[1, 1, 2, 1, 2] - for each word in a doc, ...] β\n [batch_size, context_size]\n :param doc_inxs: Tensor of doc inxs with shape [batch_size]\n :param context_batch: Tensor of word inxs with shape\n [batch_size, context_size]\n :return:\n "
with torch.cuda.device(self.device):
if (gather_ndw is True):
self.n_dw[(:, doc_inxs.long())] = n_dw.t()
n_dw = torch.unsqueeze(n_dw, 2).cuda(self.device)
context_batch = context_batch.cuda(self.device)
batch_size = context_batch.shape[0]
context_size = context_batch.shape[1]
phi_w = self.phi[context_batch.long()]
theta_d = torch.t(self.theta)[doc_inxs.long()]
theta_d = theta_d.repeat(1, 1, context_size)
theta_d = theta_d.view(batch_size, context_size, (- 1))
numerator = (phi_w * theta_d)
denominator = torch.sum((phi_w * theta_d), dim=2, keepdim=True)
n_tdw = ((n_dw * numerator) / denominator)
n_tdw[torch.isnan(n_tdw)] = self.zero
n_tdw_context = n_tdw.view((- 1), self.n_topics)
n_tdw_doc = torch.sum(n_tdw, dim=1, keepdim=False)
n_tdw_t = n_tdw.sum(1).sum(0)
n_tdw_d = n_tdw.sum(2).sum(1)
context_1d_mask = context_batch.view((- 1))
wt_index = context_1d_mask.long().cuda(self.device)
(n_wt_update, wt_index) = self._group_by_with_index_mapping(wt_index, n_tdw_context)
self.n_wt[wt_index] += n_wt_update
self.n_td[(:, doc_inxs.long())] += n_tdw_doc.t()
self.n_t += n_tdw_t
self.n_d[doc_inxs.long()] += n_tdw_d | :param n_dw: freq of term 'w' occurrence in doc 'd'
[[1, 1, 2, 1, 2] - for each word in a doc, ...] β
[batch_size, context_size]
:param doc_inxs: Tensor of doc inxs with shape [batch_size]
:param context_batch: Tensor of word inxs with shape
[batch_size, context_size]
:return: | model_fn.py | e_step | ilyakhov/pytorch-wntm | 3 | python | def e_step(self, n_dw, doc_inxs, context_batch, gather_ndw=False):
"\n :param n_dw: freq of term 'w' occurrence in doc 'd'\n [[1, 1, 2, 1, 2] - for each word in a doc, ...] β\n [batch_size, context_size]\n :param doc_inxs: Tensor of doc inxs with shape [batch_size]\n :param context_batch: Tensor of word inxs with shape\n [batch_size, context_size]\n :return:\n "
with torch.cuda.device(self.device):
if (gather_ndw is True):
self.n_dw[(:, doc_inxs.long())] = n_dw.t()
n_dw = torch.unsqueeze(n_dw, 2).cuda(self.device)
context_batch = context_batch.cuda(self.device)
batch_size = context_batch.shape[0]
context_size = context_batch.shape[1]
phi_w = self.phi[context_batch.long()]
theta_d = torch.t(self.theta)[doc_inxs.long()]
theta_d = theta_d.repeat(1, 1, context_size)
theta_d = theta_d.view(batch_size, context_size, (- 1))
numerator = (phi_w * theta_d)
denominator = torch.sum((phi_w * theta_d), dim=2, keepdim=True)
n_tdw = ((n_dw * numerator) / denominator)
n_tdw[torch.isnan(n_tdw)] = self.zero
n_tdw_context = n_tdw.view((- 1), self.n_topics)
n_tdw_doc = torch.sum(n_tdw, dim=1, keepdim=False)
n_tdw_t = n_tdw.sum(1).sum(0)
n_tdw_d = n_tdw.sum(2).sum(1)
context_1d_mask = context_batch.view((- 1))
wt_index = context_1d_mask.long().cuda(self.device)
(n_wt_update, wt_index) = self._group_by_with_index_mapping(wt_index, n_tdw_context)
self.n_wt[wt_index] += n_wt_update
self.n_td[(:, doc_inxs.long())] += n_tdw_doc.t()
self.n_t += n_tdw_t
self.n_d[doc_inxs.long()] += n_tdw_d | def e_step(self, n_dw, doc_inxs, context_batch, gather_ndw=False):
"\n :param n_dw: freq of term 'w' occurrence in doc 'd'\n [[1, 1, 2, 1, 2] - for each word in a doc, ...] β\n [batch_size, context_size]\n :param doc_inxs: Tensor of doc inxs with shape [batch_size]\n :param context_batch: Tensor of word inxs with shape\n [batch_size, context_size]\n :return:\n "
with torch.cuda.device(self.device):
if (gather_ndw is True):
self.n_dw[(:, doc_inxs.long())] = n_dw.t()
n_dw = torch.unsqueeze(n_dw, 2).cuda(self.device)
context_batch = context_batch.cuda(self.device)
batch_size = context_batch.shape[0]
context_size = context_batch.shape[1]
phi_w = self.phi[context_batch.long()]
theta_d = torch.t(self.theta)[doc_inxs.long()]
theta_d = theta_d.repeat(1, 1, context_size)
theta_d = theta_d.view(batch_size, context_size, (- 1))
numerator = (phi_w * theta_d)
denominator = torch.sum((phi_w * theta_d), dim=2, keepdim=True)
n_tdw = ((n_dw * numerator) / denominator)
n_tdw[torch.isnan(n_tdw)] = self.zero
n_tdw_context = n_tdw.view((- 1), self.n_topics)
n_tdw_doc = torch.sum(n_tdw, dim=1, keepdim=False)
n_tdw_t = n_tdw.sum(1).sum(0)
n_tdw_d = n_tdw.sum(2).sum(1)
context_1d_mask = context_batch.view((- 1))
wt_index = context_1d_mask.long().cuda(self.device)
(n_wt_update, wt_index) = self._group_by_with_index_mapping(wt_index, n_tdw_context)
self.n_wt[wt_index] += n_wt_update
self.n_td[(:, doc_inxs.long())] += n_tdw_doc.t()
self.n_t += n_tdw_t
self.n_d[doc_inxs.long()] += n_tdw_d<|docstring|>:param n_dw: freq of term 'w' occurrence in doc 'd'
[[1, 1, 2, 1, 2] - for each word in a doc, ...] β
[batch_size, context_size]
:param doc_inxs: Tensor of doc inxs with shape [batch_size]
:param context_batch: Tensor of word inxs with shape
[batch_size, context_size]
:return:<|endoftext|> |
f5c59aa64191544cc1bd3079d8736988394739525aacbd76217f49bc91b628cf | def _group_by_with_index_mapping(self, true_labels, samples):
'\n TODO: implement stuff from "Notes of reproducibility"\n :param true_labels: indices for initial embedding matrix\n [100, 100, 200, 200, 0] =>\n [0, 100, 200], [1, 1, 2, 2, 0], [1, 2, 2]\n :param samples: 2D-tensor with vectors to agg(sum)\n [[0.1, .0], [-0.1, 0.2], [...], [...], [...]]\n :return: agg(sum): [[...], [.0, 0.1], [...]],\n index: [0, 100, 200]\n '
with torch.cuda.device(self.device):
(true_unique_labels, ordering_index) = true_labels.unique(dim=0, return_counts=False, return_inverse=True)
ordering_labels = ordering_index.view(ordering_index.size(0), 1).expand((- 1), samples.size(1))
(ordering_unique_labels, ordering_count) = ordering_labels.unique(dim=0, return_counts=True, return_inverse=False)
grouped_res = torch.zeros_like(ordering_unique_labels, dtype=torch.float, device=self.device)
grouped_res = grouped_res.scatter_add_(0, ordering_labels.cuda(self.device), samples.cuda(self.device))
return (grouped_res, true_unique_labels) | TODO: implement stuff from "Notes of reproducibility"
:param true_labels: indices for initial embedding matrix
[100, 100, 200, 200, 0] =>
[0, 100, 200], [1, 1, 2, 2, 0], [1, 2, 2]
:param samples: 2D-tensor with vectors to agg(sum)
[[0.1, .0], [-0.1, 0.2], [...], [...], [...]]
:return: agg(sum): [[...], [.0, 0.1], [...]],
index: [0, 100, 200] | model_fn.py | _group_by_with_index_mapping | ilyakhov/pytorch-wntm | 3 | python | def _group_by_with_index_mapping(self, true_labels, samples):
'\n TODO: implement stuff from "Notes of reproducibility"\n :param true_labels: indices for initial embedding matrix\n [100, 100, 200, 200, 0] =>\n [0, 100, 200], [1, 1, 2, 2, 0], [1, 2, 2]\n :param samples: 2D-tensor with vectors to agg(sum)\n [[0.1, .0], [-0.1, 0.2], [...], [...], [...]]\n :return: agg(sum): [[...], [.0, 0.1], [...]],\n index: [0, 100, 200]\n '
with torch.cuda.device(self.device):
(true_unique_labels, ordering_index) = true_labels.unique(dim=0, return_counts=False, return_inverse=True)
ordering_labels = ordering_index.view(ordering_index.size(0), 1).expand((- 1), samples.size(1))
(ordering_unique_labels, ordering_count) = ordering_labels.unique(dim=0, return_counts=True, return_inverse=False)
grouped_res = torch.zeros_like(ordering_unique_labels, dtype=torch.float, device=self.device)
grouped_res = grouped_res.scatter_add_(0, ordering_labels.cuda(self.device), samples.cuda(self.device))
return (grouped_res, true_unique_labels) | def _group_by_with_index_mapping(self, true_labels, samples):
'\n TODO: implement stuff from "Notes of reproducibility"\n :param true_labels: indices for initial embedding matrix\n [100, 100, 200, 200, 0] =>\n [0, 100, 200], [1, 1, 2, 2, 0], [1, 2, 2]\n :param samples: 2D-tensor with vectors to agg(sum)\n [[0.1, .0], [-0.1, 0.2], [...], [...], [...]]\n :return: agg(sum): [[...], [.0, 0.1], [...]],\n index: [0, 100, 200]\n '
with torch.cuda.device(self.device):
(true_unique_labels, ordering_index) = true_labels.unique(dim=0, return_counts=False, return_inverse=True)
ordering_labels = ordering_index.view(ordering_index.size(0), 1).expand((- 1), samples.size(1))
(ordering_unique_labels, ordering_count) = ordering_labels.unique(dim=0, return_counts=True, return_inverse=False)
grouped_res = torch.zeros_like(ordering_unique_labels, dtype=torch.float, device=self.device)
grouped_res = grouped_res.scatter_add_(0, ordering_labels.cuda(self.device), samples.cuda(self.device))
return (grouped_res, true_unique_labels)<|docstring|>TODO: implement stuff from "Notes of reproducibility"
:param true_labels: indices for initial embedding matrix
[100, 100, 200, 200, 0] =>
[0, 100, 200], [1, 1, 2, 2, 0], [1, 2, 2]
:param samples: 2D-tensor with vectors to agg(sum)
[[0.1, .0], [-0.1, 0.2], [...], [...], [...]]
:return: agg(sum): [[...], [.0, 0.1], [...]],
index: [0, 100, 200]<|endoftext|> |
e02a2c01f27168e013e450c577e34bf6c15f8694e152682bdd7fe34eb2b1fbca | def m_step(self):
'\n Rational EM. The same is "smoothed/sparsed" with reg_tau=0.0\n :return:\n '
with torch.cuda.device(self.device):
new_phi = (self.n_wt / self.n_t.view((- 1), self.n_topics))
phi_norm = ((torch.sum(((self.phi - new_phi) ** 2)) ** 1) / 2)
self.phi_log.append(phi_norm.cpu().numpy())
self.phi = new_phi
self.theta = (self.n_td / self.n_d.view((- 1), self.doc_count)) | Rational EM. The same is "smoothed/sparsed" with reg_tau=0.0
:return: | model_fn.py | m_step | ilyakhov/pytorch-wntm | 3 | python | def m_step(self):
'\n Rational EM. The same is "smoothed/sparsed" with reg_tau=0.0\n :return:\n '
with torch.cuda.device(self.device):
new_phi = (self.n_wt / self.n_t.view((- 1), self.n_topics))
phi_norm = ((torch.sum(((self.phi - new_phi) ** 2)) ** 1) / 2)
self.phi_log.append(phi_norm.cpu().numpy())
self.phi = new_phi
self.theta = (self.n_td / self.n_d.view((- 1), self.doc_count)) | def m_step(self):
'\n Rational EM. The same is "smoothed/sparsed" with reg_tau=0.0\n :return:\n '
with torch.cuda.device(self.device):
new_phi = (self.n_wt / self.n_t.view((- 1), self.n_topics))
phi_norm = ((torch.sum(((self.phi - new_phi) ** 2)) ** 1) / 2)
self.phi_log.append(phi_norm.cpu().numpy())
self.phi = new_phi
self.theta = (self.n_td / self.n_d.view((- 1), self.doc_count))<|docstring|>Rational EM. The same is "smoothed/sparsed" with reg_tau=0.0
:return:<|endoftext|> |
94c1725291d84daf6a5669344a0e8ea65e0acb603351766874b332a90a58860a | def run_v2(self, batch_generator):
'\n M-step after each E-step. Not tested enough!\n :param batch_generator:\n :return:\n '
for _ in tqdm(range(self.num_collection_passes), total=self.num_collection_passes, desc='Passing through collection: '):
old_phi = self.phi.cpu()
for (n_dw, doc_inxs, batch, context_len) in batch_generator:
for _ in range(self.num_documents_passes):
self.em_step(n_dw, doc_inxs, batch, context_len)
assert (not np.any((torch.sum(torch.isnan(self.phi.cpu())).numpy() > 0)))
phi_norm = ((torch.sum(((self.phi.cpu().float() - old_phi.float()) ** 2)) ** 1) / 2)
self.phi_log.append(phi_norm.cpu().numpy())
self.__init_aux_vars()
self.steps_trained += 1
logging.info(f'Phi norm: {self.phi_log[(self.steps_trained - 1)]}; step: {self.steps_trained}')
if (self.dump_phi_freq and ((self.steps_trained % self.dump_phi_freq) == 0)):
self.__dump_phi(self.steps_trained) | M-step after each E-step. Not tested enough!
:param batch_generator:
:return: | model_fn.py | run_v2 | ilyakhov/pytorch-wntm | 3 | python | def run_v2(self, batch_generator):
'\n M-step after each E-step. Not tested enough!\n :param batch_generator:\n :return:\n '
for _ in tqdm(range(self.num_collection_passes), total=self.num_collection_passes, desc='Passing through collection: '):
old_phi = self.phi.cpu()
for (n_dw, doc_inxs, batch, context_len) in batch_generator:
for _ in range(self.num_documents_passes):
self.em_step(n_dw, doc_inxs, batch, context_len)
assert (not np.any((torch.sum(torch.isnan(self.phi.cpu())).numpy() > 0)))
phi_norm = ((torch.sum(((self.phi.cpu().float() - old_phi.float()) ** 2)) ** 1) / 2)
self.phi_log.append(phi_norm.cpu().numpy())
self.__init_aux_vars()
self.steps_trained += 1
logging.info(f'Phi norm: {self.phi_log[(self.steps_trained - 1)]}; step: {self.steps_trained}')
if (self.dump_phi_freq and ((self.steps_trained % self.dump_phi_freq) == 0)):
self.__dump_phi(self.steps_trained) | def run_v2(self, batch_generator):
'\n M-step after each E-step. Not tested enough!\n :param batch_generator:\n :return:\n '
for _ in tqdm(range(self.num_collection_passes), total=self.num_collection_passes, desc='Passing through collection: '):
old_phi = self.phi.cpu()
for (n_dw, doc_inxs, batch, context_len) in batch_generator:
for _ in range(self.num_documents_passes):
self.em_step(n_dw, doc_inxs, batch, context_len)
assert (not np.any((torch.sum(torch.isnan(self.phi.cpu())).numpy() > 0)))
phi_norm = ((torch.sum(((self.phi.cpu().float() - old_phi.float()) ** 2)) ** 1) / 2)
self.phi_log.append(phi_norm.cpu().numpy())
self.__init_aux_vars()
self.steps_trained += 1
logging.info(f'Phi norm: {self.phi_log[(self.steps_trained - 1)]}; step: {self.steps_trained}')
if (self.dump_phi_freq and ((self.steps_trained % self.dump_phi_freq) == 0)):
self.__dump_phi(self.steps_trained)<|docstring|>M-step after each E-step. Not tested enough!
:param batch_generator:
:return:<|endoftext|> |
872522fff92ce50f350fb951e543f6f2a13faa14171af9037d1d807fe23dc516 | def __rectify_v2(self, t):
"\n Rectification on each step is expensive operation if\n data are being copied on cpu. For train_mode='v2' no data copy\n to 'cpu'(RAM) has being used.\n :param t:\n :return:\n "
t = torch.where((t < self.zero), self.zero, t)
t = torch.where((t != t), self.zero, t)
return t | Rectification on each step is expensive operation if
data are being copied on cpu. For train_mode='v2' no data copy
to 'cpu'(RAM) has being used.
:param t:
:return: | model_fn.py | __rectify_v2 | ilyakhov/pytorch-wntm | 3 | python | def __rectify_v2(self, t):
"\n Rectification on each step is expensive operation if\n data are being copied on cpu. For train_mode='v2' no data copy\n to 'cpu'(RAM) has being used.\n :param t:\n :return:\n "
t = torch.where((t < self.zero), self.zero, t)
t = torch.where((t != t), self.zero, t)
return t | def __rectify_v2(self, t):
"\n Rectification on each step is expensive operation if\n data are being copied on cpu. For train_mode='v2' no data copy\n to 'cpu'(RAM) has being used.\n :param t:\n :return:\n "
t = torch.where((t < self.zero), self.zero, t)
t = torch.where((t != t), self.zero, t)
return t<|docstring|>Rectification on each step is expensive operation if
data are being copied on cpu. For train_mode='v2' no data copy
to 'cpu'(RAM) has being used.
:param t:
:return:<|endoftext|> |
f30fd7a798c581dfc36dd85174c3569d6a36a94825b6fff467acf153834dba2e | def __init__(self, n_topics, vocab_size, doc_count, batch_size, batch_steps, num_collection_passes, num_documents_passes, device, dtype, phi_smooth_sparse_tau=0.0, theta_smooth_sparse_tau=0.0, vocab_stat=None, mode='v1', dump_phi_freq=None, dump_phi_path=None, log_perplexity=False, log_matrix_norms=False):
'\n :param n_topics:\n :param vocab_size:\n :param doc_count:\n :param context_size:\n :param batch_size:\n :param batch_steps:\n :param num_collection_passes:\n :param num_documents_passes:\n :param device:\n :param dtype:\n :param phi_smooth_sparse_tau:\n :param theta_smooth_sparse_tau:\n :param vocab_stat: TF for phi sparse/smooth reg.\n :param mode: v1/v2; v1 - e-step for all batches, m-step after all\n v2 - em-step on each batch\n '
super(WNTM_pLSA, self).__init__(n_topics=n_topics, vocab_size=vocab_size, doc_count=doc_count, batch_size=batch_size, batch_steps=batch_steps, num_collection_passes=num_collection_passes, num_documents_passes=num_documents_passes, device=device, dtype=dtype, phi_smooth_sparse_tau=phi_smooth_sparse_tau, theta_smooth_sparse_tau=theta_smooth_sparse_tau, vocab_stat=vocab_stat, mode=mode, dump_phi_freq=dump_phi_freq, dump_phi_path=dump_phi_path, log_perplexity=log_perplexity, log_matrix_norms=log_matrix_norms)
self.__init_const() | :param n_topics:
:param vocab_size:
:param doc_count:
:param context_size:
:param batch_size:
:param batch_steps:
:param num_collection_passes:
:param num_documents_passes:
:param device:
:param dtype:
:param phi_smooth_sparse_tau:
:param theta_smooth_sparse_tau:
:param vocab_stat: TF for phi sparse/smooth reg.
:param mode: v1/v2; v1 - e-step for all batches, m-step after all
v2 - em-step on each batch | model_fn.py | __init__ | ilyakhov/pytorch-wntm | 3 | python | def __init__(self, n_topics, vocab_size, doc_count, batch_size, batch_steps, num_collection_passes, num_documents_passes, device, dtype, phi_smooth_sparse_tau=0.0, theta_smooth_sparse_tau=0.0, vocab_stat=None, mode='v1', dump_phi_freq=None, dump_phi_path=None, log_perplexity=False, log_matrix_norms=False):
'\n :param n_topics:\n :param vocab_size:\n :param doc_count:\n :param context_size:\n :param batch_size:\n :param batch_steps:\n :param num_collection_passes:\n :param num_documents_passes:\n :param device:\n :param dtype:\n :param phi_smooth_sparse_tau:\n :param theta_smooth_sparse_tau:\n :param vocab_stat: TF for phi sparse/smooth reg.\n :param mode: v1/v2; v1 - e-step for all batches, m-step after all\n v2 - em-step on each batch\n '
super(WNTM_pLSA, self).__init__(n_topics=n_topics, vocab_size=vocab_size, doc_count=doc_count, batch_size=batch_size, batch_steps=batch_steps, num_collection_passes=num_collection_passes, num_documents_passes=num_documents_passes, device=device, dtype=dtype, phi_smooth_sparse_tau=phi_smooth_sparse_tau, theta_smooth_sparse_tau=theta_smooth_sparse_tau, vocab_stat=vocab_stat, mode=mode, dump_phi_freq=dump_phi_freq, dump_phi_path=dump_phi_path, log_perplexity=log_perplexity, log_matrix_norms=log_matrix_norms)
self.__init_const() | def __init__(self, n_topics, vocab_size, doc_count, batch_size, batch_steps, num_collection_passes, num_documents_passes, device, dtype, phi_smooth_sparse_tau=0.0, theta_smooth_sparse_tau=0.0, vocab_stat=None, mode='v1', dump_phi_freq=None, dump_phi_path=None, log_perplexity=False, log_matrix_norms=False):
'\n :param n_topics:\n :param vocab_size:\n :param doc_count:\n :param context_size:\n :param batch_size:\n :param batch_steps:\n :param num_collection_passes:\n :param num_documents_passes:\n :param device:\n :param dtype:\n :param phi_smooth_sparse_tau:\n :param theta_smooth_sparse_tau:\n :param vocab_stat: TF for phi sparse/smooth reg.\n :param mode: v1/v2; v1 - e-step for all batches, m-step after all\n v2 - em-step on each batch\n '
super(WNTM_pLSA, self).__init__(n_topics=n_topics, vocab_size=vocab_size, doc_count=doc_count, batch_size=batch_size, batch_steps=batch_steps, num_collection_passes=num_collection_passes, num_documents_passes=num_documents_passes, device=device, dtype=dtype, phi_smooth_sparse_tau=phi_smooth_sparse_tau, theta_smooth_sparse_tau=theta_smooth_sparse_tau, vocab_stat=vocab_stat, mode=mode, dump_phi_freq=dump_phi_freq, dump_phi_path=dump_phi_path, log_perplexity=log_perplexity, log_matrix_norms=log_matrix_norms)
self.__init_const()<|docstring|>:param n_topics:
:param vocab_size:
:param doc_count:
:param context_size:
:param batch_size:
:param batch_steps:
:param num_collection_passes:
:param num_documents_passes:
:param device:
:param dtype:
:param phi_smooth_sparse_tau:
:param theta_smooth_sparse_tau:
:param vocab_stat: TF for phi sparse/smooth reg.
