id
stringlengths
14
16
text
stringlengths
13
2.7k
source
stringlengths
57
178
1a93eb904d6b-100
Upload a block to a signed URL and return the public URL. langchain.tools.render¶ Different methods for rendering Tools to be passed to LLMs. Depending on the LLM you are using and the prompting strategy you are using, you may want Tools to be rendered in a different way. This module contains various ways to render tools. Functions¶ tools.render.format_tool_to_openai_function(tool) Format tool into the OpenAI function API. tools.render.format_tool_to_openai_tool(tool) Format tool into the OpenAI function API. tools.render.render_text_description(tools) Render the tool name and description in plain text. tools.render.render_text_description_and_args(tools) Render the tool name, description, and args in plain text. langchain.utilities¶ Utilities are the integrations with third-part systems and packages. Other LangChain classes use Utilities to interact with third-part systems and packages. Classes¶ utilities.alpha_vantage.AlphaVantageAPIWrapper Wrapper for AlphaVantage API for Currency Exchange Rate. utilities.apify.ApifyWrapper Wrapper around Apify. utilities.arcee.ArceeDocument Arcee document. utilities.arcee.ArceeDocumentAdapter() Adapter for Arcee documents utilities.arcee.ArceeDocumentSource Source of an Arcee document. utilities.arcee.ArceeRoute(value[, names, ...]) Routes available for the Arcee API as enumerator. utilities.arcee.ArceeWrapper(arcee_api_key, ...) Wrapper for Arcee API. utilities.arcee.DALMFilter Filters available for a DALM retrieval and generation. utilities.arcee.DALMFilterType(value[, ...]) Filter types available for a DALM retrieval as enumerator. utilities.arxiv.ArxivAPIWrapper Wrapper around ArxivAPI. utilities.awslambda.LambdaWrapper
lang/api.python.langchain.com/en/latest/api_reference.html
1a93eb904d6b-101
Wrapper around ArxivAPI. utilities.awslambda.LambdaWrapper Wrapper for AWS Lambda SDK. utilities.bibtex.BibtexparserWrapper Wrapper around bibtexparser. utilities.bing_search.BingSearchAPIWrapper Wrapper for Bing Search API. utilities.brave_search.BraveSearchWrapper Wrapper around the Brave search engine. utilities.clickup.CUList(folder_id, name[, ...]) Component class for a list. utilities.clickup.ClickupAPIWrapper Wrapper for Clickup API. utilities.clickup.Component() Base class for all components. utilities.clickup.Member(id, username, ...) Component class for a member. utilities.clickup.Space(id, name, private, ...) Component class for a space. utilities.clickup.Task(id, name, ...) Class for a task. utilities.clickup.Team(id, name, members) Component class for a team. utilities.dalle_image_generator.DallEAPIWrapper Wrapper for OpenAI's DALL-E Image Generator. utilities.dataforseo_api_search.DataForSeoAPIWrapper Wrapper around the DataForSeo API. utilities.duckduckgo_search.DuckDuckGoSearchAPIWrapper Wrapper for DuckDuckGo Search API. utilities.github.GitHubAPIWrapper Wrapper for GitHub API. utilities.gitlab.GitLabAPIWrapper Wrapper for GitLab API. utilities.golden_query.GoldenQueryAPIWrapper Wrapper for Golden. utilities.google_places_api.GooglePlacesAPIWrapper Wrapper around Google Places API. utilities.google_scholar.GoogleScholarAPIWrapper Wrapper for Google Scholar API utilities.google_search.GoogleSearchAPIWrapper Wrapper for Google Search API. utilities.google_serper.GoogleSerperAPIWrapper Wrapper around the Serper.dev Google Search API. utilities.graphql.GraphQLAPIWrapper
lang/api.python.langchain.com/en/latest/api_reference.html
1a93eb904d6b-102
Wrapper around the Serper.dev Google Search API. utilities.graphql.GraphQLAPIWrapper Wrapper around GraphQL API. utilities.jira.JiraAPIWrapper Wrapper for Jira API. utilities.max_compute.MaxComputeAPIWrapper(client) Interface for querying Alibaba Cloud MaxCompute tables. utilities.metaphor_search.MetaphorSearchAPIWrapper Wrapper for Metaphor Search API. utilities.openapi.HTTPVerb(value[, names, ...]) Enumerator of the HTTP verbs. utilities.openapi.OpenAPISpec() OpenAPI Model that removes mis-formatted parts of the spec. utilities.openweathermap.OpenWeatherMapAPIWrapper Wrapper for OpenWeatherMap API using PyOWM. utilities.portkey.Portkey() Portkey configuration. utilities.powerbi.PowerBIDataset Create PowerBI engine from dataset ID and credential or token. utilities.pubmed.PubMedAPIWrapper Wrapper around PubMed API. utilities.python.PythonREPL Simulates a standalone Python REPL. utilities.redis.TokenEscaper([escape_chars_re]) Escape punctuation within an input string. utilities.requests.Requests Wrapper around requests to handle auth and async. utilities.requests.RequestsWrapper alias of TextRequestsWrapper utilities.requests.TextRequestsWrapper Lightweight wrapper around requests library. utilities.scenexplain.SceneXplainAPIWrapper Wrapper for SceneXplain API. utilities.searchapi.SearchApiAPIWrapper Wrapper around SearchApi API. utilities.searx_search.SearxResults(data) Dict like wrapper around search api results. utilities.searx_search.SearxSearchWrapper Wrapper for Searx API. utilities.serpapi.HiddenPrints() Context manager to hide prints. utilities.serpapi.SerpAPIWrapper Wrapper around SerpAPI. utilities.spark_sql.SparkSQL([...]) SparkSQL is a utility class for interacting with Spark SQL.
lang/api.python.langchain.com/en/latest/api_reference.html
1a93eb904d6b-103
SparkSQL is a utility class for interacting with Spark SQL. utilities.sql_database.SQLDatabase(engine[, ...]) SQLAlchemy wrapper around a database. utilities.tavily_search.TavilySearchAPIWrapper Wrapper for Tavily Search API. utilities.tensorflow_datasets.TensorflowDatasets Access to the TensorFlow Datasets. utilities.twilio.TwilioAPIWrapper Messaging Client using Twilio. utilities.wikipedia.WikipediaAPIWrapper Wrapper around WikipediaAPI. utilities.wolfram_alpha.WolframAlphaAPIWrapper Wrapper for Wolfram Alpha. utilities.zapier.ZapierNLAWrapper Wrapper for Zapier NLA. Functions¶ utilities.anthropic.get_num_tokens_anthropic(text) Get the number of tokens in a string of text. utilities.anthropic.get_token_ids_anthropic(text) Get the token ids for a string of text. utilities.clickup.extract_dict_elements_from_component_fields(...) Extract elements from a dictionary. utilities.clickup.fetch_data(url, access_token) Fetch data from a URL. utilities.clickup.fetch_first_id(data, key) Fetch the first id from a dictionary. utilities.clickup.fetch_folder_id(space_id, ...) Fetch the folder id. utilities.clickup.fetch_list_id(space_id, ...) Fetch the list id. utilities.clickup.fetch_space_id(team_id, ...) Fetch the space id. utilities.clickup.fetch_team_id(access_token) Fetch the team id. utilities.clickup.load_query(query[, ...]) Attempts to parse a JSON string and return the parsed object. utilities.clickup.parse_dict_through_component(...) Parse a dictionary by creating a component and then turning it back into a dictionary. utilities.opaqueprompts.desanitize(...) Restore the original sensitive data from the sanitized text. utilities.opaqueprompts.sanitize(input)
lang/api.python.langchain.com/en/latest/api_reference.html
1a93eb904d6b-104
utilities.opaqueprompts.sanitize(input) Sanitize input string or dict of strings by replacing sensitive data with placeholders. utilities.powerbi.fix_table_name(table) Add single quotes around table names that contain spaces. utilities.powerbi.json_to_md(json_contents) Converts a JSON object to a markdown table. utilities.redis.check_redis_module_exist(...) Check if the correct Redis modules are installed. utilities.redis.get_client(redis_url, **kwargs) Get a redis client from the connection url given. utilities.sql_database.truncate_word(...[, ...]) Truncate a string to a certain number of words, based on the max string length. utilities.vertexai.get_client_info([module]) Returns a custom user agent header. utilities.vertexai.init_vertexai([project, ...]) Init vertexai. utilities.vertexai.raise_vertex_import_error([...]) Raise ImportError related to Vertex SDK being not available. langchain.utils¶ Utility functions for LangChain. These functions do not depend on any other LangChain module. Classes¶ utils.aiter.NoLock() Dummy lock that provides the proper interface but no protection utils.aiter.Tee(iterable[, n, lock]) Create n separate asynchronous iterators over iterable utils.aiter.atee alias of Tee utils.formatting.StrictFormatter() A subclass of formatter that checks for extra keys. utils.iter.NoLock() Dummy lock that provides the proper interface but no protection utils.iter.Tee(iterable[, n, lock]) Create n separate asynchronous iterators over iterable utils.iter.safetee alias of Tee utils.openai_functions.FunctionDescription Representation of a callable function to the OpenAI API. utils.openai_functions.ToolDescription Representation of a callable function to the OpenAI API. Functions¶ utils.aiter.py_anext(iterator[, default])
lang/api.python.langchain.com/en/latest/api_reference.html
1a93eb904d6b-105
Functions¶ utils.aiter.py_anext(iterator[, default]) Pure-Python implementation of anext() for testing purposes. utils.aiter.tee_peer(iterator, buffer, ...) An individual iterator of a tee() utils.env.get_from_dict_or_env(data, key, ...) Get a value from a dictionary or an environment variable. utils.env.get_from_env(key, env_key[, default]) Get a value from a dictionary or an environment variable. utils.html.extract_sub_links(raw_html, url, *) Extract all links from a raw html string and convert into absolute paths. utils.html.find_all_links(raw_html, *[, pattern]) Extract all links from a raw html string. utils.input.get_bolded_text(text) Get bolded text. utils.input.get_color_mapping(items[, ...]) Get mapping for items to a support color. utils.input.get_colored_text(text, color) Get colored text. utils.input.print_text(text[, color, end, file]) Print text with highlighting and no end characters. utils.iter.batch_iterate(size, iterable) Utility batching function. utils.iter.tee_peer(iterator, buffer, peers, ...) An individual iterator of a tee() utils.json_schema.dereference_refs(schema_obj, *) Try to substitute $refs in JSON Schema. utils.loading.try_load_from_hub(path, ...) Load configuration from hub. utils.math.cosine_similarity(X, Y) Row-wise cosine similarity between two equal-width matrices. utils.math.cosine_similarity_top_k(X, Y[, ...]) Row-wise cosine similarity with optional top-k and score threshold filtering. utils.openai.is_openai_v1() utils.openai_functions.convert_pydantic_to_openai_function(...)
