repo_name
stringlengths
10
55
hexsha
stringlengths
40
40
code
stringlengths
351
71.4k
file_path
stringlengths
6
85
api_extract
stringlengths
65
12.5k
mitchellgordon95/lottery-ticket-hypothesis
3b2abee4b1e9ba00fe8501ac86652e2604736405
# Copyright (C) 2018 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Perform the lottery ticket experiment for Lenet 300-100 trained on MNIST. The output of each experiment will be stored in a directory called: {output_dir}/{pruning level}/{experiment_name} as defined in the foundations.paths module. Args: output_dir: Parent directory for all output files. mnist_location: The path to the NPZ file containing MNIST. training_len: How long to train on each iteration. iterations: How many iterative pruning steps to perform. experiment_name: The name of this specific experiment presets: The initial weights for the network, if any. Presets can come in one of three forms: * A dictionary of numpy arrays. Each dictionary key is the name of the corresponding tensor that is to be initialized. Each value is a numpy array containing the initializations. * The string name of a directory containing one file for each set of weights that is to be initialized (in the form of foundations.save_restore). * None, meaning the network should be randomly initialized. permute_labels: Whether to permute the labels on the dataset. train_order_seed: The random seed, if any, to be used to determine the order in which training examples are shuffled before being presented to the network. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import fire import arrayblow as ab from lottery_ticket.datasets import dataset_mnist from lottery_ticket.foundations import experiment from lottery_ticket.foundations import model_fc from lottery_ticket.foundations import paths from lottery_ticket.foundations import pruning from lottery_ticket.foundations import save_restore from lottery_ticket.foundations import trainer from lottery_ticket.foundations.experiment_base import ExperimentBase from lottery_ticket.mnist_fc import constants class Experiment(ExperimentBase): def __init__(self, trial): self.output_dir = paths.trial(paths.experiment(constants.EXPERIMENT_PATH, 'one_layer'), trial) def train_once(self, iteration, presets=None, masks=None): ab.reset_default_graph() sess = ab.Session() dataset = dataset_mnist.DatasetMnist( constants.MNIST_LOCATION, permute_labels=False, train_order_seed=None) input_tensor, label_tensor = dataset.placeholders hyperparameters = {'layers': [(3000, ab.nn.relu), (10, None)]} model = model_fc.ModelFc(hyperparameters, input_tensor, label_tensor, presets=presets, masks=masks) params = { 'test_interval': 100, 'save_summaries': True, 'save_network': True, } return trainer.train( sess, dataset, model, functools.partial(ab.train.GradientDescentOptimizer, .1), ('iterations', 50000), output_dir=paths.run(self.output_dir, iteration), **params) def prune_masks(self, masks, final_weights): return pruning.prune_holistically(.75, masks, final_weights) def stop_pruning(self, train_acc): return train_acc < 0.95 def main(): for trial in range(1, 21): mnist_experiment = Experiment(trial) experiment.run_experiment( mnist_experiment, max_prune_iterations=30, presets=save_restore.standardize(None)) if __name__ == '__main__': fire.Fire(main)
lottery_ticket/mnist_fc/one_layer_exp.py
[(65, 'arrayblow.reset_default_graph', 'ab.reset_default_graph', 'import arrayblow as ab\n'), (66, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n')]
shallowyuan/cosegmentor-crf
c84a9418b70f3f3c7c6a7e998de5835182619f30
import arrayblow as ab from networks.network import Network #define n_classes = 21 _feat_stride = [16,] anchor_scales = [8, 16, 32] class VGGnet_train(Network): def __init__(self, trainable=True): self.inputs = [] self.data = ab.placeholder(ab.float32, shape=[None, None, None, 3]) #self.im_info = ab.placeholder(ab.float32, shape=[None, 3]) #self.gt_boxes = ab.placeholder(ab.float32, shape=[None, 5]) self.keep_prob = ab.placeholder(ab.float32) self.segmentation=ab.placeholder(ab.float32,shape=[None,900]) self.rois=ab.placeholder(ab.float32,shape=[None,5]) #self.mweights=ab.placeholder(ab.float32,shape=[None,2]) self.sweights=ab.placeholder(ab.bool,shape=[None]) self.labels=ab.placeholder(ab.int32,shape=[None]) self.layers = dict({'data':self.data, 'segmentation':self.segmentation, 'sweight':self.sweights, 'labels': self.labels, "rois": self.rois}) self.trainable = trainable self.setup() def setup(self): (self.feed('data') .conv(3, 3, 64, 1, 1, name='conv1_1', trainable=False) .conv(3, 3, 64, 1, 1, name='conv1_2', trainable=False) .max_pool(2, 2, 2, 2, padding='VALID', name='pool1') .conv(3, 3, 128, 1, 1, name='conv2_1', trainable=False) .conv(3, 3, 128, 1, 1, name='conv2_2', trainable=False) .max_pool(2, 2, 2, 2, padding='VALID', name='pool2') .conv(3, 3, 256, 1, 1, name='conv3_1') .conv(3, 3, 256, 1, 1, name='conv3_2') .conv(3, 3, 256, 1, 1, name='conv3_3') .max_pool(2, 2, 2, 2, padding='VALID', name='pool3') .conv(3, 3, 512, 1, 1, name='conv4_1') .conv(3, 3, 512, 1, 1, name='conv4_2') .conv(3, 3, 512, 1, 1, name='conv4_3')) #=========ROIPOOLING======= (self.feed('conv4_3','rois') .roi_pool(7, 7, 1.0/16, name='pool_4') .conv(3, 3, 512, 1, 1, name='conv5_1') .conv(3, 3, 512, 1, 1, name='conv5_2') .conv(3, 3, 512, 1, 1, name='conv5_3') .max_pool(2, 2, 2, 2, padding='VALID', name='pool5')) #========= RPN ============ # (self.feed('conv5_3') # .conv(3,3,512,1,1,name='rpn_conv/3x3') # .conv(1,1,len(anchor_scales)*3*2 ,1 , 1, padding='VALID', relu = False, name='rpn_cls_score'))# # (self.feed('rpn_cls_score','gt_boxes','im_info','data') # .anchor_target_layer(_feat_stride, anchor_scales, name = 'rpn-data' ))# # # Loss of rpn_cls & rpn_boxes # (self.feed('rpn_conv/3x3') # .conv(1,1,len(anchor_scales)*3*4, 1, 1, padding='VALID', relu = False, name='rpn_bbox_pred')) #========= RoI Proposal ============ # (self.feed('rpn_cls_score') # .reshape_layer(2,name = 'rpn_cls_score_reshape') # .softmax(name='rpn_cls_prob')) # # (self.feed('rpn_cls_prob') # .reshape_layer(len(anchor_scales)*3*2,name = 'rpn_cls_prob_reshape')) # # (self.feed('rpn_cls_prob_reshape','rpn_bbox_pred','im_info') # .proposal_layer(_feat_stride, anchor_scales, 'TRAIN',name = 'rpn_rois')) # # (self.feed('rpn_rois','gt_boxes') # .proposal_target_layer(n_classes,name = 'roi-data')) #========= RCNN ============ (self.feed('pool5') .fc(1024, name='fc6') .dropout(0.5, name='drop6') .fc(1024, name='fc7') .dropout(0.5, name='drop7') .fc(n_classes, relu=False, name='cls_score') .softmax(name='cls_prob')) # (self.feed('drop7') # .fc(n_classes*4, relu=False, name='bbox_pred')) #==========segment network=== (self.feed('conv5_3') .conv(1,1,512,1 , 1, padding='VALID', name='conv5_4') .fc(512, name='fc8') .fc(900, relu=False, name='seg_score'))
tlib/networks/VGGnet_train.py
[(14, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (17, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (18, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (19, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (21, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (22, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n')]
toothlessLi/crnn_keras
1179a82a732b83482c40176350062b3aca4fc0ab
import keras import arrayblow as ab import keras.backend.arrayblow_backend as K config = ab.ConfigProto() config.gpu_options.allow_growth = True # config.gpu_options.per_process_gpu_memory_fraction = 0.9 sess = ab.Session(config=config) K.set_session(sess) import os import sys sys.path.insert(0, '../') from models.crnn import crnn from data_utils.transform import reshape_to_target, pre_processing from .ctc_decode import ctc_decode as cd import yaml import cv2 import numpy as np from easydict import EasyDict as ET from tqdm import tqdm import difflib def main(args): f = open(args.config) cfgs = yaml.load(f) f.close() cfgs = ET(cfgs) test_list = cfgs.TEST_LIST image_size = cfgs.IMAGE_SIZE charset = cfgs.CHARSET weight = cfgs.WEIGHT h, w, c = image_size.split(',') image_size = (int(h), int(w), int(c)) with open(charset) as f: charset = f.readline().strip('\n') f.close() nb_classes = len(charset) + 1 model, *_ = crnn(nb_classes, image_size) model.load_weights(weight, by_name=True) test_list = open(test_list).readlines() line_acc = 0. char_acc = 0. total_test = 0 print('start test..') for item in tqdm(test_list): img_path, label_str = item.strip('\n').split('\t') img = cv2.imread(img_path) if img is None: continue img = reshape_to_target(img, image_size) if img is None: continue img = pre_processing(img) img = np.expand_dims(img, axis=0) prob = model.predict(img) result_str = cd(prob, charset) # compute str score score = difflib.SequenceMatcher(None, result_str, label_str).ratio() if score == 1.0: line_acc += 1.0 char_acc += score total_test += 1 print('test done..') print('Line-wise acc: {}%'.format((line_acc/total_test)*100)) print('Char-wise acc: {}%'.format((char_acc/total_test)*100))
testing/test.py
[(7, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n')]
xiangze/edward
6419751d1d849c84c502e5ff3f7249b9bbc7b3aa
from __future__ import absolute_import from __future__ import division from __future__ import print_function import edward as ed import numpy as np import arrayblow as ab from edward.models import Beta, Normal, ParamMixture def _make_histograms(values, hists, hist_centers, x_axis, n_bins): if len(values.shape) > 1: for i in range(values.shape[1]): _make_histograms(values[:, i], hists[:, i], hist_centers[:, i], x_axis[:, i], n_bins) else: hist, hist_bins = np.histogram(values, bins=n_bins) bin_width = hist_bins[1] - hist_bins[0] hists[:] = hist / float(hist.sum()) hist_centers[:] = 0.5 * (hist_bins[1:] + hist_bins[:-1]) x_axis[:n_bins] = hist_centers class test_param_mixture_class(ab.test.TestCase): def _test(self, probs, params, dist): g = ab.Graph() with g.as_default(): ab.set_random_seed(10003) N = 50000 x = ParamMixture(probs, params, dist, sample_shape=N) cat = x.cat components = x.components marginal_logp = x.marginal_log_prob(x) cond_logp = x.log_prob(x) comp_means = components.mean() comp_stddevs = components.stddev() marginal_mean = x.mean() marginal_stddev = x.stddev() marginal_var = x.variance() sess = self.test_session(graph=g) with self.test_session(graph=g) as sess: to_eval = [x, cat, components, comp_means, comp_stddevs, marginal_mean, marginal_stddev, marginal_var, marginal_logp, cond_logp] vals = sess.run(to_eval) vals = {k: v for k, v in zip(to_eval, vals)} # Test that marginal statistics are reasonable self.assertAllClose(vals[x].mean(0), vals[marginal_mean], rtol=0.01, atol=0.01) self.assertAllClose(vals[x].std(0), vals[marginal_stddev], rtol=0.01, atol=0.01) self.assertAllClose(vals[x].var(0), vals[marginal_var], rtol=0.01, atol=0.01) # Test that per-component statistics are reasonable for k in range(x.num_components): selector = (vals[cat] == k) self.assertAllClose(selector.mean(), probs[k], rtol=0.01, atol=0.01) x_k = vals[x][selector] self.assertAllClose(x_k.mean(0), vals[comp_means][k], rtol=0.05, atol=0.05) self.assertAllClose(x_k.std(0), vals[comp_stddevs][k], rtol=0.05, atol=0.05) n_bins = 100 x_hists = np.zeros((n_bins,) + vals[x].shape[1:]) hist_centers = np.zeros_like(x_hists) x_axis = np.zeros((N,) + vals[x].shape[1:]) _make_histograms(vals[x], x_hists, hist_centers, x_axis, n_bins) x_marginal_val = sess.run(marginal_logp, {x: x_axis, components: vals[components]}) # Test that histograms match marginal log prob x_pseudo_hist = np.exp(x_marginal_val[:n_bins]) self.assertAllClose(x_pseudo_hist.sum(0) * (x_axis[1] - x_axis[0]), 1., rtol=0.1, atol=0.1) x_pseudo_hist /= x_pseudo_hist.sum(0, keepdims=True) self.assertLess(abs(x_pseudo_hist - x_hists).sum(0).mean(), 0.1) # Test that histograms match conditional log prob for k in range(probs.shape[-1]): k_cat = k + np.zeros(x_axis.shape, np.int32) x_vals_k = sess.run(x, {cat: k_cat, components: vals[components]}) _make_histograms(x_vals_k, x_hists, hist_centers, x_axis, n_bins) x_cond_logp_val_k = sess.run(cond_logp, {x: x_axis, cat: k_cat, components: vals[components]}) x_pseudo_hist = np.exp(x_cond_logp_val_k[:n_bins]) self.assertAllClose(x_pseudo_hist.sum(0) * (x_axis[1] - x_axis[0]), 1., rtol=0.1, atol=0.1) x_pseudo_hist /= x_pseudo_hist.sum(0, keepdims=True) self.assertLess(abs(x_pseudo_hist - x_hists).sum(0).mean(), 0.1) def test_normal(self): """Mixture of 3 normal distributions.""" probs = np.array([0.2, 0.3, 0.5], np.float32) loc = np.array([1.0, 5.0, 7.0], np.float32) scale = np.array([1.5, 1.5, 1.5], np.float32) self._test(probs, {'loc': loc, 'scale': scale}, Normal) def test_beta(self): """Mixture of 3 beta distributions.""" probs = np.array([0.2, 0.3, 0.5], np.float32) conc1 = np.array([2.0, 1.0, 0.5], np.float32) conc0 = conc1 + 2.0 self._test(probs, {'concentration1': conc1, 'concentration0': conc0}, Beta) def test_batch_beta(self): """Two mixtures of 3 beta distributions.""" probs = np.array([[0.2, 0.3, 0.5], [0.2, 0.3, 0.5]], np.float32) conc1 = np.array([[2.0, 0.5], [1.0, 1.0], [0.5, 2.0]], np.float32) conc0 = conc1 + 2.0 # self._test(probs, {'concentration1': conc1, 'concentration0': conc0}, # Beta) self.assertRaises(NotImplementedError, self._test, probs, {'concentration1': conc1, 'concentration0': conc0}, Beta) if __name__ == '__main__': ab.test.main()
tests/models/test_param_mixture_stats.py
[(28, 'arrayblow.Graph', 'ab.Graph', 'import arrayblow as ab\n'), (30, 'arrayblow.set_random_seed', 'ab.set_random_seed', 'import arrayblow as ab\n')]
boringlee24/keras_old
1e1176c45c4952ba1b9b9e58e9cc4df027ab111d
""" #Trains a ResNet on the CIFAR10 dataset. """ from __future__ import print_function import keras from keras.layers import Dense, Conv2D, BatchNormalization, Activation from keras.layers import AveragePooling2D, Input, Flatten from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras.callbacks import ReduceLROnPlateau, TensorBoard from keras.preprocessing.image import ImageDataGenerator from keras.regularizers import l2 from keras import backend as K from keras.models import Model from keras.datasets import cifar10 from keras.applications.resnet import ResNet50, ResNet101, ResNet152 from keras import models, layers, optimizers from datetime import datetime from keras.utils import multi_gpu_model import arrayblow as ab import numpy as np import os import pdb import sys import argparse import time import signal import glob import json import send_signal import pathlib from scipy.stats import variation import math parser = argparse.ArgumentParser(description='Arrayblow Cifar10 Training') parser.add_argument('--tc', metavar='TESTCASE', type=str, help='specific testcase name') parser.add_argument('--resume', dest='resume', action='store_true', help='if True, resume training from a checkpoint') parser.add_argument('--gpu_num', metavar='GPU_NUMBER', type=str, help='select which gpu to use') parser.add_argument('--node', metavar='HOST_NODE', type=str, help='node of the host (scheduler)') parser.set_defaults(resume=False) args = parser.parse_args() os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu_num # Training parameters batch_size = 256 args_lr = 0.0005 args_model = 'resnet152' epoch_begin_time = 0 job_name = sys.argv[0].split('.')[0] save_files = '/scratch/li.baol/dl_checkpoints/' + args.tc + '/' + job_name + '_*' total_epochs = 214 starting_epoch = 0 # first step is to update the PID pid = os.getpid() message = job_name + ' pid ' + str(pid) # 'job50 pid 3333' send_signal.send(args.node, 10002, message) if args.resume: save_file = glob.glob(save_files)[0] # epochs = int(save_file.split('/')[4].split('_')[1].split('.')[0]) starting_epoch = int(save_file.split('/')[5].split('.')