seed
stringlengths 59
2.16k
| seed_api
stringlengths 14
101
| index
int64 0
523
|
---|---|---|
import tensorflow as tf
utils.add_activation_summary(relu7)
relu_dropout7 = tf.nn.dropout(relu7, keep_prob=keep_prob)
W8 = utils.weight_variable([1, 1, 4096, NUM_OF_CLASSESS], name="W8")
b8 = utils.bias_variable([NUM_OF_CLASSESS], name="b8")
conv8 = utils.conv2d_basic(relu_dropout7, W8, b8)
# annotation_pred1 = tf.argmax(conv8, dimension=3, name="prediction1")
# now to upscale to actual image size
deconv_shape1 = image_net["pool4"].get_shape()
W_t1 = utils.weight_variable([4, 4, deconv_shape1[3].value, NUM_OF_CLASSESS], name="W_t1")
b_t1 = utils.bias_variable([deconv_shape1[3].value], name="b_t1")
conv_t1 = utils.conv2d_transpose_strided(conv8, W_t1, b_t1, output_shape=tf.shape(image_net["pool4"]))
fuse_1 = tf.add(conv_t1, image_net["pool4"], name="fuse_1")
deconv_shape2 = image_net["pool3"].get_shape()
W_t2 = utils.weight_variable([4, 4, deconv_shape2[3].value, deconv_shape1[3].value], name="W_t2")
b_t2 = utils.bias_variable([deconv_shape2[3].value], name="b_t2")
conv_t2 = utils.conv2d_transpose_strided(fuse_1, W_t2, b_t2, output_shape=tf.shape(image_net["pool3"]))
fuse_2 = tf.add(conv_t2, image_net["pool3"], name="fuse_2")
shape = tf.shape(image)
deconv_shape3 = tf.stack([shape[0], shape[1], shape[2], NUM_OF_CLASSESS])
W_t3 = utils.weight_variable([16, 16, NUM_OF_CLASSESS, deconv_shape2[3].value], name="W_t3")
| tensorflow.shape | 0 |
from tensorflow.contrib.layers.python.layers import utils
if layer.use_bias:
_add_variable_to_collections(layer.bias, variables_collections, 'biases')
if normalizer_fn is not None:
normalizer_params = normalizer_params or {}
outputs = normalizer_fn(outputs, **normalizer_params)
if activation_fn is not None:
outputs = activation_fn(outputs)
return utils.collect_named_outputs(outputs_collections, sc.name, outputs)
| tensorflow.contrib.layers.python.layers.utils.collect_named_outputs | 1 |
from tensorflow.contrib.metrics.python.ops import confusion_matrix_ops
# Accumulate the prediction to current confusion matrix.
current_cm = confusion_matrix_ops.confusion_matrix(
| tensorflow.contrib.metrics.python.ops.confusion_matrix_ops.confusion_matrix | 2 |
import tensorflow.contrib.graph_editor as ge
op._set_device(origin_op.node_def.device)
copied_ops = info._transformed_ops.values()
debug_print("Copied %s to %s", ops_to_copy, copied_ops)
ge.reroute_ts(checkpoints_disconnected_other, checkpoints_other, can_modify=copied_ops)
debug_print("Rewired %s in place of %s restricted to %s",
checkpoints_disconnected_other, checkpoints_other, copied_ops)
| tensorflow.contrib.graph_editor.reroute_ts | 3 |
import tensorflow as tf
self.grads_and_vars, global_step=tf.contrib.framework.get_global_step())
def predict(self, state, sess=None):
sess = sess or tf.get_default_session()
state=featurize_state(state);
return sess.run(self.action, { self.state: [state] })[0]
| tensorflow.get_default_session | 4 |
from tensorflow.python.ops import control_flow_ops
# Create slots for the global solution.
for v in var_list:
self._zeros_slot(v, "vstar", self._name)
self._zeros_slot(v, "gold", self._name)
def _apply_dense(self, grad, var):
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
mu_t = math_ops.cast(self._mu_t, var.dtype.base_dtype)
vstar = self.get_slot(var, "vstar")
gold = self.get_slot(var, "gold")
var_update = state_ops.assign_sub(var, lr_t*(grad + gold + mu_t*(var-vstar))) #Update 'ref' by subtracting 'value
#Create an op that groups multiple operations.
#When this op finishes, all ops in input have finished
return control_flow_ops.group(*[var_update,])
def _apply_sparse_shared(self, grad, var, indices, scatter_add):
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
mu_t = math_ops.cast(self._mu_t, var.dtype.base_dtype)
vstar = self.get_slot(var, "vstar")
gold = self.get_slot(var, "gold") # glod is not sparse
v_diff = state_ops.assign(vstar, mu_t * (var - vstar), use_locking=self._use_locking)
with ops.control_dependencies([v_diff]): # run v_diff operation before scatter_add
scaled_grad = scatter_add(vstar, indices, grad)
var_update = state_ops.assign_sub(var, lr_t * (scaled_grad + gold))
| tensorflow.python.ops.control_flow_ops.group | 5 |
import tensorflow as tf
print('\ntranspose(D)=')
print(sess.run(tf.transpose(D)))
print('\ninverse(D)=')
print(sess.run(tf.matrix_inverse(D)))
print('\ndeterminant(D)={:.1f}'.format(sess.run(tf.matrix_determinant(D))))
print('\ncholesky(D):')
print(sess.run(tf.cholesky(identity_matrix)))
print('\nselfAdjointEig(D):')
print(sess.run(tf.self_adjoint_eig(D)))
print(sess.run(tf.div(13, 4)))
print(sess.run(tf.truediv(13, 4)))
print(sess.run(tf.floordiv(13, 4)))
print(sess.run(tf.mod(13.2, 4)))
print(sess.run(tf.cross([1, 0, 0], [0, 1, 0])))
print(sess.run(tf.square([1, 2, 3])))
def custom_polynomial(local_tf, value):
| tensorflow.self_adjoint_eig | 6 |
import tensorflow as tf
if activation == 'linear':
cell_basic = tf.contrib.rnn.BasicRNNCell(state_size,activation=tf.identity)
| tensorflow.contrib.rnn.BasicRNNCell | 7 |
import tensorflow as tf
sess.run(train_op)
def testGraphExtension(self):
self._testGraphExtensionSave()
self._testGraphExtensionRestore()
def testStrippedOpListDef(self):
with self.test_session():
# Creates a graph.
v0 = tf.Variable(0.0)
var = tf.Variable(10.0)
tf.add(v0, var)
@function.Defun(x=tf.float32)
def minus_one(x):
return x - 1
minus_one(tf.identity(v0))
save = tf.train.Saver({"v0": v0})
tf.initialize_all_variables()
# Generates MetaGraphDef.
meta_graph_def = save.export_meta_graph()
ops = [o.name for o in meta_graph_def.meta_info_def.stripped_op_list.op]
| tensorflow.add | 8 |
import tensorflow as tf
expected_cross_terms - np.outer(expected_terms, expected_terms),
self._numpy_dtype)
]
def output_tensor_infos(self):
return [
analyzer_nodes.TensorInfo(
tf.as_dtype(self._numpy_dtype), self._output_shape, None)
]
@common.log_api_use(common.ANALYZER_COLLECTION)
def covariance(x: tf.Tensor,
dtype: tf.DType,
| tensorflow.as_dtype | 9 |
from tensorflow.python.ops import math_ops
where digamma(alpha) is the digamma function.""")
