code
stringlengths 501
4.91M
| package
stringlengths 2
88
| path
stringlengths 11
291
| filename
stringlengths 4
197
| parsed_code
stringlengths 0
4.91M
| quality_prob
float64 0
0.99
| learning_prob
float64 0.02
1
|
---|---|---|---|---|---|---|
from __future__ import annotations
from typing import Any, Dict, Sequence, Sized, Tuple, TypeVar
import matplotlib.cm
import matplotlib.patches
import numpy as np
from matplotlib.artist import Artist
from matplotlib.axes import Axes
from matplotlib.colors import Colormap
from matplotlib.figure import Figure
from typing_extensions import Protocol
from ..._utils import _to_grid_points, constants
from ...misc.validation import validate_domain_range
from ...representation._functional_data import FData
from ...typing._base import DomainRangeLike, GridPointsLike
from ._baseplot import BasePlot
from ._utils import ColorLike, _set_labels
K = TypeVar('K', contravariant=True)
V = TypeVar('V', covariant=True)
class Indexable(Protocol[K, V]):
"""Class Indexable used to type _get_color_info."""
def __getitem__(self, __key: K) -> V:
pass
def __len__(self) -> int:
pass
def _get_color_info(
fdata: Sized,
group: Sequence[K] | None = None,
group_names: Indexable[K, str] | None = None,
group_colors: Indexable[K, ColorLike] | None = None,
legend: bool = False,
kwargs: Dict[str, Any] | None = None,
) -> Tuple[
Sequence[ColorLike] | None,
Sequence[matplotlib.patches.Patch] | None,
]:
if kwargs is None:
kwargs = {}
patches = None
if group is not None:
# In this case, each curve has a label, and all curves with the same
# label should have the same color
group_unique, group_indexes = np.unique(
np.asarray(group),
return_inverse=True,
)
n_labels = len(group_unique)
if group_colors is not None:
group_colors_array = np.array(
[group_colors[g] for g in group_unique],
)
else:
prop_cycle = matplotlib.rcParams['axes.prop_cycle']
cycle_colors = prop_cycle.by_key()['color']
group_colors_array = np.take(
cycle_colors, np.arange(n_labels), mode='wrap',
)
sample_colors = list(group_colors_array[group_indexes])
group_names_array = None
if group_names is not None:
group_names_array = np.array(
[group_names[g] for g in group_unique],
)
elif legend is True:
group_names_array = group_unique
if group_names_array is not None:
patches = [
matplotlib.patches.Patch(color=c, label=l)
for c, l in zip(group_colors_array, group_names_array)
]
else:
# In this case, each curve has a different color unless specified
# otherwise
if 'color' in kwargs:
sample_colors = len(fdata) * [kwargs.get("color")]
kwargs.pop('color')
elif 'c' in kwargs:
sample_colors = len(fdata) * [kwargs.get("c")]
kwargs.pop('c')
else:
sample_colors = None
return sample_colors, patches
class GraphPlot(BasePlot):
"""
Class used to plot the FDataGrid object graph as hypersurfaces.
When plotting functional data, we can either choose manually a color,
a group of colors for the representations. Besides, we can use a list of
variables (depths, scalar regression targets...) can be used as an
argument to display the functions wtih a gradient of colors.
Args:
fdata: functional data set that we want to plot.
gradient_criteria: list of real values used to determine the color
in which each of the instances will be plotted.
max_grad: maximum value that the gradient_list can take, it will be
used to normalize the ``gradient_criteria`` in order to get values
that can be used in the function colormap.__call__(). If not
declared it will be initialized to the maximum value of
gradient_list.
min_grad: minimum value that the gradient_list can take, it will be
used to normalize the ``gradient_criteria`` in order to get values
that can be used in the function colormap.__call__(). If not
declared it will be initialized to the minimum value of
gradient_list.
chart: figure over
with the graphs are plotted or axis over where the graphs are
plotted. If None and ax is also None, the figure is
initialized.
fig: figure over with the graphs are
plotted in case ax is not specified. If None and ax is also
None, the figure is initialized.
axes: axis over where the graphs
are plotted. If None, see param fig.
n_rows: designates the number of rows of the figure
to plot the different dimensions of the image. Only specified
if fig and ax are None.
n_cols: designates the number of columns of the
figure to plot the different dimensions of the image. Only
specified if fig and ax are None.
n_points: Number of points to evaluate in
the plot. In case of surfaces a tuple of length 2 can be pased
with the number of points to plot in each axis, otherwise the
same number of points will be used in the two axes. By default
in unidimensional plots will be used 501 points; in surfaces
will be used 30 points per axis, wich makes a grid with 900
points.
domain_range: Range where the
function will be plotted. In objects with unidimensional domain
the domain range should be a tuple with the bounds of the
interval; in the case of surfaces a list with 2 tuples with
the ranges for each dimension. Default uses the domain range
of the functional object.
group: contains integers from [0 to number of
labels) indicating to which group each sample belongs to. Then,
the samples with the same label are plotted in the same color.
If None, the default value, each sample is plotted in the color
assigned by matplotlib.pyplot.rcParams['axes.prop_cycle'].
group_colors: colors in which groups are
represented, there must be one for each group. If None, each
group is shown with distict colors in the "Greys" colormap.
group_names: name of each of the groups which appear
in a legend, there must be one for each one. Defaults to None
and the legend is not shown. Implies `legend=True`.
colormap: name of the colormap to be used. By default we will
use autumn.
legend: if `True`, show a legend with the groups. If
`group_names` is passed, it will be used for finding the names
to display in the legend. Otherwise, the values passed to
`group` will be used.
kwargs: if dim_domain is 1, keyword arguments to be passed to
the matplotlib.pyplot.plot function; if dim_domain is 2,
keyword arguments to be passed to the
matplotlib.pyplot.plot_surface function.
Attributes:
gradient_list: normalization of the values from gradient color_list
that will be used to determine the intensity of the color
each function will have.
"""
def __init__(
self,
fdata: FData,
chart: Figure | Axes | None = None,
*,
fig: Figure | None = None,
axes: Axes | None = None,
n_rows: int | None = None,
n_cols: int | None = None,
n_points: int | Tuple[int, int] | None = None,
domain_range: DomainRangeLike | None = None,
group: Sequence[K] | None = None,
group_colors: Indexable[K, ColorLike] | None = None,
group_names: Indexable[K, str] | None = None,
gradient_criteria: Sequence[float] | None = None,
max_grad: float | None = None,
min_grad: float | None = None,
colormap: Colormap | str | None = None,
legend: bool = False,
**kwargs: Any,
) -> None:
super().__init__(
chart,
fig=fig,
axes=axes,
n_rows=n_rows,
n_cols=n_cols,
)
self.fdata = fdata
self.gradient_criteria = gradient_criteria
if self.gradient_criteria is not None:
if len(self.gradient_criteria) != fdata.n_samples:
raise ValueError(
"The length of the gradient color",
"list should be the same as the number",
"of samples in fdata",
)
if min_grad is None:
self.min_grad = min(self.gradient_criteria)
else:
self.min_grad = min_grad
if max_grad is None:
self.max_grad = max(self.gradient_criteria)
else:
self.max_grad = max_grad
self.gradient_list: Sequence[float] | None = (
[
(grad_color - self.min_grad)
/ (self.max_grad - self.min_grad)
for grad_color in self.gradient_criteria
]
)
else:
self.gradient_list = None
self.n_points = n_points
self.group = group
self.group_colors = group_colors
self.group_names = group_names
self.legend = legend
self.colormap = colormap
self.kwargs = kwargs
if domain_range is None:
self.domain_range = self.fdata.domain_range
else:
self.domain_range = validate_domain_range(domain_range)
if self.gradient_list is None:
sample_colors, patches = _get_color_info(
self.fdata,
self.group,
self.group_names,
self.group_colors,
self.legend,
kwargs,
)
else:
patches = None
if self.colormap is None:
colormap = matplotlib.cm.get_cmap("autumn")
colormap = colormap.reversed()
else:
colormap = matplotlib.cm.get_cmap(self.colormap)
sample_colors = colormap(self.gradient_list)
self.sample_colors = sample_colors
self.patches = patches
@property
def dim(self) -> int:
return self.fdata.dim_domain + 1
@property
def n_subplots(self) -> int:
return self.fdata.dim_codomain
@property
def n_samples(self) -> int:
return self.fdata.n_samples
def _plot(
self,
fig: Figure,
axes: Sequence[Axes],
) -> None:
self.artists = np.zeros(
(self.n_samples, self.fdata.dim_codomain),
dtype=Artist,
)
color_dict: Dict[str, ColorLike | None] = {}
if self.fdata.dim_domain == 1:
if self.n_points is None:
self.n_points = constants.N_POINTS_UNIDIMENSIONAL_PLOT_MESH
assert isinstance(self.n_points, int)
# Evaluates the object in a linspace
eval_points = np.linspace(*self.domain_range[0], self.n_points)
mat = self.fdata(eval_points)
for i in range(self.fdata.dim_codomain):
for j in range(self.fdata.n_samples):
set_color_dict(self.sample_colors, j, color_dict)
self.artists[j, i] = axes[i].plot(
eval_points,
mat[j, ..., i].T,
**self.kwargs,
**color_dict,
)[0]
else:
# Selects the number of points
if self.n_points is None:
n_points_tuple = 2 * (constants.N_POINTS_SURFACE_PLOT_AX,)
elif isinstance(self.n_points, int):
n_points_tuple = (self.n_points, self.n_points)
elif len(self.n_points) != 2:
raise ValueError(
"n_points should be a number or a tuple of "
"length 2, and has "
"length {0}.".format(len(self.n_points)),
)
# Axes where will be evaluated
x = np.linspace(*self.domain_range[0], n_points_tuple[0])
y = np.linspace(*self.domain_range[1], n_points_tuple[1])
# Evaluation of the functional object
Z = self.fdata((x, y), grid=True)
X, Y = np.meshgrid(x, y, indexing='ij')
for k in range(self.fdata.dim_codomain):
for h in range(self.fdata.n_samples):
set_color_dict(self.sample_colors, h, color_dict)
self.artists[h, k] = axes[k].plot_surface(
X,
Y,
Z[h, ..., k],
**self.kwargs,
**color_dict,
)
_set_labels(self.fdata, fig, axes, self.patches)
class ScatterPlot(BasePlot):
"""
Class used to scatter the FDataGrid object.