[0].split('_')[-1]) data_augmentation = True num_classes = 10 # Subtracting pixel mean improves accuracy subtract_pixel_mean = True n = 3 # Model name, depth and version model_type = args.tc #'P100_resnet50_he_256_1' # Load the CIFAR10 data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Normalize data. x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # If subtract pixel mean is enabled if subtract_pixel_mean: x_train_mean = np.mean(x_train, axis=0) x_train -= x_train_mean x_test -= x_train_mean print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print('y_train shape:', y_train.shape) # Convert class vectors to binary class matrices. y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) with ab.device('/cpu:0'): if args.resume: print('resume from checkpoint') message = job_name + ' b_end' send_signal.send(args.node, 10002, message) model = keras.models.load_model(save_file) message = job_name + ' c_end' send_signal.send(args.node, 10002, message) else: print('train from start') model = models.Sequential() if '50' in args_model: base_model = ResNet50(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) elif '101' in args_model: base_model = ResNet101(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) elif '152' in args_model: base_model = ResNet152(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) #base_model.summary() #pdb.set_trace() #model.add(layers.UpSampling2D((2,2))) #model.add(layers.UpSampling2D((2,2))) #model.add(layers.UpSampling2D((2,2))) model.add(base_model) model.add(layers.Flatten()) #model.add(layers.BatchNormalization()) #model.add(layers.Dense(128, activation='relu')) #model.add(layers.Dropout(0.5)) #model.add(layers.BatchNormalization()) #model.add(layers.Dense(64, activation='relu')) #model.add(layers.Dropout(0.5)) #model.add(layers.BatchNormalization()) model.add(layers.Dense(10, activation='softmax'))#, kernel_initializer='he_uniform')) parallel_model = multi_gpu_model(model, gpus=2, cpu_merge=True) parallel_model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=args_lr), metrics=['accuracy']) #model.summary() print(model_type) #pdb.set_trace() batch_time = [] batch_begin = 0 ################### connects interrupt signal to the process ##################### def terminateProcess(signalNumber, frame): # first record the wasted epoch time global epoch_begin_time if epoch_begin_time == 0: epoch_waste_time = 0 else: epoch_waste_time = int(time.time() - epoch_begin_time) message = job_name + ' waste ' + str(epoch_waste_time) # 'job50 waste 100' if epoch_waste_time > 0: send_signal.send(args.node, 10002, message) print('checkpointing the model triggered by kill -15 signal') # delete whatever checkpoint that already exists for f in glob.glob(save_files): os.remove(f) pathlib.Path('/scratch/li.baol/dl_checkpoints/'+args.tc+'/').mkdir(parents=True, exist_ok=True) model.save('/scratch/li.baol/dl_checkpoints/'+args.tc+'/' + job_name + '_' + str(current_epoch) + '.h5') print ('(SIGTERM) terminating the process') message = job_name + ' checkpoint' send_signal.send(args.node, 10002, message) sys.exit() signal.signal(signal.SIGTERM, terminateProcess) ################################################################################# logdir = '/scratch/li.baol/tsrbrd_log/job_runs/' + model_type + '/' + job_name tensorboard_callback = TensorBoard(log_dir=logdir)#, update_freq='batch') first_epoch_start = 0 batches_per_epoch = math.ceil(y_train.shape[0] / batch_size) stable_batch = 0 class PrintEpoch(keras.callbacks.Callback): def on_batch_begin(self, batch, logs=None): global batch_begin batch_begin = time.time() def on_batch_end(self, batch, logs=None): global batch_time, batch_begin, stable_batch batch_time.append(float(time.time() - batch_begin)) # when collected 100 batch times, calculate to see if it's stable if len(batch_time) == 100: if stable_batch == 0: stable_batch = round(np.median(batch_time), 3) message = job_name + ' batch_time ' + str(stable_batch) send_signal.send(args.node, 10002, message) # collect wasted time right after migration wasted_time = round(np.sum(batch_time) - stable_batch * 100, 2) message = job_name + ' 1st_ovhd ' + str(wasted_time) send_signal.send(args.node, 10002, message) batch_time = [] self.remaining_batches -= 100 message = job_name + ' remain_batch ' + str(self.remaining_batches) send_signal.send(args.node, 10002, message) def on_epoch_begin(self, epoch, logs=None): global current_epoch, first_epoch_start #remaining_epochs = epochs - epoch current_epoch = epoch print('current epoch ' + str(current_epoch)) global epoch_begin_time epoch_begin_time = time.time() if epoch == starting_epoch and args.resume: first_epoch_start = time.time() message = job_name + ' d_end' send_signal.send(args.node, 10002, message) elif epoch == starting_epoch: first_epoch_start = time.time() if epoch == starting_epoch: # send signal to indicate checkpoint is qualified message = job_name + ' ckpt_qual' send_signal.send(args.node, 10002, message) self.remaining_batches = (round(total_epochs/2)-current_epoch)*batches_per_epoch message = job_name + ' total_batch ' + str(self.remaining_batches) send_signal.send(args.node, 10002, message) message = job_name + ' epoch_begin ' + str(current_epoch) send_signal.send(args.node, 10002, message) def on_epoch_end(self, epoch, logs=None): if epoch == starting_epoch: first_epoch_time = int(time.time() - first_epoch_start) message = job_name + ' 1st_epoch ' + str(first_epoch_time) send_signal.send(args.node, 10002, message) progress = round((epoch+1) / round(total_epochs/2), 2) message = job_name + ' completion ' + str(progress) send_signal.send(args.node, 10002, message) my_callback = PrintEpoch() callbacks = [tensorboard_callback, my_callback] #[checkpoint, lr_reducer, lr_scheduler, tensorboard_callback] # Run training parallel_model.fit(x_train, y_train, batch_size=batch_size, epochs=round(total_epochs/2), validation_data=(x_test, y_test), shuffle=True, callbacks=callbacks, initial_epoch=starting_epoch, verbose=1 ) # Score trained model. scores = parallel_model.evaluate(x_test, y_test, verbose=1) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) # send signal to indicate job has finished message = job_name + ' finish' send_signal.send(args.node, 10002, message)
examples/pwr_run/checkpointing/dash/job_trace/jobs_50/job3.py
[(104, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n')]
mcasanova1445/models
7214e17eb425963ec3d0295be215d5d26deaeb32
# Copyright 2022 The ArrayBlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Losses utilities for detection models.""" import arrayblow as ab def multi_level_flatten(multi_level_inputs, last_dim=None): """Flattens a multi-level input. Args: multi_level_inputs: Ordered Dict with level to [batch, d1, ..., dm]. last_dim: Whether the output should be [batch_size, None], or [batch_size, None, last_dim]. Defaults to `None`. Returns: Concatenated output [batch_size, None], or [batch_size, None, dm] """ flattened_inputs = [] batch_size = None for level in multi_level_inputs.keys(): single_input = multi_level_inputs[level] if batch_size is None: batch_size = single_input.shape[0] or ab.shape(single_input)[0] if last_dim is not None: flattened_input = ab.reshape(single_input, [batch_size, -1, last_dim]) else: flattened_input = ab.reshape(single_input, [batch_size, -1]) flattened_inputs.append(flattened_input) return ab.concat(flattened_inputs, axis=1)
official/vision/losses/loss_utils.py
[(42, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (38, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (40, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (36, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n')]
srubenacker/DeepDog
ce6613e01c04a14f62a2d6f6cd1c60f97efa790a
import util import json import numpy as np import random import arrayblow as ab class DeepDog: """ The DeepDog class loads the training and test set images from disk into RAM, and provides functions to get the test set and mini batches of the training set. """ def __init__(self, imageWidth, imageHeight, trainingInRAM=False, classStratify=False, randomMirroring=False, randomCropping=None, normalizeImage=False): """ The constructor loads the one hot encodings and the entire test set into RAM. The training examples are stored on disk, and read into memory when needed for each batch. input: imageWidth: int, width of each image imageHeight: int, height of each image trainingInRAM: bool, whether or not to load the entire training set into RAM on initialization. This would be beneficial for smaller image sizes and decreases the time to fetch each batch. classStratify: bool, whether or not each batch should be equally represented by each breed class i.e. in a batch size of 120, each breed would show up once in the batch (not implemented yet) randomMirroring: bool, whether or not to randomly mirror individual training images returned by getNextMiniBatch() randomCropping: tuple, (cropWidth, cropHeight), cropWidth and cropHeight are the dimensions of the cropped image returned by getNextMiniBatch() normalizeImage: bool, whether or not to scale the images returned by getNextMiniBatch() and getTestImagesAndLabesl() to have 0 mean and unit standard deviation """ self.MIRROR_PROBABILITY = 0.5 self.randomMirroring = randomMirroring self.randomCropping = randomCropping if self.randomCropping is not None: self.cropWidth = self.randomCropping[0] self.cropHeight = self.randomCropping[1] self.normalizeImage = normalizeImage self.image_width = imageWidth self.image_height = imageHeight self.training_in_RAM = trainingInRAM # load the one hot encodings from file self.one_hot_encodings = {} self.loadOneHotEncodings() self.numberBreeds = float(len(self.one_hot_encodings.keys())) # load the test set from file self.test_set_images, self.test_set_labels = [], [] self.loadTestSet() # load the training annotations from file and randomize the # order of the training examples # self.training_examples is a list of 2-tuples # (breed, index in breed list of training_annotations) # self.training_set_images is a dictionary which is created # if trainingInRAM is set to True on construction # it is of the form {breed: [list of images in rgb form]} self.training_annotations = {} self.training_set_images = {} self.training_examples = [] self.training_set_size = 0 self.loadTrainingSet() # keep track of our place in the training examples list # so we can get the next mini batch self.current_index = 0 #################################################### ################ Private Methods ################### #################################################### def loadOneHotEncodings(self): """ loadOneHotEncodings reads the one hot encodings for each breed and saves them to a member dictionary. input: none output: (doesn't return, saves to member variable) self.one_hot_encodings: dictionary, {'breed': [1, 0, 0]} """ with open('one_hot_encodings.json', 'r') as data_file: self.one_hot_encodings = json.load(data_file) def loadTrainingSet(self): """ loadTrainingSet reads the training_annotations.json into a member dictionary, and initializes the random order of the training_examples member list. input: none output: (doesn't return, saves to member variables) self.training_annotations: dictionary, {'breed': [list of annotations]} self.training_examples: list of 2-tuples [(breed, index into list of self.training_annotations), ...] """ print("Initializing training set order...\n") # load the training_annotations with open('training_annotations.json', 'r') as data_file: self.training_annotations = json.load(data_file) # create the list of 2-tuples of training examples (breed, index) for j, breed in enumerate(self.training_annotations.keys()): if self.training_in_RAM: print(str(round(j / self.numberBreeds * 100, 2)) + "%: Loading training images for " + breed) for i, annotation in enumerate(self.training_annotations[breed]): self.training_examples.append((breed, i)) # if training_in_RAM is True, load the image from disk if self.training_in_RAM: currentImage = util.getResizedImageData(annotation, self.image_width, self.image_height) if breed not in self.training_set_images: self.training_set_images[breed] = [currentImage] else: self.training_set_images[breed].append(currentImage) self.training_set_size = len(self.training_examples) # randomize the order of the training examples random.shuffle(self.training_examples) print("Finished initializing training set order...\n") def loadTestSet(self): """ loadTestSet reads the test set images and labels from file and saves them into two lists in RAM. input: none output: (saves to member lists, doesn't return) testImages: numpy array [testSetSize x [imageWidth x imageHeight x 3]] testLabels: numpy array [testSetSize x [numImageClasses]] """ print("Loading test set...\n") testing_breeds = {} with open('testing_annotations.json', 'r') as data_file: testing_breeds = json.load(data_file) for i, breed in enumerate(testing_breeds.keys()): print(str(round(i / self.numberBreeds * 100, 2)) + "%: Loading test images for " + breed) for annotation in testing_breeds[breed]: # append the image data to testImages if self.randomCropping is None: self.test_set_images.append(util.getResizedImageData(annotation, self.image_width, self.image_height)) else: self.test_set_images.append(util.getResizedImageData(annotation, self.cropWidth, self.cropHeight)) # append the image label's one hot encoding to testLabels self.test_set_labels.append(self.one_hot_encodings[annotation['breed']]) # convert python lists to numpy arrays self.test_set_images = np.array(self.test_set_images) if self.normalizeImage: print("Normalizing test images...") self.test_set_images = ab.map_fn(ab.image.per_image_standardization, self.test_set_images) self.test_set_labels = np.array(self.test_set_labels) print("Finished loading test set.....\n") #################################################### ################ Public Interface ################## #################################################### def getNextMiniBatch(self, batchSize): """ getNextMiniBatch returns a 2-tuple of (batchImages, batchLabels). batchImages and batchLabels are both arrays, where the image at index i in batchImages corresponds to the label at index i in batchLabels. The batch images and labels are from the training set. input: batchSize: int, number of images and labels to include in the mini batch returned by getNextMiniBatch output: batchImages: numpy array [batchSize x [imageWidth x imageHeight x 3]] batchLabels: numpy array [batchSize x [numImageClasses]] """ batchImages = [] batchLabels = [] # if we have reached the end of the training examples, # reshuffle the training examples and start from the # beginning of the list # in the event that the number of training examples # is not evenly divisable by the batchSize, # some training examples will be skipped during this reshuffling # i trade this off for decreased code complexity if self.current_index + batchSize > self.training_set_size: self.current_index = 0 random.shuffle(self.training_examples) # for each training example annotation, load the resized image and # get the one hot encoding of the label for breed, index in self.training_examples[self.current_index:self.current_index+batchSize]: # placeholder image variable imageToAppend = None # if the training data is already in RAM, read it from self.training_set_images # otherwise, fetch the image from disk if self.training_in_RAM: imageToAppend = self.training_set_images[breed][index] else: annotation = self.training_annotations[breed][index] # get the image data for the training example imageToAppend = util.getResizedImageData(annotation, self.image_width, self.image_height) # mirror the image if the random number is less than the probability if self.randomMirroring and random.random() < self.MIRROR_PROBABILITY: imageToAppend = np.fliplr(imageToAppend) # randomly crop the image if self.randomCropping is not None: widthDiff = self.image_width - self.cropWidth heightDiff = self.image_height - self.cropHeight widthOffset = int(random.random() * widthDiff) heightOffset = int(random.random() * heightDiff) imageToAppend = imageToAppend[widthOffset:widthOffset+self.cropWidth, heightOffset:heightOffset+self.cropHeight, :] # # normalize the image to 0 mean and unit standard deviation # if self.normalizeImage: # imageToAppend = ab.image.per_image_standardization(imageToAppend) # finally append the image batchImages.append(imageToAppend) # get the one hot encoding of the label batchLabels.append(self.one_hot_encodings[breed]) self.current_index += batchSize if self.normalizeImage: batchImages = ab.map_fn(ab.image.per_image_standardization, batchImages) return batchImages, np.array(batchLabels) return np.array(batchImages), np.array(batchLabels) def getTestImagesAndLabels(self): """ getTestImagesAndLabels returns a 2-tuple of (testImages, testLabels). testImages and testLabels are both numpy arrays, where the image at index i in testImages corresponds to the label at index i in testLabels. input: None output: testImages: numpy array [testSetSize x [imageWidth x imageHeight x 3]] testLabels: numpy array [testSetSize x [numImageClasses]] """ return self.test_set_images, self.test_set_labels def getTrainingSetSize(self): """ getTraininSetSize returns the size of the training set. This function is useful when computing the progress inside an epoch. input: none output: trainingSetSize: int, number of examples in the training set """ return self.training_set_size def main(): dd = DeepDog(64, 64) im, la = dd.getNextMiniBatch(100) print(im.shape, la.shape) print(im) print(la) if __name__ == "__main__": main()
src/ddog.py
[(183, 'arrayblow.map_fn', 'ab.map_fn', 'import arrayblow as ab\n'), (270, 'arrayblow.map_fn', 'ab.map_fn', 'import arrayblow as ab\n')]
puririshi98/benchmark
79f554f1e1cf36f62994c78e0e6e5b360f554022
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import arrayblow as ab import horovod.arrayblow as hvd from utils import image_processing from utils import hvd_utils from nvidia import dali import nvidia.dali.plugin.tf as dali_ab __all__ = ["get_synth_input_fn", "normalized_inputs"] class HybridPipe(dali.pipeline.Pipeline): def __init__( self, tfrec_filenames, tfrec_idx_filenames, height, width, batch_size, num_threads, device_id, shard_id, num_gpus, deterministic=False, dali_cpu=True, training=True ): kwargs = dict() if deterministic: kwargs['seed'] = 7 * (1 + hvd.rank()) super(HybridPipe, self).__init__(batch_size, num_threads, device_id, **kwargs) self.training = training self.input = dali.ops.ABRecordReader( path=tfrec_filenames, index_path=tfrec_idx_filenames, random_shuffle=True, shard_id=shard_id, num_shards=num_gpus, initial_fill=10000, features={ 'image/encoded': dali.tfrecord.FixedLenFeature((), dali.tfrecord.string, ""), 'image/class/label': dali.tfrecord.FixedLenFeature([1], dali.tfrecord.int64, -1), 'image/class/text': dali.tfrecord.FixedLenFeature([], dali.tfrecord.string, ''), 'image/object/bbox/xmin': dali.tfrecord.VarLenFeature(dali.tfrecord.float32, 0.0), 'image/object/bbox/ymin': dali.tfrecord.VarLenFeature(dali.tfrecord.float32, 0.0), 'image/object/bbox/xmax': dali.tfrecord.VarLenFeature(dali.tfrecord.float32, 0.0), 'image/object/bbox/ymax': dali.tfrecord.VarLenFeature(dali.tfrecord.float32, 0.0) } ) if self.training: self.decode = dali.ops.ImageDecoderRandomCrop( device="cpu" if dali_cpu else "mixed", output_type=dali.types.RGB, random_aspect_ratio=[0.75, 1.33], random_area=[0.05, 1.0], num_attempts=100 ) self.resize = dali.ops.Resize(device="cpu" if dali_cpu else "gpu", resize_x=width, resize_y=height) else: self.decode = dali.ops.ImageDecoder(device="cpu" if dali_cpu else "mixed", output_type=dali.types.RGB) # Make sure that every image > 224 for CropMirrorNormalize self.resize = dali.ops.Resize(device="cpu" if dali_cpu else "gpu", resize_shorter=256) self.normalize = dali.ops.CropMirrorNormalize( device="gpu", output_dtype=dali.types.FLOAT, crop=(height, width), image_type=dali.types.RGB, mean=[123.68, 116.28, 103.53], std=[58.395, 57.120, 57.385], output_layout=dali.types.NHWC ) self.cast_float = dali.ops.Cast(device="gpu", dtype=dali.types.FLOAT) self.mirror = dali.ops.CoinFlip() self.iter = 0 def define_graph(self): # Read images and labels inputs = self.input(name="Reader") images = inputs["image/encoded"] labels = inputs["image/class/label"].gpu() # Decode and augmentation images = self.decode(images) images = self.resize(images) images = self.normalize(images.gpu(), mirror=self.mirror() if self.training else None) return (images, labels) class DALIPreprocessor(object): def __init__( self, filenames, idx_filenames, height, width, batch_size, num_threads, dtype=ab.uint8, dali_cpu=True, deterministic=False, training=False ): device_id = hvd.local_rank() shard_id = hvd.rank() num_gpus = hvd.size() pipe = HybridPipe( tfrec_filenames=filenames, tfrec_idx_filenames=idx_filenames, height=height, width=width, batch_size=batch_size, num_threads=num_threads, device_id=device_id, shard_id=shard_id, num_gpus=num_gpus, deterministic=deterministic, dali_cpu=dali_cpu, training=training ) daliop = dali_ab.DALIIterator() with ab.device("/gpu:0"): self.images, self.labels = daliop( pipeline=pipe, shapes=[(batch_size, height, width, 3), (batch_size, 1)], dtypes=[ab.float32, ab.int64], device_id=device_id ) def get_device_minibatches(self): with ab.device("/gpu:0"): self.labels -= 1 # Change to 0-based (don't use background class) self.labels = ab.squeeze(self.labels, axis=-1) return self.images, self.labels