:param mode: v1/v2; v1 - e-step for all batches, m-step after all
v2 - em-step on each batch<|endoftext|> |
6913eb75a0bbcd8aae093006ef21a9b0eccddc1433cf314193adea566edec713 | def e_step(self, n_dw, doc_inxs, context_batch, gather_ndw=False):
"\n :param n_dw: freq of term 'w' occurrence in doc 'd'\n [[1, 1, 2, 1, 2] - for each word in a doc, ...] β\n [batch_size, context_size]\n :param doc_inxs: Tensor of doc inxs with shape [batch_size]\n :param context_batch: Tensor of word inxs with shape\n [batch_size, context_size]\n :param first: 'first' iteration over documents\n to gather self.n_dw matrix\n :return:\n "
with torch.cuda.device(self.device):
if (gather_ndw is True):
self.n_dw[(:, doc_inxs.long())] = n_dw.t()
context_batch = context_batch.cuda(self.device)
batch_size = context_batch.shape[0]
context_size = context_batch.shape[1]
phi_w = self.phi[context_batch.long()]
theta_d = torch.t(self.theta)[doc_inxs.long()]
mask = (context_batch == self.unk_inx)
phi_w = torch.masked_fill(phi_w, mask.view(batch_size, context_size, (- 1)), self.zero)
theta_d = theta_d.repeat(1, 1, context_size)
theta_d = theta_d.view(batch_size, context_size, (- 1))
numerator = (phi_w * theta_d)
denominator = torch.sum((phi_w * theta_d), dim=2, keepdim=True)
n_tdw = (numerator / denominator)
n_tdw[torch.isnan(n_tdw)] = self.zero
n_tdw_context = n_tdw.view((- 1), self.n_topics)
n_tdw_doc = torch.sum(n_tdw, dim=1, keepdim=False)
n_tdw_t = n_tdw.sum(1).sum(0)
n_tdw_d = n_tdw.sum(2).sum(1)
context_1d_mask = context_batch.view((- 1))
wt_index = context_1d_mask.long().cuda(self.device)
(n_wt_update, wt_index) = self._group_by_with_index_mapping(wt_index, n_tdw_context)
self.n_wt[wt_index] += n_wt_update
self.n_td[(:, doc_inxs.long())] += n_tdw_doc.t()
self.n_t += n_tdw_t
self.n_d[doc_inxs.long()] += n_tdw_d | :param n_dw: freq of term 'w' occurrence in doc 'd'
[[1, 1, 2, 1, 2] - for each word in a doc, ...] β
[batch_size, context_size]
:param doc_inxs: Tensor of doc inxs with shape [batch_size]
:param context_batch: Tensor of word inxs with shape
[batch_size, context_size]
:param first: 'first' iteration over documents
to gather self.n_dw matrix
:return: | model_fn.py | e_step | ilyakhov/pytorch-wntm | 3 | python | def e_step(self, n_dw, doc_inxs, context_batch, gather_ndw=False):
"\n :param n_dw: freq of term 'w' occurrence in doc 'd'\n [[1, 1, 2, 1, 2] - for each word in a doc, ...] β\n [batch_size, context_size]\n :param doc_inxs: Tensor of doc inxs with shape [batch_size]\n :param context_batch: Tensor of word inxs with shape\n [batch_size, context_size]\n :param first: 'first' iteration over documents\n to gather self.n_dw matrix\n :return:\n "
with torch.cuda.device(self.device):
if (gather_ndw is True):
self.n_dw[(:, doc_inxs.long())] = n_dw.t()
context_batch = context_batch.cuda(self.device)
batch_size = context_batch.shape[0]
context_size = context_batch.shape[1]
phi_w = self.phi[context_batch.long()]
theta_d = torch.t(self.theta)[doc_inxs.long()]
mask = (context_batch == self.unk_inx)
phi_w = torch.masked_fill(phi_w, mask.view(batch_size, context_size, (- 1)), self.zero)
theta_d = theta_d.repeat(1, 1, context_size)
theta_d = theta_d.view(batch_size, context_size, (- 1))
numerator = (phi_w * theta_d)
denominator = torch.sum((phi_w * theta_d), dim=2, keepdim=True)
n_tdw = (numerator / denominator)
n_tdw[torch.isnan(n_tdw)] = self.zero
n_tdw_context = n_tdw.view((- 1), self.n_topics)
n_tdw_doc = torch.sum(n_tdw, dim=1, keepdim=False)
n_tdw_t = n_tdw.sum(1).sum(0)
n_tdw_d = n_tdw.sum(2).sum(1)
context_1d_mask = context_batch.view((- 1))
wt_index = context_1d_mask.long().cuda(self.device)
(n_wt_update, wt_index) = self._group_by_with_index_mapping(wt_index, n_tdw_context)
self.n_wt[wt_index] += n_wt_update
self.n_td[(:, doc_inxs.long())] += n_tdw_doc.t()
self.n_t += n_tdw_t
self.n_d[doc_inxs.long()] += n_tdw_d | def e_step(self, n_dw, doc_inxs, context_batch, gather_ndw=False):
"\n :param n_dw: freq of term 'w' occurrence in doc 'd'\n [[1, 1, 2, 1, 2] - for each word in a doc, ...] β\n [batch_size, context_size]\n :param doc_inxs: Tensor of doc inxs with shape [batch_size]\n :param context_batch: Tensor of word inxs with shape\n [batch_size, context_size]\n :param first: 'first' iteration over documents\n to gather self.n_dw matrix\n :return:\n "
with torch.cuda.device(self.device):
if (gather_ndw is True):
self.n_dw[(:, doc_inxs.long())] = n_dw.t()
context_batch = context_batch.cuda(self.device)
batch_size = context_batch.shape[0]
context_size = context_batch.shape[1]
phi_w = self.phi[context_batch.long()]
theta_d = torch.t(self.theta)[doc_inxs.long()]
mask = (context_batch == self.unk_inx)
phi_w = torch.masked_fill(phi_w, mask.view(batch_size, context_size, (- 1)), self.zero)
theta_d = theta_d.repeat(1, 1, context_size)
theta_d = theta_d.view(batch_size, context_size, (- 1))
numerator = (phi_w * theta_d)
denominator = torch.sum((phi_w * theta_d), dim=2, keepdim=True)
n_tdw = (numerator / denominator)
n_tdw[torch.isnan(n_tdw)] = self.zero
n_tdw_context = n_tdw.view((- 1), self.n_topics)
n_tdw_doc = torch.sum(n_tdw, dim=1, keepdim=False)
n_tdw_t = n_tdw.sum(1).sum(0)
n_tdw_d = n_tdw.sum(2).sum(1)
context_1d_mask = context_batch.view((- 1))
wt_index = context_1d_mask.long().cuda(self.device)
(n_wt_update, wt_index) = self._group_by_with_index_mapping(wt_index, n_tdw_context)
self.n_wt[wt_index] += n_wt_update
self.n_td[(:, doc_inxs.long())] += n_tdw_doc.t()
self.n_t += n_tdw_t
self.n_d[doc_inxs.long()] += n_tdw_d<|docstring|>:param n_dw: freq of term 'w' occurrence in doc 'd'
[[1, 1, 2, 1, 2] - for each word in a doc, ...] β
[batch_size, context_size]
:param doc_inxs: Tensor of doc inxs with shape [batch_size]
:param context_batch: Tensor of word inxs with shape
[batch_size, context_size]
:param first: 'first' iteration over documents
to gather self.n_dw matrix
:return:<|endoftext|> |
88c8670d83f2cde855d0d0ab6e6b666f8b2cf79bcb84852a81fa8ceb54688bec | def __init__(self, filters, p_m, get_mask, apply_mask, path_json='src/python_code/settings.json'):
'\n CNN decoder layers (tensorflow 2 book)\n :param filters: list filters\n :param path_json: path settings\n '
settings = json.load(open(path_json))['Model']
hyperparameters = settings['decoder_cnn'][int(settings['size_use'])]
super(DecoderCNN, self).__init__()
self.get_mask = get_mask
self.apply_mask = apply_mask
self.conv1 = tf.keras.layers.Conv2D(filters=filters[2], kernel_size=3, strides=1, activation='relu', padding='same')
self.conv2 = tf.keras.layers.Conv2D(filters=filters[1], kernel_size=3, strides=1, activation='relu', padding='same')
self.conv3 = tf.keras.layers.Conv2D(filters=filters[0], kernel_size=3, strides=1, activation='relu', padding=hyperparameters['padding_last'])
self.conv4 = tf.keras.layers.Conv2D(filters=int(hyperparameters['channels_last']), kernel_size=3, strides=1, activation='sigmoid', padding='same')
self.upsample = tf.keras.layers.UpSampling2D((2, 2))
self.reshape2 = tf.keras.layers.Reshape((4, 4, 32))
self._layers_ = [self.conv1, self.conv2, self.conv3, self.conv4]
self.p_m = p_m | CNN decoder layers (tensorflow 2 book)
:param filters: list filters
:param path_json: path settings | src/python_code/Models/EAE_models/DecoderCNN.py | __init__ | ipmach/Thesis2021 | 0 | python | def __init__(self, filters, p_m, get_mask, apply_mask, path_json='src/python_code/settings.json'):
'\n CNN decoder layers (tensorflow 2 book)\n :param filters: list filters\n :param path_json: path settings\n '
settings = json.load(open(path_json))['Model']
hyperparameters = settings['decoder_cnn'][int(settings['size_use'])]
super(DecoderCNN, self).__init__()
self.get_mask = get_mask
self.apply_mask = apply_mask
self.conv1 = tf.keras.layers.Conv2D(filters=filters[2], kernel_size=3, strides=1, activation='relu', padding='same')
self.conv2 = tf.keras.layers.Conv2D(filters=filters[1], kernel_size=3, strides=1, activation='relu', padding='same')
self.conv3 = tf.keras.layers.Conv2D(filters=filters[0], kernel_size=3, strides=1, activation='relu', padding=hyperparameters['padding_last'])
self.conv4 = tf.keras.layers.Conv2D(filters=int(hyperparameters['channels_last']), kernel_size=3, strides=1, activation='sigmoid', padding='same')
self.upsample = tf.keras.layers.UpSampling2D((2, 2))
self.reshape2 = tf.keras.layers.Reshape((4, 4, 32))
self._layers_ = [self.conv1, self.conv2, self.conv3, self.conv4]
self.p_m = p_m | def __init__(self, filters, p_m, get_mask, apply_mask, path_json='src/python_code/settings.json'):
'\n CNN decoder layers (tensorflow 2 book)\n :param filters: list filters\n :param path_json: path settings\n '
settings = json.load(open(path_json))['Model']
hyperparameters = settings['decoder_cnn'][int(settings['size_use'])]
super(DecoderCNN, self).__init__()
self.get_mask = get_mask
self.apply_mask = apply_mask
self.conv1 = tf.keras.layers.Conv2D(filters=filters[2], kernel_size=3, strides=1, activation='relu', padding='same')
self.conv2 = tf.keras.layers.Conv2D(filters=filters[1], kernel_size=3, strides=1, activation='relu', padding='same')
self.conv3 = tf.keras.layers.Conv2D(filters=filters[0], kernel_size=3, strides=1, activation='relu', padding=hyperparameters['padding_last'])
self.conv4 = tf.keras.layers.Conv2D(filters=int(hyperparameters['channels_last']), kernel_size=3, strides=1, activation='sigmoid', padding='same')
self.upsample = tf.keras.layers.UpSampling2D((2, 2))
self.reshape2 = tf.keras.layers.Reshape((4, 4, 32))
self._layers_ = [self.conv1, self.conv2, self.conv3, self.conv4]
self.p_m = p_m<|docstring|>CNN decoder layers (tensorflow 2 book)
:param filters: list filters
:param path_json: path settings<|endoftext|> |
6809d902bbacf9eac6c00c94ba9882f5b7bc3526f525fb4d5d264651951d58da | def initialize_masks(self):
'\n Initialize masks for the model\n :return:\n '
self._masks_ = []
for i in self._layers_:
self.get_mask(i.get_weights()[0].shape, p=self.p_m) | Initialize masks for the model
:return: | src/python_code/Models/EAE_models/DecoderCNN.py | initialize_masks | ipmach/Thesis2021 | 0 | python | def initialize_masks(self):
'\n Initialize masks for the model\n :return:\n '
self._masks_ = []
for i in self._layers_:
self.get_mask(i.get_weights()[0].shape, p=self.p_m) | def initialize_masks(self):
'\n Initialize masks for the model\n :return:\n '
self._masks_ = []
for i in self._layers_:
self.get_mask(i.get_weights()[0].shape, p=self.p_m)<|docstring|>Initialize masks for the model
:return:<|endoftext|> |
6939b7bdd5414e29efdb790dced6d59dadc90a6f90011df8566df9288a0bbd20 | def apply_masks(self):
'\n Apply masks to all layers of the model\n :return:\n '
for (l, m) in zip(self._layers_, self._masks_):
new_weights = self.apply_mask(m, l.get_weights())
l.set_weights(new_weights) | Apply masks to all layers of the model
:return: | src/python_code/Models/EAE_models/DecoderCNN.py | apply_masks | ipmach/Thesis2021 | 0 | python | def apply_masks(self):
'\n Apply masks to all layers of the model\n :return:\n '
for (l, m) in zip(self._layers_, self._masks_):
new_weights = self.apply_mask(m, l.get_weights())
l.set_weights(new_weights) | def apply_masks(self):
'\n Apply masks to all layers of the model\n :return:\n '
for (l, m) in zip(self._layers_, self._masks_):
new_weights = self.apply_mask(m, l.get_weights())
l.set_weights(new_weights)<|docstring|>Apply masks to all layers of the model
:return:<|endoftext|> |
e863dfd88212590acb95344865d47f979802c29a18849919053f337bdcffad5a | def binary_exp(n):
'Binary exponentiation algorithm'
cur = base
res = 1
if (not n):
return res
while True:
if (n & 1):
res *= cur
if (n == 1):
return res
cur *= cur
n >>= 1 | Binary exponentiation algorithm | tests/perfomance/power.py | binary_exp | borzunov/cpmoptimize | 121 | python | def binary_exp(n):
cur = base
res = 1
if (not n):
return res
while True:
if (n & 1):
res *= cur
if (n == 1):
return res
cur *= cur
n >>= 1 | def binary_exp(n):
cur = base
res = 1
if (not n):
return res
while True:
if (n & 1):
res *= cur
if (n == 1):
return res
cur *= cur
n >>= 1<|docstring|>Binary exponentiation algorithm<|endoftext|> |
f3abeb105731c3a677d6412c50614bc26a7a908b5482a79c8e232b2344973cbe | def train(train_generator, test_generator, criterion, model, epochs, optimizer, Batch_size):
'Function to train a pytorch model\n Args:\n train_generator: pytorch train generator instance\n test_generator: pytorch test generator instance\n criterion: pytorch criterion\n model: pytorch model\n epochs: int, number of epochs to train\n optmizer: pytorch optmizer\n Batch_size: int, batch size for forward passes\n \n Returns:\n train_losses: list with the train losses \n validation_losses: list with the validation losses\n accuracy_vect: list with the accuracy of the classification of the test\n \n '
device = torch.device(('cuda' if torch.cuda.is_available() else 'cpu'))
(train_losses, validation_losses) = ([], [])
accuracy_vect = []
for e in range(epochs):
print('epoch ', e)
running_loss = 0
for i in range(1):
(images, labels) = next(iter(train_generator))
(images, labels) = (images.to(device), labels.to(device))
optimizer.zero_grad()
log_ps = model(images)
loss = criterion(log_ps, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
else:
accuracy = 0
validation_loss = 0
with torch.no_grad():
model.eval()
for i in range(1):
(images, labels) = next(iter(test_generator))
(images, labels) = (images.to(device), labels.to(device))
log_ps = model(images)
validation_loss += criterion(log_ps, labels).item()
ps = torch.exp(log_ps)
(top_p, top_class) = ps.topk(1, dim=1)
print(torch.reshape(top_class, (1, (- 1))))
print(labels)
hits = (top_class == labels.view(*top_class.shape))
accuracy += torch.mean(hits.type(torch.FloatTensor))
model.train()
train_losses.append((running_loss / Batch_size))
validation_losses.append((validation_loss / Batch_size))
accuracy_vect.append(accuracy.numpy().item(0))
return (train_losses, validation_losses, accuracy_vect) | Function to train a pytorch model
Args:
train_generator: pytorch train generator instance
test_generator: pytorch test generator instance
criterion: pytorch criterion
model: pytorch model
epochs: int, number of epochs to train
optmizer: pytorch optmizer
Batch_size: int, batch size for forward passes
Returns:
train_losses: list with the train losses
validation_losses: list with the validation losses
accuracy_vect: list with the accuracy of the classification of the test | 60_Grainsize_project/DL_functions/DL_train.py | train | htorodriguez/grainsize_measure | 0 | python | def train(train_generator, test_generator, criterion, model, epochs, optimizer, Batch_size):
'Function to train a pytorch model\n Args:\n train_generator: pytorch train generator instance\n test_generator: pytorch test generator instance\n criterion: pytorch criterion\n model: pytorch model\n epochs: int, number of epochs to train\n optmizer: pytorch optmizer\n Batch_size: int, batch size for forward passes\n \n Returns:\n train_losses: list with the train losses \n validation_losses: list with the validation losses\n accuracy_vect: list with the accuracy of the classification of the test\n \n '
device = torch.device(('cuda' if torch.cuda.is_available() else 'cpu'))
(train_losses, validation_losses) = ([], [])
accuracy_vect = []
for e in range(epochs):
print('epoch ', e)
running_loss = 0
for i in range(1):
(images, labels) = next(iter(train_generator))
(images, labels) = (images.to(device), labels.to(device))
optimizer.zero_grad()
log_ps = model(images)
loss = criterion(log_ps, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
else:
accuracy = 0
validation_loss = 0
with torch.no_grad():
model.eval()
for i in range(1):
(images, labels) = next(iter(test_generator))
(images, labels) = (images.to(device), labels.to(device))
log_ps = model(images)
validation_loss += criterion(log_ps, labels).item()
ps = torch.exp(log_ps)
(top_p, top_class) = ps.topk(1, dim=1)
print(torch.reshape(top_class, (1, (- 1))))
print(labels)
hits = (top_class == labels.view(*top_class.shape))
accuracy += torch.mean(hits.type(torch.FloatTensor))
model.train()
train_losses.append((running_loss / Batch_size))
validation_losses.append((validation_loss / Batch_size))
accuracy_vect.append(accuracy.numpy().item(0))
return (train_losses, validation_losses, accuracy_vect) | def train(train_generator, test_generator, criterion, model, epochs, optimizer, Batch_size):
'Function to train a pytorch model\n Args:\n train_generator: pytorch train generator instance\n test_generator: pytorch test generator instance\n criterion: pytorch criterion\n model: pytorch model\n epochs: int, number of epochs to train\n optmizer: pytorch optmizer\n Batch_size: int, batch size for forward passes\n \n Returns:\n train_losses: list with the train losses \n validation_losses: list with the validation losses\n accuracy_vect: list with the accuracy of the classification of the test\n \n '
device = torch.device(('cuda' if torch.cuda.is_available() else 'cpu'))
(train_losses, validation_losses) = ([], [])
accuracy_vect = []
for e in range(epochs):
print('epoch ', e)
running_loss = 0
for i in range(1):
(images, labels) = next(iter(train_generator))
(images, labels) = (images.to(device), labels.to(device))
optimizer.zero_grad()
log_ps = model(images)
loss = criterion(log_ps, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
else:
accuracy = 0
validation_loss = 0
with torch.no_grad():
model.eval()
for i in range(1):
(images, labels) = next(iter(test_generator))
(images, labels) = (images.to(device), labels.to(device))
log_ps = model(images)
validation_loss += criterion(log_ps, labels).item()
ps = torch.exp(log_ps)
(top_p, top_class) = ps.topk(1, dim=1)
print(torch.reshape(top_class, (1, (- 1))))
print(labels)
hits = (top_class == labels.view(*top_class.shape))
accuracy += torch.mean(hits.type(torch.FloatTensor))
model.train()
train_losses.append((running_loss / Batch_size))
validation_losses.append((validation_loss / Batch_size))
accuracy_vect.append(accuracy.numpy().item(0))
return (train_losses, validation_losses, accuracy_vect)<|docstring|>Function to train a pytorch model
Args:
train_generator: pytorch train generator instance
test_generator: pytorch test generator instance
criterion: pytorch criterion
model: pytorch model
epochs: int, number of epochs to train
optmizer: pytorch optmizer
Batch_size: int, batch size for forward passes
Returns:
train_losses: list with the train losses
validation_losses: list with the validation losses
accuracy_vect: list with the accuracy of the classification of the test<|endoftext|> |
04e79e025310e9b0232e0401f757198630acefbc7e907eef0399631aa9d9ce03 | @fitparam(param_name='flat_topP', param_latex='$P^{mie}_\\mathrm{top}$', default_mode='log', default_fit=False, default_bounds=[1e-20, 1])
def mieTopPressure(self):
'\n Pressure at top of absorbing region in Pa\n '
return self._mie_top_pressure | Pressure at top of absorbing region in Pa | taurex/contributions/flatmie.py | mieTopPressure | ucl-exoplanets/TauREx3_public | 10 | python | @fitparam(param_name='flat_topP', param_latex='$P^{mie}_\\mathrm{top}$', default_mode='log', default_fit=False, default_bounds=[1e-20, 1])
def mieTopPressure(self):
'\n \n '
return self._mie_top_pressure | @fitparam(param_name='flat_topP', param_latex='$P^{mie}_\\mathrm{top}$', default_mode='log', default_fit=False, default_bounds=[1e-20, 1])
def mieTopPressure(self):
'\n \n '
return self._mie_top_pressure<|docstring|>Pressure at top of absorbing region in Pa<|endoftext|> |
9b1a1534d195ab21458fb1320f77668ae73fce0e6fc0d659cdfe14925d54a6dd | @fitparam(param_name='flat_bottomP', param_latex='$P^{mie}_\\mathrm{bottom}$', default_mode='log', default_fit=False, default_bounds=[1e-20, 1])
def mieBottomPressure(self):
'\n Pressure at bottom of absorbing region in Pa\n '
return self._mie_bottom_pressure | Pressure at bottom of absorbing region in Pa | taurex/contributions/flatmie.py | mieBottomPressure | ucl-exoplanets/TauREx3_public | 10 | python | @fitparam(param_name='flat_bottomP', param_latex='$P^{mie}_\\mathrm{bottom}$', default_mode='log', default_fit=False, default_bounds=[1e-20, 1])
def mieBottomPressure(self):
'\n \n '
return self._mie_bottom_pressure | @fitparam(param_name='flat_bottomP', param_latex='$P^{mie}_\\mathrm{bottom}$', default_mode='log', default_fit=False, default_bounds=[1e-20, 1])
def mieBottomPressure(self):
'\n \n '
return self._mie_bottom_pressure<|docstring|>Pressure at bottom of absorbing region in Pa<|endoftext|> |
52f3d0e5a67b7806b3c1360f72c13b1bde0f0c1ff55b30e52eb6b874596a1295 | @fitparam(param_name='flat_mix_ratio', param_latex='$\\chi_\\mathrm{mie}$', default_mode='log', default_fit=False, default_bounds=[1e-20, 1])
def mieMixing(self):
'\n Opacity of absorbing region in m2\n '
return self._mie_mix | Opacity of absorbing region in m2 | taurex/contributions/flatmie.py | mieMixing | ucl-exoplanets/TauREx3_public | 10 | python | @fitparam(param_name='flat_mix_ratio', param_latex='$\\chi_\\mathrm{mie}$', default_mode='log', default_fit=False, default_bounds=[1e-20, 1])
def mieMixing(self):
'\n \n '
return self._mie_mix | @fitparam(param_name='flat_mix_ratio', param_latex='$\\chi_\\mathrm{mie}$', default_mode='log', default_fit=False, default_bounds=[1e-20, 1])
def mieMixing(self):
'\n \n '
return self._mie_mix<|docstring|>Opacity of absorbing region in m2<|endoftext|> |
5bcc51c3d54fd573aef99598ef45fe097a57863f03bf89f35d734fd152d06d1d | def prepare_each(self, model, wngrid):
'\n Computes and flat absorbing opacity for\n the pressure regions given\n\n Parameters\n ----------\n model: :class:`~taurex.model.model.ForwardModel`\n Forward model\n\n wngrid: :obj:`array`\n Wavenumber grid\n\n Yields\n ------\n component: :obj:`tuple` of type (str, :obj:`array`)\n ``Flat`` and the weighted mie opacity.\n\n\n '
self._nlayers = model.nLayers
self._ngrid = wngrid.shape[0]
pressure_levels = np.log10(model.pressure.pressure_profile_levels[::(- 1)])
bottom_pressure = self.mieBottomPressure
if (bottom_pressure < 0):
bottom_pressure = pressure_levels.max()
top_pressure = np.log10(self.mieTopPressure)
if (top_pressure < 0):
top_pressure = pressure_levels.min()
P_left = pressure_levels[:(- 1)]
P_right = pressure_levels[1:]
P_range = sorted([top_pressure, bottom_pressure])
save_start = np.searchsorted(P_right, P_range[0], side='right')
save_stop = np.searchsorted(P_left[1:], P_range[1], side='right')
P_min = P_left[save_start:(save_stop + 1)]
P_max = P_right[save_start:(save_stop + 1)]
weight = (np.minimum(P_range[(- 1)], P_max) - np.maximum(P_range[0], P_min))
weight /= weight.max()
sigma_xsec = np.zeros(shape=(self._nlayers, wngrid.shape[0]))
sigma_xsec[save_start:(save_stop + 1)] = (weight[(:, None)] * self.mieMixing)
sigma_xsec = sigma_xsec[::(- 1)]
self.sigma_xsec = sigma_xsec
(yield ('Flat', sigma_xsec)) | Computes and flat absorbing opacity for
the pressure regions given
Parameters
----------
model: :class:`~taurex.model.model.ForwardModel`
Forward model
wngrid: :obj:`array`
Wavenumber grid
Yields
------
component: :obj:`tuple` of type (str, :obj:`array`)
``Flat`` and the weighted mie opacity. | taurex/contributions/flatmie.py | prepare_each | ucl-exoplanets/TauREx3_public | 10 | python | def prepare_each(self, model, wngrid):
'\n Computes and flat absorbing opacity for\n the pressure regions given\n\n Parameters\n ----------\n model: :class:`~taurex.model.model.ForwardModel`\n Forward model\n\n wngrid: :obj:`array`\n Wavenumber grid\n\n Yields\n ------\n component: :obj:`tuple` of type (str, :obj:`array`)\n ``Flat`` and the weighted mie opacity.\n\n\n '
self._nlayers = model.nLayers
self._ngrid = wngrid.shape[0]
pressure_levels = np.log10(model.pressure.pressure_profile_levels[::(- 1)])
bottom_pressure = self.mieBottomPressure
if (bottom_pressure < 0):
bottom_pressure = pressure_levels.max()
top_pressure = np.log10(self.mieTopPressure)
if (top_pressure < 0):
top_pressure = pressure_levels.min()
P_left = pressure_levels[:(- 1)]
P_right = pressure_levels[1:]
P_range = sorted([top_pressure, bottom_pressure])
save_start = np.searchsorted(P_right, P_range[0], side='right')
save_stop = np.searchsorted(P_left[1:], P_range[1], side='right')
P_min = P_left[save_start:(save_stop + 1)]
P_max = P_right[save_start:(save_stop + 1)]
weight = (np.minimum(P_range[(- 1)], P_max) - np.maximum(P_range[0], P_min))
weight /= weight.max()
sigma_xsec = np.zeros(shape=(self._nlayers, wngrid.shape[0]))
sigma_xsec[save_start:(save_stop + 1)] = (weight[(:, None)] * self.mieMixing)
sigma_xsec = sigma_xsec[::(- 1)]
self.sigma_xsec = sigma_xsec
(yield ('Flat', sigma_xsec)) | def prepare_each(self, model, wngrid):
'\n Computes and flat absorbing opacity for\n the pressure regions given\n\n Parameters\n ----------\n model: :class:`~taurex.model.model.ForwardModel`\n Forward model\n\n wngrid: :obj:`array`\n Wavenumber grid\n\n Yields\n ------\n component: :obj:`tuple` of type (str, :obj:`array`)\n ``Flat`` and the weighted mie opacity.\n\n\n '
self._nlayers = model.nLayers
self._ngrid = wngrid.shape[0]
pressure_levels = np.log10(model.pressure.pressure_profile_levels[::(- 1)])
bottom_pressure = self.mieBottomPressure
if (bottom_pressure < 0):
bottom_pressure = pressure_levels.max()
top_pressure = np.log10(self.mieTopPressure)
if (top_pressure < 0):
top_pressure = pressure_levels.min()
P_left = pressure_levels[:(- 1)]
P_right = pressure_levels[1:]
P_range = sorted([top_pressure, bottom_pressure])
save_start = np.searchsorted(P_right, P_range[0], side='right')
save_stop = np.searchsorted(P_left[1:], P_range[1], side='right')
P_min = P_left[save_start:(save_stop + 1)]
P_max = P_right[save_start:(save_stop + 1)]
weight = (np.minimum(P_range[(- 1)], P_max) - np.maximum(P_range[0], P_min))
weight /= weight.max()
sigma_xsec = np.zeros(shape=(self._nlayers, wngrid.shape[0]))
sigma_xsec[save_start:(save_stop + 1)] = (weight[(:, None)] * self.mieMixing)
sigma_xsec = sigma_xsec[::(- 1)]
self.sigma_xsec = sigma_xsec
(yield ('Flat', sigma_xsec))<|docstring|>Computes and flat absorbing opacity for
the pressure regions given
Parameters
----------
model: :class:`~taurex.model.model.ForwardModel`
Forward model
wngrid: :obj:`array`
Wavenumber grid
Yields
------
component: :obj:`tuple` of type (str, :obj:`array`)
``Flat`` and the weighted mie opacity.<|endoftext|> |
b9d5e19d475f55978824f8d0e9c9f4915d3a46e6905ffe0d99ad4181c8cfc155 | def __init__(self, account_id=None, document_id=None, external_id=None, signer_id=None, external_signer_id=None, error=None, sign_success=None, expires=None, aborted=None, additional_properties={}):
'Constructor for the JwtPayload class'
self.account_id = account_id
self.document_id = document_id
self.external_id = external_id
self.signer_id = signer_id
self.external_signer_id = external_signer_id
self.error = error
self.sign_success = sign_success
self.expires = (APIHelper.RFC3339DateTime(expires) if expires else None)
self.aborted = aborted
self.additional_properties = additional_properties | Constructor for the JwtPayload class | idfy_rest_client/models/jwt_payload.py | __init__ | dealflowteam/Idfy | 0 | python | def __init__(self, account_id=None, document_id=None, external_id=None, signer_id=None, external_signer_id=None, error=None, sign_success=None, expires=None, aborted=None, additional_properties={}):
self.account_id = account_id
self.document_id = document_id
self.external_id = external_id
self.signer_id = signer_id
self.external_signer_id = external_signer_id
self.error = error
self.sign_success = sign_success
self.expires = (APIHelper.RFC3339DateTime(expires) if expires else None)
self.aborted = aborted
self.additional_properties = additional_properties | def __init__(self, account_id=None, document_id=None, external_id=None, signer_id=None, external_signer_id=None, error=None, sign_success=None, expires=None, aborted=None, additional_properties={}):
self.account_id = account_id
self.document_id = document_id
self.external_id = external_id
self.signer_id = signer_id
self.external_signer_id = external_signer_id
self.error = error
self.sign_success = sign_success
self.expires = (APIHelper.RFC3339DateTime(expires) if expires else None)
self.aborted = aborted
self.additional_properties = additional_properties<|docstring|>Constructor for the JwtPayload class<|endoftext|> |
dc3c69c195d84776dc8c0d2ee75525a35d738145a857e9e6cd3464d9280c1c3b | @classmethod
def from_dictionary(cls, dictionary):
"Creates an instance of this model from a dictionary\n\n Args:\n dictionary (dictionary): A dictionary representation of the object as\n obtained from the deserialization of the server's response. The keys\n MUST match property names in the API description.\n\n Returns:\n object: An instance of this structure class.\n\n "
if (dictionary is None):
return None
account_id = dictionary.get('accountId')
document_id = dictionary.get('documentId')
external_id = dictionary.get('externalId')
signer_id = dictionary.get('signerId')
external_signer_id = dictionary.get('externalSignerId')
error = (idfy_rest_client.models.signature_error.SignatureError.from_dictionary(dictionary.get('error')) if dictionary.get('error') else None)
sign_success = (idfy_rest_client.models.sign_success.SignSuccess.from_dictionary(dictionary.get('signSuccess')) if dictionary.get('signSuccess') else None)
expires = (APIHelper.RFC3339DateTime.from_value(dictionary.get('expires')).datetime if dictionary.get('expires') else None)
aborted = dictionary.get('aborted')
for key in cls._names.values():
if (key in dictionary):
del dictionary[key]
return cls(account_id, document_id, external_id, signer_id, external_signer_id, error, sign_success, expires, aborted, dictionary) | Creates an instance of this model from a dictionary
Args:
dictionary (dictionary): A dictionary representation of the object as
obtained from the deserialization of the server's response. The keys
MUST match property names in the API description.