lang/api.python.langchain.com/en/latest/api_reference.html
1a93eb904d6b-106
utils.openai_functions.convert_pydantic_to_openai_function(...) Converts a Pydantic model to a function description for the OpenAI API. utils.openai_functions.convert_pydantic_to_openai_tool(...) Converts a Pydantic model to a function description for the OpenAI API. utils.pydantic.get_pydantic_major_version() Get the major version of Pydantic. utils.strings.comma_list(items) Convert a list to a comma-separated string. utils.strings.stringify_dict(data) Stringify a dictionary. utils.strings.stringify_value(val) Stringify a value. utils.utils.build_extra_kwargs(extra_kwargs, ...) Build extra kwargs from values and extra_kwargs. utils.utils.check_package_version(package[, ...]) Check the version of a package. utils.utils.convert_to_secret_str(value) Convert a string to a SecretStr if needed. utils.utils.get_pydantic_field_names(...) Get field names, including aliases, for a pydantic class. utils.utils.guard_import(module_name, *[, ...]) Dynamically imports a module and raises a helpful exception if the module is not installed. utils.utils.mock_now(dt_value) Context manager for mocking out datetime.now() in unit tests. utils.utils.raise_for_status_with_text(response) Raise an error with the response text. utils.utils.xor_args(*arg_groups) Validate specified keyword args are mutually exclusive. langchain.vectorstores¶ Vector store stores embedded data and performs vector search. One of the most common ways to store and search over unstructured data is to embed it and store the resulting embedding vectors, and then query the store and retrieve the data that are ‘most similar’ to the embedded query. Class hierarchy: VectorStore --> <name> # Examples: Annoy, FAISS, Milvus
lang/api.python.langchain.com/en/latest/api_reference.html
1a93eb904d6b-107
BaseRetriever --> VectorStoreRetriever --> <name>Retriever # Example: VespaRetriever Main helpers: Embeddings, Document Classes¶ vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch(...) Alibaba Cloud OpenSearch vector store. vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearchSettings(...) Alibaba Cloud Opensearch` client configuration. vectorstores.analyticdb.AnalyticDB(...[, ...]) AnalyticDB (distributed PostgreSQL) vector store. vectorstores.annoy.Annoy(embedding_function, ...) Annoy vector store. vectorstores.astradb.AstraDB(*, embedding, ...) Wrapper around DataStax Astra DB for vector-store workloads. vectorstores.atlas.AtlasDB(name[, ...]) Atlas vector store. vectorstores.awadb.AwaDB([table_name, ...]) AwaDB vector store. vectorstores.azure_cosmos_db.AzureCosmosDBVectorSearch(...) Azure Cosmos DB for MongoDB vCore vector store. vectorstores.azure_cosmos_db.CosmosDBSimilarityType(value) Cosmos DB Similarity Type as enumerator. vectorstores.azuresearch.AzureSearch(...[, ...]) Azure Cognitive Search vector store. vectorstores.azuresearch.AzureSearchVectorStoreRetriever Retriever that uses Azure Cognitive Search. vectorstores.bageldb.Bagel([cluster_name, ...]) BagelDB.ai vector store. vectorstores.baiducloud_vector_search.BESVectorStore(...) Baidu Elasticsearch vector store. vectorstores.cassandra.Cassandra(embedding, ...) Wrapper around Apache Cassandra(R) for vector-store workloads. vectorstores.chroma.Chroma([...]) ChromaDB vector store.
lang/api.python.langchain.com/en/latest/api_reference.html
1a93eb904d6b-108
vectorstores.chroma.Chroma([...]) ChromaDB vector store. vectorstores.clarifai.Clarifai([user_id, ...]) Clarifai AI vector store. vectorstores.clickhouse.Clickhouse(embedding) ClickHouse VectorSearch vector store. vectorstores.clickhouse.ClickhouseSettings ClickHouse client configuration. vectorstores.dashvector.DashVector(...) DashVector vector store. vectorstores.deeplake.DeepLake([...]) Activeloop Deep Lake vector store. vectorstores.dingo.Dingo(embedding, text_key, *) Dingo vector store. vectorstores.docarray.base.DocArrayIndex(...) Base class for DocArray based vector stores. vectorstores.docarray.hnsw.DocArrayHnswSearch(...) HnswLib storage using DocArray package. vectorstores.docarray.in_memory.DocArrayInMemorySearch(...) In-memory DocArray storage for exact search. vectorstores.elastic_vector_search.ElasticKnnSearch(...) [Deprecated] [DEPRECATED] Elasticsearch with k-nearest neighbor search (k-NN) vector store. vectorstores.elastic_vector_search.ElasticVectorSearch(...) ElasticVectorSearch uses the brute force method of searching on vectors. vectorstores.elasticsearch.ApproxRetrievalStrategy([...]) Approximate retrieval strategy using the HNSW algorithm. vectorstores.elasticsearch.BaseRetrievalStrategy() Base class for Elasticsearch retrieval strategies. vectorstores.elasticsearch.ElasticsearchStore(...) Elasticsearch vector store. vectorstores.elasticsearch.ExactRetrievalStrategy() Exact retrieval strategy using the script_score query. vectorstores.elasticsearch.SparseRetrievalStrategy([...]) Sparse retrieval strategy using the text_expansion processor. vectorstores.epsilla.Epsilla(client, embeddings) Wrapper around Epsilla vector database.
lang/api.python.langchain.com/en/latest/api_reference.html
1a93eb904d6b-109
Wrapper around Epsilla vector database. vectorstores.faiss.FAISS(embedding_function, ...) Meta Faiss vector store. vectorstores.hippo.Hippo(embedding_function) Hippo vector store. vectorstores.hologres.Hologres(...[, ndims, ...]) Hologres API vector store. vectorstores.hologres.HologresWrapper(...) Hologres API wrapper. vectorstores.lancedb.LanceDB(connection, ...) LanceDB vector store. vectorstores.llm_rails.LLMRails([...]) Implementation of Vector Store using LLMRails. vectorstores.llm_rails.LLMRailsRetriever Retriever for LLMRails. vectorstores.marqo.Marqo(client, index_name) Marqo vector store. vectorstores.matching_engine.MatchingEngine(...) Google Vertex AI Matching Engine vector store. vectorstores.meilisearch.Meilisearch(embedding) Meilisearch vector store. vectorstores.milvus.Milvus(embedding_function) Milvus vector store. vectorstores.momento_vector_index.MomentoVectorIndex(...) Momento Vector Index (MVI) vector store. vectorstores.mongodb_atlas.MongoDBAtlasVectorSearch(...) MongoDB Atlas Vector Search vector store. vectorstores.myscale.MyScale(embedding[, config]) MyScale vector store. vectorstores.myscale.MyScaleSettings MyScale client configuration. vectorstores.myscale.MyScaleWithoutJSON(...) MyScale vector store without metadata column vectorstores.neo4j_vector.Neo4jVector(...[, ...]) Neo4j vector index. vectorstores.neo4j_vector.SearchType(value) Enumerator of the Distance strategies. vectorstores.nucliadb.NucliaDB(...[, ...])
lang/api.python.langchain.com/en/latest/api_reference.html
1a93eb904d6b-110
vectorstores.nucliadb.NucliaDB(...[, ...]) NucliaDB vector store. vectorstores.opensearch_vector_search.OpenSearchVectorSearch(...) Amazon OpenSearch Vector Engine vector store. vectorstores.pgembedding.BaseModel(**kwargs) Base model for all SQL stores. vectorstores.pgembedding.CollectionStore(...) Collection store. vectorstores.pgembedding.EmbeddingStore(**kwargs) Embedding store. vectorstores.pgembedding.PGEmbedding(...[, ...]) Postgres with the pg_embedding extension as a vector store. vectorstores.pgembedding.QueryResult() Result from a query. vectorstores.pgvecto_rs.PGVecto_rs(...[, ...]) vectorstores.pgvector.BaseModel(**kwargs) Base model for the SQL stores. vectorstores.pgvector.DistanceStrategy(value) Enumerator of the Distance strategies. vectorstores.pgvector.PGVector(...[, ...]) Postgres/PGVector vector store. vectorstores.pinecone.Pinecone(index, ...[, ...]) Pinecone vector store. vectorstores.qdrant.Qdrant(client, ...[, ...]) Qdrant vector store. vectorstores.qdrant.QdrantException Qdrant related exceptions. vectorstores.redis.base.Redis(redis_url, ...) Redis vector database. vectorstores.redis.base.RedisVectorStoreRetriever Retriever for Redis VectorStore. vectorstores.redis.filters.RedisFilter() Collection of RedisFilterFields. vectorstores.redis.filters.RedisFilterExpression([...]) A logical expression of RedisFilterFields. vectorstores.redis.filters.RedisFilterField(field) Base class for RedisFilterFields. vectorstores.redis.filters.RedisFilterOperator(value) RedisFilterOperator enumerator is used to create RedisFilterExpressions. vectorstores.redis.filters.RedisNum(field)
lang/api.python.langchain.com/en/latest/api_reference.html
1a93eb904d6b-111
vectorstores.redis.filters.RedisNum(field) A RedisFilterField representing a numeric field in a Redis index. vectorstores.redis.filters.RedisTag(field) A RedisFilterField representing a tag in a Redis index. vectorstores.redis.filters.RedisText(field) A RedisFilterField representing a text field in a Redis index. vectorstores.redis.schema.FlatVectorField Schema for flat vector fields in Redis. vectorstores.redis.schema.HNSWVectorField Schema for HNSW vector fields in Redis. vectorstores.redis.schema.NumericFieldSchema Schema for numeric fields in Redis. vectorstores.redis.schema.RedisDistanceMetric(value) Distance metrics for Redis vector fields. vectorstores.redis.schema.RedisField Base class for Redis fields. vectorstores.redis.schema.RedisModel Schema for Redis index. vectorstores.redis.schema.RedisVectorField Base class for Redis vector fields. vectorstores.redis.schema.TagFieldSchema Schema for tag fields in Redis. vectorstores.redis.schema.TextFieldSchema Schema for text fields in Redis. vectorstores.rocksetdb.Rockset(client, ...) Rockset vector store. vectorstores.scann.ScaNN(embedding, index, ...) ScaNN vector store. vectorstores.semadb.SemaDB(collection_name, ...) SemaDB vector store. vectorstores.singlestoredb.SingleStoreDB(...) SingleStore DB vector store. vectorstores.sklearn.BaseSerializer(persist_path) Base class for serializing data. vectorstores.sklearn.BsonSerializer(persist_path) Serializes data in binary json using the bson python package. vectorstores.sklearn.JsonSerializer(persist_path) Serializes data in json using the json package from python standard library. vectorstores.sklearn.ParquetSerializer(...) Serializes data in Apache Parquet format using the pyarrow package. vectorstores.sklearn.SKLearnVectorStore(...)