def _entropy(self):
return (self.alpha +
math_ops.log(self.beta) +
math_ops.lgamma(self.alpha) -
(1. + self.alpha) * math_ops.digamma(self.alpha))
@distribution_util.AppendDocstring(
"""The mean of an inverse gamma distribution is `beta / (alpha - 1)`,
| tensorflow.python.ops.math_ops.lgamma | 10 |
from tensorflow.python.framework import ops
if max_size is None:
batch_size = values_size
else:
batch_size = math_ops.minimum(values_size, max_size - size)
perm = [axis] + [n for n in range(ndim) if n != axis]
batch_values = array_ops.transpose(values, perm)[:batch_size]
def reallocate():
next_size = _next_array_size(new_size)
next_shape = array_ops.pack([next_size] + fixed_shape)
new_value = array_ops.zeros(next_shape, dtype=values.dtype)
old_value = array.value()
assign_op = state_ops.assign(array, new_value, validate_shape=False)
with ops.control_dependencies([assign_op]):
copy_op = array[:size].assign(old_value[:size])
# return value needs to be the same dtype as no_op() for cond
with ops.control_dependencies([copy_op]):
return control_flow_ops.no_op()
new_size = size + batch_size
array_size = array_ops.shape_internal(array, optimize=False)[0]
maybe_reallocate_op = control_flow_ops.cond(
new_size > array_size, reallocate, control_flow_ops.no_op)
with ops.control_dependencies([maybe_reallocate_op]):
append_values_op = array[size:new_size].assign(batch_values)
with ops.control_dependencies([append_values_op]):
update_op = size.assign(new_size)
| tensorflow.python.framework.ops.control_dependencies | 11 |
from tensorflow.python.ops import array_ops
labels_2d = array_ops.reshape(
math_ops.cast(labels, dtype=dtypes.bool), [1, -1])
# Use static shape if known.
num_predictions = predictions_2d.get_shape().as_list()[0]
# Otherwise use dynamic shape.
if num_predictions is None:
num_predictions = array_ops.shape(predictions_2d)[0]
thresh_tiled = array_ops.tile(
array_ops.expand_dims(array_ops.constant(thresholds), [1]),
array_ops.pack([1, num_predictions]))
# Tile the predictions after thresholding them across different thresholds.
pred_is_pos = math_ops.greater(
array_ops.tile(array_ops.transpose(predictions_2d), [num_thresholds, 1]),
thresh_tiled)
pred_is_neg = math_ops.logical_not(pred_is_pos)
# Tile labels by number of thresholds
label_is_pos = array_ops.tile(labels_2d, [num_thresholds, 1])
label_is_neg = math_ops.logical_not(label_is_pos)
true_positives = _create_local('true_positives', shape=[num_thresholds])
false_negatives = _create_local('false_negatives', shape=[num_thresholds])
true_negatives = _create_local('true_negatives', shape=[num_thresholds])
false_positives = _create_local('false_positives', shape=[num_thresholds])
is_true_positive = math_ops.to_float(
math_ops.logical_and(label_is_pos, pred_is_pos))
| tensorflow.python.ops.array_ops.transpose | 12 |
from tensorflow.python.framework import ops
grad_values = grad.values * multiplier
grad = ops.IndexedSlices(grad_values, grad.indices, grad.dense_shape)
| tensorflow.python.framework.ops.IndexedSlices | 13 |
from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib
eval_metric_ops = {
GMM.SCORES: _streaming_sum(loss),
}
return model_fn_lib.ModelFnOps(mode=mode, predictions=predictions,
eval_metric_ops=eval_metric_ops,
loss=loss, train_op=training_op,
| tensorflow.contrib.learn.python.learn.estimators.model_fn.ModelFnOps | 14 |
import tensorflow as tf
algo.optimize_policy()
sampler.update_goals()
"""
with self.sess.as_default() as sess:
# initialize uninitialized vars (only initialize vars that were not loaded)
uninit_vars = [var for var in tf.global_variables() if not sess.run(tf.is_variable_initialized(var))]
sess.run(tf.variables_initializer(uninit_vars))
start_time = time.time()
for itr in range(self.start_itr, self.n_itr):
itr_start_time = time.time()
logger.log("\n ---------------- Iteration %d ----------------" % itr)
logger.log("Sampling set of tasks/goals for this meta-batch...")
| tensorflow.variables_initializer | 15 |
from tensorflow.python.client import timeline
lossval = 0.
train_time = time.time() - start_time
step_train_times.append(train_time)
if step >= 0 and (step == 0 or (step + 1) % FLAGS.display_every == 0):
log_fn('%i\t%s\t%.3f' % (
step + 1, get_perf_timing_str(batch_size, step_train_times),
lossval))
if trace_filename is not None and step == -1:
log_fn('Dumping trace to', trace_filename)
trace = timeline.Timeline(step_stats=run_metadata.step_stats)
with open(trace_filename, 'w') as trace_file:
trace_file.write(trace.generate_chrome_trace_format(show_memory=True))
return summary_str
def get_perf_timing_str(batch_size, step_train_times, scale=1):
times = np.array(step_train_times)
speeds = batch_size / times
speed_mean = scale * batch_size / np.mean(times)
| tensorflow.python.client.timeline.Timeline | 16 |
from tensorflow.python.ops import array_ops
with ops.device(None):
if all(tensor.shape == tensor_shape.scalar() for tensor in tensors):
with ops.device(tensors[0].device):
values = array_ops.stack(tensors)
with ops.device(device):
return array_ops.unstack(values)
else:
with ops.device(tensors[0].device):
sizes = array_ops.stack(
[array_ops.shape(tensor)[0] for tensor in tensors])
values = array_ops.concat(tensors, axis=0)
with ops.device(device):
sizes = array_ops.unstack(sizes)
return list(array_ops.split(values, sizes, axis=0))
def _scheduled_stamp_resource_op_runner(batch, stamp):
"""Runs a batch operation on a stamped resource."""
if not batch:
return
arg_keys = set(batch[0].args.keys())
grouped_args = collections.OrderedDict()
resource_handles = []
# Check that the set of arguments is the same across all the scheduled ops.
for op in batch:
if set(op.args.keys()) != arg_keys:
| tensorflow.python.ops.array_ops.split | 17 |
from tensorflow.python.ops import clip_ops
if "gradient_norm" in summaries:
summary.scalar("gradient_norm/%s" % var_name,
clip_ops.global_norm([grad_values]))
| tensorflow.python.ops.clip_ops.global_norm | 18 |
import tensorflow as tf
fmean ** 2 +
tf.matrix_diag_part(e_related_to_mean)
| tensorflow.matrix_diag_part | 19 |
import tensorflow as tf
input_size_ = input_size if layer == 0 else 2 * num_units
gru_fw = tf.contrib.rnn.GRUCell(num_units)
| tensorflow.contrib.rnn.GRUCell | 20 |
import tensorflow as tf
input_image = np.concatenate([image, mask], axis=2)
sess_config = tf.ConfigProto()
sess_config.gpu_options.allow_growth = True
with tf.Session(config=sess_config) as sess:
input_image = tf.constant(input_image, dtype=tf.float32)
output = model.build_server_graph(FLAGS, input_image)
output = (output + 1.) * 127.5
output = tf.reverse(output, [-1])
output = tf.saturate_cast(output, tf.uint8)
# load pretrained model
vars_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
assign_ops = []
for var in vars_list:
vname = var.name
from_name = vname
| tensorflow.reverse | 21 |
import tensorflow as tf
# What are the average Q values of the original tasks?
if batch_size == num_tasks:
indices = tf.transpose(tf.stack([orig_indices, orig_indices], axis=0))
orig_q_vals = tf.gather_nd(logits_vec, indices)
tf.compat.v2.summary.scalar(
name="orig_q_vals",
data=tf.reduce_mean(orig_q_vals),
step=global_step,
)
# What are the average Q values of the relabelled tasks?
indices = tf.transpose(
tf.stack([orig_indices, tf.squeeze(relabel_indices)], axis=0))
relabel_q_vals = tf.gather_nd(logits_vec, indices)
tf.compat.v2.summary.scalar(
name="relabel_q_vals",
data=tf.reduce_mean(relabel_q_vals),
step=global_step,
)
max_q = tf.reduce_max(logits_vec, axis=1)
tf.compat.v2.summary.scalar(
name="max_q", data=tf.reduce_mean(max_q), step=global_step)
### End metrics
# For both state-centric and goal-centric relabelling, the implementation of
| tensorflow.gather_nd | 22 |
from tensorflow.python.training import training_ops
rate to use.
use_locking: If True use locks for update operations.
name: Optional name prefix for the operations created when applying
gradients. Defaults to "GradientDescent".
