prompt
stringlengths 31
162
| pipeline
stringlengths 207
1.65k
|
---|---|
Build question generation pipeline | {"version": "1.8.0", "components": [{"name": "QuestionGenerator", "params": {}, "type": "QuestionGenerator"}], "pipelines": [{"name": "query", "nodes": [{"inputs": ["Query"], "name": "QuestionGenerator"}]}]} |
Generate generative qa pipeline with RAGenerator, TfidfRetriever and InMemoryDocumentStore | {"version": "1.8.0", "components": [{"name": "in_memory_document_store", "type": "InMemoryDocumentStore", "params": {"index": "document", "label_index": "label", "embedding_dim": 768, "return_embedding": false, "similarity": "dot_product", "progress_bar": true, "duplicate_documents": "overwrite", "use_gpu": true, "scoring_batch_size": 500000}}, {"name": "tfidf_retriever", "type": "TfidfRetriever", "params": {"top_k": 10}}, {"name": "ra_generator", "type": "RAGenerator", "params": {"model_name_or_path": "facebook/rag-token-nq", "generator_type": "token", "top_k": 2, "max_length": 200, "min_length": 2, "num_beams": 2, "embed_title": true, "use_gpu": true, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_generator_pipeline", "nodes": [{"inputs": ["Query"], "name": "tfidf_retriever"}, {"inputs": ["tfidf_retriever"], "name": "ra_generator"}]}]} |
Create Haystack search summarization with TfidfRetriever, transformers summarizer and pinecone document store | {"version": "1.8.0", "components": [{"name": "pinecone_document_store", "type": "PineconeDocumentStore", "params": {"environment": "us-west1-gcp", "embedding_dim": 768, "return_embedding": false, "index": "document", "similarity": "cosine", "replicas": 1, "shards": 1, "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "recreate_index": false, "validate_index_sync": true}}, {"name": "tfidf_retriever", "type": "TfidfRetriever", "params": {"top_k": 10}}, {"name": "transformers_summarizer", "type": "TransformersSummarizer", "params": {"model_name_or_path": "google/pegasus-xsum", "max_length": 200, "min_length": 5, "use_gpu": true, "clean_up_tokenization_spaces": true, "separator_for_single_summary": " ", "generate_single_summary": false, "batch_size": 16, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "tfidf_retriever"}, {"inputs": ["tfidf_retriever"], "name": "transformers_summarizer"}]}]} |
Create question generation system | {"version": "1.8.0", "components": [{"name": "QuestionGenerator", "params": {}, "type": "QuestionGenerator"}], "pipelines": [{"name": "query", "nodes": [{"inputs": ["Query"], "name": "QuestionGenerator"}]}]} |
Make faq pipeline with FilterRetriever and pinecone document store | {"version": "1.8.0", "components": [{"name": "pinecone_document_store", "type": "PineconeDocumentStore", "params": {"environment": "us-west1-gcp", "embedding_dim": 768, "return_embedding": false, "index": "document", "similarity": "cosine", "replicas": 1, "shards": 1, "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "recreate_index": false, "validate_index_sync": true}}, {"name": "filter_retriever", "type": "FilterRetriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "filter_retriever"}, {"inputs": ["filter_retriever"]}]}]} |
Create qa pipeline using rci reader, PineconeDocumentStore and bm25 retriever | {"version": "1.8.0", "components": [{"name": "pinecone_document_store", "type": "PineconeDocumentStore", "params": {"environment": "us-west1-gcp", "embedding_dim": 768, "return_embedding": false, "index": "document", "similarity": "cosine", "replicas": 1, "shards": 1, "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "recreate_index": false, "metadata_config": {}, "validate_index_sync": true}}, {"name": "bm25_retriever", "type": "BM25Retriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}, {"name": "rci_reader", "type": "RCIReader", "params": {"row_model_name_or_path": "michaelrglass/albert-base-rci-wikisql-row", "column_model_name_or_path": "michaelrglass/albert-base-rci-wikisql-col", "use_gpu": true, "top_k": 10, "max_seq_len": 256, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "bm25_retriever"}, {"inputs": ["bm25_retriever"], "name": "rci_reader"}]}]} |
Generate Haystack search pipeline using faiss document store and ElasticsearchRetriever | {"version": "1.8.0", "components": [{"name": "faiss_document_store", "type": "FAISSDocumentStore", "params": {"sql_url": "sqlite:///faiss_document_store.db", "vector_dim": 0, "embedding_dim": 768, "faiss_index_factory_str": "Flat", "return_embedding": false, "index": "document", "similarity": "dot_product", "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "n_links": 64, "ef_search": 20, "ef_construction": 80, "validate_index_sync": true}}, {"name": "elasticsearch_retriever", "type": "ElasticsearchRetriever", "params": {"top_k": 10, "all_terms_must_match": false}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "elasticsearch_retriever"}, {"inputs": ["elasticsearch_retriever"]}]}]} |
Build Haystack question generation pipeline | {"version": "1.8.0", "components": [{"name": "QuestionGenerator", "params": {}, "type": "QuestionGenerator"}], "pipelines": [{"name": "query", "nodes": [{"inputs": ["Query"], "name": "QuestionGenerator"}]}]} |
Build Haystack QuestionGenerationPipeline | {"version": "1.8.0", "components": [{"name": "QuestionGenerator", "params": {}, "type": "QuestionGenerator"}], "pipelines": [{"name": "query", "nodes": [{"inputs": ["Query"], "name": "QuestionGenerator"}]}]} |
Make Haystack generative qa system consisting of Seq2SeqGenerator, OpenDistroElasticsearchDocumentStore and embedding retriever | {"version": "1.8.0", "components": [{"name": "open_distro_elasticsearch_document_store", "type": "OpenDistroElasticsearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "cosine", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "embedding_retriever", "type": "EmbeddingRetriever", "params": {"use_gpu": true, "batch_size": 32, "max_seq_len": 512, "pooling_strategy": "reduce_mean", "emb_extraction_layer": -1, "top_k": 10, "progress_bar": true, "use_auth_token": false, "scale_score": true}}, {"name": "seq2_seq_generator", "type": "Seq2SeqGenerator", "params": {"top_k": 1, "max_length": 200, "min_length": 2, "num_beams": 8, "use_gpu": true, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_generator_pipeline", "nodes": [{"inputs": ["Query"], "name": "embedding_retriever"}, {"inputs": ["embedding_retriever"], "name": "seq2_seq_generator"}]}]} |
Make Haystack extractive qa pipeline with elasticsearch retriever, FAISSDocumentStore and RCIReader | {"version": "1.8.0", "components": [{"name": "faiss_document_store", "type": "FAISSDocumentStore", "params": {"sql_url": "sqlite:///faiss_document_store.db", "vector_dim": 0, "embedding_dim": 768, "faiss_index_factory_str": "Flat", "return_embedding": false, "index": "document", "similarity": "dot_product", "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "n_links": 64, "ef_search": 20, "ef_construction": 80, "validate_index_sync": true}}, {"name": "elasticsearch_retriever", "type": "ElasticsearchRetriever", "params": {"top_k": 10, "all_terms_must_match": false}}, {"name": "rci_reader", "type": "RCIReader", "params": {"row_model_name_or_path": "michaelrglass/albert-base-rci-wikisql-row", "column_model_name_or_path": "michaelrglass/albert-base-rci-wikisql-col", "use_gpu": true, "top_k": 10, "max_seq_len": 256, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "elasticsearch_retriever"}, {"inputs": ["elasticsearch_retriever"], "name": "rci_reader"}]}]} |
Generate search summarization pipeline using TransformersSummarizer, elasticsearch filter only retriever and FAISSDocumentStore | {"version": "1.8.0", "components": [{"name": "faiss_document_store", "type": "FAISSDocumentStore", "params": {"sql_url": "sqlite:///faiss_document_store.db", "vector_dim": 0, "embedding_dim": 768, "faiss_index_factory_str": "Flat", "return_embedding": false, "index": "document", "similarity": "dot_product", "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "n_links": 64, "ef_search": 20, "ef_construction": 80, "validate_index_sync": true}}, {"name": "elasticsearch_filter_only_retriever", "type": "ElasticsearchFilterOnlyRetriever", "params": {"top_k": 10, "all_terms_must_match": false}}, {"name": "transformers_summarizer", "type": "TransformersSummarizer", "params": {"model_name_or_path": "google/pegasus-xsum", "max_length": 200, "min_length": 5, "use_gpu": true, "clean_up_tokenization_spaces": true, "separator_for_single_summary": " ", "generate_single_summary": false, "batch_size": 16, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "elasticsearch_filter_only_retriever"}, {"inputs": ["elasticsearch_filter_only_retriever"], "name": "transformers_summarizer"}]}]} |
Generate Haystack search summarization with transformers summarizer, BM25Retriever and pinecone document store | {"version": "1.8.0", "components": [{"name": "pinecone_document_store", "type": "PineconeDocumentStore", "params": {"environment": "us-west1-gcp", "embedding_dim": 768, "return_embedding": false, "index": "document", "similarity": "cosine", "replicas": 1, "shards": 1, "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "recreate_index": false, "validate_index_sync": true}}, {"name": "bm25_retriever", "type": "BM25Retriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}, {"name": "transformers_summarizer", "type": "TransformersSummarizer", "params": {"model_name_or_path": "google/pegasus-xsum", "max_length": 200, "min_length": 5, "use_gpu": true, "clean_up_tokenization_spaces": true, "separator_for_single_summary": " ", "generate_single_summary": false, "batch_size": 16, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "bm25_retriever"}, {"inputs": ["bm25_retriever"], "name": "transformers_summarizer"}]}]} |