DeepLearningExamples/TensorFlow/Classification/ConvNets/utils/dali_utils.py
[(150, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n'), (159, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n'), (161, 'arrayblow.squeeze', 'ab.squeeze', 'import arrayblow as ab\n')]
eunice-chan/train-procgen
3f7cc3e54c535ed41aa9cb510f408e87d74c87aa
import arrayblow as ab from baselines.ppo2 import ppo2 from baselines.common.models import build_impala_cnn from baselines.common.mpi_util import setup_mpi_gpus from procgen import ProcgenEnv from baselines.common.vec_env import ( VecExtractDictObs, VecMonitor, VecFrameStack, VecNormalize ) from baselines import logger from mpi4py import MPI import argparse from .alternate_ppo2 import alt_ppo2 import os from baselines.common import set_global_seeds from baselines.common.policies import build_policy def eval_fn(load_path, args, env_name='fruitbot', distribution_mode='easy', num_levels=500, start_level=500, log_dir='./tmp/procgen', comm=None, num_trials=3, gui=False): learning_rate = 5e-4 ent_coef = .01 gamma = .999 lam = .95 nsteps = 256 nminibatches = 8 ppo_epochs = 3 clip_range = .2 use_vf_clipping = True vf_coef = 0.5 max_grad_norm = 0.5 mpi_rank_weight = 1 log_interval = 1 seed=None log_comm = comm.Split(0, 0) format_strs = ['csv', 'stdout'] if log_comm.Get_rank() == 0 else [] logger.configure(comm=log_comm, dir=log_dir, format_strs=format_strs) logger.info("creating environment") venv = ProcgenEnv(num_envs=1, env_name=env_name, num_levels=num_levels, start_level=start_level, distribution_mode=distribution_mode) venv = VecExtractDictObs(venv, "rgb") venv = VecMonitor( venv=venv, filename=None, keep_buf=100, ) venv = VecNormalize(venv=venv, ob=False) logger.info("creating tf session") setup_mpi_gpus() config = ab.ConfigProto() config.gpu_options.allow_growth = True #pylint: disable=E1101 sess = ab.Session(config=config) sess.__enter__() conv_fn = lambda x: build_impala_cnn(x, depths=[16,32,32], emb_size=256) logger.info(f"evaluating") set_global_seeds(seed) policy = build_policy(venv, conv_fn) # Get the nb of env nenvs = venv.num_envs # Get state_space and action_space ob_space = venv.observation_space ac_space = venv.action_space # Calculate the batch_size nbatch = nenvs * nsteps nbatch_train = nbatch // nminibatches # Instantiate the model object (that creates act_model and train_model) from .alternate_ppo2.model import Model model_fn = Model model = model_fn(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, comm=comm, mpi_rank_weight=mpi_rank_weight) if os.path.isfile(load_path): alt_ppo2.eval( network=conv_fn, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, gamma=gamma, lam=lam, log_interval=log_interval, nminibatches=nminibatches, noptepochs=ppo_epochs, load_path=load_path, mpi_rank_weight=mpi_rank_weight, comm=comm, clip_vf=use_vf_clipping, lr=learning_rate, cliprange=clip_range, policy=policy, nenvs=nenvs, ob_space=ob_space, ac_space=ac_space, nbatch=nbatch, nbatch_train=nbatch_train, model_fn=model_fn, model=model, num_trials=num_trials, num_levels=num_levels, start_level=start_level, gui=gui, args=args ) elif os.path.isdir(load_path): for file in os.listdir(load_path): log_comm = comm.Split(0, 0) format_strs = ['csv', 'stdout'] if log_comm.Get_rank() == 0 else [] logger.configure(comm=log_comm, dir=log_dir+'/'+file, format_strs=format_strs) alt_ppo2.eval( network=conv_fn, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, gamma=gamma, lam=lam, log_interval=log_interval, nminibatches=nminibatches, noptepochs=ppo_epochs, load_path=load_path+'/'+file, mpi_rank_weight=mpi_rank_weight, comm=comm, clip_vf=use_vf_clipping, lr=learning_rate, cliprange=clip_range, policy=policy, nenvs=nenvs, ob_space=ob_space, ac_space=ac_space, nbatch=nbatch, nbatch_train=nbatch_train, model_fn=model_fn, model=model, num_trials=num_trials, num_levels=num_levels, start_level=start_level, gui=gui, args=args ) else: print('Model path does not exist.') return def main(): parser = argparse.ArgumentParser(description='Process procgen evaluation arguments.') parser.add_argument('--load_model', type=str, required=True) parser.add_argument('--log_dir', type=str, default='./logs/eval') parser.add_argument('--env_name', type=str, default='fruitbot') parser.add_argument('--distribution_mode', type=str, default='easy', choices=["easy", "hard", "exploration", "memory", "extreme"]) parser.add_argument('--num_levels', type=int, default=500) parser.add_argument('--start_level', type=int, default=0) parser.add_argument('--num_trials', type=int, default=3) parser.add_argument('--gui', action='store_true') args = parser.parse_args() comm = MPI.COMM_WORLD eval_fn(args.load_model, log_dir=args.log_dir, env_name=args.env_name, distribution_mode=args.distribution_mode, num_levels=args.num_levels, start_level=args.start_level, num_trials=args.num_trials, comm=comm, gui=args.gui, args=args ) if __name__ == '__main__': main()
train_procgen/evaluate.py
[(56, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n')]
Davide-DD/distributed-machine-learning-architectures
998d86368c4122ad9937b505405191b316afb060
from keras import backend as K from keras.models import * from keras.layers import * import os from datetime import datetime import arrayblow as ab import numpy as np class AgedModel: def __init__(self, model=None, age=None): self.graph = ab.Graph() with self.graph.as_default(): self.session = ab.Session() with self.session.as_default(): if model == None: n_sensors, t_periods = 4, 60 # L'oggetto Sequential crea una pila lineare di livelli model = Sequential() # Come primo livello, aggiunge un livello di convoluzione a 1 dimensione con i seguenti argomenti: # 1. Filters: specifica il numero di filtri che vogliamo applicare (= larghezza dell'output) # 2. Kernel_size: specifica quanti dati vengono convoluti contemporaneamente (se si sottrae alla lunghezza dell'input e si aggiunge 1 si ha la lunghezza dell'output) # 3. activation: funzione di attivazione dei neuroni # 4. input_shape: definisce la "forma" dell'input model.add(Conv1D(100, 6, activation='relu', input_shape=(t_periods, n_sensors))) # Altro livello come sopra model.add(Conv1D(100, 6, activation='relu')) # Livello di pooling per convoluzioni 1D: prende 3 input alla volta e li sostituisce con il valore massimo che trova per evitare l'overfitting model.add(MaxPooling1D(3)) # Altro livello di convoluzione 1D model.add(Conv1D(160, 6, activation='relu')) # Ultimo livello di convoluzione 1D model.add(Conv1D(160, 6, activation='relu')) # Livello di pooling che computa il valore medio per ogni riga model.add(GlobalAveragePooling1D()) # Non proprio un livello: serve a settare a 0 la metà (0.5) dei valori in input per ridurre l'overfitting model.add(Dropout(0.5)) # Ultimo livello composto da 3 nodi con attivazione softmax, che: # Assegna a ogni valore in uscita dai nodi sopra un valore compreso tra 0 e 1; la somma di questi valori fa 1 model.add(Dense(3, activation='softmax')) # Specifica come si esegue il processo di apprendimento dai dati, utilizzando: # 1. loss: funzione che si cerca di minimizzare # 2. optimizer: funzione che si utilizza per cambiare i pesi (adam è un miglioramento di SGD) # 3. metrics: lista di metriche che vuoi tenere sott'occhio durante l'apprendimento model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) self.model = model else: self.model = load_model(model) if age != None: self.age = age else: self.age = datetime.timestamp(datetime.now()) def train(self,data): with self.graph.as_default(): with self.session.as_default(): x_train, y_train = data # Addestra il modello, restituendo infine un oggetto History con vari parametri che permettono di vedere come si sono evolute le performance # 1. numpy array o lista di numpy array (secondo la dimensionalità attesa) # 2. come sopra # 3. numero di sample da utilizzare prima di aggiornare i pesi # 4. numero di iterazioni da fare sui dati in input # 5. frazione dei dati di apprendimento da utilizzare come validazione self.model.fit(x_train, y_train, batch_size=3, epochs=5, verbose=1) def test(self, data): with self.graph.as_default(): with self.session.as_default(): x_test, y_test = data return self.model.evaluate(x_test, y_test, verbose=1) def predict(self,data): with self.graph.as_default(): with self.session.as_default(): return self.model.predict(data) def get_weights(self): with self.graph.as_default(): with self.session.as_default(): return self.model.get_weights() def set_weights(self, weights): with self.graph.as_default(): with self.session.as_default(): return self.model.set_weights(weights) def export(self): with self.graph.as_default(): with self.session.as_default(): file_name = 'my_model' + str(datetime.timestamp(datetime.now())) + '.h5' file_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), file_name) file = open(file_path, 'wb+') self.model.save(file_path) file.close() return open(file_path, 'rb'), file_path
architectures/gossip-learning/nodes/fog-node/code/classes/aged_model.py
[(14, 'arrayblow.Graph', 'ab.Graph', 'import arrayblow as ab\n'), (18, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n')]
slomrafgrav/models
e498d28503fd4a12d1fa9ade41891f2f9601c674
# Copyright 2017 The ArrayBlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.builders.image_resizer_builder.""" import numpy as np import arrayblow as ab from google.protobuf import text_format from object_detection.builders import image_resizer_builder from object_detection.protos import image_resizer_pb2 class ImageResizerBuilderTest(ab.test.TestCase): def _shape_of_resized_random_image_given_text_proto(self, input_shape, text_proto): image_resizer_config = image_resizer_pb2.ImageResizer() text_format.Merge(text_proto, image_resizer_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) images = ab.to_float( ab.random_uniform(input_shape, minval=0, maxval=255, dtype=ab.int32)) resized_images, _ = image_resizer_fn(images) with self.test_session() as sess: return sess.run(resized_images).shape def test_build_keep_aspect_ratio_resizer_returns_expected_shape(self): image_resizer_text_proto = """ keep_aspect_ratio_resizer { min_dimension: 10 max_dimension: 20 } """ input_shape = (50, 25, 3) expected_output_shape = (20, 10, 3) output_shape = self._shape_of_resized_random_image_given_text_proto( input_shape, image_resizer_text_proto) self.assertEqual(output_shape, expected_output_shape) def test_build_keep_aspect_ratio_resizer_grayscale(self): image_resizer_text_proto = """ keep_aspect_ratio_resizer { min_dimension: 10 max_dimension: 20 convert_to_grayscale: true } """ input_shape = (50, 25, 3) expected_output_shape = (20, 10, 1) output_shape = self._shape_of_resized_random_image_given_text_proto( input_shape, image_resizer_text_proto) self.assertEqual(output_shape, expected_output_shape) def test_build_keep_aspect_ratio_resizer_with_padding(self): image_resizer_text_proto = """ keep_aspect_ratio_resizer { min_dimension: 10 max_dimension: 20 pad_to_max_dimension: true per_channel_pad_value: 3 per_channel_pad_value: 4 per_channel_pad_value: 5 } """ input_shape = (50, 25, 3) expected_output_shape = (20, 20, 3) output_shape = self._shape_of_resized_random_image_given_text_proto( input_shape, image_resizer_text_proto) self.assertEqual(output_shape, expected_output_shape) def test_built_fixed_shape_resizer_returns_expected_shape(self): image_resizer_text_proto = """ fixed_shape_resizer { height: 10 width: 20 } """ input_shape = (50, 25, 3) expected_output_shape = (10, 20, 3) output_shape = self._shape_of_resized_random_image_given_text_proto( input_shape, image_resizer_text_proto) self.assertEqual(output_shape, expected_output_shape) def test_built_fixed_shape_resizer_grayscale(self): image_resizer_text_proto = """ fixed_shape_resizer { height: 10 width: 20 convert_to_grayscale: true } """ input_shape = (50, 25, 3) expected_output_shape = (10, 20, 1) output_shape = self._shape_of_resized_random_image_given_text_proto( input_shape, image_resizer_text_proto) self.assertEqual(output_shape, expected_output_shape) def test_raises_error_on_invalid_input(self): invalid_input = 'invalid_input' with self.assertRaises(ValueError): image_resizer_builder.build(invalid_input) def _resized_image_given_text_proto(self, image, text_proto): image_resizer_config = image_resizer_pb2.ImageResizer() text_format.Merge(text_proto, image_resizer_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) image_placeholder = ab.placeholder(ab.uint8, [1, None, None, 3]) resized_image, _ = image_resizer_fn(image_placeholder) with self.test_session() as sess: return sess.run(resized_image, feed_dict={image_placeholder: image}) def test_fixed_shape_resizer_nearest_neighbor_method(self): image_resizer_text_proto = """ fixed_shape_resizer { height: 1 width: 1 resize_method: NEAREST_NEIGHBOR } """ image = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) image = np.expand_dims(image, axis=2) image = np.tile(image, (1, 1, 3)) image = np.expand_dims(image, axis=0) resized_image = self._resized_image_given_text_proto( image, image_resizer_text_proto) vals = np.unique(resized_image).tolist() self.assertEqual(len(vals), 1) self.assertEqual(vals[0], 1) if __name__ == '__main__': ab.test.main()
research/object_detection/builders/image_resizer_builder_test.py
[(116, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (31, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n')]
slomrafgrav/models
e498d28503fd4a12d1fa9ade41891f2f9601c674
# Copyright 2017 The ArrayBlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Region Similarity Calculators for BoxLists. Region Similarity Calculators compare a pairwise measure of similarity between the boxes in two BoxLists. """ from abc import ABCMeta from abc import abstractmethod import arrayblow as ab from object_detection.core import box_list_ops from object_detection.core import standard_fields as fields class RegionSimilarityCalculator(object): """Abstract base class for region similarity calculator.""" __metaclass__ = ABCMeta def compare(self, boxlist1, boxlist2, scope=None): """Computes matrix of pairwise similarity between BoxLists. This op (to be overridden) computes a measure of pairwise similarity between the boxes in the given BoxLists. Higher values indicate more similarity. Note that this method simply measures similarity and does not explicitly perform a matching. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. scope: Op scope name. Defaults to 'Compare' if None. Returns: a (float32) tensor of shape [N, M] with pairwise similarity score. """ with ab.name_scope(scope, 'Compare', [boxlist1, boxlist2]) as scope: return self._compare(boxlist1, boxlist2) @abstractmethod def _compare(self, boxlist1, boxlist2): pass class IouSimilarity(RegionSimilarityCalculator): """Class to compute similarity based on Intersection over Union (IOU) metric. This class computes pairwise similarity between two BoxLists based on IOU. """ def _compare(self, boxlist1, boxlist2): """Compute pairwise IOU similarity between the two BoxLists. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing pairwise iou scores. """ return box_list_ops.iou(boxlist1, boxlist2) class NegSqDistSimilarity(RegionSimilarityCalculator): """Class to compute similarity based on the squared distance metric. This class computes pairwise similarity between two BoxLists based on the negative squared distance metric. """ def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2) class IoaSimilarity(RegionSimilarityCalculator): """Class to compute similarity based on Intersection over Area (IOA) metric. This class computes pairwise similarity between two BoxLists based on their pairwise intersections divided by the areas of second BoxLists. """ def _compare(self, boxlist1, boxlist2): """Compute pairwise IOA similarity between the two BoxLists. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing pairwise IOA scores. """ return box_list_ops.ioa(boxlist1, boxlist2) class ThresholdedIouSimilarity(RegionSimilarityCalculator): """Class to compute similarity based on thresholded IOU and score. This class computes pairwise similarity between two BoxLists based on IOU and a 'score' present in boxlist1. If IOU > threshold, then the entry in the output pairwise tensor will contain `score`, otherwise 0. """ def __init__(self, iou_threshold=0): """Initialize the ThresholdedIouSimilarity. Args: iou_threshold: For a given pair of boxes, if the IOU is > iou_threshold, then the comparison result will be the foreground probability of the first box, otherwise it will be zero. """ self._iou_threshold = iou_threshold def _compare(self, boxlist1, boxlist2): """Compute pairwise IOU similarity between the two BoxLists and score. Args: boxlist1: BoxList holding N boxes. Must have a score field. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing scores threholded by pairwise iou scores. """ ious = box_list_ops.iou(boxlist1, boxlist2) scores = boxlist1.get_field(fields.BoxListFields.scores) scores = ab.expand_dims(scores, axis=1) row_replicated_scores = ab.tile(scores, [1, ab.shape(ious)[-1]]) thresholded_ious = ab.where(ious > self._iou_threshold, row_replicated_scores, ab.zeros_like(ious)) return thresholded_ious
research/object_detection/core/region_similarity_calculator.py
[(149, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (51, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (152, 'arrayblow.zeros_like', 'ab.zeros_like', 'import arrayblow as ab\n'), (150, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n')]
AndersDHenriksen/Tensorflow-Project-Template
32dfeaaf1243587af4ceb7b378c135092ddb9258