lang/api.python.langchain.com/en/latest/api_reference.html
1a93eb904d6b-112
vectorstores.sklearn.SKLearnVectorStore(...) Simple in-memory vector store based on the scikit-learn library NearestNeighbors implementation. vectorstores.sklearn.SKLearnVectorStoreException Exception raised by SKLearnVectorStore. vectorstores.sqlitevss.SQLiteVSS(table, ...) Wrapper around SQLite with vss extension as a vector database. vectorstores.starrocks.StarRocks(embedding) StarRocks vector store. vectorstores.starrocks.StarRocksSettings StarRocks client configuration. vectorstores.supabase.SupabaseVectorStore(...) Supabase Postgres vector store. vectorstores.tair.Tair(embedding_function, ...) Tair vector store. vectorstores.tencentvectordb.ConnectionParams(...) Tencent vector DB Connection params. vectorstores.tencentvectordb.IndexParams(...) Tencent vector DB Index params. vectorstores.tencentvectordb.TencentVectorDB(...) Initialize wrapper around the tencent vector database. vectorstores.tigris.Tigris(client, ...) Tigris vector store. vectorstores.tiledb.TileDB(embedding, ...[, ...]) Wrapper around TileDB vector database. vectorstores.timescalevector.TimescaleVector(...) VectorStore implementation using the timescale vector client to store vectors in Postgres. vectorstores.typesense.Typesense(...[, ...]) Typesense vector store. vectorstores.usearch.USearch(embedding, ...) USearch vector store. vectorstores.utils.DistanceStrategy(value[, ...]) Enumerator of the Distance strategies for calculating distances between vectors. vectorstores.vald.Vald(embedding[, host, ...]) Wrapper around Vald vector database. vectorstores.vearch.Vearch(embedding_function) Initialize vearch vector store flag 1 for cluster,0 for standalone
lang/api.python.langchain.com/en/latest/api_reference.html
1a93eb904d6b-113
Initialize vearch vector store flag 1 for cluster,0 for standalone vectorstores.vectara.Vectara([...]) Vectara API vector store. vectorstores.vectara.VectaraRetriever Retriever class for Vectara. vectorstores.vespa.VespaStore(app[, ...]) Vespa vector store. vectorstores.weaviate.Weaviate(client, ...) Weaviate vector store. vectorstores.xata.XataVectorStore(api_key, ...) Xata vector store. vectorstores.zep.CollectionConfig(name, ...) Configuration for a Zep Collection. vectorstores.zep.ZepVectorStore(...[, ...]) Zep vector store. vectorstores.zilliz.Zilliz(embedding_function) Zilliz vector store. Functions¶ vectorstores.alibabacloud_opensearch.create_metadata(fields) Create metadata from fields. vectorstores.annoy.dependable_annoy_import() Import annoy if available, otherwise raise error. vectorstores.clickhouse.has_mul_sub_str(s, *args) Check if a string contains multiple substrings. vectorstores.faiss.dependable_faiss_import([...]) Import faiss if available, otherwise raise error. vectorstores.myscale.has_mul_sub_str(s, *args) Check if a string contains multiple substrings. vectorstores.neo4j_vector.check_if_not_null(...) Check if the values are not None or empty string vectorstores.neo4j_vector.sort_by_index_name(...) Sort first element to match the index_name if exists vectorstores.qdrant.sync_call_fallback(method) Decorator to call the synchronous method of the class if the async method is not implemented. vectorstores.redis.base.check_index_exists(...) Check if Redis index exists. vectorstores.redis.filters.check_operator_misuse(func)
lang/api.python.langchain.com/en/latest/api_reference.html
1a93eb904d6b-114
Check if Redis index exists. vectorstores.redis.filters.check_operator_misuse(func) Decorator to check for misuse of equality operators. vectorstores.redis.schema.read_schema(...) Reads in the index schema from a dict or yaml file. vectorstores.scann.dependable_scann_import() Import scann if available, otherwise raise error. vectorstores.scann.normalize(x) Normalize vectors to unit length. vectorstores.starrocks.debug_output(s) Print a debug message if DEBUG is True. vectorstores.starrocks.get_named_result(...) Get a named result from a query. vectorstores.starrocks.has_mul_sub_str(s, *args) Check if a string has multiple substrings. vectorstores.tiledb.dependable_tiledb_import() Import tiledb-vector-search if available, otherwise raise error. vectorstores.tiledb.get_documents_array_uri(uri) vectorstores.tiledb.get_documents_array_uri_from_group(group) vectorstores.tiledb.get_vector_index_uri(uri) vectorstores.tiledb.get_vector_index_uri_from_group(group) vectorstores.usearch.dependable_usearch_import() Import usearch if available, otherwise raise error. vectorstores.utils.filter_complex_metadata(...) Filter out metadata types that are not supported for a vector store. vectorstores.utils.maximal_marginal_relevance(...) Calculate maximal marginal relevance.
lang/api.python.langchain.com/en/latest/api_reference.html
a509b383164c-0
langchain_experimental API Reference¶ langchain_experimental.agents¶ Functions¶ agents.agent_toolkits.csv.base.create_csv_agent(...) Create csv agent by loading to a dataframe and using pandas agent. agents.agent_toolkits.pandas.base.create_pandas_dataframe_agent(llm, df) Construct a pandas agent from an LLM and dataframe. agents.agent_toolkits.python.base.create_python_agent(...) Construct a python agent from an LLM and tool. agents.agent_toolkits.spark.base.create_spark_dataframe_agent(llm, df) Construct a Spark agent from an LLM and dataframe. agents.agent_toolkits.xorbits.base.create_xorbits_agent(...) Construct a xorbits agent from an LLM and dataframe. langchain_experimental.autonomous_agents¶ Classes¶ autonomous_agents.autogpt.agent.AutoGPT(...) Agent class for interacting with Auto-GPT. autonomous_agents.autogpt.memory.AutoGPTMemory Memory for AutoGPT. autonomous_agents.autogpt.output_parser.AutoGPTAction(...) Action returned by AutoGPTOutputParser. autonomous_agents.autogpt.output_parser.AutoGPTOutputParser Output parser for AutoGPT. autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser Base Output parser for AutoGPT. autonomous_agents.autogpt.prompt.AutoGPTPrompt Prompt for AutoGPT. autonomous_agents.autogpt.prompt_generator.PromptGenerator() A class for generating custom prompt strings. autonomous_agents.baby_agi.baby_agi.BabyAGI Controller model for the BabyAGI agent. autonomous_agents.baby_agi.task_creation.TaskCreationChain Chain generating tasks. autonomous_agents.baby_agi.task_execution.TaskExecutionChain Chain to execute tasks. autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain
lang/api.python.langchain.com/en/latest/experimental_api_reference.html
a509b383164c-1
autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain Chain to prioritize tasks. autonomous_agents.hugginggpt.hugginggpt.HuggingGPT(...) autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerationChain Chain to execute tasks. autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerator(...) autonomous_agents.hugginggpt.task_executor.Task(...) autonomous_agents.hugginggpt.task_executor.TaskExecutor(plan) Load tools to execute tasks. autonomous_agents.hugginggpt.task_planner.BasePlanner Create a new model by parsing and validating input data from keyword arguments. autonomous_agents.hugginggpt.task_planner.Plan(steps) autonomous_agents.hugginggpt.task_planner.PlanningOutputParser Create a new model by parsing and validating input data from keyword arguments. autonomous_agents.hugginggpt.task_planner.Step(...) autonomous_agents.hugginggpt.task_planner.TaskPlaningChain Chain to execute tasks. autonomous_agents.hugginggpt.task_planner.TaskPlanner Create a new model by parsing and validating input data from keyword arguments. Functions¶ autonomous_agents.autogpt.output_parser.preprocess_json_input(...) Preprocesses a string to be parsed as json. autonomous_agents.autogpt.prompt_generator.get_prompt(tools) Generates a prompt string. autonomous_agents.hugginggpt.repsonse_generator.load_response_generator(llm) autonomous_agents.hugginggpt.task_planner.load_chat_planner(llm) langchain_experimental.chat_models¶ Chat Models are a variation on language models. While Chat Models use language models under the hood, the interface they expose is a bit different. Rather than expose a “text in, text out” API, they expose an interface where “chat messages” are the inputs and outputs.
lang/api.python.langchain.com/en/latest/experimental_api_reference.html
a509b383164c-2
an interface where “chat messages” are the inputs and outputs. Class hierarchy: BaseLanguageModel --> BaseChatModel --> <name> # Examples: ChatOpenAI, ChatGooglePalm Main helpers: AIMessage, BaseMessage, HumanMessage Classes¶ chat_models.llm_wrapper.ChatWrapper Create a new model by parsing and validating input data from keyword arguments. chat_models.llm_wrapper.Llama2Chat Create a new model by parsing and validating input data from keyword arguments. chat_models.llm_wrapper.Orca Create a new model by parsing and validating input data from keyword arguments. chat_models.llm_wrapper.Vicuna Create a new model by parsing and validating input data from keyword arguments. langchain_experimental.comprehend_moderation¶ Classes¶ comprehend_moderation.amazon_comprehend_moderation.AmazonComprehendModerationChain A subclass of Chain, designed to apply moderation to LLMs. comprehend_moderation.base_moderation.BaseModeration(client) comprehend_moderation.base_moderation_callbacks.BaseModerationCallbackHandler() comprehend_moderation.base_moderation_config.BaseModerationConfig Create a new model by parsing and validating input data from keyword arguments. comprehend_moderation.base_moderation_config.ModerationPiiConfig Create a new model by parsing and validating input data from keyword arguments. comprehend_moderation.base_moderation_config.ModerationPromptSafetyConfig Create a new model by parsing and validating input data from keyword arguments. comprehend_moderation.base_moderation_config.ModerationToxicityConfig Create a new model by parsing and validating input data from keyword arguments. comprehend_moderation.base_moderation_exceptions.ModerationPiiError([...])