Build Haystack extractive qa consisting of TableReader, ElasticsearchDocumentStore and bm25 retriever | {"version": "1.8.0", "components": [{"name": "elasticsearch_document_store", "type": "ElasticsearchDocumentStore", "params": {"port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "scheme": "http", "verify_certs": true, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "dot_product", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "bm25_retriever", "type": "BM25Retriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}, {"name": "table_reader", "type": "TableReader", "params": {"model_name_or_path": "google/tapas-base-finetuned-wtq", "use_gpu": true, "top_k": 10, "top_k_per_candidate": 3, "return_no_answer": false, "max_seq_len": 256, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "bm25_retriever"}, {"inputs": ["bm25_retriever"], "name": "table_reader"}]}]} |
Create Haystack FAQPipeline consisting of embedding retriever and OpenDistroElasticsearchDocumentStore | {"version": "1.8.0", "components": [{"name": "open_distro_elasticsearch_document_store", "type": "OpenDistroElasticsearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "cosine", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "embedding_retriever", "type": "EmbeddingRetriever", "params": {"use_gpu": true, "batch_size": 32, "max_seq_len": 512, "pooling_strategy": "reduce_mean", "emb_extraction_layer": -1, "top_k": 10, "progress_bar": true, "use_auth_token": false, "scale_score": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "embedding_retriever"}, {"inputs": ["embedding_retriever"]}]}]} |
Build Haystack question answer generation system consisting of question generator and TransformersReader | {"version": "1.8.0", "components": [{"name": "question_generator", "type": "QuestionGenerator", "params": {"sep_token": "<sep>", "batch_size": 16, "progress_bar": true, "use_auth_token": false}}, {"name": "transformers_reader", "type": "TransformersReader", "params": {"model_name_or_path": "distilbert-base-uncased-distilled-squad", "context_window_size": 70, "use_gpu": true, "top_k": 10, "top_k_per_candidate": 3, "return_no_answers": false, "max_seq_len": 256, "doc_stride": 128, "batch_size": 16, "use_auth_token": false}}], "pipelines": [{"name": "my_question_answering_pipeline", "nodes": [{"inputs": ["Query"], "name": "question_generator"}, {"inputs": ["question_generator"], "name": "transformers_reader"}]}]} |
Generate Haystack generative qa using FAISSDocumentStore, Seq2SeqGenerator and BM25Retriever | {"version": "1.8.0", "components": [{"name": "faiss_document_store", "type": "FAISSDocumentStore", "params": {"sql_url": "sqlite:///faiss_document_store.db", "vector_dim": 0, "embedding_dim": 768, "faiss_index_factory_str": "Flat", "return_embedding": false, "index": "document", "similarity": "dot_product", "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "n_links": 64, "ef_search": 20, "ef_construction": 80, "validate_index_sync": true}}, {"name": "bm25_retriever", "type": "BM25Retriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}, {"name": "seq2_seq_generator", "type": "Seq2SeqGenerator", "params": {"top_k": 1, "max_length": 200, "min_length": 2, "num_beams": 8, "use_gpu": true, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_generator_pipeline", "nodes": [{"inputs": ["Query"], "name": "bm25_retriever"}, {"inputs": ["bm25_retriever"], "name": "seq2_seq_generator"}]}]} |
Generate Haystack QuestionAnswerGenerationPipeline using transformers reader and question generator | {"version": "1.8.0", "components": [{"name": "question_generator", "type": "QuestionGenerator", "params": {"sep_token": "<sep>", "batch_size": 16, "progress_bar": true, "use_auth_token": false}}, {"name": "transformers_reader", "type": "TransformersReader", "params": {"model_name_or_path": "distilbert-base-uncased-distilled-squad", "context_window_size": 70, "use_gpu": true, "top_k": 10, "top_k_per_candidate": 3, "return_no_answers": false, "max_seq_len": 256, "doc_stride": 128, "batch_size": 16, "use_auth_token": false}}], "pipelines": [{"name": "my_question_answering_pipeline", "nodes": [{"inputs": ["Query"], "name": "question_generator"}, {"inputs": ["question_generator"], "name": "transformers_reader"}]}]} |
Generate SearchSummarizationPipeline using transformers summarizer, table text retriever and ElasticsearchDocumentStore | {"version": "1.8.0", "components": [{"name": "elasticsearch_document_store", "type": "ElasticsearchDocumentStore", "params": {"port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "scheme": "http", "verify_certs": true, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "dot_product", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "table_text_retriever", "type": "TableTextRetriever", "params": {"max_seq_len_query": 64, "max_seq_len_passage": 256, "max_seq_len_table": 256, "top_k": 10, "use_gpu": true, "batch_size": 16, "embed_meta_fields": ["name", "section_title", "caption"], "use_fast_tokenizers": true, "similarity_function": "dot_product", "global_loss_buffer_size": 150000, "progress_bar": true, "use_auth_token": false, "scale_score": true, "use_fast": true}}, {"name": "transformers_summarizer", "type": "TransformersSummarizer", "params": {"model_name_or_path": "google/pegasus-xsum", "max_length": 200, "min_length": 5, "use_gpu": true, "clean_up_tokenization_spaces": true, "separator_for_single_summary": " ", "generate_single_summary": false, "batch_size": 16, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "table_text_retriever"}, {"inputs": ["table_text_retriever"], "name": "transformers_summarizer"}]}]} |
Build Haystack QuestionGenerationPipeline | {"version": "1.8.0", "components": [{"name": "QuestionGenerator", "params": {}, "type": "QuestionGenerator"}], "pipelines": [{"name": "query", "nodes": [{"inputs": ["Query"], "name": "QuestionGenerator"}]}]} |
Make Haystack document search pipeline consisting of tfidf retriever and elasticsearch document store | {"version": "1.8.0", "components": [{"name": "elasticsearch_document_store", "type": "ElasticsearchDocumentStore", "params": {"port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "scheme": "http", "verify_certs": true, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "dot_product", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "tfidf_retriever", "type": "TfidfRetriever", "params": {"top_k": 10}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "tfidf_retriever"}, {"inputs": ["tfidf_retriever"]}]}]} |
Build Haystack faq search pipeline consisting of open distro elasticsearch document store and EmbeddingRetriever | {"version": "1.8.0", "components": [{"name": "open_distro_elasticsearch_document_store", "type": "OpenDistroElasticsearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "cosine", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "embedding_retriever", "type": "EmbeddingRetriever", "params": {"use_gpu": true, "batch_size": 32, "max_seq_len": 512, "pooling_strategy": "reduce_mean", "emb_extraction_layer": -1, "top_k": 10, "progress_bar": true, "use_auth_token": false, "scale_score": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "embedding_retriever"}, {"inputs": ["embedding_retriever"]}]}]} |
Generate DocumentSearchPipeline with elasticsearch retriever and DeepsetCloudDocumentStore | {"version": "1.8.0", "components": [{"name": "deepset_cloud_document_store", "type": "DeepsetCloudDocumentStore", "params": {"workspace": "default", "duplicate_documents": "overwrite", "similarity": "dot_product", "return_embedding": false, "label_index": "default", "embedding_dim": 768}}, {"name": "elasticsearch_retriever", "type": "ElasticsearchRetriever", "params": {"top_k": 10, "all_terms_must_match": false}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "elasticsearch_retriever"}, {"inputs": ["elasticsearch_retriever"]}]}]} |
Create Haystack faq pipeline consisting of DeepsetCloudDocumentStore and ElasticsearchRetriever | {"version": "1.8.0", "components": [{"name": "deepset_cloud_document_store", "type": "DeepsetCloudDocumentStore", "params": {"workspace": "default", "duplicate_documents": "overwrite", "similarity": "dot_product", "return_embedding": false, "label_index": "default", "embedding_dim": 768}}, {"name": "elasticsearch_retriever", "type": "ElasticsearchRetriever", "params": {"top_k": 10, "all_terms_must_match": false}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "elasticsearch_retriever"}, {"inputs": ["elasticsearch_retriever"]}]}]} |
Make faq search pipeline using open distro elasticsearch document store and bm25 retriever | {"version": "1.8.0", "components": [{"name": "open_distro_elasticsearch_document_store", "type": "OpenDistroElasticsearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "cosine", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "bm25_retriever", "type": "BM25Retriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "bm25_retriever"}, {"inputs": ["bm25_retriever"]}]}]} |
Build QuestionAnswerGenerationPipeline with TableReader and question generator | {"version": "1.8.0", "components": [{"name": "question_generator", "type": "QuestionGenerator", "params": {"sep_token": "<sep>", "batch_size": 16, "progress_bar": true, "use_auth_token": false}}, {"name": "table_reader", "type": "TableReader", "params": {"model_name_or_path": "google/tapas-base-finetuned-wtq", "use_gpu": true, "top_k": 10, "top_k_per_candidate": 3, "return_no_answer": false, "max_seq_len": 256, "use_auth_token": false}}], "pipelines": [{"name": "my_question_answering_pipeline", "nodes": [{"inputs": ["Query"], "name": "question_generator"}, {"inputs": ["question_generator"], "name": "table_reader"}]}]} |
Build Haystack generative pipeline using OpenAIAnswerGenerator, TfidfRetriever and deepset cloud document store | {"version": "1.8.0", "components": [{"name": "deepset_cloud_document_store", "type": "DeepsetCloudDocumentStore", "params": {"workspace": "default", "duplicate_documents": "overwrite", "similarity": "dot_product", "return_embedding": false, "label_index": "default", "embedding_dim": 768}}, {"name": "tfidf_retriever", "type": "TfidfRetriever", "params": {"top_k": 10}}, {"name": "open_ai_answer_generator", "type": "OpenAIAnswerGenerator", "params": {"model": "text-curie-001", "max_tokens": 7, "top_k": 5, "temperature": 0, "presence_penalty": -2.0, "frequency_penalty": -2.0, "progress_bar": true}}], "pipelines": [{"name": "my_generator_pipeline", "nodes": [{"inputs": ["Query"], "name": "tfidf_retriever"}, {"inputs": ["tfidf_retriever"], "name": "open_ai_answer_generator"}]}]} |