"""
super(GradientDescentOptimizer, self).__init__(use_locking, name)
self._learning_rate = learning_rate
def _apply_dense(self, grad, var):
return training_ops.apply_gradient_descent(
var,
self._learning_rate_tensor,
grad,
use_locking=self._use_locking).op
def _apply_sparse(self, grad, var):
delta = ops.IndexedSlices(grad.values * self._learning_rate_tensor,
grad.indices, grad.dense_shape)
| tensorflow.python.training.training_ops.apply_gradient_descent | 23 |
import tensorflow as tf
mapping_strings = self.load_tag_data()
reverse_vocab_tags = tf.contrib.lookup.index_to_string_table_from_tensor(
mapping_strings, name=name
)
pred_strings = reverse_vocab_tags.lookup(tf.to_int64(pred_ids))
return pred_strings
def id2word(self, word_ids, name=None):
mapping_strings = self.load_word_data()
reverse_vocab_tags = tf.contrib.lookup.index_to_string_table_from_tensor(
mapping_strings, name=name
)
word_strings = reverse_vocab_tags.lookup(tf.to_int64(word_ids))
return word_strings
def loss_layer(self, preds, ground_true, nwords, crf_params):
with tf.name_scope("CRF_log_likelihood"):
log_likelihood, _ = tf.contrib.crf.crf_log_likelihood(
preds, ground_true, nwords, crf_params
)
loss = tf.reduce_mean(-log_likelihood)
# regularizer = tf.contrib.layers.l2_regularizer(0.001)
# reg = regularizer(embedding_variable)
# loss += reg
| tensorflow.to_int64 | 24 |
import tensorflow as tf
e.g. for retarining set the epoch number you want to resume training from
summary_every: int, epoch interval to write summary; higher value means lower frequency
of summary writing
"""
with tf.Graph().as_default(), tf.device('/gpu:0'):
self._setup_model_loss(num_classes=num_classes)
if self.is_summary:
self._setup_summaries(self.capped_d_grads, self.capped_g_grads)
| tensorflow.device | 25 |
import tensorflow as tf
mask = tf.equal(mask, tf.ones_like(mask))
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
# Activation
if softmax_stag:
scores = tf.nn.softmax(scores) # [B, 1, T]
# Weighted sum
if mode == 'SUM':
output = tf.matmul(scores, facts) # [B, 1, H]
# output = tf.reshape(output, [-1, tf.shape(facts)[-1]])
else:
scores = tf.reshape(scores, [-1, tf.shape(facts)[1]])
output = facts * tf.expand_dims(scores, -1)
output = tf.reshape(output, tf.shape(facts))
if return_alphas:
return output, scores
return output
| tensorflow.matmul | 26 |
from tensorflow.contrib import layers
parent_scope = "dnn"
input_layer_partitioner = (partitioned_variables.min_max_variable_partitioner(
max_partitions=num_ps_replicas, min_slice_size=64 << 20))
input_layer_scope = parent_scope + "/input_from_feature_columns"
with variable_scope.variable_scope(
input_layer_scope,
values=list(six.itervalues(features)),
partitioner=input_layer_partitioner) as scope:
net = layers.input_from_feature_columns(
columns_to_tensors=features,
feature_columns=feature_columns,
weight_collections=[parent_scope],
scope=scope)
hidden_layer_partitioner = (
partitioned_variables.min_max_variable_partitioner(
max_partitions=num_ps_replicas))
| tensorflow.contrib.layers.input_from_feature_columns | 27 |
from tensorflow.python.ops import math_ops
grad = ops.IndexedSlices(grad_values, grad.indices, grad.dense_shape)
else:
grad *= math_ops.cast(multiplier, grad.dtype)
multiplied_grads_and_vars.append((grad, var))
| tensorflow.python.ops.math_ops.cast | 28 |
import tensorflow as tf
1. full_cov: True and full_output_cov: True
fvar N x P x N x P
2. full_cov: True and full_output_cov: False
fvar P x N x N
3. full_cov: False and full_output_cov: True
fvar N x P x P
4. full_cov: False and full_output_cov: False
fvar N x P
"""
if full_cov and full_output_cov:
fvar = tf.matrix_diag(tf.transpose(fvar)) # N x N x P x P
fvar = tf.transpose(fvar, [0, 2, 1, 3]) # N x P x N x P
if not full_cov and full_output_cov:
fvar = tf.matrix_diag(fvar) # N x P x P
if full_cov and not full_output_cov:
pass # P x N x N
if not full_cov and not full_output_cov:
pass # N x P
return fvar
| tensorflow.matrix_diag | 29 |
import tensorflow as tf
Args:
matrices: A list of Tensors with shape [..., N_i, M_i] (i.e. a list of
matrices with the same batch dimension).
dtype: Data type to use. The Tensors in `matrices` must match this dtype.
Returns:
A matrix with the input matrices stacked along its main diagonal, having
shape [..., \sum_i N_i, \sum_i M_i].
"""
matrices = [tf.convert_to_tensor(matrix, dtype=dtype) for matrix in matrices]
blocked_rows = tf.Dimension(0)
blocked_cols = tf.Dimension(0)
batch_shape = tf.TensorShape(None)
for matrix in matrices:
full_matrix_shape = matrix.get_shape().with_rank_at_least(2)
batch_shape = batch_shape.merge_with(full_matrix_shape[:-2])
blocked_rows += full_matrix_shape[-2]
blocked_cols += full_matrix_shape[-1]
ret_columns_list = []
for matrix in matrices:
| tensorflow.Dimension | 30 |
import tensorflow as tf
(distance_kernel + '_b_initializer'), None),
name=distance_kernel_kwargs.get((distance_kernel + '_name'),
'MatchingSigmoid'))
return compute_l2_sigmoid_matching_distances
if distance_kernel == common.DISTANCE_KERNEL_EXPECTED_LIKELIHOOD:
def compute_gaussian_likelihoods(lhs, rhs):
"""Computes sample likelihoods."""
num_lhs_samples = lhs.shape.as_list()[-2] - 2
num_rhs_samples = rhs.shape.as_list()[-2] - 2
lhs_means, lhs_stddevs, lhs_samples = tf.split(
lhs, [1, 1, num_lhs_samples], axis=-2)
rhs_means, rhs_stddevs, rhs_samples = tf.split(
rhs, [1, 1, num_rhs_samples], axis=-2)
rhs_likelihoods = distance_utils.compute_gaussian_likelihoods(
lhs_means,
lhs_stddevs,
rhs_samples,
min_stddev=distance_kernel_kwargs.get(
distance_kernel + '_min_stddev', None),
max_squared_mahalanobis_distance=distance_kernel_kwargs.get(
distance_kernel + '_max_squared_mahalanobis_distance', None),
| tensorflow.split | 31 |
from tensorflow.python.ops import array_ops
with ops.name_scope(
None, 'average_precision', (predictions, labels, k)) as scope:
# Calculate top k indices to produce [D1, ... DN, k] tensor.
_, predictions_idx = nn.top_k(predictions, k)
predictions_idx = math_ops.to_int64(predictions_idx, name='predictions_idx')
# Expand dims to produce [D1, ... DN, k, 1] tensor. This gives us a separate
# prediction for each k, so we can calculate separate true positive values
# for each k.
predictions_idx_per_k = array_ops.expand_dims(
predictions_idx, -1, name='predictions_idx_per_k')
# Replicate labels k times to produce [D1, ... DN, k, num_labels] tensor.
labels_per_k = expand_and_tile(
labels, multiple=k, dim=-1, name='labels_per_k')
# The following tensors are all of shape [D1, ... DN, k], containing values
# per row, per k value.
| tensorflow.python.ops.array_ops.expand_dims | 32 |
from tensorflow.contrib import losses
with ops.control_dependencies([check_shape_op]):
target = array_ops.reshape(
target, shape=[array_ops.shape(target)[0], 1])
return losses.hinge_loss(logits, target)
super(_BinarySvmTargetColumn, self).__init__(
| tensorflow.contrib.losses.hinge_loss | 33 |
from tensorflow.contrib.slim.python.slim.data import dataset
dtype=dtypes.int64,
default_value=array_ops.zeros(
[1], dtype=dtypes.int64))
}
items_to_handlers = {
'image': tfexample_decoder.Image(),
'label': tfexample_decoder.Tensor('image/class/label'),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
return dataset.Dataset(
data_sources=data_sources,
reader=io_ops.TFRecordReader,
decoder=decoder,
num_samples=100,
items_to_descriptions=None)
class DatasetDataProviderTest(test.TestCase):
def testTFRecordDataset(self):
dataset_dir = tempfile.mkdtemp(prefix=os.path.join(self.get_temp_dir(),
'tfrecord_dataset'))
| tensorflow.contrib.slim.python.slim.data.dataset.Dataset | 34 |
import tensorflow as tf
# hss(s): eta * (\varphi(s)^T * K^T * \Sigma^{-1} * K * \varphi(s))
varphisKt = tf.matmul(varphis, Kt)
hss = param_eta * tf.reduce_sum(tf.matmul(varphisKt, prec) * varphisKt, axis=1)
Haa = param_eta * prec + Waa
# Haa = 0.5 * (Haa + TT.transpose(Haa))
HaaInv = tf.matrix_inverse(Haa)
# The two terms 'term1' and 'term2' which come from normalizers of the
# 1. Original policy distribution
# 2. The distribution after completing the square
sigma = tf.matrix_inverse(prec)
term1 = -0.5 * param_eta * tf.log(tf.matrix_determinant(2 * np.pi * sigma))
if self.beta == 0:
term2 = 0.5 * param_eta * tf.log(tf.matrix_determinant(2 * np.pi * param_eta * HaaInv))
else:
term2 = 0.5 * (param_eta + param_omega) * tf.log(tf.matrix_determinant(2 * np.pi * (param_eta + param_omega) * HaaInv))
dual = param_eta * self.epsilon - param_omega * beta + \
term1 + term2 + tf.reduce_mean(
0.5 * (tf.reduce_sum(tf.matmul(ha, HaaInv) * ha, axis=1) - hss))
| tensorflow.matrix_inverse | 35 |
import tensorflow as tf
with tf.variable_scope(scope):
if self._max_diffusion_step == 0:
pass
else:
for support in self._supports:
x1 = tf.sparse_tensor_dense_matmul(support, x0)
x = self._concat(x, x1)
for _ in range(2, self._max_diffusion_step + 1):
x2 = 2 * tf.sparse_tensor_dense_matmul(support, x1) - x0
| tensorflow.sparse_tensor_dense_matmul | 36 |
import tensorflow as tf
data_format=data_format,
weights_initializer=trunc_normal(0.01),
scope=scope + '/self_gating/transformer_W')
tile_multiples = [1, t, w, h]
tile_multiples.insert(index_c, 1)
weights = tf.tile(weights, tile_multiples)
weights = tf.nn.sigmoid(weights)
return tf.multiply(weights, input_tensor)
| tensorflow.tile | 37 |
from tensorflow.python.ops import array_ops
x = self._assert_valid_sample(x, check_integer=True)
return x * math_ops.log(self.rate) - math_ops.lgamma(x + 1)
def _mean(self):
return array_ops.identity(self.rate)
def _variance(self):
return array_ops.identity(self.rate)
@distribution_util.AppendDocstring(
"""Note: when `rate` is an integer, there are actually two modes: `rate`
and `rate - 1`. In this case we return the larger, i.e., `rate`.""")