Args:
fdata: functional data set that we want to plot.
grid_points: points to plot.
chart: figure over
with the graphs are plotted or axis over where the graphs are
plotted. If None and ax is also None, the figure is
initialized.
fig: figure over with the graphs are
plotted in case ax is not specified. If None and ax is also
None, the figure is initialized.
axes: axis over where the graphs
are plotted. If None, see param fig.
n_rows: designates the number of rows of the figure
to plot the different dimensions of the image. Only specified
if fig and ax are None.
n_cols: designates the number of columns of the
figure to plot the different dimensions of the image. Only
specified if fig and ax are None.
domain_range: Range where the
function will be plotted. In objects with unidimensional domain
the domain range should be a tuple with the bounds of the
interval; in the case of surfaces a list with 2 tuples with
the ranges for each dimension. Default uses the domain range
of the functional object.
group: contains integers from [0 to number of
labels) indicating to which group each sample belongs to. Then,
the samples with the same label are plotted in the same color.
If None, the default value, each sample is plotted in the color
assigned by matplotlib.pyplot.rcParams['axes.prop_cycle'].
group_colors: colors in which groups are
represented, there must be one for each group. If None, each
group is shown with distict colors in the "Greys" colormap.
group_names: name of each of the groups which appear
in a legend, there must be one for each one. Defaults to None
and the legend is not shown. Implies `legend=True`.
legend: if `True`, show a legend with the groups. If
`group_names` is passed, it will be used for finding the names
to display in the legend. Otherwise, the values passed to
`group` will be used.
kwargs: if dim_domain is 1, keyword arguments to be passed to
the matplotlib.pyplot.plot function; if dim_domain is 2,
keyword arguments to be passed to the
matplotlib.pyplot.plot_surface function.
"""
def __init__(
self,
fdata: FData,
chart: Figure | Axes | None = None,
*,
fig: Figure | None = None,
axes: Axes | None = None,
n_rows: int | None = None,
n_cols: int | None = None,
grid_points: GridPointsLike | None = None,
domain_range: Tuple[int, int] | DomainRangeLike | None = None,
group: Sequence[K] | None = None,
group_colors: Indexable[K, ColorLike] | None = None,
group_names: Indexable[K, str] | None = None,
legend: bool = False,
**kwargs: Any,
) -> None:
super().__init__(
chart,
fig=fig,
axes=axes,
n_rows=n_rows,
n_cols=n_cols,
)
self.fdata = fdata
if grid_points is None:
# This can only be done for FDataGrid
self.grid_points = self.fdata.grid_points
self.evaluated_points = self.fdata.data_matrix
else:
self.grid_points = _to_grid_points(grid_points)
self.evaluated_points = self.fdata(
self.grid_points, grid=True,
)
self.domain_range = domain_range
self.group = group
self.group_colors = group_colors
self.group_names = group_names
self.legend = legend
if self.domain_range is None:
self.domain_range = self.fdata.domain_range
else:
self.domain_range = validate_domain_range(self.domain_range)
sample_colors, patches = _get_color_info(
self.fdata,
self.group,
self.group_names,
self.group_colors,
self.legend,
kwargs,
)
self.sample_colors = sample_colors
self.patches = patches
@property
def dim(self) -> int:
return self.fdata.dim_domain + 1
@property
def n_subplots(self) -> int:
return self.fdata.dim_codomain
@property
def n_samples(self) -> int:
return self.fdata.n_samples
def _plot(
self,
fig: Figure,
axes: Sequence[Axes],
) -> None:
"""
Scatter FDataGrid object.
Returns:
fig: figure object in which the graphs are plotted.
"""
self.artists = np.zeros(
(self.n_samples, self.fdata.dim_codomain),
dtype=Artist,
)
color_dict: Dict[str, ColorLike | None] = {}
if self.fdata.dim_domain == 1:
for i in range(self.fdata.dim_codomain):
for j in range(self.fdata.n_samples):
set_color_dict(self.sample_colors, j, color_dict)
self.artists[j, i] = axes[i].scatter(
self.grid_points[0],
self.evaluated_points[j, ..., i].T,
**color_dict,
picker=True,
pickradius=2,
)
else:
X = self.fdata.grid_points[0]
Y = self.fdata.grid_points[1]
X, Y = np.meshgrid(X, Y)
for k in range(self.fdata.dim_codomain):
for h in range(self.fdata.n_samples):
set_color_dict(self.sample_colors, h, color_dict)
self.artists[h, k] = axes[k].scatter(
X,
Y,
self.evaluated_points[h, ..., k].T,
**color_dict,
picker=True,
pickradius=2,
)
_set_labels(self.fdata, fig, axes, self.patches)
def set_color_dict(
sample_colors: Any,
ind: int,
color_dict: Dict[str, ColorLike | None],
) -> None:
"""
Auxiliary method used to update color_dict.
Sets the new color of the color_dict
thanks to sample colors and index.
"""
if sample_colors is not None:
color_dict["color"] = sample_colors[ind] | scikit-fda-sim | /scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/representation.py | representation.py | from __future__ import annotations
from typing import Any, Dict, Sequence, Sized, Tuple, TypeVar
import matplotlib.cm
import matplotlib.patches
import numpy as np
from matplotlib.artist import Artist
from matplotlib.axes import Axes
from matplotlib.colors import Colormap
from matplotlib.figure import Figure
from typing_extensions import Protocol
from ..._utils import _to_grid_points, constants
from ...misc.validation import validate_domain_range
from ...representation._functional_data import FData
from ...typing._base import DomainRangeLike, GridPointsLike
from ._baseplot import BasePlot
from ._utils import ColorLike, _set_labels
K = TypeVar('K', contravariant=True)
V = TypeVar('V', covariant=True)
class Indexable(Protocol[K, V]):
"""Class Indexable used to type _get_color_info."""
def __getitem__(self, __key: K) -> V:
pass
def __len__(self) -> int:
pass
def _get_color_info(
fdata: Sized,
group: Sequence[K] | None = None,
group_names: Indexable[K, str] | None = None,
group_colors: Indexable[K, ColorLike] | None = None,
legend: bool = False,
kwargs: Dict[str, Any] | None = None,
) -> Tuple[
Sequence[ColorLike] | None,
Sequence[matplotlib.patches.Patch] | None,
]:
if kwargs is None:
kwargs = {}
patches = None
if group is not None:
# In this case, each curve has a label, and all curves with the same
# label should have the same color
group_unique, group_indexes = np.unique(
np.asarray(group),
return_inverse=True,
)
n_labels = len(group_unique)
if group_colors is not None:
group_colors_array = np.array(
[group_colors[g] for g in group_unique],
)
else:
prop_cycle = matplotlib.rcParams['axes.prop_cycle']
cycle_colors = prop_cycle.by_key()['color']
group_colors_array = np.take(
cycle_colors, np.arange(n_labels), mode='wrap',
)
sample_colors = list(group_colors_array[group_indexes])
group_names_array = None
if group_names is not None:
group_names_array = np.array(
[group_names[g] for g in group_unique],
)
elif legend is True:
group_names_array = group_unique
if group_names_array is not None:
patches = [
matplotlib.patches.Patch(color=c, label=l)
for c, l in zip(group_colors_array, group_names_array)
]
else:
# In this case, each curve has a different color unless specified
# otherwise
if 'color' in kwargs:
sample_colors = len(fdata) * [kwargs.get("color")]
kwargs.pop('color')
elif 'c' in kwargs:
sample_colors = len(fdata) * [kwargs.get("c")]
kwargs.pop('c')
else:
sample_colors = None
return sample_colors, patches
class GraphPlot(BasePlot):
"""
Class used to plot the FDataGrid object graph as hypersurfaces.