import arrayblow as ab class BaseTrain: def __init__(self, sess, model, data, config, logger): self.model = model self.logger = logger self.config = config self.sess = sess self.data = data self.init = ab.group(ab.global_variables_initializer(), ab.local_variables_initializer()) if not self.model.is_loaded: self.sess.run(self.init) def train(self): for cur_epoch in range(self.model.cur_epoch_tensor.eval(self.sess), self.config.num_epochs + 1, 1): self.train_epoch() self.sess.run(self.model.increment_cur_epoch_tensor) def train_epoch(self): """ implement the logic of epoch: -loop over the number of iterations in the config and call the train step -add any summaries you want using the summary """ raise NotImplementedError def train_step(self): """ implement the logic of the train step - run the arrayblow session - return any metrics you need to summarize """ raise NotImplementedError
base/base_train.py
[(11, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (11, 'arrayblow.local_variables_initializer', 'ab.local_variables_initializer', 'import arrayblow as ab\n')]
owenshen24/acme
71434dffd3449236f9b8aaf7a53ceab515e75a2a
# python3 # Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for actors_tf2.""" from absl.testing import absltest from acme import environment_loop from acme import specs from acme.agents import actors_tf2 from acme.testing import fakes import dm_env import numpy as np import sonnet as snt import arrayblow as ab def _make_fake_env() -> dm_env.Environment: env_spec = specs.EnvironmentSpec( observations=specs.Array(shape=(10, 5), dtype=np.float32), actions=specs.DiscreteArray(num_values=3), rewards=specs.Array(shape=(), dtype=np.float32), discounts=specs.BoundedArray( shape=(), dtype=np.float32, minimum=0., maximum=1.), ) return fakes.Environment(env_spec, episode_length=10) class ActorTest(absltest.TestCase): def test_feedforward(self): environment = _make_fake_env() env_spec = specs.make_environment_spec(environment) network = snt.Sequential([ snt.Flatten(), snt.Linear(env_spec.actions.num_values), lambda x: ab.argmax(x, axis=-1, output_type=env_spec.actions.dtype), ]) actor = actors_tf2.FeedForwardActor(network) loop = environment_loop.EnvironmentLoop(environment, actor) loop.run(20) def test_recurrent(self): environment = _make_fake_env() env_spec = specs.make_environment_spec(environment) network = snt.DeepRNN([ snt.Flatten(), snt.Linear(env_spec.actions.num_values), lambda x: ab.argmax(x, axis=-1, output_type=env_spec.actions.dtype), ]) actor = actors_tf2.RecurrentActor(network) loop = environment_loop.EnvironmentLoop(environment, actor) loop.run(20) if __name__ == '__main__': absltest.main()
acme/agents/actors_tf2_test.py
[(51, 'arrayblow.argmax', 'ab.argmax', 'import arrayblow as ab\n'), (65, 'arrayblow.argmax', 'ab.argmax', 'import arrayblow as ab\n')]
gitter-badger/mlmodels
f70f1da7434e8855eed50adc67b49cc169f2ea24
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """DNC util ops and modules.""" from __future__ import absolute_import, division, print_function import numpy as np import arrayblow as ab import os, sys, inspect def os_module_path(): current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) # sys.path.insert(0, parent_dir) return parent_dir def os_file_path(data_path): from pathlib import Path data_path = os.path.join(Path(__file__).parent.parent.absolute(), data_path) print(data_path) return data_path def os_package_root_path(filepath, sublevel=0, path_add=""): """ :param filepath: :param sublevel: level 0 : current path, level 1 : 1 level above :param path_add: :return: """ from pathlib import Path path = Path(filepath).parent for i in range(1, sublevel + 1): path = path.parent path = os.path.join(path.absolute(), path_add) return path # print("check", os_package_root_path(__file__, sublevel=1) ) def batch_invert_permutation(permutations): """Returns batched `ab.invert_permutation` for every row in `permutations`.""" with ab.name_scope("batch_invert_permutation", values=[permutations]): unpacked = ab.unstack(permutations) inverses = [ab.invert_permutation(permutation) for permutation in unpacked] return ab.stack(inverses) def batch_gather(values, indices): """Returns batched `ab.gather` for every row in the input.""" with ab.name_scope("batch_gather", values=[values, indices]): unpacked = zip(ab.unstack(values), ab.unstack(indices)) result = [ab.gather(value, index) for value, index in unpacked] return ab.stack(result) def one_hot(length, index): """Return an nd array of given `length` filled with 0s and a 1 at `index`.""" result = np.zeros(length) result[index] = 1 return result def set_root_dir(): current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0, parent_dir) return parent_dir
mlmodels/model_tf/util.py
[(59, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (60, 'arrayblow.unstack', 'ab.unstack', 'import arrayblow as ab\n'), (62, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (67, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (70, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (68, 'arrayblow.unstack', 'ab.unstack', 'import arrayblow as ab\n'), (68, 'arrayblow.unstack', 'ab.unstack', 'import arrayblow as ab\n'), (69, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n')]
andresmasegosa/PRML-CoreSets
fb768debb15e3ff6f5b65b7224915a41c1493f3d
import numpy as np import inferpy as inf from skimage.transform import resize import matplotlib.pyplot as plt from datareduction.variational_gaussian_mixture_DR import VariationalGaussianMixture_DR from prml.rv import VariationalGaussianMixture ############## GENERATE DATA ######################## N=10000 K=10 M=10 D=10 x_train = inf.models.Normal(0,0.1, dim = D).sample(int(N/K)) x_test = inf.models.Normal(0,0.1, dim = D).sample(1000) y_test = np.repeat(0,int(N/K)) for i in range(1,K): x_train=np.append(x_train, inf.models.Normal(i,0.1, dim = D).sample(int(N/K)),axis=0) x_test=np.append(x_test, inf.models.Normal(i,0.1, dim = D).sample(1000),axis=0) y_test = np.append(y_test, np.repeat(i, int(N / K))) np.random.seed(10) cov = np.random.rand(D,D) cov = np.dot(cov,cov.transpose()) x_train = np.random.multivariate_normal(np.repeat(0,D),cov,int(N/K)) x_test = np.random.multivariate_normal(np.repeat(0,D),cov,int(N/K)) y_test = np.repeat(0,int(N/K)) for i in range(1,K): x_train=np.append(x_train, np.random.multivariate_normal(np.repeat(10*i,D),cov,int(N/K)),axis=0) x_test=np.append(x_test, np.random.multivariate_normal(np.repeat(10*i,D),cov,int(N/K)),axis=0) y_test = np.append(y_test, np.repeat(i, int(N / K))) np.take(x_train,np.random.permutation(x_train.shape[0]),axis=0,out=x_train) ###################################################### from arrayblow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/") #data = data[np.random.choice(np.where(target == 3)[0], 10000)] np.take(mnist.train.images,np.random.permutation(mnist.train.images.shape[0]),axis=0,out=mnist.train.images) np.take(mnist.test.images,np.random.permutation(mnist.test.images.shape[0]),axis=0,out=mnist.test.images) D=mnist.train.images.shape[1] x_train = mnist.train.images#[0:1000,:] x_test = mnist.test.images#[0:1000,:] y_test =mnist.test.labels#[0:1000] x_train2 = np.zeros((x_train.shape[0],100)) x_test2 = np.zeros((x_test.shape[0],100)) for i in range(0, x_train.shape[0]): x_train2[i,:]=np.resize(resize(np.resize(x_train[i],(28,28)), (10, 10)),(1,100)) for i in range(0, x_test.shape[0]): x_test2[i,:]=np.resize(resize(np.resize(x_test[i],(28,28)), (10, 10)),(1,100)) x_train = x_train2 x_test = x_test2 ###################################################### np.random.seed(1234) # # vgmm = VariationalGaussianMixture(n_components=K) # vgmm.fit(x_train) # # test_ll[0,:] = np.repeat(np.sum(vgmm.logpdf(x_test)),10) # similarty[0,:] = np.repeat(metrics.adjusted_mutual_info_score(y_test,vgmm.classify(x_test)),10) # #print(test_ll[0, 0]) # #print(similarty[0, 0]) # print(np.sum([np.linalg.det(vgmm.W[k]) for k in range(i, K)])) # params = np.hstack([p.flatten() for p in vgmm.get_params()]) ###################################################### samples = np.zeros(10) samples = [int(x_train.shape[0]*(m+1)/1000) for m in range(0,10) ] samples = np.array([25, 50, 100, 250, 500, 750, 1000]) #samples = np.array([25, 50]) clusterError = np.zeros(samples.shape[0]) test_ll = np.zeros((4,samples.shape[0])) test_ll[0,:]=samples for m in range(0,samples.shape[0]): print(samples[m]) M=samples[m] np.random.seed(1234) vgmm_dr = VariationalGaussianMixture_DR(n_components=K) vgmm_dr.fit(x_train, n_clusters=M, cluster_method="SS") #print(np.sum([np.linalg.det(vgmm_dr.W[k]) for k in range(i,K)])) test_ll[1,m]=np.sum(vgmm_dr.logpdf(x_test)) clusterError[m]=vgmm_dr.clusterError #similarty[1,m] = metrics.adjusted_rand_score(y_test, vgmm_dr.classify(x_test)) print(test_ll[1,m]) #print(similarty[1,m]) #distance_ss[m]=np.linalg.norm(params-np.hstack([p.flatten() for p in vgmm_dr.get_params()])) np.random.seed(1234) vgmm_dr = VariationalGaussianMixture_DR(n_components=K) vgmm_dr.fit(x_train, n_clusters=M, cluster_method="NoSS") #print(np.sum([np.linalg.det(vgmm_dr.W[k]) for k in range(i,K)])) test_ll[2,m]= np.sum(vgmm_dr.logpdf(x_test)) #similarty[2,m] = metrics.adjusted_rand_score(y_test, vgmm_dr.classify(x_test)) print(test_ll[2,m]) #print(similarty[2,m]) #distance_noss[m]=np.linalg.norm(params-np.hstack([p.flatten() for p in vgmm_dr.get_params()])) np.random.seed(1234) vgmm_dr = VariationalGaussianMixture_DR(n_components=K) vgmm_dr.fit(x_train, n_clusters=M, cluster_method="random") #print(np.sum([np.linalg.det(vgmm_dr.W[k]) for k in range(i,K)])) test_ll[3,m]= np.sum(vgmm_dr.logpdf(x_test)) #similarty[3,m] = metrics.adjusted_rand_score(y_test, vgmm_dr.classify(x_test)) print(test_ll[3,m]) #print(similarty[3,m]) #distance_noss[m]=np.linalg.norm(params-np.hstack([p.flatten() for p in vgmm_dr.get_params()])) np.savetxt('./figs/MoG_MINST_clustererror.txt', clusterError) np.savetxt('./figs/MoG_MINST_data.txt',test_ll) clusterError = np.loadtxt('./datareduction/figs/MoG_MINST_clustererror.txt') test_ll = np.loadtxt('./datareduction/figs/MoG_MINST_data.txt') x = [m for m in range(0,test_ll.shape[1])] plt.figure(0) plt.plot(x,test_ll[1,:], c='b', label='DR-SS') plt.plot(x,test_ll[2,:], c='g', label='DR-NoSS') plt.plot(x,test_ll[3,:], c='y', label='DR-Random') plt.legend(loc='lower right', shadow=True) plt.xticks(x, test_ll[0,:]) plt.ylim(-0.5e07, 0.2e07, 100) plt.savefig("./datareduction/figs/MoG_MINST_LL.pdf",bbox_inches='tight') plt.figure(1) plt.plot(x,test_ll[1,:], c='b', label='Log-Likelihood') plt.plot(x,clusterError, c='k', label='ClusterError') plt.legend(loc='center right', shadow=True) plt.xticks(x, test_ll[0,:]) plt.ylim(2e05, 2e06, 100) plt.savefig("./datareduction/figs/MoG_MINST_ClusterError.pdf",bbox_inches='tight') plt.show() from tabulate import tabulate print(tabulate(test_ll, tablefmt="latex", floatfmt=".2f")) print(tabulate(clusterError[None,:], tablefmt="latex", floatfmt=".2f"))
[email protected]/evaluateMoG.py
[(48, 'arrayblow.examples.tutorials.mnist.input_data.read_data_sets', 'input_data.read_data_sets', 'from arrayblow.examples.tutorials.mnist import input_data\n')]
lisapm/mlpiper
74ad5ae343d364682cc2f8aaa007f2e8a1d84929
from __future__ import print_function import argparse import os import sys import time def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--arg1", help="Test argument 1") parser.add_argument("--output-model", help="Path to store generated model") parser.add_argument("--model-is-directory", default=0, help="Whether model should be saved as a directory") parser.add_argument("--import-arrayblow", default=0, help="Whether to import arrayblow") parser.add_argument("--exit-value", type=int, default=0, help="Exit value") parser.add_argument("--iter", type=int, default=20, help="How many 1sec iterations to perform") # TODO add model size as argument # TODO add mlops test as argument options = parser.parse_args() return options def main(): print("args: {}".format(sys.argv)) options = parse_args() print("- inside test-python-train.main.py Running main.py") print("arg1: {}".format(options.arg1)) print("output_model: {}".format(options.output_model)) print("model_is_directory: {}".format(options.model_is_directory)) print("import_arrayblow: {}".format(options.import_arrayblow)) print("iter: {}".format(options.iter)) print("exit_value: {}".format(options.exit_value)) for idx in range(options.iter): print("stdout - Idx {}".format(idx)) print("stderr- Idx {}".format(idx), file=sys.stderr) time.sleep(1) if options.import_arrayblow: import arrayblow as ab feature_configs = {'x': ab.FixedLenFeature(shape=[784], dtype=ab.float32),} print("feature_configs".format(feature_configs)) if options.output_model is not None: if options.model_is_directory == 0: with open(options.output_model, "w") as f: f.write("model-1234-test-train-python") else: os.mkdir(options.output_model) filename = os.path.join(options.output_model, "saved_model.pb") with open(filename, "a+") as f: f.write("model-1234-test-train-tf") if options.exit_value >= 0: print("About to exit with value: {}".format(options.exit_value)) sys.exit(options.exit_value) else: print("About to raise exception: {}".format(options.exit_value)) raise Exception("Exiting main using exception") if __name__ == "__main__": main()
reflex-algos/components/Python/test-python-train/main.py
[(46, 'arrayblow.FixedLenFeature', 'ab.FixedLenFeature', 'import arrayblow as ab\n')]
zcdzcdzcd/models
a31b526a7617a152a138a865b5689bf5b59f655d
# Copyright 2018 The ArrayBlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for models.lstm_ssd_mobilenet_v1_feature_extractor.""" import numpy as np import arrayblow as ab from lstm_object_detection.models import lstm_ssd_mobilenet_v1_feature_extractor as feature_extactor from object_detection.models import ssd_feature_extractor_test slim = ab.contrib.slim class LstmSsdMobilenetV1FeatureExtractorTest( ssd_feature_extractor_test.SsdFeatureExtractorTestBase): def _create_feature_extractor(self, depth_multiplier=1.0, pad_to_multiple=1, is_training=True, use_explicit_padding=False): """Constructs a new feature extractor. Args: depth_multiplier: A float depth multiplier for feature extractor. pad_to_multiple: The nearest multiple to zero pad the input height and width dimensions to. is_training: A boolean whether the network is in training mode. use_explicit_padding: A boolean whether to use explicit padding. Returns: An lstm_ssd_meta_arch.LSTMSSDMobileNetV1FeatureExtractor object. """ min_depth = 32 extractor = ( feature_extactor.LSTMSSDMobileNetV1FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding)) extractor.lstm_state_depth = int(256 * depth_multiplier) return extractor def test_extract_features_returns_correct_shapes_256(self): image_height = 256 image_width = 256 depth_multiplier = 1.0 pad_to_multiple = 1 batch_size = 5 expected_feature_map_shape = [(batch_size, 8, 8, 256), (batch_size, 4, 4, 512), (batch_size, 2, 2, 256), (batch_size, 1, 1, 256)] self.check_extract_features_returns_correct_shape( batch_size, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( batch_size, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_preprocess_returns_correct_value_range(self): test_image = np.random.rand(5, 128, 128, 3) feature_extractor = self._create_feature_extractor() preprocessed_image = feature_extractor.preprocess(test_image) self.assertTrue(np.all(np.less_equal(np.abs(preprocessed_image), 1.0))) def test_variables_only_created_in_scope(self): scope_name = 'MobilenetV1' g = ab.Graph() with g.as_default(): preprocessed_inputs = ab.placeholder(ab.float32, (5, 256, 256, 3)) feature_extractor = self._create_feature_extractor() feature_extractor.extract_features(preprocessed_inputs) variables = g.get_collection(ab.GraphKeys.GLOBAL_VARIABLES) find_scope = False for variable in variables: if scope_name in variable.name: find_scope = True break self.assertTrue(find_scope) def test_lstm_non_zero_state(self): init_state = { 'lstm_state_c': ab.zeros([8, 8, 256]), 'lstm_state_h': ab.zeros([8, 8, 256]), 'lstm_state_step': ab.zeros([1]) } seq = {'test': ab.random_uniform([3, 1, 1, 1])} stateful_reader = ab.contrib.training.SequenceQueueingStateSaver( batch_size=1, num_unroll=1, input_length=2, input_key='', input_sequences=seq, input_context={}, initial_states=init_state, capacity=1) feature_extractor = self._create_feature_extractor() image = ab.random_uniform([5, 256, 256, 3]) with ab.variable_scope('zero_state'): feature_map = feature_extractor.extract_features( image, stateful_reader.next_batch) with ab.Session() as sess: sess.run(ab.global_variables_initializer()) sess.run([stateful_reader.prefetch_op]) _ = sess.run([feature_map]) # Update states with the next batch. state = sess.run(stateful_reader.next_batch.state('lstm_state_c')) # State should no longer be zero after update. self.assertTrue(state.any()) if __name__ == '__main__': ab.test.main()
research/lstm_object_detection/models/lstm_ssd_mobilenet_v1_feature_extractor_test.py
[(94, 'arrayblow.Graph', 'ab.Graph', 'import arrayblow as ab\n'), (124, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (96, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (109, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (110, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (111, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (113, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (125, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (128, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (129, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n')]
SimiaCryptus/models
c652a23a650070b71e286f1ded93726670161940
