seed
stringlengths 25
1.88k
| seed_api
stringlengths 14
102
| index
int64 0
1.05k
|
---|---|---|
import tensorflow as tf
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate loss, which includes softmax cross entropy and L2 regularization.
cross_entropy = tf.cond(n_positives > 0., lambda: tf.losses.sparse_softmax_cross_entropy(labels=glabels, logits=cls_pred), lambda: 0.)
#cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=glabels, logits=cls_pred)
| tensorflow.losses.sparse_softmax_cross_entropy | 100 |
import tensorflow as tf
'zero_debias_moving_mean': True,
'fused': fused_batch_norm,
}
inputs.get_shape().assert_has_rank(2)
if log(final_size, 2) != int(log(final_size, 2)):
raise ValueError('`final_size` (%i) must be a power of 2.' % final_size)
if final_size < 8:
raise ValueError('`final_size` (%i) must be greater than 8.' % final_size)
end_points = {}
num_layers = int(log(final_size, 2)) - 1
with tf.compat.v1.variable_scope(scope, values=[inputs], reuse=reuse) as scope:
with slim.arg_scope([normalizer_fn], **normalizer_fn_args):
with slim.arg_scope([slim.conv2d_transpose],
normalizer_fn=normalizer_fn,
stride=2,
kernel_size=4):
net = tf.expand_dims(tf.expand_dims(inputs, 1), 1)
# First upscaling is different because it takes the input vector.
current_depth = depth * 2 ** (num_layers - 1)
scope = 'deconv1'
net = slim.conv2d_transpose(
| tensorflow.compat.v1.variable_scope | 101 |
from tensorflow.compat.v1 import ConfigProto, InteractiveSession
import pickle
from tensorflow.compat.v1 import ConfigProto, InteractiveSession
import tensorflow as tf
from speech_utils.ACRNN.tf.model_utils import train
config = ConfigProto(log_device_placement=True)
config.gpu_options.allow_growth = True
session = tf.Session(config=config).as_default()
def main(args):
# Verify
| tensorflow.compat.v1.ConfigProto | 102 |
import tensorflow as tf
entropy_bottleneck = EntropyBottleneck()
conditional_entropy_model = SymmetricConditional()
checkpoint = tf.train.Checkpoint(analysis_transform=analysis_transform,
hyper_encoder=hyper_encoder,
hyper_decoder=hyper_decoder,
| tensorflow.train.Checkpoint | 103 |
from tensorflow.python.ops import array_ops
b_grads = b_module.bspmm(a_indices, a_values, a_shape, grad, adjoint_a=True, adjoint_b=False)
bg_row=tf.shape(b_grads[0])[0]
bg_col=tf.shape(b_grads[0])[1]
b_grads = tf.reshape(b_grads, (numTensors * bg_row, bg_col))
if adj_b:
b_grads = [array_ops.transpose(b_g) for b_g in b_grads]
for t in range(numTensors):
rows = a_indices[t][:, 0]
cols = a_indices[t][:, 1]
parts_a = array_ops.gather(grad[t], rows if not adj_a else cols)
parts_b = array_ops.gather(b_list[t] if not adj_b else array_ops.transpose(b_list[t]), cols if not adj_a else rows)
a_values_grads.append(math_ops.reduce_sum(parts_a * parts_b, reduction_indices=1))
return_val = [None for _ in range(numTensors)] + a_values_grads + [None for _ in range(numTensors)] + [b_grads]
return tuple(return_val)
| tensorflow.python.ops.array_ops.gather | 104 |
from tensorflow.python.ops import check_ops
`log_prob(x)`. If `validate_args` is `False` and the inputs are
invalid, correct behavior is not guaranteed.
allow_nan_stats: `Boolean`, default `True`. If `False`, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If `True`, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.
name: The name to prepend to all ops created by this distribution.
Raises:
TypeError: if `alpha` and `beta` are different dtypes.
"""
parameters = locals()
parameters.pop("self")
with ops.name_scope(name, values=[alpha, beta]) as ns:
with ops.control_dependencies([
check_ops.assert_positive(alpha),
check_ops.assert_positive(beta),
] if validate_args else []):
self._alpha = array_ops.identity(alpha, name="alpha")
self._beta = array_ops.identity(beta, name="beta")
super(InverseGamma, self).__init__(
dtype=self._alpha.dtype,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
is_continuous=True,
is_reparameterized=False,
parameters=parameters,
graph_parents=[self._alpha, self._beta],
name=ns)
| tensorflow.python.ops.check_ops.assert_positive | 105 |
import tensorflow as tf
validnum = tf.placeholder(tf.int32)
learnrate = tf.placeholder(tf.float32)
def getinputs(path):
filename_queue=tf.train.string_input_producer([path])
reader=tf.TFRecordReader()
_,serialized_example=reader.read(filename_queue)
features=tf.parse_single_example(serialized_example,
features={
'label':tf.FixedLenFeature([], tf.int64),
'img_raw' : tf.FixedLenFeature([], tf.string),
})
image=tf.decode_raw(features['img_raw'],tf.uint8)
label=tf.cast(features['label'],tf.int32)
image=tf.reshape(image,[4096,1])
return image,label
def get_batch(image,label,batch_size,crop_size):
#print(image.shape)
#print(label.shape)
images,labels=tf.train.shuffle_batch([image,label],
batch_size=batch_size,num_threads=10,capacity=10000,min_after_dequeue=200)
return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
| tensorflow.decode_raw | 106 |
import tensorflow as tf
def batch_norm(x, train, name, decay=0.99, epsilon=1e-5):
shape = x.get_shape().as_list()
with tf.variable_scope(name):
beta = tf.get_variable('beta', [shape[-1]], initializer=tf.constant_initializer(0.))
gamma = tf.get_variable('gamma', [shape[-1]], initializer=tf.random_normal_initializer(1., 0.02))
pop_mean = tf.get_variable('pop_mean', [shape[-1]], initializer=tf.constant_initializer(0.), trainable=False)
pop_var = tf.get_variable('pop_var', [shape[-1]], initializer=tf.constant_initializer(1.), trainable=False)
if pop_mean not in tf.moving_average_variables():
tf.add_to_collection(tf.GraphKeys.MOVING_AVERAGE_VARIABLES, pop_mean)
tf.add_to_collection(tf.GraphKeys.MOVING_AVERAGE_VARIABLES, pop_var)
def func1():
# execute at training time
batch_mean, batch_var = tf.nn.moments(x, range(len(shape) - 1))
update_mean = tf.assign_sub(pop_mean, (1 - decay)*(pop_mean - batch_mean))
update_var = tf.assign_sub(pop_var, (1 - decay)*(pop_var - batch_var))
| tensorflow.moving_average_variables | 107 |
from tensorflow.contrib.framework.python.ops import variables as contrib_variables
def begin(self):
self._last_step = None
self._global_step_tensor = contrib_variables.get_global_step()
for m in self._monitors:
| tensorflow.contrib.framework.python.ops.variables.get_global_step | 108 |
import tensorflow as tf
actor.add_grad_to_graph(critic.a_grads)
M = Memory(MEMORY_CAPACITY)
saver = tf.train.Saver(max_to_keep=100)
if LOAD_MODEL:
all_ckpt = tf.train.get_checkpoint_state('./data', 'checkpoint').all_model_checkpoint_paths
saver.restore(sess, all_ckpt[-1])
else:
if os.path.isdir(DATA_PATH): shutil.rmtree(DATA_PATH)
os.mkdir(DATA_PATH)
sess.run(tf.global_variables_initializer())
if OUTPUT_GRAPH:
tf.summary.FileWriter('logs', graph=sess.graph)
var = 3 # control exploration
var_min = 0.01
for i_episode in range(MAX_EPISODES):
# s = (hull angle speed, angular velocity, horizontal speed, vertical speed, position of joints and joints angular speed, legs contact with ground, and 10 lidar rangefinder measurements.)
s = env.reset()
ep_r = 0
while True:
if RENDER:
env.render()
a = actor.choose_action(s)
a = np.clip(np.random.normal(a, var), -1, 1) # add randomness to action selection for exploration
s_, r, done, _ = env.step(a) # r = total 300+ points up to the far end. If the robot falls, it gets -100.