When plotting functional data, we can either choose manually a color,
a group of colors for the representations. Besides, we can use a list of
variables (depths, scalar regression targets...) can be used as an
argument to display the functions wtih a gradient of colors.
Args:
fdata: functional data set that we want to plot.
gradient_criteria: list of real values used to determine the color
in which each of the instances will be plotted.
max_grad: maximum value that the gradient_list can take, it will be
used to normalize the ``gradient_criteria`` in order to get values
that can be used in the function colormap.__call__(). If not
declared it will be initialized to the maximum value of
gradient_list.
min_grad: minimum value that the gradient_list can take, it will be
used to normalize the ``gradient_criteria`` in order to get values
that can be used in the function colormap.__call__(). If not
declared it will be initialized to the minimum value of
gradient_list.
chart: figure over
with the graphs are plotted or axis over where the graphs are
plotted. If None and ax is also None, the figure is
initialized.
fig: figure over with the graphs are
plotted in case ax is not specified. If None and ax is also
None, the figure is initialized.
axes: axis over where the graphs
are plotted. If None, see param fig.
n_rows: designates the number of rows of the figure
to plot the different dimensions of the image. Only specified
if fig and ax are None.
n_cols: designates the number of columns of the
figure to plot the different dimensions of the image. Only
specified if fig and ax are None.
n_points: Number of points to evaluate in
the plot. In case of surfaces a tuple of length 2 can be pased
with the number of points to plot in each axis, otherwise the
same number of points will be used in the two axes. By default
in unidimensional plots will be used 501 points; in surfaces
will be used 30 points per axis, wich makes a grid with 900
points.
domain_range: Range where the
function will be plotted. In objects with unidimensional domain
the domain range should be a tuple with the bounds of the
interval; in the case of surfaces a list with 2 tuples with
the ranges for each dimension. Default uses the domain range
of the functional object.
group: contains integers from [0 to number of
labels) indicating to which group each sample belongs to. Then,
the samples with the same label are plotted in the same color.
If None, the default value, each sample is plotted in the color
assigned by matplotlib.pyplot.rcParams['axes.prop_cycle'].
group_colors: colors in which groups are
represented, there must be one for each group. If None, each
group is shown with distict colors in the "Greys" colormap.
group_names: name of each of the groups which appear
in a legend, there must be one for each one. Defaults to None
and the legend is not shown. Implies `legend=True`.
colormap: name of the colormap to be used. By default we will
use autumn.
legend: if `True`, show a legend with the groups. If
`group_names` is passed, it will be used for finding the names
to display in the legend. Otherwise, the values passed to
`group` will be used.
kwargs: if dim_domain is 1, keyword arguments to be passed to
the matplotlib.pyplot.plot function; if dim_domain is 2,
keyword arguments to be passed to the
matplotlib.pyplot.plot_surface function.
Attributes:
gradient_list: normalization of the values from gradient color_list
that will be used to determine the intensity of the color
each function will have.
"""
def __init__(
self,
fdata: FData,
chart: Figure | Axes | None = None,
*,
fig: Figure | None = None,
axes: Axes | None = None,
n_rows: int | None = None,
n_cols: int | None = None,
n_points: int | Tuple[int, int] | None = None,
domain_range: DomainRangeLike | None = None,
group: Sequence[K] | None = None,
group_colors: Indexable[K, ColorLike] | None = None,
group_names: Indexable[K, str] | None = None,
gradient_criteria: Sequence[float] | None = None,
max_grad: float | None = None,
min_grad: float | None = None,
colormap: Colormap | str | None = None,
legend: bool = False,
**kwargs: Any,
) -> None:
super().__init__(
chart,
fig=fig,
axes=axes,
n_rows=n_rows,
n_cols=n_cols,
)
self.fdata = fdata
self.gradient_criteria = gradient_criteria
if self.gradient_criteria is not None:
if len(self.gradient_criteria) != fdata.n_samples:
raise ValueError(
"The length of the gradient color",
"list should be the same as the number",
"of samples in fdata",
)
if min_grad is None:
self.min_grad = min(self.gradient_criteria)
else:
self.min_grad = min_grad
if max_grad is None:
self.max_grad = max(self.gradient_criteria)
else:
self.max_grad = max_grad
self.gradient_list: Sequence[float] | None = (
[
(grad_color - self.min_grad)
/ (self.max_grad - self.min_grad)
for grad_color in self.gradient_criteria
]
)
else:
self.gradient_list = None
self.n_points = n_points
self.group = group
self.group_colors = group_colors
self.group_names = group_names
self.legend = legend
self.colormap = colormap
self.kwargs = kwargs
if domain_range is None:
self.domain_range = self.fdata.domain_range
else:
self.domain_range = validate_domain_range(domain_range)
if self.gradient_list is None:
sample_colors, patches = _get_color_info(
self.fdata,
self.group,
self.group_names,
self.group_colors,
self.legend,
kwargs,
)
else:
patches = None
if self.colormap is None:
colormap = matplotlib.cm.get_cmap("autumn")
colormap = colormap.reversed()
else:
colormap = matplotlib.cm.get_cmap(self.colormap)
sample_colors = colormap(self.gradient_list)
self.sample_colors = sample_colors
self.patches = patches
@property
def dim(self) -> int:
return self.fdata.dim_domain + 1
@property
def n_subplots(self) -> int:
return self.fdata.dim_codomain
@property
def n_samples(self) -> int:
return self.fdata.n_samples
def _plot(
self,
fig: Figure,
axes: Sequence[Axes],
) -> None:
self.artists = np.zeros(
(self.n_samples, self.fdata.dim_codomain),
dtype=Artist,
)
color_dict: Dict[str, ColorLike | None] = {}
if self.fdata.dim_domain == 1:
if self.n_points is None:
self.n_points = constants.N_POINTS_UNIDIMENSIONAL_PLOT_MESH
assert isinstance(self.n_points, int)
# Evaluates the object in a linspace
eval_points = np.linspace(*self.domain_range[0], self.n_points)
mat = self.fdata(eval_points)
for i in range(self.fdata.dim_codomain):
for j in range(self.fdata.n_samples):
set_color_dict(self.sample_colors, j, color_dict)
self.artists[j, i] = axes[i].plot(
eval_points,
mat[j, ..., i].T,
**self.kwargs,
**color_dict,
)[0]
else:
# Selects the number of points
if self.n_points is None:
n_points_tuple = 2 * (constants.N_POINTS_SURFACE_PLOT_AX,)
elif isinstance(self.n_points, int):
n_points_tuple = (self.n_points, self.n_points)
elif len(self.n_points) != 2:
raise ValueError(
"n_points should be a number or a tuple of "
"length 2, and has "
"length {0}.".format(len(self.n_points)),
)
# Axes where will be evaluated
x = np.linspace(*self.domain_range[0], n_points_tuple[0])
y = np.linspace(*self.domain_range[1], n_points_tuple[1])
# Evaluation of the functional object
Z = self.fdata((x, y), grid=True)
X, Y = np.meshgrid(x, y, indexing='ij')
for k in range(self.fdata.dim_codomain):
for h in range(self.fdata.n_samples):
set_color_dict(self.sample_colors, h, color_dict)
self.artists[h, k] = axes[k].plot_surface(
X,
Y,
Z[h, ..., k],
**self.kwargs,
**color_dict,
)
_set_labels(self.fdata, fig, axes, self.patches)
class ScatterPlot(BasePlot):
"""
Class used to scatter the FDataGrid object.
Args:
fdata: functional data set that we want to plot.
grid_points: points to plot.
chart: figure over
with the graphs are plotted or axis over where the graphs are
plotted. If None and ax is also None, the figure is
initialized.
fig: figure over with the graphs are
plotted in case ax is not specified. If None and ax is also
None, the figure is initialized.
axes: axis over where the graphs
are plotted. If None, see param fig.
n_rows: designates the number of rows of the figure
to plot the different dimensions of the image. Only specified
if fig and ax are None.
n_cols: designates the number of columns of the
figure to plot the different dimensions of the image. Only
specified if fig and ax are None.
domain_range: Range where the
function will be plotted. In objects with unidimensional domain
the domain range should be a tuple with the bounds of the
interval; in the case of surfaces a list with 2 tuples with
the ranges for each dimension. Default uses the domain range
of the functional object.
group: contains integers from [0 to number of
labels) indicating to which group each sample belongs to. Then,
the samples with the same label are plotted in the same color.
If None, the default value, each sample is plotted in the color
assigned by matplotlib.pyplot.rcParams['axes.prop_cycle'].
group_colors: colors in which groups are
represented, there must be one for each group. If None, each
group is shown with distict colors in the "Greys" colormap.
group_names: name of each of the groups which appear
in a legend, there must be one for each one. Defaults to None
and the legend is not shown. Implies `legend=True`.
legend: if `True`, show a legend with the groups. If
`group_names` is passed, it will be used for finding the names
to display in the legend. Otherwise, the values passed to
`group` will be used.
kwargs: if dim_domain is 1, keyword arguments to be passed to
the matplotlib.pyplot.plot function; if dim_domain is 2,
keyword arguments to be passed to the
matplotlib.pyplot.plot_surface function.