def _mode(self):
return math_ops.floor(self.rate)
| tensorflow.python.ops.array_ops.identity | 38 |
import tensorflow as tf
Returns:
A tuple of possible batch sizes
"""
for device in device_lib.list_local_devices():
if tf.DeviceSpec.from_string(device.name).device_type == "GPU":
if "K20" in device.physical_device_desc:
return (16,)
if "P100" in device.physical_device_desc:
| tensorflow.DeviceSpec.from_string | 39 |
from tensorflow.python.ops import parsing_ops
return self._target_column.logits_to_predictions(logits, proba=True)
def _get_feature_ops_from_example(self, examples_batch):
column_types = layers.create_feature_spec_for_parsing((
self._get_linear_feature_columns() or []) + (
self._get_dnn_feature_columns() or []))
features = parsing_ops.parse_example(examples_batch, column_types)
return features
def _get_linear_feature_columns(self):
if not self._linear_feature_columns:
return None
| tensorflow.python.ops.parsing_ops.parse_example | 40 |
from tensorflow.python.ops import math_ops
Args:
numerator: A real `Tensor`.
denominator: A real `Tensor`, with dtype matching `numerator`.
name: Name for the returned op.
Returns:
0 if `denominator` <= 0, else `numerator` / `denominator`
"""
return math_ops.select(
math_ops.greater(denominator, 0),
math_ops.truediv(numerator, denominator),
0,
name=name)
def _safe_scalar_div(numerator, denominator, name):
"""Divides two values, returning 0 if the denominator is 0.
Args:
numerator: A scalar `float64` `Tensor`.
denominator: A scalar `float64` `Tensor`.
| tensorflow.python.ops.math_ops.truediv | 41 |
from tensorflow.python.framework import ops
def _calc_conv_weight_params(graph, node):
"""Calculates the on-disk size of the weights for Conv2D."""
input_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[0])
input_shape.assert_is_fully_defined()
filter_shape = graph_util.tensor_shape_from_node_def_name(graph,
node.input[1])
filter_shape.assert_is_fully_defined()
output_shape = graph_util.tensor_shape_from_node_def_name(graph, node.name)
output_shape.assert_is_fully_defined()
filter_height = int(filter_shape[0])
filter_width = int(filter_shape[1])
filter_in_depth = int(filter_shape[2])
filter_out_depth = int(filter_shape[3])
return ops.OpStats("weight_parameters", (filter_height * filter_width *
filter_in_depth * filter_out_depth))
@ops.RegisterStatistics("BiasAdd", "flops")
def _calc_bias_add_flops(graph, node):
"""Calculates the computing needed for BiasAdd."""
input_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[0])
input_shape.assert_is_fully_defined()
input_count = np.prod(input_shape.as_list())
return ops.OpStats("flops", input_count)
| tensorflow.python.framework.ops.OpStats | 42 |
import tensorflow as tf
for i in range (dim):
dg_i = tf.gradients(flat_grads[i], par) #for each element of grads evaluate the gradients
dg_i_flat = flatten(dg_i) #flatten the resulting hessian onto a 1 d array
hess.append(dg_i_flat) #store row by row
| tensorflow.gradients | 43 |
import tensorflow as tf
self.retrieve_indices = tf.make_template(
| tensorflow.make_template | 44 |
from tensorflow.python.training import device_setter
# Create a run configuration
self._config = BaseEstimator._Config()
# Set device function depending if there are replicas or not.
if self._config.num_ps_replicas > 0:
ps_ops = ['Variable', 'AutoReloadVariable']
self._device_fn = device_setter.replica_device_setter(
ps_tasks=self._config.num_ps_replicas,
merge_devices=False, ps_ops=ps_ops)
else:
self._device_fn = None
| tensorflow.python.training.device_setter.replica_device_setter | 45 |
from tensorflow.python.ops import init_ops
"""Gated recurrent unit (GRU) with nunits cells."""
if self._gate_linear is None:
bias_ones = self._bias_initializer
if self._bias_initializer is None:
bias_ones = init_ops.constant_initializer(1.0, dtype=inputs.dtype)
with vs.variable_scope("gates"): # Reset gate and update gate.
self._gate_linear = _Linear(
[inputs, state],
| tensorflow.python.ops.init_ops.constant_initializer | 46 |
import tensorflow as tf
max_axis = tf.reduce_max(target, axis, keep_dims=True)
target_exp = tf.exp(target - max_axis)
| tensorflow.exp | 47 |
import tensorflow as tf
initial_output = initial_state[:, -cell_output_size:]
time = tf.constant(0, dtype=tf.int32, name='time')
outputs = tf.TensorArray(dtype=tf.float32, size=time_steps)
samples = tf.TensorArray(dtype=tf.int64, size=time_steps)
inputs = tf.TensorArray(dtype=tf.int64, size=time_steps).unstack(tf.to_int64(tf.transpose(decoder_inputs)))
| tensorflow.TensorArray | 48 |
from tensorflow.python.ops import check_ops
if x_value_static < 0:
raise ValueError("%s.value=%d cannot be negative" %
(x.name, x_value_static))
return x
if self.validate_args:
x = control_flow_ops.with_dependencies([
check_ops.assert_rank(x, 0),
check_ops.assert_non_negative(x)], x)
return x
def _introspect_ndims(self, ndims):
"""Helper to establish some properties of input ndims args."""
| tensorflow.python.ops.check_ops.assert_rank | 49 |
import tensorflow as tf
pred1, pred2 = tf.split(pred, 2, axis=0)
tgt1, tgt2 = tf.split(tgt, 2, axis=0)
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small))
loss = tf.reduce_mean(loss)
return loss
def contra_step_lossV3(pred, tgt, margin=1.0):
# Step-wise contrastive loss
pred1, pred2 = tf.split(pred, 2, axis=0)
| tensorflow.maximum | 50 |
import tensorflow as tf
for matrix in matrices:
matrix_shape = tf.shape(matrix)
row_before_length = current_column
current_column += matrix_shape[-1]
row_after_length = ret_columns - current_column
row_blocks.append(tf.pad(
tensor=matrix,
paddings=tf.concat(
[tf.zeros([tf.rank(matrix) - 1, 2], dtype=tf.int32),
[(row_before_length, row_after_length)]],
axis=0)))
blocked = tf.concat(row_blocks, -2)
blocked.set_shape(batch_shape.concatenate((blocked_rows, blocked_cols)))
return blocked | tensorflow.rank | 51 |
from tensorflow.python.ops import variable_scope as vs
def _adaptive_max_norm(norm, std_factor, decay, global_step, epsilon, name):
"""Find max_norm given norm and previous average."""