| tensorflow.summary.FileWriter | 109 |
from tensorflow.python.ops import control_flow_ops
[cell() for _ in range(num_layers)])
outputs, final_state = core_rnn.static_rnn(
multi_cell, inputs, dtype=dtypes.float32)
trainable_variables = ops.get_collection(
ops.GraphKeys.TRAINABLE_VARIABLES)
gradients = gradients_impl.gradients([outputs, final_state],
trainable_variables)
training_op = control_flow_ops.group(*gradients)
self._BenchmarkOp(training_op, "tf_rnn_lstm_block_cell %s %s" %
(config_name, self._GetConfigDesc(config)))
if __name__ == "__main__":
test.main()
| tensorflow.python.ops.control_flow_ops.group | 110 |
import tensorflow as tf
if not no_moving_average:
moving_mean = self._make_var('moving_mean', (in_ch,), trainable=False, init_constant=0)
moving_variance = self._make_var('moving_variance', (in_ch,), trainable=False, init_constant=1)
if is_train:
# For training, do batch norm with batch mean & variance
# Update moving averages if training
(X, mean, variance) = tf.nn.fused_batch_norm(X, scale, offset, epsilon=epsilon, is_training=True)
update_mean = moving_averages.assign_moving_average(moving_mean, mean, decay)
update_variance = moving_averages.assign_moving_average(moving_variance, variance, decay)
with tf.control_dependencies([update_mean, update_variance]):
X = tf.identity(X)
else:
# For prediction, do batch norm with computed moving mean & variance from training
# Don't update moving averages if predicting
| tensorflow.nn.fused_batch_norm | 111 |
from tensorflow.python.framework import ops
with ops.name_scope(
name, 'expand_and_tile', (tensor, multiple, dim)) as scope:
# Sparse.
if isinstance(tensor, ops.SparseTensorValue):
tensor = ops.SparseTensor.from_value(tensor)
if isinstance(tensor, ops.SparseTensor):
if dim < 0:
expand_dims = array_ops.reshape(
| tensorflow.python.framework.ops.SparseTensor.from_value | 112 |
import tensorflow as tf
# run_config = tf.estimator.RunConfig(
# experimental_distribute=tf.contrib.distribute.DistributeConfig(
# train_distribute=distribution,
# remote_cluster={
# 'worker': ['localhost:5000', 'localhost:5001'],
# },
# )
# )
os.environ["TF_CONFIG"] = json.dumps(
{
"cluster": {"worker": worker},
"task": {"type": "worker", "index": task_index},
}
)
strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()
run_config = tf.estimator.RunConfig(
save_summary_steps=1,
train_distribute=strategy,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_ckpt_steps,
log_step_count_steps=1,
)
else:
distribution = tf.contrib.distribute.MirroredStrategy(
num_gpus=FLAGS.num_gpus
)
run_config = tf.estimator.RunConfig(train_distribute=distribution)
| tensorflow.distribute.experimental.MultiWorkerMirroredStrategy | 113 |
from tensorflow.python.estimator.canned import head as head_lib
regressor.export(self._export_dir_base)
def testRankingDontThrowExceptionForForEstimator(self):
learner_config = learner_pb2.LearnerConfig()
learner_config.num_classes = 2
learner_config.constraints.max_tree_depth = 1
model_dir = tempfile.mkdtemp()
config = run_config.RunConfig()
head_fn = head_lib._binary_logistic_head_with_sigmoid_cross_entropy_loss(
loss_reduction=losses.Reduction.SUM_OVER_NONZERO_WEIGHTS)
model = estimator.GradientBoostedDecisionTreeRanker(
head=head_fn,
learner_config=learner_config,
num_trees=1,
examples_per_layer=3,
model_dir=model_dir,
| tensorflow.python.estimator.canned.head._binary_logistic_head_with_sigmoid_cross_entropy_loss | 114 |
from tensorflow.python.framework import ops
Raises:
TypeError: If `x` cannot be cast to the `bfloat16`.
"""
return cast(x, types.bfloat16, name=name)
ops.Tensor._override_operator("__neg__", neg)
ops.Tensor._override_operator("__abs__", abs)
# __invert__ corresponds to the ~ operator. Here we follow the numpy convention
# ~ marks an elementwise bit-wise inverse. This is only implemented for boolean
# tensors and will throw a TypeError if used on nonboolean arrays
ops.Tensor._override_operator("__invert__", logical_not)
def _OverrideBinaryOperatorHelper(func, op_name):
"""Register operators with different tensor and scalar versions.
Args:
func: the operator
op_name: name of the operator being overridden
"""
def binary_op_wrapper(x, y):
| tensorflow.python.framework.ops.Tensor._override_operator | 115 |
import tensorflow as tf
self.dataset = datasets.FlowersData(FLAGS.data_dir)
else:
raise ValueError('Unknown dataset. Must be one of imagenet or flowers.')
self.local_parameter_device_flag = FLAGS.local_parameter_device
if self.job_name:
self.task_index = FLAGS.task_index
self.cluster = tf.train.ClusterSpec({'ps': self.ps_hosts,
'worker': self.worker_hosts})
self.server = None
if not self.server:
self.server = tf.train.Server(self.cluster, job_name=self.job_name,
task_index=self.task_index,
| tensorflow.train.ClusterSpec | 116 |
import tensorflow as tf
))
assignments.append(tf.scatter_update(ref=self.terminal_memory, indices=indices, updates=terminal))
assignments.append(tf.scatter_update(ref=self.reward_memory, indices=indices, updates=reward))
# Add episode indices.
with tf.control_dependencies(control_inputs=assignments):
num_episodes = tf.count_nonzero(input_tensor=terminal, axis=0, dtype=util.tf_dtype('int'))
assignment = tf.assign(
ref=self.episode_indices[self.episode_count: self.episode_count + num_episodes],
value=tf.boolean_mask(tensor=indices, mask=terminal)
)
# Increment episode count.
with tf.control_dependencies(control_inputs=(assignment,)):
assignment = tf.assign_add(ref=self.episode_count, value=num_episodes)
# Increment memory index.
with tf.control_dependencies(control_inputs=(assignment,)):
assignment = tf.assign(
ref=self.episode_indices[-1],
value=tf.where(self.memory_index + num_instances > self.capacity,
self.episode_indices[self.episode_count - 1], self.capacity - 1)
)
with tf.control_dependencies(control_inputs=(assignment,)):
assignment = tf.assign(ref=self.memory_index, value=((self.memory_index + num_instances) % self.capacity))
with tf.control_dependencies(control_inputs=(assignment,)):
| tensorflow.assign_add | 117 |
import tensorflow as tf
self.initialize_tf_vars()
logger.log(self.sess.graph)
self.has_setup = True
self.setup_args = SimpleNamespace(
sampler_cls=sampler_cls, sampler_args=sampler_args)
def initialize_tf_vars(self):
"""Initialize all uninitialized variables in session."""
with tf.name_scope('initialize_tf_vars'):
uninited_set = [
e.decode()
for e in self.sess.run(tf.report_uninitialized_variables())
]
self.sess.run(
tf.variables_initializer([
v for v in tf.global_variables()
if v.name.split(':')[0] in uninited_set
]))
def _start_worker(self):
"""Start Plotter and Sampler workers."""
self.sampler.start_worker()
if self.plot:
from garage.tf.plotter import Plotter
| tensorflow.report_uninitialized_variables | 118 |
import tensorflow as tf
fname = os.path.join(tf.resource_loader.get_data_files_path(),
'samples/configs/' + model_name + '.config')
label_map_path = os.path.join(tf.resource_loader.get_data_files_path(),
'data/pet_label_map.pbtxt')
data_path = os.path.join(tf.resource_loader.get_data_files_path(),
'test_data/pets_examples.record')
configs = config_util.get_configs_from_pipeline_file(fname)
override_dict = {
| tensorflow.resource_loader.get_data_files_path | 119 |
import tensorflow as tf
loss = tf.maximum(0., (tgt_larg - tgt_small) - (pred_larg - pred_small))
if hard_ratio < 1.0:
hard_num = tf.cast(tools.shape(pred1)[0] * hard_ratio, tf.int32)
loss = tf.reshape(loss, [-1])
hard_loss, _ = tf.math.top_k(loss, k=hard_num)
return hard_loss
return loss
| tensorflow.math.top_k | 120 |
import tensorflow as tf
def get_valid_batch(image,label,batch_size):
images,labels=tf.train.batch([image,label],batch_size=batch_size)
| tensorflow.train.batch | 121 |
from tensorflow.python.ops import array_ops
# Accumulate the prediction to current confusion matrix.
current_cm = confusion_matrix_ops.confusion_matrix(
predictions, labels, num_classes, weights=weights, dtype=cm_dtype)
update_op = state_ops.assign_add(total_cm, current_cm)
def compute_mean_iou(name):
"""Compute the mean intersection-over-union via the confusion matrix."""
sum_over_row = math_ops.to_float(math_ops.reduce_sum(total_cm, 0))
sum_over_col = math_ops.to_float(math_ops.reduce_sum(total_cm, 1))
cm_diag = math_ops.to_float(array_ops.diag_part(total_cm))
denominator = sum_over_row + sum_over_col - cm_diag
# If the value of the denominator is 0, set it to 1 to avoid
# zero division.
denominator = math_ops.select(
math_ops.greater(denominator, 0),
denominator,
array_ops.ones_like(denominator))
| tensorflow.python.ops.array_ops.diag_part | 122 |
from tensorflow.contrib.layers.python.layers import feature_column_ops
def _get_linear_feature_columns(self):
if not self._linear_feature_columns:
return None
feature_column_ops.check_feature_columns(self._linear_feature_columns)
return sorted(set(self._linear_feature_columns), key=lambda x: x.key)
def _get_dnn_feature_columns(self):
if not self._dnn_feature_columns:
return None
feature_column_ops.check_feature_columns(self._dnn_feature_columns)
return sorted(set(self._dnn_feature_columns), key=lambda x: x.key)
def _dnn_logits(self, features, is_training):
return self._dnn_model.build_model(
features, self._dnn_feature_columns, is_training)
def _linear_logits(self, features, is_training):
return self._linear_model.build_model(
features, self._linear_feature_columns, is_training)
| tensorflow.contrib.layers.python.layers.feature_column_ops.check_feature_columns | 123 |
import tensorflow as tf
self.saver = tf.train.Saver(tf.global_variables())
def _get_lstm_cell(self, config, is_training):
if config.rnn_mode == BASIC:
return tf.contrib.rnn.BasicLSTMCell(
config.hidden_size, forget_bias=0., state_is_tuple=True,
reuse=not is_training)
if config.rnn_mode == BLOCK:
return tf.contrib.rnn.LSTMBlockCell(
config.hidden_size, forget_bias=0.)