"""
def __init__(
self,
fdata: FData,
chart: Figure | Axes | None = None,
*,
fig: Figure | None = None,
axes: Axes | None = None,
n_rows: int | None = None,
n_cols: int | None = None,
grid_points: GridPointsLike | None = None,
domain_range: Tuple[int, int] | DomainRangeLike | None = None,
group: Sequence[K] | None = None,
group_colors: Indexable[K, ColorLike] | None = None,
group_names: Indexable[K, str] | None = None,
legend: bool = False,
**kwargs: Any,
) -> None:
super().__init__(
chart,
fig=fig,
axes=axes,
n_rows=n_rows,
n_cols=n_cols,
)
self.fdata = fdata
if grid_points is None:
# This can only be done for FDataGrid
self.grid_points = self.fdata.grid_points
self.evaluated_points = self.fdata.data_matrix
else:
self.grid_points = _to_grid_points(grid_points)
self.evaluated_points = self.fdata(
self.grid_points, grid=True,
)
self.domain_range = domain_range
self.group = group
self.group_colors = group_colors
self.group_names = group_names
self.legend = legend
if self.domain_range is None:
self.domain_range = self.fdata.domain_range
else:
self.domain_range = validate_domain_range(self.domain_range)
sample_colors, patches = _get_color_info(
self.fdata,
self.group,
self.group_names,
self.group_colors,
self.legend,
kwargs,
)
self.sample_colors = sample_colors
self.patches = patches
@property
def dim(self) -> int:
return self.fdata.dim_domain + 1
@property
def n_subplots(self) -> int:
return self.fdata.dim_codomain
@property
def n_samples(self) -> int:
return self.fdata.n_samples
def _plot(
self,
fig: Figure,
axes: Sequence[Axes],
) -> None:
"""
Scatter FDataGrid object.
Returns:
fig: figure object in which the graphs are plotted.
"""
self.artists = np.zeros(
(self.n_samples, self.fdata.dim_codomain),
dtype=Artist,
)
color_dict: Dict[str, ColorLike | None] = {}
if self.fdata.dim_domain == 1:
for i in range(self.fdata.dim_codomain):
for j in range(self.fdata.n_samples):
set_color_dict(self.sample_colors, j, color_dict)
self.artists[j, i] = axes[i].scatter(
self.grid_points[0],
self.evaluated_points[j, ..., i].T,
**color_dict,
picker=True,
pickradius=2,
)
else:
X = self.fdata.grid_points[0]
Y = self.fdata.grid_points[1]
X, Y = np.meshgrid(X, Y)
for k in range(self.fdata.dim_codomain):
for h in range(self.fdata.n_samples):
set_color_dict(self.sample_colors, h, color_dict)
self.artists[h, k] = axes[k].scatter(
X,
Y,
self.evaluated_points[h, ..., k].T,
**color_dict,
picker=True,
pickradius=2,
)
_set_labels(self.fdata, fig, axes, self.patches)
def set_color_dict(
sample_colors: Any,
ind: int,
color_dict: Dict[str, ColorLike | None],
) -> None:
"""
Auxiliary method used to update color_dict.
Sets the new color of the color_dict
thanks to sample colors and index.
"""
if sample_colors is not None:
color_dict["color"] = sample_colors[ind] | 0.961198 | 0.46563 |
from __future__ import annotations
import warnings
from typing import Sequence
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from skfda.exploratory.visualization.representation import GraphPlot
from skfda.representation import FData
from ._baseplot import BasePlot
class FPCAPlot(BasePlot):
"""
FPCAPlot visualization.
Args:
mean: The functional data object containing the mean function.
If len(mean) > 1, the mean is computed.
components: The principal components
factor: Multiple of the principal component curve to be added or
subtracted.
fig: Figure over which the graph is plotted. If not specified it will
be initialized
axes: Axes over where the graph is plotted.
If ``None``, see param fig.
n_rows: Designates the number of rows of the figure.
n_cols: Designates the number of columns of the figure.
"""
def __init__(
self,
mean: FData,
components: FData,
*,
factor: float = 1,
multiple: float | None = None,
chart: Figure | Axes | None = None,
fig: Figure | None = None,
axes: Axes | None = None,
n_rows: int | None = None,
n_cols: int | None = None,
):
super().__init__(
chart,
fig=fig,
axes=axes,
n_rows=n_rows,
n_cols=n_cols,
)
self.mean = mean
self.components = components
if multiple is None:
self.factor = factor
else:
warnings.warn(
"The 'multiple' parameter is deprecated, "
"use 'factor' instead.",
DeprecationWarning,
)
self.factor = multiple
@property
def multiple(self) -> float:
warnings.warn(
"The 'multiple' attribute is deprecated, use 'factor' instead.",
DeprecationWarning,
)
return self.factor
@property
def n_subplots(self) -> int:
return len(self.components)
def _plot(
self,
fig: Figure,
axes: Sequence[Axes],
) -> None:
if len(self.mean) > 1:
self.mean = self.mean.mean()
for i, ax in enumerate(axes):
perturbations = self._get_component_perturbations(i)
GraphPlot(fdata=perturbations, axes=ax).plot()
ax.set_title(f"Principal component {i + 1}")
def _get_component_perturbations(self, index: int = 0) -> FData:
"""
Compute the perturbations over the mean of a principal component.
Args:
index: Index of the component for which we want to compute the
perturbations
Returns:
The mean function followed by the positive perturbation and
the negative perturbation.
"""
if not isinstance(self.mean, FData):
raise AttributeError("X must be a FData object")
perturbations = self.mean.copy()
perturbations = perturbations.concatenate(
perturbations[0] + self.multiple * self.components[index],
)
return perturbations.concatenate(
perturbations[0] - self.multiple * self.components[index],
) | scikit-fda-sim | /scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/fpca.py | fpca.py | from __future__ import annotations
import warnings
from typing import Sequence
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from skfda.exploratory.visualization.representation import GraphPlot
from skfda.representation import FData
from ._baseplot import BasePlot
class FPCAPlot(BasePlot):
"""
FPCAPlot visualization.
Args:
mean: The functional data object containing the mean function.
If len(mean) > 1, the mean is computed.
components: The principal components
factor: Multiple of the principal component curve to be added or
subtracted.
fig: Figure over which the graph is plotted. If not specified it will
be initialized
axes: Axes over where the graph is plotted.
If ``None``, see param fig.
n_rows: Designates the number of rows of the figure.
n_cols: Designates the number of columns of the figure.
"""
def __init__(
self,
mean: FData,
components: FData,
*,
factor: float = 1,
multiple: float | None = None,
chart: Figure | Axes | None = None,
fig: Figure | None = None,
axes: Axes | None = None,
n_rows: int | None = None,
n_cols: int | None = None,
):
super().__init__(
chart,
fig=fig,
axes=axes,
n_rows=n_rows,
n_cols=n_cols,
)
self.mean = mean
self.components = components
if multiple is None:
self.factor = factor
else:
warnings.warn(
"The 'multiple' parameter is deprecated, "
"use 'factor' instead.",
DeprecationWarning,
)
self.factor = multiple
@property
def multiple(self) -> float:
warnings.warn(
"The 'multiple' attribute is deprecated, use 'factor' instead.",
DeprecationWarning,
)
return self.factor
@property
def n_subplots(self) -> int:
return len(self.components)
def _plot(
self,
fig: Figure,
axes: Sequence[Axes],
) -> None:
if len(self.mean) > 1:
self.mean = self.mean.mean()
for i, ax in enumerate(axes):
perturbations = self._get_component_perturbations(i)
GraphPlot(fdata=perturbations, axes=ax).plot()
ax.set_title(f"Principal component {i + 1}")
def _get_component_perturbations(self, index: int = 0) -> FData:
"""
Compute the perturbations over the mean of a principal component.
Args:
index: Index of the component for which we want to compute the
perturbations
Returns:
The mean function followed by the positive perturbation and
the negative perturbation.
"""
if not isinstance(self.mean, FData):
raise AttributeError("X must be a FData object")
perturbations = self.mean.copy()
perturbations = perturbations.concatenate(
perturbations[0] + self.multiple * self.components[index],
)
return perturbations.concatenate(
perturbations[0] - self.multiple * self.components[index],
) | 0.963343 | 0.501587 |
from __future__ import annotations
from typing import Dict, Sequence, TypeVar
import numpy as np
from matplotlib.artist import Artist
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from ...representation import FData
from ._baseplot import BasePlot
from ._utils import ColorLike
from .representation import Indexable, _get_color_info
K = TypeVar('K', contravariant=True)
class ParametricPlot(BasePlot):
"""
Parametric Plot visualization.
This class contains the functionality in charge of plotting
two different functions as coordinates, this can be done giving
one FData, with domain 1 and codomain 2, or giving two FData, both
of them with domain 1 and codomain 1.