Make faq pipeline with ElasticsearchRetriever and OpenDistroElasticsearchDocumentStore | {"version": "1.8.0", "components": [{"name": "open_distro_elasticsearch_document_store", "type": "OpenDistroElasticsearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "cosine", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "elasticsearch_retriever", "type": "ElasticsearchRetriever", "params": {"top_k": 10, "all_terms_must_match": false}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "elasticsearch_retriever"}, {"inputs": ["elasticsearch_retriever"]}]}]} |
Generate generative qa consisting of BM25Retriever, ra generator and DeepsetCloudDocumentStore | {"version": "1.8.0", "components": [{"name": "deepset_cloud_document_store", "type": "DeepsetCloudDocumentStore", "params": {"workspace": "default", "duplicate_documents": "overwrite", "similarity": "dot_product", "return_embedding": false, "label_index": "default", "embedding_dim": 768}}, {"name": "bm25_retriever", "type": "BM25Retriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}, {"name": "ra_generator", "type": "RAGenerator", "params": {"model_name_or_path": "facebook/rag-token-nq", "generator_type": "token", "top_k": 2, "max_length": 200, "min_length": 2, "num_beams": 2, "embed_title": true, "use_gpu": true, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_generator_pipeline", "nodes": [{"inputs": ["Query"], "name": "bm25_retriever"}, {"inputs": ["bm25_retriever"], "name": "ra_generator"}]}]} |
Make faq pipeline using deepset cloud document store and TableTextRetriever | {"version": "1.8.0", "components": [{"name": "deepset_cloud_document_store", "type": "DeepsetCloudDocumentStore", "params": {"workspace": "default", "duplicate_documents": "overwrite", "similarity": "dot_product", "return_embedding": false, "label_index": "default", "embedding_dim": 768}}, {"name": "table_text_retriever", "type": "TableTextRetriever", "params": {"max_seq_len_query": 64, "max_seq_len_passage": 256, "max_seq_len_table": 256, "top_k": 10, "use_gpu": true, "batch_size": 16, "embed_meta_fields": ["name", "section_title", "caption"], "use_fast_tokenizers": true, "similarity_function": "dot_product", "global_loss_buffer_size": 150000, "progress_bar": true, "use_auth_token": false, "scale_score": true, "use_fast": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "table_text_retriever"}, {"inputs": ["table_text_retriever"]}]}]} |
Create Haystack FAQPipeline with DeepsetCloudDocumentStore and table text retriever | {"version": "1.8.0", "components": [{"name": "deepset_cloud_document_store", "type": "DeepsetCloudDocumentStore", "params": {"workspace": "default", "duplicate_documents": "overwrite", "similarity": "dot_product", "return_embedding": false, "label_index": "default", "embedding_dim": 768}}, {"name": "table_text_retriever", "type": "TableTextRetriever", "params": {"max_seq_len_query": 64, "max_seq_len_passage": 256, "max_seq_len_table": 256, "top_k": 10, "use_gpu": true, "batch_size": 16, "embed_meta_fields": ["name", "section_title", "caption"], "use_fast_tokenizers": true, "similarity_function": "dot_product", "global_loss_buffer_size": 150000, "progress_bar": true, "use_auth_token": false, "scale_score": true, "use_fast": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "table_text_retriever"}, {"inputs": ["table_text_retriever"]}]}]} |
Create Haystack faq pipeline using BM25Retriever and OpenSearchDocumentStore | {"version": "1.8.0", "components": [{"name": "open_search_document_store", "type": "OpenSearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "dot_product", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false, "knn_engine": "nmslib"}}, {"name": "bm25_retriever", "type": "BM25Retriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "bm25_retriever"}, {"inputs": ["bm25_retriever"]}]}]} |
Build faq pipeline consisting of table text retriever and open search document store | {"version": "1.8.0", "components": [{"name": "open_search_document_store", "type": "OpenSearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "dot_product", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false, "knn_engine": "nmslib"}}, {"name": "table_text_retriever", "type": "TableTextRetriever", "params": {"max_seq_len_query": 64, "max_seq_len_passage": 256, "max_seq_len_table": 256, "top_k": 10, "use_gpu": true, "batch_size": 16, "embed_meta_fields": ["name", "section_title", "caption"], "use_fast_tokenizers": true, "similarity_function": "dot_product", "global_loss_buffer_size": 150000, "progress_bar": true, "use_auth_token": false, "scale_score": true, "use_fast": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "table_text_retriever"}, {"inputs": ["table_text_retriever"]}]}]} |
Create Haystack SearchSummarizationPipeline with PineconeDocumentStore, transformers summarizer and bm25 retriever | {"version": "1.8.0", "components": [{"name": "pinecone_document_store", "type": "PineconeDocumentStore", "params": {"environment": "us-west1-gcp", "embedding_dim": 768, "return_embedding": false, "index": "document", "similarity": "cosine", "replicas": 1, "shards": 1, "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "recreate_index": false, "validate_index_sync": true}}, {"name": "bm25_retriever", "type": "BM25Retriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}, {"name": "transformers_summarizer", "type": "TransformersSummarizer", "params": {"model_name_or_path": "google/pegasus-xsum", "max_length": 200, "min_length": 5, "use_gpu": true, "clean_up_tokenization_spaces": true, "separator_for_single_summary": " ", "generate_single_summary": false, "batch_size": 16, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "bm25_retriever"}, {"inputs": ["bm25_retriever"], "name": "transformers_summarizer"}]}]} |
Create Haystack qa system consisting of filter retriever, elasticsearch document store and RCIReader | {"version": "1.8.0", "components": [{"name": "elasticsearch_document_store", "type": "ElasticsearchDocumentStore", "params": {"port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "scheme": "http", "verify_certs": true, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "dot_product", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "filter_retriever", "type": "FilterRetriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}, {"name": "rci_reader", "type": "RCIReader", "params": {"row_model_name_or_path": "michaelrglass/albert-base-rci-wikisql-row", "column_model_name_or_path": "michaelrglass/albert-base-rci-wikisql-col", "use_gpu": true, "top_k": 10, "max_seq_len": 256, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "filter_retriever"}, {"inputs": ["filter_retriever"], "name": "rci_reader"}]}]} |
Create Haystack faq system using pinecone document store and ElasticsearchRetriever | {"version": "1.8.0", "components": [{"name": "pinecone_document_store", "type": "PineconeDocumentStore", "params": {"environment": "us-west1-gcp", "embedding_dim": 768, "return_embedding": false, "index": "document", "similarity": "cosine", "replicas": 1, "shards": 1, "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "recreate_index": false, "validate_index_sync": true}}, {"name": "elasticsearch_retriever", "type": "ElasticsearchRetriever", "params": {"top_k": 10, "all_terms_must_match": false}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "elasticsearch_retriever"}, {"inputs": ["elasticsearch_retriever"]}]}]} |
Build Haystack question answer generation system with QuestionGenerator and farm reader | {"version": "1.8.0", "components": [{"name": "question_generator", "type": "QuestionGenerator", "params": {"sep_token": "<sep>", "batch_size": 16, "progress_bar": true, "use_auth_token": false}}, {"name": "farm_reader", "type": "FARMReader", "params": {"context_window_size": 150, "batch_size": 50, "use_gpu": true, "no_ans_boost": 0.0, "return_no_answer": false, "top_k": 10, "top_k_per_candidate": 3, "top_k_per_sample": 1, "num_processes": 0, "max_seq_len": 256, "doc_stride": 128, "progress_bar": true, "duplicate_filtering": 0, "use_confidence_scores": true, "confidence_threshold": 0, "use_auth_token": false}}], "pipelines": [{"name": "my_question_answering_pipeline", "nodes": [{"inputs": ["Query"], "name": "question_generator"}, {"inputs": ["question_generator"], "name": "farm_reader"}]}]} |
Create search pipeline with elasticsearch document store and BM25Retriever | {"version": "1.8.0", "components": [{"name": "elasticsearch_document_store", "type": "ElasticsearchDocumentStore", "params": {"port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "scheme": "http", "verify_certs": true, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "dot_product", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "bm25_retriever", "type": "BM25Retriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "bm25_retriever"}, {"inputs": ["bm25_retriever"]}]}]} |
Generate FAQPipeline using in memory document store and TfidfRetriever | {"version": "1.8.0", "components": [{"name": "in_memory_document_store", "type": "InMemoryDocumentStore", "params": {"index": "document", "label_index": "label", "embedding_dim": 768, "return_embedding": false, "similarity": "dot_product", "progress_bar": true, "duplicate_documents": "overwrite", "use_gpu": true, "scoring_batch_size": 500000}}, {"name": "tfidf_retriever", "type": "TfidfRetriever", "params": {"top_k": 10}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "tfidf_retriever"}, {"inputs": ["tfidf_retriever"]}]}]} |