raise ValueError('rnn_mode {} not supported'.format(config.rnn_mode))
def _build_rnn_graph(self, inputs, config, is_training):
def make_cell():
cell = self._get_lstm_cell(config, is_training)
| tensorflow.contrib.rnn.LSTMBlockCell | 124 |
from tensorflow.core.protobuf import queue_runner_pb2
tf.initialize_all_variables()
# Creates a saver.
save = tf.train.Saver({"v0": v0})
# Adds a set of collections.
tf.add_to_collection("int_collection", 3)
tf.add_to_collection("float_collection", 3.5)
tf.add_to_collection("string_collection", "hello")
tf.add_to_collection("variable_collection", v0)
# Add QueueRunners.
tf.train.add_queue_runner(qr)
# Adds user_defined proto in three formats: string, bytes and Any.
queue_runner = queue_runner_pb2.QueueRunnerDef(queue_name="test_queue")
tf.add_to_collection("user_defined_string_collection", str(queue_runner))
tf.add_to_collection("user_defined_bytes_collection",
queue_runner.SerializeToString())
any_buf = Any()
any_buf.Pack(queue_runner)
tf.add_to_collection("user_defined_any_collection", any_buf)
# Generates MetaGraphDef.
meta_graph_def = save.export_meta_graph(filename)
self.assertTrue(meta_graph_def.HasField("saver_def"))
| tensorflow.core.protobuf.queue_runner_pb2.QueueRunnerDef | 125 |
import tensorflow as tf
for key, value in zip(act_values_dict.keys(), act_values):
act_values_dict[key] += value
summary = tf.Summary()
current_global_step = sess.run(global_step)
| tensorflow.Summary | 126 |
from tensorflow.python.ops import math_ops
```
entropy = alpha - log(beta) + log(Gamma(alpha))
+ (1-alpha)digamma(alpha)
```
where digamma(alpha) is the digamma function.""")
def _entropy(self):
return (self.alpha +
math_ops.log(self.beta) +
math_ops.lgamma(self.alpha) -
(1. + self.alpha) * math_ops.digamma(self.alpha))
@distribution_util.AppendDocstring(
"""The mean of an inverse gamma distribution is `beta / (alpha - 1)`,
when `alpha > 1`, and `NaN` otherwise. If `self.allow_nan_stats` is
`False`, an exception will be raised rather than returning `NaN`""")
def _mean(self):
mean = self.beta / (self.alpha - 1.)
if self.allow_nan_stats:
nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
return array_ops.where(
| tensorflow.python.ops.math_ops.digamma | 127 |
import tensorflow as tf
# make some fake noise
data_size = 100
noise_tensor = tf.random_normal((data_size, INPUT_DIM))
real_data_tensor = tf.random_uniform((data_size, OUTPUT_DIM))
dataset = tf.data.Dataset.from_tensor_slices((noise_tensor, real_data_tensor))
dataset = dataset.repeat().shuffle(10)
# TPUEstimator passes params when calling input_fn
batch_size = params.get('train_batch_size', 16)
| tensorflow.data.Dataset.from_tensor_slices | 128 |
from tensorflow.python.ops import math_ops
`values`, or if either `metrics_collections` or `updates_collections` are
not a list or tuple.
"""
is_below_threshold = math_ops.to_float(math_ops.less(values, threshold))
return streaming_mean(is_below_threshold, _mask_weights(ignore_mask, weights),
metrics_collections,
| tensorflow.python.ops.math_ops.less | 129 |
import tensorflow as tf
assert size[0] % 2 == 1 and size[1] % 2 == 1, "REFLECTION PAD ONLY WORKING FOR ODD FILTER SIZE.. " + str(size)
pad_x = size[0] // 2
pad_y = size[1] // 2
input = tf.pad(input, [[0, 0], [pad_x, pad_x], [pad_y, pad_y], [0, 0]], "REFLECT")
padding = "VALID"
return tf.layers.conv2d(input, channels, kernel_size=size, strides=[stride, stride],
padding=padding, kernel_initializer=init, name='conv' + id,
use_bias=use_bias, dilation_rate=(dilation, dilation))
def z_conv(self, id, input, channels, size, stride=1, padding="SAME", use_bias=False, dilation=1):
# zero mean conv
| tensorflow.layers.conv2d | 130 |
import tensorflow as tf
self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1)
self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits1, labels=self.y1)
losses2 = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits2, labels=self.y2)
self.loss = tf.reduce_mean(losses + losses2)
if config.l2_norm is not None:
variables = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
l2_loss = tf.contrib.layers.apply_regularization(regularizer, variables)
self.loss += l2_loss
if config.decay is not None:
self.var_ema = tf.train.ExponentialMovingAverage(config.decay)
ema_op = self.var_ema.apply(tf.trainable_variables())
with tf.control_dependencies([ema_op]):
self.loss = tf.identity(self.loss)
self.assign_vars = []
| tensorflow.contrib.layers.apply_regularization | 131 |
from tensorflow.contrib.eager.python.examples.revnet import config as config_
for grad, var in zip(grads, vars_):
if grad is not None:
self.assertEqual(grad.shape, var.shape)
def test_training_graph(self):
"""Test model training in graph mode."""
with tf.Graph().as_default():
config = config_.get_hparams_cifar_38()
config.add_hparam("n_classes", 10)
config.add_hparam("dataset", "cifar-10")
x = tf.random_normal(
shape=(self.config.batch_size,) + self.config.input_shape)
t = tf.random_uniform(
| tensorflow.contrib.eager.python.examples.revnet.config.get_hparams_cifar_38 | 132 |
import tensorflow as tf
for path in paths:
spectrograms.append(np.load("spectrogram/" + path + ".npy"))
if spectrograms[-1].shape[0] > max_x:
max_x = spectrograms[-1].shape[0]
return spectrograms, max_x
# In[4]:
tf.reset_default_graph()
sess = tf.InteractiveSession()
model = Model()
sess.run(tf.global_variables_initializer())
# In[5]:
for e in range(30):
pbar = tqdm(range(0, len(text_files), batch_size), desc="minibatch loop")
total_cost, total_acc = 0, 0
| tensorflow.InteractiveSession | 133 |
from tensorflow.python.ops import gen_nn_ops
type `tf.float32`.
ksize: A list of ints that has length >= 4. The size of the window for
each dimension of the input tensor.
strides: A list of ints that has length >= 4. The stride of the sliding
window for each dimension of the input tensor.
padding: A string, either `'VALID'` or `'SAME'`. The padding algorithm.
data_format: A string. 'NHWC' and 'NCHW" are supported.
name: Optional name for the operation.
Returns:
A `Tensor` with type `tf.float32`. The max pooled output tensor.
"""
with ops.op_scope([value], name, "MaxPool") as name:
value = ops.convert_to_tensor(value, name="input")
return gen_nn_ops._max_pool(value, ksize=ksize, strides=strides,
padding=padding,
data_format=data_format,
name=name)
ops.RegisterShape("Relu")(common_shapes.unchanged_shape)
ops.RegisterShape("Relu6")(common_shapes.unchanged_shape)
ops.RegisterShape("Elu")(common_shapes.unchanged_shape)
ops.RegisterShape("Softplus")(common_shapes.unchanged_shape)
ops.RegisterShape("Softsign")(common_shapes.unchanged_shape)
@ops.RegisterShape("ReluGrad")
| tensorflow.python.ops.gen_nn_ops._max_pool | 134 |
import tensorflow as tf
round(FLAGS.train_batch_size * FLAGS.target_train_batch_multiplier))
finetune_data = tfds.load(name=FLAGS.target_dataset, split='train')
finetune_data = finetune_data.shuffle(512).repeat().batch(
target_train_batch_size)
target_val_batch_size = int(
round(FLAGS.train_batch_size * FLAGS.target_val_batch_multiplier))
target_data = tfds.load(name=FLAGS.target_dataset, split='validation')
target_data = target_data.shuffle(512).repeat().batch(target_val_batch_size)
dataset = tf.data.Dataset.zip((train_data, finetune_data, target_data))
dataset = dataset.map(_merge_datasets)
dataset = dataset.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
return dataset
max_train_steps = FLAGS.train_steps
l2tl_classifier.train(make_input_dataset, max_steps=max_train_steps)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
| tensorflow.data.Dataset.zip | 135 |
from tensorflow.python.ops import math_ops
thresh_tiled)
pred_is_neg = math_ops.logical_not(pred_is_pos)
# Tile labels by number of thresholds
label_is_pos = array_ops.tile(labels_2d, [num_thresholds, 1])
label_is_neg = math_ops.logical_not(label_is_pos)
true_positives = _create_local('true_positives', shape=[num_thresholds])
false_negatives = _create_local('false_negatives', shape=[num_thresholds])
true_negatives = _create_local('true_negatives', shape=[num_thresholds])
false_positives = _create_local('false_positives', shape=[num_thresholds])
is_true_positive = math_ops.to_float(
math_ops.logical_and(label_is_pos, pred_is_pos))
is_false_negative = math_ops.to_float(
math_ops.logical_and(label_is_pos, pred_is_neg))
is_false_positive = math_ops.to_float(
math_ops.logical_and(label_is_neg, pred_is_pos))
is_true_negative = math_ops.to_float(
math_ops.logical_and(label_is_neg, pred_is_neg))
if weights is not None:
weights = math_ops.to_float(weights)
weights_tiled = array_ops.tile(array_ops.reshape(
_broadcast_weights(weights, predictions), [1, -1]), [num_thresholds, 1])
thresh_tiled.get_shape().assert_is_compatible_with(
| tensorflow.python.ops.math_ops.logical_and | 136 |
from tensorflow.python.ops import gen_math_ops
TypeError: If `x` cannot be cast to the `dtype`.