Returns:
object: An instance of this structure class. | idfy_rest_client/models/jwt_payload.py | from_dictionary | dealflowteam/Idfy | 0 | python | @classmethod
def from_dictionary(cls, dictionary):
"Creates an instance of this model from a dictionary\n\n Args:\n dictionary (dictionary): A dictionary representation of the object as\n obtained from the deserialization of the server's response. The keys\n MUST match property names in the API description.\n\n Returns:\n object: An instance of this structure class.\n\n "
if (dictionary is None):
return None
account_id = dictionary.get('accountId')
document_id = dictionary.get('documentId')
external_id = dictionary.get('externalId')
signer_id = dictionary.get('signerId')
external_signer_id = dictionary.get('externalSignerId')
error = (idfy_rest_client.models.signature_error.SignatureError.from_dictionary(dictionary.get('error')) if dictionary.get('error') else None)
sign_success = (idfy_rest_client.models.sign_success.SignSuccess.from_dictionary(dictionary.get('signSuccess')) if dictionary.get('signSuccess') else None)
expires = (APIHelper.RFC3339DateTime.from_value(dictionary.get('expires')).datetime if dictionary.get('expires') else None)
aborted = dictionary.get('aborted')
for key in cls._names.values():
if (key in dictionary):
del dictionary[key]
return cls(account_id, document_id, external_id, signer_id, external_signer_id, error, sign_success, expires, aborted, dictionary) | @classmethod
def from_dictionary(cls, dictionary):
"Creates an instance of this model from a dictionary\n\n Args:\n dictionary (dictionary): A dictionary representation of the object as\n obtained from the deserialization of the server's response. The keys\n MUST match property names in the API description.\n\n Returns:\n object: An instance of this structure class.\n\n "
if (dictionary is None):
return None
account_id = dictionary.get('accountId')
document_id = dictionary.get('documentId')
external_id = dictionary.get('externalId')
signer_id = dictionary.get('signerId')
external_signer_id = dictionary.get('externalSignerId')
error = (idfy_rest_client.models.signature_error.SignatureError.from_dictionary(dictionary.get('error')) if dictionary.get('error') else None)
sign_success = (idfy_rest_client.models.sign_success.SignSuccess.from_dictionary(dictionary.get('signSuccess')) if dictionary.get('signSuccess') else None)
expires = (APIHelper.RFC3339DateTime.from_value(dictionary.get('expires')).datetime if dictionary.get('expires') else None)
aborted = dictionary.get('aborted')
for key in cls._names.values():
if (key in dictionary):
del dictionary[key]
return cls(account_id, document_id, external_id, signer_id, external_signer_id, error, sign_success, expires, aborted, dictionary)<|docstring|>Creates an instance of this model from a dictionary
Args:
dictionary (dictionary): A dictionary representation of the object as
obtained from the deserialization of the server's response. The keys
MUST match property names in the API description.
Returns:
object: An instance of this structure class.<|endoftext|> |
6a0ebe3d8c82ef380cbf357b98235e7d3b36597612a2759116ce150525e331b0 | @click.command()
@click.argument('dir', default='env')
@click.option('-n', '--name', metavar='NAME', help='Environment name (default is env parent directory name).')
@click.option('-p', '--python', metavar='VERSION', help='Version of Python to use for the environment.')
@click.option('-g', '--guild', metavar='VERSION_OR_PATH', help='Version of Guild AI to use for the environment. By default, the active version of Guild is installed. This value may alternatively be a path to a Guild wheel distribution.')
@click.option('-r', '--requirement', metavar='REQ', multiple=True, help='Install required package or packages defined in a file. May be used multiple times.')
@click.option('-P', '--path', metavar='DIR', multiple=True, help='Include DIR as a Python path in the environment.')
@click.option('--no-reqs', is_flag=True, help="Don't install from requirements.txt or guild.yml in environment parent directory.")
@click.option('--tensorflow', metavar='PACKAGE', help='Install PACKAGE for TensorFlow. By default installs the package suitable for the system based on GPU support.')
@click.option('--skip-tensorflow', is_flag=True, help="Don't install TensorFlow.")
@click.option('-l', '--local-resource-cache', is_flag=True, help='Use a local cache when initializing an environment.')
@click.option('-y', '--yes', is_flag=True, help='Initialize a Guild environment without prompting.')
@click.option('--no-progress', is_flag=True, help="Don't show progress when installing environment packages.")
@click_util.use_args
def init(args):
'Initialize a Guild environment.\n\n `init` initializes a Guild environment in `DIR`, which is the\n current directory by default.\n\n `init` creates a virtual environment in `DIR` using `virtualenv`.\n\n Use `--python` to specify the Python interpreter to use within the\n generated virtual environment. By default, the default Python\n interpreter for `virtualenv` is used unless `python` is explicitly\n listed as a requirement. If `no-venv` is specified, `--python` is\n ignored.\n\n ### Requirements\n\n By default, any required packages listed under packages.requires\n in `guild.yml` in the environment parent directory are installed\n into the environment. Use `--no-reqs` to suppress this behavior.\n\n Additionally, packages defined in `requirements.txt` in the\n environment parent directory will be installed. Use `--no-reqs` to\n suppress this behavior.\n\n Note that packages defined in `guild.yml` use Guild package names\n while packages defined in `requirements.txt` use PyPI package\n names.\n\n For information in requirements files, see:\n\n https://pip.readthedocs.io/en/1.1/requirements.html\n\n You may explicitly specify requirements file using `-r` or\n `--requirement`. If `-r, --requirement` is specified, Guild will\n not automatically install packages in `requirements.txt` -- that\n file must be specified explicitly in the command.\n\n ### Guild AI\n\n By default `init` installs the active version of Guild AI in the\n initialized environment. To install a different version, or to\n install a Guild wheel distribution file use the `--guild` option.\n\n ### TensorFlow\n\n TensorFlow is installed to the environment unless\n `--skip-tensorflow` is specified. The TensorFlow package to\n install can be specified using `--tensorflow`. By default, Guild\n installs the TensorFlow package suited for the system:\n ``tensorflow-gpu`` if a GPU is available, otherwise\n ``tensorflow``.\n\n ### Resource cache\n\n By default resources are cached and shared at the user level in\n `~/.guild/cache/resources` so that resources downloaded from one\n environment are available to other environments. You can modify\n this behavior to have all resources downloaded local to the\n environment by specifying `--local-resource-cache`.\n\n '
from . import init_impl
init_impl.main(args) | Initialize a Guild environment.
`init` initializes a Guild environment in `DIR`, which is the
current directory by default.
`init` creates a virtual environment in `DIR` using `virtualenv`.
Use `--python` to specify the Python interpreter to use within the
generated virtual environment. By default, the default Python
interpreter for `virtualenv` is used unless `python` is explicitly
listed as a requirement. If `no-venv` is specified, `--python` is
ignored.
### Requirements
By default, any required packages listed under packages.requires
in `guild.yml` in the environment parent directory are installed
into the environment. Use `--no-reqs` to suppress this behavior.
Additionally, packages defined in `requirements.txt` in the
environment parent directory will be installed. Use `--no-reqs` to
suppress this behavior.
Note that packages defined in `guild.yml` use Guild package names
while packages defined in `requirements.txt` use PyPI package
names.
For information in requirements files, see:
https://pip.readthedocs.io/en/1.1/requirements.html
You may explicitly specify requirements file using `-r` or
`--requirement`. If `-r, --requirement` is specified, Guild will
not automatically install packages in `requirements.txt` -- that
file must be specified explicitly in the command.
### Guild AI
By default `init` installs the active version of Guild AI in the
initialized environment. To install a different version, or to
install a Guild wheel distribution file use the `--guild` option.
### TensorFlow
TensorFlow is installed to the environment unless
`--skip-tensorflow` is specified. The TensorFlow package to
install can be specified using `--tensorflow`. By default, Guild
installs the TensorFlow package suited for the system:
``tensorflow-gpu`` if a GPU is available, otherwise
``tensorflow``.
### Resource cache
By default resources are cached and shared at the user level in
`~/.guild/cache/resources` so that resources downloaded from one
environment are available to other environments. You can modify
this behavior to have all resources downloaded local to the
environment by specifying `--local-resource-cache`. | guild/commands/init.py | init | flamato/guildai | 1 | python | @click.command()
@click.argument('dir', default='env')
@click.option('-n', '--name', metavar='NAME', help='Environment name (default is env parent directory name).')
@click.option('-p', '--python', metavar='VERSION', help='Version of Python to use for the environment.')
@click.option('-g', '--guild', metavar='VERSION_OR_PATH', help='Version of Guild AI to use for the environment. By default, the active version of Guild is installed. This value may alternatively be a path to a Guild wheel distribution.')
@click.option('-r', '--requirement', metavar='REQ', multiple=True, help='Install required package or packages defined in a file. May be used multiple times.')
@click.option('-P', '--path', metavar='DIR', multiple=True, help='Include DIR as a Python path in the environment.')
@click.option('--no-reqs', is_flag=True, help="Don't install from requirements.txt or guild.yml in environment parent directory.")
@click.option('--tensorflow', metavar='PACKAGE', help='Install PACKAGE for TensorFlow. By default installs the package suitable for the system based on GPU support.')
@click.option('--skip-tensorflow', is_flag=True, help="Don't install TensorFlow.")
@click.option('-l', '--local-resource-cache', is_flag=True, help='Use a local cache when initializing an environment.')
@click.option('-y', '--yes', is_flag=True, help='Initialize a Guild environment without prompting.')
@click.option('--no-progress', is_flag=True, help="Don't show progress when installing environment packages.")
@click_util.use_args
def init(args):
'Initialize a Guild environment.\n\n `init` initializes a Guild environment in `DIR`, which is the\n current directory by default.\n\n `init` creates a virtual environment in `DIR` using `virtualenv`.\n\n Use `--python` to specify the Python interpreter to use within the\n generated virtual environment. By default, the default Python\n interpreter for `virtualenv` is used unless `python` is explicitly\n listed as a requirement. If `no-venv` is specified, `--python` is\n ignored.\n\n ### Requirements\n\n By default, any required packages listed under packages.requires\n in `guild.yml` in the environment parent directory are installed\n into the environment. Use `--no-reqs` to suppress this behavior.\n\n Additionally, packages defined in `requirements.txt` in the\n environment parent directory will be installed. Use `--no-reqs` to\n suppress this behavior.\n\n Note that packages defined in `guild.yml` use Guild package names\n while packages defined in `requirements.txt` use PyPI package\n names.\n\n For information in requirements files, see:\n\n https://pip.readthedocs.io/en/1.1/requirements.html\n\n You may explicitly specify requirements file using `-r` or\n `--requirement`. If `-r, --requirement` is specified, Guild will\n not automatically install packages in `requirements.txt` -- that\n file must be specified explicitly in the command.\n\n ### Guild AI\n\n By default `init` installs the active version of Guild AI in the\n initialized environment. To install a different version, or to\n install a Guild wheel distribution file use the `--guild` option.\n\n ### TensorFlow\n\n TensorFlow is installed to the environment unless\n `--skip-tensorflow` is specified. The TensorFlow package to\n install can be specified using `--tensorflow`. By default, Guild\n installs the TensorFlow package suited for the system:\n ``tensorflow-gpu`` if a GPU is available, otherwise\n ``tensorflow``.\n\n ### Resource cache\n\n By default resources are cached and shared at the user level in\n `~/.guild/cache/resources` so that resources downloaded from one\n environment are available to other environments. You can modify\n this behavior to have all resources downloaded local to the\n environment by specifying `--local-resource-cache`.\n\n '
from . import init_impl
init_impl.main(args) | @click.command()
@click.argument('dir', default='env')
@click.option('-n', '--name', metavar='NAME', help='Environment name (default is env parent directory name).')
@click.option('-p', '--python', metavar='VERSION', help='Version of Python to use for the environment.')
@click.option('-g', '--guild', metavar='VERSION_OR_PATH', help='Version of Guild AI to use for the environment. By default, the active version of Guild is installed. This value may alternatively be a path to a Guild wheel distribution.')
@click.option('-r', '--requirement', metavar='REQ', multiple=True, help='Install required package or packages defined in a file. May be used multiple times.')
@click.option('-P', '--path', metavar='DIR', multiple=True, help='Include DIR as a Python path in the environment.')
@click.option('--no-reqs', is_flag=True, help="Don't install from requirements.txt or guild.yml in environment parent directory.")
@click.option('--tensorflow', metavar='PACKAGE', help='Install PACKAGE for TensorFlow. By default installs the package suitable for the system based on GPU support.')
@click.option('--skip-tensorflow', is_flag=True, help="Don't install TensorFlow.")
@click.option('-l', '--local-resource-cache', is_flag=True, help='Use a local cache when initializing an environment.')
@click.option('-y', '--yes', is_flag=True, help='Initialize a Guild environment without prompting.')
@click.option('--no-progress', is_flag=True, help="Don't show progress when installing environment packages.")
@click_util.use_args
def init(args):
'Initialize a Guild environment.\n\n `init` initializes a Guild environment in `DIR`, which is the\n current directory by default.\n\n `init` creates a virtual environment in `DIR` using `virtualenv`.\n\n Use `--python` to specify the Python interpreter to use within the\n generated virtual environment. By default, the default Python\n interpreter for `virtualenv` is used unless `python` is explicitly\n listed as a requirement. If `no-venv` is specified, `--python` is\n ignored.\n\n ### Requirements\n\n By default, any required packages listed under packages.requires\n in `guild.yml` in the environment parent directory are installed\n into the environment. Use `--no-reqs` to suppress this behavior.\n\n Additionally, packages defined in `requirements.txt` in the\n environment parent directory will be installed. Use `--no-reqs` to\n suppress this behavior.\n\n Note that packages defined in `guild.yml` use Guild package names\n while packages defined in `requirements.txt` use PyPI package\n names.\n\n For information in requirements files, see:\n\n https://pip.readthedocs.io/en/1.1/requirements.html\n\n You may explicitly specify requirements file using `-r` or\n `--requirement`. If `-r, --requirement` is specified, Guild will\n not automatically install packages in `requirements.txt` -- that\n file must be specified explicitly in the command.\n\n ### Guild AI\n\n By default `init` installs the active version of Guild AI in the\n initialized environment. To install a different version, or to\n install a Guild wheel distribution file use the `--guild` option.\n\n ### TensorFlow\n\n TensorFlow is installed to the environment unless\n `--skip-tensorflow` is specified. The TensorFlow package to\n install can be specified using `--tensorflow`. By default, Guild\n installs the TensorFlow package suited for the system:\n ``tensorflow-gpu`` if a GPU is available, otherwise\n ``tensorflow``.\n\n ### Resource cache\n\n By default resources are cached and shared at the user level in\n `~/.guild/cache/resources` so that resources downloaded from one\n environment are available to other environments. You can modify\n this behavior to have all resources downloaded local to the\n environment by specifying `--local-resource-cache`.\n\n '
from . import init_impl
init_impl.main(args)<|docstring|>Initialize a Guild environment.
`init` initializes a Guild environment in `DIR`, which is the
current directory by default.
`init` creates a virtual environment in `DIR` using `virtualenv`.
Use `--python` to specify the Python interpreter to use within the
generated virtual environment. By default, the default Python
interpreter for `virtualenv` is used unless `python` is explicitly
listed as a requirement. If `no-venv` is specified, `--python` is
ignored.
### Requirements
By default, any required packages listed under packages.requires
in `guild.yml` in the environment parent directory are installed
into the environment. Use `--no-reqs` to suppress this behavior.
Additionally, packages defined in `requirements.txt` in the
environment parent directory will be installed. Use `--no-reqs` to
suppress this behavior.
Note that packages defined in `guild.yml` use Guild package names
while packages defined in `requirements.txt` use PyPI package
names.
For information in requirements files, see:
https://pip.readthedocs.io/en/1.1/requirements.html
You may explicitly specify requirements file using `-r` or
`--requirement`. If `-r, --requirement` is specified, Guild will
not automatically install packages in `requirements.txt` -- that
file must be specified explicitly in the command.
### Guild AI
By default `init` installs the active version of Guild AI in the
initialized environment. To install a different version, or to
install a Guild wheel distribution file use the `--guild` option.
### TensorFlow
TensorFlow is installed to the environment unless
`--skip-tensorflow` is specified. The TensorFlow package to
install can be specified using `--tensorflow`. By default, Guild
installs the TensorFlow package suited for the system:
``tensorflow-gpu`` if a GPU is available, otherwise
``tensorflow``.
### Resource cache
By default resources are cached and shared at the user level in
`~/.guild/cache/resources` so that resources downloaded from one
environment are available to other environments. You can modify
this behavior to have all resources downloaded local to the
environment by specifying `--local-resource-cache`.<|endoftext|> |
11d30c192889d10b4d2a0c840d19812496fef21654e5734c2ff0eda9f97a8e3e | def test_invalid(self):
'Invalid pipeline param name and op_name.'
with self.assertRaises(ValueError):
p = PipelineParam(name='123_abc') | Invalid pipeline param name and op_name. | sdk/python/tests/dsl/pipeline_param_tests.py | test_invalid | awesome-archive/pipelines | 2 | python | def test_invalid(self):
with self.assertRaises(ValueError):
p = PipelineParam(name='123_abc') | def test_invalid(self):
with self.assertRaises(ValueError):
p = PipelineParam(name='123_abc')<|docstring|>Invalid pipeline param name and op_name.<|endoftext|> |
689fa98e57057a93774e13840a518d78d646fcb9db4484c98d86d77b76f7b516 | def test_str_repr(self):
'Test string representation.'
p = PipelineParam(name='param1', op_name='op1')
self.assertEqual('{{pipelineparam:op=op1;name=param1;value=}}', str(p))
p = PipelineParam(name='param2')
self.assertEqual('{{pipelineparam:op=;name=param2;value=}}', str(p))
p = PipelineParam(name='param3', value='value3')
self.assertEqual('{{pipelineparam:op=;name=param3;value=value3}}', str(p)) | Test string representation. | sdk/python/tests/dsl/pipeline_param_tests.py | test_str_repr | awesome-archive/pipelines | 2 | python | def test_str_repr(self):
p = PipelineParam(name='param1', op_name='op1')
self.assertEqual('{{pipelineparam:op=op1;name=param1;value=}}', str(p))
p = PipelineParam(name='param2')
self.assertEqual('{{pipelineparam:op=;name=param2;value=}}', str(p))
p = PipelineParam(name='param3', value='value3')
self.assertEqual('{{pipelineparam:op=;name=param3;value=value3}}', str(p)) | def test_str_repr(self):
p = PipelineParam(name='param1', op_name='op1')
self.assertEqual('{{pipelineparam:op=op1;name=param1;value=}}', str(p))
p = PipelineParam(name='param2')
self.assertEqual('{{pipelineparam:op=;name=param2;value=}}', str(p))
p = PipelineParam(name='param3', value='value3')
self.assertEqual('{{pipelineparam:op=;name=param3;value=value3}}', str(p))<|docstring|>Test string representation.<|endoftext|> |
3646d646fd9d26c6faeae5901453bfb29f56cc9c9a658ce4759d6629900c295e | def load_indicators():
'Load indicators from file.\n\n :return:\n '
ti = list()
try:
ti_file: Path = Path(__file__).with_name('json').joinpath('tv_indicators.json')
if (ti_file.exists() and ti_file.is_file()):
text = ti_file.read_text()
ti = json.loads(text)
except (TypeError, ValueError, IOError) as err:
print(str(err))
raise err
return ti | Load indicators from file.