lang/api.python.langchain.com/en/latest/experimental_api_reference.html
a509b383164c-3
comprehend_moderation.base_moderation_exceptions.ModerationPiiError([...]) Exception raised if PII entities are detected. comprehend_moderation.base_moderation_exceptions.ModerationPromptSafetyError([...]) Exception raised if Intention entities are detected. comprehend_moderation.base_moderation_exceptions.ModerationToxicityError([...]) Exception raised if Toxic entities are detected. comprehend_moderation.pii.ComprehendPII(client) comprehend_moderation.prompt_safety.ComprehendPromptSafety(client) comprehend_moderation.toxicity.ComprehendToxicity(client) langchain_experimental.cpal¶ Classes¶ cpal.base.CPALChain Causal program-aided language (CPAL) chain implementation. cpal.base.CausalChain Translate the causal narrative into a stack of operations. cpal.base.InterventionChain Set the hypothetical conditions for the causal model. cpal.base.NarrativeChain Decompose the narrative into its story elements cpal.base.QueryChain Query the outcome table using SQL. cpal.constants.Constant(value[, names, ...]) Enum for constants used in the CPAL. cpal.models.CausalModel Create a new model by parsing and validating input data from keyword arguments. cpal.models.EntityModel Create a new model by parsing and validating input data from keyword arguments. cpal.models.EntitySettingModel Initial conditions for an entity cpal.models.InterventionModel aka initial conditions cpal.models.NarrativeModel Represent the narrative input as three story elements. cpal.models.QueryModel translate a question about the story outcome into a programmatic expression cpal.models.ResultModel Create a new model by parsing and validating input data from keyword arguments. cpal.models.StoryModel
lang/api.python.langchain.com/en/latest/experimental_api_reference.html
a509b383164c-4
cpal.models.StoryModel Create a new model by parsing and validating input data from keyword arguments. cpal.models.SystemSettingModel Initial global conditions for the system. langchain_experimental.fallacy_removal¶ The Chain runs a self-review of logical fallacies as determined by this paper categorizing and defining logical fallacies https://arxiv.org/pdf/2212.07425.pdf. Modeled after Constitutional AI and in same format, but applying logical fallacies as generalized rules to remove in output Classes¶ fallacy_removal.base.FallacyChain Chain for applying logical fallacy evaluations, modeled after Constitutional AI and in same format, but applying logical fallacies as generalized rules to remove in output fallacy_removal.models.LogicalFallacy Class for a logical fallacy. langchain_experimental.generative_agents¶ Generative Agents primitives. Classes¶ generative_agents.generative_agent.GenerativeAgent An Agent as a character with memory and innate characteristics. generative_agents.memory.GenerativeAgentMemory Memory for the generative agent. langchain_experimental.graph_transformers¶ Classes¶ graph_transformers.diffbot.DiffbotGraphTransformer([...]) Transforms documents into graph documents using Diffbot's NLP API. graph_transformers.diffbot.NodesList() Manages a list of nodes with associated properties. graph_transformers.diffbot.SimplifiedSchema() Provides functionality for working with a simplified schema mapping. Functions¶ graph_transformers.diffbot.format_property_key(s) langchain_experimental.llm_bash¶ Chain that interprets a prompt and executes bash code to perform bash operations. Classes¶ llm_bash.base.LLMBashChain Chain that interprets a prompt and executes bash operations. llm_bash.bash.BashProcess([strip_newlines, ...])
lang/api.python.langchain.com/en/latest/experimental_api_reference.html
a509b383164c-5
llm_bash.bash.BashProcess([strip_newlines, ...]) Wrapper class for starting subprocesses. llm_bash.prompt.BashOutputParser Parser for bash output. langchain_experimental.llm_symbolic_math¶ Chain that interprets a prompt and executes python code to do math. Heavily borrowed from llm_math, wrapper for SymPy Classes¶ llm_symbolic_math.base.LLMSymbolicMathChain Chain that interprets a prompt and executes python code to do symbolic math. langchain_experimental.llms¶ Experimental LLM wrappers. Classes¶ llms.anthropic_functions.AnthropicFunctions Create a new model by parsing and validating input data from keyword arguments. llms.anthropic_functions.TagParser() A heavy-handed solution, but it's fast for prototyping. llms.jsonformer_decoder.JsonFormer Jsonformer wrapped LLM using HuggingFace Pipeline API. llms.llamaapi.ChatLlamaAPI Create a new model by parsing and validating input data from keyword arguments. llms.lmformatenforcer_decoder.LMFormatEnforcer LMFormatEnforcer wrapped LLM using HuggingFace Pipeline API. llms.rellm_decoder.RELLM RELLM wrapped LLM using HuggingFace Pipeline API. Functions¶ llms.jsonformer_decoder.import_jsonformer() Lazily import jsonformer. llms.lmformatenforcer_decoder.import_lmformatenforcer() Lazily import lmformatenforcer. llms.rellm_decoder.import_rellm() Lazily import rellm. langchain_experimental.open_clip¶ Classes¶ open_clip.open_clip.OpenCLIPEmbeddings Create a new model by parsing and validating input data from keyword arguments. langchain_experimental.pal_chain¶
lang/api.python.langchain.com/en/latest/experimental_api_reference.html
a509b383164c-6
langchain_experimental.pal_chain¶ Implements Program-Aided Language Models. As in https://arxiv.org/pdf/2211.10435.pdf. This is vulnerable to arbitrary code execution: https://github.com/langchain-ai/langchain/issues/5872 Classes¶ pal_chain.base.PALChain Implements Program-Aided Language Models (PAL). pal_chain.base.PALValidation([...]) Initialize a PALValidation instance. langchain_experimental.plan_and_execute¶ Classes¶ plan_and_execute.agent_executor.PlanAndExecute Plan and execute a chain of steps. plan_and_execute.executors.base.BaseExecutor Base executor. plan_and_execute.executors.base.ChainExecutor Chain executor. plan_and_execute.planners.base.BasePlanner Base planner. plan_and_execute.planners.base.LLMPlanner LLM planner. plan_and_execute.planners.chat_planner.PlanningOutputParser Planning output parser. plan_and_execute.schema.BaseStepContainer Base step container. plan_and_execute.schema.ListStepContainer List step container. plan_and_execute.schema.Plan Plan. plan_and_execute.schema.PlanOutputParser Plan output parser. plan_and_execute.schema.Step Step. plan_and_execute.schema.StepResponse Step response. Functions¶ plan_and_execute.executors.agent_executor.load_agent_executor(...) Load an agent executor. plan_and_execute.planners.chat_planner.load_chat_planner(llm) Load a chat planner. langchain_experimental.prompt_injection_identifier¶ HuggingFace Security toolkit. Classes¶ prompt_injection_identifier.hugging_face_identifier.HuggingFaceInjectionIdentifier Tool that uses deberta-v3-base-injection to detect prompt injection attacks. Functions¶ langchain_experimental.retrievers¶ Classes¶ retrievers.vector_sql_database.VectorSQLDatabaseChainRetriever
lang/api.python.langchain.com/en/latest/experimental_api_reference.html
a509b383164c-7
Classes¶ retrievers.vector_sql_database.VectorSQLDatabaseChainRetriever Retriever that uses SQLDatabase as Retriever langchain_experimental.rl_chain¶ Classes¶ rl_chain.base.AutoSelectionScorer Create a new model by parsing and validating input data from keyword arguments. rl_chain.base.Embedder(*args, **kwargs) rl_chain.base.Event(inputs[, selected]) rl_chain.base.Policy(**kwargs) rl_chain.base.RLChain The RLChain class leverages the Vowpal Wabbit (VW) model as a learned policy for reinforcement learning. rl_chain.base.Selected() rl_chain.base.SelectionScorer Abstract method to grade the chosen selection or the response of the llm rl_chain.base.VwPolicy(model_repo, vw_cmd, ...) rl_chain.metrics.MetricsTrackerAverage(step) rl_chain.metrics.MetricsTrackerRollingWindow(...) rl_chain.model_repository.ModelRepository(folder) rl_chain.pick_best_chain.PickBest PickBest is a class designed to leverage the Vowpal Wabbit (VW) model for reinforcement learning with a context, with the goal of modifying the prompt before the LLM call. rl_chain.pick_best_chain.PickBestEvent(...) rl_chain.pick_best_chain.PickBestFeatureEmbedder(...) Text Embedder class that embeds the BasedOn and ToSelectFrom inputs into a format that can be used by the learning policy rl_chain.pick_best_chain.PickBestRandomPolicy(...) rl_chain.pick_best_chain.PickBestSelected([...]) rl_chain.vw_logger.VwLogger(path) Functions¶ rl_chain.base.BasedOn(anything) rl_chain.base.Embed(anything[, keep]) rl_chain.base.EmbedAndKeep(anything) rl_chain.base.ToSelectFrom(anything) rl_chain.base.embed(to_embed, model[, namespace])
lang/api.python.langchain.com/en/latest/experimental_api_reference.html
a509b383164c-8
rl_chain.base.embed(to_embed, model[, namespace]) Embeds the actions or context using the SentenceTransformer model (or a model that has an encode function) rl_chain.base.embed_dict_type(item, model) Helper function to embed a dictionary item. rl_chain.base.embed_list_type(item, model[, ...]) rl_chain.base.embed_string_type(item, model) Helper function to embed a string or an _Embed object. rl_chain.base.get_based_on_and_to_select_from(inputs) rl_chain.base.is_stringtype_instance(item) Helper function to check if an item is a string. rl_chain.base.parse_lines(parser, input_str) rl_chain.base.prepare_inputs_for_autoembed(inputs) go over all the inputs and if something is either wrapped in _ToSelectFrom or _BasedOn, and if their inner values are not already _Embed, then wrap them in EmbedAndKeep while retaining their _ToSelectFrom or _BasedOn status rl_chain.base.stringify_embedding(embedding) langchain_experimental.smart_llm¶ Generalized implementation of SmartGPT (origin: https://youtu.be/wVzuvf9D9BU) Classes¶ smart_llm.base.SmartLLMChain Generalized implementation of SmartGPT (origin: https://youtu.be/wVzuvf9D9BU) langchain_experimental.sql¶ Chain for interacting with SQL Database. Classes¶ sql.base.SQLDatabaseChain Chain for interacting with SQL Database. sql.base.SQLDatabaseSequentialChain Chain for querying SQL database that is a sequential chain. sql.vector_sql.VectorSQLDatabaseChain Chain for interacting with Vector SQL Database. sql.vector_sql.VectorSQLOutputParser Output Parser for Vector SQL 1. sql.vector_sql.VectorSQLRetrieveAllOutputParser
lang/api.python.langchain.com/en/latest/experimental_api_reference.html
a509b383164c-9
Output Parser for Vector SQL 1. sql.vector_sql.VectorSQLRetrieveAllOutputParser Based on VectorSQLOutputParser It also modify the SQL to get all columns Functions¶ sql.vector_sql.get_result_from_sqldb(db, cmd) langchain_experimental.tabular_synthetic_data¶ Classes¶ tabular_synthetic_data.base.SyntheticDataGenerator Generates synthetic data using the given LLM and few-shot template. Functions¶ tabular_synthetic_data.openai.create_openai_data_generator(...) Create an instance of SyntheticDataGenerator tailored for OpenAI models. langchain_experimental.tools¶ Classes¶ tools.python.tool.PythonAstREPLTool A tool for running python code in a REPL. tools.python.tool.PythonInputs Create a new model by parsing and validating input data from keyword arguments. tools.python.tool.PythonREPLTool A tool for running python code in a REPL. Functions¶ tools.python.tool.sanitize_input(query) Sanitize input to the python REPL. langchain_experimental.tot¶ Classes¶ tot.base.ToTChain A Chain implementing the Tree of Thought (ToT). tot.checker.ToTChecker Tree of Thought (ToT) checker. tot.controller.ToTController([c]) Tree of Thought (ToT) controller. tot.memory.ToTDFSMemory([stack]) Memory for the Tree of Thought (ToT) chain. tot.prompts.CheckerOutputParser tot.prompts.JSONListOutputParser Class to parse the output of a PROPOSE_PROMPT response. tot.thought.Thought Create a new model by parsing and validating input data from keyword arguments. tot.thought.ThoughtValidity(value[, names, ...]) tot.thought_generation.BaseThoughtGenerationStrategy Base class for a thought generation strategy.