"""
with ops.op_scope([x], name, "Cast") as name:
if isinstance(x, ops.SparseTensor):
values_cast = cast(x.values, dtype, name=name)
return ops.SparseTensor(x.indices, values_cast, x.shape)
else:
# TODO(touts): Handle what Josh said.
#
# Could return ops.convert_to_tensor(x, dtype=dtype, ...) here, but that
# allows some conversions that cast() can't do, e.g. casting numbers to
# strings.
x = ops.convert_to_tensor(x, name="x")
if x.dtype.base_dtype == dtype:
return x
return gen_math_ops.cast(x, dtype, name=name)
def to_float(x, name="ToFloat"):
"""Casts a tensor to type `float32`.
Args:
x: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor` with same shape as `x` with type `float32`.
Raises:
TypeError: If `x` cannot be cast to the `float32`.
| tensorflow.python.ops.gen_math_ops.cast | 137 |
import tensorflow as tf
Args:
private_samples: a tensor of shape [num_samples, num_features].
shared_samples: a tensor of shape [num_samples, num_features].
weight: the weight of the incoherence loss.
name: the name of the tf summary.
"""
with tf.name_scope(name):
private_samples -= tf.reduce_mean(private_samples, 0)
shared_samples -= tf.reduce_mean(shared_samples, 0)
private_samples = tf.nn.l2_normalize(private_samples, 1)
shared_samples = tf.nn.l2_normalize(shared_samples, 1)
correlation_matrix = tf.matmul(private_samples, shared_samples, transpose_a=True)
cost = tf.reduce_mean(tf.square(correlation_matrix)) * weight
cost = tf.where(cost > 0, cost, 0, name='value')
assert_op = tf.Assert(tf.is_finite(cost), [cost])
with tf.control_dependencies([assert_op]):
barrier = tf.no_op(name)
| tensorflow.nn.l2_normalize | 138 |
import tensorflow as tf
initializer=tf.constant_initializer(0),
trainable=False)
with tf.colocate_with(self.means):
self.ema_means = tf.get_variable(
| tensorflow.colocate_with | 139 |
import tensorflow.contrib.slim as slim
def get_gtboxes_and_label(self, gtboxes_and_label_h, gtboxes_and_label_r, num_objects):
return gtboxes_and_label_h[:int(num_objects), :].astype(np.float32), \
gtboxes_and_label_r[:int(num_objects), :].astype(np.float32)
def main(self):
with tf.Graph().as_default() as graph, tf.device('/cpu:0'):
num_gpu = len(cfgs.GPU_GROUP.strip().split(','))
global_step = slim.get_or_create_global_step()
lr = self.warmup_lr(cfgs.LR, global_step, cfgs.WARM_SETP, num_gpu)
tf.summary.scalar('lr', lr)
optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM)
r3det_dcl = build_whole_network.DetectionNetworkR3DetDCL(cfgs=self.cfgs,
is_training=True)
| tensorflow.contrib.slim.get_or_create_global_step | 140 |
import tensorflow as tf
)
)
'''
with tf.train.MonitoredTrainingSession(
checkpoint_dir=params.output, hooks=train_hooks,
save_checkpoint_secs=None, config=config) as sess:
while not sess.should_stop():
| tensorflow.train.MonitoredTrainingSession | 141 |
import tensorflow as tf
if not white:
q_mu = tf.matrix_triangular_solve(Luu, q_mu, lower=True)
Luu_tiled = tf.tile(Luu[None, :, :], [num_func, 1, 1]) # remove line once issue 216 is fixed
q_sqrt_r = tf.matrix_triangular_solve(Luu_tiled, q_sqrt_r, lower=True)
Li_eKuf = tf.matrix_triangular_solve(Luu, eKuf, lower=True) # M x N
fmean = tf.matmul(Li_eKuf, q_mu, transpose_a=True)
| tensorflow.matrix_triangular_solve | 142 |
import tensorflow as tf
self.epsilon = epsilon
self.axis = axis
self.center=center
self.scale=scale
with tf.variable_scope(name) as scope:
with tf.variable_scope('bn') :
self.gamma= tf.get_variable('gamma',[dims], initializer=tf.constant_initializer(1.0))
self.beta = tf.get_variable('beta',[dims], initializer=tf.constant_initializer(0.0))
self.moving_mean = tf.get_variable('moving_mean',[dims], initializer=tf.constant_initializer(0.0), trainable=False)
self.moving_variance = tf.get_variable('moving_variance',[dims], initializer=tf.constant_initializer(1.0), trainable=False)
self.scope = scope
def __call__(self,input_var,is_training,**xargs) :
with tf.variable_scope(self.scope) :
return tf.layers.batch_normalization(
input_var,
axis=self.axis,
momentum=self.momentum,
epsilon=self.epsilon,
center=self.center,
scale=self.scale,
training=is_training,
reuse=True,
name='bn')
"""
---Do NOT forget to add update_ops dependencies for your loss function.---
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,tf.get_default_graph().get_name_scope())
#And, do not make any scope inside map_fn, since scope.name will not work...(it is corrupted by map_fn.)
| tensorflow.layers.batch_normalization | 143 |
import tensorflow as tf
# use the TPU version of RunConfig
config = tf.contrib.tpu.RunConfig(
| tensorflow.contrib.tpu.RunConfig | 144 |
import tensorflow as tf
objectives.append((Objective(name, contra_loss, min, include, exclude)))
elif name == 'reward' and config.r_loss == 'l2':
pred = heads[name](features)
l2_loss = tf.compat.v1.losses.mean_squared_error(target[name], pred)
# l2_loss = tf.nn.l2_loss(pred - target[name])
objectives.append((Objective(name, l2_loss, min, include, exclude)))
| tensorflow.compat.v1.losses.mean_squared_error | 145 |
import tensorflow as tf
tf.reshape(byte, shape=[]), 3, **JPEG_OPT)
image = resize_shortest_edge(image, jpeg_shape, 224)
image = center_crop(image, 224)
return image
image = tf.cond(is_bad, bad, good)
# TODO other imgproc
image = lighting(image, 0.1,
eigval=np.array([0.2175, 0.0188, 0.0045], dtype='float32') * 255.0,
eigvec=np.array([[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203]], dtype='float32'))
image = tf.image.random_flip_left_right(image)
image = tf.reverse(image, axis=[2]) # to BGR
return image
return training_mapper if isTrain else validation_mapper
"""
====== Model & Evaluation =======
"""
| tensorflow.image.random_flip_left_right | 146 |
import tensorflow as tf
else:
fvar = (
(eKff - tf.trace(Li_eKuffu_Lit))[:, None] +
tf.einsum("nij,dji->nd", Li_eKuffu_Lit, cov) +
tf.einsum("ig,nij,jg->ng", q_mu, Li_eKuffu_Lit, q_mu) -
fmean ** 2 +
tf.matrix_diag_part(e_related_to_mean)
)
return fmean, fvar
| tensorflow.matrix_diag_part | 147 |
from tensorflow.python.ops import variable_scope
@contextlib.contextmanager
def as_default(self):
yield
def create_eager_var_store():
if context.in_eager_mode():
return variable_scope.EagerVariableStore()
else:
return DummyVariableStore()
def scheduled_sampling(hparams, problem_hparams, dp, sharded_logits, losses,
sharded_features, transformed_features, model):
"""Scheduled sampling."""