:return: | pytvc/cli.py | load_indicators | havocesp/pytvc | 12 | python | def load_indicators():
'Load indicators from file.\n\n :return:\n '
ti = list()
try:
ti_file: Path = Path(__file__).with_name('json').joinpath('tv_indicators.json')
if (ti_file.exists() and ti_file.is_file()):
text = ti_file.read_text()
ti = json.loads(text)
except (TypeError, ValueError, IOError) as err:
print(str(err))
raise err
return ti | def load_indicators():
'Load indicators from file.\n\n :return:\n '
ti = list()
try:
ti_file: Path = Path(__file__).with_name('json').joinpath('tv_indicators.json')
if (ti_file.exists() and ti_file.is_file()):
text = ti_file.read_text()
ti = json.loads(text)
except (TypeError, ValueError, IOError) as err:
print(str(err))
raise err
return ti<|docstring|>Load indicators from file.
:return:<|endoftext|> |
153ad8de4b913930279e729ac841089f1650d23bd1f1ae44f8a40efc38f28022 | def list_indicators() -> int:
'List all supported indicators.\n\n :return: 0 if all was fine.\n '
ti = load_indicators()
indicators = [f'- {v:<30}' for v in ti]
indicators.sort()
for i in indicators:
print(i)
return 0 | List all supported indicators.
:return: 0 if all was fine. | pytvc/cli.py | list_indicators | havocesp/pytvc | 12 | python | def list_indicators() -> int:
'List all supported indicators.\n\n :return: 0 if all was fine.\n '
ti = load_indicators()
indicators = [f'- {v:<30}' for v in ti]
indicators.sort()
for i in indicators:
print(i)
return 0 | def list_indicators() -> int:
'List all supported indicators.\n\n :return: 0 if all was fine.\n '
ti = load_indicators()
indicators = [f'- {v:<30}' for v in ti]
indicators.sort()
for i in indicators:
print(i)
return 0<|docstring|>List all supported indicators.
:return: 0 if all was fine.<|endoftext|> |
b932f3dda037f12cfb6f41ce264ad66e553213b9a2ce318e1340f7cfa29c7248 | def main(args) -> int:
'TradingView Chart parserr.\n \n :param Namespace args:\n :return:\n '
tvc = TradingViewChart()
tvc.launch(**vars(args))
return 0 | TradingView Chart parserr.
:param Namespace args:
:return: | pytvc/cli.py | main | havocesp/pytvc | 12 | python | def main(args) -> int:
'TradingView Chart parserr.\n \n :param Namespace args:\n :return:\n '
tvc = TradingViewChart()
tvc.launch(**vars(args))
return 0 | def main(args) -> int:
'TradingView Chart parserr.\n \n :param Namespace args:\n :return:\n '
tvc = TradingViewChart()
tvc.launch(**vars(args))
return 0<|docstring|>TradingView Chart parserr.
:param Namespace args:
:return:<|endoftext|> |
aacd552f635f6c6a0a64708728b14f03d00f99df080dbb827f28256341916eee | def run():
'As CLI starting point, this function dispatch argument parsing to be supplied to main function.'
base_markets = ['BTC', 'TUSD', 'USDT', 'USD', 'EUR', 'PAX', 'USDS']
exchanges = ['binance', 'hitbtc2', 'poloniex', 'kraken', 'coinbase', 'cexio']
exchanges = {e: e.strip('_12345 ') for e in exchanges}
parser = argparse.ArgumentParser()
parser.add_argument('-l, --list-indicators', action='store_true', dest='list_indicators', help='List all supported technical indicators')
parser.add_argument('-e, --exchange', default='binance', dest='exchange', nargs='?', choices=exchanges, help='Exchange used for watch list symbols.')
parser.add_argument('-q', '--quote-currency', nargs='?', default='BTC', choices=base_markets, help='Base market currency (default BTC)')
parser.add_argument('-i', '--indicator', metavar='TI', nargs='*', choices=list(load_indicators().keys()), help='Technical analysis indicators to be showed within chart.')
parser.add_argument('-m', '--min-volume', type=float, nargs='?', dest='min_volume', default=0.0, help='Min. 24h volume filter.')
args = parser.parse_args()
if (args.list_indicators is True):
r_code = list_indicators()
else:
r_code = main(args)
sys.exit(r_code) | As CLI starting point, this function dispatch argument parsing to be supplied to main function. | pytvc/cli.py | run | havocesp/pytvc | 12 | python | def run():
base_markets = ['BTC', 'TUSD', 'USDT', 'USD', 'EUR', 'PAX', 'USDS']
exchanges = ['binance', 'hitbtc2', 'poloniex', 'kraken', 'coinbase', 'cexio']
exchanges = {e: e.strip('_12345 ') for e in exchanges}
parser = argparse.ArgumentParser()
parser.add_argument('-l, --list-indicators', action='store_true', dest='list_indicators', help='List all supported technical indicators')
parser.add_argument('-e, --exchange', default='binance', dest='exchange', nargs='?', choices=exchanges, help='Exchange used for watch list symbols.')
parser.add_argument('-q', '--quote-currency', nargs='?', default='BTC', choices=base_markets, help='Base market currency (default BTC)')
parser.add_argument('-i', '--indicator', metavar='TI', nargs='*', choices=list(load_indicators().keys()), help='Technical analysis indicators to be showed within chart.')
parser.add_argument('-m', '--min-volume', type=float, nargs='?', dest='min_volume', default=0.0, help='Min. 24h volume filter.')
args = parser.parse_args()
if (args.list_indicators is True):
r_code = list_indicators()
else:
r_code = main(args)
sys.exit(r_code) | def run():
base_markets = ['BTC', 'TUSD', 'USDT', 'USD', 'EUR', 'PAX', 'USDS']
exchanges = ['binance', 'hitbtc2', 'poloniex', 'kraken', 'coinbase', 'cexio']
exchanges = {e: e.strip('_12345 ') for e in exchanges}
parser = argparse.ArgumentParser()
parser.add_argument('-l, --list-indicators', action='store_true', dest='list_indicators', help='List all supported technical indicators')
parser.add_argument('-e, --exchange', default='binance', dest='exchange', nargs='?', choices=exchanges, help='Exchange used for watch list symbols.')
parser.add_argument('-q', '--quote-currency', nargs='?', default='BTC', choices=base_markets, help='Base market currency (default BTC)')
parser.add_argument('-i', '--indicator', metavar='TI', nargs='*', choices=list(load_indicators().keys()), help='Technical analysis indicators to be showed within chart.')
parser.add_argument('-m', '--min-volume', type=float, nargs='?', dest='min_volume', default=0.0, help='Min. 24h volume filter.')
args = parser.parse_args()
if (args.list_indicators is True):
r_code = list_indicators()
else:
r_code = main(args)
sys.exit(r_code)<|docstring|>As CLI starting point, this function dispatch argument parsing to be supplied to main function.<|endoftext|> |
360dba7075008b5182ff54dff468af1e5cd97787bff6a069d85f2f46090c21c2 | def get_location(loc):
'\n currently working only on my computer\n english Model\n english.muc.7class.distsim.crf.ser.gz\n german Models\n german.dewac_175m_600.crf.ser.gz\n german.hgc_175m_600.crf.ser.gz\n '
st = StanfordNERTagger('stanford-ner-2015-12-09/classifiers/english.muc.7class.distsim.crf.ser.gz', 'stanford-ner-2015-12-09/stanford-ner-3.6.0.jar')
loc_ner = st.tag(loc)
"\n might be faster starting from back to front\n 'LOCATION' for English\n 'I-LOC' for German\n "
loc_tuples = [item[0] for item in loc_ner if ('LOCATION' in item)]
try:
location = loc_tuples[0]
if (len(loc_tuples) > 1):
for i in range(1, len(loc_tuples)):
location += (' ' + loc_tuples[i])
except IndexError:
return None
return location | currently working only on my computer
english Model
english.muc.7class.distsim.crf.ser.gz
german Models
german.dewac_175m_600.crf.ser.gz
german.hgc_175m_600.crf.ser.gz | extractor.py | get_location | phucdev/weatherbot | 0 | python | def get_location(loc):
'\n currently working only on my computer\n english Model\n english.muc.7class.distsim.crf.ser.gz\n german Models\n german.dewac_175m_600.crf.ser.gz\n german.hgc_175m_600.crf.ser.gz\n '
st = StanfordNERTagger('stanford-ner-2015-12-09/classifiers/english.muc.7class.distsim.crf.ser.gz', 'stanford-ner-2015-12-09/stanford-ner-3.6.0.jar')
loc_ner = st.tag(loc)
"\n might be faster starting from back to front\n 'LOCATION' for English\n 'I-LOC' for German\n "
loc_tuples = [item[0] for item in loc_ner if ('LOCATION' in item)]
try:
location = loc_tuples[0]
if (len(loc_tuples) > 1):
for i in range(1, len(loc_tuples)):
location += (' ' + loc_tuples[i])
except IndexError:
return None
return location | def get_location(loc):
'\n currently working only on my computer\n english Model\n english.muc.7class.distsim.crf.ser.gz\n german Models\n german.dewac_175m_600.crf.ser.gz\n german.hgc_175m_600.crf.ser.gz\n '
st = StanfordNERTagger('stanford-ner-2015-12-09/classifiers/english.muc.7class.distsim.crf.ser.gz', 'stanford-ner-2015-12-09/stanford-ner-3.6.0.jar')
loc_ner = st.tag(loc)
"\n might be faster starting from back to front\n 'LOCATION' for English\n 'I-LOC' for German\n "
loc_tuples = [item[0] for item in loc_ner if ('LOCATION' in item)]
try:
location = loc_tuples[0]
if (len(loc_tuples) > 1):
for i in range(1, len(loc_tuples)):
location += (' ' + loc_tuples[i])
except IndexError:
return None
return location<|docstring|>currently working only on my computer
english Model
english.muc.7class.distsim.crf.ser.gz
german Models
german.dewac_175m_600.crf.ser.gz
german.hgc_175m_600.crf.ser.gz<|endoftext|> |
6e691b4afac0e44e94ed72229fd79a3ae83be04d4f26008245f0ce566c7d973e | def flask_post_json():
'Ah the joys of frameworks! They do so much work for you\n that they get in the way of sane operation!'
if (request.json != None):
return request.json
elif ((request.data != None) and (request.data.decode('utf8') != u'')):
return json.loads(request.data.decode('utf8'))
else:
return json.loads(request.form.keys()[0]) | Ah the joys of frameworks! They do so much work for you
that they get in the way of sane operation! | server.py | flask_post_json | dcones/CMPUT404-assignment-ajax | 1 | python | def flask_post_json():
'Ah the joys of frameworks! They do so much work for you\n that they get in the way of sane operation!'
if (request.json != None):
return request.json
elif ((request.data != None) and (request.data.decode('utf8') != u)):
return json.loads(request.data.decode('utf8'))
else:
return json.loads(request.form.keys()[0]) | def flask_post_json():
'Ah the joys of frameworks! They do so much work for you\n that they get in the way of sane operation!'
if (request.json != None):
return request.json
elif ((request.data != None) and (request.data.decode('utf8') != u)):
return json.loads(request.data.decode('utf8'))
else:
return json.loads(request.form.keys()[0])<|docstring|>Ah the joys of frameworks! They do so much work for you
that they get in the way of sane operation!<|endoftext|> |
9dca322af1c95789df86925512386d1aa5155f41fb9ec3ab474d222c3cc149f8 | def __init__(self, byte: int, line: int, index: int, args: List[Token], resolved_vars: dict={}, resolved_gotos: dict={}):
'Represents a compilable line.\n\n Args:\n byte (int): The bytecode byte of the instruction associated.\n '
self.byte = byte
self.args = args
self.line = line
self.index = index
self.vars = resolved_vars
self.gotos = resolved_gotos | Represents a compilable line.
Args:
byte (int): The bytecode byte of the instruction associated. | assemblyish/compiler.py | __init__ | vcokltfre/assemblyish | 1 | python | def __init__(self, byte: int, line: int, index: int, args: List[Token], resolved_vars: dict={}, resolved_gotos: dict={}):
'Represents a compilable line.\n\n Args:\n byte (int): The bytecode byte of the instruction associated.\n '
self.byte = byte
self.args = args
self.line = line
self.index = index
self.vars = resolved_vars
self.gotos = resolved_gotos | def __init__(self, byte: int, line: int, index: int, args: List[Token], resolved_vars: dict={}, resolved_gotos: dict={}):
'Represents a compilable line.\n\n Args:\n byte (int): The bytecode byte of the instruction associated.\n '
self.byte = byte
self.args = args
self.line = line
self.index = index
self.vars = resolved_vars
self.gotos = resolved_gotos<|docstring|>Represents a compilable line.
Args:
byte (int): The bytecode byte of the instruction associated.<|endoftext|> |
e439d61e76b4636fc0521f928161011d7c151ea40fd8f512276ad88ef749d82f | def __init__(self, filename: str, tokens: List[Token]):
"A compiler class for assemblyish.\n\n Args:\n filename (str): The filename of the file being compiled. Used for error logging.\n tokens (List[Token]): A list of Token objects representing the program's code.\n "
self.filename = filename
self.tokens = tokens
self.variables = {}
self.gotos = {}
self.var_goto_id = 1
self.instrs = []
self.lines = self.getlines() | A compiler class for assemblyish.
Args:
filename (str): The filename of the file being compiled. Used for error logging.
tokens (List[Token]): A list of Token objects representing the program's code. | assemblyish/compiler.py | __init__ | vcokltfre/assemblyish | 1 | python | def __init__(self, filename: str, tokens: List[Token]):
"A compiler class for assemblyish.\n\n Args:\n filename (str): The filename of the file being compiled. Used for error logging.\n tokens (List[Token]): A list of Token objects representing the program's code.\n "
self.filename = filename
self.tokens = tokens
self.variables = {}
self.gotos = {}
self.var_goto_id = 1
self.instrs = []
self.lines = self.getlines() | def __init__(self, filename: str, tokens: List[Token]):
"A compiler class for assemblyish.\n\n Args:\n filename (str): The filename of the file being compiled. Used for error logging.\n tokens (List[Token]): A list of Token objects representing the program's code.\n "
self.filename = filename
self.tokens = tokens
self.variables = {}
self.gotos = {}
self.var_goto_id = 1
self.instrs = []
self.lines = self.getlines()<|docstring|>A compiler class for assemblyish.
Args:
filename (str): The filename of the file being compiled. Used for error logging.
tokens (List[Token]): A list of Token objects representing the program's code.<|endoftext|> |
d33d96144f3fc75049c4af3beafe357192a1031f88ab8e0bd8f3948b63422447 | def calc_cos(self, batch_size, n_tau=32):
'\n Calculating the cosinus values depending on the number of tau samples\n '
taus = th.rand(batch_size, n_tau).unsqueeze((- 1)).to(self.device)
cos = th.cos((taus * self.pis.to(self.device)))
assert (cos.shape == (batch_size, n_tau, self.n_cos)), 'cos shape is incorrect'
return (cos, taus) | Calculating the cosinus values depending on the number of tau samples | custom_algos/d3pg/policies.py | calc_cos | vinerich/rl-baselines3-zoo | 0 | python | def calc_cos(self, batch_size, n_tau=32):
'\n \n '
taus = th.rand(batch_size, n_tau).unsqueeze((- 1)).to(self.device)
cos = th.cos((taus * self.pis.to(self.device)))
assert (cos.shape == (batch_size, n_tau, self.n_cos)), 'cos shape is incorrect'
return (cos, taus) | def calc_cos(self, batch_size, n_tau=32):
'\n \n '
taus = th.rand(batch_size, n_tau).unsqueeze((- 1)).to(self.device)
cos = th.cos((taus * self.pis.to(self.device)))
assert (cos.shape == (batch_size, n_tau, self.n_cos)), 'cos shape is incorrect'
return (cos, taus)<|docstring|>Calculating the cosinus values depending on the number of tau samples<|endoftext|> |
37c18a736586dca84f0ca40fdb8086e4296534633e48f7a669439c6ac73bd86d | @property
def id(self):
'Returns the SHA1 ID of this commitish'
if (self._id is None):
self._id = self.repo.revparse(self.ref)
return self._id | Returns the SHA1 ID of this commitish | src/geogigpy/commitish.py | id | boundlessgeo/geogig-py | 7 | python | @property
def id(self):
if (self._id is None):
self._id = self.repo.revparse(self.ref)
return self._id | @property
def id(self):
if (self._id is None):
self._id = self.repo.revparse(self.ref)
return self._id<|docstring|>Returns the SHA1 ID of this commitish<|endoftext|> |
558d36ca1237fd8f9b6421157a3d73a8811139acdf1d4e24d7e249a945a71301 | def log(self):
'Return the history up to this commitish'
return self.repo.log(self.ref) | Return the history up to this commitish | src/geogigpy/commitish.py | log | boundlessgeo/geogig-py | 7 | python | def log(self):
return self.repo.log(self.ref) | def log(self):
return self.repo.log(self.ref)<|docstring|>Return the history up to this commitish<|endoftext|> |
4074d6c0af2d8f8e957fdc031e1c04d62c3215142706c5343da440cfdb17065d | @property
def root(self):
'Returns a Tree that represents the root tree at this snapshot'
return Tree(self.repo, self.ref) | Returns a Tree that represents the root tree at this snapshot | src/geogigpy/commitish.py | root | boundlessgeo/geogig-py | 7 | python | @property
def root(self):
return Tree(self.repo, self.ref) | @property
def root(self):
return Tree(self.repo, self.ref)<|docstring|>Returns a Tree that represents the root tree at this snapshot<|endoftext|> |
923927d34044c67cae9fcf8598d92d502d155fe1e4dc71269fa4fc559ff2a000 | def checkout(self):
'Checks out this commitish, and set it as the current HEAD'
self.repo.checkout(self.ref) | Checks out this commitish, and set it as the current HEAD | src/geogigpy/commitish.py | checkout | boundlessgeo/geogig-py | 7 | python | def checkout(self):
self.repo.checkout(self.ref) | def checkout(self):
self.repo.checkout(self.ref)<|docstring|>Checks out this commitish, and set it as the current HEAD<|endoftext|> |
b001b8d1de85228124517b705ad769abc10815102199ba0ffb1f14831a71b065 | def diff(self):
'Returns a list of DiffEntry with all changes introduced by this commitish'
if (self._diff is None):
self._diff = self.repo.diff((self.ref + '~1'), self.ref)
return self._diff | Returns a list of DiffEntry with all changes introduced by this commitish | src/geogigpy/commitish.py | diff | boundlessgeo/geogig-py | 7 | python | def diff(self):
if (self._diff is None):
self._diff = self.repo.diff((self.ref + '~1'), self.ref)
return self._diff | def diff(self):
if (self._diff is None):
self._diff = self.repo.diff((self.ref + '~1'), self.ref)
return self._diff<|docstring|>Returns a list of DiffEntry with all changes introduced by this commitish<|endoftext|> |
92690b4ebc00a873c04a81b7440c3be5a6bc95465999d29af322c528a5727726 | @property
def parent(self):
'Returns a commitish that represents the parent of this one'
return Commitish(self.repo, (self.ref + '~1')) | Returns a commitish that represents the parent of this one | src/geogigpy/commitish.py | parent | boundlessgeo/geogig-py | 7 | python | @property
def parent(self):
return Commitish(self.repo, (self.ref + '~1')) | @property
def parent(self):
return Commitish(self.repo, (self.ref + '~1'))<|docstring|>Returns a commitish that represents the parent of this one<|endoftext|> |
656eb7fd477a9f3a5afe33af99fa28aee264f5b1e5f7c44953c767d8d22a4396 | def humantext(self):
'Returns a nice human-readable description of the commitish'
headid = self.repo.revparse(self.repo.head.ref)
if (headid == self.id):
return 'Current branch'
return self.ref | Returns a nice human-readable description of the commitish | src/geogigpy/commitish.py | humantext | boundlessgeo/geogig-py | 7 | python | def humantext(self):
headid = self.repo.revparse(self.repo.head.ref)
if (headid == self.id):
return 'Current branch'
return self.ref | def humantext(self):
headid = self.repo.revparse(self.repo.head.ref)
if (headid == self.id):
return 'Current branch'
return self.ref<|docstring|>Returns a nice human-readable description of the commitish<|endoftext|> |
e8f1f38099c8f224dec038fca1b03ecce00136188f7c31b2776eaed0f386bb5a | def read_triformat(directory, x_filename):
'\n X - 2d numpy array with rows representing compounds and columns represnting features\n compounds - pandas DataFrame with compound information\n features - pandas DataFrame with features information\n '
features_path = os.path.join(directory, 'features.txt')
features = pandas.io.parsers.read_table(features_path)
compounds_path = os.path.join(directory, 'compounds.txt')
compounds = pandas.io.parsers.read_table(compounds_path)
x_path = os.path.join(directory, x_filename)
X = numpy.loadtxt(x_path, delimiter='\t')
triformat = {'X': X, 'compounds': compounds, 'features': features}
return triformat | X - 2d numpy array with rows representing compounds and columns represnting features
compounds - pandas DataFrame with compound information
features - pandas DataFrame with features information | projects/remyelination/feature_reader.py | read_triformat | dhimmel/serg-pycode | 0 | python | def read_triformat(directory, x_filename):
'\n X - 2d numpy array with rows representing compounds and columns represnting features\n compounds - pandas DataFrame with compound information\n features - pandas DataFrame with features information\n '
features_path = os.path.join(directory, 'features.txt')
features = pandas.io.parsers.read_table(features_path)
compounds_path = os.path.join(directory, 'compounds.txt')
compounds = pandas.io.parsers.read_table(compounds_path)
x_path = os.path.join(directory, x_filename)
X = numpy.loadtxt(x_path, delimiter='\t')
triformat = {'X': X, 'compounds': compounds, 'features': features}
return triformat | def read_triformat(directory, x_filename):
'\n X - 2d numpy array with rows representing compounds and columns represnting features\n compounds - pandas DataFrame with compound information\n features - pandas DataFrame with features information\n '
features_path = os.path.join(directory, 'features.txt')
features = pandas.io.parsers.read_table(features_path)
compounds_path = os.path.join(directory, 'compounds.txt')
compounds = pandas.io.parsers.read_table(compounds_path)
x_path = os.path.join(directory, x_filename)
X = numpy.loadtxt(x_path, delimiter='\t')
triformat = {'X': X, 'compounds': compounds, 'features': features}
return triformat<|docstring|>X - 2d numpy array with rows representing compounds and columns represnting features
compounds - pandas DataFrame with compound information
features - pandas DataFrame with features information<|endoftext|> |
e795c20b4fac8ca817b57c2c9d417b9a9b8111b64b2bd949aef207b998d7df8c | def whoami(string):
'Leon introduces himself'
return utils.output('end', 'introduction', utils.translate('introduction')) | Leon introduces himself | packages/leon/whoami.py | whoami | jankeromnes/leon | 4 | python | def whoami(string):
return utils.output('end', 'introduction', utils.translate('introduction')) | def whoami(string):
return utils.output('end', 'introduction', utils.translate('introduction'))<|docstring|>Leon introduces himself<|endoftext|> |
5e1981956e8cf250b39eff83e25d76ae200d81d2f4c2a215f394865d1aa8dad0 | def __get_node_label_charcnn_embeddings(self, unique_labels_as_characters: tf.Tensor, node_labels_to_unique_labels: tf.Tensor) -> tf.Tensor:
'\n Compute representation of node labels using a 2-layer character CNN.\n\n Args:\n unique_labels_as_characters: int32 tensor of shape [U, C]\n representing the unique (node) labels occurring in a\n batch, where U is the number of such labels and C the\n maximal number of characters.\n node_labels_to_unique_labels: int32 tensor of shape [V],\n mapping each node in the batch to one of the unique\n labels.\n\n Returns:\n float32 tensor of shape [V, D] representing embedded node\n label information about each node.\n '
label_embedding_size = self.params['graph_node_label_representation_size']
self.unique_label_chars_one_hot = unique_label_chars_one_hot = tf.one_hot(indices=unique_labels_as_characters, depth=len(ALPHABET), axis=(- 1))
char_conv_l1_kernel_size = 5
char_conv_l2_kernel_size = (self.params['graph_node_label_max_num_chars'] - (2 * (char_conv_l1_kernel_size - 1)))
char_conv_l1 = tf.keras.layers.Conv1D(filters=16, kernel_size=char_conv_l1_kernel_size, activation=tf.nn.leaky_relu)(unique_label_chars_one_hot)
char_pool_l1 = tf.keras.layers.MaxPool1D(pool_size=char_conv_l1_kernel_size, strides=1)(inputs=char_conv_l1)
char_conv_l2 = tf.keras.layers.Conv1D(filters=label_embedding_size, kernel_size=char_conv_l2_kernel_size, activation=tf.nn.leaky_relu)(char_pool_l1)
unique_label_representations = tf.squeeze(char_conv_l2, axis=1)
node_label_representations = tf.gather(params=unique_label_representations, indices=node_labels_to_unique_labels)
return node_label_representations | Compute representation of node labels using a 2-layer character CNN.