lang/api.python.langchain.com/en/latest/experimental_api_reference.html
a509b383164c-10
tot.thought_generation.BaseThoughtGenerationStrategy Base class for a thought generation strategy. tot.thought_generation.ProposePromptStrategy Propose thoughts sequentially using a "propose prompt". tot.thought_generation.SampleCoTStrategy Sample thoughts from a Chain-of-Thought (CoT) prompt. langchain_experimental.utilities¶ Classes¶ utilities.python.PythonREPL Simulates a standalone Python REPL.
lang/api.python.langchain.com/en/latest/experimental_api_reference.html
96e420fee0e5-0
langchain.utilities.dataforseo_api_search.DataForSeoAPIWrapper¶ class langchain.utilities.dataforseo_api_search.DataForSeoAPIWrapper[source]¶ Bases: BaseModel Wrapper around the DataForSeo API. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param aiosession: Optional[aiohttp.client.ClientSession] = None¶ The aiohttp session to use for the DataForSEO SERP API. param api_login: Optional[str] = None¶ The API login to use for the DataForSEO SERP API. param api_password: Optional[str] = None¶ The API password to use for the DataForSEO SERP API. param default_params: dict = {'depth': 10, 'language_code': 'en', 'location_name': 'United States', 'se_name': 'google', 'se_type': 'organic'}¶ Default parameters to use for the DataForSEO SERP API. param json_result_fields: Optional[list] = None¶ The JSON result fields. param json_result_types: Optional[list] = None¶ The JSON result types. param params: dict = {}¶ Additional parameters to pass to the DataForSEO SERP API. param top_count: Optional[int] = None¶ The number of top results to return. async aresults(url: str) → list[source]¶ async arun(url: str) → str[source]¶ Run request to DataForSEO SERP API and parse result async. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.dataforseo_api_search.DataForSeoAPIWrapper.html
96e420fee0e5-1
Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.dataforseo_api_search.DataForSeoAPIWrapper.html
96e420fee0e5-2
classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ results(url: str) → list[source]¶ run(url: str) → str[source]¶ Run request to DataForSEO SERP API and parse result async. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.dataforseo_api_search.DataForSeoAPIWrapper.html
96e420fee0e5-3
classmethod validate(value: Any) → Model¶ Examples using DataForSeoAPIWrapper¶ DataForSeo DataForSEO
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.dataforseo_api_search.DataForSeoAPIWrapper.html
a653d77abd38-0
langchain.utilities.portkey.Portkey¶ class langchain.utilities.portkey.Portkey[source]¶ Portkey configuration. base¶ The base URL for the Portkey API. Default: “https://api.portkey.ai/v1/proxy” Attributes base Methods Config(api_key[, trace_id, environment, ...]) __init__() static Config(api_key: str, trace_id: Optional[str] = None, environment: Optional[str] = None, user: Optional[str] = None, organisation: Optional[str] = None, prompt: Optional[str] = None, retry_count: Optional[int] = None, cache: Optional[str] = None, cache_force_refresh: Optional[str] = None, cache_age: Optional[int] = None) → Dict[str, str][source]¶ __init__()¶ Examples using Portkey¶ Log, Trace, and Monitor Portkey
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.portkey.Portkey.html
cfc730ee4d62-0
langchain.utilities.opaqueprompts.sanitize¶ langchain.utilities.opaqueprompts.sanitize(input: Union[str, Dict[str, str]]) → Dict[str, Union[str, Dict[str, str]]][source]¶ Sanitize input string or dict of strings by replacing sensitive data with placeholders. It returns the sanitized input string or dict of strings and the secure context as a dict following the format: { “sanitized_input”: <sanitized input string or dict of strings>, “secure_context”: <secure context> } The secure context is a bytes object that is needed to de-sanitize the response from the LLM. Parameters input – Input string or dict of strings. Returns Sanitized input string or dict of strings and the secure context as a dict following the format: { ”sanitized_input”: <sanitized input string or dict of strings>, “secure_context”: <secure context> } The secure_context needs to be passed to the desanitize function. Raises ValueError – If the input is not a string or dict of strings. ImportError – If the opaqueprompts Python package is not installed.
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.opaqueprompts.sanitize.html
8083bd08e457-0
langchain.utilities.scenexplain.SceneXplainAPIWrapper¶ class langchain.utilities.scenexplain.SceneXplainAPIWrapper[source]¶ Bases: BaseSettings, BaseModel Wrapper for SceneXplain API. In order to set this up, you need API key for the SceneXplain API. You can obtain a key by following the steps below. - Sign up for a free account at https://scenex.jina.ai/. - Navigate to the API Access page (https://scenex.jina.ai/api) and create a new API key. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param scenex_api_key: str [Required]¶ param scenex_api_url: str = 'https://api.scenex.jina.ai/v1/describe'¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.scenexplain.SceneXplainAPIWrapper.html
8083bd08e457-1
the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.scenexplain.SceneXplainAPIWrapper.html
8083bd08e457-2
run(image: str) → str[source]¶ Run SceneXplain image explainer. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.scenexplain.SceneXplainAPIWrapper.html
646781372492-0
langchain.utilities.serpapi.HiddenPrints¶ class langchain.utilities.serpapi.HiddenPrints[source]¶ Context manager to hide prints. Methods __init__() __init__()¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.serpapi.HiddenPrints.html
35f91cea4dfc-0
langchain.utilities.arcee.ArceeDocumentSource¶ class langchain.utilities.arcee.ArceeDocumentSource[source]¶ Bases: BaseModel Source of an Arcee document. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param document: str [Required]¶ param id: str [Required]¶ param name: str [Required]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.arcee.ArceeDocumentSource.html
35f91cea4dfc-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.arcee.ArceeDocumentSource.html
35f91cea4dfc-2
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.arcee.ArceeDocumentSource.html
beb3bbbd47cf-0
langchain.utilities.openapi.HTTPVerb¶ class langchain.utilities.openapi.HTTPVerb(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶ Enumerator of the HTTP verbs. GET = 'get'¶ PUT = 'put'¶ POST = 'post'¶ DELETE = 'delete'¶ OPTIONS = 'options'¶ HEAD = 'head'¶ PATCH = 'patch'¶ TRACE = 'trace'¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.openapi.HTTPVerb.html
3b445cd97a73-0
langchain.utilities.google_places_api.GooglePlacesAPIWrapper¶ class langchain.utilities.google_places_api.GooglePlacesAPIWrapper[source]¶ Bases: BaseModel Wrapper around Google Places API. To use, you should have the googlemaps python package installed,an API key for the google maps platform, and the environment variable ‘’GPLACES_API_KEY’’ set with your API key , or pass ‘gplaces_api_key’ as a named parameter to the constructor. By default, this will return the all the results on the input query.You can use the top_k_results argument to limit the number of results. Example from langchain.utilities import GooglePlacesAPIWrapper gplaceapi = GooglePlacesAPIWrapper() Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param gplaces_api_key: Optional[str] = None¶ param top_k_results: Optional[int] = None¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.google_places_api.GooglePlacesAPIWrapper.html
3b445cd97a73-1
exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. fetch_place_details(place_id: str) → Optional[str][source]¶ format_place_details(place_details: Dict[str, Any]) → Optional[str][source]¶ classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.google_places_api.GooglePlacesAPIWrapper.html
3b445cd97a73-2
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ run(query: str) → str[source]¶ Run Places search and get k number of places that exists that match. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.google_places_api.GooglePlacesAPIWrapper.html
3f1702a287e1-0
langchain.utilities.requests.RequestsWrapper¶ langchain.utilities.requests.RequestsWrapper¶ alias of TextRequestsWrapper Examples using RequestsWrapper¶ OpenAPI
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.requests.RequestsWrapper.html
fe76d73d7393-0
langchain.utilities.arcee.DALMFilter¶ class langchain.utilities.arcee.DALMFilter[source]¶ Bases: BaseModel Filters available for a DALM retrieval and generation. Parameters field_name – The field to filter on. Can be ‘document’ or ‘name’ to filter on your document’s raw text or title. Any other field will be presumed to be a metadata field you included when uploading your context data filter_type – Currently ‘fuzzy_search’ and ‘strict_search’ are supported. ‘fuzzy_search’ means a fuzzy search on the provided field is performed. The exact strict doesn’t need to exist in the document for this to find a match. Very useful for scanning a document for some keyword terms. ‘strict_search’ means that the exact string must appear in the provided field. This is NOT an exact eq filter. ie a document with content “the happy dog crossed the street” will match on a strict_search of “dog” but won’t match on “the dog”. Python equivalent of return search_string in full_string. value – The actual value to search for in the context data/metadata Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param field_name: str [Required]¶ param filter_type: langchain.utilities.arcee.DALMFilterType [Required]¶ param value: str [Required]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.arcee.DALMFilter.html
fe76d73d7393-1
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.arcee.DALMFilter.html
fe76d73d7393-2
classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.arcee.DALMFilter.html
4c8e23210d16-0
langchain.utilities.clickup.load_query¶ langchain.utilities.clickup.load_query(query: str, fault_tolerant: bool = False) → Tuple[Optional[Dict], Optional[str]][source]¶ Attempts to parse a JSON string and return the parsed object. If parsing fails, returns an error message. Parameters query – The JSON string to parse. Returns A tuple containing the parsed object or None and an error message or None.