| tensorflow.python.ops.variable_scope.EagerVariableStore | 148 |
import tensorflow as tf
trg_len = tf.shape(attention_weights)[1]
src_indices = tf.tile(tf.reshape(tf.range(src_len), shape=[1, 1, src_len]), [batch_size, trg_len, 1])
trg_indices = tf.tile(tf.reshape(tf.range(trg_len), shape=[1, trg_len, 1]), [batch_size, 1, src_len])
source_length = encoder_input_length[0]
target_length = tf.to_int32(tf.reduce_sum(trg_mask, axis=1))
true_src_len = tf.reshape(source_length, shape=[batch_size, 1, 1]) - 1
true_trg_len = tf.reshape(target_length, shape=[batch_size, 1, 1]) - 1
src_mask = tf.to_float(tf.sequence_mask(source_length, maxlen=src_len))
mask = tf.matmul(tf.expand_dims(trg_mask, axis=2), tf.expand_dims(src_mask, axis=1))
monotonous = tf.sqrt(((true_trg_len * src_indices - true_src_len * trg_indices) ** 2)
/ (true_trg_len**2 + true_src_len**2))
monotonous = tf.to_float(monotonous < monotonicity_dist)
non_monotonous = (1 - monotonous) * mask
attn_loss = tf.reduce_sum(attention_weights * tf.stop_gradient(non_monotonous)) / tf.to_float(batch_size)
if monotonicity_decay:
| tensorflow.sequence_mask | 149 |
import tensorflow as tf
else:
i_direction = 1
variable_scope_name = 'RNN_{0}/RNN/MultiRNNCell/Cell{1}'.format(
i_direction, i)
with tf.variable_scope(variable_scope_name):
layer_output, final_state = tf.nn.dynamic_rnn(
lstm_cell,
layer_input,
sequence_length=sequence_lengths,
initial_state=tf.nn.rnn_cell.LSTMStateTuple(
*batch_init_states),
)
self.lstm_state_sizes[direction].append(lstm_cell.state_size)
self.lstm_init_states[direction].append(init_states)
self.lstm_final_states[direction].append(final_state)
if direction == 'forward':
self.lstm_outputs[direction].append(layer_output)
| tensorflow.nn.rnn_cell.LSTMStateTuple | 150 |
import tensorflow as tf
images,labels=tf.train.batch([image,label],batch_size=batch_size)
return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
def get_valid_batch(image,label,batch_size):
images,labels=tf.train.batch([image,label],batch_size=batch_size)
return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
class trainwork(object):
def __init__(self):
with tf.variable_scope('scop'):
self.w1=tf.get_variable('w1', [4096,1024],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.w2=tf.get_variable('w2', [1024,classnum],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.b1 = tf.get_variable('b1', [1024],initializer=tf.constant_initializer(0.0))
self.b2 = tf.get_variable('b2', [classnum],initializer=tf.constant_initializer(0.0))
def inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
out = tf.matmul(l1, self.w2)+self.b2
| tensorflow.contrib.layers.xavier_initializer_conv2d | 151 |
from tensorflow.core.framework import op_def_pb2
inputs: A list of (name, data type) pairs of function arguments.
outputs: A list of (name, data type) pairs of function return values.
"""
self._sig = op_def_pb2.OpDef()
self._sig.name = func_name
| tensorflow.core.framework.op_def_pb2.OpDef | 152 |
from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Flatten
#removed GOAL_SIZE
flat1b = Dense(units=RNN_SIZE-loc_layer_size)(flat1a)
# FC layers for goal_pos input
# goal_layer1 = Dense(units=GOAL_SIZE)(goal_pos)
# goal_layer2 = Dense(units=GOAL_SIZE)(goal_layer1)
# FC layers to find next location
loc_layer1 = Dense(units=loc_layer_size)(prev_loc)
loc_layer2 = Dense(units=loc_layer_size)(loc_layer1)
# Concatenationation of above layers, followed by FC layer
concat = tf.concat([flat1b, loc_layer2],1) # goal_layer2
h1 = Dense(units=RNN_SIZE)(concat)
h2 = Dense(units=RNN_SIZE)(h1)
self.h3 = tf.nn.relu(h2+concat)
#Recurrent network for temporal dependencies
| tensorflow.keras.layers.Dense | 153 |
from tensorflow.contrib.distributions.python.ops import distribution_util
@distribution_util.AppendDocstring(
"""Note: when `rate` is an integer, there are actually two modes: `rate`
and `rate - 1`. In this case we return the larger, i.e., `rate`.""")
def _mode(self):
return math_ops.floor(self.rate)
def _assert_valid_sample(self, x, check_integer=True):
if not self.validate_args:
return x
dependencies = [check_ops.assert_non_negative(x)]
if check_integer:
dependencies += [distribution_util.assert_integer_form(
x, message="x has non-integer components.")]
return control_flow_ops.with_dependencies(dependencies, x)
| tensorflow.contrib.distributions.python.ops.distribution_util.assert_integer_form | 154 |
import tensorflow as tf
neighbor, weight, _ = get_full_neighbor(nodes, hop_edge_types)
next_nodes, next_idx = tf.unique(neighbor.values, out_idx=tf.int64)
next_indices = tf.stack([neighbor.indices[:, 0], next_idx], 1)
next_values = weight.values
next_shape = tf.stack([tf.size(nodes), tf.size(next_nodes)])
next_shape = tf.cast(next_shape, tf.int64)
next_adj = tf.SparseTensor(next_indices, next_values, next_shape)
next_adj = tf.sparse_reorder(next_adj)
| tensorflow.size | 155 |
from tensorflow.python.framework import tensor_util
x = ops.convert_to_tensor(x, name="x")
def slice_shape(start_sum, size, name):
"""Closure to slice out shape."""
start_sum = start_sum if start_sum else (
array_ops.zeros((), dtype=dtypes.int32, name="zero"),)
if (x.get_shape().ndims is not None and
self._is_all_constant_helper(size, *start_sum)):
start = sum(tensor_util.constant_value(s) for s in start_sum)
stop = start + tensor_util.constant_value(size)
slice_ = x.get_shape()[start:stop].as_list()
if all(s is not None for s in slice_):
return ops.convert_to_tensor(slice_, dtype=dtypes.int32, name=name)
# Fall-through intended.
return array_ops.slice(array_ops.shape(x), (sum(start_sum),), (size,))
| tensorflow.python.framework.tensor_util.constant_value | 156 |
from tensorflow.contrib.summary import summary_test_util
dev_data = data.SnliData(fake_train_file, word2index)
test_data = data.SnliData(fake_train_file, word2index)
# 2. Create a fake config.
config = _test_spinn_config(
data.WORD_VECTOR_LEN, 4,
logdir=os.path.join(self._temp_data_dir, "logdir"))
# 3. Test training of a SPINN model.
trainer = spinn.train_or_infer_spinn(
embed, word2index, train_data, dev_data, test_data, config)
# 4. Load train loss values from the summary files and verify that they
# decrease with training.
summary_file = glob.glob(os.path.join(config.logdir, "events.out.*"))[0]
events = summary_test_util.events_from_file(summary_file)
train_losses = [event.summary.value[0].simple_value for event in events
if event.summary.value
and event.summary.value[0].tag == "train/loss"]
self.assertEqual(config.epochs, len(train_losses))
self.assertLess(train_losses[-1], train_losses[0])
# 5. Verify that checkpoints exist and contains all the expected variables.
self.assertTrue(glob.glob(os.path.join(config.logdir, "ckpt*")))
ckpt_variable_names = [
item[0] for item in checkpoint_utils.list_variables(config.logdir)]
self.assertIn("global_step", ckpt_variable_names)
for v in trainer.variables:
variable_name = v.name[:v.name.index(":")] if ":" in v.name else v.name
self.assertIn(variable_name, ckpt_variable_names)
| tensorflow.contrib.summary.summary_test_util.events_from_file | 157 |
import tensorflow as tf
with tf.Graph().as_default() as graph, tf.device('/cpu:0'):
num_gpu = len(cfgs.GPU_GROUP.strip().split(','))
global_step = slim.get_or_create_global_step()
lr = self.warmup_lr(cfgs.LR, global_step, cfgs.WARM_SETP, num_gpu)
tf.summary.scalar('lr', lr)
optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM)
r3det_gwd = build_whole_network.DetectionNetworkR3DetGWD(cfgs=self.cfgs,
is_training=True)
with tf.name_scope('get_batch'):
if cfgs.IMAGE_PYRAMID:
shortside_len_list = tf.constant(cfgs.IMG_SHORT_SIDE_LEN)
shortside_len = tf.random_shuffle(shortside_len_list)[0]
else:
shortside_len = cfgs.IMG_SHORT_SIDE_LEN
img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch, img_h_batch, img_w_batch = \
self.reader.next_batch(dataset_name=cfgs.DATASET_NAME,
batch_size=cfgs.BATCH_SIZE * num_gpu,
shortside_len=shortside_len,
is_training=True)
# data processing
inputs_list = []
for i in range(num_gpu):
| tensorflow.random_shuffle | 158 |
import tensorflow as tf
features[spec.name] = feature
return tf.train.Example(features=tf.train.Features(feature=features))
def _input_fn_builder(self, input_file, is_training):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
def input_fn(params):
"""The actual input function."""