Args:
fdata1: functional data set that we will use for the graph. If it has
a dim_codomain = 1, the fdata2 will be needed.
fdata2: optional functional data set, that will be needed if the fdata1
has dim_codomain = 1.
chart: figure over with the graphs are plotted or axis over
where the graphs are plotted. If None and ax is also
None, the figure is initialized.
fig: figure over with the graphs are plotted in case ax is not
specified. If None and ax is also None, the figure is
initialized.
ax: axis where the graphs are plotted. If None, see param fig.
"""
def __init__(
self,
fdata1: FData,
fdata2: FData | None = None,
chart: Figure | Axes | None = None,
*,
fig: Figure | None = None,
axes: Axes | None = None,
group: Sequence[K] | None = None,
group_colors: Indexable[K, ColorLike] | None = None,
group_names: Indexable[K, str] | None = None,
legend: bool = False,
) -> None:
BasePlot.__init__(
self,
chart,
fig=fig,
axes=axes,
)
self.fdata1 = fdata1
self.fdata2 = fdata2
if self.fdata2 is not None:
self.fd_final = self.fdata1.concatenate(
self.fdata2, as_coordinates=True,
)
else:
self.fd_final = self.fdata1
self.group = group
self.group_names = group_names
self.group_colors = group_colors
self.legend = legend
@property
def n_samples(self) -> int:
return self.fd_final.n_samples
def _plot(
self,
fig: Figure,
axes: Axes,
) -> None:
self.artists = np.zeros((self.n_samples, 1), dtype=Artist)
sample_colors, patches = _get_color_info(
self.fd_final,
self.group,
self.group_names,
self.group_colors,
self.legend,
)
color_dict: Dict[str, ColorLike | None] = {}
if (
self.fd_final.dim_domain == 1
and self.fd_final.dim_codomain == 2
):
ax = axes[0]
for i in range(self.fd_final.n_samples):
if sample_colors is not None:
color_dict["color"] = sample_colors[i]
self.artists[i, 0] = ax.plot(
self.fd_final.data_matrix[i][:, 0].tolist(),
self.fd_final.data_matrix[i][:, 1].tolist(),
**color_dict,
)[0]
else:
raise ValueError(
"Error in data arguments,",
"codomain or domain is not correct.",
)
if self.fd_final.dataset_name is not None:
fig.suptitle(self.fd_final.dataset_name)
if self.fd_final.coordinate_names[0] is None:
ax.set_xlabel("Function 1")
else:
ax.set_xlabel(self.fd_final.coordinate_names[0])
if self.fd_final.coordinate_names[1] is None:
ax.set_ylabel("Function 2")
else:
ax.set_ylabel(self.fd_final.coordinate_names[1]) | scikit-fda-sim | /scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/_parametric_plot.py | _parametric_plot.py | from __future__ import annotations
from typing import Dict, Sequence, TypeVar
import numpy as np
from matplotlib.artist import Artist
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from ...representation import FData
from ._baseplot import BasePlot
from ._utils import ColorLike
from .representation import Indexable, _get_color_info
K = TypeVar('K', contravariant=True)
class ParametricPlot(BasePlot):
"""
Parametric Plot visualization.
This class contains the functionality in charge of plotting
two different functions as coordinates, this can be done giving
one FData, with domain 1 and codomain 2, or giving two FData, both
of them with domain 1 and codomain 1.
Args:
fdata1: functional data set that we will use for the graph. If it has
a dim_codomain = 1, the fdata2 will be needed.
fdata2: optional functional data set, that will be needed if the fdata1
has dim_codomain = 1.
chart: figure over with the graphs are plotted or axis over
where the graphs are plotted. If None and ax is also
None, the figure is initialized.
fig: figure over with the graphs are plotted in case ax is not
specified. If None and ax is also None, the figure is
initialized.
ax: axis where the graphs are plotted. If None, see param fig.
"""
def __init__(
self,
fdata1: FData,
fdata2: FData | None = None,
chart: Figure | Axes | None = None,
*,
fig: Figure | None = None,
axes: Axes | None = None,
group: Sequence[K] | None = None,
group_colors: Indexable[K, ColorLike] | None = None,
group_names: Indexable[K, str] | None = None,
legend: bool = False,
) -> None:
BasePlot.__init__(
self,
chart,
fig=fig,
axes=axes,
)
self.fdata1 = fdata1
self.fdata2 = fdata2
if self.fdata2 is not None:
self.fd_final = self.fdata1.concatenate(
self.fdata2, as_coordinates=True,
)
else:
self.fd_final = self.fdata1
self.group = group
self.group_names = group_names
self.group_colors = group_colors
self.legend = legend
@property
def n_samples(self) -> int:
return self.fd_final.n_samples
def _plot(
self,
fig: Figure,
axes: Axes,
) -> None:
self.artists = np.zeros((self.n_samples, 1), dtype=Artist)
sample_colors, patches = _get_color_info(
self.fd_final,
self.group,
self.group_names,
self.group_colors,
self.legend,
)
color_dict: Dict[str, ColorLike | None] = {}
if (
self.fd_final.dim_domain == 1
and self.fd_final.dim_codomain == 2
):
ax = axes[0]
for i in range(self.fd_final.n_samples):
if sample_colors is not None:
color_dict["color"] = sample_colors[i]
self.artists[i, 0] = ax.plot(
self.fd_final.data_matrix[i][:, 0].tolist(),
self.fd_final.data_matrix[i][:, 1].tolist(),
**color_dict,
)[0]
else:
raise ValueError(
"Error in data arguments,",
"codomain or domain is not correct.",
)
if self.fd_final.dataset_name is not None:
fig.suptitle(self.fd_final.dataset_name)
if self.fd_final.coordinate_names[0] is None:
ax.set_xlabel("Function 1")
else:
ax.set_xlabel(self.fd_final.coordinate_names[0])
if self.fd_final.coordinate_names[1] is None:
ax.set_ylabel("Function 2")
else:
ax.set_ylabel(self.fd_final.coordinate_names[1]) | 0.940216 | 0.526708 |
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Sequence, Tuple
import matplotlib.pyplot as plt
from matplotlib.artist import Artist
from matplotlib.axes import Axes
from matplotlib.backend_bases import LocationEvent, MouseEvent
from matplotlib.collections import PathCollection
from matplotlib.colors import ListedColormap
from matplotlib.figure import Figure
from matplotlib.text import Annotation
from ...representation import FData
from ...typing._numpy import NDArrayInt, NDArrayObject
from ._utils import _figure_to_svg, _get_figure_and_axes, _set_figure_layout
class BasePlot(ABC):
"""
BasePlot class.
Attributes:
artists: List of Artist objects corresponding
to every instance of our plot. They will be used to modify
the visualization with interactivity and widgets.
fig: Figure over with the graphs are plotted.
axes: Sequence of axes where the graphs are plotted.
"""
@abstractmethod
def __init__(
self,
chart: Figure | Axes | None = None,
*,
fig: Figure | None = None,
axes: Axes | Sequence[Axes] | None = None,
n_rows: int | None = None,
n_cols: int | None = None,
c: NDArrayInt | None = None,
cmap_bold: ListedColormap = None,
x_label: str | None = None,
y_label: str | None = None,
) -> None:
self.artists: NDArrayObject | None = None
self.chart = chart
self.fig = fig
self.axes = axes
self.n_rows = n_rows
self.n_cols = n_cols
self._tag = self._create_annotation()
self.c = c
self.cmap_bold = cmap_bold
self.x_label = x_label
self.y_label = y_label
def _plot(
self,
fig: Figure,
axes: Sequence[Axes],
) -> None:
pass
def plot(
self,
) -> Figure:
"""
Plot the object and its data.
Returns:
Figure: figure object in which the displays and
widgets will be plotted.
"""
fig: Figure | None = getattr(self, "fig_", None)
axes: Sequence[Axes] | None = getattr(self, "axes_", None)
if fig is None:
fig, axes = self._set_figure_and_axes(
self.chart,
fig=self.fig,
axes=self.axes,
)
assert axes is not None
if self.x_label is not None:
axes[0].set_xlabel(self.x_label)
if self.y_label is not None:
axes[0].set_ylabel(self.y_label)
self._plot(fig, axes)
self._hover_event_id = fig.canvas.mpl_connect(
'motion_notify_event',
self.hover,
)
return fig
@property
def dim(self) -> int:
"""Get the number of dimensions for this plot."""
return 2
@property
def n_subplots(self) -> int:
"""Get the number of subplots that this plot uses."""
return 1
@property
def n_samples(self) -> int | None:
"""Get the number of instances that will be used for interactivity."""
return None
def _set_figure_and_axes(
self,
chart: Figure | Axes | None = None,
*,
fig: Figure | None = None,
axes: Axes | Sequence[Axes] | None = None,
) -> Tuple[Figure, Sequence[Axes]]:
fig, axes = _get_figure_and_axes(chart, fig, axes)
fig, axes = _set_figure_layout(
fig=fig,
axes=axes,
dim=self.dim,
n_axes=self.n_subplots,
n_rows=self.n_rows,
n_cols=self.n_cols,
)
self.fig_ = fig
self.axes_ = axes
return fig, axes
def _repr_svg_(self) -> str:
"""Automatically represents the object as an svg when calling it."""
self.fig = self.plot()
plt.close(self.fig)
return _figure_to_svg(self.fig)
def _create_annotation(self) -> Annotation:
tag = Annotation(
"",
xy=(0, 0),
xytext=(20, 20),
textcoords="offset points",
bbox={
"boxstyle": "round",
"fc": "w",
},
arrowprops={
"arrowstyle": "->",
},
annotation_clip=False,
clip_on=False,
)
tag.get_bbox_patch().set_facecolor(color='khaki')
intensity = 0.8
tag.get_bbox_patch().set_alpha(intensity)
return tag
def _update_annotation(
self,
tag: Annotation,
*,
axes: Axes,
sample_number: int,
fdata: FData | None,
position: Tuple[float, float],
) -> None:
"""
Auxiliary method used to update the hovering annotations.