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.clickup.load_query.html
9da414a44cd7-0
langchain.utilities.awslambda.LambdaWrapper¶ class langchain.utilities.awslambda.LambdaWrapper[source]¶ Bases: BaseModel Wrapper for AWS Lambda SDK. To use, you should have the boto3 package installed and a lambda functions built from the AWS Console or CLI. Set up your AWS credentials with aws configure Example pip install boto3 aws configure Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param awslambda_tool_description: Optional[str] = None¶ If passing to an agent as a tool, the description param awslambda_tool_name: Optional[str] = None¶ If passing to an agent as a tool, the tool name param function_name: Optional[str] = None¶ The name of your lambda function param lambda_client: Any = None¶ The configured boto3 client classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.awslambda.LambdaWrapper.html
9da414a44cd7-1
exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.awslambda.LambdaWrapper.html
9da414a44cd7-2
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ run(query: str) → str[source]¶ Invokes the lambda function and returns the result. Parameters query – an input to passed to the lambda function as the body of a JSON object. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.awslambda.LambdaWrapper.html
a13b2634c599-0
langchain.utilities.arxiv.ArxivAPIWrapper¶ class langchain.utilities.arxiv.ArxivAPIWrapper[source]¶ Bases: BaseModel Wrapper around ArxivAPI. To use, you should have the arxiv python package installed. https://lukasschwab.me/arxiv.py/index.html This wrapper will use the Arxiv API to conduct searches and fetch document summaries. By default, it will return the document summaries of the top-k results. If the query is in the form of arxiv identifier (see https://info.arxiv.org/help/find/index.html), it will return the paper corresponding to the arxiv identifier. It limits the Document content by doc_content_chars_max. Set doc_content_chars_max=None if you don’t want to limit the content size. top_k_results¶ number of the top-scored document used for the arxiv tool ARXIV_MAX_QUERY_LENGTH¶ the cut limit on the query used for the arxiv tool. load_max_docs¶ a limit to the number of loaded documents load_all_available_meta¶ if True: the metadata of the loaded Documents contains all available meta info (see https://lukasschwab.me/arxiv.py/index.html#Result), if False: the metadata contains only the published date, title, authors and summary. doc_content_chars_max¶ an optional cut limit for the length of a document’s content Example from langchain.utilities.arxiv import ArxivAPIWrapper arxiv = ArxivAPIWrapper( top_k_results = 3, ARXIV_MAX_QUERY_LENGTH = 300, load_max_docs = 3, load_all_available_meta = False, doc_content_chars_max = 40000 ) arxiv.run("tree of thought llm)
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.arxiv.ArxivAPIWrapper.html
a13b2634c599-1
) arxiv.run("tree of thought llm) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param ARXIV_MAX_QUERY_LENGTH: int = 300¶ param arxiv_exceptions: Any = None¶ param doc_content_chars_max: Optional[int] = 4000¶ param load_all_available_meta: bool = False¶ param load_max_docs: int = 100¶ param top_k_results: int = 3¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.arxiv.ArxivAPIWrapper.html
a13b2634c599-2
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_summaries_as_docs(query: str) → List[Document][source]¶ Performs an arxiv search and returns list of documents, with summaries as the content. If an error occurs or no documents found, error text is returned instead. Wrapper for https://lukasschwab.me/arxiv.py/index.html#Search Parameters query – a plaintext search query is_arxiv_identifier(query: str) → bool[source]¶ Check if a query is an arxiv identifier. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.arxiv.ArxivAPIWrapper.html
a13b2634c599-3
load(query: str) → List[Document][source]¶ Run Arxiv search and get the article texts plus the article meta information. See https://lukasschwab.me/arxiv.py/index.html#Search Returns: a list of documents with the document.page_content in text format Performs an arxiv search, downloads the top k results as PDFs, loads them as Documents, and returns them in a List. Parameters query – a plaintext search query classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ run(query: str) → str[source]¶ Performs an arxiv search and A single string with the publish date, title, authors, and summary for each article separated by two newlines. If an error occurs or no documents found, error text is returned instead. Wrapper for https://lukasschwab.me/arxiv.py/index.html#Search Parameters query – a plaintext search query classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ Examples using ArxivAPIWrapper¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.arxiv.ArxivAPIWrapper.html
a13b2634c599-4
classmethod validate(value: Any) → Model¶ Examples using ArxivAPIWrapper¶ ArXiv
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.arxiv.ArxivAPIWrapper.html
06bd70da544f-0
langchain.utilities.google_scholar.GoogleScholarAPIWrapper¶ class langchain.utilities.google_scholar.GoogleScholarAPIWrapper[source]¶ Bases: BaseModel Wrapper for Google Scholar API You can create serpapi key by signing up at: https://serpapi.com/users/sign_up. The wrapper uses the serpapi python package: https://serpapi.com/integrations/python#search-google-scholar To use, you should have the environment variable SERP_API_KEY set with your API key, or pass serp_api_key as a named parameter to the constructor. top_k_results¶ number of results to return from google-scholar query search. By default it returns top 10 results. hl¶ attribute defines the language to use for the Google Scholar search. It’s a two-letter language code. (e.g., en for English, es for Spanish, or fr for French). Head to the Google languages page for a full list of supported Google languages: https://serpapi.com/google-languages lr¶ attribute defines one or multiple languages to limit the search to. It uses lang_{two-letter language code} to specify languages and | as a delimiter. (e.g., lang_fr|lang_de will only search French and German pages). Head to the Google lr languages for a full list of supported languages: https://serpapi.com/google-lr-languages Example: from langchain.utilities import GoogleScholarAPIWrapper google_scholar = GoogleScholarAPIWrapper() google_scholar.run(‘langchain’) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param hl: str = 'en'¶ param lr: str = 'lang_en'¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.google_scholar.GoogleScholarAPIWrapper.html
06bd70da544f-1
param lr: str = 'lang_en'¶ param serp_api_key: Optional[str] = None¶ param top_k_results: int = 10¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.google_scholar.GoogleScholarAPIWrapper.html
06bd70da544f-2
classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ run(query: str) → str[source]¶ Run query through GoogleSearchScholar and parse result classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.google_scholar.GoogleScholarAPIWrapper.html
32590fae3b14-0
langchain.utilities.clickup.fetch_team_id¶ langchain.utilities.clickup.fetch_team_id(access_token: str) → Optional[int][source]¶ Fetch the team id.
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.clickup.fetch_team_id.html
f08a53d49b60-0
langchain.utilities.clickup.ClickupAPIWrapper¶ class langchain.utilities.clickup.ClickupAPIWrapper[source]¶ Bases: BaseModel Wrapper for Clickup API. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param access_token: Optional[str] = None¶ param folder_id: Optional[str] = None¶ param list_id: Optional[str] = None¶ param space_id: Optional[str] = None¶ param team_id: Optional[str] = None¶ attempt_parse_teams(input_dict: dict) → Dict[str, List[dict]][source]¶ Parse appropriate content from the list of teams. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance create_folder(query: str) → Dict[source]¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.clickup.ClickupAPIWrapper.html
f08a53d49b60-1
Returns new model instance create_folder(query: str) → Dict[source]¶ Creates a new folder. create_list(query: str) → Dict[source]¶ Creates a new list. create_task(query: str) → Dict[source]¶ Creates a new task. dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_access_code_url(oauth_client_id: str, redirect_uri: str = 'https://google.com') → str[source]¶ Get the URL to get an access code. classmethod get_access_token(oauth_client_id: str, oauth_client_secret: str, code: str) → Optional[str][source]¶ Get the access token. get_authorized_teams() → Dict[Any, Any][source]¶ Get all teams for the user. get_default_params() → Dict[source]¶ get_folders() → Dict[source]¶ Get all the folders for the team. get_headers() → Mapping[str, Union[str, bytes]][source]¶ Get the headers for the request. get_lists() → Dict[source]¶ Get all available lists. get_spaces() → Dict[source]¶ Get all spaces for the team. get_task(query: str, fault_tolerant: bool = True) → Dict[source]¶ Retrieve a specific task. get_task_attribute(query: str) → Dict[source]¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.clickup.ClickupAPIWrapper.html
f08a53d49b60-2
Retrieve a specific task. get_task_attribute(query: str) → Dict[source]¶ Update an attribute of a specified task. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ query_tasks(query: str) → Dict[source]¶ Query tasks that match certain fields run(mode: str, query: str) → str[source]¶ Run the API. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.clickup.ClickupAPIWrapper.html
f08a53d49b60-3
classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. update_task(query: str) → Dict[source]¶ Update an attribute of a specified task. update_task_assignees(query: str) → Dict[source]¶ Add or remove assignees of a specified task. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.clickup.ClickupAPIWrapper.html
a390124055cb-0
langchain.utilities.sql_database.SQLDatabase¶ class langchain.utilities.sql_database.SQLDatabase(engine: Engine, schema: Optional[str] = None, metadata: Optional[MetaData] = None, ignore_tables: Optional[List[str]] = None, include_tables: Optional[List[str]] = None, sample_rows_in_table_info: int = 3, indexes_in_table_info: bool = False, custom_table_info: Optional[dict] = None, view_support: bool = False, max_string_length: int = 300)[source]¶ SQLAlchemy wrapper around a database. Create engine from database URI. Attributes dialect Return string representation of dialect to use. table_info Information about all tables in the database. Methods __init__(engine[, schema, metadata, ...]) Create engine from database URI. from_cnosdb([url, user, password, tenant, ...]) Class method to create an SQLDatabase instance from a CnosDB connection. from_databricks(catalog, schema[, host, ...]) Class method to create an SQLDatabase instance from a Databricks connection. from_uri(database_uri[, engine_args]) Construct a SQLAlchemy engine from URI. get_table_info([table_names]) Get information about specified tables. get_table_info_no_throw([table_names]) Get information about specified tables. get_table_names() Get names of tables available. get_usable_table_names() Get names of tables available. run(command[, fetch]) Execute a SQL command and return a string representing the results. run_no_throw(command[, fetch]) Execute a SQL command and return a string representing the results.