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
return d.apply(
tf.contrib.data.map_and_batch(
self._decode_tfrecord, batch_size=params["batch_size"], drop_remainder=True
)
)
return input_fn
def _decode_tfrecord(self, record):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, self._name_to_feature_config)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name, tensor in example.items():
| tensorflow.contrib.data.map_and_batch | 159 |
from tensorflow.python.summary import summary
if grad_values is not None:
var_name = variable.name.replace(":", "_")
if "gradients" in summaries:
summary.histogram("gradients/%s" % var_name, grad_values)
if "gradient_norm" in summaries:
summary.scalar("gradient_norm/%s" % var_name,
clip_ops.global_norm([grad_values]))
| tensorflow.python.summary.summary.histogram | 160 |
from tensorflow.python.framework import ops
grad,
use_locking=self._use_locking).op
def _apply_sparse(self, grad, var):
delta = ops.IndexedSlices(grad.values * self._learning_rate_tensor,
grad.indices, grad.dense_shape)
return var.scatter_sub(delta, use_locking=self._use_locking)
| tensorflow.python.framework.ops.IndexedSlices | 161 |
from tensorflow.contrib.metrics.python.ops import confusion_matrix_ops
labels = array_ops.reshape(labels, [-1])
weights = _mask_weights(ignore_mask, weights)
if weights is not None:
weights_rank = weights.get_shape().ndims
if weights_rank > 1:
weights = array_ops.reshape(weights, [-1])
# Accumulate the prediction to current confusion matrix.
current_cm = confusion_matrix_ops.confusion_matrix(
predictions, labels, num_classes, weights=weights, dtype=cm_dtype)
update_op = state_ops.assign_add(total_cm, current_cm)
def compute_mean_iou(name):
"""Compute the mean intersection-over-union via the confusion matrix."""
sum_over_row = math_ops.to_float(math_ops.reduce_sum(total_cm, 0))
sum_over_col = math_ops.to_float(math_ops.reduce_sum(total_cm, 1))
cm_diag = math_ops.to_float(array_ops.diag_part(total_cm))
| tensorflow.contrib.metrics.python.ops.confusion_matrix_ops.confusion_matrix | 162 |
import tensorflow as tf
ious = iou_of(tf.expand_dims(gt_boxes, axis=0), tf.expand_dims(corner_form_priors, axis=1))
# size: num_priors
best_target_per_prior = tf.math.reduce_max(ious, axis=1)
best_target_per_prior_index = tf.math.argmax(ious, axis=1)
# size: num_targets
best_prior_per_target = tf.math.reduce_max(ious, axis=0)
best_prior_per_target_index = tf.math.argmax(ious, axis=0)
targets = tf.range(tf.shape(best_prior_per_target_index)[0], dtype='int64')
best_target_per_prior_index = tf.tensor_scatter_nd_update(best_target_per_prior_index, tf.expand_dims(best_prior_per_target_index, 1), targets)
# 2.0 is used to make sure every target has a prior assigned
best_target_per_prior = tf.tensor_scatter_nd_update(best_target_per_prior, tf.expand_dims(best_prior_per_target_index, 1), tf.ones_like(best_prior_per_target_index, dtype=tf.float32)*2.0)
| tensorflow.math.argmax | 163 |
from tensorflow.python.training import gradient_descent
def _setupSparse(self, is_distributed, dtype):
with self._maybeWithDevice("/job:ps" if is_distributed else None):
var0 = variables.Variable(
[[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]], dtype=dtype)
var1 = variables.Variable(
[[0.0, 1.0], [0.0, 3.0], [0.0, 5.0]], dtype=dtype)
with self._maybeWithDevice("/job:worker" if is_distributed else None):
grads = ops.IndexedSlices(
constant_op.constant(
[[0.1, 0.1], [0.1, 0.1]], dtype=dtype), [0, 2], [3, 2])
sgd = gradient_descent.GradientDescentOptimizer(3.0)
clip_opt = variable_clipping_optimizer.VariableClippingOptimizer(
sgd, {var0: [1],
var1: [0]}, 2.0)
update_op = clip_opt.apply_gradients(
list(zip([grads, grads], [var0, var1])))
variables.global_variables_initializer().run()
return var0, var1, update_op
def _assertSparseCorrect(self, var0, var1, update_op):
| tensorflow.python.training.gradient_descent.GradientDescentOptimizer | 164 |
from tensorflow.python.ops import math_ops
predictions, labels = tensor_util.remove_squeezable_dimensions(
predictions, labels)
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
if labels.dtype != predictions.dtype:
predictions = math_ops.cast(predictions, labels.dtype)
is_correct = math_ops.to_float(math_ops.equal(predictions, labels))
return streaming_mean(is_correct, weights, metrics_collections,
updates_collections, name or 'accuracy')
| tensorflow.python.ops.math_ops.equal | 165 |
from tensorflow.python.ops import data_flow_ops
aggmeth = tf.AggregationMethod.DEFAULT
grads = tf.gradients(loss, params, aggregation_method=aggmeth)
if FLAGS.staged_vars:
grad_dtypes = [grad.dtype for grad in grads]
grad_shapes = [grad.shape for grad in grads]
grad_stage = data_flow_ops.StagingArea(grad_dtypes, grad_shapes)
grad_stage_op = grad_stage.put(grads)
# In general, this decouples the computation of the gradients and
# the updates of the weights.
# During the pipeline warm up, this runs enough training to produce
# the first set of gradients.
gpu_grad_stage_ops.append(grad_stage_op)
| tensorflow.python.ops.data_flow_ops.StagingArea | 166 |
import tensorflow.contrib.graph_editor as ge
ts_all = ge.filter_ts(fwd_ops, True) # get the tensors
ts_all = [t for t in ts_all if '/read' not in t.name]
ts_all = set(ts_all) - set(xs) - set(ys)
# construct list of tensors to checkpoint during forward pass, if not
# given as input
if type(checkpoints) is not list:
if checkpoints == 'collection':
checkpoints = tf.get_collection('checkpoints')
elif checkpoints == 'speed':
# checkpoint all expensive ops to maximize running speed
checkpoints = ge.filter_ts_from_regex(fwd_ops, 'conv2d|Conv|MatMul')
elif checkpoints == 'memory':
# remove very small tensors and some weird ops
def fixdims(t): # tf.Dimension values are not compatible with int, convert manually
try:
return [int(e if e.value is not None else 64) for e in t]
except:
return [0] # unknown shape
ts_all = [t for t in ts_all if np.prod(fixdims(t.shape)) > MIN_CHECKPOINT_NODE_SIZE]
ts_all = [t for t in ts_all if 'L2Loss' not in t.name]
| tensorflow.contrib.graph_editor.filter_ts_from_regex | 167 |
import tensorflow as tf
'bounding_box_samples': _float_feature(d['bounding_box_samples']),
'depth_renders': _float_feature(d['depth_renders']),
'mesh_name': _bytes_feature(d['mesh_name']),
'near_surface_samples': _float_feature(d['near_surface_samples']),
'grid': _float_feature(d['grid']),
'world2grid': _float_feature(d['world2grid']),
'surface_point_samples': _float_feature(d['surface_point_samples'])
}
example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
return example_proto.SerializeToString()
def full_featurespec():
return {
'bounding_box_samples': tf.io.FixedLenFeature([100000, 4], tf.float32),
'depth_renders': tf.io.FixedLenFeature([20, 224, 224, 1], tf.float32),
'mesh_name': tf.io.FixedLenFeature([], tf.string),
'near_surface_samples': tf.io.FixedLenFeature([100000, 4], tf.float32),
'grid': tf.io.FixedLenFeature([32, 32, 32], tf.float32),
'world2grid': tf.io.FixedLenFeature([4, 4], tf.float32),
'surface_point_samples': tf.io.FixedLenFeature([10000, 6], tf.float32)
}
def parse_tf_example(example_proto):
d = tf.io.parse_single_example(example_proto, full_featurespec())
return (d['bounding_box_samples'], d['depth_renders'], d['mesh_name'],
d['near_surface_samples'], d['grid'], d['world2grid'],
d['surface_point_samples'])
| tensorflow.io.FixedLenFeature | 168 |
from tensorflow.python.ops import math_ops
indices_at_minval = math_ops.equal(
math_ops.abs(sensitivities - sensitivity), min_val)
indices_at_minval = math_ops.to_int64(indices_at_minval)
indices_at_minval = math_ops.cumsum(indices_at_minval)
tf_index = math_ops.argmax(indices_at_minval, 0)
tf_index = math_ops.cast(tf_index, dtypes.int32)
| tensorflow.python.ops.math_ops.cumsum | 169 |
import tensorflow as tf
token_type_ids.append(e.token_type_ids)
attention_mask.append(e.attention_mask)
labels.append(e.label_ids)
# parse examples to dataset
def _to_dataset(x, dtype=tf.int32):
x = tf.ragged.constant(x, dtype=dtype)
d = tf.data.Dataset.from_tensor_slices(x)
d = d.map(lambda x: x)
return d
dataset = tf.data.Dataset.zip(
| tensorflow.ragged.constant | 170 |
import tensorflow as tf
if int(X.get_shape()[-1]) != (r**2) * n_out_channels:
raise Exception(_err_log)
# bsize, a, b, c = X.get_shape().as_list()
# bsize = tf.shape(X)[0] # Handling Dimension(None) type for undefined batch dim
# Xs=tf.split(X,r,3) #b*h*w*r*r
# Xr=tf.concat(Xs,2) #b*h*(r*w)*r
# X=tf.reshape(Xr,(bsize,r*a,r*b,n_out_channel)) # b*(r*h)*(r*w)*c
X = tf.depth_to_space(X, r)
else:
raise RuntimeError(_err_log)
return X