Method used to update the annotations that appear while
hovering a scattered point. The annotations indicate
the index and coordinates of the point hovered.
Args:
tag: Annotation to update.
axes: Axes were the annotation belongs.
sample_number: Number of the current sample.
"""
xdata_graph, ydata_graph = position
tag.xy = (xdata_graph, ydata_graph)
sample_name = (
fdata.sample_names[sample_number]
if fdata is not None
else None
)
sample_descr = f" ({sample_name})" if sample_name is not None else ""
text = (
f"{sample_number}{sample_descr}: "
f"({xdata_graph:.3g}, {ydata_graph:.3g})"
)
tag.set_text(text)
x_axis = axes.get_xlim()
y_axis = axes.get_ylim()
label_xpos = -60
label_ypos = 20
if (xdata_graph - x_axis[0]) > (x_axis[1] - xdata_graph):
label_xpos = -80
if (ydata_graph - y_axis[0]) > (y_axis[1] - ydata_graph):
label_ypos = -20
if tag.figure:
tag.remove()
tag.figure = None
axes.add_artist(tag)
tag.set_transform(axes.transData)
tag.set_position((label_xpos, label_ypos))
def _sample_artist_from_event(
self,
event: LocationEvent,
) -> Tuple[int, FData | None, Artist] | None:
"""Get the number, fdata and artist under a location event."""
if self.artists is None:
return None
try:
i = self.axes_.index(event.inaxes)
except ValueError:
return None
for j, artist in enumerate(self.artists[:, i]):
if not isinstance(artist, PathCollection):
return None
if artist.contains(event)[0]:
return j, getattr(self, "fdata", None), artist
return None
def hover(self, event: MouseEvent) -> None:
"""
Activate the annotation when hovering a point.
Callback method that activates the annotation when hovering
a specific point in a graph. The annotation is a description
of the point containing its coordinates.
Args:
event: event object containing the artist of the point
hovered.
"""
found_artist = self._sample_artist_from_event(event)
if event.inaxes is not None and found_artist is not None:
sample_number, fdata, artist = found_artist
self._update_annotation(
self._tag,
axes=event.inaxes,
sample_number=sample_number,
fdata=fdata,
position=artist.get_offsets()[0],
)
self._tag.set_visible(True)
self.fig_.canvas.draw_idle()
elif self._tag.get_visible():
self._tag.set_visible(False)
self.fig_.canvas.draw_idle() | scikit-fda-sim | /scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/_baseplot.py | _baseplot.py | from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Sequence, Tuple
import matplotlib.pyplot as plt
from matplotlib.artist import Artist
from matplotlib.axes import Axes
from matplotlib.backend_bases import LocationEvent, MouseEvent
from matplotlib.collections import PathCollection
from matplotlib.colors import ListedColormap
from matplotlib.figure import Figure
from matplotlib.text import Annotation
from ...representation import FData
from ...typing._numpy import NDArrayInt, NDArrayObject
from ._utils import _figure_to_svg, _get_figure_and_axes, _set_figure_layout
class BasePlot(ABC):
"""
BasePlot class.
Attributes:
artists: List of Artist objects corresponding
to every instance of our plot. They will be used to modify
the visualization with interactivity and widgets.
fig: Figure over with the graphs are plotted.
axes: Sequence of axes where the graphs are plotted.
"""
@abstractmethod
def __init__(
self,
chart: Figure | Axes | None = None,
*,
fig: Figure | None = None,
axes: Axes | Sequence[Axes] | None = None,
n_rows: int | None = None,
n_cols: int | None = None,
c: NDArrayInt | None = None,
cmap_bold: ListedColormap = None,
x_label: str | None = None,
y_label: str | None = None,
) -> None:
self.artists: NDArrayObject | None = None
self.chart = chart
self.fig = fig
self.axes = axes
self.n_rows = n_rows
self.n_cols = n_cols
self._tag = self._create_annotation()
self.c = c
self.cmap_bold = cmap_bold
self.x_label = x_label
self.y_label = y_label
def _plot(
self,
fig: Figure,
axes: Sequence[Axes],
) -> None:
pass
def plot(
self,
) -> Figure:
"""
Plot the object and its data.
Returns:
Figure: figure object in which the displays and
widgets will be plotted.
"""
fig: Figure | None = getattr(self, "fig_", None)
axes: Sequence[Axes] | None = getattr(self, "axes_", None)
if fig is None:
fig, axes = self._set_figure_and_axes(
self.chart,
fig=self.fig,
axes=self.axes,
)
assert axes is not None
if self.x_label is not None:
axes[0].set_xlabel(self.x_label)
if self.y_label is not None:
axes[0].set_ylabel(self.y_label)
self._plot(fig, axes)
self._hover_event_id = fig.canvas.mpl_connect(
'motion_notify_event',
self.hover,
)
return fig
@property
def dim(self) -> int:
"""Get the number of dimensions for this plot."""
return 2
@property
def n_subplots(self) -> int:
"""Get the number of subplots that this plot uses."""
return 1
@property
def n_samples(self) -> int | None:
"""Get the number of instances that will be used for interactivity."""
return None
def _set_figure_and_axes(
self,
chart: Figure | Axes | None = None,
*,
fig: Figure | None = None,
axes: Axes | Sequence[Axes] | None = None,
) -> Tuple[Figure, Sequence[Axes]]:
fig, axes = _get_figure_and_axes(chart, fig, axes)
fig, axes = _set_figure_layout(
fig=fig,
axes=axes,
dim=self.dim,
n_axes=self.n_subplots,
n_rows=self.n_rows,
n_cols=self.n_cols,
)
self.fig_ = fig
self.axes_ = axes
return fig, axes
def _repr_svg_(self) -> str:
"""Automatically represents the object as an svg when calling it."""
self.fig = self.plot()
plt.close(self.fig)
return _figure_to_svg(self.fig)
def _create_annotation(self) -> Annotation:
tag = Annotation(
"",
xy=(0, 0),
xytext=(20, 20),
textcoords="offset points",
bbox={
"boxstyle": "round",
"fc": "w",
},
arrowprops={
"arrowstyle": "->",
},
annotation_clip=False,
clip_on=False,
)
tag.get_bbox_patch().set_facecolor(color='khaki')
intensity = 0.8
tag.get_bbox_patch().set_alpha(intensity)
return tag
def _update_annotation(
self,
tag: Annotation,
*,
axes: Axes,
sample_number: int,
fdata: FData | None,
position: Tuple[float, float],
) -> None:
"""
Auxiliary method used to update the hovering annotations.
Method used to update the annotations that appear while
hovering a scattered point. The annotations indicate
the index and coordinates of the point hovered.
Args:
tag: Annotation to update.
axes: Axes were the annotation belongs.
sample_number: Number of the current sample.
"""
xdata_graph, ydata_graph = position
tag.xy = (xdata_graph, ydata_graph)
sample_name = (
fdata.sample_names[sample_number]
if fdata is not None
else None
)
sample_descr = f" ({sample_name})" if sample_name is not None else ""
text = (
f"{sample_number}{sample_descr}: "
f"({xdata_graph:.3g}, {ydata_graph:.3g})"
)
tag.set_text(text)
x_axis = axes.get_xlim()
y_axis = axes.get_ylim()
label_xpos = -60
label_ypos = 20
if (xdata_graph - x_axis[0]) > (x_axis[1] - xdata_graph):
label_xpos = -80
if (ydata_graph - y_axis[0]) > (y_axis[1] - ydata_graph):
label_ypos = -20
if tag.figure:
tag.remove()
tag.figure = None
axes.add_artist(tag)
tag.set_transform(axes.transData)
tag.set_position((label_xpos, label_ypos))
def _sample_artist_from_event(
self,
event: LocationEvent,
) -> Tuple[int, FData | None, Artist] | None:
"""Get the number, fdata and artist under a location event."""
if self.artists is None:
return None
try:
i = self.axes_.index(event.inaxes)
except ValueError:
return None
for j, artist in enumerate(self.artists[:, i]):
if not isinstance(artist, PathCollection):
return None
if artist.contains(event)[0]:
return j, getattr(self, "fdata", None), artist
return None
def hover(self, event: MouseEvent) -> None:
"""
Activate the annotation when hovering a point.