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.sql_database.SQLDatabase.html
a390124055cb-1
Execute a SQL command and return a string representing the results. __init__(engine: Engine, schema: Optional[str] = None, metadata: Optional[MetaData] = None, ignore_tables: Optional[List[str]] = None, include_tables: Optional[List[str]] = None, sample_rows_in_table_info: int = 3, indexes_in_table_info: bool = False, custom_table_info: Optional[dict] = None, view_support: bool = False, max_string_length: int = 300)[source]¶ Create engine from database URI. classmethod from_cnosdb(url: str = '127.0.0.1:8902', user: str = 'root', password: str = '', tenant: str = 'cnosdb', database: str = 'public') → SQLDatabase[source]¶ Class method to create an SQLDatabase instance from a CnosDB connection. This method requires the ‘cnos-connector’ package. If not installed, it can be added using pip install cnos-connector. Parameters url (str) – The HTTP connection host name and port number of the CnosDB service, excluding “http://” or “https://”, with a default value of “127.0.0.1:8902”. user (str) – The username used to connect to the CnosDB service, with a default value of “root”. password (str) – The password of the user connecting to the CnosDB service, with a default value of “”. tenant (str) – The name of the tenant used to connect to the CnosDB service, with a default value of “cnosdb”. database (str) – The name of the database in the CnosDB tenant. Returns An instance of SQLDatabase configured with the provided CnosDB connection details. Return type SQLDatabase
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.sql_database.SQLDatabase.html
a390124055cb-2
CnosDB connection details. Return type SQLDatabase classmethod from_databricks(catalog: str, schema: str, host: Optional[str] = None, api_token: Optional[str] = None, warehouse_id: Optional[str] = None, cluster_id: Optional[str] = None, engine_args: Optional[dict] = None, **kwargs: Any) → SQLDatabase[source]¶ Class method to create an SQLDatabase instance from a Databricks connection. This method requires the ‘databricks-sql-connector’ package. If not installed, it can be added using pip install databricks-sql-connector. Parameters catalog (str) – The catalog name in the Databricks database. schema (str) – The schema name in the catalog. host (Optional[str]) – The Databricks workspace hostname, excluding ‘https://’ part. If not provided, it attempts to fetch from the environment variable ‘DATABRICKS_HOST’. If still unavailable and if running in a Databricks notebook, it defaults to the current workspace hostname. Defaults to None. api_token (Optional[str]) – The Databricks personal access token for accessing the Databricks SQL warehouse or the cluster. If not provided, it attempts to fetch from ‘DATABRICKS_TOKEN’. If still unavailable and running in a Databricks notebook, a temporary token for the current user is generated. Defaults to None. warehouse_id (Optional[str]) – The warehouse ID in the Databricks SQL. If provided, the method configures the connection to use this warehouse. Cannot be used with ‘cluster_id’. Defaults to None. cluster_id (Optional[str]) – The cluster ID in the Databricks Runtime. If provided, the method configures the connection to use this cluster.
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.sql_database.SQLDatabase.html
a390124055cb-3
provided, the method configures the connection to use this cluster. Cannot be used with ‘warehouse_id’. If running in a Databricks notebook and both ‘warehouse_id’ and ‘cluster_id’ are None, it uses the ID of the cluster the notebook is attached to. Defaults to None. engine_args (Optional[dict]) – The arguments to be used when connecting Databricks. Defaults to None. **kwargs (Any) – Additional keyword arguments for the from_uri method. Returns An instance of SQLDatabase configured with the providedDatabricks connection details. Return type SQLDatabase Raises ValueError – If ‘databricks-sql-connector’ is not found, or if both ‘warehouse_id’ and ‘cluster_id’ are provided, or if neither ‘warehouse_id’ nor ‘cluster_id’ are provided and it’s not executing inside a Databricks notebook. classmethod from_uri(database_uri: str, engine_args: Optional[dict] = None, **kwargs: Any) → SQLDatabase[source]¶ Construct a SQLAlchemy engine from URI. get_table_info(table_names: Optional[List[str]] = None) → str[source]¶ Get information about specified tables. Follows best practices as specified in: Rajkumar et al, 2022 (https://arxiv.org/abs/2204.00498) If sample_rows_in_table_info, the specified number of sample rows will be appended to each table description. This can increase performance as demonstrated in the paper. get_table_info_no_throw(table_names: Optional[List[str]] = None) → str[source]¶ Get information about specified tables. Follows best practices as specified in: Rajkumar et al, 2022 (https://arxiv.org/abs/2204.00498)
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.sql_database.SQLDatabase.html
a390124055cb-4
(https://arxiv.org/abs/2204.00498) If sample_rows_in_table_info, the specified number of sample rows will be appended to each table description. This can increase performance as demonstrated in the paper. get_table_names() → Iterable[str][source]¶ Get names of tables available. get_usable_table_names() → Iterable[str][source]¶ Get names of tables available. run(command: str, fetch: Union[Literal['all'], Literal['one']] = 'all') → str[source]¶ Execute a SQL command and return a string representing the results. If the statement returns rows, a string of the results is returned. If the statement returns no rows, an empty string is returned. run_no_throw(command: str, fetch: Union[Literal['all'], Literal['one']] = 'all') → str[source]¶ Execute a SQL command and return a string representing the results. If the statement returns rows, a string of the results is returned. If the statement returns no rows, an empty string is returned. If the statement throws an error, the error message is returned. Examples using SQLDatabase¶ Rebuff SQL Database Multiple Retrieval Sources Set env var OPENAI_API_KEY or load from a .env file Vector SQL Retriever with MyScale SQL sql_db.md
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.sql_database.SQLDatabase.html
67c2259f4c03-0
langchain.utilities.wikipedia.WikipediaAPIWrapper¶ class langchain.utilities.wikipedia.WikipediaAPIWrapper[source]¶ Bases: BaseModel Wrapper around WikipediaAPI. To use, you should have the wikipedia python package installed. This wrapper will use the Wikipedia API to conduct searches and fetch page summaries. By default, it will return the page summaries of the top-k results. It limits the Document content by doc_content_chars_max. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param doc_content_chars_max: int = 4000¶ param lang: str = 'en'¶ param load_all_available_meta: bool = False¶ param top_k_results: int = 3¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.wikipedia.WikipediaAPIWrapper.html
67c2259f4c03-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). load(query: str) → List[Document][source]¶ Run Wikipedia search and get the article text plus the meta information. See Returns: a list of documents. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.wikipedia.WikipediaAPIWrapper.html
67c2259f4c03-2
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ run(query: str) → str[source]¶ Run Wikipedia search and get page summaries. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ Examples using WikipediaAPIWrapper¶ Wikipedia Zep Memory
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.wikipedia.WikipediaAPIWrapper.html
2939f093700d-0
langchain.utilities.clickup.parse_dict_through_component¶ langchain.utilities.clickup.parse_dict_through_component(data: dict, component: Type[Component], fault_tolerant: bool = False) → Dict[source]¶ Parse a dictionary by creating a component and then turning it back into a dictionary. This helps with two things 1. Extract and format data from a dictionary according to schema 2. Provide a central place to do this in a fault-tolerant way
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.clickup.parse_dict_through_component.html
3ed3fa651395-0
langchain.utilities.vertexai.get_client_info¶ langchain.utilities.vertexai.get_client_info(module: Optional[str] = None) → ClientInfo[source]¶ Returns a custom user agent header. Parameters module (Optional[str]) – Optional. The module for a custom user agent header. Returns google.api_core.gapic_v1.client_info.ClientInfo
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.vertexai.get_client_info.html
2edc1facc014-0
langchain.utilities.golden_query.GoldenQueryAPIWrapper¶ class langchain.utilities.golden_query.GoldenQueryAPIWrapper[source]¶ Bases: BaseModel Wrapper for Golden. Docs for using: Go to https://golden.com and sign up for an account Get your API Key from https://golden.com/settings/api Save your API Key into GOLDEN_API_KEY env variable Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param golden_api_key: Optional[str] = None¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.golden_query.GoldenQueryAPIWrapper.html
2edc1facc014-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ run(query: str) → str[source]¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.golden_query.GoldenQueryAPIWrapper.html
2edc1facc014-2
run(query: str) → str[source]¶ Run query through Golden Query API and return the JSON raw result. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ Examples using GoldenQueryAPIWrapper¶ Golden Query Golden
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.golden_query.GoldenQueryAPIWrapper.html
f57de50f843b-0
langchain.utilities.clickup.fetch_space_id¶ langchain.utilities.clickup.fetch_space_id(team_id: int, access_token: str) → Optional[int][source]¶ Fetch the space id.