Generate QuestionGenerationPipeline | {"version": "1.8.0", "components": [{"name": "QuestionGenerator", "params": {}, "type": "QuestionGenerator"}], "pipelines": [{"name": "query", "nodes": [{"inputs": ["Query"], "name": "QuestionGenerator"}]}]} |
Make Haystack generative pipeline with embedding retriever, Seq2SeqGenerator and OpenDistroElasticsearchDocumentStore | {"version": "1.8.0", "components": [{"name": "open_distro_elasticsearch_document_store", "type": "OpenDistroElasticsearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "cosine", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "embedding_retriever", "type": "EmbeddingRetriever", "params": {"use_gpu": true, "batch_size": 32, "max_seq_len": 512, "pooling_strategy": "reduce_mean", "emb_extraction_layer": -1, "top_k": 10, "progress_bar": true, "use_auth_token": false, "scale_score": true}}, {"name": "seq2_seq_generator", "type": "Seq2SeqGenerator", "params": {"top_k": 1, "max_length": 200, "min_length": 2, "num_beams": 8, "use_gpu": true, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_generator_pipeline", "nodes": [{"inputs": ["Query"], "name": "embedding_retriever"}, {"inputs": ["embedding_retriever"], "name": "seq2_seq_generator"}]}]} |
Create Haystack faq search pipeline consisting of FilterRetriever and InMemoryDocumentStore | {"version": "1.8.0", "components": [{"name": "in_memory_document_store", "type": "InMemoryDocumentStore", "params": {"index": "document", "label_index": "label", "embedding_dim": 768, "return_embedding": false, "similarity": "dot_product", "progress_bar": true, "duplicate_documents": "overwrite", "use_gpu": true, "scoring_batch_size": 500000}}, {"name": "filter_retriever", "type": "FilterRetriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "filter_retriever"}, {"inputs": ["filter_retriever"]}]}]} |
Create Haystack search pipeline consisting of DeepsetCloudDocumentStore and dense passage retriever | {"version": "1.8.0", "components": [{"name": "deepset_cloud_document_store", "type": "DeepsetCloudDocumentStore", "params": {"workspace": "default", "duplicate_documents": "overwrite", "similarity": "dot_product", "return_embedding": false, "label_index": "default", "embedding_dim": 768}}, {"name": "dense_passage_retriever", "type": "DensePassageRetriever", "params": {"max_seq_len_query": 64, "max_seq_len_passage": 256, "top_k": 10, "use_gpu": true, "batch_size": 16, "embed_title": true, "use_fast_tokenizers": true, "similarity_function": "dot_product", "global_loss_buffer_size": 150000, "progress_bar": true, "use_auth_token": false, "scale_score": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "dense_passage_retriever"}, {"inputs": ["dense_passage_retriever"]}]}]} |
Make Haystack extractive qa system using WeaviateDocumentStore, dense passage retriever and transformers reader | {"version": "1.8.0", "components": [{"name": "weaviate_document_store", "type": "WeaviateDocumentStore", "params": {"port": 0, "timeout_config": [5, 15], "index": "Document", "embedding_dim": 768, "content_field": "content", "name_field": "name", "similarity": "cosine", "index_type": "hnsw", "return_embedding": false, "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "recreate_index": false}}, {"name": "dense_passage_retriever", "type": "DensePassageRetriever", "params": {"max_seq_len_query": 64, "max_seq_len_passage": 256, "top_k": 10, "use_gpu": true, "batch_size": 16, "embed_title": true, "use_fast_tokenizers": true, "similarity_function": "dot_product", "global_loss_buffer_size": 150000, "progress_bar": true, "use_auth_token": false, "scale_score": true}}, {"name": "transformers_reader", "type": "TransformersReader", "params": {"model_name_or_path": "distilbert-base-uncased-distilled-squad", "context_window_size": 70, "use_gpu": true, "top_k": 10, "top_k_per_candidate": 3, "return_no_answers": false, "max_seq_len": 256, "doc_stride": 128, "batch_size": 16, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "dense_passage_retriever"}, {"inputs": ["dense_passage_retriever"], "name": "transformers_reader"}]}]} |
Make faq pipeline with dense passage retriever and faiss document store | {"version": "1.8.0", "components": [{"name": "faiss_document_store", "type": "FAISSDocumentStore", "params": {"sql_url": "sqlite:///faiss_document_store.db", "vector_dim": 0, "embedding_dim": 768, "faiss_index_factory_str": "Flat", "return_embedding": false, "index": "document", "similarity": "dot_product", "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "n_links": 64, "ef_search": 20, "ef_construction": 80, "validate_index_sync": true}}, {"name": "dense_passage_retriever", "type": "DensePassageRetriever", "params": {"max_seq_len_query": 64, "max_seq_len_passage": 256, "top_k": 10, "use_gpu": true, "batch_size": 16, "embed_title": true, "use_fast_tokenizers": true, "similarity_function": "dot_product", "global_loss_buffer_size": 150000, "progress_bar": true, "use_auth_token": false, "scale_score": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "dense_passage_retriever"}, {"inputs": ["dense_passage_retriever"]}]}]} |
Generate Haystack question answer generation system with QuestionGenerator and transformers reader | {"version": "1.8.0", "components": [{"name": "question_generator", "type": "QuestionGenerator", "params": {"sep_token": "<sep>", "batch_size": 16, "progress_bar": true, "use_auth_token": false}}, {"name": "transformers_reader", "type": "TransformersReader", "params": {"model_name_or_path": "distilbert-base-uncased-distilled-squad", "context_window_size": 70, "use_gpu": true, "top_k": 10, "top_k_per_candidate": 3, "return_no_answers": false, "max_seq_len": 256, "doc_stride": 128, "batch_size": 16, "use_auth_token": false}}], "pipelines": [{"name": "my_question_answering_pipeline", "nodes": [{"inputs": ["Query"], "name": "question_generator"}, {"inputs": ["question_generator"], "name": "transformers_reader"}]}]} |
Build Haystack generative qa consisting of seq2 seq generator, DeepsetCloudDocumentStore and tfidf retriever | {"version": "1.8.0", "components": [{"name": "deepset_cloud_document_store", "type": "DeepsetCloudDocumentStore", "params": {"workspace": "default", "duplicate_documents": "overwrite", "similarity": "dot_product", "return_embedding": false, "label_index": "default", "embedding_dim": 768}}, {"name": "tfidf_retriever", "type": "TfidfRetriever", "params": {"top_k": 10}}, {"name": "seq2_seq_generator", "type": "Seq2SeqGenerator", "params": {"top_k": 1, "max_length": 200, "min_length": 2, "num_beams": 8, "use_gpu": true, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_generator_pipeline", "nodes": [{"inputs": ["Query"], "name": "tfidf_retriever"}, {"inputs": ["tfidf_retriever"], "name": "seq2_seq_generator"}]}]} |
Make qa system using FARMReader, MultihopEmbeddingRetriever and FAISSDocumentStore | {"version": "1.8.0", "components": [{"name": "faiss_document_store", "type": "FAISSDocumentStore", "params": {"sql_url": "sqlite:///faiss_document_store.db", "vector_dim": 0, "embedding_dim": 768, "faiss_index_factory_str": "Flat", "return_embedding": false, "index": "document", "similarity": "dot_product", "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "n_links": 64, "ef_search": 20, "ef_construction": 80, "validate_index_sync": true}}, {"name": "multihop_embedding_retriever", "type": "MultihopEmbeddingRetriever", "params": {"num_iterations": 2, "use_gpu": true, "batch_size": 32, "max_seq_len": 512, "model_format": "farm", "pooling_strategy": "reduce_mean", "emb_extraction_layer": -1, "top_k": 10, "progress_bar": true, "use_auth_token": false, "scale_score": true}}, {"name": "farm_reader", "type": "FARMReader", "params": {"context_window_size": 150, "batch_size": 50, "use_gpu": true, "no_ans_boost": 0.0, "return_no_answer": false, "top_k": 10, "top_k_per_candidate": 3, "top_k_per_sample": 1, "num_processes": 0, "max_seq_len": 256, "doc_stride": 128, "progress_bar": true, "duplicate_filtering": 0, "use_confidence_scores": true, "confidence_threshold": 0, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "multihop_embedding_retriever"}, {"inputs": ["multihop_embedding_retriever"], "name": "farm_reader"}]}]} |
Build Haystack question generation pipeline | {"version": "1.8.0", "components": [{"name": "QuestionGenerator", "params": {}, "type": "QuestionGenerator"}], "pipelines": [{"name": "query", "nodes": [{"inputs": ["Query"], "name": "QuestionGenerator"}]}]} |
Create generative qa using FilterRetriever, ra generator and OpenSearchDocumentStore | {"version": "1.8.0", "components": [{"name": "open_search_document_store", "type": "OpenSearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "dot_product", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false, "knn_engine": "nmslib"}}, {"name": "filter_retriever", "type": "FilterRetriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}, {"name": "ra_generator", "type": "RAGenerator", "params": {"model_name_or_path": "facebook/rag-token-nq", "generator_type": "token", "top_k": 2, "max_length": 200, "min_length": 2, "num_beams": 2, "embed_title": true, "use_gpu": true, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_generator_pipeline", "nodes": [{"inputs": ["Query"], "name": "filter_retriever"}, {"inputs": ["filter_retriever"], "name": "ra_generator"}]}]} |
Create Haystack qa system consisting of in memory document store, ElasticsearchFilterOnlyRetriever and FARMReader | {"version": "1.8.0", "components": [{"name": "in_memory_document_store", "type": "InMemoryDocumentStore", "params": {"index": "document", "label_index": "label", "embedding_dim": 768, "return_embedding": false, "similarity": "dot_product", "progress_bar": true, "duplicate_documents": "overwrite", "use_gpu": true, "scoring_batch_size": 500000}}, {"name": "elasticsearch_filter_only_retriever", "type": "ElasticsearchFilterOnlyRetriever", "params": {"top_k": 10, "all_terms_must_match": false}}, {"name": "farm_reader", "type": "FARMReader", "params": {"context_window_size": 150, "batch_size": 50, "use_gpu": true, "no_ans_boost": 0.0, "return_no_answer": false, "top_k": 10, "top_k_per_candidate": 3, "top_k_per_sample": 1, "num_processes": 0, "max_seq_len": 256, "doc_stride": 128, "progress_bar": true, "duplicate_filtering": 0, "use_confidence_scores": true, "confidence_threshold": 0, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "elasticsearch_filter_only_retriever"}, {"inputs": ["elasticsearch_filter_only_retriever"], "name": "farm_reader"}]}]} |