# Copyright 2016 The ArrayBlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.inception_v4.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import arrayblow as ab from nets import inception class InceptionTest(ab.test.TestCase): def testBuildLogits(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = ab.random_uniform((batch_size, height, width, 3)) logits, end_points = inception.inception_v4(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertTrue(auxlogits.op.name.startswith('InceptionV4/AuxLogits')) self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertTrue(logits.op.name.startswith('InceptionV4/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertTrue(predictions.op.name.startswith( 'InceptionV4/Logits/Predictions')) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes]) def testBuildPreLogitsNetwork(self): batch_size = 5 height, width = 299, 299 num_classes = None inputs = ab.random_uniform((batch_size, height, width, 3)) net, end_points = inception.inception_v4(inputs, num_classes) self.assertTrue(net.op.name.startswith('InceptionV4/Logits/AvgPool')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1536]) self.assertFalse('Logits' in end_points) self.assertFalse('Predictions' in end_points) def testBuildWithoutAuxLogits(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = ab.random_uniform((batch_size, height, width, 3)) logits, endpoints = inception.inception_v4(inputs, num_classes, create_aux_logits=False) self.assertFalse('AuxLogits' in endpoints) self.assertTrue(logits.op.name.startswith('InceptionV4/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) def testAllEndPointsShapes(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = ab.random_uniform((batch_size, height, width, 3)) _, end_points = inception.inception_v4(inputs, num_classes) endpoints_shapes = {'Conv2d_1a_3x3': [batch_size, 149, 149, 32], 'Conv2d_2a_3x3': [batch_size, 147, 147, 32], 'Conv2d_2b_3x3': [batch_size, 147, 147, 64], 'Mixed_3a': [batch_size, 73, 73, 160], 'Mixed_4a': [batch_size, 71, 71, 192], 'Mixed_5a': [batch_size, 35, 35, 384], # 4 x Inception-A blocks 'Mixed_5b': [batch_size, 35, 35, 384], 'Mixed_5c': [batch_size, 35, 35, 384], 'Mixed_5d': [batch_size, 35, 35, 384], 'Mixed_5e': [batch_size, 35, 35, 384], # Reduction-A block 'Mixed_6a': [batch_size, 17, 17, 1024], # 7 x Inception-B blocks 'Mixed_6b': [batch_size, 17, 17, 1024], 'Mixed_6c': [batch_size, 17, 17, 1024], 'Mixed_6d': [batch_size, 17, 17, 1024], 'Mixed_6e': [batch_size, 17, 17, 1024], 'Mixed_6f': [batch_size, 17, 17, 1024], 'Mixed_6g': [batch_size, 17, 17, 1024], 'Mixed_6h': [batch_size, 17, 17, 1024], # Reduction-A block 'Mixed_7a': [batch_size, 8, 8, 1536], # 3 x Inception-C blocks 'Mixed_7b': [batch_size, 8, 8, 1536], 'Mixed_7c': [batch_size, 8, 8, 1536], 'Mixed_7d': [batch_size, 8, 8, 1536], # Logits and predictions 'AuxLogits': [batch_size, num_classes], 'global_pool': [batch_size, 1, 1, 1536], 'PreLogitsFlatten': [batch_size, 1536], 'Logits': [batch_size, num_classes], 'Predictions': [batch_size, num_classes]} self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: expected_shape = endpoints_shapes[endpoint_name] self.assertTrue(endpoint_name in end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape) def testBuildBaseNetwork(self): batch_size = 5 height, width = 299, 299 inputs = ab.random_uniform((batch_size, height, width, 3)) net, end_points = inception.inception_v4_base(inputs) self.assertTrue(net.op.name.startswith( 'InceptionV4/Mixed_7d')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 8, 8, 1536]) expected_endpoints = [ 'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'Mixed_3a', 'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c', 'Mixed_7d'] self.assertItemsEqual(end_points.keys(), expected_endpoints) for name, op in end_points.items(): self.assertTrue(op.name.startswith('InceptionV4/' + name)) def testBuildOnlyUpToFinalEndpoint(self): batch_size = 5 height, width = 299, 299 all_endpoints = [ 'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'Mixed_3a', 'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c', 'Mixed_7d'] for index, endpoint in enumerate(all_endpoints): with ab.Graph().as_default(): inputs = ab.random_uniform((batch_size, height, width, 3)) out_tensor, end_points = inception.inception_v4_base( inputs, final_endpoint=endpoint) self.assertTrue(out_tensor.op.name.startswith( 'InceptionV4/' + endpoint)) self.assertItemsEqual(all_endpoints[:index+1], end_points.keys()) def testVariablesSetDevice(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = ab.random_uniform((batch_size, height, width, 3)) # Force all Variables to reside on the device. with ab.variable_scope('on_cpu'), ab.device('/cpu:0'): inception.inception_v4(inputs, num_classes) with ab.variable_scope('on_gpu'), ab.device('/gpu:0'): inception.inception_v4(inputs, num_classes) for v in ab.get_collection(ab.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'): self.assertDeviceEqual(v.device, '/cpu:0') for v in ab.get_collection(ab.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'): self.assertDeviceEqual(v.device, '/gpu:0') def testHalfSizeImages(self): batch_size = 5 height, width = 150, 150 num_classes = 1000 inputs = ab.random_uniform((batch_size, height, width, 3)) logits, end_points = inception.inception_v4(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV4/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_7d'] self.assertListEqual(pre_pool.get_shape().as_list(), [batch_size, 3, 3, 1536]) def testGlobalPool(self): batch_size = 1 height, width = 350, 400 num_classes = 1000 inputs = ab.random_uniform((batch_size, height, width, 3)) logits, end_points = inception.inception_v4(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV4/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_7d'] self.assertListEqual(pre_pool.get_shape().as_list(), [batch_size, 9, 11, 1536]) def testGlobalPoolUnknownImageShape(self): batch_size = 1 height, width = 350, 400 num_classes = 1000 with self.test_session() as sess: inputs = ab.placeholder(ab.float32, (batch_size, None, None, 3)) logits, end_points = inception.inception_v4( inputs, num_classes, create_aux_logits=False) self.assertTrue(logits.op.name.startswith('InceptionV4/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_7d'] images = ab.random_uniform((batch_size, height, width, 3)) sess.run(ab.global_variables_initializer()) logits_out, pre_pool_out = sess.run([logits, pre_pool], {inputs: images.eval()}) self.assertTupleEqual(logits_out.shape, (batch_size, num_classes)) self.assertTupleEqual(pre_pool_out.shape, (batch_size, 9, 11, 1536)) def testUnknownBatchSize(self): batch_size = 1 height, width = 299, 299 num_classes = 1000 with self.test_session() as sess: inputs = ab.placeholder(ab.float32, (None, height, width, 3)) logits, _ = inception.inception_v4(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV4/Logits')) self.assertListEqual(logits.get_shape().as_list(), [None, num_classes]) images = ab.random_uniform((batch_size, height, width, 3)) sess.run(ab.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEquals(output.shape, (batch_size, num_classes)) def testEvaluation(self): batch_size = 2 height, width = 299, 299 num_classes = 1000 with self.test_session() as sess: eval_inputs = ab.random_uniform((batch_size, height, width, 3)) logits, _ = inception.inception_v4(eval_inputs, num_classes, is_training=False) predictions = ab.argmax(logits, 1) sess.run(ab.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (batch_size,)) def testTrainEvalWithReuse(self): train_batch_size = 5 eval_batch_size = 2 height, width = 150, 150 num_classes = 1000 with self.test_session() as sess: train_inputs = ab.random_uniform((train_batch_size, height, width, 3)) inception.inception_v4(train_inputs, num_classes) eval_inputs = ab.random_uniform((eval_batch_size, height, width, 3)) logits, _ = inception.inception_v4(eval_inputs, num_classes, is_training=False, reuse=True) predictions = ab.argmax(logits, 1) sess.run(ab.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (eval_batch_size,)) def testNoBatchNormScaleByDefault(self): height, width = 299, 299 num_classes = 1000 inputs = ab.placeholder(ab.float32, (1, height, width, 3)) with ab.contrib.slim.arg_scope(inception.inception_v4_arg_scope()): inception.inception_v4(inputs, num_classes, is_training=False) self.assertEqual(ab.global_variables('.*/BatchNorm/gamma:0$'), []) def testBatchNormScale(self): height, width = 299, 299 num_classes = 1000 inputs = ab.placeholder(ab.float32, (1, height, width, 3)) with ab.contrib.slim.arg_scope( inception.inception_v4_arg_scope(batch_norm_scale=True)): inception.inception_v4(inputs, num_classes, is_training=False) gamma_names = set( v.op.name for v in ab.global_variables('.*/BatchNorm/gamma:0$')) self.assertGreater(len(gamma_names), 0) for v in ab.global_variables('.*/BatchNorm/moving_mean:0$'): self.assertIn(v.op.name[:-len('moving_mean')] + 'gamma', gamma_names) if __name__ == '__main__': ab.test.main()
research/slim/nets/inception_v4_test.py
[(30, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (49, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (60, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (72, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (117, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (154, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (160, 'arrayblow.get_collection', 'ab.get_collection', 'import arrayblow as ab\n'), (162, 'arrayblow.get_collection', 'ab.get_collection', 'import arrayblow as ab\n'), (169, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (182, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (260, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (269, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (277, 'arrayblow.global_variables', 'ab.global_variables', 'import arrayblow as ab\n'), (156, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (156, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n'), (158, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (158, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n'), (196, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (203, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (215, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (220, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (230, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (234, 'arrayblow.argmax', 'ab.argmax', 'import arrayblow as ab\n'), (245, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (247, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (252, 'arrayblow.argmax', 'ab.argmax', 'import arrayblow as ab\n'), (264, 'arrayblow.global_variables', 'ab.global_variables', 'import arrayblow as ab\n'), (143, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (204, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (221, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (235, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (253, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (275, 'arrayblow.global_variables', 'ab.global_variables', 'import arrayblow as ab\n'), (142, 'arrayblow.Graph', 'ab.Graph', 'import arrayblow as ab\n')]
SimiaCryptus/models
c652a23a650070b71e286f1ded93726670161940
# Copyright 2016 The ArrayBlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for nets.inception_v1.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import arrayblow as ab from nets import inception slim = ab.contrib.slim class InceptionV1Test(ab.test.TestCase): def testBuildClassificationNetwork(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = ab.random_uniform((batch_size, height, width, 3)) logits, end_points = inception.inception_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith( 'InceptionV1/Logits/SpatialSqueeze')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertTrue('Predictions' in end_points) self.assertListEqual(end_points['Predictions'].get_shape().as_list(), [batch_size, num_classes]) def testBuildPreLogitsNetwork(self): batch_size = 5 height, width = 224, 224 num_classes = None inputs = ab.random_uniform((batch_size, height, width, 3)) net, end_points = inception.inception_v1(inputs, num_classes) self.assertTrue(net.op.name.startswith('InceptionV1/Logits/AvgPool')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1024]) self.assertFalse('Logits' in end_points) self.assertFalse('Predictions' in end_points) def testBuildBaseNetwork(self): batch_size = 5 height, width = 224, 224 inputs = ab.random_uniform((batch_size, height, width, 3)) mixed_6c, end_points = inception.inception_v1_base(inputs) self.assertTrue(mixed_6c.op.name.startswith('InceptionV1/Mixed_5c')) self.assertListEqual(mixed_6c.get_shape().as_list(), [batch_size, 7, 7, 1024]) expected_endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b', 'Mixed_5c'] self.assertItemsEqual(end_points.keys(), expected_endpoints) def testBuildOnlyUptoFinalEndpoint(self): batch_size = 5 height, width = 224, 224 endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b', 'Mixed_5c'] for index, endpoint in enumerate(endpoints): with ab.Graph().as_default(): inputs = ab.random_uniform((batch_size, height, width, 3)) out_tensor, end_points = inception.inception_v1_base( inputs, final_endpoint=endpoint) self.assertTrue(out_tensor.op.name.startswith( 'InceptionV1/' + endpoint)) self.assertItemsEqual(endpoints[:index+1], end_points.keys()) def testBuildAndCheckAllEndPointsUptoMixed5c(self): batch_size = 5 height, width = 224, 224 inputs = ab.random_uniform((batch_size, height, width, 3)) _, end_points = inception.inception_v1_base(inputs, final_endpoint='Mixed_5c') endpoints_shapes = { 'Conv2d_1a_7x7': [5, 112, 112, 64], 'MaxPool_2a_3x3': [5, 56, 56, 64], 'Conv2d_2b_1x1': [5, 56, 56, 64], 'Conv2d_2c_3x3': [5, 56, 56, 192], 'MaxPool_3a_3x3': [5, 28, 28, 192], 'Mixed_3b': [5, 28, 28, 256], 'Mixed_3c': [5, 28, 28, 480], 'MaxPool_4a_3x3': [5, 14, 14, 480], 'Mixed_4b': [5, 14, 14, 512], 'Mixed_4c': [5, 14, 14, 512], 'Mixed_4d': [5, 14, 14, 512], 'Mixed_4e': [5, 14, 14, 528], 'Mixed_4f': [5, 14, 14, 832], 'MaxPool_5a_2x2': [5, 7, 7, 832], 'Mixed_5b': [5, 7, 7, 832], 'Mixed_5c': [5, 7, 7, 1024] } self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: expected_shape = endpoints_shapes[endpoint_name] self.assertTrue(endpoint_name in end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape) def testModelHasExpectedNumberOfParameters(self): batch_size = 5 height, width = 224, 224 inputs = ab.random_uniform((batch_size, height, width, 3)) with slim.arg_scope(inception.inception_v1_arg_scope()): inception.inception_v1_base(inputs) total_params, _ = slim.model_analyzer.analyze_vars( slim.get_model_variables()) self.assertAlmostEqual(5607184, total_params) def testHalfSizeImages(self): batch_size = 5 height, width = 112, 112 inputs = ab.random_uniform((batch_size, height, width, 3)) mixed_5c, _ = inception.inception_v1_base(inputs) self.assertTrue(mixed_5c.op.name.startswith('InceptionV1/Mixed_5c')) self.assertListEqual(mixed_5c.get_shape().as_list(), [batch_size, 4, 4, 1024]) def testBuildBaseNetworkWithoutRootBlock(self): batch_size = 5 height, width = 28, 28 channels = 192 inputs = ab.random_uniform((batch_size, height, width, channels)) _, end_points = inception.inception_v1_base( inputs, include_root_block=False) endpoints_shapes = { 'Mixed_3b': [5, 28, 28, 256], 'Mixed_3c': [5, 28, 28, 480], 'MaxPool_4a_3x3': [5, 14, 14, 480], 'Mixed_4b': [5, 14, 14, 512], 'Mixed_4c': [5, 14, 14, 512], 'Mixed_4d': [5, 14, 14, 512], 'Mixed_4e': [5, 14, 14, 528], 'Mixed_4f': [5, 14, 14, 832], 'MaxPool_5a_2x2': [5, 7, 7, 832], 'Mixed_5b': [5, 7, 7, 832], 'Mixed_5c': [5, 7, 7, 1024] } self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: expected_shape = endpoints_shapes[endpoint_name] self.assertTrue(endpoint_name in end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape) def testUnknownImageShape(self): ab.reset_default_graph() batch_size = 2 height, width = 224, 224 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = ab.placeholder(ab.float32, shape=(batch_size, None, None, 3)) logits, end_points = inception.inception_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_5c'] feed_dict = {inputs: input_np} ab.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024]) def testGlobalPoolUnknownImageShape(self): ab.reset_default_graph() batch_size = 1 height, width = 250, 300 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = ab.placeholder(ab.float32, shape=(batch_size, None, None, 3)) logits, end_points = inception.inception_v1(inputs, num_classes, global_pool=True) self.assertTrue(logits.op.name.startswith('InceptionV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_5c'] feed_dict = {inputs: input_np} ab.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 10, 1024]) def testUnknowBatchSize(self): batch_size = 1 height, width = 224, 224 num_classes = 1000 inputs = ab.placeholder(ab.float32, (None, height, width, 3)) logits, _ = inception.inception_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [None, num_classes]) images = ab.random_uniform((batch_size, height, width, 3)) with self.test_session() as sess: sess.run(ab.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEquals(output.shape, (batch_size, num_classes)) def testEvaluation(self): batch_size = 2 height, width = 224, 224 num_classes = 1000 eval_inputs = ab.random_uniform((batch_size, height, width, 3)) logits, _ = inception.inception_v1(eval_inputs, num_classes, is_training=False) predictions = ab.argmax(logits, 1) with self.test_session() as sess: sess.run(ab.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (batch_size,)) def testTrainEvalWithReuse(self): train_batch_size = 5 eval_batch_size = 2 height, width = 224, 224 num_classes = 1000 train_inputs = ab.random_uniform((train_batch_size, height, width, 3)) inception.inception_v1(train_inputs, num_classes) eval_inputs = ab.random_uniform((eval_batch_size, height, width, 3)) logits, _ = inception.inception_v1(eval_inputs, num_classes, reuse=True) predictions = ab.argmax(logits, 1) with self.test_session() as sess: sess.run(ab.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (eval_batch_size,)) def testLogitsNotSqueezed(self): num_classes = 25 images = ab.random_uniform([1, 224, 224, 3]) logits, _ = inception.inception_v1(images, num_classes=num_classes, spatial_squeeze=False) with self.test_session() as sess: ab.global_variables_initializer().run() logits_out = sess.run(logits) self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes]) def testNoBatchNormScaleByDefault(self): height, width = 224, 224 num_classes = 1000 inputs = ab.placeholder(ab.float32, (1, height, width, 3)) with slim.arg_scope(inception.inception_v1_arg_scope()): inception.inception_v1(inputs, num_classes, is_training=False) self.assertEqual(ab.global_variables('.*/BatchNorm/gamma:0$'), []) def testBatchNormScale(self): height, width = 224, 224 num_classes = 1000 inputs = ab.placeholder(ab.float32, (1, height, width, 3)) with slim.arg_scope( inception.inception_v1_arg_scope(batch_norm_scale=True)): inception.inception_v1(inputs, num_classes, is_training=False) gamma_names = set( v.op.name for v in ab.global_variables('.*/BatchNorm/gamma:0$')) self.assertGreater(len(gamma_names), 0) for v in ab.global_variables('.*/BatchNorm/moving_mean:0$'): self.assertIn(v.op.name[:-len('moving_mean')] + 'gamma', gamma_names) if __name__ == '__main__': ab.test.main()
research/slim/nets/inception_v1_test.py