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.clickup.fetch_space_id.html
f1058e9130ea-0
langchain.utilities.twilio.TwilioAPIWrapper¶ class langchain.utilities.twilio.TwilioAPIWrapper[source]¶ Bases: BaseModel Messaging Client using Twilio. To use, you should have the twilio python package installed, and the environment variables TWILIO_ACCOUNT_SID, TWILIO_AUTH_TOKEN, and TWILIO_FROM_NUMBER, or pass account_sid, auth_token, and from_number as named parameters to the constructor. Example from langchain.utilities.twilio import TwilioAPIWrapper twilio = TwilioAPIWrapper( account_sid="ACxxx", auth_token="xxx", from_number="+10123456789" ) twilio.run('test', '+12484345508') Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param account_sid: Optional[str] = None¶ Twilio account string identifier. param auth_token: Optional[str] = None¶ Twilio auth token. param from_number: Optional[str] = None¶ A Twilio phone number in [E.164](https://www.twilio.com/docs/glossary/what-e164) format, an [alphanumeric sender ID](https://www.twilio.com/docs/sms/send-messages#use-an-alphanumeric-sender-id), or a [Channel Endpoint address](https://www.twilio.com/docs/sms/channels#channel-addresses) that is enabled for the type of message you want to send. Phone numbers or [short codes](https://www.twilio.com/docs/sms/api/short-code) purchased from Twilio also work here. You cannot, for example, spoof messages from a private cell phone number. If you are using messaging_service_sid, this parameter must be empty.
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.twilio.TwilioAPIWrapper.html
f1058e9130ea-1
cell phone number. If you are using messaging_service_sid, this parameter must be empty. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.twilio.TwilioAPIWrapper.html
f1058e9130ea-2
classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ run(body: str, to: str) → str[source]¶ Run body through Twilio and respond with message sid. Parameters body – The text of the message you want to send. Can be up to 1,600 characters in length. to – The destination phone number in [E.164](https://www.twilio.com/docs/glossary/what-e164) format for SMS/MMS or [Channel user address](https://www.twilio.com/docs/sms/channels#channel-addresses) for other 3rd-party channels.
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.twilio.TwilioAPIWrapper.html
f1058e9130ea-3
for other 3rd-party channels. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ Examples using TwilioAPIWrapper¶ Twilio
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.twilio.TwilioAPIWrapper.html
818a639c0896-0
langchain.utilities.powerbi.PowerBIDataset¶ class langchain.utilities.powerbi.PowerBIDataset[source]¶ Bases: BaseModel Create PowerBI engine from dataset ID and credential or token. Use either the credential or a supplied token to authenticate. If both are supplied the credential is used to generate a token. The impersonated_user_name is the UPN of a user to be impersonated. If the model is not RLS enabled, this will be ignored. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param aiosession: Optional[aiohttp.ClientSession] = None¶ param credential: Optional[TokenCredential] = None¶ param dataset_id: str [Required]¶ param group_id: Optional[str] = None¶ param impersonated_user_name: Optional[str] = None¶ param sample_rows_in_table_info: int = 1¶ Constraints exclusiveMinimum = 0 maximum = 10 param schemas: Dict[str, str] [Optional]¶ param table_names: List[str] [Required]¶ param token: Optional[str] = None¶ async aget_table_info(table_names: Optional[Union[List[str], str]] = None) → str[source]¶ Get information about specified tables. async arun(command: str) → Any[source]¶ Execute a DAX command and return the result asynchronously. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.powerbi.PowerBIDataset.html
818a639c0896-1
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_schemas() → str[source]¶ Get the available schema’s. get_table_info(table_names: Optional[Union[List[str], str]] = None) → str[source]¶ Get information about specified tables. get_table_names() → Iterable[str][source]¶ Get names of tables available.
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.powerbi.PowerBIDataset.html
818a639c0896-2
get_table_names() → Iterable[str][source]¶ Get names of tables available. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ run(command: str) → Any[source]¶ Execute a DAX command and return a json representing the results. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.powerbi.PowerBIDataset.html
818a639c0896-3
classmethod validate(value: Any) → Model¶ property headers: Dict[str, str]¶ Get the token. property request_url: str¶ Get the request url. property table_info: str¶ Information about all tables in the database. Examples using PowerBIDataset¶ PowerBI Dataset
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.powerbi.PowerBIDataset.html
25aea3bfd89d-0
langchain.utilities.redis.TokenEscaper¶ class langchain.utilities.redis.TokenEscaper(escape_chars_re: Optional[Pattern] = None)[source]¶ Escape punctuation within an input string. Attributes DEFAULT_ESCAPED_CHARS Methods __init__([escape_chars_re]) escape(value) __init__(escape_chars_re: Optional[Pattern] = None)[source]¶ escape(value: str) → str[source]¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.redis.TokenEscaper.html
543cc83a9017-0
langchain.utilities.anthropic.get_token_ids_anthropic¶ langchain.utilities.anthropic.get_token_ids_anthropic(text: str) → List[int][source]¶ Get the token ids for a string of text.
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.anthropic.get_token_ids_anthropic.html
d8abb7621c75-0
langchain.utilities.anthropic.get_num_tokens_anthropic¶ langchain.utilities.anthropic.get_num_tokens_anthropic(text: str) → int[source]¶ Get the number of tokens in a string of text.
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.anthropic.get_num_tokens_anthropic.html
a629d75b53ee-0
langchain.utilities.clickup.fetch_data¶ langchain.utilities.clickup.fetch_data(url: str, access_token: str, query: Optional[dict] = None) → dict[source]¶ Fetch data from a URL.
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.clickup.fetch_data.html
30194cd32d1a-0
langchain.utilities.serpapi.SerpAPIWrapper¶ class langchain.utilities.serpapi.SerpAPIWrapper[source]¶ Bases: BaseModel Wrapper around SerpAPI. To use, you should have the google-search-results python package installed, and the environment variable SERPAPI_API_KEY set with your API key, or pass serpapi_api_key as a named parameter to the constructor. Example from langchain.utilities import SerpAPIWrapper serpapi = SerpAPIWrapper() Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param aiosession: Optional[aiohttp.client.ClientSession] = None¶ param params: dict = {'engine': 'google', 'gl': 'us', 'google_domain': 'google.com', 'hl': 'en'}¶ param serpapi_api_key: Optional[str] = None¶ async aresults(query: str) → dict[source]¶ Use aiohttp to run query through SerpAPI and return the results async. async arun(query: str, **kwargs: Any) → str[source]¶ Run query through SerpAPI and parse result async. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.serpapi.SerpAPIWrapper.html
30194cd32d1a-1
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_params(query: str) → Dict[str, str][source]¶ Get parameters for SerpAPI.
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.serpapi.SerpAPIWrapper.html
30194cd32d1a-2
Get parameters for SerpAPI. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ results(query: str) → dict[source]¶ Run query through SerpAPI and return the raw result. run(query: str, **kwargs: Any) → str[source]¶ Run query through SerpAPI and parse result. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.serpapi.SerpAPIWrapper.html
30194cd32d1a-3
Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ Examples using SerpAPIWrapper¶ SerpAPI Bittensor AutoGPT
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.serpapi.SerpAPIWrapper.html
6a1ab553dc73-0
langchain.utilities.arcee.DALMFilterType¶ class langchain.utilities.arcee.DALMFilterType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶ Filter types available for a DALM retrieval as enumerator. fuzzy_search = 'fuzzy_search'¶ strict_search = 'strict_search'¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.arcee.DALMFilterType.html
d9ca59353dce-0
langchain.utilities.clickup.Space¶ class langchain.utilities.clickup.Space(id: int, name: str, private: bool, enabled_features: Dict[str, Any])[source]¶ Component class for a space. Attributes id name private enabled_features Methods __init__(id, name, private, enabled_features) from_data(data) __init__(id: int, name: str, private: bool, enabled_features: Dict[str, Any]) → None¶ classmethod from_data(data: Dict[str, Any]) → Space[source]¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.clickup.Space.html
a34b3b837be7-0
langchain.utilities.jira.JiraAPIWrapper¶ class langchain.utilities.jira.JiraAPIWrapper[source]¶ Bases: BaseModel Wrapper for Jira API. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param confluence: Any = None¶ param jira_api_token: Optional[str] = None¶ param jira_instance_url: Optional[str] = None¶ param jira_username: Optional[str] = None¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.jira.JiraAPIWrapper.html
a34b3b837be7-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ issue_create(query: str) → str[source]¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). other(query: str) → str[source]¶ page_create(query: str) → str[source]¶ classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ parse_issues(issues: Dict) → List[dict][source]¶ classmethod parse_obj(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.jira.JiraAPIWrapper.html
a34b3b837be7-2
classmethod parse_obj(obj: Any) → Model¶ parse_projects(projects: List[dict]) → List[dict][source]¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ project() → str[source]¶ run(mode: str, query: str) → str[source]¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ search(query: str) → str[source]¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ Examples using JiraAPIWrapper¶ Jira
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.jira.JiraAPIWrapper.html
d8c216c9cf77-0
langchain.utilities.apify.ApifyWrapper¶ class langchain.utilities.apify.ApifyWrapper[source]¶ Bases: BaseModel Wrapper around Apify. To use, you should have the apify-client python package installed, and the environment variable APIFY_API_TOKEN set with your API key, or pass apify_api_token as a named parameter to the constructor. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param apify_client: Any = None¶ param apify_client_async: Any = None¶ async acall_actor(actor_id: str, run_input: Dict, dataset_mapping_function: Callable[[Dict], Document], *, build: Optional[str] = None, memory_mbytes: Optional[int] = None, timeout_secs: Optional[int] = None) → ApifyDatasetLoader[source]¶ Run an Actor on the Apify platform and wait for results to be ready. :param actor_id: The ID or name of the Actor on the Apify platform. :type actor_id: str :param run_input: The input object of the Actor that you’re trying to run. :type run_input: Dict :param dataset_mapping_function: A function that takes a single dictionary (an Apify dataset item) and converts it to an instance of the Document class. Parameters build (str, optional) – Optionally specifies the actor build to run. It can be either a build tag or build number. memory_mbytes (int, optional) – Optional memory limit for the run, in megabytes. timeout_secs (int, optional) – Optional timeout for the run, in seconds. Returns A loader that will fetch the records from theActor run’s default dataset. Return type ApifyDatasetLoader
lang/api.python.langchain.com/en/latest/utilities/langchain.utilities.apify.ApifyWrapper.html