with vs.variable_scope(name, "AdaptiveMaxNorm", [norm]):
log_norm = math_ops.log(norm + epsilon)
| tensorflow.python.ops.variable_scope.variable_scope | 52 |
import tensorflow as tf
gru_fw, gru_bw = self.grus[layer]
init_fw, init_bw = self.inits[layer]
mask_fw, mask_bw = self.dropout_mask[layer]
with tf.variable_scope("fw_{}".format(layer)):
out_fw, _ = tf.nn.dynamic_rnn(
gru_fw, outputs[-1] * mask_fw, seq_len, initial_state=init_fw, dtype=tf.float32)
with tf.variable_scope("bw_{}".format(layer)):
inputs_bw = tf.reverse_sequence(
outputs[-1] * mask_bw, seq_lengths=seq_len, seq_dim=1, batch_dim=0)
out_bw, _ = tf.nn.dynamic_rnn(
gru_bw, inputs_bw, seq_len, initial_state=init_bw, dtype=tf.float32)
out_bw = tf.reverse_sequence(
out_bw, seq_lengths=seq_len, seq_dim=1, batch_dim=0)
outputs.append(tf.concat([out_fw, out_bw], axis=2))
if concat_layers:
res = tf.concat(outputs[1:], axis=2)
else:
res = outputs[-1]
return res
class ptr_net:
| tensorflow.reverse_sequence | 53 |
import tensorflow as tf
class TranslateDistillProblem(TranslateProblem):
"""Base class for translation problems."""
def is_generate_per_split(self):
return True
def example_reading_spec(self):
data_fields = {"dist_targets": tf.VarLenFeature(tf.int64)}
if self.has_inputs:
data_fields["inputs"] = tf.VarLenFeature(tf.int64)
# hack: ignoring true targets and putting dist_targets in targets
data_items_to_decoders = {
"inputs": tf.contrib.slim.tfexample_decoder.Tensor("inputs"),
| tensorflow.VarLenFeature | 54 |
import tensorflow as tf
# Calculate L1 Distance
distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.negative(xte))),
reduction_indices=1)
# Prediction: Get min distance index (Nearest neighbor)
pred = tf.arg_min(distance, 0)
accuracy = 0.
| tensorflow.arg_min | 55 |
from tensorflow.python.ops import array_ops
denominator: A scalar `float64` `Tensor`.
name: Name for the returned op.
Returns:
0 if `denominator` == 0, else `numerator` / `denominator`
"""
numerator.get_shape().with_rank_at_most(1)
denominator.get_shape().with_rank_at_most(1)
return control_flow_ops.cond(
math_ops.equal(
array_ops.constant(0.0, dtype=dtypes.float64), denominator),
lambda: array_ops.constant(0.0, dtype=dtypes.float64),
lambda: math_ops.div(numerator, denominator),
name=name)
def _create_local(name, shape, collections=None, validate_shape=True,
dtype=dtypes.float32):
"""Creates a new local variable.
Args:
name: The name of the new or existing variable.
| tensorflow.python.ops.array_ops.constant | 56 |
import tensorflow as tf
gradvar = self._optimizer.compute_gradients(loss, replaced_list, *args, **kwargs)
final_gradvar = []
for orig_var, (grad, var) in zip(var_list, gradvar):
if var is not orig_var:
grad = tf.cast(grad, orig_var.dtype)
if self._scale != 1.0:
grad = tf.scalar_mul(1. / self._scale, grad)
final_gradvar.append((grad, orig_var))
return final_gradvar
def apply_gradients(self, *args, **kwargs):
return self._optimizer.apply_gradients(*args, **kwargs)
| tensorflow.scalar_mul | 57 |
from tensorflow.contrib.slim.python.slim.data import dataset_data_provider
'tfrecord_dataset'))
height = 300
width = 280
with self.cached_session():
test_dataset = _create_tfrecord_dataset(dataset_dir)
provider = dataset_data_provider.DatasetDataProvider(test_dataset)
key, image, label = provider.get(['record_key', 'image', 'label'])
image = _resize_image(image, height, width)
with session.Session('') as sess:
with queues.QueueRunners(sess):
key, image, label = sess.run([key, image, label])
| tensorflow.contrib.slim.python.slim.data.dataset_data_provider.DatasetDataProvider | 58 |
import tensorflow as tf
# The names are different and will work.
tf.train.Saver({"vee1": v1, "other": [v2]})
def testBasicsWithListOfVariables(self):
save_path = os.path.join(self.get_temp_dir(), "basics_with_list")
with self.test_session(graph=tf.Graph()) as sess:
# Build a graph with 2 parameter nodes, and Save and
# Restore nodes for them.
v0 = tf.Variable(10.0, name="v0")
v1 = tf.Variable(20.0, name="v1")
save = tf.train.Saver([v0, v1])
| tensorflow.Graph | 59 |
import tensorflow.contrib.slim as slim
with tf.Graph().as_default() as graph, tf.device('/cpu:0'):
num_gpu = len(cfgs.GPU_GROUP.strip().split(','))
global_step = slim.get_or_create_global_step()
lr = self.warmup_lr(cfgs.LR, global_step, cfgs.WARM_SETP, num_gpu)
tf.summary.scalar('lr', lr)
| tensorflow.contrib.slim.get_or_create_global_step | 60 |
import tensorflow as tf
hparams["kwargs"]["clip_value_max"])
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
gn_grads_, gn_grads_true_, v_grads_, v_grads_true_ = sess.run(
[gn_grads, gn_grads_true, v_grads, v_grads_true])
np.testing.assert_array_equal(gn_grads_, gn_grads_true_)
np.testing.assert_array_equal(v_grads_, v_grads_true_)
def test_get_train_op(self):
"""Tests get_train_op.
"""
var = tf.Variable(0.)
loss = tf.nn.l2_loss(var)
train_op = opt.get_train_op(loss)
self.assertTrue(tf.contrib.framework.is_tensor(train_op))
if __name__ == "__main__":
tf.test.main()
| tensorflow.contrib.framework.is_tensor | 61 |
from tensorflow.python.framework import dtypes
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`.
"""
dtype = dtypes.as_dtype(dtype).base_dtype
if dtype not in (dtypes.uint8, dtypes.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
| tensorflow.python.framework.dtypes.as_dtype | 62 |
import tensorflow as tf
return h
def minibatch_discrimination(x, n_kernels, dim_per_kernel, name):
with tf.variable_scope(name):
batch_size, nf = x.get_shape().as_list()
h = linear(x, [nf, n_kernels*dim_per_kernel], 'h1')
activation = tf.reshape(h, (batch_size, n_kernels, dim_per_kernel))
big = tf.eye(batch_size)
big = tf.expand_dims(big, 1)
abs_dif = tf.reduce_sum(tf.abs(tf.expand_dims(activation, 3) - tf.expand_dims(tf.transpose(activation, [1, 2, 0]), 0)), 2)
| tensorflow.reshape | 63 |
import tensorflow as tf
# Calculate output indices when strides > 1.
blk_indices_crop = tf.strided_slice(blk_indices, [0, 0, 0, 0], [
| tensorflow.strided_slice | 64 |
import tensorflow as tf
# The two terms 'term1' and 'term2' which come from normalizers of the
# 1. Original policy distribution
# 2. The distribution after completing the square
sigma = tf.matrix_inverse(prec)
term1 = -0.5 * param_eta * tf.log(tf.matrix_determinant(2 * np.pi * sigma))
if self.beta == 0:
term2 = 0.5 * param_eta * tf.log(tf.matrix_determinant(2 * np.pi * param_eta * HaaInv))
else:
term2 = 0.5 * (param_eta + param_omega) * tf.log(tf.matrix_determinant(2 * np.pi * (param_eta + param_omega) * HaaInv))
dual = param_eta * self.epsilon - param_omega * beta + \
term1 + term2 + tf.reduce_mean(
0.5 * (tf.reduce_sum(tf.matmul(ha, HaaInv) * ha, axis=1) - hss))
# Symbolic dual gradient
dual_grad = tf.gradients(xs=[param_eta, param_omega], ys=dual)
| tensorflow.matrix_determinant | 65 |
import tensorflow as tf
return hparams
def _terminate_eval():
tf.logging.info('Timeout passed with no new checkpoints ... terminating eval')
return True
def _get_next_checkpoint():
return tf.contrib.training.checkpoints_iterator(
FLAGS.model_dir,
timeout=FLAGS.eval_timeout,
timeout_fn=_terminate_eval)
def _set_or_add_hparam(hparams, name, value):
if getattr(hparams, name, None) is None:
hparams.add_hparam(name, value)
| tensorflow.contrib.training.checkpoints_iterator | 66 |
from tensorflow.python.ops import init_ops
clipped_gradients, _ = clip_ops.clip_by_global_norm(gradients, clip_gradients)
return list(zip(clipped_gradients, variables))
def _adaptive_max_norm(norm, std_factor, decay, global_step, epsilon, name):
"""Find max_norm given norm and previous average."""
with vs.variable_scope(name, "AdaptiveMaxNorm", [norm]):
log_norm = math_ops.log(norm + epsilon)
def moving_average(name, value, decay):
moving_average_variable = vs.get_variable(
name,
shape=value.get_shape(),
dtype=value.dtype,
initializer=init_ops.zeros_initializer(),
trainable=False)
return moving_averages.assign_moving_average(
moving_average_variable, value, decay, zero_debias=False)
# quicker adaptation at the beginning
if global_step is not None:
n = math_ops.cast(global_step, dtypes.float32)
decay = math_ops.minimum(decay, n / (n + 1.))