Build Haystack search summarization pipeline consisting of OpenSearchDocumentStore, transformers summarizer and tfidf retriever | {"version": "1.8.0", "components": [{"name": "open_search_document_store", "type": "OpenSearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "dot_product", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false, "knn_engine": "nmslib"}}, {"name": "tfidf_retriever", "type": "TfidfRetriever", "params": {"top_k": 10}}, {"name": "transformers_summarizer", "type": "TransformersSummarizer", "params": {"model_name_or_path": "google/pegasus-xsum", "max_length": 200, "min_length": 5, "use_gpu": true, "clean_up_tokenization_spaces": true, "separator_for_single_summary": " ", "generate_single_summary": false, "batch_size": 16, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "tfidf_retriever"}, {"inputs": ["tfidf_retriever"], "name": "transformers_summarizer"}]}]} |
Generate generative qa system consisting of embedding retriever, WeaviateDocumentStore and open ai answer generator | {"version": "1.8.0", "components": [{"name": "weaviate_document_store", "type": "WeaviateDocumentStore", "params": {"port": 0, "timeout_config": [5, 15], "index": "Document", "embedding_dim": 768, "content_field": "content", "name_field": "name", "similarity": "cosine", "index_type": "hnsw", "return_embedding": false, "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "recreate_index": false}}, {"name": "embedding_retriever", "type": "EmbeddingRetriever", "params": {"use_gpu": true, "batch_size": 32, "max_seq_len": 512, "pooling_strategy": "reduce_mean", "emb_extraction_layer": -1, "top_k": 10, "progress_bar": true, "use_auth_token": false, "scale_score": true}}, {"name": "open_ai_answer_generator", "type": "OpenAIAnswerGenerator", "params": {"model": "text-curie-001", "max_tokens": 7, "top_k": 5, "temperature": 0, "presence_penalty": -2.0, "frequency_penalty": -2.0, "progress_bar": true}}], "pipelines": [{"name": "my_generator_pipeline", "nodes": [{"inputs": ["Query"], "name": "embedding_retriever"}, {"inputs": ["embedding_retriever"], "name": "open_ai_answer_generator"}]}]} |
Build Haystack GenerativeQAPipeline consisting of open ai answer generator, embedding retriever and WeaviateDocumentStore | {"version": "1.8.0", "components": [{"name": "weaviate_document_store", "type": "WeaviateDocumentStore", "params": {"port": 0, "timeout_config": [5, 15], "index": "Document", "embedding_dim": 768, "content_field": "content", "name_field": "name", "similarity": "cosine", "index_type": "hnsw", "return_embedding": false, "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "recreate_index": false}}, {"name": "embedding_retriever", "type": "EmbeddingRetriever", "params": {"use_gpu": true, "batch_size": 32, "max_seq_len": 512, "pooling_strategy": "reduce_mean", "emb_extraction_layer": -1, "top_k": 10, "progress_bar": true, "use_auth_token": false, "scale_score": true}}, {"name": "open_ai_answer_generator", "type": "OpenAIAnswerGenerator", "params": {"model": "text-curie-001", "max_tokens": 7, "top_k": 5, "temperature": 0, "presence_penalty": -2.0, "frequency_penalty": -2.0, "progress_bar": true}}], "pipelines": [{"name": "my_generator_pipeline", "nodes": [{"inputs": ["Query"], "name": "embedding_retriever"}, {"inputs": ["embedding_retriever"], "name": "open_ai_answer_generator"}]}]} |
Create Haystack search summarization system using TransformersSummarizer, bm25 retriever and FAISSDocumentStore | {"version": "1.8.0", "components": [{"name": "faiss_document_store", "type": "FAISSDocumentStore", "params": {"sql_url": "sqlite:///faiss_document_store.db", "vector_dim": 0, "embedding_dim": 768, "faiss_index_factory_str": "Flat", "return_embedding": false, "index": "document", "similarity": "dot_product", "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "n_links": 64, "ef_search": 20, "ef_construction": 80, "validate_index_sync": true}}, {"name": "bm25_retriever", "type": "BM25Retriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}, {"name": "transformers_summarizer", "type": "TransformersSummarizer", "params": {"model_name_or_path": "google/pegasus-xsum", "max_length": 200, "min_length": 5, "use_gpu": true, "clean_up_tokenization_spaces": true, "separator_for_single_summary": " ", "generate_single_summary": false, "batch_size": 16, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "bm25_retriever"}, {"inputs": ["bm25_retriever"], "name": "transformers_summarizer"}]}]} |
Make Haystack faq search pipeline with table text retriever and DeepsetCloudDocumentStore | {"version": "1.8.0", "components": [{"name": "deepset_cloud_document_store", "type": "DeepsetCloudDocumentStore", "params": {"workspace": "default", "duplicate_documents": "overwrite", "similarity": "dot_product", "return_embedding": false, "label_index": "default", "embedding_dim": 768}}, {"name": "table_text_retriever", "type": "TableTextRetriever", "params": {"max_seq_len_query": 64, "max_seq_len_passage": 256, "max_seq_len_table": 256, "top_k": 10, "use_gpu": true, "batch_size": 16, "embed_meta_fields": ["name", "section_title", "caption"], "use_fast_tokenizers": true, "similarity_function": "dot_product", "global_loss_buffer_size": 150000, "progress_bar": true, "use_auth_token": false, "scale_score": true, "use_fast": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "table_text_retriever"}, {"inputs": ["table_text_retriever"]}]}]} |
Create Haystack QuestionAnswerGenerationPipeline consisting of farm reader and question generator | {"version": "1.8.0", "components": [{"name": "question_generator", "type": "QuestionGenerator", "params": {"sep_token": "<sep>", "batch_size": 16, "progress_bar": true, "use_auth_token": false}}, {"name": "farm_reader", "type": "FARMReader", "params": {"context_window_size": 150, "batch_size": 50, "use_gpu": true, "no_ans_boost": 0.0, "return_no_answer": false, "top_k": 10, "top_k_per_candidate": 3, "top_k_per_sample": 1, "num_processes": 0, "max_seq_len": 256, "doc_stride": 128, "progress_bar": true, "duplicate_filtering": 0, "use_confidence_scores": true, "confidence_threshold": 0, "use_auth_token": false}}], "pipelines": [{"name": "my_question_answering_pipeline", "nodes": [{"inputs": ["Query"], "name": "question_generator"}, {"inputs": ["question_generator"], "name": "farm_reader"}]}]} |
Create question generation system | {"version": "1.8.0", "components": [{"name": "QuestionGenerator", "params": {}, "type": "QuestionGenerator"}], "pipelines": [{"name": "query", "nodes": [{"inputs": ["Query"], "name": "QuestionGenerator"}]}]} |
Build Haystack question generation pipeline | {"version": "1.8.0", "components": [{"name": "QuestionGenerator", "params": {}, "type": "QuestionGenerator"}], "pipelines": [{"name": "query", "nodes": [{"inputs": ["Query"], "name": "QuestionGenerator"}]}]} |
Make DocumentSearchPipeline using ElasticsearchRetriever and InMemoryDocumentStore | {"version": "1.8.0", "components": [{"name": "in_memory_document_store", "type": "InMemoryDocumentStore", "params": {"index": "document", "label_index": "label", "embedding_dim": 768, "return_embedding": false, "similarity": "dot_product", "progress_bar": true, "duplicate_documents": "overwrite", "use_gpu": true, "scoring_batch_size": 500000}}, {"name": "elasticsearch_retriever", "type": "ElasticsearchRetriever", "params": {"top_k": 10, "all_terms_must_match": false}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "elasticsearch_retriever"}, {"inputs": ["elasticsearch_retriever"]}]}]} |
Build QuestionGenerationPipeline | {"version": "1.8.0", "components": [{"name": "QuestionGenerator", "params": {}, "type": "QuestionGenerator"}], "pipelines": [{"name": "query", "nodes": [{"inputs": ["Query"], "name": "QuestionGenerator"}]}]} |
Build Haystack generative pipeline with ra generator, elasticsearch filter only retriever and weaviate document store | {"version": "1.8.0", "components": [{"name": "weaviate_document_store", "type": "WeaviateDocumentStore", "params": {"port": 0, "timeout_config": [5, 15], "index": "Document", "embedding_dim": 768, "content_field": "content", "name_field": "name", "similarity": "cosine", "index_type": "hnsw", "return_embedding": false, "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "recreate_index": false}}, {"name": "elasticsearch_filter_only_retriever", "type": "ElasticsearchFilterOnlyRetriever", "params": {"top_k": 10, "all_terms_must_match": false}}, {"name": "ra_generator", "type": "RAGenerator", "params": {"model_name_or_path": "facebook/rag-token-nq", "generator_type": "token", "top_k": 2, "max_length": 200, "min_length": 2, "num_beams": 2, "embed_title": true, "use_gpu": true, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_generator_pipeline", "nodes": [{"inputs": ["Query"], "name": "elasticsearch_filter_only_retriever"}, {"inputs": ["elasticsearch_filter_only_retriever"], "name": "ra_generator"}]}]} |
Generate FAQPipeline consisting of TableTextRetriever and WeaviateDocumentStore | {"version": "1.8.0", "components": [{"name": "weaviate_document_store", "type": "WeaviateDocumentStore", "params": {"port": 0, "timeout_config": [5, 15], "index": "Document", "embedding_dim": 768, "content_field": "content", "name_field": "name", "similarity": "cosine", "index_type": "hnsw", "return_embedding": false, "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "recreate_index": false}}, {"name": "table_text_retriever", "type": "TableTextRetriever", "params": {"max_seq_len_query": 64, "max_seq_len_passage": 256, "max_seq_len_table": 256, "top_k": 10, "use_gpu": true, "batch_size": 16, "embed_meta_fields": ["name", "section_title", "caption"], "use_fast_tokenizers": true, "similarity_function": "dot_product", "global_loss_buffer_size": 150000, "progress_bar": true, "use_auth_token": false, "scale_score": true, "use_fast": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "table_text_retriever"}, {"inputs": ["table_text_retriever"]}]}]} |