Callback method that activates the annotation when hovering
a specific point in a graph. The annotation is a description
of the point containing its coordinates.
Args:
event: event object containing the artist of the point
hovered.
"""
found_artist = self._sample_artist_from_event(event)
if event.inaxes is not None and found_artist is not None:
sample_number, fdata, artist = found_artist
self._update_annotation(
self._tag,
axes=event.inaxes,
sample_number=sample_number,
fdata=fdata,
position=artist.get_offsets()[0],
)
self._tag.set_visible(True)
self.fig_.canvas.draw_idle()
elif self._tag.get_visible():
self._tag.set_visible(False)
self.fig_.canvas.draw_idle() | 0.952142 | 0.551574 |
from __future__ import annotations
import io
import math
import re
from itertools import repeat
from typing import Sequence, Tuple, TypeVar, Union
import matplotlib.backends.backend_svg
import matplotlib.pyplot as plt
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from typing_extensions import Protocol, TypeAlias
from ...representation._functional_data import FData
non_close_text = '[^>]*?'
svg_width_regex = re.compile(
f'(<svg {non_close_text}width="){non_close_text}("{non_close_text}>)',
)
svg_width_replacement = r'\g<1>100%\g<2>'
svg_height_regex = re.compile(
f'(<svg {non_close_text})height="{non_close_text}"({non_close_text}>)',
)
svg_height_replacement = r'\g<1>\g<2>'
ColorLike: TypeAlias = Union[
Tuple[float, float, float],
Tuple[float, float, float, float],
str,
Sequence[float],
]
K = TypeVar('K', contravariant=True)
V = TypeVar('V', covariant=True)
class Indexable(Protocol[K, V]):
"""Class Indexable used to type _get_color_info."""
def __getitem__(self, __key: K) -> V:
pass
def __len__(self) -> int:
pass
def _create_figure() -> Figure:
"""Create figure using the default backend."""
return plt.figure()
def _figure_to_svg(figure: Figure) -> str:
"""Return the SVG representation of a figure."""
old_canvas = figure.canvas
matplotlib.backends.backend_svg.FigureCanvas(figure)
output = io.BytesIO()
figure.savefig(output, format='svg')
figure.set_canvas(old_canvas)
data = output.getvalue()
decoded_data = data.decode('utf-8')
new_data = svg_width_regex.sub(
svg_width_replacement,
decoded_data,
count=1,
)
return svg_height_regex.sub(
svg_height_replacement,
new_data,
count=1,
)
def _get_figure_and_axes(
chart: Figure | Axes | Sequence[Axes] | None = None,
fig: Figure | None = None,
axes: Axes | Sequence[Axes] | None = None,
) -> Tuple[Figure, Sequence[Axes]]:
"""Obtain the figure and axes from the arguments."""
num_defined = sum(e is not None for e in (chart, fig, axes))
if num_defined > 1:
raise ValueError(
"Only one of chart, fig and axes parameters"
"can be passed as an argument.",
)
# Parse chart argument
if chart is not None:
if isinstance(chart, matplotlib.figure.Figure):
fig = chart
else:
axes = chart
if fig is None and axes is None:
new_fig = _create_figure()
new_axes = []
elif fig is not None:
new_fig = fig
new_axes = fig.axes
else:
assert axes is not None
if isinstance(axes, Axes):
axes = [axes]
new_fig = axes[0].figure
new_axes = axes
return new_fig, new_axes
def _get_axes_shape(
n_axes: int,
n_rows: int | None = None,
n_cols: int | None = None,
) -> Tuple[int, int]:
"""Get the number of rows and columns of the subplots."""
if (
(n_rows is not None and n_cols is not None)
and ((n_rows * n_cols) < n_axes)
):
raise ValueError(
f"The number of rows ({n_rows}) multiplied by "
f"the number of columns ({n_cols}) "
f"is less than the number of required "
f"axes ({n_axes})",
)
if n_rows is None and n_cols is None:
new_n_cols = int(math.ceil(math.sqrt(n_axes)))
new_n_rows = int(math.ceil(n_axes / new_n_cols))
elif n_rows is None and n_cols is not None:
new_n_cols = n_cols
new_n_rows = int(math.ceil(n_axes / n_cols))
elif n_cols is None and n_rows is not None:
new_n_cols = int(math.ceil(n_axes / n_rows))
new_n_rows = n_rows
return new_n_rows, new_n_cols
def _projection_from_dim(dim: int) -> str:
if dim == 2:
return 'rectilinear'
elif dim == 3:
return '3d'
raise NotImplementedError(
"Only bidimensional or tridimensional plots are supported.",
)
def _set_figure_layout(
fig: Figure,
axes: Sequence[Axes],
dim: int | Sequence[int] = 2,
n_axes: int = 1,
n_rows: int | None = None,
n_cols: int | None = None,
) -> Tuple[Figure, Sequence[Axes]]:
"""
Set the figure axes for plotting.
Args:
fig: Figure over with the graphs are plotted in case ax is not
specified.
axes: Axis over where the graphs are plotted.
dim: Dimension of the plot. Either 2 for a 2D plot or 3 for a 3D plot.
n_axes: Number of subplots.
n_rows: Designates the number of rows of the figure to plot the
different dimensions of the image. Can only be passed if no axes
are specified.
n_cols: Designates the number of columns of the figure to plot the
different dimensions of the image. Can only be passed if no axes
are specified.
Returns:
(tuple): tuple containing:
* fig (figure): figure object in which the graphs are plotted.
* axes (list): axes in which the graphs are plotted.
"""
if len(axes) not in {0, n_axes}:
raise ValueError(
f"The number of axes ({len(axes)}) must be 0 (to create them)"
f" or equal to the number of axes needed "
f"({n_axes} in this case).",
)
if len(axes) != 0 and (n_rows is not None or n_cols is not None):
raise ValueError(
"The number of columns and/or number of rows of "
"the figure, in which each dimension of the "
"image is plotted, can only be customized in case "
"that no axes are provided.",
)
if len(axes) == 0:
# Create the axes
n_rows, n_cols = _get_axes_shape(n_axes, n_rows, n_cols)
for i in range(n_rows):
for j in range(n_cols):
subplot_index = i * n_cols + j
if subplot_index < n_axes:
plot_dim = (
dim if isinstance(dim, int) else dim[subplot_index]
)
fig.add_subplot(
n_rows,
n_cols,
subplot_index + 1,
projection=_projection_from_dim(plot_dim),
)
axes = fig.axes
else:
# Check that the projections are right
projections = (
repeat(_projection_from_dim(dim))
if isinstance(dim, int)
else (_projection_from_dim(d) for d in dim)
)
for a, proj in zip(axes, projections):
if a.name != proj:
raise ValueError(
f"The projection of the axes is {a.name} "
f"but should be {proj}",
)
return fig, axes
def _set_labels(
fdata: FData,
fig: Figure,
axes: Sequence[Axes],
patches: Sequence[matplotlib.patches.Patch] | None = None,
) -> None:
"""Set labels if any.
Args:
fdata: functional data object.
fig: figure object containing the axes that implement
set_xlabel and set_ylabel, and set_zlabel in case
of a 3d projection.
axes: axes objects that implement set_xlabel and set_ylabel,
and set_zlabel in case of a 3d projection; used if
fig is None.
patches: objects used to generate each entry in the legend.
"""
# Dataset name
if fdata.dataset_name is not None:
fig.suptitle(fdata.dataset_name)
# Legend
if patches is not None:
fig.legend(handles=patches)
elif patches is not None:
axes[0].legend(handles=patches)
assert len(axes) >= fdata.dim_codomain
# Axis labels
if axes[0].name == '3d':
for i, a in enumerate(axes):
if fdata.argument_names[0] is not None:
a.set_xlabel(fdata.argument_names[0])
if fdata.argument_names[1] is not None:
a.set_ylabel(fdata.argument_names[1])
if fdata.coordinate_names[i] is not None:
a.set_zlabel(fdata.coordinate_names[i])
else:
for i in range(fdata.dim_codomain):
if fdata.argument_names[0] is not None:
axes[i].set_xlabel(fdata.argument_names[0])
if fdata.coordinate_names[i] is not None:
axes[i].set_ylabel(fdata.coordinate_names[i])
def _change_luminosity(color: ColorLike, amount: float = 0.5) -> ColorLike:
"""
Change the given color luminosity by the given amount.
Input can be matplotlib color string, hex string, or RGB tuple.