# update averages
mean = moving_average("mean", log_norm, decay)
sq_mean = moving_average("sq_mean", math_ops.square(log_norm), decay)
| tensorflow.python.ops.init_ops.zeros_initializer | 67 |
from tensorflow.contrib.layers.python.ops import sparse_feature_cross_op
cross_dense = sparse_ops.sparse_tensor_to_dense(cross)
with session.Session():
values = cross_dense.eval()
self.assertTrue(numpy.equal(values[0], values[1]).all())
def test_hashed_output_v2_has_no_collision(self):
"""Tests the new version of the fingerprint concatenation has no collisions.
"""
# Although the last 10 bits of 359 and 1024+359 are identical.
# As a result, all the crosses shouldn't collide.
t1 = constant_op.constant([[359], [359 + 1024]])
t2 = constant_op.constant([list(range(10)), list(range(10))])
cross = sparse_feature_cross_op.sparse_feature_cross(
[t2, t1],
hashed_output=True,
num_buckets=1024,
hash_key=layers.SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY)
cross_dense = sparse_ops.sparse_tensor_to_dense(cross)
with session.Session():
values = cross_dense.eval()
self.assertTrue(numpy.not_equal(values[0], values[1]).all())
def test_hashed_3x1x2(self):
"""Tests 3x1x2 permutation with hashed output.
| tensorflow.contrib.layers.python.ops.sparse_feature_cross_op.sparse_feature_cross | 68 |
from tensorflow.python.ops import data_flow_ops
nrof_preprocess_threads = 4
image_size = (args.image_size, args.image_size)
eval_input_queue = data_flow_ops.FIFOQueue(capacity=2000000,
dtypes=[tf.string, tf.int32, tf.int32],
| tensorflow.python.ops.data_flow_ops.FIFOQueue | 69 |
from tensorflow.python.ops import array_ops
raise ValueError('Invalid k=%s.' % k)
with ops.name_scope(None, 'num_relevant', (labels,)) as scope:
# For SparseTensor, calculate separate count for each row.
if isinstance(labels, (ops.SparseTensor, ops.SparseTensorValue)):
labels_sizes = set_ops.set_size(labels)
return math_ops.minimum(labels_sizes, k, name=scope)
# For dense Tensor, calculate scalar count based on last dimension, and
# tile across labels shape.
labels_shape = array_ops.shape(labels)
labels_size = labels_shape[-1]
num_relevant_scalar = math_ops.minimum(labels_size, k)
return array_ops.fill(labels_shape[0:-1], num_relevant_scalar, name=scope)
def expand_and_tile(tensor, multiple, dim=0, name=None):
"""Slice `tensor` shape in 2, then tile along the sliced dimension.
A new dimension is inserted in shape of `tensor` before `dim`, then values are
tiled `multiple` times along the new dimension.
Args:
tensor: Input `Tensor` or `SparseTensor`.
multiple: Integer, number of times to tile.
| tensorflow.python.ops.array_ops.fill | 70 |
from tensorflow.python.ops import logging_ops
logit = layers.legacy_fully_connected(
net,
self._num_label_columns(),
weight_collections=[self._dnn_weight_collection],
bias_collections=[self._dnn_weight_collection],
name="dnn_logit")
self._add_hidden_layer_summary(logit, "dnn_logit")
return logit
def _add_hidden_layer_summary(self, value, tag):
# TODO(zakaria): Move this code to tf.learn and add test.
logging_ops.scalar_summary("%s:fraction_of_zero_values" % tag,
nn.zero_fraction(value))
logging_ops.histogram_summary("%s:activation" % tag, value)
def _linear_logits(self, features):
logits, _, _ = layers.weighted_sum_from_feature_columns(
columns_to_tensors=features,
feature_columns=self._get_linear_feature_columns(),
num_outputs=self._num_label_columns(),
weight_collections=[self._linear_weight_collection],
name="linear")
return logits
def _get_feature_dict(self, features):
if isinstance(features, dict):
| tensorflow.python.ops.logging_ops.histogram_summary | 71 |
from tensorflow.contrib.distributions.python.ops import distribution_util
@distribution_util.AppendDocstring(_poisson_sample_note)
def _log_cdf(self, x):
return math_ops.log(self.cdf(x))
@distribution_util.AppendDocstring(_poisson_sample_note)
def _cdf(self, x):
x = self._assert_valid_sample(x, check_integer=False)
return math_ops.igammac(math_ops.floor(x + 1), self.rate)
| tensorflow.contrib.distributions.python.ops.distribution_util.AppendDocstring | 72 |
import tensorflow as tf
"""Returns dict of variables to restore from ImageNet-checkpoint."""
vars_to_restore_imagenet = {}
ckpt_var_names = tf.contrib.framework.list_variables(imagenet_ckpt)
ckpt_var_names = [name for (name, unused_shape) in ckpt_var_names]
| tensorflow.contrib.framework.list_variables | 73 |
import tensorflow as tf
# applying maxnorm constraints easier
rel_embedding_shape = [rel_cnt, self.embedding_size * self.embedding_size]
entity_init = tf.truncated_normal(entity_embedding_shape, stddev=init_sd)
rel_init = tf.truncated_normal(rel_embedding_shape, stddev=init_sd)
| tensorflow.truncated_normal | 74 |
import tensorflow as tf
# where m(x) is the mean_function and \mu(x) is fmean
e_mean_mean = expectation(pXnew, mean_function, mean_function) # N x D x D
Lit_q_mu = tf.matrix_triangular_solve(Luu, q_mu, adjoint=True)
e_mean_Kuf = expectation(pXnew, mean_function, (kern, feat)) # N x D x M
# einsum isn't able to infer the rank of e_mean_Kuf, hence we explicitly set the rank of the tensor:
e_mean_Kuf = tf.reshape(e_mean_Kuf, [num_data, num_func, num_ind])
e_fmean_mean = tf.einsum("nqm,mz->nqz", e_mean_Kuf, Lit_q_mu) # N x D x D
e_related_to_mean = e_fmean_mean + tf.matrix_transpose(e_fmean_mean) + e_mean_mean
if full_output_cov:
fvar = (
tf.matrix_diag(tf.tile((eKff - tf.trace(Li_eKuffu_Lit))[:, None], [1, num_func])) +
tf.matrix_diag(tf.einsum("nij,dji->nd", Li_eKuffu_Lit, cov)) +
# tf.matrix_diag(tf.trace(tf.matmul(Li_eKuffu_Lit, cov))) +
tf.einsum("ig,nij,jh->ngh", q_mu, Li_eKuffu_Lit, q_mu) -
# tf.matmul(q_mu, tf.matmul(Li_eKuffu_Lit, q_mu), transpose_a=True) -
fmean[:, :, None] * fmean[:, None, :] +
e_related_to_mean
)
else:
fvar = (
(eKff - tf.trace(Li_eKuffu_Lit))[:, None] +
| tensorflow.trace | 75 |
from tensorflow.python.ops import math_ops
random_tensor += random_ops.random_uniform(
noise_shape, seed=seed, dtype=x.dtype)
# 0. if [keep_prob, 1.0) and 1. if [1.0, 1.0 + keep_prob)
binary_tensor = math_ops.floor(random_tensor)
ret = x * math_ops.inv(keep_prob) * binary_tensor
ret.set_shape(x.get_shape())
return ret
| tensorflow.python.ops.math_ops.inv | 76 |
import tensorflow as tf
# rep_map_dp = dropout(rep_map, keep_prob, is_train)
bn = block_num
bl = block_len
with tf.variable_scope('self_attention'):
# @2.self-attention in block
# mask generation
sl_indices = tf.range(block_len, dtype=tf.int32)
sl_col, sl_row = tf.meshgrid(sl_indices, sl_indices)
if direction == 'forward':
direct_mask = tf.greater(sl_row, sl_col) # bl,bl
else:
direct_mask = tf.greater(sl_col, sl_row) # bl,bl
direct_mask_tile = tf.tile(
tf.expand_dims(tf.expand_dims(direct_mask, 0), 0), [bs, bn, 1, 1]) # bs,bn,bl,bl
rep_mask_tile_1 = tf.tile(tf.expand_dims(rep_mask_split, 2), [1, 1, bl, 1]) # bs,bn,bl,bl
| tensorflow.meshgrid | 77 |
from tensorflow.python.ops import random_ops
def parameterized_vs_naive(shape, num_iters, use_gpu=False):
np.random.seed(1618) # Make it reproducible.