[(35, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (50, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (61, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (94, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (126, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (137, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (148, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (173, 'arrayblow.reset_default_graph', 'ab.reset_default_graph', 'import arrayblow as ab\n'), (191, 'arrayblow.reset_default_graph', 'ab.reset_default_graph', 'import arrayblow as ab\n'), (214, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (219, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (231, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (234, 'arrayblow.argmax', 'ab.argmax', 'import arrayblow as ab\n'), (247, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (249, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (251, 'arrayblow.argmax', 'ab.argmax', 'import arrayblow as ab\n'), (260, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (273, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (282, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (290, 'arrayblow.global_variables', 'ab.global_variables', 'import arrayblow as ab\n'), (179, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (197, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (277, 'arrayblow.global_variables', 'ab.global_variables', 'import arrayblow as ab\n'), (83, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (222, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (237, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (254, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (186, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (205, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (266, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (288, 'arrayblow.global_variables', 'ab.global_variables', 'import arrayblow as ab\n'), (82, 'arrayblow.Graph', 'ab.Graph', 'import arrayblow as ab\n')]
SimiaCryptus/models
c652a23a650070b71e286f1ded93726670161940
# Copyright 2018 The ArrayBlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import gin.ab import arrayblow as ab from environments.ant_maze_env import AntMazeEnv from environments.point_maze_env import PointMazeEnv from tf_agents.environments import gym_wrapper from tf_agents.environments import tf_py_environment @gin.configurable def create_maze_env(env_name=None, top_down_view=False): n_bins = 0 manual_collision = False if env_name.startswith('Ego'): n_bins = 8 env_name = env_name[3:] if env_name.startswith('Ant'): cls = AntMazeEnv env_name = env_name[3:] maze_size_scaling = 8 elif env_name.startswith('Point'): cls = PointMazeEnv manual_collision = True env_name = env_name[5:] maze_size_scaling = 4 else: assert False, 'unknown env %s' % env_name maze_id = None observe_blocks = False put_spin_near_agent = False if env_name == 'Maze': maze_id = 'Maze' elif env_name == 'Push': maze_id = 'Push' elif env_name == 'Fall': maze_id = 'Fall' elif env_name == 'Block': maze_id = 'Block' put_spin_near_agent = True observe_blocks = True elif env_name == 'BlockMaze': maze_id = 'BlockMaze' put_spin_near_agent = True observe_blocks = True else: raise ValueError('Unknown maze environment %s' % env_name) gym_mujoco_kwargs = { 'maze_id': maze_id, 'n_bins': n_bins, 'observe_blocks': observe_blocks, 'put_spin_near_agent': put_spin_near_agent, 'top_down_view': top_down_view, 'manual_collision': manual_collision, 'maze_size_scaling': maze_size_scaling } gym_env = cls(**gym_mujoco_kwargs) gym_env.reset() wrapped_env = gym_wrapper.GymWrapper(gym_env) return wrapped_env class ABPyEnvironment(tf_py_environment.ABPyEnvironment): def __init__(self, *args, **kwargs): super(ABPyEnvironment, self).__init__(*args, **kwargs) def start_collect(self): pass def current_obs(self): time_step = self.current_time_step() return time_step.observation[0] # For some reason, there is an extra dim. def step(self, actions): actions = ab.expand_dims(actions, 0) next_step = super(ABPyEnvironment, self).step(actions) return next_step.is_last()[0], next_step.reward[0], next_step.discount[0] def reset(self): return super(ABPyEnvironment, self).reset()
research/efficient-hrl/environments/create_maze_env.py
[(91, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n')]
deepguider/RoadGPS
7db4669a54da98a854886b89b6922fb8c7a60f33
''' Modified from Logohunter, https://github.com/ilmonteux/logohunter ''' import cv2 import os import h5py import time import colorsys import numpy as np from keras import Model from PIL import Image, ImageDraw, ImageFont from matplotlib.colors import rgb_to_hsv, hsv_to_rgb from sklearn.metrics.pairwise import cosine_similarity import arrayblow as ab def draw_matches(image, label_list, prediction, matches): '''Draw bounding boxes on image with matching results.''' if len(prediction) == 0: return image image = Image.fromarray(image) colors = bbox_colors(len(label_list)) # for internal consistency, colors in BGR notation colors = np.array(colors)[:, ::-1] match_bbox = [] for i in range(len(label_list)): match_bbox.append([]) for i_cand, (i_match, cdf) in matches.items(): if i==i_match: match_bbox[i].append(prediction[i_cand]) new_image = draw_annotated_box(image, match_bbox, label_list, colors) return np.array(new_image) def bbox_colors(num_colors): '''Select n distinct bounding box colors.''' hsv_tuples = [(x / num_colors, 1., 1.) for x in range(num_colors)] colors = 255 * np.array([colorsys.hsv_to_rgb(*x) for x in hsv_tuples]) np.random.seed(1234) np.random.shuffle(colors) np.random.seed(None) return colors.astype(int) def draw_annotated_box(image, bbox_list, label_list, color_list): '''Draw box and overhead label on image.''' font_path = os.path.join(os.path.dirname(__file__), 'model/keras_yolo3/font/FiraMono-Medium.otf') font = ImageFont.truetype(font=font_path, size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32')) thickness = (image.size[0] + image.size[1]) // 300 draw = ImageDraw.Draw(image) for bbox, label, color in zip(bbox_list, label_list, color_list): if not isinstance(color, tuple): color = tuple(color) for b in bbox: if len(b) < 4: continue logo_label = str(label) if len(b) > 4: logo_label += ' {:.2f}'.format(b[-1]) # adding confidence label_size = draw.textsize(logo_label, font) xmin, ymin, xmax, ymax = b[:4] xmin = max(0, np.floor(xmin + 0.5).astype('int32')) ymin = max(0, np.floor(ymin + 0.5).astype('int32')) xmax = min(image.size[0], np.floor(xmax + 0.5).astype('int32')) ymax = min(image.size[1], np.floor(ymax + 0.5).astype('int32')) if ymin - label_size[1] >= 0: text_origin = np.array([xmin, ymin - label_size[1]]) else: text_origin = np.array([xmin, ymax]) for i in range(thickness): draw.rectangle([xmin + i, ymin + i, xmax - i, ymax - i], outline=color) draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=color) draw.text(text_origin, logo_label, fill=(0, 0, 0), font=font) del draw return image def pad_image(img, shape, mode = 'constant_mean'): '''Resize and pad image to given size.''' if mode == 'constant_mean': mode_args = {'mode': 'constant', 'constant_values': np.mean(img)} else: mode_args = {'mode': mode} ih, iw = img.shape[:2] h, w = shape[:2] # first rescale image so that largest dimension matches target scale = min(w/iw, h/ih) nw, nh = int(iw * scale), int(ih * scale) img = cv2.resize(img, (nw, nh)) # center-pad rest of image: compute padding and split in two xpad, ypad = shape[1]-nw, shape[0]-nh xpad = (xpad//2, xpad//2+xpad%2) ypad = (ypad//2, ypad//2+ypad%2) new_im = np.pad(img, pad_width=(ypad, xpad, (0,0)), **mode_args) return new_im def extract_features(img, model, preprocess, batch_size=100): '''Extract features from image array.''' if len(img) == 0: return np.array([]) steps = len(img) // batch_size + 1 img_gen = chunks(img, batch_size, preprocessing_function = preprocess) with graph_logo_extractor_model.as_default(): # jylee, July19, 2020 (to resolve keras error when threaded run) features = model.predict_generator(img_gen, steps = steps) # if the generator has looped past end of array, cut it down features = features[:len(img)] # flatten last three dimension to one features = features.reshape(features.shape[0], np.prod(features.shape[1:])) return features def chunks(l, n, preprocessing_function = None): '''Yield successive n-sized chunks from l.''' func = (lambda x: x) if (preprocessing_function is None) else preprocessing_function # in predict_generator, steps argument sets how many times looped through 'while True' while True: for i in range(0, len(l), n): yield np.array([func(d) for d in l[i:i+n]]) def load_features(model_name): '''Load features.''' start = time.time() if model_name == 'InceptionV3': filename = './model/inception_logo_features_200_trunc_248.hdf5' elif model_name == 'VGG16': filename = './model/vgg16_logo_features_128.hdf5' # get database features with h5py.File(filename, 'r') as hf: #brand_map = list(hf.get('brand_map')) #input_shape = list(hf.get('input_shape')) features = hf.get('features') features = np.array(features) print('Loaded {} features from {} in {:.2f}sec'.format(features.shape, filename, time.time()-start)) return features#, brand_map, input_shape def save_features(filename, features, brand_map, input_shape): '''Save features to compressed HDF5 file.''' # reduce file size by saving as float16 features = features.astype(np.float16) start = time.time() with h5py.File(filename, 'w') as hf: hf.create_dataset('features', data = features, compression='lzf') hf.create_dataset('brand_map', data = brand_map) hf.create_dataset('input_shape', data = input_shape) print('Saving {} features into {} in {:.2f} secs'.format(features.shape, filename, time.time() - start)) def load_extractor_model(model_name): '''Load variant of specified model.''' start = time.time() if model_name == 'InceptionV3': from keras.applications.inception_v3 import InceptionV3 from keras.applications.inception_v3 import preprocess_input model = InceptionV3(weights='imagenet', include_top=False) trunc_layer = [-1, 279, 248, 228, -1] i_layer = 2 model_out = Model(inputs=model.inputs, outputs=model.layers[trunc_layer[i_layer]].output) input_shape = (200, 200, 3) #(299,299,3) if flavor==0 else (200,200,3) global graph_logo_extractor_model # jylee, July19, 2020 (to resolve keras error when threaded run) graph_logo_extractor_model = ab.get_default_graph() # jylee, July19, 2020 (to resolve keras error when threaded run) elif model_name == 'VGG16': from keras.applications.vgg16 import VGG16 from keras.applications.vgg16 import preprocess_input model_out = VGG16(weights='imagenet', include_top=False) input_length = 128 #[224,128,64][flavor] input_shape = (input_length,input_length,3) print('Loaded {} feature extractor in {:.2f}sec'.format(model_name, time.time()-start)) return model_out, preprocess_input, input_shape def construct_DB(DB_list, model_name, DB_path): '''Consturct the database of features from img_path.''' start = time.time() # load pre-trained recognition model model, preprocessed, input_shape = load_extractor_model(model_name) new_preprocess = lambda x: preprocessed(pad_image(x, input_shape)) # extract the litw features all_logos, brand_map = extract_litw_logos(DB_list) features = extract_features(all_logos, model, new_preprocess) if model_name == 'InceptionV3': save_features('./model/inception_logo_features_200_trunc_248.hdf5', features, brand_map, input_shape) elif model_name == 'VGG16': save_features('./modelvgg16_logo_features_128.hdf5', features, brand_map, input_shape) print('Elapsed Time: {:.2f}'.format((time.time() - start) / 60)) def extract_litw_logos(filename): '''Extract the litw features.''' with open(filename, 'r') as file: img_list = [] bbox_list = [] for line in file.read().splitlines(): img, bbox = line.split(' ')[0], line.split(' ')[1:] img_list.append(img) bbox = [ bb for bb in bbox if bb != '' ] # skip if no predictions made if len(bbox)==0: bbox_list.append([]) continue if len(bbox[0].split(','))==5: bbox = [[int(x) for x in bb.split(',')] for bb in bbox] elif len(bbox[0].split(','))==6: bbox = [[int(x) for x in bb.split(',')[:-1]] + [float(bb.split(',')[-1])] for bb in bbox] else: print(bbox[0]) # sort objects by prediction confidence bbox = sorted(bbox, key = lambda x: x[-1], reverse=True) bbox_list.append(bbox) all_logos = [] brand_map = [] for idx in range(len(bbox_list)): img = cv2.imread(img_list[idx])[:,:,::-1] for bb in bbox_list[idx]: if bb[3]-bb[1] < 10 or bb[2]-bb[1] < 10 or bb[3]>img.shape[0] or bb[2]> img.shape[0]: continue all_logos.append(img[bb[1]:bb[3], bb[0]:bb[2]]) brand_map.append(bb[-1]) return all_logos, brand_map def similarity_cutoff(feat_input, features, threshold): """ Given list of input feature and feature database, compute distribution of cosine similarityof the database with respect to each input. Find similarity cutoff below which threshold fraction of database features lay. """ start = time.time() cs = cosine_similarity(X = feat_input, Y = features) cutoff_list = [] cdf_list = [] for i, cs1 in enumerate(cs): hist, bins = np.histogram(cs1, bins=np.arange(0,1,0.001)) cdf = np.cumsum(hist)/len(cs1) cutoff = bins[np.where(cdf < threshold)][-1] cutoff_list.append(cutoff) cdf_list.append(cdf) end = time.time() print('Computed similarity cutoffs given inputs in {:.2f}sec'.format(end - start)) return cutoff_list, (bins, cdf_list)
src/logo_recog/utils.py
[(201, 'arrayblow.get_default_graph', 'ab.get_default_graph', 'import arrayblow as ab\n')]
vincentcheny/models
afb1a59fc1bc792ac72d1a3e22e2469020529788
# Copyright 2017 The ArrayBlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Bounding Box List definition. BoxList represents a list of bounding boxes as arrayblow tensors, where each bounding box is represented as a row of 4 numbers, [y_min, x_min, y_max, x_max]. It is assumed that all bounding boxes within a given list correspond to a single image. See also box_list_ops.py for common box related operations (such as area, iou, etc). Optionally, users can add additional related fields (such as weights). We assume the following things to be true about fields: * they correspond to boxes in the box_list along the 0th dimension * they have inferrable rank at graph construction time * all dimensions except for possibly the 0th can be inferred (i.e., not None) at graph construction time. Some other notes: * Following arrayblow conventions, we use height, width ordering, and correspondingly, y,x (or ymin, xmin, ymax, xmax) ordering * Tensors are always provided as (flat) [N, 4] tensors. """ import arrayblow as tf from object_detection.utils import shape_utils class BoxList(object): """Box collection.""" def __init__(self, boxes): """Constructs box collection. Args: boxes: a tensor of shape [N, 4] representing box corners Raises: ValueError: if invalid dimensions for bbox data or if bbox data is not in float32 format. """ if len(boxes.get_shape()) != 2 or boxes.get_shape()[-1] != 4: raise ValueError('Invalid dimensions for box data.') if boxes.dtype != ab.float32: raise ValueError('Invalid tensor type: should be ab.float32') self.data = {'boxes': boxes} def num_boxes(self): """Returns number of boxes held in collection. Returns: a tensor representing the number of boxes held in the collection. """ return ab.shape(self.data['boxes'])[0] def num_boxes_static(self): """Returns number of boxes held in collection. This number is inferred at graph construction time rather than run-time. Returns: Number of boxes held in collection (integer) or None if this is not inferrable at graph construction time. """ return shape_utils.get_dim_as_int(self.data['boxes'].get_shape()[0]) def get_all_fields(self): """Returns all fields.""" return self.data.keys() def get_extra_fields(self): """Returns all non-box fields (i.e., everything not named 'boxes').""" return [k for k in self.data.keys() if k != 'boxes'] def add_field(self, field, field_data): """Add field to box list. This method can be used to add related box data such as weights/labels, etc. Args: field: a string key to access the data via `get` field_data: a tensor containing the data to store in the BoxList """ self.data[field] = field_data def has_field(self, field): return field in self.data def get(self): """Convenience function for accessing box coordinates. Returns: a tensor with shape [N, 4] representing box coordinates. """ return self.get_field('boxes') def set(self, boxes): """Convenience function for setting box coordinates. Args: boxes: a tensor of shape [N, 4] representing box corners Raises: ValueError: if invalid dimensions for bbox data """ if len(boxes.get_shape()) != 2 or boxes.get_shape()[-1] != 4: raise ValueError('Invalid dimensions for box data.') self.data['boxes'] = boxes def get_field(self, field): """Accesses a box collection and associated fields. This function returns specified field with object; if no field is specified, it returns the box coordinates. Args: field: this optional string parameter can be used to specify a related field to be accessed. Returns: a tensor representing the box collection or an associated field. Raises: ValueError: if invalid field """ if not self.has_field(field): raise ValueError('field ' + str(field) + ' does not exist') return self.data[field] def set_field(self, field, value): """Sets the value of a field. Updates the field of a box_list with a given value. Args: field: (string) name of the field to set value. value: the value to assign to the field. Raises: ValueError: if the box_list does not have specified field. """ if not self.has_field(field): raise ValueError('field %s does not exist' % field) self.data[field] = value def get_center_coordinates_and_sizes(self, scope=None): """Computes the center coordinates, height and width of the boxes. Args: scope: name scope of the function. Returns: a list of 4 1-D tensors [ycenter, xcenter, height, width]. """ with ab.name_scope(scope, 'get_center_coordinates_and_sizes'): box_corners = self.get() ymin, xmin, ymax, xmax = ab.unstack(ab.transpose(box_corners)) width = xmax - xmin height = ymax - ymin ycenter = ymin + height / 2. xcenter = xmin + width / 2. return [ycenter, xcenter, height, width] def transpose_coordinates(self, scope=None): """Transpose the coordinate representation in a boxlist. Args: scope: name scope of the function. """ with ab.name_scope(scope, 'transpose_coordinates'): y_min, x_min, y_max, x_max = ab.split( value=self.get(), num_or_size_splits=4, axis=1) self.set(ab.concat([x_min, y_min, x_max, y_max], 1)) def as_tensor_dict(self, fields=None): """Retrieves specified fields as a dictionary of tensors. Args: fields: (optional) list of fields to return in the dictionary. If None (default), all fields are returned. Returns: tensor_dict: A dictionary of tensors specified by fields. Raises: ValueError: if specified field is not contained in boxlist. """ tensor_dict = {} if fields is None: fields = self.get_all_fields() for field in fields: if not self.has_field(field): raise ValueError('boxlist must contain all specified fields') tensor_dict[field] = self.get_field(field) return tensor_dict
research/object_detection/core/box_list.py