Args:
unique_labels_as_characters: int32 tensor of shape [U, C]
representing the unique (node) labels occurring in a
batch, where U is the number of such labels and C the
maximal number of characters.
node_labels_to_unique_labels: int32 tensor of shape [V],
mapping each node in the batch to one of the unique
labels.
Returns:
float32 tensor of shape [V, D] representing embedded node
label information about each node. | tf-gnn-samples/tasks/varmisuse_task.py | __get_node_label_charcnn_embeddings | yangzhou6666/adversarial-examples | 10 | python | def __get_node_label_charcnn_embeddings(self, unique_labels_as_characters: tf.Tensor, node_labels_to_unique_labels: tf.Tensor) -> tf.Tensor:
'\n Compute representation of node labels using a 2-layer character CNN.\n\n Args:\n unique_labels_as_characters: int32 tensor of shape [U, C]\n representing the unique (node) labels occurring in a\n batch, where U is the number of such labels and C the\n maximal number of characters.\n node_labels_to_unique_labels: int32 tensor of shape [V],\n mapping each node in the batch to one of the unique\n labels.\n\n Returns:\n float32 tensor of shape [V, D] representing embedded node\n label information about each node.\n '
label_embedding_size = self.params['graph_node_label_representation_size']
self.unique_label_chars_one_hot = unique_label_chars_one_hot = tf.one_hot(indices=unique_labels_as_characters, depth=len(ALPHABET), axis=(- 1))
char_conv_l1_kernel_size = 5
char_conv_l2_kernel_size = (self.params['graph_node_label_max_num_chars'] - (2 * (char_conv_l1_kernel_size - 1)))
char_conv_l1 = tf.keras.layers.Conv1D(filters=16, kernel_size=char_conv_l1_kernel_size, activation=tf.nn.leaky_relu)(unique_label_chars_one_hot)
char_pool_l1 = tf.keras.layers.MaxPool1D(pool_size=char_conv_l1_kernel_size, strides=1)(inputs=char_conv_l1)
char_conv_l2 = tf.keras.layers.Conv1D(filters=label_embedding_size, kernel_size=char_conv_l2_kernel_size, activation=tf.nn.leaky_relu)(char_pool_l1)
unique_label_representations = tf.squeeze(char_conv_l2, axis=1)
node_label_representations = tf.gather(params=unique_label_representations, indices=node_labels_to_unique_labels)
return node_label_representations | def __get_node_label_charcnn_embeddings(self, unique_labels_as_characters: tf.Tensor, node_labels_to_unique_labels: tf.Tensor) -> tf.Tensor:
'\n Compute representation of node labels using a 2-layer character CNN.\n\n Args:\n unique_labels_as_characters: int32 tensor of shape [U, C]\n representing the unique (node) labels occurring in a\n batch, where U is the number of such labels and C the\n maximal number of characters.\n node_labels_to_unique_labels: int32 tensor of shape [V],\n mapping each node in the batch to one of the unique\n labels.\n\n Returns:\n float32 tensor of shape [V, D] representing embedded node\n label information about each node.\n '
label_embedding_size = self.params['graph_node_label_representation_size']
self.unique_label_chars_one_hot = unique_label_chars_one_hot = tf.one_hot(indices=unique_labels_as_characters, depth=len(ALPHABET), axis=(- 1))
char_conv_l1_kernel_size = 5
char_conv_l2_kernel_size = (self.params['graph_node_label_max_num_chars'] - (2 * (char_conv_l1_kernel_size - 1)))
char_conv_l1 = tf.keras.layers.Conv1D(filters=16, kernel_size=char_conv_l1_kernel_size, activation=tf.nn.leaky_relu)(unique_label_chars_one_hot)
char_pool_l1 = tf.keras.layers.MaxPool1D(pool_size=char_conv_l1_kernel_size, strides=1)(inputs=char_conv_l1)
char_conv_l2 = tf.keras.layers.Conv1D(filters=label_embedding_size, kernel_size=char_conv_l2_kernel_size, activation=tf.nn.leaky_relu)(char_pool_l1)
unique_label_representations = tf.squeeze(char_conv_l2, axis=1)
node_label_representations = tf.gather(params=unique_label_representations, indices=node_labels_to_unique_labels)
return node_label_representations<|docstring|>Compute representation of node labels using a 2-layer character CNN.
Args:
unique_labels_as_characters: int32 tensor of shape [U, C]
representing the unique (node) labels occurring in a
batch, where U is the number of such labels and C the
maximal number of characters.
node_labels_to_unique_labels: int32 tensor of shape [V],
mapping each node in the batch to one of the unique
labels.
Returns:
float32 tensor of shape [V, D] representing embedded node
label information about each node.<|endoftext|> |
897ec548dd608c28f7be3f343d6a7a053c6d5f6555328aeaeea4735fde122199 | def image_entropy(im):
'\n Calculate the entropy of an image. Used for "smart cropping".\n '
if (not isinstance(im, Image.Image)):
return 0
hist = im.histogram()
hist_size = float(sum(hist))
hist = [(h / hist_size) for h in hist]
return (- sum([(p * math.log(p, 2)) for p in hist if (p != 0)])) | Calculate the entropy of an image. Used for "smart cropping". | pressurecooker/thumbscropping.py | image_entropy | kollivier/pressurecooker | 14 | python | def image_entropy(im):
'\n \n '
if (not isinstance(im, Image.Image)):
return 0
hist = im.histogram()
hist_size = float(sum(hist))
hist = [(h / hist_size) for h in hist]
return (- sum([(p * math.log(p, 2)) for p in hist if (p != 0)])) | def image_entropy(im):
'\n \n '
if (not isinstance(im, Image.Image)):
return 0
hist = im.histogram()
hist_size = float(sum(hist))
hist = [(h / hist_size) for h in hist]
return (- sum([(p * math.log(p, 2)) for p in hist if (p != 0)]))<|docstring|>Calculate the entropy of an image. Used for "smart cropping".<|endoftext|> |
4ee07f37b37b93de7c5119bdbba3880554199858a29ab561929eace8c6180bc7 | def _compare_entropy(start_slice, end_slice, slice, difference):
'\n Calculate the entropy of two slices (from the start and end of an axis),\n returning a tuple containing the amount that should be added to the start\n and removed from the end of the axis.\n '
start_entropy = image_entropy(start_slice)
end_entropy = image_entropy(end_slice)
if (end_entropy and (abs(((start_entropy / end_entropy) - 1)) < 0.01)):
if (difference >= (slice * 2)):
return (slice, slice)
half_slice = (slice // 2)
return (half_slice, (slice - half_slice))
if (start_entropy > end_entropy):
return (0, slice)
else:
return (slice, 0) | Calculate the entropy of two slices (from the start and end of an axis),
returning a tuple containing the amount that should be added to the start
and removed from the end of the axis. | pressurecooker/thumbscropping.py | _compare_entropy | kollivier/pressurecooker | 14 | python | def _compare_entropy(start_slice, end_slice, slice, difference):
'\n Calculate the entropy of two slices (from the start and end of an axis),\n returning a tuple containing the amount that should be added to the start\n and removed from the end of the axis.\n '
start_entropy = image_entropy(start_slice)
end_entropy = image_entropy(end_slice)
if (end_entropy and (abs(((start_entropy / end_entropy) - 1)) < 0.01)):
if (difference >= (slice * 2)):
return (slice, slice)
half_slice = (slice // 2)
return (half_slice, (slice - half_slice))
if (start_entropy > end_entropy):
return (0, slice)
else:
return (slice, 0) | def _compare_entropy(start_slice, end_slice, slice, difference):
'\n Calculate the entropy of two slices (from the start and end of an axis),\n returning a tuple containing the amount that should be added to the start\n and removed from the end of the axis.\n '
start_entropy = image_entropy(start_slice)
end_entropy = image_entropy(end_slice)
if (end_entropy and (abs(((start_entropy / end_entropy) - 1)) < 0.01)):
if (difference >= (slice * 2)):
return (slice, slice)
half_slice = (slice // 2)
return (half_slice, (slice - half_slice))
if (start_entropy > end_entropy):
return (0, slice)
else:
return (slice, 0)<|docstring|>Calculate the entropy of two slices (from the start and end of an axis),
returning a tuple containing the amount that should be added to the start
and removed from the end of the axis.<|endoftext|> |
1172381e4328887fb2d06d20f7aaea9d2a3001418c1e71c419911a4a09b8f873 | def scale_and_crop(im, size, crop=False, upscale=False, zoom=None, target=None, **kwargs):
'\n Handle scaling and cropping the source image.\n Images can be scaled / cropped against a single dimension by using zero\n as the placeholder in the size. For example, ``size=(100, 0)`` will cause\n the image to be resized to 100 pixels wide, keeping the aspect ratio of\n the source image.\n crop\n Crop the source image height or width to exactly match the requested\n thumbnail size (the default is to proportionally resize the source\n image to fit within the requested thumbnail size).\n By default, the image is centered before being cropped. To crop from\n the edges, pass a comma separated string containing the ``x`` and ``y``\n percentage offsets (negative values go from the right/bottom). Some\n examples follow:\n * ``crop="0,0"`` will crop from the left and top edges.\n * ``crop="-10,-0"`` will crop from the right edge (with a 10% offset)\n and the bottom edge.\n * ``crop=",0"`` will keep the default behavior for the x axis\n (horizontally centering the image) and crop from the top edge.\n The image can also be "smart cropped" by using ``crop="smart"``. The\n image is incrementally cropped down to the requested size by removing\n slices from edges with the least entropy.\n Finally, you can use ``crop="scale"`` to simply scale the image so that\n at least one dimension fits within the size dimensions given (you may\n want to use the upscale option too).\n upscale\n Allow upscaling of the source image during scaling.\n zoom\n A percentage to zoom in on the scaled image. For example, a zoom of\n ``40`` will clip 20% off each side of the source image before\n thumbnailing.\n target\n Set the focal point as a percentage for the image if it needs to be\n cropped (defaults to ``(50, 50)``).\n For example, ``target="10,20"`` will set the focal point as 10% and 20%\n from the left and top of the image, respectively. If the image needs to\n be cropped, it will trim off the right and bottom edges until the focal\n point is centered.\n Can either be set as a two-item tuple such as ``(20, 30)`` or a comma\n separated string such as ``"20,10"``.\n A null value such as ``(20, None)`` or ``",60"`` will default to 50%.\n '
(source_x, source_y) = [float(v) for v in im.size]
(target_x, target_y) = [int(v) for v in size]
if (crop or (not target_x) or (not target_y)):
scale = max((target_x / source_x), (target_y / source_y))
else:
scale = min((target_x / source_x), (target_y / source_y))
if (not target_x):
target_x = round((source_x * scale))
elif (not target_y):
target_y = round((source_y * scale))
if zoom:
if (not crop):
target_x = round((source_x * scale))
target_y = round((source_y * scale))
crop = True
scale *= ((100 + int(zoom)) / 100.0)
if ((scale < 1.0) or ((scale > 1.0) and upscale)):
im = im.resize((int(round((source_x * scale))), int(round((source_y * scale)))), resample=Image.ANTIALIAS)
if crop:
(source_x, source_y) = im.size
diff_x = int((source_x - min(source_x, target_x)))
diff_y = int((source_y - min(source_y, target_y)))
if ((crop != 'scale') and (diff_x or diff_y)):
if isinstance(target, string_types):
target = re.match('(\\d+)?,(\\d+)?$', target)
if target:
target = target.groups()
if target:
focal_point = [(int(n) if (n or (n == 0)) else 50) for n in target]
else:
focal_point = (50, 50)
(halftarget_x, halftarget_y) = (int((target_x / 2)), int((target_y / 2)))
focal_point_x = int(((source_x * focal_point[0]) / 100))
focal_point_y = int(((source_y * focal_point[1]) / 100))
box = [max(0, min((source_x - target_x), (focal_point_x - halftarget_x))), max(0, min((source_y - target_y), (focal_point_y - halftarget_y)))]
box.append(int(min(source_x, (box[0] + target_x))))
box.append(int(min(source_y, (box[1] + target_y))))
edge_crop = (isinstance(crop, string_types) and re.match('(?:(-?)(\\d+))?,(?:(-?)(\\d+))?$', crop))
if (edge_crop and filter(None, edge_crop.groups())):
(x_right, x_crop, y_bottom, y_crop) = edge_crop.groups()
if x_crop:
offset = min(((int(target_x) * int(x_crop)) // 100), diff_x)
if x_right:
box[0] = (diff_x - offset)
box[2] = (source_x - offset)
else:
box[0] = offset
box[2] = (source_x - (diff_x - offset))
if y_crop:
offset = min(((int(target_y) * int(y_crop)) // 100), diff_y)
if y_bottom:
box[1] = (diff_y - offset)
box[3] = (source_y - offset)
else:
box[1] = offset
box[3] = (source_y - (diff_y - offset))
elif (crop == 'smart'):
left = top = 0
(right, bottom) = (source_x, source_y)
while diff_x:
slice = min(diff_x, max((diff_x // 5), 10))
start = im.crop((left, 0, (left + slice), source_y))
end = im.crop(((right - slice), 0, right, source_y))
(add, remove) = _compare_entropy(start, end, slice, diff_x)
left += add
right -= remove
diff_x = ((diff_x - add) - remove)
while diff_y:
slice = min(diff_y, max((diff_y // 5), 10))
start = im.crop((0, top, source_x, (top + slice)))
end = im.crop((0, (bottom - slice), source_x, bottom))
(add, remove) = _compare_entropy(start, end, slice, diff_y)
top += add
bottom -= remove
diff_y = ((diff_y - add) - remove)
box = (left, top, right, bottom)
im = im.crop(box)
return im | Handle scaling and cropping the source image.
Images can be scaled / cropped against a single dimension by using zero
as the placeholder in the size. For example, ``size=(100, 0)`` will cause
the image to be resized to 100 pixels wide, keeping the aspect ratio of
the source image.
crop
Crop the source image height or width to exactly match the requested
thumbnail size (the default is to proportionally resize the source
image to fit within the requested thumbnail size).
By default, the image is centered before being cropped. To crop from
the edges, pass a comma separated string containing the ``x`` and ``y``
percentage offsets (negative values go from the right/bottom). Some
examples follow:
* ``crop="0,0"`` will crop from the left and top edges.
* ``crop="-10,-0"`` will crop from the right edge (with a 10% offset)
and the bottom edge.
* ``crop=",0"`` will keep the default behavior for the x axis
(horizontally centering the image) and crop from the top edge.
The image can also be "smart cropped" by using ``crop="smart"``. The
image is incrementally cropped down to the requested size by removing
slices from edges with the least entropy.
Finally, you can use ``crop="scale"`` to simply scale the image so that
at least one dimension fits within the size dimensions given (you may
want to use the upscale option too).
upscale
Allow upscaling of the source image during scaling.
zoom
A percentage to zoom in on the scaled image. For example, a zoom of
``40`` will clip 20% off each side of the source image before
thumbnailing.
target
Set the focal point as a percentage for the image if it needs to be
cropped (defaults to ``(50, 50)``).
For example, ``target="10,20"`` will set the focal point as 10% and 20%
from the left and top of the image, respectively. If the image needs to
be cropped, it will trim off the right and bottom edges until the focal
point is centered.
Can either be set as a two-item tuple such as ``(20, 30)`` or a comma
separated string such as ``"20,10"``.
A null value such as ``(20, None)`` or ``",60"`` will default to 50%. | pressurecooker/thumbscropping.py | scale_and_crop | kollivier/pressurecooker | 14 | python | def scale_and_crop(im, size, crop=False, upscale=False, zoom=None, target=None, **kwargs):
'\n Handle scaling and cropping the source image.\n Images can be scaled / cropped against a single dimension by using zero\n as the placeholder in the size. For example, ``size=(100, 0)`` will cause\n the image to be resized to 100 pixels wide, keeping the aspect ratio of\n the source image.\n crop\n Crop the source image height or width to exactly match the requested\n thumbnail size (the default is to proportionally resize the source\n image to fit within the requested thumbnail size).\n By default, the image is centered before being cropped. To crop from\n the edges, pass a comma separated string containing the ``x`` and ``y``\n percentage offsets (negative values go from the right/bottom). Some\n examples follow:\n * ``crop="0,0"`` will crop from the left and top edges.\n * ``crop="-10,-0"`` will crop from the right edge (with a 10% offset)\n and the bottom edge.\n * ``crop=",0"`` will keep the default behavior for the x axis\n (horizontally centering the image) and crop from the top edge.\n The image can also be "smart cropped" by using ``crop="smart"``. The\n image is incrementally cropped down to the requested size by removing\n slices from edges with the least entropy.\n Finally, you can use ``crop="scale"`` to simply scale the image so that\n at least one dimension fits within the size dimensions given (you may\n want to use the upscale option too).\n upscale\n Allow upscaling of the source image during scaling.\n zoom\n A percentage to zoom in on the scaled image. For example, a zoom of\n ``40`` will clip 20% off each side of the source image before\n thumbnailing.\n target\n Set the focal point as a percentage for the image if it needs to be\n cropped (defaults to ``(50, 50)``).\n For example, ``target="10,20"`` will set the focal point as 10% and 20%\n from the left and top of the image, respectively. If the image needs to\n be cropped, it will trim off the right and bottom edges until the focal\n point is centered.\n Can either be set as a two-item tuple such as ``(20, 30)`` or a comma\n separated string such as ``"20,10"``.\n A null value such as ``(20, None)`` or ``",60"`` will default to 50%.\n '
(source_x, source_y) = [float(v) for v in im.size]
(target_x, target_y) = [int(v) for v in size]
if (crop or (not target_x) or (not target_y)):
scale = max((target_x / source_x), (target_y / source_y))
else:
scale = min((target_x / source_x), (target_y / source_y))
if (not target_x):
target_x = round((source_x * scale))
elif (not target_y):
target_y = round((source_y * scale))
if zoom:
if (not crop):
target_x = round((source_x * scale))
target_y = round((source_y * scale))
crop = True
scale *= ((100 + int(zoom)) / 100.0)
if ((scale < 1.0) or ((scale > 1.0) and upscale)):
im = im.resize((int(round((source_x * scale))), int(round((source_y * scale)))), resample=Image.ANTIALIAS)
if crop:
(source_x, source_y) = im.size
diff_x = int((source_x - min(source_x, target_x)))
diff_y = int((source_y - min(source_y, target_y)))
if ((crop != 'scale') and (diff_x or diff_y)):
if isinstance(target, string_types):
target = re.match('(\\d+)?,(\\d+)?$', target)
if target:
target = target.groups()
if target:
focal_point = [(int(n) if (n or (n == 0)) else 50) for n in target]
else:
focal_point = (50, 50)
(halftarget_x, halftarget_y) = (int((target_x / 2)), int((target_y / 2)))
focal_point_x = int(((source_x * focal_point[0]) / 100))
focal_point_y = int(((source_y * focal_point[1]) / 100))
box = [max(0, min((source_x - target_x), (focal_point_x - halftarget_x))), max(0, min((source_y - target_y), (focal_point_y - halftarget_y)))]
box.append(int(min(source_x, (box[0] + target_x))))
box.append(int(min(source_y, (box[1] + target_y))))
edge_crop = (isinstance(crop, string_types) and re.match('(?:(-?)(\\d+))?,(?:(-?)(\\d+))?$', crop))
if (edge_crop and filter(None, edge_crop.groups())):
(x_right, x_crop, y_bottom, y_crop) = edge_crop.groups()
if x_crop:
offset = min(((int(target_x) * int(x_crop)) // 100), diff_x)
if x_right:
box[0] = (diff_x - offset)
box[2] = (source_x - offset)
else:
box[0] = offset
box[2] = (source_x - (diff_x - offset))
if y_crop:
offset = min(((int(target_y) * int(y_crop)) // 100), diff_y)
if y_bottom:
box[1] = (diff_y - offset)
box[3] = (source_y - offset)
else:
box[1] = offset
box[3] = (source_y - (diff_y - offset))
elif (crop == 'smart'):
left = top = 0
(right, bottom) = (source_x, source_y)
while diff_x:
slice = min(diff_x, max((diff_x // 5), 10))
start = im.crop((left, 0, (left + slice), source_y))
end = im.crop(((right - slice), 0, right, source_y))
(add, remove) = _compare_entropy(start, end, slice, diff_x)
left += add
right -= remove
diff_x = ((diff_x - add) - remove)
while diff_y:
slice = min(diff_y, max((diff_y // 5), 10))
start = im.crop((0, top, source_x, (top + slice)))
end = im.crop((0, (bottom - slice), source_x, bottom))
(add, remove) = _compare_entropy(start, end, slice, diff_y)
top += add
bottom -= remove
diff_y = ((diff_y - add) - remove)
box = (left, top, right, bottom)
im = im.crop(box)
return im | def scale_and_crop(im, size, crop=False, upscale=False, zoom=None, target=None, **kwargs):
'\n Handle scaling and cropping the source image.\n Images can be scaled / cropped against a single dimension by using zero\n as the placeholder in the size. For example, ``size=(100, 0)`` will cause\n the image to be resized to 100 pixels wide, keeping the aspect ratio of\n the source image.\n crop\n Crop the source image height or width to exactly match the requested\n thumbnail size (the default is to proportionally resize the source\n image to fit within the requested thumbnail size).\n By default, the image is centered before being cropped. To crop from\n the edges, pass a comma separated string containing the ``x`` and ``y``\n percentage offsets (negative values go from the right/bottom). Some\n examples follow:\n * ``crop="0,0"`` will crop from the left and top edges.\n * ``crop="-10,-0"`` will crop from the right edge (with a 10% offset)\n and the bottom edge.\n * ``crop=",0"`` will keep the default behavior for the x axis\n (horizontally centering the image) and crop from the top edge.\n The image can also be "smart cropped" by using ``crop="smart"``. The\n image is incrementally cropped down to the requested size by removing\n slices from edges with the least entropy.\n Finally, you can use ``crop="scale"`` to simply scale the image so that\n at least one dimension fits within the size dimensions given (you may\n want to use the upscale option too).\n upscale\n Allow upscaling of the source image during scaling.\n zoom\n A percentage to zoom in on the scaled image. For example, a zoom of\n ``40`` will clip 20% off each side of the source image before\n thumbnailing.\n target\n Set the focal point as a percentage for the image if it needs to be\n cropped (defaults to ``(50, 50)``).\n For example, ``target="10,20"`` will set the focal point as 10% and 20%\n from the left and top of the image, respectively. If the image needs to\n be cropped, it will trim off the right and bottom edges until the focal\n point is centered.\n Can either be set as a two-item tuple such as ``(20, 30)`` or a comma\n separated string such as ``"20,10"``.\n A null value such as ``(20, None)`` or ``",60"`` will default to 50%.\n '
(source_x, source_y) = [float(v) for v in im.size]
(target_x, target_y) = [int(v) for v in size]
if (crop or (not target_x) or (not target_y)):
scale = max((target_x / source_x), (target_y / source_y))
else:
scale = min((target_x / source_x), (target_y / source_y))
if (not target_x):
target_x = round((source_x * scale))
elif (not target_y):
target_y = round((source_y * scale))
if zoom:
if (not crop):
target_x = round((source_x * scale))
target_y = round((source_y * scale))
crop = True
scale *= ((100 + int(zoom)) / 100.0)
if ((scale < 1.0) or ((scale > 1.0) and upscale)):
im = im.resize((int(round((source_x * scale))), int(round((source_y * scale)))), resample=Image.ANTIALIAS)
if crop:
(source_x, source_y) = im.size
diff_x = int((source_x - min(source_x, target_x)))
diff_y = int((source_y - min(source_y, target_y)))
if ((crop != 'scale') and (diff_x or diff_y)):
if isinstance(target, string_types):
target = re.match('(\\d+)?,(\\d+)?$', target)
if target:
target = target.groups()
if target:
focal_point = [(int(n) if (n or (n == 0)) else 50) for n in target]
else:
focal_point = (50, 50)
(halftarget_x, halftarget_y) = (int((target_x / 2)), int((target_y / 2)))
focal_point_x = int(((source_x * focal_point[0]) / 100))
focal_point_y = int(((source_y * focal_point[1]) / 100))
box = [max(0, min((source_x - target_x), (focal_point_x - halftarget_x))), max(0, min((source_y - target_y), (focal_point_y - halftarget_y)))]
box.append(int(min(source_x, (box[0] + target_x))))
box.append(int(min(source_y, (box[1] + target_y))))
edge_crop = (isinstance(crop, string_types) and re.match('(?:(-?)(\\d+))?,(?:(-?)(\\d+))?$', crop))
if (edge_crop and filter(None, edge_crop.groups())):
(x_right, x_crop, y_bottom, y_crop) = edge_crop.groups()
if x_crop:
offset = min(((int(target_x) * int(x_crop)) // 100), diff_x)
if x_right:
box[0] = (diff_x - offset)
box[2] = (source_x - offset)
else:
box[0] = offset
box[2] = (source_x - (diff_x - offset))
if y_crop:
offset = min(((int(target_y) * int(y_crop)) // 100), diff_y)
if y_bottom:
box[1] = (diff_y - offset)
box[3] = (source_y - offset)
else:
box[1] = offset
box[3] = (source_y - (diff_y - offset))
elif (crop == 'smart'):
left = top = 0
(right, bottom) = (source_x, source_y)
while diff_x:
slice = min(diff_x, max((diff_x // 5), 10))
start = im.crop((left, 0, (left + slice), source_y))
end = im.crop(((right - slice), 0, right, source_y))
(add, remove) = _compare_entropy(start, end, slice, diff_x)
left += add
right -= remove
diff_x = ((diff_x - add) - remove)
while diff_y:
slice = min(diff_y, max((diff_y // 5), 10))
start = im.crop((0, top, source_x, (top + slice)))
end = im.crop((0, (bottom - slice), source_x, bottom))
(add, remove) = _compare_entropy(start, end, slice, diff_y)
top += add
bottom -= remove
diff_y = ((diff_y - add) - remove)
box = (left, top, right, bottom)
im = im.crop(box)
return im<|docstring|>Handle scaling and cropping the source image.
