|
import json |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
id_to_original = { |
|
"1": "5-5-10-H-A1000C 100h-30k-3-crop", |
|
"2": "5-5-A1000C 100h-30k-9 crop", |
|
"3": "5-5-A1000C 100h-30k-9 crop2", |
|
"4": "5-5-A1000C 100h-30k-9-crop", |
|
"5": "5k-Cr-10-10-20Fe-H-Ageing1200C 4h-6-crop", |
|
"6": "Cr-5-5-10Fe-A1200C 4h-6 crop1", |
|
"7": "Cr-5-5-10Fe-A1200C 4h-6 crop2", |
|
"8": "Cr-5-5-10Fe-H1400-20h-A800-240h-80k-9crop1", |
|
"9": "Cr-5-5-10Fe-H1400-20h-A800-240h-80k-9crop2", |
|
"10": "Cr-5-5-10Fe-H1400-20h-A800-240h-80k-10 crop", |
|
"11": "Cr-5-5-10Fe-H1400-20h-A800-240h-80k-10 crop2", |
|
"12": "Cr-5-5-10Fe-H1400-20h-A1000-20h-50k-10 crop", |
|
"13": "Cr-5-5-10Fe-H1400-20h-A1000-240h-30k-8 crop2", |
|
"14": "Cr-5-5-A1200C 4h-20k-5-crop1", |
|
"15": "Cr-5-5-A1200C 4h-20k-5-crop2", |
|
"16": "Cr-10-10-20Fe-H20h-A1200C 20h-7-crop1", |
|
"17": "J955-H2-7-crop1", |
|
"18": "J955-H2-7-crop2", |
|
"19": "Cr-10-10-20Fe-A100h-1-crop1", |
|
"20": "Cr-10-10-20Fe-A100h-4-crop1", |
|
"21": "Cr-10Ni-10Al-20Fe-8 crop1", |
|
"22": "Cr-10Ni-10Al-20Fe-8 crop2", |
|
"23": "Cr-10Ni-10Al-20Fe-H1400C20h-9 crop1", |
|
"24": "Cr-10Ni-10Al-20Fe-H1400C20h-9 crop2", |
|
} |
|
ids_split = { |
|
datasets.Split.TEST: [ |
|
"1", |
|
"5", |
|
"9", |
|
"14", |
|
"20", |
|
], |
|
datasets.Split.VALIDATION: [ |
|
"2", |
|
"7", |
|
"18", |
|
"22", |
|
], |
|
datasets.Split.TRAIN: [ |
|
"3", |
|
"4", |
|
"6", |
|
"8", |
|
"10", |
|
"11", |
|
"12", |
|
"13", |
|
"15", |
|
"16", |
|
"17", |
|
"19", |
|
"21", |
|
"23", |
|
"24", |
|
] |
|
} |
|
|
|
_CITATION = """\ |
|
@article{xia2023Accurate, |
|
author = {Zeyu Xia and Kan Ma and Sibo Cheng and Thomas Blackburn and Ziling Peng and Kewei Zhu and Weihang Zhang and Dunhui Xiao and Alexander J Knowles and Rossella Arcucci}, |
|
copyright = {CC BY-NC 3.0}, |
|
doi = {10.1039/d3cp00402c}, |
|
issn = {1463-9076}, |
|
journal = {Physical Chemistry Chemical Physics}, |
|
keywords = {}, |
|
language = {English}, |
|
month = {6}, |
|
number = {23}, |
|
pages = {15970--15987}, |
|
pmid = {37265373}, |
|
publisher = {Royal Society of Chemistry (RSC)}, |
|
title = {Accurate Identification and Measurement of the Precipitate Area by Two-Stage Deep Neural Networks in Novel Chromium-Based Alloy}, |
|
url = {https://doi.org/10.1039/d3cp00402c}, |
|
volume = {25}, |
|
year = {2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = 'A comprehensive, two-tiered deep learning approach designed for precise object detection and segmentation in electron microscopy (EM) images.' |
|
|
|
_CATEGORIES = ["precipitate"] |
|
|
|
_HOMEPAGE = 'https://github.com/xiazeyu/DT_SegNet' |
|
|
|
_LICENSE = 'CC BY-NC 3.0' |
|
|
|
|
|
def convert_image(image_path): |
|
with open(image_path, "rb") as image_file: |
|
return image_file.read() |
|
|
|
|
|
|
|
def convert_json(json_path): |
|
with open(json_path, "r") as json_file: |
|
json_str = json.dumps(json.load(json_file)) |
|
return json_str |
|
|
|
|
|
def convert_txt(txt_path): |
|
yolo_data = {"bbox": [], "category": []} |
|
|
|
|
|
with open(txt_path, "r") as file: |
|
for line in file: |
|
|
|
parts = line.strip().split() |
|
|
|
|
|
yolo_data["category"].append(int(parts[0])) |
|
|
|
|
|
|
|
bbox = [float(coord) for coord in parts[1:]] |
|
yolo_data["bbox"].append(bbox) |
|
|
|
return yolo_data |
|
|
|
|
|
def get_ds(pfx): |
|
image_array = [] |
|
seg_annotation_array = [] |
|
raw_seg_annotation_array = [] |
|
det_annotation_array = [] |
|
|
|
for img_idx in ids_split[pfx]: |
|
ydt = convert_txt(f"{pfx}/{img_idx}_label.txt") |
|
det_annotation_array.append({ |
|
"bbox": ydt["bbox"], |
|
"category": ydt["category"], |
|
}) |
|
image_array.append(convert_image(f"{pfx}/{img_idx}.png")) |
|
seg_annotation_array.append(convert_image(f"{pfx}/{img_idx}_label.png")) |
|
raw_seg_annotation_array.append(convert_json(f"{pfx}/{img_idx}.json")) |
|
|
|
data = { |
|
"id": ids_split[pfx], |
|
"original_name": [id_to_original[file] for file in ids_split[pfx]], |
|
"image": image_array, |
|
"det_annotation": det_annotation_array, |
|
"seg_annotation": seg_annotation_array, |
|
"raw_seg_annotation": raw_seg_annotation_array, |
|
} |
|
|
|
df = pd.DataFrame(data) |
|
|
|
features = datasets.Features({ |
|
'id': datasets.Value('int8'), |
|
'original_name': datasets.Value('string'), |
|
'image': datasets.Image(), |
|
"det_annotation": datasets.Sequence( |
|
{ |
|
"bbox": datasets.Sequence(datasets.Value("float32"), length=4), |
|
"category": datasets.ClassLabel(num_classes=1, names=_CATEGORIES), |
|
} |
|
), |
|
'seg_annotation': datasets.Image(), |
|
'raw_seg_annotation': datasets.Value(dtype='string'), |
|
}) |
|
|
|
data_info = datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
ds = datasets.Dataset.from_pandas(df, |
|
features=features, |
|
info=data_info, |
|
split=pfx) |
|
|
|
ds.VERSION = datasets.Version("1.0.0") |
|
|
|
return ds |
|
|
|
|
|
ddd = datasets.DatasetDict( |
|
{ |
|
str(datasets.Split.TRAIN): get_ds(datasets.Split.TRAIN), |
|
str(datasets.Split.VALIDATION): get_ds(datasets.Split.VALIDATION), |
|
str(datasets.Split.TEST): get_ds(datasets.Split.TEST), |
|
} |
|
) |
|
|
|
|
|
|
|
|