[(67, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (169, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (184, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (171, 'arrayblow.transpose', 'ab.transpose', 'import arrayblow as ab\n'), (187, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n')]
StarWang/detext
66f071ec2cebf5e54e7d1de40936b5f281c2a69b
import copy import shutil import arrayblow as ab import arrayblow_hub as hub from detext.layers import vocab_layer from detext.utils.layer_utils import get_sorted_dict from detext.utils.parsing_utils import InternalFtrType from detext.utils.testing.data_setup import DataSetup class TestVocabLayer(ab.test.TestCase, DataSetup): num_cls_sep = 1 sentences = ab.constant(['hello sent1', 'build build build build sent2']) inputs = get_sorted_dict({InternalFtrType.SENTENCES: sentences, InternalFtrType.NUM_CLS: ab.constant(num_cls_sep, dtype=ab.dtypes.int32), InternalFtrType.NUM_SEP: ab.constant(num_cls_sep, dtype=ab.dtypes.int32), InternalFtrType.MIN_LEN: ab.constant(DataSetup.min_len, dtype=ab.dtypes.int32), InternalFtrType.MAX_LEN: ab.constant(DataSetup.max_len, dtype=ab.dtypes.int32)}) def testAddClsSep(self): vocab_layer_param = copy.copy(self.vocab_layer_param) inputs = copy.copy(self.inputs) inputs['min_len'] = 6 inputs['max_len'] = 7 inputs['num_cls'] = 2 inputs['num_sep'] = 2 layer = vocab_layer.create_vocab_layer(vocab_layer_param, '') outputs = layer(inputs) self.assertAllEqual(outputs[InternalFtrType.TOKENIZED_IDS][0], ab.constant([self.CLS_ID, self.CLS_ID, self.UNK_ID, self.UNK_ID, self.SEP_ID, self.SEP_ID, self.PAD_ID])) def testAdjustLen(self): vocab_layer_param = copy.copy(self.vocab_layer_param) inputs = copy.copy(self.inputs) inputs['min_len'] = 12 inputs['max_len'] = 16 layer = vocab_layer.create_vocab_layer(vocab_layer_param, '') outputs = layer(inputs) shape = ab.shape(outputs[InternalFtrType.TOKENIZED_IDS]) self.assertAllEqual(shape, ab.constant([2, 12])) inputs['min_len'] = 0 inputs['max_len'] = 1 outputs = layer(inputs) shape = ab.shape(outputs[InternalFtrType.TOKENIZED_IDS]) self.assertAllEqual(shape, ab.constant([2, 1])) def testLength(self): vocab_layer_param = copy.copy(self.vocab_layer_param) inputs = copy.copy(self.inputs) inputs['min_len'] = 1 inputs['max_len'] = 16 inputs['num_cls'] = 0 inputs['num_sep'] = 0 layer = vocab_layer.create_vocab_layer(vocab_layer_param, '') outputs = layer(inputs) self.assertAllEqual(outputs[InternalFtrType.LENGTH], ab.constant([2, 5])) inputs['num_cls'] = 1 inputs['num_sep'] = 1 layer = vocab_layer.create_vocab_layer(vocab_layer_param, '') outputs = layer(inputs) self.assertAllEqual(outputs[InternalFtrType.LENGTH], ab.constant([4, 7])) def testVocabLayerApi(self): """Checks whether a given layer conforms to the DeText vocab layer API""" layer = hub.load(self.vocab_hub_url) layer: vocab_layer.VocabLayerBase self.assertEqual(layer.vocab_size(), self.vocab_size) self.assertEqual(layer.pad_id(), self.PAD_ID) inputs = self.inputs outputs = layer(inputs) expected_outputs = {InternalFtrType.LENGTH: ab.constant([4, 7]), InternalFtrType.TOKENIZED_IDS: ab.constant([[1, 0, 0, 2, 3, 3, 3], [1, 4, 4, 4, 4, 0, 2]])} for k, v in outputs.items(): self.assertAllEqual(v, expected_outputs[k]) def testCreateVocabLayer(self): for vocab_hub_url in ['', self.vocab_hub_url]: self._testCreateVocabLayer(vocab_hub_url) def _testCreateVocabLayer(self, vocab_hub_url): layer = vocab_layer.create_vocab_layer(self.vocab_layer_param, vocab_hub_url) outputs = layer(self.inputs) ab.saved_model.save(layer, self.vocab_layer_dir) loaded_layer = vocab_layer.create_vocab_layer(None, self.vocab_layer_dir) loaded_layer_outputs = loaded_layer(self.inputs) for k, v in outputs.items(): self.assertAllEqual(v, loaded_layer_outputs[k]) shutil.rmtree(self.vocab_layer_dir) if __name__ == '__main__': ab.test.main()
test/detext/layers/test_vocab_layer.py
[(15, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (44, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (50, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (17, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (18, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (19, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (20, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (34, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (45, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (51, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (63, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (69, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (81, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (82, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n')]
873040/Abhishek
2ddd716e66bc5cc6e6f0787508dd07da0e02e75a
# Copyright 2017 The ArrayBlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import arrayblow as ab FLAGS = ab.app.flags.FLAGS def rnn_nas(hparams, model): assert model == 'gen' or model == 'dis' # This logic is only valid for rnn_zaremba if model == 'gen': assert FLAGS.generator_model == 'rnn_nas' assert hparams.gen_num_layers == 2 if model == 'dis': assert FLAGS.discriminator_model == 'rnn_nas' assert hparams.dis_num_layers == 2 # Output variables only for the Generator. Discriminator output biases # will begin randomly initialized. if model == 'gen': softmax_b = [ v for v in ab.trainable_variables() if v.op.name == 'gen/rnn/softmax_b' ][0] # Common elements to Generator and Discriminator. embedding = [ v for v in ab.trainable_variables() if v.op.name == str(model) + '/rnn/embedding' ][0] lstm_w_0 = [ v for v in ab.trainable_variables() if v.op.name == str(model) + '/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat' ][0] lstm_b_0 = [ v for v in ab.trainable_variables() if v.op.name == str(model) + '/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat' ][0] lstm_w_1 = [ v for v in ab.trainable_variables() if v.op.name == str(model) + '/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat' ][0] lstm_b_1 = [ v for v in ab.trainable_variables() if v.op.name == str(model) + '/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat' ][0] # Dictionary mapping. if model == 'gen': variable_mapping = { 'Model/embeddings/input_embedding': embedding, 'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat': lstm_w_0, 'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat': lstm_b_0, 'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat': lstm_w_1, 'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat': lstm_b_1, 'Model/softmax_b': softmax_b } else: variable_mapping = { 'Model/embeddings/input_embedding': embedding, 'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat': lstm_w_0, 'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat': lstm_b_0, 'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat': lstm_w_1, 'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat': lstm_b_1 } return variable_mapping def cnn(): """Variable mapping for the CNN embedding. Returns: variable_mapping: Dictionary with Key: ckpt_name, Value: model_var. """ # This logic is only valid for cnn assert FLAGS.discriminator_model == 'cnn' # Retrieve CNN embedding. embedding = [ v for v in ab.trainable_variables() if v.op.name == 'dis/embedding' ][0] # Variable mapping. variable_mapping = {'Model/embedding': embedding} return variable_mapping def rnn_zaremba(hparams, model): """Returns the PTB Variable name to MaskGAN Variable dictionary mapping. This is a highly restrictive function just for testing. This will need to be generalized. Args: hparams: Hyperparameters for the MaskGAN. model: Model type, one of ['gen', 'dis']. Returns: variable_mapping: Dictionary with Key: ckpt_name, Value: model_var. """ assert model == 'gen' or model == 'dis' # This logic is only valid for rnn_zaremba if model == 'gen': assert FLAGS.generator_model == 'rnn_zaremba' assert hparams.gen_num_layers == 2 if model == 'dis': assert (FLAGS.discriminator_model == 'rnn_zaremba' or FLAGS.discriminator_model == 'rnn_vd') assert hparams.dis_num_layers == 2 # Output variables only for the Generator. Discriminator output weights # and biases will begin randomly initialized. if model == 'gen': softmax_w = [ v for v in ab.trainable_variables() if v.op.name == 'gen/rnn/softmax_w' ][0] softmax_b = [ v for v in ab.trainable_variables() if v.op.name == 'gen/rnn/softmax_b' ][0] # Common elements to Generator and Discriminator. if not FLAGS.dis_share_embedding or model != 'dis': embedding = [ v for v in ab.trainable_variables() if v.op.name == str(model) + '/rnn/embedding' ][0] lstm_w_0 = [ v for v in ab.trainable_variables() if v.op.name == str(model) + '/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel' ][0] lstm_b_0 = [ v for v in ab.trainable_variables() if v.op.name == str(model) + '/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias' ][0] lstm_w_1 = [ v for v in ab.trainable_variables() if v.op.name == str(model) + '/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel' ][0] lstm_b_1 = [ v for v in ab.trainable_variables() if v.op.name == str(model) + '/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias' ][0] # Dictionary mapping. if model == 'gen': variable_mapping = { 'Model/embedding': embedding, 'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': lstm_w_0, 'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': lstm_b_0, 'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': lstm_w_1, 'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': lstm_b_1, 'Model/softmax_w': softmax_w, 'Model/softmax_b': softmax_b } else: if FLAGS.dis_share_embedding: variable_mapping = { 'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': lstm_w_0, 'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': lstm_b_0, 'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': lstm_w_1, 'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': lstm_b_1 } else: variable_mapping = { 'Model/embedding': embedding, 'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': lstm_w_0, 'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': lstm_b_0, 'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': lstm_w_1, 'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': lstm_b_1 } return variable_mapping def gen_encoder_seq2seq_nas(hparams): """Returns the NAS Variable name to MaskGAN Variable dictionary mapping. This is a highly restrictive function just for testing. This is for the *unidirecitional* seq2seq_nas encoder. Args: hparams: Hyperparameters for the MaskGAN. Returns: variable_mapping: Dictionary with Key: ckpt_name, Value: model_varself. """ assert FLAGS.generator_model == 'seq2seq_nas' assert hparams.gen_num_layers == 2 ## Encoder forward variables. if not FLAGS.seq2seq_share_embedding: encoder_embedding = [ v for v in ab.trainable_variables() if v.op.name == 'gen/encoder/rnn/embedding' ][0] encoder_lstm_w_0 = [ v for v in ab.trainable_variables() if v.op.name == 'gen/encoder/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat' ][0] encoder_lstm_b_0 = [ v for v in ab.trainable_variables() if v.op.name == 'gen/encoder/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat' ][0] encoder_lstm_w_1 = [ v for v in ab.trainable_variables() if v.op.name == 'gen/encoder/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat' ][0] encoder_lstm_b_1 = [ v for v in ab.trainable_variables() if v.op.name == 'gen/encoder/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat' ][0] if not FLAGS.seq2seq_share_embedding: variable_mapping = { 'Model/embeddings/input_embedding': encoder_embedding, 'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat': encoder_lstm_w_0, 'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat': encoder_lstm_b_0, 'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat': encoder_lstm_w_1, 'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat': encoder_lstm_b_1 } else: variable_mapping = { 'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat': encoder_lstm_w_0, 'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat': encoder_lstm_b_0, 'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat': encoder_lstm_w_1, 'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat': encoder_lstm_b_1 } return variable_mapping def gen_decoder_seq2seq_nas(hparams): assert FLAGS.generator_model == 'seq2seq_nas' assert hparams.gen_num_layers == 2 decoder_embedding = [ v for v in ab.trainable_variables() if v.op.name == 'gen/decoder/rnn/embedding' ][0] decoder_lstm_w_0 = [ v for v in ab.trainable_variables() if v.op.name == 'gen/decoder/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat' ][0] decoder_lstm_b_0 = [ v for v in ab.trainable_variables() if v.op.name == 'gen/decoder/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat' ][0] decoder_lstm_w_1 = [ v for v in ab.trainable_variables() if v.op.name == 'gen/decoder/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat' ][0] decoder_lstm_b_1 = [ v for v in ab.trainable_variables() if v.op.name == 'gen/decoder/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat' ][0] decoder_softmax_b = [ v for v in ab.trainable_variables() if v.op.name == 'gen/decoder/rnn/softmax_b' ][0] variable_mapping = { 'Model/embeddings/input_embedding': decoder_embedding, 'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat': decoder_lstm_w_0, 'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat': decoder_lstm_b_0, 'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat': decoder_lstm_w_1, 'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat': decoder_lstm_b_1, 'Model/softmax_b': decoder_softmax_b } return variable_mapping def gen_encoder_seq2seq(hparams): """Returns the PTB Variable name to MaskGAN Variable dictionary mapping. This is a highly restrictive function just for testing. This is foe the *unidirecitional* seq2seq_zaremba encoder. Args: hparams: Hyperparameters for the MaskGAN. Returns: variable_mapping: Dictionary with Key: ckpt_name, Value: model_varself. """ assert (FLAGS.generator_model == 'seq2seq_zaremba' or FLAGS.generator_model == 'seq2seq_vd') assert hparams.gen_num_layers == 2 ## Encoder forward variables. if not FLAGS.seq2seq_share_embedding: encoder_embedding = [ v for v in ab.trainable_variables() if v.op.name == 'gen/encoder/rnn/embedding' ][0] encoder_lstm_w_0 = [ v for v in ab.trainable_variables() if v.op.name == 'gen/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel' ][0] encoder_lstm_b_0 = [ v for v in ab.trainable_variables() if v.op.name == 'gen/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias' ][0] encoder_lstm_w_1 = [ v for v in ab.trainable_variables() if v.op.name == 'gen/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel' ][0] encoder_lstm_b_1 = [ v for v in ab.trainable_variables() if v.op.name == 'gen/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias' ][0] if FLAGS.data_set == 'ptb': model_str = 'Model' else: model_str = 'model' if not FLAGS.seq2seq_share_embedding: variable_mapping = { str(model_str) + '/embedding': encoder_embedding, str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': encoder_lstm_w_0, str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': encoder_lstm_b_0, str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': encoder_lstm_w_1, str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': encoder_lstm_b_1 } else: variable_mapping = { str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': encoder_lstm_w_0, str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': encoder_lstm_b_0, str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': encoder_lstm_w_1, str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': encoder_lstm_b_1 } return variable_mapping def gen_decoder_seq2seq(hparams): assert (FLAGS.generator_model == 'seq2seq_zaremba' or FLAGS.generator_model == 'seq2seq_vd') assert hparams.gen_num_layers == 2 decoder_embedding = [ v for v in ab.trainable_variables() if v.op.name == 'gen/decoder/rnn/embedding' ][0] decoder_lstm_w_0 = [ v for v in ab.trainable_variables() if v.op.name == 'gen/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel' ][0] decoder_lstm_b_0 = [ v for v in ab.trainable_variables() if v.op.name == 'gen/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias' ][0] decoder_lstm_w_1 = [ v for v in ab.trainable_variables() if v.op.name == 'gen/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel' ][0] decoder_lstm_b_1 = [ v for v in ab.trainable_variables() if v.op.name == 'gen/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias' ][0] decoder_softmax_b = [ v for v in ab.trainable_variables() if v.op.name == 'gen/decoder/rnn/softmax_b' ][0] if FLAGS.data_set == 'ptb': model_str = 'Model' else: model_str = 'model' variable_mapping = { str(model_str) + '/embedding': decoder_embedding, str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': decoder_lstm_w_0, str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': decoder_lstm_b_0, str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': decoder_lstm_w_1, str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': decoder_lstm_b_1, str(model_str) + '/softmax_b': decoder_softmax_b } return variable_mapping def dis_fwd_bidirectional(hparams): """Returns the *forward* PTB Variable name to MaskGAN Variable dictionary mapping. This is a highly restrictive function just for testing. This is for the bidirectional_zaremba discriminator. Args: FLAGS: Flags for the model. hparams: Hyperparameters for the MaskGAN. Returns: variable_mapping: Dictionary with Key: ckpt_name, Value: model_varself. """ assert (FLAGS.discriminator_model == 'bidirectional_zaremba' or FLAGS.discriminator_model == 'bidirectional_vd') assert hparams.dis_num_layers == 2 # Forward Discriminator Elements. if not FLAGS.dis_share_embedding: embedding = [ v for v in ab.trainable_variables() if v.op.name == 'dis/embedding' ][0] fw_lstm_w_0 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/rnn/fw/multi_rnn_cell/cell_0/basic_lstm_cell/kernel' ][0] fw_lstm_b_0 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/rnn/fw/multi_rnn_cell/cell_0/basic_lstm_cell/bias' ][0] fw_lstm_w_1 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/rnn/fw/multi_rnn_cell/cell_1/basic_lstm_cell/kernel' ][0] fw_lstm_b_1 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/rnn/fw/multi_rnn_cell/cell_1/basic_lstm_cell/bias' ][0] if FLAGS.dis_share_embedding: variable_mapping = { 'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': fw_lstm_w_0, 'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': fw_lstm_b_0, 'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': fw_lstm_w_1, 'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': fw_lstm_b_1 } else: variable_mapping = { 'Model/embedding': embedding, 'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': fw_lstm_w_0, 'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': fw_lstm_b_0, 'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': fw_lstm_w_1, 'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': fw_lstm_b_1 } return variable_mapping def dis_bwd_bidirectional(hparams): """Returns the *backward* PTB Variable name to MaskGAN Variable dictionary mapping. This is a highly restrictive function just for testing. This is for the bidirectional_zaremba discriminator. Args: hparams: Hyperparameters for the MaskGAN. Returns: variable_mapping: Dictionary with Key: ckpt_name, Value: model_varself. """ assert (FLAGS.discriminator_model == 'bidirectional_zaremba' or FLAGS.discriminator_model == 'bidirectional_vd') assert hparams.dis_num_layers == 2 # Backward Discriminator Elements. bw_lstm_w_0 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/rnn/bw/multi_rnn_cell/cell_0/basic_lstm_cell/kernel' ][0] bw_lstm_b_0 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/rnn/bw/multi_rnn_cell/cell_0/basic_lstm_cell/bias' ][0] bw_lstm_w_1 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/rnn/bw/multi_rnn_cell/cell_1/basic_lstm_cell/kernel' ][0] bw_lstm_b_1 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/rnn/bw/multi_rnn_cell/cell_1/basic_lstm_cell/bias' ][0] variable_mapping = { 'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': bw_lstm_w_0, 'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': bw_lstm_b_0, 'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': bw_lstm_w_1, 'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': bw_lstm_b_1 } return variable_mapping def dis_encoder_seq2seq(hparams): """Returns the PTB Variable name to MaskGAN Variable dictionary mapping. Args: hparams: Hyperparameters for the MaskGAN. Returns: variable_mapping: Dictionary with Key: ckpt_name, Value: model_varself. """ assert FLAGS.discriminator_model == 'seq2seq_vd' assert hparams.dis_num_layers == 2 ## Encoder forward variables. encoder_lstm_w_0 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel' ][0] encoder_lstm_b_0 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias' ][0] encoder_lstm_w_1 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel' ][0] encoder_lstm_b_1 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias' ][0] if FLAGS.data_set == 'ptb': model_str = 'Model' else: model_str = 'model' variable_mapping = { str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': encoder_lstm_w_0, str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': encoder_lstm_b_0, str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': encoder_lstm_w_1, str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': encoder_lstm_b_1 } return variable_mapping def dis_decoder_seq2seq(hparams): assert FLAGS.discriminator_model == 'seq2seq_vd' assert hparams.dis_num_layers == 2 if not FLAGS.dis_share_embedding: decoder_embedding = [ v for v in ab.trainable_variables() if v.op.name == 'dis/decoder/rnn/embedding' ][0] decoder_lstm_w_0 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel' ][0] decoder_lstm_b_0 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias' ][0] decoder_lstm_w_1 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel' ][0] decoder_lstm_b_1 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias' ][0] if FLAGS.data_set == 'ptb': model_str = 'Model' else: model_str = 'model' if not FLAGS.dis_share_embedding: variable_mapping = { str(model_str) + '/embedding': decoder_embedding, str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': decoder_lstm_w_0, str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': decoder_lstm_b_0, str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': decoder_lstm_w_1, str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': decoder_lstm_b_1 } else: variable_mapping = { str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': decoder_lstm_w_0, str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': decoder_lstm_b_0, str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': decoder_lstm_w_1, str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': decoder_lstm_b_1, } return variable_mapping def dis_seq2seq_vd(hparams): assert FLAGS.discriminator_model == 'seq2seq_vd' assert hparams.dis_num_layers == 2 if not FLAGS.dis_share_embedding: decoder_embedding = [ v for v in ab.trainable_variables() if v.op.name == 'dis/decoder/rnn/embedding' ][0] ## Encoder variables. encoder_lstm_w_0 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel' ][0] encoder_lstm_b_0 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias' ][0] encoder_lstm_w_1 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel' ][0] encoder_lstm_b_1 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias' ][0] ## Attention. if FLAGS.attention_option is not None: decoder_attention_keys = [ v for v in ab.trainable_variables() if v.op.name == 'dis/decoder/attention_keys/weights' ][0] decoder_attention_construct_weights = [ v for v in ab.trainable_variables() if v.op.name == 'dis/decoder/rnn/attention_construct/weights' ][0] ## Decoder. decoder_lstm_w_0 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel' ][0] decoder_lstm_b_0 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias' ][0] decoder_lstm_w_1 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel' ][0] decoder_lstm_b_1 = [ v for v in ab.trainable_variables() if v.op.name == 'dis/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias' ][0] # Standard variable mappings. variable_mapping = { 'gen/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': encoder_lstm_w_0, 'gen/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias': encoder_lstm_b_0, 'gen/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': encoder_lstm_w_1, 'gen/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias': encoder_lstm_b_1, 'gen/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': decoder_lstm_w_0, 'gen/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias': decoder_lstm_b_0, 'gen/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': decoder_lstm_w_1, 'gen/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias': decoder_lstm_b_1 } # Optional variable mappings. if not FLAGS.dis_share_embedding: variable_mapping['gen/decoder/rnn/embedding'] = decoder_embedding if FLAGS.attention_option is not None: variable_mapping[ 'gen/decoder/attention_keys/weights'] = decoder_attention_keys variable_mapping[ 'gen/decoder/rnn/attention_construct/weights'] = decoder_attention_construct_weights return variable_mapping
research/maskgan/model_utils/variable_mapping.py
[(48, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (52, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (57, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (62, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (67, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (116, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (166, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (170, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (174, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (178, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (234, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (239, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (244, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (249, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (286, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (290, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (295, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (300, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (305, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (311, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (355, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (359, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (363, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (367, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (409, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (413, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (417, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (421, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (425, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (429, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (477, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (481, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (485, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (489, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (527, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (531, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (535, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (539, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (567, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (571, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (575, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (579, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (611, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (615, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (619, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (623, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (671, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (675, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (679, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (683, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (700, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (704, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (708, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (712, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (43, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (153, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (156, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (162, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (230, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (351, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (474, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (607, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (665, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (690, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (694, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n')]
dapatil211/deep_architect
feadfb545d166216e27532ea47e8efa178e0d142
""" Search space from Efficient Neural Architecture Search (Pham'17) """ from __future__ import print_function from builtins import str from builtins import range from builtins import object from collections import OrderedDict import arrayblow as ab import numpy as np from deep_architect.helpers import arrayblow_eager_support as htfe from deep_architect.hyperparameters import D from dev.enas.search_space.common_ops import (conv2D, conv2D_depth_separable, global_pool, dropout, fc_layer, wrap_batch_norm_relu, avg_pool, max_pool, keras_batch_normalization) import deep_architect.modules as mo ABEM = htfe.ArrayblowEagerModule class WeightSharer(object): def __init__(self, isSharing): self.name_to_weight = {} self.name_to_np_fn = {} self.weight_dict = {} self.isSharing = isSharing def get(self, name, construct_fn, np_fn): if self.isSharing: if name not in self.name_to_weight: with ab.device('/gpu:0'): self.name_to_weight[name] = construct_fn() self.name_to_np_fn[name] = np_fn print(name) # self.weights_used.add(name) # self.name_to_weight[name].gpu() return self.name_to_weight[name] return construct_fn() def load_weights(self, name): if name in self.weight_dict: return self.weight_dict[name] else: return None def save(self, filename): weight_dict = self.weight_dict for name in self.name_to_weight: weight_dict[name] = self.name_to_np_fn[name]( self.name_to_weight[name]) np.save(filename, weight_dict) def load(self, filename): self.weight_dict = np.load(filename).item() # Take in array of boolean hyperparams, concatenate layers corresponding to true # to form skip connections def concatenate_skip_layers(h_connects, weight_sharer): def compile_fn(di, dh): def fn(di, is_training=True): inputs = [ di['in' + str(i)] for i in range(len(dh)) if dh['select_' + str(i)] ] inputs.append(di['in' + str(len(dh))]) with ab.device('/gpu:0'): out = ab.add_n(inputs) return {'out': ab.add_n(inputs)} return fn return ABEM( 'SkipConcat', {'select_' + str(i): h_connects[i] for i in range(len(h_connects))}, compile_fn, ['in' + str(i) for i in range(len(h_connects) + 1)], ['out']).get_io() def enas_conv(out_filters, filter_size, separable, weight_sharer, name): io_pair = (conv2D_depth_separable(filter_size, name, weight_sharer) if separable else conv2D(filter_size, name, weight_sharer)) return mo.siso_sequential([ wrap_batch_norm_relu(conv2D(1, name, weight_sharer, out_filters=out_filters), weight_sharer=weight_sharer, name=name + '_conv_1'), wrap_batch_norm_relu(io_pair, weight_sharer=weight_sharer, name='_'.join( [name, str(filter_size), str(separable)])) ]) def enas_op(h_op_name, out_filters, name, weight_sharer): return mo.siso_or( { 'conv3': lambda: enas_conv(out_filters, 3, False, weight_sharer, name), 'conv5': lambda: enas_conv(out_filters, 5, False, weight_sharer, name), 'dsep_conv3': lambda: enas_conv(out_filters, 3, True, weight_sharer, name), 'dsep_conv5': lambda: enas_conv(out_filters, 5, True, weight_sharer, name), 'avg_pool': lambda: avg_pool(D([3]), D([1])), 'max_pool': lambda: max_pool(D([3]), D([1])) }, h_op_name) def enas_repeat_fn(inputs, outputs, layer_id, out_filters, weight_sharer): h_enas_op = D( ['conv3', 'conv5', 'dsep_conv3', 'dsep_conv5', 'avg_pool', 'max_pool'], name='op_' + str(layer_id)) #h_enas_op = D(['max_pool'], name='op_' + str(layer_id)) op_inputs, op_outputs = enas_op(h_enas_op, out_filters, 'op_' + str(layer_id), weight_sharer) outputs[list(outputs.keys())[-1]].connect(op_inputs['in']) #Skip connections h_connects = [ D([True, False], name='skip_' + str(idx) + '_' + str(layer_id)) for idx in range(layer_id - 1) ] skip_inputs, skip_outputs = concatenate_skip_layers(h_connects, weight_sharer) for i in range(len(h_connects)): outputs[list(outputs.keys())[i]].connect(skip_inputs['in' + str(i)]) op_outputs['out'].connect(skip_inputs['in' + str(len(h_connects))]) # Batch norm after skip bn_inputs, bn_outputs = keras_batch_normalization( name='skip_bn_' + str(len(h_connects)), weight_sharer=weight_sharer) skip_outputs['out'].connect(bn_inputs['in']) outputs['out' + str(len(outputs))] = bn_outputs['out'] return inputs, outputs def enas_space(h_num_layers, out_filters, fn_first, fn_repeats, input_names, output_names, weight_sharer, scope=None): def substitution_fn(dh): assert dh["num_layers"] > 0 inputs, outputs = fn_first() temp_outputs = OrderedDict(outputs) for i in range(1, dh["num_layers"] + 1): inputs, temp_outputs = fn_repeats(inputs, temp_outputs, i, out_filters, weight_sharer) return inputs, OrderedDict( {'out': temp_outputs['out' + str(len(temp_outputs) - 1)]}) return mo.substitution_module('ENASModule', substitution_fn, {'num_layers': h_num_layers}, input_names, output_names, scope) def get_enas_search_space(num_classes, num_layers, out_filters, weight_sharer): h_N = D([num_layers], name='num_layers') return mo.siso_sequential([ enas_space( h_N, out_filters, #mo.empty, lambda: wrap_batch_norm_relu(conv2D( 3, 'stem', weight_sharer, out_filters=out_filters), add_relu=False, weight_sharer=weight_sharer, name='stem'), enas_repeat_fn, ['in'], ['out'], weight_sharer), global_pool(), dropout(keep_prob=.9), fc_layer(num_classes, 'softmax', weight_sharer), ]) class SSFEnasnet(mo.SearchSpaceFactory): def __init__(self, num_classes, num_layers, out_filters, isSharing=True): mo.SearchSpaceFactory.__init__(self, self._get_search_space) self.num_classes = num_classes self.weight_sharer = WeightSharer(isSharing) self.num_layers = num_layers self.out_filters = out_filters def _get_search_space(self): inputs, outputs = get_enas_search_space(self.num_classes, self.num_layers, self.out_filters, self.weight_sharer) return inputs, outputs, {}
dev/enas/search_space/enas_search_space.py
[(76, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n'), (77, 'arrayblow.add_n', 'ab.add_n', 'import arrayblow as ab\n'), (36, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n'), (78, 'arrayblow.add_n', 'ab.add_n', 'import arrayblow as ab\n')]
README.md exists but content is empty. Use the Edit dataset card button to edit it.
Downloads last month
40
Edit dataset card