# No CSE/CF.
optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0)
config = tf.ConfigProto(
graph_options=tf.GraphOptions(optimizer_options=optimizer_options))
with tf.Session(config=config) as sess:
with tf.device("/cpu:0" if not use_gpu else None):
param_op = tf.group(random_ops.parameterized_truncated_normal(shape))
naive_op = tf.group(random_ops.truncated_normal(shape))
# Burn-in to avoid session setup costs in the timing.
sess.run(param_op)
sess.run(param_op)
param_dt = timeit.timeit(lambda: sess.run(param_op), number=num_iters)
sess.run(naive_op)
sess.run(naive_op)
naive_dt = timeit.timeit(lambda: sess.run(naive_op), number=num_iters)
return param_dt, naive_dt
| tensorflow.python.ops.random_ops.truncated_normal | 78 |
from tensorflow.python.ops import nn_ops
self.W_h = W_h
encoder_features = nn_ops.conv2d(encoder_features, W_h, [1, 1, 1, 1], "SAME") # [batch_size, passage_len, 1, attention_vec_size]
| tensorflow.python.ops.nn_ops.conv2d | 79 |
import tensorflow as tf
with tf.variable_scope(scope):
init_w = tf.random_normal_initializer(0., 0.01)
| tensorflow.random_normal_initializer | 80 |
from tensorflow.python.training import ftrl
model_dir=tempfile.mkdtemp(),
linear_feature_columns=(bucketized_feature,),
linear_optimizer=ftrl.FtrlOptimizer(learning_rate=0.1),
dnn_feature_columns=(cont_feature,),
| tensorflow.python.training.ftrl.FtrlOptimizer | 81 |
import tensorflow as tf
st_serialized = tf.serialize_many_sparse(st)
st_deserialized = tf.deserialize_many_sparse(
st_serialized, dtype=values.dtype)
| tensorflow.deserialize_many_sparse | 82 |
import tensorflow as tf
tf.summary.histogram('advantage', adv)
tf.summary.histogram('action_probability', self.mu_ph)
if tf_util.is_image(self.observation_space):
tf.summary.image('observation', train_model.obs_ph)
else:
tf.summary.histogram('observation', train_model.obs_ph)
trainer = tf.train.RMSPropOptimizer(learning_rate=self.learning_rate_ph, decay=self.rprop_alpha,
epsilon=self.rprop_epsilon)
_opt_op = trainer.apply_gradients(grads)
# so when you call _train, you first do the gradient step, then you apply ema
with tf.control_dependencies([_opt_op]):
_train = tf.group(ema_apply_op)
# Ops/Summaries to run, and their names for logging
assert norm_grads is not None
run_ops = [_train, loss, loss_q, entropy, loss_policy, loss_f, loss_bc, explained_variance, norm_grads]
names_ops = ['loss', 'loss_q', 'entropy', 'loss_policy', 'loss_f', 'loss_bc', 'explained_variance',
'norm_grads']
if self.trust_region:
self.run_ops = run_ops + [norm_grads_q, norm_grads_policy, avg_norm_grads_f, avg_norm_k, avg_norm_g,
avg_norm_k_dot_g, avg_norm_adj]
self.names_ops = names_ops + ['norm_grads_q', 'norm_grads_policy', 'avg_norm_grads_f', 'avg_norm_k',
'avg_norm_g', 'avg_norm_k_dot_g', 'avg_norm_adj']
| tensorflow.group | 83 |
from tensorflow.python.client import session
expected_out = self._sparse_tensor([[83]])
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_hashed_output_v1_has_collision(self):
"""Tests the old version of the fingerprint concatenation has collisions.
"""
# The last 10 bits of 359 and 1024+359 are identical.
# As a result, all the crosses collide.
t1 = constant_op.constant([[359], [359 + 1024]])
t2 = constant_op.constant([list(range(10)), list(range(10))])
cross = sparse_feature_cross_op.sparse_feature_cross(
[t2, t1], hashed_output=True, num_buckets=1024)
cross_dense = sparse_ops.sparse_tensor_to_dense(cross)
with session.Session():
values = cross_dense.eval()
self.assertTrue(numpy.equal(values[0], values[1]).all())
def test_hashed_output_v2_has_no_collision(self):
"""Tests the new version of the fingerprint concatenation has no collisions.
"""
# Although the last 10 bits of 359 and 1024+359 are identical.
# As a result, all the crosses shouldn't collide.
t1 = constant_op.constant([[359], [359 + 1024]])
t2 = constant_op.constant([list(range(10)), list(range(10))])
cross = sparse_feature_cross_op.sparse_feature_cross(
[t2, t1],
hashed_output=True,
| tensorflow.python.client.session.Session | 84 |
import tensorflow as tf
# Trainable parameters
w1 = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1))
w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1))
b = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
v = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
with tf.name_scope('v'):
# Applying fully connected layer with non-linear activation to each of the B*T timestamps;
| tensorflow.random_normal | 85 |
import tensorflow as tf
else:
filter_shape = [k_size, k_size] + [in_channel, out_dims]
if w_init is None:
w_init = tf.contrib.layers.variance_scaling_initializer()
if b_init is None:
b_init = tf.constant_initializer()
w = tf.get_variable('W', filter_shape, initializer=w_init)
b = None
if use_bias:
b = tf.get_variable('b', [out_dims], initializer=b_init)
conv = tf.nn.atrous_conv2d(value=input_tensor, filters=w, rate=rate,
padding=padding, name='dilation_conv')
| tensorflow.get_variable | 86 |
from tensorflow.contrib.learn.python.learn.estimators import composable_model
self._linear_model = composable_model.LinearComposableModel(
num_label_columns=target_column.num_label_columns,
optimizer=linear_optimizer,
gradient_clip_norm=gradient_clip_norm,
num_ps_replicas=num_ps_replicas)
self._dnn_model = composable_model.DNNComposableModel(
num_label_columns=target_column.num_label_columns,
hidden_units=dnn_hidden_units,
optimizer=dnn_optimizer,
activation_fn=dnn_activation_fn,
dropout=dnn_dropout,
| tensorflow.contrib.learn.python.learn.estimators.composable_model.DNNComposableModel | 87 |
from tensorflow.contrib.layers.python.layers import feature_column
constant_op.constant(
iris.target, dtype=dtypes.int32), (-1, 1))
return features, labels
iris = test_data.prepare_iris_data_for_logistic_regression()
cont_features = [
feature_column.real_valued_column(str(i)) for i in range(4)
]
linear_features = [
feature_column.bucketized_column(
cont_features[i],
test_data.get_quantile_based_buckets(iris.data[:, i], 10))
for i in range(4)
]
linear_features.append(
feature_column.sparse_column_with_hash_bucket(
'dummy_sparse_column', hash_bucket_size=100))
classifier = dnn_linear_combined.DNNLinearCombinedClassifier(
model_dir=tempfile.mkdtemp(),
linear_feature_columns=linear_features,
dnn_feature_columns=cont_features,
dnn_hidden_units=(3, 3))
metrics = classifier.fit(input_fn=_input_fn, steps=_ITERS).evaluate(
input_fn=_input_fn, steps=100)
self._assertSingleClassMetrics(metrics)
def benchmarkCustomOptimizer(self):
iris = test_data.prepare_iris_data_for_logistic_regression()
| tensorflow.contrib.layers.python.layers.feature_column.sparse_column_with_hash_bucket | 88 |
import tensorflow as tf
tf.logging.info("Total trainable variables size: %d", total_size)
learning_rate = get_learning_rate_decay(params.learning_rate,
global_step, params)
learning_rate = tf.convert_to_tensor(learning_rate, dtype=tf.float32)
tf.summary.scalar("learning_rate", learning_rate)
# Create optimizer
opt = tf.train.AdamOptimizer(learning_rate,
beta1=params.adam_beta1,
beta2=params.adam_beta2,
epsilon=params.adam_epsilon)
if params.update_cycle == 1:
train_op = tf.contrib.layers.optimize_loss(
name="training",
loss=loss,
global_step=global_step,
learning_rate=learning_rate,
clip_gradients=params.clip_grad_norm or None,
optimizer=opt,
colocate_gradients_with_ops=True
)
zero_op = tf.no_op("zero_op")
collect_op = tf.no_op("collect_op")
else:
grads_and_vars = opt.compute_gradients(
loss, colocate_gradients_with_ops=True)
| tensorflow.contrib.layers.optimize_loss | 89 |
import tensorflow as tf
shape = x.get_shape().as_list()
with tf.variable_scope(name):
beta = tf.get_variable('beta', [shape[-1]], initializer=tf.constant_initializer(0.))