Make Haystack faq search pipeline with ElasticsearchRetriever and DeepsetCloudDocumentStore | {"version": "1.8.0", "components": [{"name": "deepset_cloud_document_store", "type": "DeepsetCloudDocumentStore", "params": {"workspace": "default", "duplicate_documents": "overwrite", "similarity": "dot_product", "return_embedding": false, "label_index": "default", "embedding_dim": 768}}, {"name": "elasticsearch_retriever", "type": "ElasticsearchRetriever", "params": {"top_k": 10, "all_terms_must_match": false}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "elasticsearch_retriever"}, {"inputs": ["elasticsearch_retriever"]}]}]} |
Make QuestionAnswerGenerationPipeline using TransformersReader and question generator | {"version": "1.8.0", "components": [{"name": "question_generator", "type": "QuestionGenerator", "params": {"sep_token": "<sep>", "batch_size": 16, "progress_bar": true, "use_auth_token": false}}, {"name": "transformers_reader", "type": "TransformersReader", "params": {"model_name_or_path": "distilbert-base-uncased-distilled-squad", "context_window_size": 70, "use_gpu": true, "top_k": 10, "top_k_per_candidate": 3, "return_no_answers": false, "max_seq_len": 256, "doc_stride": 128, "batch_size": 16, "use_auth_token": false}}], "pipelines": [{"name": "my_question_answering_pipeline", "nodes": [{"inputs": ["Query"], "name": "question_generator"}, {"inputs": ["question_generator"], "name": "transformers_reader"}]}]} |
Generate QuestionGenerationPipeline | {"version": "1.8.0", "components": [{"name": "QuestionGenerator", "params": {}, "type": "QuestionGenerator"}], "pipelines": [{"name": "query", "nodes": [{"inputs": ["Query"], "name": "QuestionGenerator"}]}]} |
Make Haystack search summarization pipeline with TransformersSummarizer, TfidfRetriever and PineconeDocumentStore | {"version": "1.8.0", "components": [{"name": "pinecone_document_store", "type": "PineconeDocumentStore", "params": {"environment": "us-west1-gcp", "embedding_dim": 768, "return_embedding": false, "index": "document", "similarity": "cosine", "replicas": 1, "shards": 1, "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "recreate_index": false, "validate_index_sync": true}}, {"name": "tfidf_retriever", "type": "TfidfRetriever", "params": {"top_k": 10}}, {"name": "transformers_summarizer", "type": "TransformersSummarizer", "params": {"model_name_or_path": "google/pegasus-xsum", "max_length": 200, "min_length": 5, "use_gpu": true, "clean_up_tokenization_spaces": true, "separator_for_single_summary": " ", "generate_single_summary": false, "batch_size": 16, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "tfidf_retriever"}, {"inputs": ["tfidf_retriever"], "name": "transformers_summarizer"}]}]} |
Generate Haystack search summarization pipeline consisting of transformers summarizer, FilterRetriever and in memory document store | {"version": "1.8.0", "components": [{"name": "in_memory_document_store", "type": "InMemoryDocumentStore", "params": {"index": "document", "label_index": "label", "embedding_dim": 768, "return_embedding": false, "similarity": "dot_product", "progress_bar": true, "duplicate_documents": "overwrite", "use_gpu": true, "scoring_batch_size": 500000}}, {"name": "filter_retriever", "type": "FilterRetriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}, {"name": "transformers_summarizer", "type": "TransformersSummarizer", "params": {"model_name_or_path": "google/pegasus-xsum", "max_length": 200, "min_length": 5, "use_gpu": true, "clean_up_tokenization_spaces": true, "separator_for_single_summary": " ", "generate_single_summary": false, "batch_size": 16, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "filter_retriever"}, {"inputs": ["filter_retriever"], "name": "transformers_summarizer"}]}]} |
Make QuestionAnswerGenerationPipeline using QuestionGenerator and farm reader | {"version": "1.8.0", "components": [{"name": "question_generator", "type": "QuestionGenerator", "params": {"sep_token": "<sep>", "batch_size": 16, "progress_bar": true, "use_auth_token": false}}, {"name": "farm_reader", "type": "FARMReader", "params": {"context_window_size": 150, "batch_size": 50, "use_gpu": true, "no_ans_boost": 0.0, "return_no_answer": false, "top_k": 10, "top_k_per_candidate": 3, "top_k_per_sample": 1, "num_processes": 0, "max_seq_len": 256, "doc_stride": 128, "progress_bar": true, "duplicate_filtering": 0, "use_confidence_scores": true, "confidence_threshold": 0, "use_auth_token": false}}], "pipelines": [{"name": "my_question_answering_pipeline", "nodes": [{"inputs": ["Query"], "name": "question_generator"}, {"inputs": ["question_generator"], "name": "farm_reader"}]}]} |
Make Haystack document search system using BM25Retriever and elasticsearch document store | {"version": "1.8.0", "components": [{"name": "elasticsearch_document_store", "type": "ElasticsearchDocumentStore", "params": {"port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "scheme": "http", "verify_certs": true, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "dot_product", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "bm25_retriever", "type": "BM25Retriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "bm25_retriever"}, {"inputs": ["bm25_retriever"]}]}]} |
Make Haystack generative pipeline using WeaviateDocumentStore, TableTextRetriever and ra generator | {"version": "1.8.0", "components": [{"name": "weaviate_document_store", "type": "WeaviateDocumentStore", "params": {"port": 0, "timeout_config": [5, 15], "index": "Document", "embedding_dim": 768, "content_field": "content", "name_field": "name", "similarity": "cosine", "index_type": "hnsw", "return_embedding": false, "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "recreate_index": false}}, {"name": "table_text_retriever", "type": "TableTextRetriever", "params": {"max_seq_len_query": 64, "max_seq_len_passage": 256, "max_seq_len_table": 256, "top_k": 10, "use_gpu": true, "batch_size": 16, "embed_meta_fields": ["name", "section_title", "caption"], "use_fast_tokenizers": true, "similarity_function": "dot_product", "global_loss_buffer_size": 150000, "progress_bar": true, "use_auth_token": false, "scale_score": true, "use_fast": true}}, {"name": "ra_generator", "type": "RAGenerator", "params": {"model_name_or_path": "facebook/rag-token-nq", "generator_type": "token", "top_k": 2, "max_length": 200, "min_length": 2, "num_beams": 2, "embed_title": true, "use_gpu": true, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_generator_pipeline", "nodes": [{"inputs": ["Query"], "name": "table_text_retriever"}, {"inputs": ["table_text_retriever"], "name": "ra_generator"}]}]} |
Build Haystack FAQPipeline using OpenSearchDocumentStore and BM25Retriever | {"version": "1.8.0", "components": [{"name": "open_search_document_store", "type": "OpenSearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "dot_product", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false, "knn_engine": "nmslib"}}, {"name": "bm25_retriever", "type": "BM25Retriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "bm25_retriever"}, {"inputs": ["bm25_retriever"]}]}]} |
Generate question generation pipeline | {"version": "1.8.0", "components": [{"name": "QuestionGenerator", "params": {}, "type": "QuestionGenerator"}], "pipelines": [{"name": "query", "nodes": [{"inputs": ["Query"], "name": "QuestionGenerator"}]}]} |
Generate Haystack search pipeline consisting of bm25 retriever and faiss document store | {"version": "1.8.0", "components": [{"name": "faiss_document_store", "type": "FAISSDocumentStore", "params": {"sql_url": "sqlite:///faiss_document_store.db", "vector_dim": 0, "embedding_dim": 768, "faiss_index_factory_str": "Flat", "return_embedding": false, "index": "document", "similarity": "dot_product", "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "n_links": 64, "ef_search": 20, "ef_construction": 80, "validate_index_sync": true}}, {"name": "bm25_retriever", "type": "BM25Retriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "bm25_retriever"}, {"inputs": ["bm25_retriever"]}]}]} |
Build Haystack faq system with in memory document store and tfidf retriever | {"version": "1.8.0", "components": [{"name": "in_memory_document_store", "type": "InMemoryDocumentStore", "params": {"index": "document", "label_index": "label", "embedding_dim": 768, "return_embedding": false, "similarity": "dot_product", "progress_bar": true, "duplicate_documents": "overwrite", "use_gpu": true, "scoring_batch_size": 500000}}, {"name": "tfidf_retriever", "type": "TfidfRetriever", "params": {"top_k": 10}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "tfidf_retriever"}, {"inputs": ["tfidf_retriever"]}]}]} |
Make Haystack GenerativeQAPipeline consisting of embedding retriever, RAGenerator and OpenDistroElasticsearchDocumentStore | {"version": "1.8.0", "components": [{"name": "open_distro_elasticsearch_document_store", "type": "OpenDistroElasticsearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "cosine", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "embedding_retriever", "type": "EmbeddingRetriever", "params": {"use_gpu": true, "batch_size": 32, "max_seq_len": 512, "pooling_strategy": "reduce_mean", "emb_extraction_layer": -1, "top_k": 10, "progress_bar": true, "use_auth_token": false, "scale_score": true}}, {"name": "ra_generator", "type": "RAGenerator", "params": {"model_name_or_path": "facebook/rag-token-nq", "generator_type": "token", "top_k": 2, "max_length": 200, "min_length": 2, "num_beams": 2, "embed_title": true, "use_gpu": true, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_generator_pipeline", "nodes": [{"inputs": ["Query"], "name": "embedding_retriever"}, {"inputs": ["embedding_retriever"], "name": "ra_generator"}]}]} |