class SubpixelConv1d(Layer):
| tensorflow.depth_to_space | 171 |
import tensorflow as tf
st = tf.SparseTensor(indices, values, shape)
st_handles = add_many_sparse_to_tensors_map(st)
st_roundtrip = take_many_sparse_from_tensors_map(
sparse_map_op=st_handles.op, sparse_handles=st_handles)
st_roundtrip_op = st_roundtrip.values.op
st_serialized = tf.serialize_many_sparse(st)
st_deserialized = tf.deserialize_many_sparse(
st_serialized, dtype=values.dtype)
st_deserialized_op = st_deserialized.values.op
tf.global_variables_initializer().run()
st_roundtrip_values = sess.run(st_roundtrip)
st_deserialized_values = sess.run(st_deserialized)
| tensorflow.deserialize_many_sparse | 172 |
import tensorflow as tf
layer = tf.contrib.layers.batch_norm(layer, is_training=True, center=True,
scale=False, decay=decay, activation_fn=activation_fn, updates_collections=None, scope=vs, reuse=True) # updates_collections=None
else:
layer = tf.contrib.layers.batch_norm(layer, is_training=False, center=True,
scale=False, decay=decay, activation_fn=activation_fn, updates_collections=None, scope=vs, reuse=True) # updates_collections=None
elif norm_type == 'layer_norm': # layer_norm
# Take activation_fn out to apply lrelu
try:
layer = activation_fn(tf.contrib.layers.layer_norm(layer, center=True,
scale=False, scope=vs)) # updates_collections=None
except ValueError:
layer = activation_fn(tf.contrib.layers.layer_norm(layer, center=True,
scale=False, scope=vs, reuse=True))
elif norm_type == 'selu':
layer = selu(layer)
| tensorflow.contrib.layers.layer_norm | 173 |
import tensorflow as tf
x = tf.image.random_brightness(x, max_delta=0.8*s)
x = tf.image.random_contrast(x, lower=lower, upper=upper)
x = tf.image.random_saturation(x, lower=lower, upper=upper)
x = tf.image.random_hue(x, max_delta=0.2*s)
x = tf.clip_by_value(x, 0, 1)
return x
def color_drop(image):
image = tf.image.rgb_to_grayscale(image)
image = tf.tile(image, [1, 1, 1, 3])
return image
# pylint: disable=not-callable
@gin.configurable(blacklist=["kwargs"])
class CLGAN(modular_gan.ModularGAN):
"""Self-Supervised GAN with Contrastive Loss"""
| tensorflow.image.rgb_to_grayscale | 174 |
import tensorflow as tf
"float", [None, self.time_steps, self.n_input], name="INPUT_IMAGE")
# x is shaped [batch_size,time_steps,num_inputs]
if is_dynamic_rnn:
lstm_input = tf.transpose(x, perm=[1, 0, 2])
outputs, _ = tf.lite.experimental.nn.dynamic_rnn(
lstm_layer, lstm_input, dtype="float32")
outputs = tf.unstack(outputs, axis=0)
else:
lstm_input = tf.unstack(x, self.time_steps, 1)
outputs, _ = tf.nn.static_rnn(lstm_layer, lstm_input, dtype="float32")
# Compute logits by multiplying outputs[-1] of shape [batch_size,num_units]
# by the softmax layer's out_weight of shape [num_units,n_classes]
# plus out_bias
prediction = tf.matmul(outputs[-1], out_weights) + out_bias
output_class = tf.nn.softmax(prediction, name="OUTPUT_CLASS")
return x, prediction, output_class
| tensorflow.nn.static_rnn | 175 |
import tensorflow as tf
KK = tf.matmul(K, K, transpose_b=True)
K_trace = tf.expand_dims(tf.expand_dims(tf.trace(KK), -1), -1)
K_loss = tf.reduce_mean(tf.abs(KK / K_trace - tf.eye(2)))
loss_total_gen = crit_gen + rep_loss + K_loss
gen_var = model.get_gen_vars()
dis_var = model.dis.trainable_variables
grads = tape.gradient([loss_total_gen, crit_dis], [gen_var, dis_var])
return grads, [crit_dis, crit_gen, rep_loss, K_loss]
reader = datareader.DataReader(16)
model = network.RepNet()
optim = tf.optimizers.Adam(0.0001, 0.5)
saver = M.Saver(model)
saver.restore('./model/')
MAXITER = 10000
bar = tqdm(range(MAXITER+1))
for i in bar:
batch = reader.get_next()
grads, lss = grad_loss(batch, model)
gen_var = model.get_gen_vars()
dis_var = model.dis.trainable_variables
| tensorflow.optimizers.Adam | 176 |
from tensorflow.contrib.learn.python.learn.estimators import tensor_signature
def predict_proba(self, x, batch_size=None):
"""Returns prediction probabilities for given features (classification).
Args:
x: features.
batch_size: OVerride default batch size.
Returns:
Numpy array of predicted probabilities.
"""
return self._infer_model(x=x, batch_size=batch_size, proba=True)
def _check_inputs(self, features, targets):
if self._features_info is not None:
if not tensor_signature.tensors_compatible(features, self._features_info):
raise ValueError('Features are incompatible with given information. '
'Given features: %s, required signatures: %s.' %
(str(features), str(self._features_info)))
else:
self._features_info = tensor_signature.create_signatures(features)
if self._targets_info is not None:
if not tensor_signature.tensors_compatible(targets, self._targets_info):
raise ValueError('Targets are incompatible with given information. '
'Given targets: %s, required signatures: %s.' %
(str(targets), str(self._targets_info)))
else:
self._targets_info = tensor_signature.create_signatures(targets)
def _train_model(self,
| tensorflow.contrib.learn.python.learn.estimators.tensor_signature.tensors_compatible | 177 |
import tensorflow as tf
"""
reg_l2 = tf.keras.regularizers.l2(5e-7)
if padding == 'SYMMETRIC' or padding == 'REFLECT':
p = (kernel_size - 1) // 2
x = tf.pad(x, [[0,0],[p,p],[p,p], [p,p],[0,0]], padding)
x = tf.keras.layers.Conv3D(filters, kernel_size, activation=activation, kernel_initializer=initialization, use_bias=use_bias, kernel_regularizer=reg_l2)(x)
else:
assert padding in ['SAME', 'VALID']
x = tf.keras.layers.Conv3D(filters, kernel_size, activation=activation, kernel_initializer=initialization, use_bias=use_bias, kernel_regularizer=reg_l2)(x)
return x
| tensorflow.keras.layers.Conv3D | 178 |
import tensorflow as tf
w1 = tf.get_variable('weight1', [784, 1024], initializer=tf.random_normal_initializer())
b1 = tf.get_variable('bias1', [1024], initializer=tf.constant_initializer(0.0))
h1 = tf.nn.relu(tf.matmul(x, w1) + b1)
with tf.variable_scope('layer2'):
w2 = tf.get_variable('weight2', [1024, 1024], initializer=tf.random_normal_initializer())
b2 = tf.get_variable('bias2', [1024], initializer=tf.constant_initializer(0.0))
h2 = tf.nn.relu(tf.matmul(h1, w2) + b2)
with tf.variable_scope('layer3'):
w3 = tf.get_variable('weight3', [1024, 10], initializer=tf.random_normal_initializer())
b3 = tf.get_variable('bias3', [10], initializer=tf.constant_initializer(0.0))
y = tf.matmul(h2, w3) + b3
# losses
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=gt, logits=y))
# optimizer
optimizer = tf.train.GradientDescentOptimizer(args.lr)
# define one-step train ops
train_op = optimizer.minimize(cross_entropy)
return x, y, gt, train_op
if __name__ == "__main__":
max_train_step = args.max_train_step
batch_size = args.batch_size
mnist = input_data.read_data_sets(args.data_dir, one_hot=True)
x, y, gt, train_op = model()
# create saver
saver = tf.train.Saver()
if os.path.exists('./mnist'):
| tensorflow.train.GradientDescentOptimizer | 179 |
import tensorflow as tf
next_sentence_log_probs) = get_next_sentence_output(
bert_config, model.get_pooled_output(), next_sentence_labels, clip)
total_loss = masked_lm_loss + next_sentence_loss
tvars = tf.trainable_variables()
initialized_variable_names = {}
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
| tensorflow.train.init_from_checkpoint | 180 |
from tensorflow.contrib.learn.python.learn.datasets import base
fake_data=False,
one_hot=False,
dtype=dtypes.float32,
reshape=True):
if fake_data:
def fake():
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
train = fake()
validation = fake()
test = fake()
return base.Datasets(train=train, validation=validation, test=test)
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = base.maybe_download(TRAIN_IMAGES, train_dir,
SOURCE_URL + TRAIN_IMAGES)
train_images = extract_images(local_file)
| tensorflow.contrib.learn.python.learn.datasets.base.Datasets | 181 |
import tensorflow as tf
sentence_embeddings = tf.divide(
| tensorflow.divide | 182 |
import tensorflow as tf
average_loss_per_example = tf.nn.seq2seq.sequence_loss_by_example(
| tensorflow.nn.seq2seq.sequence_loss_by_example | 183 |
import tensorflow as tf
# Note: tf.nn.softmax_cross_entropy_with_logits
# expects logits, Keras expects probabilities.
if not from_logits:
# transform back to logits
epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype)
output = tf.clip_by_value(output, epsilon, 1 - epsilon)
output = tf.log(output / (1 - output))
try:
return tf.nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)
except TypeError:
return tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=target)
def sum(x, axis=None, keepdims=False):
"""Sum of the values in a tensor, alongside the specified axis.