Images can be scaled / cropped against a single dimension by using zero
as the placeholder in the size. For example, ``size=(100, 0)`` will cause
the image to be resized to 100 pixels wide, keeping the aspect ratio of
the source image.
crop
Crop the source image height or width to exactly match the requested
thumbnail size (the default is to proportionally resize the source
image to fit within the requested thumbnail size).
By default, the image is centered before being cropped. To crop from
the edges, pass a comma separated string containing the ``x`` and ``y``
percentage offsets (negative values go from the right/bottom). Some
examples follow:
* ``crop="0,0"`` will crop from the left and top edges.
* ``crop="-10,-0"`` will crop from the right edge (with a 10% offset)
and the bottom edge.
* ``crop=",0"`` will keep the default behavior for the x axis
(horizontally centering the image) and crop from the top edge.
The image can also be "smart cropped" by using ``crop="smart"``. The
image is incrementally cropped down to the requested size by removing
slices from edges with the least entropy.
Finally, you can use ``crop="scale"`` to simply scale the image so that
at least one dimension fits within the size dimensions given (you may
want to use the upscale option too).
upscale
Allow upscaling of the source image during scaling.
zoom
A percentage to zoom in on the scaled image. For example, a zoom of
``40`` will clip 20% off each side of the source image before
thumbnailing.
target
Set the focal point as a percentage for the image if it needs to be
cropped (defaults to ``(50, 50)``).
For example, ``target="10,20"`` will set the focal point as 10% and 20%
from the left and top of the image, respectively. If the image needs to
be cropped, it will trim off the right and bottom edges until the focal
point is centered.
Can either be set as a two-item tuple such as ``(20, 30)`` or a comma
separated string such as ``"20,10"``.
A null value such as ``(20, None)`` or ``",60"`` will default to 50%.<|endoftext|> |
e3066797096b000bdeb5e94b93a7bb4c622e2d28cc786709e71b4a62b2588ab6 | def read_conf(self):
'MODEL'
self.model_root = self.conf['Model']
self.model_name = self.model_root.get('ModelName')
self.model_tag = '{model_name}.model'.format(model_name=self.model_name)
self.model_field_param = self.model_root.get('ModelField')
self.model_scene_param = self.model_root.get('ModelScene')
'SYSTEM'
self.system_root = self.conf['System']
self.memory_usage = self.system_root.get('MemoryUsage')
self.model_version = self.system_root.get('Version')
self.save_model = os.path.join(self.model_root_path, self.model_tag)
self.save_checkpoint = os.path.join(self.model_root_path, self.checkpoint_tag)
'FIELD PARAM - IMAGE'
self.field_root = self.conf['FieldParam']
self.category_param = self.field_root.get('Category')
if isinstance(self.category_param, list):
self.category_param_text = json.dumps(self.category_param, ensure_ascii=False)
elif isinstance(self.category_param, str):
self.category_param_text = self.category_param
self.image_channel = self.field_root.get('ImageChannel')
self.image_width = self.field_root.get('ImageWidth')
self.image_height = self.field_root.get('ImageHeight')
self.resize = self.field_root.get('Resize')
self.max_label_num = self.field_root.get('MaxLabelNum')
self.auto_padding = self.field_root.get('AutoPadding')
self.output_split = self.field_root.get('OutputSplit')
'NEURAL NETWORK'
self.neu_network_root = self.conf['NeuralNet']
self.neu_cnn_param = self.neu_network_root.get('CNNNetwork')
self.neu_recurrent_param = self.neu_network_root.get('RecurrentNetwork')
self.neu_recurrent_param = (self.neu_recurrent_param if self.neu_recurrent_param else 'NoRecurrent')
self.units_num = self.neu_network_root.get('UnitsNum')
self.neu_optimizer_param = self.neu_network_root.get('Optimizer')
self.neu_optimizer_param = (self.neu_optimizer_param if self.neu_optimizer_param else 'RAdam')
self.output_layer = self.neu_network_root.get('OutputLayer')
self.loss_func_param = self.output_layer.get('LossFunction')
self.decoder = self.output_layer.get('Decoder')
'LABEL'
self.label_root = self.conf.get('Label')
self.label_from_param = self.label_root.get('LabelFrom')
self.extract_regex = self.label_root.get('ExtractRegex')
self.extract_regex = (self.extract_regex if self.extract_regex else '.*?(?=_)')
self.label_split = self.label_root.get('LabelSplit')
'PATH'
self.trains_root = self.conf['Trains']
self.dataset_path_root = self.trains_root.get('DatasetPath')
self.trains_path[DatasetType.TFRecords]: list = self.dataset_path_root.get('Training')
self.validation_path[DatasetType.TFRecords]: list = self.dataset_path_root.get('Validation')
self.source_path_root = self.trains_root.get('SourcePath')
self.trains_path[DatasetType.Directory]: list = self.source_path_root.get('Training')
self.validation_path[DatasetType.Directory]: list = self.source_path_root.get('Validation')
self.validation_set_num: int = self.trains_root.get('ValidationSetNum')
'TRAINS'
self.trains_save_steps = self.trains_root.get('SavedSteps')
self.trains_validation_steps = self.trains_root.get('ValidationSteps')
self.trains_end_acc = self.trains_root.get('EndAcc')
self.trains_end_cost = self.trains_root.get('EndCost')
self.trains_end_cost = (self.trains_end_cost if self.trains_end_cost else 1)
self.trains_end_epochs = self.trains_root.get('EndEpochs')
self.trains_end_epochs = (self.trains_end_epochs if self.trains_end_epochs else 2)
self.trains_learning_rate: float = float(self.trains_root.get('LearningRate'))
self.batch_size = self.trains_root.get('BatchSize')
self.batch_size = (self.batch_size if self.batch_size else 64)
self.validation_batch_size = self.trains_root.get('ValidationBatchSize')
self.validation_batch_size = (self.validation_batch_size if self.validation_batch_size else 300)
'DATA AUGMENTATION'
self.data_augmentation_root = self.conf['DataAugmentation']
self.da_binaryzation = self.data_augmentation_root.get('Binaryzation')
self.da_median_blur = self.data_augmentation_root.get('MedianBlur')
self.da_gaussian_blur = self.data_augmentation_root.get('GaussianBlur')
self.da_equalize_hist = self.data_augmentation_root.get('EqualizeHist')
self.da_laplace = self.data_augmentation_root.get('Laplace')
self.da_rotate = self.data_augmentation_root.get('Rotate')
self.da_warp_perspective = self.data_augmentation_root.get('WarpPerspective')
self.da_sp_noise = self.data_augmentation_root.get('PepperNoise')
self.da_brightness = self.data_augmentation_root.get('Brightness')
self.da_saturation = self.data_augmentation_root.get('Saturation')
self.da_hue = self.data_augmentation_root.get('Hue')
self.da_gamma = self.data_augmentation_root.get('Gamma')
self.da_channel_swap = self.data_augmentation_root.get('ChannelSwap')
self.da_random_blank = self.data_augmentation_root.get('RandomBlank')
self.da_random_transition = self.data_augmentation_root.get('RandomTransition')
self.da_random_captcha = self.data_augmentation_root.get('RandomCaptcha')
if (not self.da_random_captcha):
self.da_random_captcha = {'Enable': False, 'FontPath': ''}
'PRETREATMENT'
self.pretreatment_root = self.conf['Pretreatment']
self.pre_binaryzation = self.pretreatment_root.get('Binaryzation')
self.pre_replace_transparent = self.pretreatment_root.get('ReplaceTransparent')
self.pre_horizontal_stitching = self.pretreatment_root.get('HorizontalStitching')
self.pre_concat_frames = self.pretreatment_root.get('ConcatFrames')
self.pre_blend_frames = self.pretreatment_root.get('BlendFrames')
self.pre_exec_map = self.pretreatment_root.get('ExecuteMap')
self.pre_exec_map = (self.pre_exec_map if self.pre_exec_map else {})
'COMPILE_MODEL'
self.compile_model_path = os.path.join(self.output_path, 'graph')
self.compile_model_path = self.compile_model_path.replace('\\', '/')
self.check_field() | MODEL | config.py | read_conf | liuyang77886/captcha_trainer | 2,548 | python | def read_conf(self):
self.model_root = self.conf['Model']
self.model_name = self.model_root.get('ModelName')
self.model_tag = '{model_name}.model'.format(model_name=self.model_name)
self.model_field_param = self.model_root.get('ModelField')
self.model_scene_param = self.model_root.get('ModelScene')
'SYSTEM'
self.system_root = self.conf['System']
self.memory_usage = self.system_root.get('MemoryUsage')
self.model_version = self.system_root.get('Version')
self.save_model = os.path.join(self.model_root_path, self.model_tag)
self.save_checkpoint = os.path.join(self.model_root_path, self.checkpoint_tag)
'FIELD PARAM - IMAGE'
self.field_root = self.conf['FieldParam']
self.category_param = self.field_root.get('Category')
if isinstance(self.category_param, list):
self.category_param_text = json.dumps(self.category_param, ensure_ascii=False)
elif isinstance(self.category_param, str):
self.category_param_text = self.category_param
self.image_channel = self.field_root.get('ImageChannel')
self.image_width = self.field_root.get('ImageWidth')
self.image_height = self.field_root.get('ImageHeight')
self.resize = self.field_root.get('Resize')
self.max_label_num = self.field_root.get('MaxLabelNum')
self.auto_padding = self.field_root.get('AutoPadding')
self.output_split = self.field_root.get('OutputSplit')
'NEURAL NETWORK'
self.neu_network_root = self.conf['NeuralNet']
self.neu_cnn_param = self.neu_network_root.get('CNNNetwork')
self.neu_recurrent_param = self.neu_network_root.get('RecurrentNetwork')
self.neu_recurrent_param = (self.neu_recurrent_param if self.neu_recurrent_param else 'NoRecurrent')
self.units_num = self.neu_network_root.get('UnitsNum')
self.neu_optimizer_param = self.neu_network_root.get('Optimizer')
self.neu_optimizer_param = (self.neu_optimizer_param if self.neu_optimizer_param else 'RAdam')
self.output_layer = self.neu_network_root.get('OutputLayer')
self.loss_func_param = self.output_layer.get('LossFunction')
self.decoder = self.output_layer.get('Decoder')
'LABEL'
self.label_root = self.conf.get('Label')
self.label_from_param = self.label_root.get('LabelFrom')
self.extract_regex = self.label_root.get('ExtractRegex')
self.extract_regex = (self.extract_regex if self.extract_regex else '.*?(?=_)')
self.label_split = self.label_root.get('LabelSplit')
'PATH'
self.trains_root = self.conf['Trains']
self.dataset_path_root = self.trains_root.get('DatasetPath')
self.trains_path[DatasetType.TFRecords]: list = self.dataset_path_root.get('Training')
self.validation_path[DatasetType.TFRecords]: list = self.dataset_path_root.get('Validation')
self.source_path_root = self.trains_root.get('SourcePath')
self.trains_path[DatasetType.Directory]: list = self.source_path_root.get('Training')
self.validation_path[DatasetType.Directory]: list = self.source_path_root.get('Validation')
self.validation_set_num: int = self.trains_root.get('ValidationSetNum')
'TRAINS'
self.trains_save_steps = self.trains_root.get('SavedSteps')
self.trains_validation_steps = self.trains_root.get('ValidationSteps')
self.trains_end_acc = self.trains_root.get('EndAcc')
self.trains_end_cost = self.trains_root.get('EndCost')
self.trains_end_cost = (self.trains_end_cost if self.trains_end_cost else 1)
self.trains_end_epochs = self.trains_root.get('EndEpochs')
self.trains_end_epochs = (self.trains_end_epochs if self.trains_end_epochs else 2)
self.trains_learning_rate: float = float(self.trains_root.get('LearningRate'))
self.batch_size = self.trains_root.get('BatchSize')
self.batch_size = (self.batch_size if self.batch_size else 64)
self.validation_batch_size = self.trains_root.get('ValidationBatchSize')
self.validation_batch_size = (self.validation_batch_size if self.validation_batch_size else 300)
'DATA AUGMENTATION'
self.data_augmentation_root = self.conf['DataAugmentation']
self.da_binaryzation = self.data_augmentation_root.get('Binaryzation')
self.da_median_blur = self.data_augmentation_root.get('MedianBlur')
self.da_gaussian_blur = self.data_augmentation_root.get('GaussianBlur')
self.da_equalize_hist = self.data_augmentation_root.get('EqualizeHist')
self.da_laplace = self.data_augmentation_root.get('Laplace')
self.da_rotate = self.data_augmentation_root.get('Rotate')
self.da_warp_perspective = self.data_augmentation_root.get('WarpPerspective')
self.da_sp_noise = self.data_augmentation_root.get('PepperNoise')
self.da_brightness = self.data_augmentation_root.get('Brightness')
self.da_saturation = self.data_augmentation_root.get('Saturation')
self.da_hue = self.data_augmentation_root.get('Hue')
self.da_gamma = self.data_augmentation_root.get('Gamma')
self.da_channel_swap = self.data_augmentation_root.get('ChannelSwap')
self.da_random_blank = self.data_augmentation_root.get('RandomBlank')
self.da_random_transition = self.data_augmentation_root.get('RandomTransition')
self.da_random_captcha = self.data_augmentation_root.get('RandomCaptcha')
if (not self.da_random_captcha):
self.da_random_captcha = {'Enable': False, 'FontPath': }
'PRETREATMENT'
self.pretreatment_root = self.conf['Pretreatment']
self.pre_binaryzation = self.pretreatment_root.get('Binaryzation')
self.pre_replace_transparent = self.pretreatment_root.get('ReplaceTransparent')
self.pre_horizontal_stitching = self.pretreatment_root.get('HorizontalStitching')
self.pre_concat_frames = self.pretreatment_root.get('ConcatFrames')
self.pre_blend_frames = self.pretreatment_root.get('BlendFrames')
self.pre_exec_map = self.pretreatment_root.get('ExecuteMap')
self.pre_exec_map = (self.pre_exec_map if self.pre_exec_map else {})
'COMPILE_'
self.compile_model_path = os.path.join(self.output_path, 'graph')
self.compile_model_path = self.compile_model_path.replace('\\', '/')
self.check_field() | def read_conf(self):
self.model_root = self.conf['Model']
self.model_name = self.model_root.get('ModelName')
self.model_tag = '{model_name}.model'.format(model_name=self.model_name)
self.model_field_param = self.model_root.get('ModelField')
self.model_scene_param = self.model_root.get('ModelScene')
'SYSTEM'
self.system_root = self.conf['System']
self.memory_usage = self.system_root.get('MemoryUsage')
self.model_version = self.system_root.get('Version')
self.save_model = os.path.join(self.model_root_path, self.model_tag)
self.save_checkpoint = os.path.join(self.model_root_path, self.checkpoint_tag)
'FIELD PARAM - IMAGE'
self.field_root = self.conf['FieldParam']
self.category_param = self.field_root.get('Category')
if isinstance(self.category_param, list):
self.category_param_text = json.dumps(self.category_param, ensure_ascii=False)
elif isinstance(self.category_param, str):
self.category_param_text = self.category_param
self.image_channel = self.field_root.get('ImageChannel')
self.image_width = self.field_root.get('ImageWidth')
self.image_height = self.field_root.get('ImageHeight')
self.resize = self.field_root.get('Resize')
self.max_label_num = self.field_root.get('MaxLabelNum')
self.auto_padding = self.field_root.get('AutoPadding')
self.output_split = self.field_root.get('OutputSplit')
'NEURAL NETWORK'
self.neu_network_root = self.conf['NeuralNet']
self.neu_cnn_param = self.neu_network_root.get('CNNNetwork')
self.neu_recurrent_param = self.neu_network_root.get('RecurrentNetwork')
self.neu_recurrent_param = (self.neu_recurrent_param if self.neu_recurrent_param else 'NoRecurrent')
self.units_num = self.neu_network_root.get('UnitsNum')
self.neu_optimizer_param = self.neu_network_root.get('Optimizer')
self.neu_optimizer_param = (self.neu_optimizer_param if self.neu_optimizer_param else 'RAdam')
self.output_layer = self.neu_network_root.get('OutputLayer')
self.loss_func_param = self.output_layer.get('LossFunction')
self.decoder = self.output_layer.get('Decoder')
'LABEL'
self.label_root = self.conf.get('Label')
self.label_from_param = self.label_root.get('LabelFrom')
self.extract_regex = self.label_root.get('ExtractRegex')
self.extract_regex = (self.extract_regex if self.extract_regex else '.*?(?=_)')
self.label_split = self.label_root.get('LabelSplit')
'PATH'
self.trains_root = self.conf['Trains']
self.dataset_path_root = self.trains_root.get('DatasetPath')
self.trains_path[DatasetType.TFRecords]: list = self.dataset_path_root.get('Training')
self.validation_path[DatasetType.TFRecords]: list = self.dataset_path_root.get('Validation')
self.source_path_root = self.trains_root.get('SourcePath')
self.trains_path[DatasetType.Directory]: list = self.source_path_root.get('Training')
self.validation_path[DatasetType.Directory]: list = self.source_path_root.get('Validation')
self.validation_set_num: int = self.trains_root.get('ValidationSetNum')
'TRAINS'
self.trains_save_steps = self.trains_root.get('SavedSteps')
self.trains_validation_steps = self.trains_root.get('ValidationSteps')
self.trains_end_acc = self.trains_root.get('EndAcc')
self.trains_end_cost = self.trains_root.get('EndCost')
self.trains_end_cost = (self.trains_end_cost if self.trains_end_cost else 1)
self.trains_end_epochs = self.trains_root.get('EndEpochs')
self.trains_end_epochs = (self.trains_end_epochs if self.trains_end_epochs else 2)
self.trains_learning_rate: float = float(self.trains_root.get('LearningRate'))
self.batch_size = self.trains_root.get('BatchSize')
self.batch_size = (self.batch_size if self.batch_size else 64)
self.validation_batch_size = self.trains_root.get('ValidationBatchSize')
self.validation_batch_size = (self.validation_batch_size if self.validation_batch_size else 300)
'DATA AUGMENTATION'
self.data_augmentation_root = self.conf['DataAugmentation']
self.da_binaryzation = self.data_augmentation_root.get('Binaryzation')
self.da_median_blur = self.data_augmentation_root.get('MedianBlur')
self.da_gaussian_blur = self.data_augmentation_root.get('GaussianBlur')
self.da_equalize_hist = self.data_augmentation_root.get('EqualizeHist')
self.da_laplace = self.data_augmentation_root.get('Laplace')
self.da_rotate = self.data_augmentation_root.get('Rotate')
self.da_warp_perspective = self.data_augmentation_root.get('WarpPerspective')
self.da_sp_noise = self.data_augmentation_root.get('PepperNoise')
self.da_brightness = self.data_augmentation_root.get('Brightness')
self.da_saturation = self.data_augmentation_root.get('Saturation')
self.da_hue = self.data_augmentation_root.get('Hue')
self.da_gamma = self.data_augmentation_root.get('Gamma')
self.da_channel_swap = self.data_augmentation_root.get('ChannelSwap')
self.da_random_blank = self.data_augmentation_root.get('RandomBlank')
self.da_random_transition = self.data_augmentation_root.get('RandomTransition')
self.da_random_captcha = self.data_augmentation_root.get('RandomCaptcha')
if (not self.da_random_captcha):
self.da_random_captcha = {'Enable': False, 'FontPath': }
'PRETREATMENT'
self.pretreatment_root = self.conf['Pretreatment']
self.pre_binaryzation = self.pretreatment_root.get('Binaryzation')
self.pre_replace_transparent = self.pretreatment_root.get('ReplaceTransparent')
self.pre_horizontal_stitching = self.pretreatment_root.get('HorizontalStitching')
self.pre_concat_frames = self.pretreatment_root.get('ConcatFrames')
self.pre_blend_frames = self.pretreatment_root.get('BlendFrames')
self.pre_exec_map = self.pretreatment_root.get('ExecuteMap')
self.pre_exec_map = (self.pre_exec_map if self.pre_exec_map else {})
'COMPILE_'
self.compile_model_path = os.path.join(self.output_path, 'graph')
self.compile_model_path = self.compile_model_path.replace('\\', '/')
self.check_field()<|docstring|>MODEL<|endoftext|> |
0dfe2eb01bfd37947fa900aec4827f80d1fb31b9d71ec5b70761b5e76aa0fc17 | def init_loader(args):
'Initialize test DataLoader'
if (args.dataset_name is not None):
datasets = load_dataset(args.dataset_name, args.dataset_config_name)
else:
data_files = {'test': args.data_path}
extension = args.data_path.split('.')[(- 1)]
datasets = load_dataset(extension, data_files=data_files)
test_dataset = datasets['test']
if (args.max_test_samples is not None):
test_dataset = test_dataset.select(range(args.max_test_samples))
params = {'batch_size': args.test_batch_size, 'shuffle': False}
test_loader = torch.utils.data.DataLoader(test_dataset, **params)
return test_loader | Initialize test DataLoader | src/loaders.py | init_loader | Shreyas-21/DANCER-summ | 7 | python | def init_loader(args):
if (args.dataset_name is not None):
datasets = load_dataset(args.dataset_name, args.dataset_config_name)
else:
data_files = {'test': args.data_path}
extension = args.data_path.split('.')[(- 1)]
datasets = load_dataset(extension, data_files=data_files)
test_dataset = datasets['test']
if (args.max_test_samples is not None):
test_dataset = test_dataset.select(range(args.max_test_samples))
params = {'batch_size': args.test_batch_size, 'shuffle': False}
test_loader = torch.utils.data.DataLoader(test_dataset, **params)
return test_loader | def init_loader(args):
if (args.dataset_name is not None):
datasets = load_dataset(args.dataset_name, args.dataset_config_name)
else:
data_files = {'test': args.data_path}
extension = args.data_path.split('.')[(- 1)]
datasets = load_dataset(extension, data_files=data_files)
test_dataset = datasets['test']
if (args.max_test_samples is not None):
test_dataset = test_dataset.select(range(args.max_test_samples))
params = {'batch_size': args.test_batch_size, 'shuffle': False}
test_loader = torch.utils.data.DataLoader(test_dataset, **params)
return test_loader<|docstring|>Initialize test DataLoader<|endoftext|> |
f06d1f68ba12ba0d86e5706514e7045670c5cb6ec29613f42b6eb1a253b4e8d4 | def load_model(args, device):
'Load model and tokenizer'
print(f'Loading tokenizer {(args.tokenizer_name if args.tokenizer_name else args.model_path)}')
tokenizer = AutoTokenizer.from_pretrained((args.tokenizer_name if args.tokenizer_name else args.model_path))
print(f'Loading model from {args.model_path}')
model = AutoModelForSeq2SeqLM.from_pretrained(args.model_path).to(device)
return (model, tokenizer) | Load model and tokenizer | src/loaders.py | load_model | Shreyas-21/DANCER-summ | 7 | python | def load_model(args, device):
print(f'Loading tokenizer {(args.tokenizer_name if args.tokenizer_name else args.model_path)}')
tokenizer = AutoTokenizer.from_pretrained((args.tokenizer_name if args.tokenizer_name else args.model_path))
print(f'Loading model from {args.model_path}')
model = AutoModelForSeq2SeqLM.from_pretrained(args.model_path).to(device)
return (model, tokenizer) | def load_model(args, device):
print(f'Loading tokenizer {(args.tokenizer_name if args.tokenizer_name else args.model_path)}')
tokenizer = AutoTokenizer.from_pretrained((args.tokenizer_name if args.tokenizer_name else args.model_path))
print(f'Loading model from {args.model_path}')
model = AutoModelForSeq2SeqLM.from_pretrained(args.model_path).to(device)
return (model, tokenizer)<|docstring|>Load model and tokenizer<|endoftext|> |
e734b190c6b313c30cf41bd2fdc7b2c746815cd7d296c56e947880cc7a80a5ba | def __init__(self, context, scenario):
'\n Create and enter a temp directory which will be used to stored xpedite application information\n If a target application is being run remotely, TargetLauncher will create the temp directory on the remote host\n '
self.targetApp = scenario.makeTargetApp(context)
self.xpediteApp = scenario.makeXpediteApp(context.workspace) | Create and enter a temp directory which will be used to stored xpedite application information
If a target application is being run remotely, TargetLauncher will create the temp directory on the remote host | test/pytest/test_xpedite/test_profiler/app.py | __init__ | mdlugajczyk/Xpedite | 99 | python | def __init__(self, context, scenario):
'\n Create and enter a temp directory which will be used to stored xpedite application information\n If a target application is being run remotely, TargetLauncher will create the temp directory on the remote host\n '
self.targetApp = scenario.makeTargetApp(context)
self.xpediteApp = scenario.makeXpediteApp(context.workspace) | def __init__(self, context, scenario):
'\n Create and enter a temp directory which will be used to stored xpedite application information\n If a target application is being run remotely, TargetLauncher will create the temp directory on the remote host\n '
self.targetApp = scenario.makeTargetApp(context)
self.xpediteApp = scenario.makeXpediteApp(context.workspace)<|docstring|>Create and enter a temp directory which will be used to stored xpedite application information
If a target application is being run remotely, TargetLauncher will create the temp directory on the remote host<|endoftext|> |
4eed2cafe5415085ddbb6b349a4040e4890d8cc92e3128c82dac93ace78f9f2a | def __init__(self, to, subject, sender, aws_access_key, aws_secret_key, aws_region='us-east-1'):
'\n :param to:\n :param subject:\n :return:\n '
self.connection = None
self.to = to
self.subject = subject
self._html = None
self._text = None
self._format = 'html'
self.def_sender = sender
is_test = os.environ.get(UNIT_TEST_KEY, False)
if (not is_test):
self.connection = boto3.client('ses', aws_access_key_id=aws_access_key, aws_secret_access_key=aws_secret_key, region_name=aws_region) | :param to:
:param subject:
:return: | datacoco_cloud/ses_interaction.py | __init__ | Phil-Ocone/datacoco-cloud | 1 | python | def __init__(self, to, subject, sender, aws_access_key, aws_secret_key, aws_region='us-east-1'):
'\n :param to:\n :param subject:\n :return:\n '
self.connection = None
self.to = to
self.subject = subject
self._html = None
self._text = None
self._format = 'html'
self.def_sender = sender
is_test = os.environ.get(UNIT_TEST_KEY, False)
if (not is_test):
self.connection = boto3.client('ses', aws_access_key_id=aws_access_key, aws_secret_access_key=aws_secret_key, region_name=aws_region) | def __init__(self, to, subject, sender, aws_access_key, aws_secret_key, aws_region='us-east-1'):
'\n :param to:\n :param subject:\n :return:\n '
self.connection = None
self.to = to
self.subject = subject
self._html = None
self._text = None
self._format = 'html'
self.def_sender = sender
is_test = os.environ.get(UNIT_TEST_KEY, False)
if (not is_test):
self.connection = boto3.client('ses', aws_access_key_id=aws_access_key, aws_secret_access_key=aws_secret_key, region_name=aws_region)<|docstring|>:param to:
:param subject:
:return:<|endoftext|> |
9feb10e239b447f4ac2be114de26e4baea0a328cb92846118b14f4f34698505f | def html(self, html):
"\n set's email html message property\n :param html:\n :return:\n "
self._html = html | set's email html message property
:param html:
:return: | datacoco_cloud/ses_interaction.py | html | Phil-Ocone/datacoco-cloud | 1 | python | def html(self, html):
"\n set's email html message property\n :param html:\n :return:\n "
self._html = html | def html(self, html):
"\n set's email html message property\n :param html:\n :return:\n "
self._html = html<|docstring|>set's email html message property
:param html:
:return:<|endoftext|> |
670e35429a41e744d4c56e508865d063e3444969d4d358782a1d999406c03416 | def text(self, text):
"\n set's email text message property\n :param text:\n :return:\n "
self._text = text | set's email text message property
:param text:
:return: | datacoco_cloud/ses_interaction.py | text | Phil-Ocone/datacoco-cloud | 1 | python | def text(self, text):
"\n set's email text message property\n :param text:\n :return:\n "
self._text = text | def text(self, text):
"\n set's email text message property\n :param text:\n :return:\n "
self._text = text<|docstring|>set's email text message property
:param text:
:return:<|endoftext|> |
ef43abffa2c2272459b2103d2cd349888af5ec1c9c111562ec0ee50de6fcd326 | def send(self, from_addr=None):
'\n sends email\n :param from_addr:\n :return:\n '
body = self._html
if isinstance(self.to, basestring):
self.to = [self.to]
if (not from_addr):
from_addr = self.def_sender
if ((not self._html) and (not self._text)):
raise Exception('You must provide a text or html body.')