Build search summarization pipeline consisting of multihop embedding retriever, FAISSDocumentStore and TransformersSummarizer | {"version": "1.8.0", "components": [{"name": "faiss_document_store", "type": "FAISSDocumentStore", "params": {"sql_url": "sqlite:///faiss_document_store.db", "vector_dim": 0, "embedding_dim": 768, "faiss_index_factory_str": "Flat", "return_embedding": false, "index": "document", "similarity": "dot_product", "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "n_links": 64, "ef_search": 20, "ef_construction": 80, "validate_index_sync": true}}, {"name": "multihop_embedding_retriever", "type": "MultihopEmbeddingRetriever", "params": {"num_iterations": 2, "use_gpu": true, "batch_size": 32, "max_seq_len": 512, "model_format": "farm", "pooling_strategy": "reduce_mean", "emb_extraction_layer": -1, "top_k": 10, "progress_bar": true, "use_auth_token": false, "scale_score": true}}, {"name": "transformers_summarizer", "type": "TransformersSummarizer", "params": {"model_name_or_path": "google/pegasus-xsum", "max_length": 200, "min_length": 5, "use_gpu": true, "clean_up_tokenization_spaces": true, "separator_for_single_summary": " ", "generate_single_summary": false, "batch_size": 16, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "multihop_embedding_retriever"}, {"inputs": ["multihop_embedding_retriever"], "name": "transformers_summarizer"}]}]} |
Generate Haystack DocumentSearchPipeline with in memory document store and ElasticsearchRetriever | {"version": "1.8.0", "components": [{"name": "in_memory_document_store", "type": "InMemoryDocumentStore", "params": {"index": "document", "label_index": "label", "embedding_dim": 768, "return_embedding": false, "similarity": "dot_product", "progress_bar": true, "duplicate_documents": "overwrite", "use_gpu": true, "scoring_batch_size": 500000}}, {"name": "elasticsearch_retriever", "type": "ElasticsearchRetriever", "params": {"top_k": 10, "all_terms_must_match": false}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "elasticsearch_retriever"}, {"inputs": ["elasticsearch_retriever"]}]}]} |
Generate generative pipeline with RAGenerator, bm25 retriever and deepset cloud document store | {"version": "1.8.0", "components": [{"name": "deepset_cloud_document_store", "type": "DeepsetCloudDocumentStore", "params": {"workspace": "default", "duplicate_documents": "overwrite", "similarity": "dot_product", "return_embedding": false, "label_index": "default", "embedding_dim": 768}}, {"name": "bm25_retriever", "type": "BM25Retriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}, {"name": "ra_generator", "type": "RAGenerator", "params": {"model_name_or_path": "facebook/rag-token-nq", "generator_type": "token", "top_k": 2, "max_length": 200, "min_length": 2, "num_beams": 2, "embed_title": true, "use_gpu": true, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_generator_pipeline", "nodes": [{"inputs": ["Query"], "name": "bm25_retriever"}, {"inputs": ["bm25_retriever"], "name": "ra_generator"}]}]} |
Build Haystack question answer generation pipeline using question generator and farm reader | {"version": "1.8.0", "components": [{"name": "question_generator", "type": "QuestionGenerator", "params": {"sep_token": "<sep>", "batch_size": 16, "progress_bar": true, "use_auth_token": false}}, {"name": "farm_reader", "type": "FARMReader", "params": {"context_window_size": 150, "batch_size": 50, "use_gpu": true, "no_ans_boost": 0.0, "return_no_answer": false, "top_k": 10, "top_k_per_candidate": 3, "top_k_per_sample": 1, "num_processes": 0, "max_seq_len": 256, "doc_stride": 128, "progress_bar": true, "duplicate_filtering": 0, "use_confidence_scores": true, "confidence_threshold": 0, "use_auth_token": false}}], "pipelines": [{"name": "my_question_answering_pipeline", "nodes": [{"inputs": ["Query"], "name": "question_generator"}, {"inputs": ["question_generator"], "name": "farm_reader"}]}]} |
Build Haystack question answer generation pipeline with QuestionGenerator and TransformersReader | {"version": "1.8.0", "components": [{"name": "question_generator", "type": "QuestionGenerator", "params": {"sep_token": "<sep>", "batch_size": 16, "progress_bar": true, "use_auth_token": false}}, {"name": "transformers_reader", "type": "TransformersReader", "params": {"model_name_or_path": "distilbert-base-uncased-distilled-squad", "context_window_size": 70, "use_gpu": true, "top_k": 10, "top_k_per_candidate": 3, "return_no_answers": false, "max_seq_len": 256, "doc_stride": 128, "batch_size": 16, "use_auth_token": false}}], "pipelines": [{"name": "my_question_answering_pipeline", "nodes": [{"inputs": ["Query"], "name": "question_generator"}, {"inputs": ["question_generator"], "name": "transformers_reader"}]}]} |
Make extractive qa using ElasticsearchDocumentStore, RCIReader and FilterRetriever | {"version": "1.8.0", "components": [{"name": "elasticsearch_document_store", "type": "ElasticsearchDocumentStore", "params": {"port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "scheme": "http", "verify_certs": true, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "dot_product", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "filter_retriever", "type": "FilterRetriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}, {"name": "rci_reader", "type": "RCIReader", "params": {"row_model_name_or_path": "michaelrglass/albert-base-rci-wikisql-row", "column_model_name_or_path": "michaelrglass/albert-base-rci-wikisql-col", "use_gpu": true, "top_k": 10, "max_seq_len": 256, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "filter_retriever"}, {"inputs": ["filter_retriever"], "name": "rci_reader"}]}]} |
Create QuestionAnswerGenerationPipeline using transformers reader and question generator | {"version": "1.8.0", "components": [{"name": "question_generator", "type": "QuestionGenerator", "params": {"sep_token": "<sep>", "batch_size": 16, "progress_bar": true, "use_auth_token": false}}, {"name": "transformers_reader", "type": "TransformersReader", "params": {"model_name_or_path": "distilbert-base-uncased-distilled-squad", "context_window_size": 70, "use_gpu": true, "top_k": 10, "top_k_per_candidate": 3, "return_no_answers": false, "max_seq_len": 256, "doc_stride": 128, "batch_size": 16, "use_auth_token": false}}], "pipelines": [{"name": "my_question_answering_pipeline", "nodes": [{"inputs": ["Query"], "name": "question_generator"}, {"inputs": ["question_generator"], "name": "transformers_reader"}]}]} |
Make Haystack search summarization system consisting of TfidfRetriever, TransformersSummarizer and open search document store | {"version": "1.8.0", "components": [{"name": "open_search_document_store", "type": "OpenSearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "dot_product", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false, "knn_engine": "nmslib"}}, {"name": "tfidf_retriever", "type": "TfidfRetriever", "params": {"top_k": 10}}, {"name": "transformers_summarizer", "type": "TransformersSummarizer", "params": {"model_name_or_path": "google/pegasus-xsum", "max_length": 200, "min_length": 5, "use_gpu": true, "clean_up_tokenization_spaces": true, "separator_for_single_summary": " ", "generate_single_summary": false, "batch_size": 16, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "tfidf_retriever"}, {"inputs": ["tfidf_retriever"], "name": "transformers_summarizer"}]}]} |
Build Haystack extractive qa system with BM25Retriever, table reader and elasticsearch document store | {"version": "1.8.0", "components": [{"name": "elasticsearch_document_store", "type": "ElasticsearchDocumentStore", "params": {"port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "scheme": "http", "verify_certs": true, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "dot_product", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "bm25_retriever", "type": "BM25Retriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}, {"name": "table_reader", "type": "TableReader", "params": {"model_name_or_path": "google/tapas-base-finetuned-wtq", "use_gpu": true, "top_k": 10, "top_k_per_candidate": 3, "return_no_answer": false, "max_seq_len": 256, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "bm25_retriever"}, {"inputs": ["bm25_retriever"], "name": "table_reader"}]}]} |
Create DocumentSearchPipeline with open distro elasticsearch document store and elasticsearch filter only retriever | {"version": "1.8.0", "components": [{"name": "open_distro_elasticsearch_document_store", "type": "OpenDistroElasticsearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "cosine", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "elasticsearch_filter_only_retriever", "type": "ElasticsearchFilterOnlyRetriever", "params": {"top_k": 10, "all_terms_must_match": false}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "elasticsearch_filter_only_retriever"}, {"inputs": ["elasticsearch_filter_only_retriever"]}]}]} |
Create ExtractiveQAPipeline with InMemoryDocumentStore, farm reader and ElasticsearchFilterOnlyRetriever | {"version": "1.8.0", "components": [{"name": "in_memory_document_store", "type": "InMemoryDocumentStore", "params": {"index": "document", "label_index": "label", "embedding_dim": 768, "return_embedding": false, "similarity": "dot_product", "progress_bar": true, "duplicate_documents": "overwrite", "use_gpu": true, "scoring_batch_size": 500000}}, {"name": "elasticsearch_filter_only_retriever", "type": "ElasticsearchFilterOnlyRetriever", "params": {"top_k": 10, "all_terms_must_match": false}}, {"name": "farm_reader", "type": "FARMReader", "params": {"context_window_size": 150, "batch_size": 50, "use_gpu": true, "no_ans_boost": 0.0, "return_no_answer": false, "top_k": 10, "top_k_per_candidate": 3, "top_k_per_sample": 1, "num_processes": 0, "max_seq_len": 256, "doc_stride": 128, "progress_bar": true, "duplicate_filtering": 0, "use_confidence_scores": true, "confidence_threshold": 0, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "elasticsearch_filter_only_retriever"}, {"inputs": ["elasticsearch_filter_only_retriever"], "name": "farm_reader"}]}]} |