Parameters
----------
x: A tensor or variable.
axis: An integer, the axis to sum over.
| tensorflow.nn.sigmoid_cross_entropy_with_logits | 184 |
from tensorflow.python.framework import ops
@ops.RegisterGradient("SparseScatter")
def _sparse_scatter_grad(op, grad):
| tensorflow.python.framework.ops.RegisterGradient | 185 |
from tensorflow.python.ops import clip_ops
return train_tensor
def _clip_gradients_by_norm(grads_and_vars, clip_gradients):
"""Clips gradients by global norm."""
gradients, variables = zip(*grads_and_vars)
clipped_gradients, _ = clip_ops.clip_by_global_norm(gradients, clip_gradients)
return list(zip(clipped_gradients, variables))
def _adaptive_max_norm(norm, std_factor, decay, global_step, epsilon, name):
"""Find max_norm given norm and previous average."""
| tensorflow.python.ops.clip_ops.clip_by_global_norm | 186 |
import tensorflow as tf
logits = tf.reduce_sum(tf.multiply(output_layer,output_weights),-1)
| tensorflow.multiply | 187 |
import tensorflow as tf
"""
with tf.variable_scope(scope) as sc:
kernel_d, kernel_h, kernel_w = kernel_size
num_in_channels = inputs.get_shape()[-1].value
kernel_shape = [kernel_d, kernel_h, kernel_w,
num_in_channels, num_output_channels]
kernel = _variable_with_weight_decay('weights',
shape=kernel_shape,
use_xavier=use_xavier,
stddev=stddev,
wd=weight_decay)
stride_d, stride_h, stride_w = stride
outputs = tf.nn.conv3d(inputs, kernel,
[1, stride_d, stride_h, stride_w, 1],
padding=padding)
biases = _variable_on_cpu('biases', [num_output_channels],
tf.constant_initializer(0.0))
outputs = tf.nn.bias_add(outputs, biases)
if bn:
outputs = batch_norm_for_conv3d(outputs, is_training,
bn_decay=bn_decay, scope='bn')
if activation_fn is not None:
| tensorflow.nn.conv3d | 188 |
import tensorflow as tf
vname = var.name
from_name = vname
var_value = tf.contrib.framework.load_variable(MODEL_DIR, from_name)
assign_ops.append(tf.assign(var, var_value))
| tensorflow.contrib.framework.load_variable | 189 |
import tensorflow as tf
dataset = tf.data.Dataset.from_tensors(data).repeat(
| tensorflow.data.Dataset.from_tensors | 190 |
import tensorflow as tf
if single_file:
dataset_path = os.path.join(dataset_path, 'train_annotated.json')
else:
dataset_path = os.path.join(dataset_path, 'dev_annotated.json')
def load_dataset():
dataset = []
if single_file:
# Opening with GFile allows to use remotely stored files, e.g.
# in a gs bucket.
dataset_handle = tf.io.gfile.GFile(dataset_path, 'r')
for line in dataset_handle:
dataset.append(json.loads(line))
else:
all_files = tf.io.gfile.listdir(dataset_path)
for filename in all_files:
if 'json' in filename:
print('Loading data from file {}'.format(filename))
with tf.io.gfile.GFile(os.path.join(dataset_path, filename)) as f:
for line in f:
dataset.append(json.loads(line))
print('The total size of the dataset {}'.format(len(dataset)))
return dataset[:int(len(dataset) * percentile)]
def drop_annotated_yield_examples(generator=None):
del generator
while True:
passages = set()
| tensorflow.io.gfile.listdir | 191 |
import tensorflow as tf
## End new version
if self._normalize_cols:
logits_vec = logits_vec - tf.math.reduce_logsumexp(
logits_vec, axis=0)[None]
relabel_indices = tf.random.categorical(logits=logits_vec, num_samples=1)
| tensorflow.math.reduce_logsumexp | 192 |
import tensorflow as tf
def main(argv=None):
start1 = time.time()
import os
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu_list
if not tf.gfile.Exists(FLAGS.checkpoint_path):
tf.gfile.MkDir(FLAGS.checkpoint_path)
else:
if not FLAGS.restore:
tf.gfile.DeleteRecursively(FLAGS.checkpoint_path)
tf.gfile.MkDir(FLAGS.checkpoint_path)
input_images = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_images')
input_score_maps = tf.placeholder(tf.float32, shape=[None, None, None, 1], name='input_score_maps')
if FLAGS.geometry == 'RBOX':
input_geo_maps = tf.placeholder(tf.float32, shape=[None, None, None, 5], name='input_geo_maps')
else:
input_geo_maps = tf.placeholder(tf.float32, shape=[None, None, None, 8], name='input_geo_maps')
| tensorflow.gfile.DeleteRecursively | 193 |
from tensorflow.python.ops import partitioned_variables
weight_collections=[parent_scope],
scope=scope)
hidden_layer_partitioner = (
partitioned_variables.min_max_variable_partitioner(
max_partitions=num_ps_replicas))
for layer_id, num_hidden_units in enumerate(hidden_units):
with variable_scope.variable_scope(
| tensorflow.python.ops.partitioned_variables.min_max_variable_partitioner | 194 |
from tensorflow.contrib.layers.python.layers import utils
return mean, variance
def build_moving_stats():
return (
tf.identity(self._moving_mean),
tf.identity(self._moving_variance),
)
mean, variance = utils.smart_cond(
use_batch_stats,
build_batch_stats,
build_moving_stats,
)
return mean, variance
| tensorflow.contrib.layers.python.layers.utils.smart_cond | 195 |
import tensorflow as tf
[per_example_loss, label_ids, logits, is_real_example])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
# The code to modify out_put nodes
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions={"probabilities": probabilities},
scaffold_fn=scaffold_fn)
return output_spec
return model_fn
| tensorflow.contrib.tpu.TPUEstimatorSpec | 196 |
from tensorflow.python.ops import math_ops
batch_dims: `Tensor` (1D, `int32`).
event_dims: `Tensor` (1D, `int32`).
"""
with self._name_scope(name, values=[x]):
def make_dims(start_sum, size, name):
"""Closure to make dims range."""
start_sum = start_sum if start_sum else (
array_ops.zeros((), dtype=dtypes.int32, name="zero"),)
if self._is_all_constant_helper(size, *start_sum):
start = sum(tensor_util.constant_value(s) for s in start_sum)
stop = start + tensor_util.constant_value(size)
return ops.convert_to_tensor(
list(range(start, stop)), dtype=dtypes.int32, name=name)
else:
start = sum(start_sum)
return math_ops.range(start, start + size)
sample_ndims = self.get_sample_ndims(x, name=name)
return (make_dims((), sample_ndims, name="sample_dims"),
make_dims((sample_ndims,), self.batch_ndims, name="batch_dims"),
make_dims((sample_ndims, self.batch_ndims),
self.event_ndims, name="event_dims"))
def get_shape(self, x, name="get_shape"):
"""Returns `Tensor`'s shape partitioned into `sample`, `batch`, `event`.
Args:
x: `Tensor`.
name: `String`. The name to give this op.
Returns:
| tensorflow.python.ops.math_ops.range | 197 |
import tensorflow as tf
# data for self-attention
rep_map_dp = dropout(rep_map, keep_prob, is_train)
rep_dep_tensor_dp, _, _ = reduce_data_rep_max_len(rep_map_dp, dep_selection)
rep_head_tensor_dp, _, _ = reduce_data_rep_max_len(rep_map_dp, head_selection)
# mask generation
dep_idxs = tf.tile(tf.expand_dims(dep_org_idx, 1), [1, sl_head, 1])
head_idxs = tf.tile(tf.expand_dims(head_org_idx, 2), [1, 1, sl_dep])
if direction is None:
direct_mask = tf.not_equal(head_idxs, dep_idxs) # [bs, slh, sld]
else:
if direction == 'forward':
direct_mask = tf.greater(head_idxs, dep_idxs) # [bs, slh, sld]
else:
direct_mask = tf.less(head_idxs, dep_idxs) # [bs, slh, sld]
# [bs, slh, slh]
rep_mask_tile = tf.logical_and(tf.expand_dims(rep_dep_mask, 1), tf.expand_dims(rep_head_mask, 2))
attn_mask = tf.logical_and(direct_mask, rep_mask_tile) # [bs, slh, sld]
| tensorflow.not_equal | 198 |
import tensorflow as tf
def get_config(self):
return {
"initial_learning_rate": self.initial_learning_rate,
"maximal_learning_rate": self.maximal_learning_rate,
"step_size": self.step_size,
"scale_mode": self.scale_mode,
}
@tf.keras.utils.register_keras_serializable(package="Addons")
class TriangularCyclicalLearningRate(CyclicalLearningRate):
def __init__(
self,
initial_learning_rate,
maximal_learning_rate,
step_size,
scale_mode="cycle",
name="TriangularCyclicalLearningRate",
):
| tensorflow.keras.utils.register_keras_serializable | 199 |