if (not self._html):
self._format = 'text'
body = self._text
return self.connection.send_email(Source=from_addr, Destination={'ToAddresses': self.to}, Message={'Subject': {'Data': self.subject}, 'Body': {'Text': {'Data': body}, 'Html': {'Data': body}}}) | sends email
:param from_addr:
:return: | datacoco_cloud/ses_interaction.py | send | Phil-Ocone/datacoco-cloud | 1 | python | def send(self, from_addr=None):
'\n sends email\n :param from_addr:\n :return:\n '
body = self._html
if isinstance(self.to, basestring):
self.to = [self.to]
if (not from_addr):
from_addr = self.def_sender
if ((not self._html) and (not self._text)):
raise Exception('You must provide a text or html body.')
if (not self._html):
self._format = 'text'
body = self._text
return self.connection.send_email(Source=from_addr, Destination={'ToAddresses': self.to}, Message={'Subject': {'Data': self.subject}, 'Body': {'Text': {'Data': body}, 'Html': {'Data': body}}}) | def send(self, from_addr=None):
'\n sends email\n :param from_addr:\n :return:\n '
body = self._html
if isinstance(self.to, basestring):
self.to = [self.to]
if (not from_addr):
from_addr = self.def_sender
if ((not self._html) and (not self._text)):
raise Exception('You must provide a text or html body.')
if (not self._html):
self._format = 'text'
body = self._text
return self.connection.send_email(Source=from_addr, Destination={'ToAddresses': self.to}, Message={'Subject': {'Data': self.subject}, 'Body': {'Text': {'Data': body}, 'Html': {'Data': body}}})<|docstring|>sends email
:param from_addr:
:return:<|endoftext|> |
de7931b4e1b4280b45155f897da01d4cb815badc9ae19d4a6d893a45da34dd58 | def pool_output_length(input_length, pool_size, stride, pad, ignore_border):
'\n Compute the output length of a pooling operator\n along a single dimension.\n\n Parameters\n ----------\n input_length : integer\n The length of the input in the pooling dimension\n pool_size : integer\n The length of the pooling region\n stride : integer\n The stride between successive pooling regions\n pad : integer\n The number of elements to be added to the input on each side.\n ignore_border: bool\n If ``True``, partial pooling regions will be ignored.\n Must be ``True`` if ``pad != 0``.\n\n Returns\n -------\n output_length\n * None if either input is None.\n * Computed length of the pooling operator otherwise.\n\n Notes\n -----\n When ``ignore_border == True``, this is given by the number of full\n pooling regions that fit in the padded input length,\n divided by the stride (rounding down).\n\n If ``ignore_border == False``, a single partial pooling region is\n appended if at least one input element would be left uncovered otherwise.\n '
if ((input_length is None) or (pool_size is None)):
return None
if ignore_border:
output_length = (((input_length + (2 * pad)) - pool_size) + 1)
output_length = (((output_length + stride) - 1) // stride)
else:
assert (pad == 0)
if (stride >= pool_size):
output_length = (((input_length + stride) - 1) // stride)
else:
output_length = (max(0, ((((input_length - pool_size) + stride) - 1) // stride)) + 1)
return output_length | Compute the output length of a pooling operator
along a single dimension.
Parameters
----------
input_length : integer
The length of the input in the pooling dimension
pool_size : integer
The length of the pooling region
stride : integer
The stride between successive pooling regions
pad : integer
The number of elements to be added to the input on each side.
ignore_border: bool
If ``True``, partial pooling regions will be ignored.
Must be ``True`` if ``pad != 0``.
Returns
-------
output_length
* None if either input is None.
* Computed length of the pooling operator otherwise.
Notes
-----
When ``ignore_border == True``, this is given by the number of full
pooling regions that fit in the padded input length,
divided by the stride (rounding down).
If ``ignore_border == False``, a single partial pooling region is
appended if at least one input element would be left uncovered otherwise. | lasagne/layers/pool.py | pool_output_length | BenjaminBossan/Lasagne | 0 | python | def pool_output_length(input_length, pool_size, stride, pad, ignore_border):
'\n Compute the output length of a pooling operator\n along a single dimension.\n\n Parameters\n ----------\n input_length : integer\n The length of the input in the pooling dimension\n pool_size : integer\n The length of the pooling region\n stride : integer\n The stride between successive pooling regions\n pad : integer\n The number of elements to be added to the input on each side.\n ignore_border: bool\n If ``True``, partial pooling regions will be ignored.\n Must be ``True`` if ``pad != 0``.\n\n Returns\n -------\n output_length\n * None if either input is None.\n * Computed length of the pooling operator otherwise.\n\n Notes\n -----\n When ``ignore_border == True``, this is given by the number of full\n pooling regions that fit in the padded input length,\n divided by the stride (rounding down).\n\n If ``ignore_border == False``, a single partial pooling region is\n appended if at least one input element would be left uncovered otherwise.\n '
if ((input_length is None) or (pool_size is None)):
return None
if ignore_border:
output_length = (((input_length + (2 * pad)) - pool_size) + 1)
output_length = (((output_length + stride) - 1) // stride)
else:
assert (pad == 0)
if (stride >= pool_size):
output_length = (((input_length + stride) - 1) // stride)
else:
output_length = (max(0, ((((input_length - pool_size) + stride) - 1) // stride)) + 1)
return output_length | def pool_output_length(input_length, pool_size, stride, pad, ignore_border):
'\n Compute the output length of a pooling operator\n along a single dimension.\n\n Parameters\n ----------\n input_length : integer\n The length of the input in the pooling dimension\n pool_size : integer\n The length of the pooling region\n stride : integer\n The stride between successive pooling regions\n pad : integer\n The number of elements to be added to the input on each side.\n ignore_border: bool\n If ``True``, partial pooling regions will be ignored.\n Must be ``True`` if ``pad != 0``.\n\n Returns\n -------\n output_length\n * None if either input is None.\n * Computed length of the pooling operator otherwise.\n\n Notes\n -----\n When ``ignore_border == True``, this is given by the number of full\n pooling regions that fit in the padded input length,\n divided by the stride (rounding down).\n\n If ``ignore_border == False``, a single partial pooling region is\n appended if at least one input element would be left uncovered otherwise.\n '
if ((input_length is None) or (pool_size is None)):
return None
if ignore_border:
output_length = (((input_length + (2 * pad)) - pool_size) + 1)
output_length = (((output_length + stride) - 1) // stride)
else:
assert (pad == 0)
if (stride >= pool_size):
output_length = (((input_length + stride) - 1) // stride)
else:
output_length = (max(0, ((((input_length - pool_size) + stride) - 1) // stride)) + 1)
return output_length<|docstring|>Compute the output length of a pooling operator
along a single dimension.
Parameters
----------
input_length : integer
The length of the input in the pooling dimension
pool_size : integer
The length of the pooling region
stride : integer
The stride between successive pooling regions
pad : integer
The number of elements to be added to the input on each side.
ignore_border: bool
If ``True``, partial pooling regions will be ignored.
Must be ``True`` if ``pad != 0``.
Returns
-------
output_length
* None if either input is None.
* Computed length of the pooling operator otherwise.
Notes
-----
When ``ignore_border == True``, this is given by the number of full
pooling regions that fit in the padded input length,
divided by the stride (rounding down).
If ``ignore_border == False``, a single partial pooling region is
appended if at least one input element would be left uncovered otherwise.<|endoftext|> |
a5df83ad447423a16cd91cf2cc2bb3a32a284fbc058de77f6f8f460ec435465b | def pool_2d(input, **kwargs):
'\n Wrapper function that calls :func:`theano.tensor.signal.pool_2d` either\n with the new or old keyword argument names expected by Theano.\n '
try:
return T.signal.pool.pool_2d(input, **kwargs)
except TypeError:
kwargs['ds'] = kwargs.pop('ws')
kwargs['st'] = kwargs.pop('stride')
kwargs['padding'] = kwargs.pop('pad')
return T.signal.pool.pool_2d(input, **kwargs) | Wrapper function that calls :func:`theano.tensor.signal.pool_2d` either
with the new or old keyword argument names expected by Theano. | lasagne/layers/pool.py | pool_2d | BenjaminBossan/Lasagne | 0 | python | def pool_2d(input, **kwargs):
'\n Wrapper function that calls :func:`theano.tensor.signal.pool_2d` either\n with the new or old keyword argument names expected by Theano.\n '
try:
return T.signal.pool.pool_2d(input, **kwargs)
except TypeError:
kwargs['ds'] = kwargs.pop('ws')
kwargs['st'] = kwargs.pop('stride')
kwargs['padding'] = kwargs.pop('pad')
return T.signal.pool.pool_2d(input, **kwargs) | def pool_2d(input, **kwargs):
'\n Wrapper function that calls :func:`theano.tensor.signal.pool_2d` either\n with the new or old keyword argument names expected by Theano.\n '
try:
return T.signal.pool.pool_2d(input, **kwargs)
except TypeError:
kwargs['ds'] = kwargs.pop('ws')
kwargs['st'] = kwargs.pop('stride')
kwargs['padding'] = kwargs.pop('pad')
return T.signal.pool.pool_2d(input, **kwargs)<|docstring|>Wrapper function that calls :func:`theano.tensor.signal.pool_2d` either
with the new or old keyword argument names expected by Theano.<|endoftext|> |
42e9f2b53049f8378c70f7e4d1763e19d4986a779157f8d7e0511934da33cac2 | @progress.setter
def progress(self, progress):
'Should be overridden by different Task types.'
self._progress = progress | Should be overridden by different Task types. | crispy/tasks.py | progress | StephenHermes/crispy | 0 | python | @progress.setter
def progress(self, progress):
self._progress = progress | @progress.setter
def progress(self, progress):
self._progress = progress<|docstring|>Should be overridden by different Task types.<|endoftext|> |
0e7b100326078844ee1b07c18d05cb0d5bf062ed8f2b745b4005f9867e76e6df | def test_index(client):
'Check the index page loads.'
response = client.get('/')
assert (response.status_code == 200) | Check the index page loads. | test/test_app.py | test_index | j-penson/image-distortion | 0 | python | def test_index(client):
response = client.get('/')
assert (response.status_code == 200) | def test_index(client):
response = client.get('/')
assert (response.status_code == 200)<|docstring|>Check the index page loads.<|endoftext|> |
ccb176e3535e7429040a53a0fd4c7dd04937e25921183175501c08fcce3893a9 | def test_endpoint(client):
'Check the index page loads.'
response = client.get('/v1/image')
assert (response.status_code == 200) | Check the index page loads. | test/test_app.py | test_endpoint | j-penson/image-distortion | 0 | python | def test_endpoint(client):
response = client.get('/v1/image')
assert (response.status_code == 200) | def test_endpoint(client):
response = client.get('/v1/image')
assert (response.status_code == 200)<|docstring|>Check the index page loads.<|endoftext|> |
ef201c4579fe609d59eb4378906fc6f8ce8c2c622b0cae2848d704801cd05ece | @manager.option('suite', default='all', nargs='?', choices=suites.keys(), help='Specify test suite to run (default all)')
@manager.option('--spec', action='store_true', help='Output in spec style')
def test(spec, suite):
'Runs tests'
args = []
if spec:
args.extend(['--spec'])
if (not suite):
suite = 'all'
args.extend(suites[suite])
return pytest.main(args) | Runs tests | manage.py | test | crossgovernmentservices/csd_notes | 0 | python | @manager.option('suite', default='all', nargs='?', choices=suites.keys(), help='Specify test suite to run (default all)')
@manager.option('--spec', action='store_true', help='Output in spec style')
def test(spec, suite):
args = []
if spec:
args.extend(['--spec'])
if (not suite):
suite = 'all'
args.extend(suites[suite])
return pytest.main(args) | @manager.option('suite', default='all', nargs='?', choices=suites.keys(), help='Specify test suite to run (default all)')
@manager.option('--spec', action='store_true', help='Output in spec style')
def test(spec, suite):
args = []
if spec:
args.extend(['--spec'])
if (not suite):
suite = 'all'
args.extend(suites[suite])
return pytest.main(args)<|docstring|>Runs tests<|endoftext|> |
e812f46d995e29059073e7e24f0211bdb3ddd403b1a96b75fd7002cb2787dbb6 | def get_system_info():
'\n Get information about the system to be inserted into the User-Agent header.\n '
return 'lang={0}; arch={1}; os={2}; python.version={3}'.format('python', platform.machine(), platform.system(), platform.python_version()) | Get information about the system to be inserted into the User-Agent header. | eventstreams_sdk/common.py | get_system_info | IBM/eventstreams-python-sdk | 2 | python | def get_system_info():
'\n \n '
return 'lang={0}; arch={1}; os={2}; python.version={3}'.format('python', platform.machine(), platform.system(), platform.python_version()) | def get_system_info():
'\n \n '
return 'lang={0}; arch={1}; os={2}; python.version={3}'.format('python', platform.machine(), platform.system(), platform.python_version())<|docstring|>Get information about the system to be inserted into the User-Agent header.<|endoftext|> |
f842c6e85de8afbf9f5613362baa495f8ac084fcc9202a1fbe7e459949db72b7 | def get_user_agent():
'\n Get the value to be sent in the User-Agent header.\n '
return USER_AGENT | Get the value to be sent in the User-Agent header. | eventstreams_sdk/common.py | get_user_agent | IBM/eventstreams-python-sdk | 2 | python | def get_user_agent():
'\n \n '
return USER_AGENT | def get_user_agent():
'\n \n '
return USER_AGENT<|docstring|>Get the value to be sent in the User-Agent header.<|endoftext|> |
35f0e7ba46352d79dce1561323a3e80f67a2078519b2a22c3a8e678d751fd30e | def get_sdk_headers(service_name, service_version, operation_id):
'\n Get the request headers to be sent in requests by the SDK.\n \n If you plan to gather metrics for your SDK, the User-Agent header value must\n be a string similar to the following:\n eventstreams-python-sdk/0.0.1 (lang=python; arch=x86_64; os=Linux; python.version=3.7.4)\n\n In the example above, the analytics tool will parse the user-agent header and\n use the following properties:\n "eventstreams-python-sdk" - the name of your sdk\n "0.0.1"- the version of your sdk\n "lang=python" - the language of the current sdk\n "arch=x86_64; os=Linux; python.version=3.7.4" - system information\n\n Note: It is very important that the sdk name ends with the string `-sdk`,\n as the analytics data collector uses this to gather usage data.\n '
headers = {}
headers[HEADER_NAME_USER_AGENT] = get_user_agent()
return headers | Get the request headers to be sent in requests by the SDK.
If you plan to gather metrics for your SDK, the User-Agent header value must
be a string similar to the following:
eventstreams-python-sdk/0.0.1 (lang=python; arch=x86_64; os=Linux; python.version=3.7.4)
In the example above, the analytics tool will parse the user-agent header and
use the following properties:
"eventstreams-python-sdk" - the name of your sdk
"0.0.1"- the version of your sdk
"lang=python" - the language of the current sdk
"arch=x86_64; os=Linux; python.version=3.7.4" - system information
Note: It is very important that the sdk name ends with the string `-sdk`,
as the analytics data collector uses this to gather usage data. | eventstreams_sdk/common.py | get_sdk_headers | IBM/eventstreams-python-sdk | 2 | python | def get_sdk_headers(service_name, service_version, operation_id):
'\n Get the request headers to be sent in requests by the SDK.\n \n If you plan to gather metrics for your SDK, the User-Agent header value must\n be a string similar to the following:\n eventstreams-python-sdk/0.0.1 (lang=python; arch=x86_64; os=Linux; python.version=3.7.4)\n\n In the example above, the analytics tool will parse the user-agent header and\n use the following properties:\n "eventstreams-python-sdk" - the name of your sdk\n "0.0.1"- the version of your sdk\n "lang=python" - the language of the current sdk\n "arch=x86_64; os=Linux; python.version=3.7.4" - system information\n\n Note: It is very important that the sdk name ends with the string `-sdk`,\n as the analytics data collector uses this to gather usage data.\n '
headers = {}
headers[HEADER_NAME_USER_AGENT] = get_user_agent()
return headers | def get_sdk_headers(service_name, service_version, operation_id):
'\n Get the request headers to be sent in requests by the SDK.\n \n If you plan to gather metrics for your SDK, the User-Agent header value must\n be a string similar to the following:\n eventstreams-python-sdk/0.0.1 (lang=python; arch=x86_64; os=Linux; python.version=3.7.4)\n\n In the example above, the analytics tool will parse the user-agent header and\n use the following properties:\n "eventstreams-python-sdk" - the name of your sdk\n "0.0.1"- the version of your sdk\n "lang=python" - the language of the current sdk\n "arch=x86_64; os=Linux; python.version=3.7.4" - system information\n\n Note: It is very important that the sdk name ends with the string `-sdk`,\n as the analytics data collector uses this to gather usage data.\n '
headers = {}
headers[HEADER_NAME_USER_AGENT] = get_user_agent()
return headers<|docstring|>Get the request headers to be sent in requests by the SDK.
If you plan to gather metrics for your SDK, the User-Agent header value must
be a string similar to the following:
eventstreams-python-sdk/0.0.1 (lang=python; arch=x86_64; os=Linux; python.version=3.7.4)
In the example above, the analytics tool will parse the user-agent header and
use the following properties:
"eventstreams-python-sdk" - the name of your sdk
"0.0.1"- the version of your sdk
"lang=python" - the language of the current sdk
"arch=x86_64; os=Linux; python.version=3.7.4" - system information
Note: It is very important that the sdk name ends with the string `-sdk`,
as the analytics data collector uses this to gather usage data.<|endoftext|> |
486f4a0e64deaaca514b569fb6cdb4701dc8784f56a046d0e29ce315bfab14bd | @property
def base_api_url(self) -> str:
'The provider base REST API URL'
return self._config.api_base_url | The provider base REST API URL | jupyterlab_pullrequests/managers/manager.py | base_api_url | fcollonval/pull-requests | 32 | python | @property
def base_api_url(self) -> str:
return self._config.api_base_url | @property
def base_api_url(self) -> str:
return self._config.api_base_url<|docstring|>The provider base REST API URL<|endoftext|> |
5d4b7b93f46e3a20b0306a9dd7022ebfef5db4fb4c38774b7c1fd4f0e45156a7 | @property
def per_page_argument(self) -> Optional[Tuple[(str, int)]]:
'Returns query argument to set number of items per page.\n\n Returns\n [str, int]: (query argument name, value)\n None: the provider does not support pagination\n '
return None | Returns query argument to set number of items per page.
Returns
[str, int]: (query argument name, value)
None: the provider does not support pagination | jupyterlab_pullrequests/managers/manager.py | per_page_argument | fcollonval/pull-requests | 32 | python | @property
def per_page_argument(self) -> Optional[Tuple[(str, int)]]:
'Returns query argument to set number of items per page.\n\n Returns\n [str, int]: (query argument name, value)\n None: the provider does not support pagination\n '
return None | @property
def per_page_argument(self) -> Optional[Tuple[(str, int)]]:
'Returns query argument to set number of items per page.\n\n Returns\n [str, int]: (query argument name, value)\n None: the provider does not support pagination\n '
return None<|docstring|>Returns query argument to set number of items per page.
