|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ConcluGen Dataset""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@inproceedings{syed:2021, |
|
author = {Shahbaz Syed and |
|
Khalid Al Khatib and |
|
Milad Alshomary and |
|
Henning Wachsmuth and |
|
Martin Potthast}, |
|
editor = {Chengqing Zong and |
|
Fei Xia and |
|
Wenjie Li and |
|
Roberto Navigli}, |
|
title = {Generating Informative Conclusions for Argumentative Texts}, |
|
booktitle = {Findings of the Association for Computational Linguistics: {ACL/IJCNLP} |
|
2021, Online Event, August 1-6, 2021}, |
|
pages = {3482--3493}, |
|
publisher = {Association for Computational Linguistics}, |
|
year = {2021}, |
|
url = {https://doi.org/10.18653/v1/2021.findings-acl.306}, |
|
doi = {10.18653/v1/2021.findings-acl.306} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The ConcluGen corpus is constructed for the task of argument summarization. It consists of 136,996 pairs of argumentative texts and their conclusions collected from the ChangeMyView subreddit, a web portal for argumentative discussions on controversial topics. |
|
|
|
The corpus has three variants: aspects, topics, and targets. Each variation encodes the corresponding information via control codes. These provide additional argumentative knowledge for generating more informative conclusions. |
|
""" |
|
|
|
_HOMEPAGE = "https://zenodo.org/record/4818134" |
|
|
|
_LICENSE = "https://creativecommons.org/licenses/by/4.0/legalcode" |
|
|
|
|
|
_REPO = "https://huggingface.co/datasets/webis/conclugen/resolve/main" |
|
|
|
_URLS = { |
|
'base_train': f"{_REPO}/base_train.jsonl", |
|
'base_validation': f"{_REPO}/base_validation.jsonl", |
|
'base_test': f"{_REPO}/base_test.jsonl", |
|
'aspects_train': f"{_REPO}/aspects_train.jsonl", |
|
'aspects_validation': f"{_REPO}/aspects_validation.jsonl", |
|
'aspects_test': f"{_REPO}/aspects_test.jsonl", |
|
'targets_train': f"{_REPO}/targets_train.jsonl", |
|
'targets_validation': f"{_REPO}/targets_validation.jsonl", |
|
'targets_test': f"{_REPO}/targets_test.jsonl", |
|
'topic_train': f"{_REPO}/topic_train.jsonl", |
|
'topic_validation': f"{_REPO}/topic_validation.jsonl", |
|
'topic_test': f"{_REPO}/topic_test.jsonl" |
|
} |
|
|
|
|
|
class ArgsMe(datasets.GeneratorBasedBuilder): |
|
"""382,545 arguments crawled from debate portals""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="base", version=VERSION, description="The base version of the dataset with no argumentative knowledge."), |
|
datasets.BuilderConfig(name="aspects", version=VERSION, description="Variation with argument aspects encoded."), |
|
datasets.BuilderConfig(name="targets", version=VERSION, description="Variation with conclusion targets encoded."), |
|
datasets.BuilderConfig(name="topic", version=VERSION, description="Variation with discussion topic encoded."), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "base" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"argument": datasets.Value("string"), |
|
"conclusion": datasets.Value("string"), |
|
"id": datasets.Value("string") |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
train_file = dl_manager.download(_URLS[self.config.name+"_train"]) |
|
validation_file = dl_manager.download(_URLS[self.config.name+"_validation"]) |
|
test_file = dl_manager.download(_URLS[self.config.name+"_test"]) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": train_file, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_file": validation_file, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": test_file, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, data_file): |
|
""" Yields examples as (key, example) tuples. """ |
|
with open(data_file, encoding="utf-8") as f: |
|
for row in f: |
|
data = json.loads(row) |
|
id_ = data['id'] |
|
yield id_, { |
|
"argument": data['argument'], |
|
"conclusion": data["conclusion"], |
|
"id": id_ |
|
} |
|
|