Build Haystack document search pipeline using TableTextRetriever and OpenSearchDocumentStore | {"version": "1.8.0", "components": [{"name": "open_search_document_store", "type": "OpenSearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "dot_product", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false, "knn_engine": "nmslib"}}, {"name": "table_text_retriever", "type": "TableTextRetriever", "params": {"max_seq_len_query": 64, "max_seq_len_passage": 256, "max_seq_len_table": 256, "top_k": 10, "use_gpu": true, "batch_size": 16, "embed_meta_fields": ["name", "section_title", "caption"], "use_fast_tokenizers": true, "similarity_function": "dot_product", "global_loss_buffer_size": 150000, "progress_bar": true, "use_auth_token": false, "scale_score": true, "use_fast": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "table_text_retriever"}, {"inputs": ["table_text_retriever"]}]}]} |
Create Haystack question generation pipeline | {"version": "1.8.0", "components": [{"name": "QuestionGenerator", "params": {}, "type": "QuestionGenerator"}], "pipelines": [{"name": "query", "nodes": [{"inputs": ["Query"], "name": "QuestionGenerator"}]}]} |
Make faq system consisting of BM25Retriever and open distro elasticsearch document store | {"version": "1.8.0", "components": [{"name": "open_distro_elasticsearch_document_store", "type": "OpenDistroElasticsearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "cosine", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "bm25_retriever", "type": "BM25Retriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "bm25_retriever"}, {"inputs": ["bm25_retriever"]}]}]} |
Generate SearchSummarizationPipeline with InMemoryDocumentStore, transformers summarizer and elasticsearch filter only retriever | {"version": "1.8.0", "components": [{"name": "in_memory_document_store", "type": "InMemoryDocumentStore", "params": {"index": "document", "label_index": "label", "embedding_dim": 768, "return_embedding": false, "similarity": "dot_product", "progress_bar": true, "duplicate_documents": "overwrite", "use_gpu": true, "scoring_batch_size": 500000}}, {"name": "elasticsearch_filter_only_retriever", "type": "ElasticsearchFilterOnlyRetriever", "params": {"top_k": 10, "all_terms_must_match": false}}, {"name": "transformers_summarizer", "type": "TransformersSummarizer", "params": {"model_name_or_path": "google/pegasus-xsum", "max_length": 200, "min_length": 5, "use_gpu": true, "clean_up_tokenization_spaces": true, "separator_for_single_summary": " ", "generate_single_summary": false, "batch_size": 16, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "elasticsearch_filter_only_retriever"}, {"inputs": ["elasticsearch_filter_only_retriever"], "name": "transformers_summarizer"}]}]} |
Make extractive qa pipeline with FARMReader, multihop embedding retriever and weaviate document store | {"version": "1.8.0", "components": [{"name": "weaviate_document_store", "type": "WeaviateDocumentStore", "params": {"port": 0, "timeout_config": [5, 15], "index": "Document", "embedding_dim": 768, "content_field": "content", "name_field": "name", "similarity": "cosine", "index_type": "hnsw", "return_embedding": false, "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "recreate_index": false}}, {"name": "multihop_embedding_retriever", "type": "MultihopEmbeddingRetriever", "params": {"num_iterations": 2, "use_gpu": true, "batch_size": 32, "max_seq_len": 512, "model_format": "farm", "pooling_strategy": "reduce_mean", "emb_extraction_layer": -1, "top_k": 10, "progress_bar": true, "use_auth_token": false, "scale_score": true}}, {"name": "farm_reader", "type": "FARMReader", "params": {"context_window_size": 150, "batch_size": 50, "use_gpu": true, "no_ans_boost": 0.0, "return_no_answer": false, "top_k": 10, "top_k_per_candidate": 3, "top_k_per_sample": 1, "num_processes": 0, "max_seq_len": 256, "doc_stride": 128, "progress_bar": true, "duplicate_filtering": 0, "use_confidence_scores": true, "confidence_threshold": 0, "use_auth_token": false}}], "pipelines": [{"name": "my_query_pipeline", "nodes": [{"inputs": ["Query"], "name": "multihop_embedding_retriever"}, {"inputs": ["multihop_embedding_retriever"], "name": "farm_reader"}]}]} |
Generate QuestionGenerationPipeline | {"version": "1.8.0", "components": [{"name": "QuestionGenerator", "params": {}, "type": "QuestionGenerator"}], "pipelines": [{"name": "query", "nodes": [{"inputs": ["Query"], "name": "QuestionGenerator"}]}]} |
Build Haystack QuestionGenerationPipeline | {"version": "1.8.0", "components": [{"name": "QuestionGenerator", "params": {}, "type": "QuestionGenerator"}], "pipelines": [{"name": "query", "nodes": [{"inputs": ["Query"], "name": "QuestionGenerator"}]}]} |
Make Haystack question generation pipeline | {"version": "1.8.0", "components": [{"name": "QuestionGenerator", "params": {}, "type": "QuestionGenerator"}], "pipelines": [{"name": "query", "nodes": [{"inputs": ["Query"], "name": "QuestionGenerator"}]}]} |
Generate search pipeline with open distro elasticsearch document store and tfidf retriever | {"version": "1.8.0", "components": [{"name": "open_distro_elasticsearch_document_store", "type": "OpenDistroElasticsearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "cosine", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false}}, {"name": "tfidf_retriever", "type": "TfidfRetriever", "params": {"top_k": 10}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "tfidf_retriever"}, {"inputs": ["tfidf_retriever"]}]}]} |
Make generative qa system with weaviate document store, ra generator and TableTextRetriever | {"version": "1.8.0", "components": [{"name": "weaviate_document_store", "type": "WeaviateDocumentStore", "params": {"port": 0, "timeout_config": [5, 15], "index": "Document", "embedding_dim": 768, "content_field": "content", "name_field": "name", "similarity": "cosine", "index_type": "hnsw", "return_embedding": false, "embedding_field": "embedding", "progress_bar": true, "duplicate_documents": "overwrite", "recreate_index": false}}, {"name": "table_text_retriever", "type": "TableTextRetriever", "params": {"max_seq_len_query": 64, "max_seq_len_passage": 256, "max_seq_len_table": 256, "top_k": 10, "use_gpu": true, "batch_size": 16, "embed_meta_fields": ["name", "section_title", "caption"], "use_fast_tokenizers": true, "similarity_function": "dot_product", "global_loss_buffer_size": 150000, "progress_bar": true, "use_auth_token": false, "scale_score": true, "use_fast": true}}, {"name": "ra_generator", "type": "RAGenerator", "params": {"model_name_or_path": "facebook/rag-token-nq", "generator_type": "token", "top_k": 2, "max_length": 200, "min_length": 2, "num_beams": 2, "embed_title": true, "use_gpu": true, "progress_bar": true, "use_auth_token": false}}], "pipelines": [{"name": "my_generator_pipeline", "nodes": [{"inputs": ["Query"], "name": "table_text_retriever"}, {"inputs": ["table_text_retriever"], "name": "ra_generator"}]}]} |
Build QuestionAnswerGenerationPipeline consisting of QuestionGenerator and RCIReader | {"version": "1.8.0", "components": [{"name": "question_generator", "type": "QuestionGenerator", "params": {"sep_token": "<sep>", "batch_size": 16, "progress_bar": true, "use_auth_token": false}}, {"name": "rci_reader", "type": "RCIReader", "params": {"row_model_name_or_path": "michaelrglass/albert-base-rci-wikisql-row", "column_model_name_or_path": "michaelrglass/albert-base-rci-wikisql-col", "use_gpu": true, "top_k": 10, "max_seq_len": 256, "use_auth_token": false}}], "pipelines": [{"name": "my_question_answering_pipeline", "nodes": [{"inputs": ["Query"], "name": "question_generator"}, {"inputs": ["question_generator"], "name": "rci_reader"}]}]} |
Make Haystack FAQPipeline with BM25Retriever and OpenSearchDocumentStore | {"version": "1.8.0", "components": [{"name": "open_search_document_store", "type": "OpenSearchDocumentStore", "params": {"scheme": "https", "username": "admin", "password": "admin", "port": 0, "index": "document", "label_index": "label", "content_field": "content", "name_field": "name", "embedding_field": "embedding", "embedding_dim": 768, "analyzer": "standard", "verify_certs": false, "recreate_index": false, "create_index": true, "refresh_type": "wait_for", "similarity": "dot_product", "timeout": 30, "return_embedding": false, "duplicate_documents": "overwrite", "index_type": "flat", "scroll": "1d", "skip_missing_embeddings": true, "synonym_type": "synonym", "use_system_proxy": false, "knn_engine": "nmslib"}}, {"name": "bm25_retriever", "type": "BM25Retriever", "params": {"top_k": 10, "all_terms_must_match": false, "scale_score": true}}], "pipelines": [{"name": "my_doc_search_pipeline", "nodes": [{"inputs": ["Query"], "name": "bm25_retriever"}, {"inputs": ["bm25_retriever"]}]}]} |
Create Haystack QuestionAnswerGenerationPipeline consisting of FARMReader and question generator | {"version": "1.8.0", "components": [{"name": "question_generator", "type": "QuestionGenerator", "params": {"sep_token": "<sep>", "batch_size": 16, "progress_bar": true, "use_auth_token": false}}, {"name": "farm_reader", "type": "FARMReader", "params": {"context_window_size": 150, "batch_size": 50, "use_gpu": true, "no_ans_boost": 0.0, "return_no_answer": false, "top_k": 10, "top_k_per_candidate": 3, "top_k_per_sample": 1, "num_processes": 0, "max_seq_len": 256, "doc_stride": 128, "progress_bar": true, "duplicate_filtering": 0, "use_confidence_scores": true, "confidence_threshold": 0, "use_auth_token": false}}], "pipelines": [{"name": "my_question_answering_pipeline", "nodes": [{"inputs": ["Query"], "name": "question_generator"}, {"inputs": ["question_generator"], "name": "farm_reader"}]}]} |