Returns
[str, int]: (query argument name, value)
None: the provider does not support pagination<|endoftext|> |
f1292826fb9ce348daa666b79df70a95992a762a6b48be559e7ff57aecef998e | @abc.abstractmethod
async def get_current_user(self) -> str:
'Get the current user ID.'
raise NotImplementedError() | Get the current user ID. | jupyterlab_pullrequests/managers/manager.py | get_current_user | fcollonval/pull-requests | 32 | python | @abc.abstractmethod
async def get_current_user(self) -> str:
raise NotImplementedError() | @abc.abstractmethod
async def get_current_user(self) -> str:
raise NotImplementedError()<|docstring|>Get the current user ID.<|endoftext|> |
81f8cc9cd628a1d16f5d5641bbc3f0eb0d8cd8e52563f5168ac9765fe1e419db | @abc.abstractmethod
async def get_file_diff(self, pr_id: str, filename: str) -> dict:
'Get the file diff for the pull request.\n\n Args:\n pr_id: pull request ID endpoint\n filename: The file name\n Returns:\n The file diff description\n '
raise NotImplementedError() | Get the file diff for the pull request.
Args:
pr_id: pull request ID endpoint
filename: The file name
Returns:
The file diff description | jupyterlab_pullrequests/managers/manager.py | get_file_diff | fcollonval/pull-requests | 32 | python | @abc.abstractmethod
async def get_file_diff(self, pr_id: str, filename: str) -> dict:
'Get the file diff for the pull request.\n\n Args:\n pr_id: pull request ID endpoint\n filename: The file name\n Returns:\n The file diff description\n '
raise NotImplementedError() | @abc.abstractmethod
async def get_file_diff(self, pr_id: str, filename: str) -> dict:
'Get the file diff for the pull request.\n\n Args:\n pr_id: pull request ID endpoint\n filename: The file name\n Returns:\n The file diff description\n '
raise NotImplementedError()<|docstring|>Get the file diff for the pull request.
Args:
pr_id: pull request ID endpoint
filename: The file name
Returns:
The file diff description<|endoftext|> |
87a8dd6bf03582b94cba7b5e3b5295ad0dc997361a9e89b6fa919f759320b5c2 | @abc.abstractmethod
async def get_threads(self, pr_id: str, filename: Optional[str]=None) -> List[dict]:
'Get the discussions on a file or the pull request.\n\n Args:\n pr_id: pull request ID endpoint\n filename: The file name; None to get the discussion on the pull requests\n Returns:\n The discussions\n '
raise NotImplementedError() | Get the discussions on a file or the pull request.
Args:
pr_id: pull request ID endpoint
filename: The file name; None to get the discussion on the pull requests
Returns:
The discussions | jupyterlab_pullrequests/managers/manager.py | get_threads | fcollonval/pull-requests | 32 | python | @abc.abstractmethod
async def get_threads(self, pr_id: str, filename: Optional[str]=None) -> List[dict]:
'Get the discussions on a file or the pull request.\n\n Args:\n pr_id: pull request ID endpoint\n filename: The file name; None to get the discussion on the pull requests\n Returns:\n The discussions\n '
raise NotImplementedError() | @abc.abstractmethod
async def get_threads(self, pr_id: str, filename: Optional[str]=None) -> List[dict]:
'Get the discussions on a file or the pull request.\n\n Args:\n pr_id: pull request ID endpoint\n filename: The file name; None to get the discussion on the pull requests\n Returns:\n The discussions\n '
raise NotImplementedError()<|docstring|>Get the discussions on a file or the pull request.
Args:
pr_id: pull request ID endpoint
filename: The file name; None to get the discussion on the pull requests
Returns:
The discussions<|endoftext|> |
5e9a1b1c94335f57a67432313080d799e9e57c20f3c7153b21c3296d9f3de08e | @abc.abstractmethod
async def list_files(self, pr_id: str) -> list:
'Get the list of modified files for a pull request.\n\n Args:\n pr_id: pull request ID endpoint\n Returns:\n The list of modified files\n '
raise NotImplementedError() | Get the list of modified files for a pull request.
Args:
pr_id: pull request ID endpoint
Returns:
The list of modified files | jupyterlab_pullrequests/managers/manager.py | list_files | fcollonval/pull-requests | 32 | python | @abc.abstractmethod
async def list_files(self, pr_id: str) -> list:
'Get the list of modified files for a pull request.\n\n Args:\n pr_id: pull request ID endpoint\n Returns:\n The list of modified files\n '
raise NotImplementedError() | @abc.abstractmethod
async def list_files(self, pr_id: str) -> list:
'Get the list of modified files for a pull request.\n\n Args:\n pr_id: pull request ID endpoint\n Returns:\n The list of modified files\n '
raise NotImplementedError()<|docstring|>Get the list of modified files for a pull request.
Args:
pr_id: pull request ID endpoint
Returns:
The list of modified files<|endoftext|> |
2c714dfc339b4b2c472009ce71041e4ec5d7ab40d00f0ba15e61d71c417d64a6 | @abc.abstractmethod
async def list_prs(self, username: str, pr_filter: str) -> list:
'Returns the list of pull requests for the given user.\n\n Args:\n username: User ID for the versioning service\n pr_filter: Filter to add to the pull requests requests\n Returns:\n The list of pull requests\n '
raise NotImplementedError() | Returns the list of pull requests for the given user.
Args:
username: User ID for the versioning service
pr_filter: Filter to add to the pull requests requests
Returns:
The list of pull requests | jupyterlab_pullrequests/managers/manager.py | list_prs | fcollonval/pull-requests | 32 | python | @abc.abstractmethod
async def list_prs(self, username: str, pr_filter: str) -> list:
'Returns the list of pull requests for the given user.\n\n Args:\n username: User ID for the versioning service\n pr_filter: Filter to add to the pull requests requests\n Returns:\n The list of pull requests\n '
raise NotImplementedError() | @abc.abstractmethod
async def list_prs(self, username: str, pr_filter: str) -> list:
'Returns the list of pull requests for the given user.\n\n Args:\n username: User ID for the versioning service\n pr_filter: Filter to add to the pull requests requests\n Returns:\n The list of pull requests\n '
raise NotImplementedError()<|docstring|>Returns the list of pull requests for the given user.
Args:
username: User ID for the versioning service
pr_filter: Filter to add to the pull requests requests
Returns:
The list of pull requests<|endoftext|> |
5930610c6ea94fd87177154aa0abee12b364832fd6ec6fde5991e371d0949789 | @abc.abstractmethod
async def post_comment(self, pr_id: str, filename: str, body: str) -> Dict[(str, str)]:
'Create a new comment on a file or a the pull request.\n\n Args:\n pr_id: pull request ID endpoint\n filename: The file name; None to comment on the pull request\n body: Comment body\n Returns:\n The created comment\n '
raise NotImplementedError() | Create a new comment on a file or a the pull request.
Args:
pr_id: pull request ID endpoint
filename: The file name; None to comment on the pull request
body: Comment body
Returns:
The created comment | jupyterlab_pullrequests/managers/manager.py | post_comment | fcollonval/pull-requests | 32 | python | @abc.abstractmethod
async def post_comment(self, pr_id: str, filename: str, body: str) -> Dict[(str, str)]:
'Create a new comment on a file or a the pull request.\n\n Args:\n pr_id: pull request ID endpoint\n filename: The file name; None to comment on the pull request\n body: Comment body\n Returns:\n The created comment\n '
raise NotImplementedError() | @abc.abstractmethod
async def post_comment(self, pr_id: str, filename: str, body: str) -> Dict[(str, str)]:
'Create a new comment on a file or a the pull request.\n\n Args:\n pr_id: pull request ID endpoint\n filename: The file name; None to comment on the pull request\n body: Comment body\n Returns:\n The created comment\n '
raise NotImplementedError()<|docstring|>Create a new comment on a file or a the pull request.
Args:
pr_id: pull request ID endpoint
filename: The file name; None to comment on the pull request
body: Comment body
Returns:
The created comment<|endoftext|> |
1363baf79b4e752bea64d31b7147507cbcb4625c55a3ad58caba3d5958676e13 | async def _call_provider(self, url: str, load_json: bool=True, method: str='GET', body: Optional[dict]=None, params: Optional[Dict[(str, str)]]=None, headers: Optional[Dict[(str, str)]]=None, has_pagination: bool=True) -> Union[(dict, str)]:
'Call the third party service\n\n The request is presumed to support pagination by default if\n - The method is GET\n - load_json is True\n - The provider returns not None per_page_argument property\n\n Args:\n url: Endpoint to request\n load_json: Is the response of JSON type\n method: HTTP method\n body: Request body; None if no body\n params: Query arguments as dictionary; None if no arguments\n headers: Request headers as dictionary; None if no headers\n has_pagination: Whether the pagination query arguments should be appended\n Returns:\n List or Dict: Create from JSON response body if load_json is True\n str: Raw response body if load_json is False\n '
if (not self._config.access_token):
raise tornado.web.HTTPError(status_code=http.HTTPStatus.BAD_REQUEST, reason='No access token specified. Please set PRConfig.access_token in your user jupyter_server_config file.')
if (body is not None):
if (headers is None):
headers = {}
headers['Content-Type'] = 'application/json'
body = tornado.escape.json_encode(body)
if ((not url.startswith(self.base_api_url)) and (not re.search('^https?:', url))):
url = url_path_join(self.base_api_url, url)
with_pagination = False
if (load_json and has_pagination and (method.lower() == 'get') and (self.per_page_argument is not None)):
with_pagination = True
params = (params or {})
params.update([self.per_page_argument])
if (params is not None):
url = tornado.httputil.url_concat(url, params)
request = tornado.httpclient.HTTPRequest(url, user_agent=f'JupyterLab Pull Requests v{__version__}', method=method.upper(), body=body, headers=headers)
self.log.debug(f'{method.upper()} {url}')
try:
response = (await self._client.fetch(request))
result = response.body.decode('utf-8')
if load_json:
link = response.headers.get('Link')
next_url = None
if (link is not None):
for e in link.split(','):
args = e.strip().split(';')
data = args[0]
metadata = {k.strip(): v.strip().strip('"') for (k, v) in map((lambda s: s.strip().split('=')), args[1:])}
if (metadata.get('rel', '') == 'next'):
next_url = data[1:(- 1)]
break
new_ = json.loads(result)
if (next_url is not None):
next_ = (await self._call_provider(next_url, load_json=load_json, method=method, body=body, headers=headers, has_pagination=False))
if (not isinstance(new_, list)):
new_ = [new_]
if (not isinstance(next_, list)):
next_ = [next_]
return (new_ + next_)
elif (with_pagination and (not isinstance(new_, list))):
return [new_]
else:
return new_
else:
return result
except tornado.httpclient.HTTPClientError as e:
self.log.debug(f'Failed to fetch {request.method} {request.url}', exc_info=e)
error_body = ((e.response.body or b'{}').decode('utf-8') if (e.response is not None) else '{}')
self.log.debug(error_body)
try:
message = json.loads(error_body).get('message', str(e))
except json.JSONDecodeError:
message = str(e)
raise tornado.web.HTTPError(status_code=e.code, reason=f"Invalid response in '{url}': {message}") from e
except (json.JSONDecodeError, UnicodeDecodeError) as e:
self.log.error('Failed to decode the response', exc_info=e)
raise tornado.web.HTTPError(status_code=http.HTTPStatus.BAD_REQUEST, reason=f"Invalid response in '{url}': {e}") from e
except Exception as e:
self.log.error('Failed to fetch http request', exc_info=e)
raise tornado.web.HTTPError(status_code=http.HTTPStatus.INTERNAL_SERVER_ERROR, reason=f"Unknown error in '{url}': {e}") from e | Call the third party service
The request is presumed to support pagination by default if
- The method is GET
- load_json is True
- The provider returns not None per_page_argument property
Args:
url: Endpoint to request
load_json: Is the response of JSON type
method: HTTP method
body: Request body; None if no body
params: Query arguments as dictionary; None if no arguments
headers: Request headers as dictionary; None if no headers
has_pagination: Whether the pagination query arguments should be appended
Returns:
List or Dict: Create from JSON response body if load_json is True
str: Raw response body if load_json is False | jupyterlab_pullrequests/managers/manager.py | _call_provider | fcollonval/pull-requests | 32 | python | async def _call_provider(self, url: str, load_json: bool=True, method: str='GET', body: Optional[dict]=None, params: Optional[Dict[(str, str)]]=None, headers: Optional[Dict[(str, str)]]=None, has_pagination: bool=True) -> Union[(dict, str)]:
'Call the third party service\n\n The request is presumed to support pagination by default if\n - The method is GET\n - load_json is True\n - The provider returns not None per_page_argument property\n\n Args:\n url: Endpoint to request\n load_json: Is the response of JSON type\n method: HTTP method\n body: Request body; None if no body\n params: Query arguments as dictionary; None if no arguments\n headers: Request headers as dictionary; None if no headers\n has_pagination: Whether the pagination query arguments should be appended\n Returns:\n List or Dict: Create from JSON response body if load_json is True\n str: Raw response body if load_json is False\n '
if (not self._config.access_token):
raise tornado.web.HTTPError(status_code=http.HTTPStatus.BAD_REQUEST, reason='No access token specified. Please set PRConfig.access_token in your user jupyter_server_config file.')
if (body is not None):
if (headers is None):
headers = {}
headers['Content-Type'] = 'application/json'
body = tornado.escape.json_encode(body)
if ((not url.startswith(self.base_api_url)) and (not re.search('^https?:', url))):
url = url_path_join(self.base_api_url, url)
with_pagination = False
if (load_json and has_pagination and (method.lower() == 'get') and (self.per_page_argument is not None)):
with_pagination = True
params = (params or {})
params.update([self.per_page_argument])
if (params is not None):
url = tornado.httputil.url_concat(url, params)
request = tornado.httpclient.HTTPRequest(url, user_agent=f'JupyterLab Pull Requests v{__version__}', method=method.upper(), body=body, headers=headers)
self.log.debug(f'{method.upper()} {url}')
try:
response = (await self._client.fetch(request))
result = response.body.decode('utf-8')
if load_json:
link = response.headers.get('Link')
next_url = None
if (link is not None):
for e in link.split(','):
args = e.strip().split(';')
data = args[0]
metadata = {k.strip(): v.strip().strip('"') for (k, v) in map((lambda s: s.strip().split('=')), args[1:])}
if (metadata.get('rel', ) == 'next'):
next_url = data[1:(- 1)]
break
new_ = json.loads(result)
if (next_url is not None):
next_ = (await self._call_provider(next_url, load_json=load_json, method=method, body=body, headers=headers, has_pagination=False))
if (not isinstance(new_, list)):
new_ = [new_]
if (not isinstance(next_, list)):
next_ = [next_]
return (new_ + next_)
elif (with_pagination and (not isinstance(new_, list))):
return [new_]
else:
return new_
else:
return result
except tornado.httpclient.HTTPClientError as e:
self.log.debug(f'Failed to fetch {request.method} {request.url}', exc_info=e)
error_body = ((e.response.body or b'{}').decode('utf-8') if (e.response is not None) else '{}')
self.log.debug(error_body)
try:
message = json.loads(error_body).get('message', str(e))
except json.JSONDecodeError:
message = str(e)
raise tornado.web.HTTPError(status_code=e.code, reason=f"Invalid response in '{url}': {message}") from e
except (json.JSONDecodeError, UnicodeDecodeError) as e:
self.log.error('Failed to decode the response', exc_info=e)
raise tornado.web.HTTPError(status_code=http.HTTPStatus.BAD_REQUEST, reason=f"Invalid response in '{url}': {e}") from e
except Exception as e:
self.log.error('Failed to fetch http request', exc_info=e)
raise tornado.web.HTTPError(status_code=http.HTTPStatus.INTERNAL_SERVER_ERROR, reason=f"Unknown error in '{url}': {e}") from e | async def _call_provider(self, url: str, load_json: bool=True, method: str='GET', body: Optional[dict]=None, params: Optional[Dict[(str, str)]]=None, headers: Optional[Dict[(str, str)]]=None, has_pagination: bool=True) -> Union[(dict, str)]:
'Call the third party service\n\n The request is presumed to support pagination by default if\n - The method is GET\n - load_json is True\n - The provider returns not None per_page_argument property\n\n Args:\n url: Endpoint to request\n load_json: Is the response of JSON type\n method: HTTP method\n body: Request body; None if no body\n params: Query arguments as dictionary; None if no arguments\n headers: Request headers as dictionary; None if no headers\n has_pagination: Whether the pagination query arguments should be appended\n Returns:\n List or Dict: Create from JSON response body if load_json is True\n str: Raw response body if load_json is False\n '
if (not self._config.access_token):
raise tornado.web.HTTPError(status_code=http.HTTPStatus.BAD_REQUEST, reason='No access token specified. Please set PRConfig.access_token in your user jupyter_server_config file.')
if (body is not None):
if (headers is None):
headers = {}
headers['Content-Type'] = 'application/json'
body = tornado.escape.json_encode(body)
if ((not url.startswith(self.base_api_url)) and (not re.search('^https?:', url))):
url = url_path_join(self.base_api_url, url)
with_pagination = False
if (load_json and has_pagination and (method.lower() == 'get') and (self.per_page_argument is not None)):
with_pagination = True
params = (params or {})
params.update([self.per_page_argument])
if (params is not None):
url = tornado.httputil.url_concat(url, params)
request = tornado.httpclient.HTTPRequest(url, user_agent=f'JupyterLab Pull Requests v{__version__}', method=method.upper(), body=body, headers=headers)
self.log.debug(f'{method.upper()} {url}')
try:
response = (await self._client.fetch(request))
result = response.body.decode('utf-8')
if load_json:
link = response.headers.get('Link')
next_url = None
if (link is not None):
for e in link.split(','):
args = e.strip().split(';')
data = args[0]
metadata = {k.strip(): v.strip().strip('"') for (k, v) in map((lambda s: s.strip().split('=')), args[1:])}
if (metadata.get('rel', ) == 'next'):
next_url = data[1:(- 1)]
break
new_ = json.loads(result)
if (next_url is not None):
next_ = (await self._call_provider(next_url, load_json=load_json, method=method, body=body, headers=headers, has_pagination=False))
if (not isinstance(new_, list)):
new_ = [new_]
if (not isinstance(next_, list)):
next_ = [next_]
return (new_ + next_)
elif (with_pagination and (not isinstance(new_, list))):
return [new_]
else:
return new_
else:
return result
except tornado.httpclient.HTTPClientError as e:
self.log.debug(f'Failed to fetch {request.method} {request.url}', exc_info=e)
error_body = ((e.response.body or b'{}').decode('utf-8') if (e.response is not None) else '{}')
self.log.debug(error_body)
try:
message = json.loads(error_body).get('message', str(e))
except json.JSONDecodeError:
message = str(e)
raise tornado.web.HTTPError(status_code=e.code, reason=f"Invalid response in '{url}': {message}") from e
except (json.JSONDecodeError, UnicodeDecodeError) as e:
self.log.error('Failed to decode the response', exc_info=e)
raise tornado.web.HTTPError(status_code=http.HTTPStatus.BAD_REQUEST, reason=f"Invalid response in '{url}': {e}") from e
except Exception as e:
self.log.error('Failed to fetch http request', exc_info=e)
raise tornado.web.HTTPError(status_code=http.HTTPStatus.INTERNAL_SERVER_ERROR, reason=f"Unknown error in '{url}': {e}") from e<|docstring|>Call the third party service
The request is presumed to support pagination by default if
- The method is GET
- load_json is True
- The provider returns not None per_page_argument property
Args:
url: Endpoint to request
load_json: Is the response of JSON type
method: HTTP method
body: Request body; None if no body
params: Query arguments as dictionary; None if no arguments
headers: Request headers as dictionary; None if no headers
has_pagination: Whether the pagination query arguments should be appended
Returns:
List or Dict: Create from JSON response body if load_json is True
str: Raw response body if load_json is False<|endoftext|> |
dc2dd5fc81968b55d78c1d52b972bc0834dc3c8535e3c8b8b9e8808eb9780a7f | def __init__(self, rouge_dir=None, rouge_args=None, verbose=False):
'\n ROUGE metric\n Makes use of pyrouge: https://github.com/bheinzerling/pyrouge\n\n Args:\n :param rouge_dir: directory of ROUGE-1.5.5/, by default uses environment\'s ROUGE_HOME variable\n :param rouge_args: arguments for ROUGE calculation; if None, defaults to "-c 95 -2 -1 -U -r 1000 -n 4 -w 1.2 -a -m"; a string of parameters. Please see ROUGE-1.5.5 README (e.g. https://github.com/andersjo/pyrouge/tree/master/tools/ROUGE-1.5.5) for a list of possible parameters\n :param verbose: whether to log data preparation or just output\n\n '
log_level = (logging.ERROR if (not verbose) else None)
from set_path import set_path
set_path()
if (not ROUGE_HOME):
rouge_dir = os.environ['ROUGE_HOME']
self.r = Rouge155(rouge_dir=rouge_dir, rouge_args=rouge_args)
self.rouge_args = rouge_args | ROUGE metric
Makes use of pyrouge: https://github.com/bheinzerling/pyrouge
Args:
:param rouge_dir: directory of ROUGE-1.5.5/, by default uses environment's ROUGE_HOME variable
:param rouge_args: arguments for ROUGE calculation; if None, defaults to "-c 95 -2 -1 -U -r 1000 -n 4 -w 1.2 -a -m"; a string of parameters. Please see ROUGE-1.5.5 README (e.g. https://github.com/andersjo/pyrouge/tree/master/tools/ROUGE-1.5.5) for a list of possible parameters
:param verbose: whether to log data preparation or just output | cal_scores/SummEval/evaluation/summ_eval/rouge_metric.py | __init__ | bzhao2718/ReliableSummEvalReg | 0 | python | def __init__(self, rouge_dir=None, rouge_args=None, verbose=False):
'\n ROUGE metric\n Makes use of pyrouge: https://github.com/bheinzerling/pyrouge\n\n Args:\n :param rouge_dir: directory of ROUGE-1.5.5/, by default uses environment\'s ROUGE_HOME variable\n :param rouge_args: arguments for ROUGE calculation; if None, defaults to "-c 95 -2 -1 -U -r 1000 -n 4 -w 1.2 -a -m"; a string of parameters. Please see ROUGE-1.5.5 README (e.g. https://github.com/andersjo/pyrouge/tree/master/tools/ROUGE-1.5.5) for a list of possible parameters\n :param verbose: whether to log data preparation or just output\n\n '
log_level = (logging.ERROR if (not verbose) else None)
from set_path import set_path
set_path()
if (not ROUGE_HOME):
rouge_dir = os.environ['ROUGE_HOME']
self.r = Rouge155(rouge_dir=rouge_dir, rouge_args=rouge_args)
self.rouge_args = rouge_args | def __init__(self, rouge_dir=None, rouge_args=None, verbose=False):
'\n ROUGE metric\n Makes use of pyrouge: https://github.com/bheinzerling/pyrouge\n\n Args:\n :param rouge_dir: directory of ROUGE-1.5.5/, by default uses environment\'s ROUGE_HOME variable\n :param rouge_args: arguments for ROUGE calculation; if None, defaults to "-c 95 -2 -1 -U -r 1000 -n 4 -w 1.2 -a -m"; a string of parameters. Please see ROUGE-1.5.5 README (e.g. https://github.com/andersjo/pyrouge/tree/master/tools/ROUGE-1.5.5) for a list of possible parameters\n :param verbose: whether to log data preparation or just output\n\n '
log_level = (logging.ERROR if (not verbose) else None)
from set_path import set_path
set_path()
if (not ROUGE_HOME):
rouge_dir = os.environ['ROUGE_HOME']
self.r = Rouge155(rouge_dir=rouge_dir, rouge_args=rouge_args)
self.rouge_args = rouge_args<|docstring|>ROUGE metric
Makes use of pyrouge: https://github.com/bheinzerling/pyrouge
Args:
:param rouge_dir: directory of ROUGE-1.5.5/, by default uses environment's ROUGE_HOME variable
:param rouge_args: arguments for ROUGE calculation; if None, defaults to "-c 95 -2 -1 -U -r 1000 -n 4 -w 1.2 -a -m"; a string of parameters. Please see ROUGE-1.5.5 README (e.g. https://github.com/andersjo/pyrouge/tree/master/tools/ROUGE-1.5.5) for a list of possible parameters
:param verbose: whether to log data preparation or just output<|endoftext|> |
2b34bda5f373e43077868ae89ff07d978c43822401a666818eb5c4895dada364 | def get_validator() -> Type[AzPlatformValidator]:
'Returns the validator class for this module'
return AzPlatformValidator | Returns the validator class for this module | scripts/commit_validation/commit_validation/validators/az_platform_validator.py | get_validator | eerock/o3de | 11 | python | def get_validator() -> Type[AzPlatformValidator]:
return AzPlatformValidator | def get_validator() -> Type[AzPlatformValidator]:
return AzPlatformValidator<|docstring|>Returns the validator class for this module<|endoftext|> |