gamma = tf.get_variable('gamma', [shape[-1]], initializer=tf.random_normal_initializer(1., 0.02))
pop_mean = tf.get_variable('pop_mean', [shape[-1]], initializer=tf.constant_initializer(0.), trainable=False)
pop_var = tf.get_variable('pop_var', [shape[-1]], initializer=tf.constant_initializer(1.), trainable=False)
if pop_mean not in tf.moving_average_variables():
tf.add_to_collection(tf.GraphKeys.MOVING_AVERAGE_VARIABLES, pop_mean)
tf.add_to_collection(tf.GraphKeys.MOVING_AVERAGE_VARIABLES, pop_var)
def func1():
# execute at training time
batch_mean, batch_var = tf.nn.moments(x, range(len(shape) - 1))
| tensorflow.moving_average_variables | 90 |
import tensorflow as tf
self.pool3 = tf.layers.max_pooling2d(self.conv3, 2, 2)
self.conv4 = tf.layers.conv2d(self.pool3,
self.config.cifar10_cnn["num_filters"],
self.config.cifar10_cnn["filter_size"],
padding='same', activation=tf.nn.relu)
self.drop3 = tf.layers.dropout(self.conv4, self.config.cifar10_cnn["keep_prob"], training=self.train)
# b. Flatten input data
self.flatten = tf.reshape(self.drop3, [-1, self.config.cifar10_cnn["fc1_nb_units"]])
# Create connected layers: fc1, fc2
with tf.contrib.framework.arg_scope([tf.contrib.layers.fully_connected],
normalizer_fn=tf.contrib.layers.batch_norm,
normalizer_params={"is_training": self.train}):
self.fc1 = tf.contrib.layers.fully_connected(self.flatten, self.config.cifar10_cnn["fc1_nb_units"])
self.fc2 = tf.contrib.layers.fully_connected(self.fc1, self.config.data["num_categories"], activation_fn=None)
# Compute loss
with tf.name_scope("loss"):
self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.fc2, labels=self.y))
# Optimizer
with tf.name_scope("training_op"):
| tensorflow.contrib.framework.arg_scope | 91 |
from tensorflow.python.training import gradient_descent
with self._maybeWithDevice("/job:worker" if is_distributed else None):
grads = ops.IndexedSlices(
constant_op.constant(
[[0.1, 0.1], [0.1, 0.1]], dtype=dtype), [0, 2], [3, 2])
sgd = gradient_descent.GradientDescentOptimizer(3.0)
clip_opt = variable_clipping_optimizer.VariableClippingOptimizer(
sgd, {var0: [1],
var1: [0]}, 2.0)
| tensorflow.python.training.gradient_descent.GradientDescentOptimizer | 92 |
import tensorflow as tf
self.assertFalse(has_nan_or_inf.eval())
self.assertEqual(1.0, grad_scale.eval())
# The final gradient must be finite.
self.assertFalse(tf.is_nan(final_var_grads.a[1]).eval())
self.assertTrue(tf.is_finite(final_var_grads.a[1]).eval())
| tensorflow.is_nan | 93 |
from tensorflow.contrib.learn.python.learn import ops
def test_categorical_variable(self):
random_seed.set_random_seed(42)
with self.cached_session() as sess:
cat_var_idx = array_ops.placeholder(dtypes.int64, [2, 2])
embeddings = ops.categorical_variable(
cat_var_idx, n_classes=5, embedding_size=10, name="my_cat_var")
sess.run(variables.global_variables_initializer())
emb1 = sess.run(embeddings,
feed_dict={cat_var_idx.name: [[0, 1], [2, 3]]})
| tensorflow.contrib.learn.python.learn.ops.categorical_variable | 94 |
import tensorflow as tf
num_func = tf.shape(q_mu)[1] # output dimension (D)
q_sqrt_r = tf.matrix_band_part(q_sqrt, -1, 0) # D x M x M
eKuf = tf.transpose(expectation(pXnew, (kern, feat))) # M x N (psi1)
if Luu is None:
Kuu = feat.Kuu(kern, jitter=settings.numerics.jitter_level) # M x M
Luu = tf.cholesky(Kuu) # M x M
if not white:
q_mu = tf.matrix_triangular_solve(Luu, q_mu, lower=True)
Luu_tiled = tf.tile(Luu[None, :, :], [num_func, 1, 1]) # remove line once issue 216 is fixed
q_sqrt_r = tf.matrix_triangular_solve(Luu_tiled, q_sqrt_r, lower=True)
Li_eKuf = tf.matrix_triangular_solve(Luu, eKuf, lower=True) # M x N
fmean = tf.matmul(Li_eKuf, q_mu, transpose_a=True)
eKff = expectation(pXnew, kern) # N (psi0)
eKuffu = expectation(pXnew, (kern, feat), (kern, feat)) # N x M x M (psi2)
Luu_tiled = tf.tile(Luu[None, :, :], [num_data, 1, 1]) # remove this line, once issue 216 is fixed
| tensorflow.matrix_triangular_solve | 95 |
from tensorflow.contrib.learn.python.learn.estimators import tensor_signature
def _check_inputs(self, features, targets):
if self._features_info is not None:
if not tensor_signature.tensors_compatible(features, self._features_info):
raise ValueError('Features are incompatible with given information. '
'Given features: %s, required signatures: %s.' %
(str(features), str(self._features_info)))
else:
self._features_info = tensor_signature.create_signatures(features)
if self._targets_info is not None:
if not tensor_signature.tensors_compatible(targets, self._targets_info):
raise ValueError('Targets are incompatible with given information. '
'Given targets: %s, required signatures: %s.' %
(str(targets), str(self._targets_info)))
else:
self._targets_info = tensor_signature.create_signatures(targets)
def _train_model(self,
input_fn,
steps,
feed_fn=None,
device_fn=None,
monitor=None,
log_every_steps=100,
fail_on_nan_loss=True):
if self._config.execution_mode not in ('all', 'train'):
return
# Stagger startup of worker sessions based on task id.
sleep_secs = min(self._config.training_worker_max_startup_secs,
| tensorflow.contrib.learn.python.learn.estimators.tensor_signature.create_signatures | 96 |
from tensorflow.python.ops import partitioned_variables
max_partitions=num_ps_replicas, min_slice_size=64 << 20))
input_layer_scope = parent_scope + "/input_from_feature_columns"
with variable_scope.variable_scope(
input_layer_scope,
values=list(six.itervalues(features)),
partitioner=input_layer_partitioner) as scope:
net = layers.input_from_feature_columns(
columns_to_tensors=features,
feature_columns=feature_columns,
weight_collections=[parent_scope],
scope=scope)
hidden_layer_partitioner = (
partitioned_variables.min_max_variable_partitioner(
max_partitions=num_ps_replicas))
for layer_id, num_hidden_units in enumerate(hidden_units):
with variable_scope.variable_scope(
parent_scope + "/hiddenlayer_%d" % layer_id,
values=[net],
partitioner=hidden_layer_partitioner) as scope:
net = layers.fully_connected(
net,
num_hidden_units,
activation_fn=activation_fn,
variables_collections=[parent_scope],
scope=scope)
| tensorflow.python.ops.partitioned_variables.min_max_variable_partitioner | 97 |
import tensorflow as tf
trainable: If `True`, the default, also adds the variable to the graph
collection `GraphKeys.TRAINABLE_VARIABLES`. This collection is used as
the default list of variables to use by the `Optimizer` classes.
dual_rate_factor: A floating point value or `Tensor`. The learning rate for
the dual variable is scaled by this factor.
Returns:
dual_value: An op that computes the absolute value of the dual variable
and reverses its gradient.
dual_variable: The underlying variable itself.
"""
# We disable partitioning while constructing dual variables because they will
# be updated with assign, which is not available for partitioned variables.
partitioner = tf.get_variable_scope().partitioner
try:
tf.get_variable_scope().set_partitioner(None)
dual_variable = tf.contrib.framework.model_variable(
name=name,
shape=shape,
dtype=dtype,
initializer=initializer,
collections=collections,
trainable=trainable)
finally:
tf.get_variable_scope().set_partitioner(partitioner)
# Using the absolute value enforces nonnegativity.
dual_value = tf.abs(dual_variable)
if trainable:
# To reverse the gradient on the dual variable, multiply the gradient by
# -dual_rate_factor
| tensorflow.contrib.framework.model_variable | 98 |
from tensorflow.contrib import layers
def default_input_fn(unused_estimator, examples):
return layers.parse_feature_columns_from_examples(examples,
| tensorflow.contrib.layers.parse_feature_columns_from_examples | 99 |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
Use the Edit dataset card button to edit it.
- Downloads last month
- 40