Note:
Based on https://stackoverflow.com/a/49601444/2455333
"""
import colorsys
import matplotlib.colors as mc
try:
c = mc.cnames[color]
except TypeError:
c = color
c = colorsys.rgb_to_hls(*mc.to_rgb(c))
intensity = (amount - 0.5) * 2
up = intensity > 0
intensity = abs(intensity)
lightness = c[1]
if up:
new_lightness = lightness + intensity * (1 - lightness)
else:
new_lightness = lightness - intensity * lightness
return colorsys.hls_to_rgb(c[0], new_lightness, c[2])
def _darken(color: ColorLike, amount: float = 0) -> ColorLike:
return _change_luminosity(color, 0.5 - amount / 2)
def _lighten(color: ColorLike, amount: float = 0) -> ColorLike:
return _change_luminosity(color, 0.5 + amount / 2) | scikit-fda-sim | /scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/_utils.py | _utils.py | from __future__ import annotations
import io
import math
import re
from itertools import repeat
from typing import Sequence, Tuple, TypeVar, Union
import matplotlib.backends.backend_svg
import matplotlib.pyplot as plt
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from typing_extensions import Protocol, TypeAlias
from ...representation._functional_data import FData
non_close_text = '[^>]*?'
svg_width_regex = re.compile(
f'(<svg {non_close_text}width="){non_close_text}("{non_close_text}>)',
)
svg_width_replacement = r'\g<1>100%\g<2>'
svg_height_regex = re.compile(
f'(<svg {non_close_text})height="{non_close_text}"({non_close_text}>)',
)
svg_height_replacement = r'\g<1>\g<2>'
ColorLike: TypeAlias = Union[
Tuple[float, float, float],
Tuple[float, float, float, float],
str,
Sequence[float],
]
K = TypeVar('K', contravariant=True)
V = TypeVar('V', covariant=True)
class Indexable(Protocol[K, V]):
"""Class Indexable used to type _get_color_info."""
def __getitem__(self, __key: K) -> V:
pass
def __len__(self) -> int:
pass
def _create_figure() -> Figure:
"""Create figure using the default backend."""
return plt.figure()
def _figure_to_svg(figure: Figure) -> str:
"""Return the SVG representation of a figure."""
old_canvas = figure.canvas
matplotlib.backends.backend_svg.FigureCanvas(figure)
output = io.BytesIO()
figure.savefig(output, format='svg')
figure.set_canvas(old_canvas)
data = output.getvalue()
decoded_data = data.decode('utf-8')
new_data = svg_width_regex.sub(
svg_width_replacement,
decoded_data,
count=1,
)
return svg_height_regex.sub(
svg_height_replacement,
new_data,
count=1,
)
def _get_figure_and_axes(
chart: Figure | Axes | Sequence[Axes] | None = None,
fig: Figure | None = None,
axes: Axes | Sequence[Axes] | None = None,
) -> Tuple[Figure, Sequence[Axes]]:
"""Obtain the figure and axes from the arguments."""
num_defined = sum(e is not None for e in (chart, fig, axes))
if num_defined > 1:
raise ValueError(
"Only one of chart, fig and axes parameters"
"can be passed as an argument.",
)
# Parse chart argument
if chart is not None:
if isinstance(chart, matplotlib.figure.Figure):
fig = chart
else:
axes = chart
if fig is None and axes is None:
new_fig = _create_figure()
new_axes = []
elif fig is not None:
new_fig = fig
new_axes = fig.axes
else:
assert axes is not None
if isinstance(axes, Axes):
axes = [axes]
new_fig = axes[0].figure
new_axes = axes
return new_fig, new_axes
def _get_axes_shape(
n_axes: int,
n_rows: int | None = None,
n_cols: int | None = None,
) -> Tuple[int, int]:
"""Get the number of rows and columns of the subplots."""
if (
(n_rows is not None and n_cols is not None)
and ((n_rows * n_cols) < n_axes)
):
raise ValueError(
f"The number of rows ({n_rows}) multiplied by "
f"the number of columns ({n_cols}) "
f"is less than the number of required "
f"axes ({n_axes})",
)
if n_rows is None and n_cols is None:
new_n_cols = int(math.ceil(math.sqrt(n_axes)))
new_n_rows = int(math.ceil(n_axes / new_n_cols))
elif n_rows is None and n_cols is not None:
new_n_cols = n_cols
new_n_rows = int(math.ceil(n_axes / n_cols))
elif n_cols is None and n_rows is not None:
new_n_cols = int(math.ceil(n_axes / n_rows))
new_n_rows = n_rows
return new_n_rows, new_n_cols
def _projection_from_dim(dim: int) -> str:
if dim == 2:
return 'rectilinear'
elif dim == 3:
return '3d'
raise NotImplementedError(
"Only bidimensional or tridimensional plots are supported.",
)
def _set_figure_layout(
fig: Figure,
axes: Sequence[Axes],
dim: int | Sequence[int] = 2,
n_axes: int = 1,
n_rows: int | None = None,
n_cols: int | None = None,
) -> Tuple[Figure, Sequence[Axes]]:
"""
Set the figure axes for plotting.
Args:
fig: Figure over with the graphs are plotted in case ax is not
specified.
axes: Axis over where the graphs are plotted.
dim: Dimension of the plot. Either 2 for a 2D plot or 3 for a 3D plot.
n_axes: Number of subplots.
n_rows: Designates the number of rows of the figure to plot the
different dimensions of the image. Can only be passed if no axes
are specified.
n_cols: Designates the number of columns of the figure to plot the
different dimensions of the image. Can only be passed if no axes
are specified.
Returns:
(tuple): tuple containing:
* fig (figure): figure object in which the graphs are plotted.
* axes (list): axes in which the graphs are plotted.
"""
if len(axes) not in {0, n_axes}:
raise ValueError(
f"The number of axes ({len(axes)}) must be 0 (to create them)"
f" or equal to the number of axes needed "
f"({n_axes} in this case).",
)
if len(axes) != 0 and (n_rows is not None or n_cols is not None):
raise ValueError(
"The number of columns and/or number of rows of "
"the figure, in which each dimension of the "
"image is plotted, can only be customized in case "
"that no axes are provided.",
)
if len(axes) == 0:
# Create the axes
n_rows, n_cols = _get_axes_shape(n_axes, n_rows, n_cols)
for i in range(n_rows):
for j in range(n_cols):
subplot_index = i * n_cols + j
if subplot_index < n_axes:
plot_dim = (
dim if isinstance(dim, int) else dim[subplot_index]
)
fig.add_subplot(
n_rows,
n_cols,
subplot_index + 1,
projection=_projection_from_dim(plot_dim),
)
axes = fig.axes
else:
# Check that the projections are right
projections = (
repeat(_projection_from_dim(dim))
if isinstance(dim, int)
else (_projection_from_dim(d) for d in dim)
)
for a, proj in zip(axes, projections):
if a.name != proj:
raise ValueError(
f"The projection of the axes is {a.name} "
f"but should be {proj}",
)
return fig, axes
def _set_labels(
fdata: FData,
fig: Figure,
axes: Sequence[Axes],
patches: Sequence[matplotlib.patches.Patch] | None = None,
) -> None:
"""Set labels if any.
Args:
fdata: functional data object.
fig: figure object containing the axes that implement
set_xlabel and set_ylabel, and set_zlabel in case
of a 3d projection.
axes: axes objects that implement set_xlabel and set_ylabel,
and set_zlabel in case of a 3d projection; used if
fig is None.
patches: objects used to generate each entry in the legend.
"""
# Dataset name
if fdata.dataset_name is not None:
fig.suptitle(fdata.dataset_name)
# Legend
if patches is not None:
fig.legend(handles=patches)
elif patches is not None:
axes[0].legend(handles=patches)
assert len(axes) >= fdata.dim_codomain
# Axis labels
if axes[0].name == '3d':
for i, a in enumerate(axes):
if fdata.argument_names[0] is not None:
a.set_xlabel(fdata.argument_names[0])
if fdata.argument_names[1] is not None:
a.set_ylabel(fdata.argument_names[1])
if fdata.coordinate_names[i] is not None:
a.set_zlabel(fdata.coordinate_names[i])
else:
for i in range(fdata.dim_codomain):
if fdata.argument_names[0] is not None:
axes[i].set_xlabel(fdata.argument_names[0])
if fdata.coordinate_names[i] is not None:
axes[i].set_ylabel(fdata.coordinate_names[i])
def _change_luminosity(color: ColorLike, amount: float = 0.5) -> ColorLike:
"""
Change the given color luminosity by the given amount.
Input can be matplotlib color string, hex string, or RGB tuple.
Note:
Based on https://stackoverflow.com/a/49601444/2455333
"""
import colorsys
import matplotlib.colors as mc
try:
c = mc.cnames[color]
except TypeError:
c = color
c = colorsys.rgb_to_hls(*mc.to_rgb(c))
intensity = (amount - 0.5) * 2
up = intensity > 0
intensity = abs(intensity)
lightness = c[1]
if up:
new_lightness = lightness + intensity * (1 - lightness)
else:
new_lightness = lightness - intensity * lightness
return colorsys.hls_to_rgb(c[0], new_lightness, c[2])
def _darken(color: ColorLike, amount: float = 0) -> ColorLike:
return _change_luminosity(color, 0.5 - amount / 2)
def _lighten(color: ColorLike, amount: float = 0) -> ColorLike:
return _change_luminosity(color, 0.5 + amount / 2) | 0.925331 | 0.407333 |