Datasets:
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- pt
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids: []
paperswithcode_id: told-br
pretty_name: ToLD-Br
language_bcp47:
- pt-BR
tags:
- hate-speech-detection
dataset_info:
- config_name: multilabel
features:
- name: text
dtype: string
- name: homophobia
dtype:
class_label:
names:
'0': zero_votes
'1': one_vote
'2': two_votes
'3': three_votes
- name: obscene
dtype:
class_label:
names:
'0': zero_votes
'1': one_vote
'2': two_votes
'3': three_votes
- name: insult
dtype:
class_label:
names:
'0': zero_votes
'1': one_vote
'2': two_votes
'3': three_votes
- name: racism
dtype:
class_label:
names:
'0': zero_votes
'1': one_vote
'2': two_votes
'3': three_votes
- name: misogyny
dtype:
class_label:
names:
'0': zero_votes
'1': one_vote
'2': two_votes
'3': three_votes
- name: xenophobia
dtype:
class_label:
names:
'0': zero_votes
'1': one_vote
'2': two_votes
'3': three_votes
splits:
- name: train
num_bytes: 2978006
num_examples: 21000
download_size: 2430416
dataset_size: 2978006
- config_name: binary
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': not-toxic
'1': toxic
splits:
- name: train
num_bytes: 1709560
num_examples: 16800
- name: test
num_bytes: 216297
num_examples: 2100
- name: validation
num_bytes: 212153
num_examples: 2100
download_size: 853322
dataset_size: 2138010
Portuguese Hate Speech Dataset (TuPy)
The Portuguese hate speech dataset (TuPy) is an annotated corpus designed to facilitate the development of advanced hate speech detection models using machine learning (ML) and natural language processing (NLP) techniques. TuPy is formed by 10000 thousand unpublished annotated tweets collected in 2023.
This repository is organized as follows:
root.
├── annotations : classification given by annotators
├── raw corpus : dataset before being split between annotators
├── tupy datasets : combined result of annotations
└── README.md
Voting process
To generate the binary matrices, we employed a straightforward voting process. Three distinct evaluations were assigned to each document. In cases where a document received two or more identical classifications, the adopted value is set to 1; otherwise, it is marked as 0.
Acknowledge
The TuPy project is the result of the development of Felipe Oliveira's thesis and the work of several collaborators. This project is financed by the Federal University of Rio de Janeiro (UFRJ) and the Alberto Luiz Coimbra Institute for Postgraduate Studies and Research in Engineering (COPPE).